
Melançon

US$49.99

Shelve in
Web Development

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

The Definitive Guide to Drupal 7
The Definitive Guide to Drupal 7 gives you a broad yet deep understanding of 
Drupal and provides the skills you require to accomplish world-class results with 
this powerful content management system.

Written by a carefully selected panel of experts, The Definitive Guide to Drupal 
7 covers every aspect of Drupal: managing your Drupal projects, applying themes, 
deploying modules, and using security to make your site safe. You’ll learn about 
accessibility, essential tools such as drush and git, jQuery integration, the Drupal 
API, and much more. 

• Launch a site in 15 minutes
• Extend Drupal’s functionality with thousands of modules
• Theme your site with templates
• Test and optimize your site
• Build your own modules to extend Drupal
• Install Drupal in many environments
• Set up the ideal development environment for Drupal

Drupal’s success has been phenomenal. The Definitive Guide to Drupal 7 will help 

continue that growth by making Drupal more accessible to everybody. It goes beyond 

building a web site to talk about creating distributions, making a living, and contribut-

ing to Drupal’s thriving community. I’ve always believed that Drupal’s ecosystem is as 

important as its code; this book guides you through both.
   
 - Dries Buytaert, Drupal Founder and Project Lead



For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 



 

iv 

Contents at a Glance 

Contents ................................................................................................................................. vi 
Foreword .......................................................................................................................... xxxiv  
About the Authors ............................................................................................................. xxxv 
About the Technical Reviewer .............................................................................................. xli
Acknowledgments ............................................................................................................... xlii
Preface: Why Drupal ........................................................................................................... xliii  
What’s New in Drupal 7? ................................................................................................... xlvii  
How to Use This Book ........................................................................................................... liii  
How Drupal Works ............................................................................................................... lvii  

 

Part I: Getting Started  ............................................................................................................ 1 

■Chapter 1: Building a Drupal 7 Site ..................................................................................... 3
■Chapter 2: Essential Tools: Drush and Git ......................................................................... 31
Part II: Site Building Foundations ......................................................................................... 47
■Chapter 3: Building Dynamic Pages Using Views .............................................................. 49
■Chapter 4: There’s a Module for That ................................................................................ 87
■Chapter 5: Creating Community Web Sites with Organic Groups .................................... 109
■Chapter 6: Security in Drupal .......................................................................................... 125
■Chapter 7: Updating Drupal ............................................................................................. 137
■Chapter 8: Extending Your Site ........................................................................................ 149
Part III: Making Your Life Easier ......................................................................................... 193
■Chapter 9: Drupal Community: Getting Help and Getting Involved .................................. 195
■Chapter 10: Planning and Managing a Drupal Project .................................................... 203
■Chapter 11: Documenting for End Users and the Production Team ................................ 221
■Chapter 12: Development Environment ........................................................................... 227
■Chapter 13: Putting a Site Online and Deploying New Features ...................................... 243
■Chapter 14: Developing from a Human Mindset ............................................................... 263
Part IV: Front-End Development ......................................................................................... 267
■Chapter 15: Theming ....................................................................................................... 269
■Chapter 16: Advanced Theming ....................................................................................... 311



■ CONTENTS AT A GLANCE 

v 

■Chapter 17: jQuery ........................................................................................................... 355
Part V: Back-End Development ........................................................................................... 381
■Chapter 18: Introduction to Module Development ........................................................... 383
■Chapter 19: Using Drupal’s APIs in a Module .................................................................. 409
■Chapter 20: Refining Your Module ................................................................................... 463
■Chapter 21: Porting Modules to Drupal 7 ........................................................................ 485
■Chapter 22: Writing Project-Specific Code ...................................................................... 501
■Chapter 23: Introduction to Functional Testing with Simpletest ..................................... 517
■Chapter 24: Writing a Major Module ................................................................................ 533
Part VI: Advanced Site-Building Topics .............................................................................. 563
■Chapter 25: Drupal Commerce ........................................................................................ 565
■Chapter 26: Drush ............................................................................................................ 595
■Chapter 27: Scaling Drupal .............................................................................................. 635
■Chapter 28: Spice Your Content Up With Tasty Semantics .............................................. 651
■Chapter 29: The Menu System  and the Path Into Drupal ................................................ 667
■Chapter 30: Under the Hood: Inside Drupal When It Displays a Page .............................. 685
■Chapter 31: Search and Apache Solr Integration ............................................................. 699
■Chapter 32: User Experience ........................................................................................... 713
■Chapter 33: Completing a Site: The Other 90% ................................................................ 747
■Chapter 34: Drupal Distributions and Installation Profiles .............................................. 803
Part VII: Drupal Community ................................................................................................ 819
■Chapter 35: Drupal’s Story: A Chain of Many Unexpected Events ................................... 821
■Chapter 36: Now You’re in Business:  Making a Living with Drupal ............................... 835
■Chapter 37: Maintaining a Project ................................................................................... 853
■Chapter 38: Contributing to the Community .................................................................... 865
Part VIII: Appendix .............................................................................................................. 885
■Appendix A: Upgrading a Drupal Site from 6 to 7 ............................................................. 887
■Appendix B: Profiling Drupal and Optimizing Performance ............................................. 913
■Appendix C: Page Rendering and Altering ....................................................................... 923
■Appendix D: Visual Design for Drupal .............................................................................. 933
■Appendix E: Accessibility ................................................................................................ 941
■Appendix F: Windows Development Environment ........................................................... 947
■Appendix G: Installing Drupal on Ubuntu ......................................................................... 971
■Appendix H: Mac OSX Installation ................................................................................... 977
■Appendix I: Setting Up a Drupal Environment with the Acquia Dev Desktop .................. 985
Index ................................................................................................................................... 991 



 

xliii 

Preface: Why Drupal? 

By Benjamin Melançon 

Drupal is a great content management system, a powerful framework for web applications, and a cutting 
edge social publishing platform. Above all, Drupal is more than software—it is a vibrant community of 
developers, designers, project managers, business innovators, technology strategists, user experience 
professionals, standards and accessibility advocates, and people who just mess around with stuff until 
they figure it out. 

 

Figure 1. Drupal as the intersection of web content management system, application framework, and 

social and semantic publishing platform—encompassed by a diverse community 

Drupal Is a CMS for Building Dynamic Web Sites 
“The stuff that I am able to build with Drupal ... is just mind-blowing.” 

—Merlin Mann of 43folders.com 

With Drupal, you get all the features of a powerful content management system, or CMS—user login and 
registration; definition of types of users and content; different levels of permissions; content creation, 
editing, categorization, and management; syndication and aggregation—out of the metaphorical box. In 



■ PREFACE: WHY DRUPAL? 

xliv 

addition to this core functionality, there’s an expanding universe of additional functionality available 
from the rising influx of community contributions. 

The Views module (see Chapter 3) allows you to organize and display content in any number of 
ways. The Groups module (see Chapter 5) can be used to create online workgroups, discussion groups, 
and more. Drupal Commerce (see Chapter 25) allows you to configure full online stores. This is just a 
small sampling of the powerful extensions available to Drupal through contributed modules (see 
Chapter 4 for some more). From theming examples to make your site look better (see Chapters 15 and 
16) to command line tools (Chapter 26) to powerful search (Chapter 31), if you want to build it in Drupal, 
it’s very likely that someone already has—and has contributed the code or the instructions back to the 
community. If you want to go beyond functionality that anyone has contributed yet by writing your own 
modules (Chapters 18 to 24), there will be a lot of help out there for that, too. (See Chapter 9 for getting 
the most out of Drupal by participating in the community and Chapter 38 for contributing to this 
ecosystem yourself.) 

Drupal is written in PHP with a great deal of JavaScript (mostly using the JQuery library) for the 
front-end experience, and it uses a database such as MariaDB/MySQL or PostgreSQL to store both 
content and configuration. Of course, by doing enough custom coding with these or other programming 
languages and databases, a developer can do anything a Drupal site can do. But why? Using Drupal 
saves site builders from reinventing the wheel, allowing a focus on achieving their goals. Drupal takes 
you where you drive it, without you having to build a car first. 

“I needed a system that was able to take lots of different types of structured content and slice and 
dice it in different ways. [...] I had thought of a really cool way to organize my data and then I 
realized I would need to write a CMS on top of that, and I didn’t want to spend the next eight 
years of my life writing it. And I found out a bunch of people had spent the last eight years of 
their life writing it, and it was called Drupal; so I was thrilled.” 

—Jeff Eaton 

Drupal Is an Application Framework 
“Yes, Drupal is what you need it to be.” 

—Wim Mostrey 

Drupal has become so solid at its core, so extensible, and so powerful for building different kinds of web 
sites that it is more than a CMS: it is a platform for developing serious web applications. Each major 
release includes better APIs (Application Programming Interfaces; how code talks to code) and other 
powerful features that take it beyond being a CMS. 

Drupal is used as the basis for different types of applications, from smart phone and Facebook apps 
to web sites with complex business logic (nysenate.gov/mobile, data.gov.uk, zagat.com) to social media 
and retail-ready software as a service (buzzr.com). Drupal can also be found in such non-CMS roles as 
the front end for Java-based applications and the back end for AJAX or Flash-driven front ends. 

Where this distinction between framework and CMS or other product can mean the most to you is 
the growth of distributions built on Drupal to solve specific use cases. Examples include OpenAtrium 
(openatrium.com) for team intranets, Drupal Commons (drupalcommons.com) for social business, 
OpenPublish (openpublishapp.com) for online publishers, and OpenScholar (scholar.harvard.edu) for 
personal academic and research web sites. (See Chapter 34 for more on distributions, including how to 
create your own.) 



■ PREFACE: WHY DRUPAL? 

xlv 

Drupal Is a Social and Semantic Web Platform 
“If you have to be the center of the world, you will either succeed and own everything, or you 
will die.” 

—Sir Tim Berners-Lee 

The ideal of the social and semantic web embraces a vision for a future where information isn’t trapped 
in a single web site or company. Instead, your information and that which others share with you is under 
your control and available among multiple platforms and devices. Sites working together offer a way out 
of a dystopian world where control of connections among people and data is all or nothing. Drupal and 
its support for RDF (Resource Description Framework) help make this better future possible. 

RDF helps label data in a way that computers can universally understand, so that they can do 
intelligent things with data from diverse sources. By building tools directly into Drupal that make it easy 
to share structured data, we are helping usher in the Semantic Web, the age of linked data, when web 
sites and other Internet-connected devices can automatically answer complex questions based on data 
shared all over the Internet. 

Drupal Is a Community 
Another reason to choose Drupal is this book—and many, many other books, videos, web sites, classes, 
and songs. (Well, maybe not the songs. Search at your own risk.) The large number of beginner-friendly 
and expert-ready resources growing up around Drupal are both an effect of and a contributor to its 
success and growth. 

The top 10 Drupal shops in the world could switch to stone tablet technology tomorrow and there 
would still be an amazing array of contributors to carry development forward. Not many free software 
projects can say that, and, of course, no proprietary products can make such a claim. Of course, most 
Drupal companies are growing along with Drupal, not leaving the scene. 

A Community at Critical Mass 
With Drupal events happening all over the world several times a year, there is objective reason to believe 
that Drupal has achieved critical mass as a vibrant participatory project, but anecdotes are more fun. 
Drupal developer Matt Schlessman wrote about his first Drupal conference, DrupalCon San Francisco, 
in 2010: 

As I stepped off the plane, I wasn’t sure what to expect. To date, I had been amazed by the energy 
of the Drupal community and the great things folks are doing with Drupal. But would the 
conference live up to all of the DrupalCon hype? 

I had my answer within minutes of hailing a taxi. As we merged onto the 101, the driver asked 
me why I was in town. Assuming he wouldn’t be familiar with Drupal, I mentioned that I was 
in town for a convention. 

“Is it Drupalcon?” he asked. Indeed. 

“Do you work for a Drupal company?” Yes, Acquia. 

In the middle of the freeway, the cab driver turned around in his seat with excitement and 
exclaimed, “That’s great! I have two Drupal Gardens sites! I love Drupal! And I love Dries!” 

Wow! The first five minutes. Unbelievable. 



■ PREFACE: WHY DRUPAL? 

xlvi 

The number one reason to use Drupal is not the functionality, the extensibility, the power, the 
flexibility, or even anything related to the code. The number one reason to use Drupal is the breadth and 
depth of the community. 

Drupal Is... 
• ... a Belgian student who shared his college dorm intranet software with the world 

(buytaert.net). 

• ... a community leader (webchick.net) who co-maintains the entire Drupal 7 release, 
welcomes and helps new contributors, routinely organizes essential initiatives for Drupal, 
makes a living consulting and training, and still manages to spend some time with her wife. 

• ... thousands of people converging on Paris, San Francisco, Copenhagen, Chicago, London, 
or Denver from all over the world to see, show, share, meet, eat, talk, and dream Drupal 
(drupalcon.org). 

• ... a 145-year-old liberal magazine now publishing online with a CMS that’s “more in synch 
with our politics” (thenation.com). 

• ... the campaign of the first Republican Senator from Massachusetts in 35 years 
(scottbrown.com). 

• ... a web service for progressive political candidates (starswithstripes.org). 

• ... the United States government (sba.gov and whitehouse.gov, among others). 

• ... the online home of libertarian communism (libcom.org). 

• ... the first U.S. automobile company to have an initial public stock offering in 50 years 
(teslamotors.com). 

• ... an international association of interaction designers (IxDA.org). 

• ... a couple of comedians (robinwilliams.com and chrisrock.com). 

• ... the largest corporate participatory media site (examiner.com) and many small anti-
corporate participatory media sites around the world (such as bolivia.indymedia.org and 
tc.indymedia.org). 

• ... hundreds of thousands of sites of all sizes and purposes, including tens of thousands of 
sites hosted for free on Drupal 7 as a service (drupalgardens.com). 

• ... thousands of people making their living doing Drupal, from a wizard (angrydonuts.com) 
making powerful tools (partly paid for by high-end web sites, but used by everyone) to a key 
employee (angrylittletree.com) at a high profile Drupal shop, to a worker cooperative 
focusing on the needs of community organizations (palantetech.com). 

Drupal is all this and much, much more. Drupal is also, or could be, you. 



 

xlvii 

What’s New in Drupal 7 

by Dani Nordin 

Of course, every Drupal release is better than the last; otherwise, there’d be no point. However, a case 
can be made that Drupal 6 was a greater leap forward than any previous release, and that Drupal 7 is a 
still greater leap. The section highlights some of the more notable improvements. 

■ Note  This book is written to be as useful to people who never used Drupal before as to those who have used it 
before Drupal 7. This seemed like a good approach given that the Drupal community roughly doubles in size after 

every major release. 

Easier to Use 
An entirely revamped administrative interface makes routine tasks easier, with many improvements 
added specifically for site builders and content editors (Figure 2).  

Administrative toolbar: Navigation for administrative tasks is now provided by 
a Toolbar located at the top of the browser window. Toolbar access can be set 
via User Roles, and only the functionality already permitted to that Role will be 
available from the toolbar. 

Shortcuts drawer: Below the administrative toolbar is the Shortcuts drawer, 
which can be toggled open or closed. A Plus or Minus icon on every 
administrative screen adds or removes a shortcut from the drawer. Shortcuts 
can be as general (a link to the Blocks page) or as specific as you like (a link to a 
specific view while you’re still refining it). Also, shortcuts can be saved as sets, 
making it possible to create one set of shortcuts for a Site Editor, another set for 
administrators, etc. 

Contextual links: Contextual links are noted by a small wrench icon when you 
hover over various pieces of site content, such as blocks, views, menu lists, and 
teasers. They provide one-click navigation to editing screens related to that 
piece of content, greatly reducing the clicks-per-task for most routine Drupal 
tasks. As importantly, contextual links provide a useful cheat-sheet for Drupal 
newcomers who may not know the source of the content they’re trying to edit. 
After you have made your edits and saved the block, view, or menu, the 
contextual link then returns you to the original screen. Drupal 7 is filled with 
many small touches like that, and, taken together, they significantly improve 



■ WHAT’S NEW IN DRUPAL 7 

xlviii 

the Drupal experience. For more information on the User Experience principles 
in Drupal 7, see Chapter 32 in this book. 

 

Figure 2. Improvements to Drupal 7’s administrative interface include 1) administrative toolbar, 2) 

shortcuts drawer, and 3) contextual links. 

Drupal’s new admin interface includes a number of other enhancements to the content creation 
and curation process, including a new Dashboard with a simple and powerful drag-and-drop interface 
that can be customized by site administrators to include recent content, comments/content in need of 
moderation, or any other block available to your Drupal site (see Figure 3).  



■ WHAT’S NEW IN DRUPAL 7 

xlix 

 

Figure 3. The Drupal Dashboard gives site users a customized view of the information they need to 

perform content or user maintenance. Administrators can customize the dashboard depending on what 

individual site editors need. 

More Flexible 
With Drupal 7, you can define your own content structure and add custom fields to content, users, 
comments, and more—without adding modules. In addition to creating custom text and list fields, you 
can upload images directly into Drupal fields and create custom Image Styles to automatically scale and 
crop your images. 

You can also extend your site with some of the over 1,000 modules available for Drupal 7 at the time 
of this writing. Many module and theme maintainers took and fulfilled the D7CX pledge, meaning that 
more contrib modules were ready for the new version of Drupal on the date of its release than ever 
before.  

Drupal 7 also now supports different types of databases, including MariaDB 5.1.44 and greater, 
MySQL 5.0.15 and greater, PostgreSQL 8.3 and greater, or SQLite 3.x. This gives you more flexibility and 
control over your site’s data. 

More Scalable 
Your Drupal 7 site will be fast, responsive, and able handle huge amounts of traffic thanks to improved 
JavaScript and CSS optimization, better caching, and more. Drupal 7 also requires PHP 5.2.4 or greater to 
run, which leads to better performance, but may require checking with your web host before installing 
or upgrading. 



■ WHAT’S NEW IN DRUPAL 7 

l 

Other Changes in 7 
In addition to the changes previously listed, the following important changes have also been
incorporated into Drupal 7. 

Install Modules and Themes Through the User Interface 
In Drupal 7, you can now install contributed modules and themes directly in the Drupal interface, either
by providing a link to an external source or uploading the file directly (see Figure 4). Similarly, you can
update modules and themes directly through the Drupal UI, a vast improvement over previous versions
of Drupal. 

Figure 4. Installing a new module is easy through the Drupal interface. 

New Core Themes and Enhancements 
The new version of Drupal also includes several new default themes, including:  

• Bartik: The Drupal 7 default theme, a clean, multi-region theme that allows easier
customization of colors, regions, and CSS style settings (Figure 5). 

• Seven: The Drupal 7 administration theme, a minimalist theme used in
configuration overlays and administration pages. 

• Stark: A completely empty theme that provides a way to look under the hood at
Drupal’s default markup. This is useful for module and theme developers who
need to see the markup that Drupal is spitting out before they start working. 



■ WHAT’S NEW IN DRUPAL 7

li

 

Figure 5. Bartik, Drupal 7’s new default theme 

As good as the themes themselves are, what’s important here is the explicit separation between web 
site theme and administrative theme, as Figure 6 indicates. Bartik is a sophisticated theme with 15 
configurable regions. By contrast, Seven has only two regions, greatly simplifying the administrative 
interface. 

 

Figure 6. Content regions available in Bartik and Seven themes 



■ WHAT’S NEW IN DRUPAL 7 

lii 

Enhancements to Content Entry and Organization 
Drupal 7 includes many enhancements to the content entry screens, including a more intuitive 
interface, vertical tabs for key configuration areas, and the option to add summaries to content, which 
can be used in custom page views. 

It also includes a revamped Taxonomy (content categorization) setup, which allows you to add 
images, descriptions, and fields to content categories, and even add links to them. This is useful for 
heavy-duty content sites and in theming, where a default image could be used to denote every piece of 
content in a specific category. 

RDFa Support 
RDFa provides a way to structure HTML output so that machines can tell the difference between 
calendar content, contact information, and other types of content. This not only provides built in SEO 
for your web site, it sets the stage for a host of other functional enhancements to your website.  

For more information about RDFa, visit w3.org/TR/xhtml-rdfa-scenarios/. 

Security and Testing Improvements 
The release of Drupal 7 comes along with a variety of important security improvements, including: 

• Password hashes are salted (meaning, passwords cannot be cracked with a look-
up table). 

• Unique key for cron.php to make Denial of Service attacks more difficult. (Note: 
This means you can’t run it just by going to example.com/cron.php like you might be 
used to.) 

• Permissions have normal, human-oriented names and descriptions. 

• Filter permissions are on the main permissions page. 

• Allows choosing between public and private files on a per filefield basis. 

• The Test module (formerly Simpletest) is included in Drupal core. This module 
helps you write tests to make sure your site and modules work as they should, and 
test your site after you make changes. See Chapter 23 for more information. 

This is only a smattering of the tremendous changes that were made in Drupal 7. If you’d like to see 
all of the changes, visit drupal.org/about/new-in-drupal-7 and drupal.org/drupal-7-released. 
 



 

liii 

How to Use This Book 

Elwood: It’s 106 miles to Chicago, we got a full tank of gas, half a pack of cigarettes, it’s dark, 
and we’re wearing sunglasses. 

Jake: Hit it. 

—The Blues Brothers, 1980 

Welcome to the Definitive Guide to Drupal 7! Picking up this book suggests an interest in learning 
Drupal, a desire to make full use of Drupal 7’s great new capabilities, or a commitment to continuous 
improvement in Drupal knowledge. Or, for the person who has never heard of Drupal, picking up this 
book indicates plain good luck—fate kind of luck. To that person, and others more hard-working than 
lucky, the authors say: Congratulations on a new hobby, career, passion, community. 

This book accelerates people along the Drupal learning curve for the many dimensions of Drupal, 
such as:  

• Building sites by choosing and configuring freely available extensions, called 
modules. 

• Planning and sustaining Drupal projects. 

• Creating themes to give your sites their own look and feel. 

• Writing new modules that extend what Drupal and other modules can do. 

• Getting help from and contributing back to the Drupal community. 

■ Note  What does that fifth point have to do with building stuff with Drupal? Everything. All the functionality, the 
flexibility, and the power of Drupal come from the community. Becoming part of this community as you begin to 

learn Drupal benefits you and benefits the community. See Chapters 9 and 38 for more. 

Who Should Read This Book? 
This book is for anyone serious about gaining a deep understanding of Drupal and doing great things 
with Drupal. It does not presume any specific prior curriculum. There are as many paths to Drupal as 
there are members of the community. 

This book is intended to be the most comprehensive guide to getting sites done with Drupal—or 
likely any content management system. It goes well beyond the code to cover much other knowledge 
and skills and help make you effective. 



■  HOW TO USE THIS BOOK 

liv 

The goal is to help you develop a solid set of skills to maneuver and mold Drupal—and more 
importantly, to promote the concept of developing in a manner which many have termed “The Drupal 
Way,” which includes the following: 

• planning for future upgrades, possible disasters, new client feature requests, etc. 
and building web sites that age gracefully. 

• participating in the open source free software ecosystem that makes Drupal and 
other key projects possible—in Drupal, a remarkable community that 
encompasses administrators, developers, themers, and designers. 

“Definitive” is quite a claim to make. Not everyone who works in Drupal is good at all of it, or even 
knows about all of it. Which is fantastic news for you, the reader and user of this book. Precisely because 
there are so many parts of Drupal, and no one is expert in all areas, there are many onramps and 
avenues to becoming a Drupal expert. This book helps you learn how to think about and approach 
Drupal with the aim of making your mark in the community. 

This book will cover a lot of ground, from building sites to writing code to enhance Drupal’s look or 
extend its functionality to managing all such projects. Throughout, it maintains a focus on engaging with 
and contributing back to the Drupal community. Giving back to Drupal is what makes Drupal possible, 
of course, but engagement with the community also provides we who work with Drupal the continuous 
learning we need to keep up and keep improving. 

The Definitive Guide to Drupal 7, then, will not cover every detail of a vast and expanding universe 
of software. Instead, it will cover what is needed to do some real things, with a focus on building the 
knowledge and tools needed to figure everything else out.  

Requirements 
To work with Drupal, you will need the following: 

• A working computer. 

• At least intermittent Internet access. 

■ Tip  Readers whose computer is not set up to easily run a web server, PHP, and a database (those unsure can 
figure on an answer of no) can start right now downloading VirtualBox and a Drupal-ready VirtualBox image, as 

described at drupal.org/project/quickstart. See Appendices F through I for more ways to get set up to run 

Drupal, and also Chapter 12. 

Approach and Philosophy 
A reference book gives just the facts; a good teaching book tries to show how we come to develop 
knowledge in the first place. This book teaches. 

If something is worth doing, there are probably three or a dozen ways to do it with Drupal. Given the 
limitations of time and space, the authors picked their favorite to write about. There’s a whole Internet 
out there with most of the rest; if we wanted every possibility, we would not need a book. Nevertheless, 
this book’s purpose is not to claim and deliver the one best solution, but to teach how to find and 
evaluate solutions. It aims to make you better at thinking about web site projects and Drupal 
development. 



■ HOW TO USE THIS BOOK 

lv 

Although this book is written for cover-to-cover reading, it’s not linear. A book about a project of 
and for the Internet and about a large, active community could hardly be linear. And a book meant to be 
of practical use must allow people to pick up where dictated by the projects they need to work on and 
their present skill levels. Many parts of the book can be taken as short sections that stand alone on how 
to do a particular task. 

Above all, this book is about equipping, not about spoon-feeding facts. A powerful lesson of open 
source free software is that no human system or structure is static and unchangeable; everything 
changes. If, at some point, you don’ think that a topic is covered adequately, refer to Chapter 9, which is 
about getting involved in and getting help from the community. 

A Note on Jargon 
Drupal 7 has made great strides in usability, in part by removing jargon from the administrative 
interface. (Interface? That’s jargon for the thing you’re looking at when you use a web site.) Nonetheless, 
that jargon will reappear in this book, because it is how Drupal thinks of things internally, and to be a 
great Drupal site builder, you need to know a bit about how Drupal thinks. So let’s get a couple things 
out of the way.  

A person using a web site is called a user. We are upgraded to people in parts of 
the Drupal 7 administrative interface, but when you see ourselves referred to as 
users from time to time, you shouldn’t freak out—it’s not a slur (although 
Drupal can be addictive). It’s just a more precise and concise way of referring to 
a person using a web site.  

A piece of content in a Drupal site is also called a node. Why not call it content 
all the time? Well, sometimes nodes aren’t content; sometimes they’re really 
better thought of as a piece of data or a container for more nodes (sorry, 
content).  

There will be plenty of other jargon, and the authors will try to explain it better as it comes up, but 
the most important thing is that a word or phrase or even concept that does not make sense to you at 
first will not stop you. There is an entire book of context, and help of all kinds online, to keep you moving 
as you understand more and more of this complex conglomeration of people and software called 
Drupal. 

You can go at your own pace, you can re-read sections and try things again, and you can go to the 
book forums (definitivedrupal.org/forums or dgd7.org/fora). There’s one forum per chapter where 
you can ask questions of authors and other readers (if your question hasn’t already been addressed). 

Conventions 
Locations of administration and other pages are described both with a Click ➤ Path and with a url/path 
(relative to the root of a Drupal site, for instance the path admin/content). For instance, the help topics 
are directly reached from the toolbar or administration menu, so we would instruct simply: Go to 
Administer ➤ Help (admin/help). 

You can always skip clicking through the links and tabs and sublinks by entering the provided URL 
path directly (in the last example, for site example.com, the URL 
http://example.com/admin/people/permissions/roles would take you directly to the path). 

When members of the Drupal community are mentioned, their drupal.org handles are frequently 
added in parenthesis, as this nickname (often also used on IRC) may be much better known among 
Drupalistas than their real name. For instance, when introducing the Drupal 7 co-maintainer (and all-
around Drupal superstar) for the first time, we would write her name as Angela Byron (webchick). 

http://example.com/admin/people/permissions/roles


■  HOW TO USE THIS BOOK 

lvi 

In this book, the word “we” is generally used to include you, the reader, as well as the authors and 
anyone else who may be doing Drupal. 

Beyond the Book 
The companion site to this book is definitivedrupal.org (also reachable at dgd7.org). You can 
download code used in the book at dgd7.org/code. Also online you will find additional information on 
Drupal and the authors. The site supplements the book; it does not replace it. Let the authors know what 
was most helpful, what confused, and what can be improved upon. Share Drupal success stories and 
express frustrations, but keep discussion related to the book chapters, and take overall Drupal 
discussion to one of the many places introduced in Chapter 9 on participating in the community. 

Where examples are used, the authors took every effort to make information in this book the best 
way to do the specific task. However, there’s always another way to do a task in Drupal, Drupal is an 
always-evolving entity. This book strives to provide the knowledge and resources needed to come up 
with your own solutions, and you can also subscribe to dgd7.org/updates or e-mail your area of interest 
to news@definitivedrupal.org to learn when corrections are made to the text, new techniques are 
suggested, and new material is released. 

The authors’ goal is to accelerate you along the Drupal learning curve by covering all aspects of 
building web sites with Drupal: architecture and configuration; module development; front end 
development; running projects sustainably; and contributing to Drupal’s code, documentation, and 
community. 

mailto:news@definitivedrupal.org


 

lvii 

How Drupal Works 

by Dani Nordin 

Before you can get started working with Drupal, there are a few basic things you should know. This 
chapter provides a broad overview of how Drupal works, and some basic terms and concepts you should 
know before you get started. 

How Drupal Works 
Drupal, much like systems such as WordPress (wordpress.org) or Expression Engine 
(expressionengine.com), is a Content Management System (CMS). It takes your content as individual 
pieces of information and gives you a framework for displaying that content in a way that makes sense to 
your site’s audience.  

What Drupal Really Does 
The easiest way to think about Drupal is as a digital coin sorter. Your nodes are the coins, and content types 
are the different denominations (quarters, dimes, etc). In addition to content types, you can use taxonomy 
to organize the coins by the country of currency, color, condition, etc. Views are the mechanism that sorts 
the coins; they take your nodes and sort them out as Pages or Blocks according to size, shape, color, or 
whatever criteria you set. Themes and modules are like the coin wrappers and gears; they make sure that 
everything stays organized and keep the system running smoothly. See Figure 7. 

  

Figure 7. Graphical overview of how Drupal delivers content 

Drupal differs from other content management systems in the following ways: 

• It’s incredibly flexible. Unlike WordPress, which is primarily focused as a blogging 
platform, Drupal sites can be built to handle almost any functionality that you 
need from corporate intranet to e-commerce to donor management, and more. 
You can even blog with it, if you really want to.  



■  HOW DRUPAL WORKS 

lviii 

• Drupal’s huge community of developers, designers, and themers means that even 
the least experienced site builder can get help breaking in and figuring out sticky 
issues. While IRC and drupal.org’s Issue Queue can be immensely helpful (and 
are great places to start), even posting a question using the #Drupal tag on Twitter 
will often lead to offers of help and answers you may not have thought of. More 
information on getting help with Drupal can be found in Chapter 9. 

Some Terms You Should Know 
Node: An individual piece of content. This could be a news item, event listing, 
simple page, blog entry—you name it. Anything in your site that has a heading 
and a bit of text is a node. Nodes can also have custom fields, which are useful 
for all sorts of things.  

Fields: Fields are one of the best things about creating content in Drupal. Using 
fields, you can attach images or files to content, create extra descriptors (like a 
date for an event, or a subheading for an article), or even reference other nodes. 

Block: A standalone piece of reusable content (for example, a sidebar menu or 
callout box). Blocks can be created by a View (see below) or created by hand in 
Drupal’s Blocks administration menu. The beauty of blocks is the flexibility of 
display; you can set up blocks to display based on any criteria that you set. This 
is especially helpful on home pages, for example, or for displaying a menu 
that’s only relevant to a specific section of a website. 

Content type: The type of node you’re creating. One of Drupal’s best features is 
its support of multiple content types, each of which can be sorted out and 
displayed by any number of criteria. 

Taxonomy: Content categories. At its most basic level, you can think of 
taxonomy as tags for content (like blog entries). The true power of taxonomy, 
however, lies in organizing large quantities of content by what an audience 
might search for. For example, a recipe site can use taxonomy to organize 
recipes by several criteria type of recipe (dessert, dinner, etc.), ingredients (as 
tags), and custom indicators (vegetarian, vegan, gluten-free, low carb, etc.). In 
building the site, you could then use Views to allow users to search by or filter 
recipes by any one (or several) of these criteria. 

Users, Roles and Permissions: Users are exactly what they sound like—users 
that have registered on your site. The key to working with users is roles; Drupal 
allows you to create unique roles for anything that might need to happen on 
your site and set permissions for each role depending on what that role might 
need to do. For example, if you’re creating a magazine-type site with multiple 
authors, you might want to create a role called “author” that has permission to 
access, create, and edit their own content, but nobody else’s. You might also 
create a role called editor that has access to edit, modify, and publish or 
unpublish the content of any of the authors.  



■ HOW DRUPAL WORKS 

lix 

Module: A plug-in that adds functionality to your site. Out of the box, Drupal 
provides a strong framework, but the point of the framework is to add 
functionality to it using modules. drupal.org/project/modules has a list of all 
the modules that have been contributed by the Drupal community, sorted by 
most popular. At the very least, every Drupal installation should use Views, 
Pathauto, and Token. Pathauto and Token help you create automatic URL 
aliases for your content; you’ll learn more about Views in Chapter 3 as well as 
Chapter 8 and elsewhere in the book.  

View: An organized list of individual pieces of content that you create within the 
site, using the Views module. You’ll dive a bit deeper into Views in Chapter 3. 

Theme: The templates that control the look and feel of a Drupal site. Drupal 
core comes with several themes that are very useful for site administration and 
prototyping; however, custom themes should always reside in your 
sites/all/themes folder and not in the core themes folder. 

tpl.php: Individual PHP files that Drupal uses for template generation. Most 
Drupal themes will have, at the very least, a tpl.php for blocks, nodes, and 
pages. Once you get the hang of working with tpl.php, you can create custom 
templates for anything from a specific piece of content or specific content types 
to the output of a specific view. 

Drupal Core: The actual Drupal project files, as downloaded from drupal.org. 
Anything that exists outside your /sites folder is considered core. 

For other theming-specific definitions, check out Chapters 15 and 16.  

Planning a Drupal Project: Designing from the Content Out 
Since so much of the power in Drupal is based on the ability to create different types of content and sort 
it into manageable chunks, the importance of creating an effective content strategy and information 
architecture BEFORE YOU START DEVELOPING cannot be understated. Drupal is, at its core, a content 
curation and display engine, so taking time to understand the types and format of your site’s intended 
content, as well as the site’s functionality, is essential to success with Drupal.  

What follows is a brief overview of the planning of a typical Drupal site. A more comprehensive 
overview can be found in Chapter 10. 

Phase 1: Discovery 
The discovery phase of any creative project sets up important information about the project’s business 
objectives, audience, and functional requirements. This is where you work with the client to determine 
who they are, who their audience is, and what types of things that audience might need to do. At this 
stage, you’re focusing mostly on the client’s perspective and objectives; in the phases following, you’ll be 
able to research and confirm or amend these perspectives. 

While it’s often tempting to dive right in and start building, putting enough time and attention into 
the discovery phase is essential to avoiding headaches down the road. Ask any Drupaller who’s ever had 
to redo huge sections of a site because the project requirements changed. 

During the discovery phase, you’re looking to answer the following questions: 

• Who is the client? What do they do?  

• Who is the primary contact on the client’s project team? 



■  HOW DRUPAL WORKS 

lx 

• Who are the other decision makers (if any) on the client side? How will feedback
be handled? 

• What are the primary business objectives surrounding this project? In other
words, why are we doing this? 

• What is the client’s understanding of their primary audience for this project?
Secondary audience? What is their understanding of this audience’s needs? 

• What is the primary message that the audience needs to get from this project? 

• What financial, staff, and content resources are being made available for this
project?  

• What deadlines are you trying to meet with this project? 

Phase 2: Information Architecture and Functional Requirements 
While the discovery phase sets up the client’s objectives and perceptions of their audience, the second
phase focuses on gaining a deeper understanding of the site’s intended users; it works on making sure
that the user experience of the site matches the client’s business objectives with the intended audience’s
needs. 

The tangible deliverables of this phase may vary from team to team, but they often include things
like: 

• User profiles or stories. 

• An outline, or matrix of functional requirements. 

• Site wireframes. 

• Paper or digital prototypes. 

• Content strategy documents, including a breakdown of site content, content
types, and categories. This may also include a breakdown of the site’s user roles
(editor, member, etc.) and what content they have permission to access, edit, etc. 

The goal of this phase, which can take anywhere from a couple of days to a few months, is for the
client and the development team to get on the same page regarding who the site’s users are and what
they’re there for. Additionally, and most importantly, the goal is to identify areas of the project where
budget or project scope might need tweaking and head off any confusion that might occur down the
road. 

Phase 3: Development Implementation 
Once functional and content requirements have been established and approvals have been given, the
team can begin to install and configure Drupal. In some teams, this installation/configuration process
begins in the information architecture process, after functional requirements have been established. The
benefit of this approach is that the team can build a working prototype of the site early in the process
that can then be iterated. The downside is the potential for some aspects of the project to require re-
doing later in the process, as new needs are uncovered. 

During development, the site’s functionality is developed and iterated. Modules are chosen (more
on that in Chapter 4) and implemented, custom functionality is developed, and user roles and
permissions are set, along with content types, taxonomy, etc. During this phase, designers can begin 



■ HOW DRUPAL WORKS

lxi

working on look and feel issues, and content editors can (and should) begin adding content to the site, 
with guidance from the project lead. 

Phase 4: Design and Theme Implementation 
A Drupal site’s theme controls the look and feel of the site. While it is possible to implement visual 
design in a Drupal site at the same time that functionality is being implemented, it’s not recommended. 
The development phase of a Drupal site is an important time to iron out functionality and usability 
issues; adding visual elements (even simple ones) during this phase causes many clients to focus on 
aesthetics too early in the project.  

Another important distinction to be made is that between visual design and theming. While many 
themers can design and vice versa, visual design is the act of creating a set of visual standards that will 
control the way the site looks. This could involve something as simple as picking out colors and font 
choices for the site, and creating some standards for laying out type, boxes, etc. It often involves creating 
visual mockups in a program such as Fireworks or Photoshop. 

Theming, however, is the process of implementing those visual standards across the site’s template 
files, using HTML, CSS, and PHP. While theming can (and sometimes does) happen without design, 
design is what truly brings the message home to the client’s audience. When well thought out and 
implemented by talented themers, a site’s design is often an important factor in whether the site meets 
the client’s business objectives. 

Phase 5: Staging, Testing, and Launch 
Once the site’s functionality has been implemented, and the visual design has been integrated into the 
site’s theme, it’s time to get the site ready for the world to see. While a more comprehensive overview of 
this can be found in Chapter 13, the basic idea is as follows: 

1. Back up the site’s database and files. 

2. Establish a staging URL (best as a subdomain of the actual URL, such as staging.newsite.com) 

and move the site files and database to that URL. 

3. Test.  

4. Test. 

5. Test. 

6. When you’ve tested the heck out of it, and fixed any issues that arise, move or copy the site files 

and database to the live (also called “production”) URL. 

7. Test. 

8. Test. 

9. Test. 

10. Rejoice! 

Now that you have an idea of what you’re doing, it’s time to set up a development environment and 
install Drupal for the first time. See Appendices F through I for installation instructions on various 
operating systems: Windows, Ubuntu (including as a virtual machine on non-Linux computers), Mac OS 
X, and (the easiest way to get started) a cross-platform Drupal stack installer. 



P A R T   I 
 

■ ■ ■ 

 

Getting Started 

Chapter 1 takes you through building a Drupal site from planning to giving people the privilege of 
posting pages and other content, with lots of key Drupal concepts covered and tips given along the way. 
Building this site is continued in Chapters 8 and 33. 
 
Chapter 2 introduces two essential tools in the life of any Drupalista: Drush, the Drupal Shell that makes 
many tasks in Drupal much faster and easier; and Git, a distributed version control system that allows 
you to experiment freely with your code—and to collaborate with people around the world. 
  



C H A P T E R   1 
 

■ ■ ■ 

3

Building a Drupal 7 Site 

by Benjamin Melançon, Dan Hakimzadeh, and Dani Nordin 

“Ok, we can do this the hard way or we can do this the Drupal way.” 

—Forest Mars (kombucha) 

This book will accelerate you along Drupal’s learning curve by covering all aspects of building web sites 
with Drupal 7: architecture and configuration; module development; front end development; running 
projects sustainably; and contributing to Drupal’s code, documentation, and community. 

What better way to get started than to build a complete site in the first chapter? You’ll go from zero 
to sixty miles per hour (or one hundred kilometers per hour, as the case may be) in 27 pages. In later 
chapters, you’ll add turbochargers with dynamic pages using Views, racing stripes with theming, and 
cup holders with JQuery; you’ll also perform some fancy maneuvers with Commerce and much more. 

Throughout the book, we’ll try to guide you to the Drupal way of doing things. There’s never only 
one way to reach a goal, but some approaches ignore or even work against Drupal’s offerings. The 
Drupal way, by contrast, is any way that builds on Drupal’s strengths. (Chapter 8 covers one of those 
strengths—an active and helpful community that can keep you on course.) 

The site you’ll build in this chapter will allow users to easily create and categorize content. The 
scenario is not hypothetical. This book needs a website, and you are going to create it! You will: 

• Use a basic approach to planning a site. 

• Install Drupal 7. 

• Configure Drupal core to provide a collaboration-oriented site that accepts 
content and comments from authors and visitors. 

• Give the site and its front page a mix of static (semi-permanent) content and fresh 
updates.  

• Give authors and visitors different levels of access for adding and editing content. 

This is just the first chapter, so buckle up! 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

4 

Planning: Setting Parameters and Knowing Where You’re 
Going 
Before embarking on any project, you should have some idea what it entails, if only to set some 
parameters on what you’re getting into. The key to delivering happiness is setting expectations. (See 
Chapter 9 for more on planning and management with an agile approach.) 

Discovery: Why Should This Site Be Built? 
When starting a project, the first thing to figure out is not how to do it but why. All implementation 
answers should flow from an understanding of the project’s purpose. The process of discovering this 
purpose is the discovery phase of a project, which is defined in this book’s introduction and discussed 
further in Chapter 9. 

■Tip  Though obvious, the critically important discovery phase is sometimes given too little attention. Even a 
website built only for yourself should begin by you defining your goals. Skipping this step can mean repeating all 

the other phases as the understanding of needs changes and new needs are discovered late in the process. 

Asking the  site initiators (the authors) about their goals for the site reveals that they want people to 
learn more about The Definitive Guide to Drupal 7 and they want the site to aid conversation and 
collaboration among multiple authors, readers, and interested Drupalistas. 

Overall, the DefinitiveDrupal.org web site (hereafter referred to as the DGD7 site) should 
complement the book’s goals, which include the following: 

• Give people of diverse skill backgrounds onramps to going great places with 
Drupal. 

• Help people learn how to learn more on their own. 

• Encourage those interested in the Drupal software to participate in the 
community that makes the software possible. 

For the book to meet its goals, it helps if people buy it, so all web site visitors must be able to see 
basic information about the book, selected and bonus content, and book buying information. Authors 
need to be able to add, edit, and arrange this information. People must be able to suggest ideas for 
inclusion in the book or future editions. Later, readers of the book must be able to comment on or ask 
questions about particular chapters. (These more structured forms of interaction are more sustainable 
for the authors than a contact form or site-wide forum.) The site must be able to be extended with new 
features as well as new content, and visitors must be able to sign up to receive updates when important 
new information about Drupal is added. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

5

■Tip  Another question the builders of a site should ask early on is where the resources will come from. Who is 
going to pay for this project—in time, resources, and money? Everyone involved needs to have a sense of what 

can be accomplished with funding and what can only be achieved with volunteered time. 

Information Architecture: Exactly What Will You Build? 
Once the purpose of a project is well understood, it’s time to move onto the next step, information 
architecture. Discovery is why.  Information architecture is what. This phase is sometimes also called 
specifications or site architecture. Typically, information architecture consists of writing functional 
requirements and drawing wireframes. 

Functional requirements consist of every individual thing the site must do and how each will fit 
together, stated as clearly and succinctly as possible. Wireframes are quick sketches of where links, 
forms, features, menus, content, and anything else should be on key pages or sections of the site. 
Together, functional requirements and wireframes show precisely what the site must do. 

With the grounding of the broad goals established in the discovery phase, you can ask the site 
initiators what they want in the site. You must filter requests based on the already established goals. 
With the DGD7 site, requests range from a paragraph-by-paragraph annotation tool to making the 
whole web site look like a book. This is where you must learn—and employ—the most important 
technique of web development: saying no. 

■Tip  In web development, the question “What do you need?” often comes back as something like “I need a fully 
3D pony leaping around the screen and every click on him adds another cup of hot chocolate to the shopping cart 
and I need it by Tuesday.” It’s your job to say no and to help people prioritize their ideas to be in line with their 

goals and resources. 

As Drupal developers, it is very tempting to say yes to everything, because pretty much everything is 
possible with Drupal. The missing word is eventually. For the sake of everyone’s happiness, it is best to 
help site initiators keep their vision in mind and build web site features that achieve this vision first. 
Requirements need to fit into a strategy for what the site’s initiators want to accomplish. Explain that 
time and resources are finite: yes, nearly everything is possible with Drupal, but not all at once. Given 
the overall goal, what are the most important parts of the site? Which have priority? 

With this in mind, we can produce a list of functional requirements for the book site: 

• Visitors shall see a prominent mission statement on the front page of the site. 

• The authors shall be able to edit and rearrange a public table of contents with 
optional chapter summaries. 

• The authors shall be able to post resources that relate to their chapters and are 
connected to their chapter summary in the table of contents. 

• Registered visitors shall be able to comment on individual resources associated 
with a chapter.  



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

6 

• Registered users should be able to share suggestions for the book such as tips or 
warnings, anecdotes about Drupal, or concepts that should be covered. 

• The most recent participant-contributed posts and comments should be visible in 
a side column on every page on the site. 

• Authors and other participants shall be able to categorize content to create 
linkages and organization throughout the site. 

• After publication, readers shall be able to register and participate in discussions 
(grouped by chapter), discover new material, and give feedback. 

Functional requirements are frequently more specific than these, but we’ll break down these 
broader ones as we implement each feature. (Note that not all of these features will be built in this 
chapter.) 

With the functional requirements complete, it’s time to use wireframes to suggest a basic visual 
structure for the data on the website (see Figure 1–1). This is an important part of the initial 
development stage because it lays out the requirements visually, shows how they relate to each other, 
and helps develop the user interface for the site. If nothing else, wireframes help keep you honest about 
what will fit on a given page. 

 

Figure 1–1. Napkin sketch wireframe. Chapter 9 has resources for making slick-looking wireframes, but 

wireframes can be simple hand-drawn sketches, too. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

7

Exercising the discipline to do wireframes as a first and separate step helps ensure that you do not 
prematurely close off your options. It is too easy with Drupal to slip from planning what must be done to 
planning how to do it—or even to starting to configure it. Drupal can be (and often is) used as a rapid 
prototyping tool, but the separation of phases should be adhered to—no site building yet. Indeed, at the 
information architecture stage, the use of Drupal to build the site should not yet be a foregone 
conclusion. 

■Tip  The authors love Drupal, but even they can admit that using Drupal for a one-page site is like setting up a 

catapult to hand someone a mango. 

Design 
When creating a design, remember that Drupal web sites are dynamic. A Drupal design (or, when 
implemented, theme), acknowledges that every page will have regions, such as header, left sidebar, main 
content, footer, and so on. A quick glance at the requirements shows that the site needs a sidebar for 
displaying the most recently added posts and comments (requirement #6). So this region (the sidebar) 
that contains the recent comments list will need to expand when there are more or longer comment 
titles. This is why functionality should be defined first; the dynamic areas of a site specified by the 
functional requirements should be reflected in the wireframes on which the design then builds. 

For the DGD7 web site, it makes sense to create a professional, easy-to-read design that is consistent 
with the Apress style. Theming is covered in Chapters 15 and 16; what is important to note here is that 
the design you make with a graphics program is not a theme. It is a drawing of what the site should look 
like after it is built and then themed. 

Drupal separates appearance from functionality, and the design phase does not need to take 
place in this order.  Building the site first and designing directly before or even as part of the theming 
phase may be the way to go (this is the order in the introduction). Regardless of when the design is 
made, the site should be built based on its functional requirements and wireframes before it is 
themed (see Figure 1–2). 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

8 

 

Figure 1–2. A mock-up of the DGD7 home page. It is not a working site, or even HTML; it is only a design, a 

picture. (The home page has a special arrangement and places recent comments below the main content, 

rather than in a sidebar.) 

■Note  Design is typically the third step in a project’s life-cycle, but thanks to the separation of appearance from 

content and functionality in Drupal, it can be worked on in parallel with implementing a site’s functionality.  

Implementation 
Now the rubber hits the road. The implementation phase is covered in the balance of this chapter. It 
includes installing and configuring Drupal to fulfill the plan of the previous phases. After 
implementation, the remaining phases of site building are commonly broken into the following three: 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

9

• Content staging: the writing and uploading of content, which is usually the site 
initiator’s responsibility (with coaching from the site builders).  

• Quality assurance: the testing of the site, which should be done by both the site 
builders and the site initiator. 

• Deployment and launch: putting the site or service out in the world for its 
intended audience and users.  

The post-implementation phases are covered more extensively in later chapters (deployment and 
launch specifically in Chapter 12). 

■Tip  Large projects can be done in iterations of these same basic steps, from discovery to deployment. As you 

add features to a web site, you will follow these steps over and over again. 

Installing Drupal 
To begin building any Drupal website, you first need to install Drupal. Many different combinations of 
operating systems (Linux, Windows, Mac OS X), web servers (Apache, IIS, Nginx), and databases 
(MariaDB/MySQL, PostgreSQL, SQLite) support Drupal. Appendices F through I cover getting set up 
with a web server and database on several operating systems. Let’s move on to the fun stuff. 

Putting the Files in Place 
Drupal core is hosted as a project on Drupal.org along with thousands of related contributed projects. 
While Drupal.org highlights direct download links, you can also download Drupal from its project page 
at http://drupal.org/project/drupal (see Figure 1–3). Like every other project, it has recommended 
releases, and that’s where you can download the latest stable release of Drupal 7. 

http://drupal.org/project/drupal


CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

10 

Figure 1–3. Drupal’s project page 

Where you put your files is determined by your chosen web server setup (see dgd7.org/install).
Wherever you unpack your Drupal files, the location where you see index.php and .htaccess is what we
refer to as the Drupal root or web root directory. 

■Tip  It is good practice to create a directory for the project (in this case, dgd7) and put Drupal core into it as a
subdirectory (such as dgd7/web). This makes it easy to put everything related to a project—including things that

should not be accessible from the web—in version control together (see Chapter 2). 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

11

Then go to your Drupal root directory and create a copy of the sites/default/default.settings.php 
file as sites/default/settings.php (copy, don’t move) and change the permissions of the new 
settings.php file to make it writable by Drupal. Also, create the sites/default/files directory at this 
time and make it writeable by the web server. OS-specific installation instructions are covered in 
Appendices F through I; see dgd7.org/install for more resources. 

■Tip  Don’t be deterred by any difficulties in getting set up. Really. Installing can be the hardest part. Take the 

remaining 800 pages of the book as proof that it is possible, and don’t give up. 

Drupal’s Automatic Installer 
Now load up your Drupal root directory in your browser (the exact address will be different depending 
on your local hosting environment). For the recommended Ubuntu instructions, the DGD7 web site will 
be at http://dgd7.localhost; for a WAMP, MAMP, or a standard LAMP setup, it might be 
http://localhost/dgd7/web. You will automatically be redirected to install.php, Drupal’s automatic 
installer. 

Choose the standard installation profile. (The minimal installation profile doesn’t even create the 
administrator role for you.)  Click through the language page; it won’t offer any options unless you first 
get files as described at drupal.org/localize (or, better, begin with the localization-ready distribution of 
Drupal, drupal.org/project/l10n_install). 

Enter in your database settings on the next screen (the values you provided when creating the 
database). Alternatively, you can choose SQLite and tell Drupal to use a directory that is writeable by 
your web server, and Drupal will create an SQLite database for you. (The authors don’t currently 
recommend SQLite for a site headed for an important production deployment, but it’s great for getting 
started easily.) Submit the form and Drupal will install itself! 

When installation is done (it may take a couple of minutes), you will be able fill in some basic site 
details and create a username and e-mail address with credentials suitable for the administrative user 
(called the site maintenance account). 

■Caution  The first user created in the installation process is given permission to do everything on the site, 
forever. Therefore, it is advised that you do not use this site maintenance account as your own personal account. 
The site might be just on your computer now, but when you move it online, you’ll want to preserve the user 
accounts. See Chapter 6 on Drupal security for more information, including advice on strong passwords and 

dealing with Drupal’s unique e-mail address per account requirement. 

Congratulations, you now have a Drupal site! And it’s...completely empty. There is no content at all 
yet, and Drupal 7 is nice enough to tell you that your home page is empty because there is no front page 
content (see Figure 1–4). (Front page content means, sensibly enough, content that is marked as 
“promoted to front page.”) Before we start creating content, however, let’s take a look at the 
Administration menu. 

http://dgd7.localhost


CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

12 

 

Figure 1–4. Your new, empty home page, including the Drupal toolbar and shortcut bar at the top 

Drupal’s Administration Menu 

Drupal’s Administration menu (see Figure 1–5) gives you access to administer every aspect of your 
Drupal site. The standard installation profile installs the Toolbar module that puts the main sections of 
the Administration menu at the top of every page of your site. From the toolbar you can do the following: 

• Find and add content. 

• Build things that affect the site’s structure. 

• Add and enable themes to change the site’s appearance. 

• Manage which people can log into your site and what they can do. 

• Extend your site’s functionality by adding and enabling modules. 

• Change default settings and the configuration of everything. 

• See reports regarding the status of different things on your site. 

• Get help on all of these topics and tasks. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

13

 

Figure 1–5. Drupal 7’s Administration menu in the toolbar, with the shortcut bar beneath it 

Other modules can add links to the Administration menu. Indeed, the Dashboard module, also 
included in Drupal core and enabled by the standard installation profile, provides a configurable 
overview of what’s happening on your site and adds the dashboard link to the toolbar. 

The Shortcut module adds a hideable bar beneath the toolbar that holds bookmarks to any pages 
you want to make instantly accessible. You can make multiple sets of shortcut links at Administration ➤ 
Configuration  User interface  Shortcuts (admin/config/user-interface/shortcut). Administrators 
can set which shortcut set a user sees in the user’s Shortcuts tab (user/7/shortcuts, for instance, for the 
user with ID number 7). Alternatively, you can give all people in a role permission to choose their own 
shortcut set at Administration  People  Permissions (admin/people/permissions) with the “Select any 
shortcut set” permission. (Roles and setting permissions will be covered later in this chapter.) The 
shortcut bar is visible to users in roles with the “Use the administration toolbar” permission; if they can’t 
see the toolbar, they can’t use shortcuts. 

■Tip  Like all core modules, the shortcut bar has additional documentation in the built-in help 

(admin/help/shortcut) and online at http://drupal.org/documentation/modules/shortcut. 

Appearance: Changing a Core Theme’s Color Scheme 
Using themes, you can quickly and easily change the overall look and feel of a Drupal website. The 
design aspect of the DGD7 web site plan calls for the site to have a clean, professional appearance and 
use the black and yellow color scheme of Apress books. You can see the themes available for your site, 
currently only core, at Administer  Appearance (admin/appearance). These themes—and more 
importantly, how to make your own—are described in Chapter 15. 

■Tip  Many, many more themes are available for Drupal for free. Browse drupal.org/project/themes and filter 
by compatibility with 7.x. One of these, Corolla (drupal.org/project/corolla), was built for inclusion in Drupal 7 

core (but wasn’t considered sufficiently vetted in time to be included in the core download). 

The new default theme for Drupal 7, Bartik, features integration with the Color module. This makes 
it possible to change the color scheme without touching any code (see Figure 1–6). By following the 
Settings link, you can select a new color scheme. Choose Slate, a subdued and neutral color scheme 
(which was the intended default for Bartik before the Drupal community demanded blue). 

http://drupal.org/documentation/modules/shortcut


CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

14 

Slate won’t have the yellow called for in the design, but it will be clean and won’t be a distraction. In 
Chapter 15, you’ll learn how to create themes. For now, the Bartik theme provides a layout and regions 
consistent with the wireframes so you can move on to building the website. 

 

Figure 1–6. Selecting a different color scheme in Bartik’s theme settings 

■Caution  Trying to create your own color scheme though the Color module’s tempting user interface (UI) is a 
really good way to make your site look unprofessional. Unless you are sure of what you’re doing—or you just don’t 

care—stick with a pre-set color scheme. 

Extending Functionality with Modules 
Modules can be used to extend Drupal’s features and functionality. Core modules are those included 
with the main download of Drupal, and you can turn on their functionality without installing additional 
software. Contributed modules—thousands of them—are available on Drupal.org (see Chapter 4). Later 
in the book you’ll even learn how to create your own modules. For now, enabling core modules is a good 
place to begin. You can do this at the Administration  Modules page (admin/modules). 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

15

Allowing People to Register and Log In with OpenID 
Enable the OpenID module by selecting the checkbox next to it and submitting the form with the Save 
configuration button at the bottom (see Figure 1–7). 

 

Figure 1–7. The OpenID module row in the form at admin/modules 

■Note  You will find core modules in alphabetical order (by their system name, which may not be the same as 
their displayed name) under Core on the modules administration page. As more contributed modules are added to 
this page, using your browser’s in-page search capability (often available with Control+F or Command+F) can be 

the fastest way to find the module you are looking for. 

No configuration is needed for OpenID—people will be able to register and log in using their 
OpenID accounts now. (OpenID is a decentralized standard for authenticating users, allowing users to 
log on to different services with the same digital identity. Anyone with a Google, Yahoo, LiveJournal, 
Wordpress.com, MayFirst.org, or AOL.com account has an OpenID; dedicated OpenID providers such as 
MyOpenID.com and Yiid.com offer free sign-up. See openid.net for more information. You can host 
your own OpenID, too, and there’s a Drupal module for that at drupal.org/project/openid_provider.) 

■Caution  When taking your site online, you will want to set up an anti-spam module (see Chapter 4 for a brief 
introduction to options such as Captcha, Mollom, and Antispam) or turn off user self-registration (which Drupal has 
enabled by default, though accounts need to be approved by an administrator). When a CAPTCHA is used, a text 

riddle or an image that has an audio fallback is preferred for accessibility reasons. 

Disabling Unneeded Modules 
Introductions to Drupal are mostly all about enabling modules to unleash new functionality, but it can 
be good to know when to disable a module instead. Disabling unneeded modules reduces the 
complexity of the site for you, the site builder, and improves the site’s performance and scalability. We’ll 
disable two modules, Color and Overlay. 

You have already used the Color module to set Bartik’s color scheme and you don’t need it any 
more. Banish the temptation!  The Overlay module makes it too easy to lose your work (see note). 
Disable these two modules by unchecking the boxes next to their module names at Administration  
Modules (admin/modules). Submit the form with the Save configuration button at the bottom. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

16 

■Note  Why disable Overlay? If a user of your site types a thousand-word post into an Add content form (such as 
node/add/page) in Overlay and clicks the “More information about text formats” link before submitting, everything 
typed is gone forever. Without Overlay, a good browser like Firefox typically preserves whatever data has been 

entered into a tab. Accidentally click a link? Pressing a back button brings you back to what you’ve written. Close 
a tab? Control+Shift+T brings it back—with any data you’ve typed into it. With Overlay, a single misclick will lose 
your administrative form changes or an unsubmitted post. (There is a proposed fix for this behavior; see 

drupal.org/node/655388. If an issue is marked fixed for Drupal 7, you can know the fix will be included in the 
next point release of Drupal 7 after that date.) If you’re using Overlay, at the very least you should disable the 
administration theme (which uses Overlay) when creating and editing content; see the bottom of the 

Administration  Appearance (admin/appearance) page for this option. Overlay can also be disabled for individual 

users on their user Edit forms (such as user/86/edit). 

Creating Content Types and Adding Content 
As a world-class content management system, Drupal naturally does quite well at managing content. Every 
piece of content on your Drupal site will belong to one of several content types, and you can create as many 
of your own content types as you need. Content types make it easy for site editors to update content that 
you, as a site builder, have made sure will end up displaying in the right way and in the right place. 

All content has a title, a creation date, and an author (a user on the site), among other qualities. The 
content type determines if a piece of content will have a body (main text) field, if it allows comments, and 
what its default settings are. Most wonderfully, a content type can have any number of fields including text 
and number fields, file and image fields, listing and option fields, and categories. The particular bundle of 
fields that you configure for a content type is available to all posts of that content type. 

Creating the Suggestion Content Type 
For this site, registered users should be able to leave suggestions for concepts to cover in subsequent 
editions of the book. For this, we’ll be creating a new content type called Suggestion and giving 
registered users permission to create content of this type. To enable people to categorize their 
suggestions (as a tip, a warning, an anecdote, a module suggestion, etc.), we’ll also be creating a 
taxonomy vocabulary and attaching it to this content type. (This will all be explained below!) 

To create the Suggestion content type, click on Structure in the administration toolbar, then select 
Content types. In the screen that follows, click + Add content type. 

■Note  This book will typically direct you to pages by the breadcrumb trail followed in parenthesis by the relative 
path you could enter directly in your browser’s address bar. For example, Administration  Structure  Content 

types  Add content type (admin/structure/types/add). 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

17

Name your new content type Suggestion and add a quick description in the description field. 
Descriptions are displayed on the Add content page (node/add) and help site editors and users decide if a 
given content type is the one they want to use. Farther down this form, in the Submission form settings, 
you can enter an explanation or submission guidelines, which will be shown at the top of the content 
adding and editing forms. You can always return later to edit anything here. There are no other settings 
you need to change, and you will be adding fields, so go ahead and press the Save and Add Fields button. 

■Note  For the Suggestion content type, you left comments enabled; this is the default when creating a new 
content type when the Comment module is enabled. For some content types, such as a news or event listing, you 

might want to disable comments, which can be done in the Comment settings tab in the vertical tabs at the bottom 

of the content type add/edit form. 

Drupal now takes you to the Manage fields tab for your content type, where you can edit fields, 
delete fields, re-order fields, and add new and existing fields (see Figure 1–8). (Drupal lets you share 
fields across content types.) At this point, your content type only has two fields, a title and a body. 
Although the body field is created by default, you can delete it. The title field is not fully using the field 
system and is always required. 

 

Figure 1–8. Add a new field to your content type. This field is called Explanation with the machine name 

field_explanation (the field_ part is automatically prefixed for you). 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

18 

To enable users to explain how their suggestion fits into the book, make a new field called 
Explanation. Under the Add new field section, give your new field a label, field name (a machine-
readable name), and choose the long text data type. The field label will show up next to the field on the 
edit form; the field name will identify the field within Drupal. Using the long text data type allows users 
to submit paragraphs; the text data type is for a single line of input. 

■Tip  Field names are an important part of working in Drupal. Note that they can’t be changed once they’re set. 
Pick field names that are both descriptive and short, as exercising the full flexibility of custom theming will make 

use of these field names. You’ll learn theming in Chapters 15 and 16. 

Click Save field settings on the next page, as the long text field type has no settings. (You wouldn’t be 
the only one who thinks Drupal ought to skip an unnecessary page here, but currently the issue to fix it is 
marked for Drupal 8; drupal.org/node/552604.) 

On the next page you can configure some settings (see Figure 1–9). You can make it a required field, 
which will prevent suggestion authors from publishing the suggestion if the field isn’t filled out. Add 
some help text to explain that you want the field to be an explanation. Set the rows to only three to try to 
convey that the explanation should be short. Set text processing to plain text, since this field is not about 
presentation. (Both plain text and filtered text will, by default, strip out potentially malicious script tags 
from published content.) Keep the Number of values at one (unless you think people should be able to 
submit multiple explanations for one suggestion!), and press Save settings. Your new content type is 
good to go. 

 

Figure 1–9. Configure settings for a long text field 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

19

Creating Content 
This book is focused on site building, not using Drupal sites, but you still need to create content 
sometimes! 

Adding a Page with a Human-Readable URL and a Link from the Main Menu 
Don’t let the long heading fool you; this is a simple task. To fulfill the requirement of a page where 
people can get information about buying the book, you can create a static page linked from the main 
menu. You can use the basic page content type provided by Drupal’s standard installation profile. Begin 
by going to Add content  Basic page (node/add/page). 

■New in 7  The Add content link (formerly Create content in Drupal 6) is available from the shortcut bar beneath 

the toolbar and from the content administration page, as well as the Navigation menu. 

Give the new page a title like Buying the Definitive Guide to Drupal 7 and in the body put in an a 
link to the book. Powell’s and Amazon provided cut-and-paste affiliate links. To embed an image into 
the text and do other special formatting you will need to change the body field’s text format to Full 
HTML. 

Next, in the nifty vertical tabs at the bottom of the form, go to Menu settings and check “Provide a 
menu” link (see Figure 1–10). Provide a title (the text of the link), a description (the tool-tip people will 
see if they hover their mouse over it), and a “heavy” (positive) weight to put it toward the right side of the 
selected <Main menu>, and you are in business. 

 

Figure 1–10. Adding a menu link for a basic page 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

20 

Add a human-friendly URL for the post (which people will see instead of “node/1”, for instance, in
their browser’s address bar) at the URL path settings tab. Make the URL alias purchase. (Figure 1–10
shows the summary where this has already been done.) 

■Note  You may notice in Figure 1–10 that Revision information indicated “New revision.” This doesn’t mean
anything when you first create a piece of content, but it’s best practice to have your content types set to create
new revisions by default. See Chapter 4 for a description of using the Content Type Overview module to set this

and other settings for every content type at once. 

Save the new content, and see your link appear to the right of Home in the main menu bar. 

Adding a Post and Promoting It to the Front Page 
The web site plan calls for the front page to have a brief introduction to the book, which stays above any
other posts put on the front page. You can do this in Drupal from the Administration menu: add content
as a basic page. Write in what you want for the title and the body. Under Publishing options, check the
two unchecked-by-default options: “Promoted to front page” and “Sticky at top of lists” (see Figure 1–
11). You now have content that’s been promoted to your front page. “Sticky at top of lists” means that
the post will “stick” to the top of listing pages, such as the default front page, as new content is added
(normally the newest post is displayed first). 

Figure 1–11. The publishing options of a default basic page   

■Note  A common beginning Drupal question is “Where’s my content?” because the front page remains blank
even after you create content if it is not promoted to front page.  In the standard installation profile, the Basic page
content type is not set to be promoted to the front page by default. You can always see all the content on a Drupal

website by going to Content in the Administration menu (admin/content). 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

21

Blocks: Creating a Mission Statement 
Blocks are pieces of information that can be displayed in the regions of your theme. Blocks can take 
many forms. Usually they are dynamic lists of information or menus. Drupal 7 provides some default 
blocks; you can find them on the blocks page at Administration  Structure  Blocks 
(admin/structure/block). The blocks page shows all the available blocks and all the regions they can be 
placed in. If you have multiple themes enabled, you can configure blocks for each enabled theme (and 
you can always configure blocks for the administration theme, which does not have to be enabled to be 
used). 

The third requirement for the website is for the front page of the site to have a prominent mission 
statement. To add this, you can create a custom mission statement block. Again, go to Administration  
Structure  Blocks and this time Add block. In the block description field, write “Mission statement” 
(this is not shown to site visitors). Leave the block title blank. In the block body, write the mission 
statement (see Figure 1–12). 

 

Figure 1–12. The custom block add/edit form at (for adding a new block) admin/structure/block/add 

■New in 7  All prior versions of Drupal since version 4.0 in 2002 had a configuration setting mission statement 

field under site information. Drupal 7 drops this special-case region for this more flexible approach. 

Move farther down the form to Region settings and place this new block in the Highlighted region; 
Bartik provides this region for mission statement-like content and it will work nicely. Under Visibility 
settings, go to the Pages vertical tab and set “Show block on specific pages” to “Only the listed pages” 
and type <front> in the text area (see Figure 1–13). 

■ Tip  Region names can differ between themes, so if you change themes you might have to respecify the 

correct region for your blocks. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

22 

 

Figure 1–13. Visibility settings for the mission statement block 

Finally, submit the form with the Save block button. 

■Tip  Drupal will let you set visibility settings not just for specific pages, but for content types and user roles as 
well. This is helpful when you only want to show a list of recent blog entries, for example, on all the blog pages but 

not anywhere else on the site. 

One of the DGD7 web site requirements is that the most recent participant-contributed posts and 
comments should be visible in a side column on every page on the site (see Figure 1–14). Dragging the 
Recent content and Recent comments blocks to the Sidebar first region (or selecting the region in the 
drop-down selection for each), and saving the page is all you have to do to check that requirement off 
as complete (see Figure 1–15). 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

23

 

Figure 1–14. The home page contains the recent comments, Mission Statement block, and the first piece of 

content. 

 

Figure 1–15. The block administration page with the Recent comments block enabled for the Sidebar first 

region but the form not yet saved 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

24 

■Caution  Custom blocks can be deleted, but there is no undo. Be certain you are not mistakenly deleting a block 
when you really want to disable it temporarily or only for a particular theme. The delete link is out in the open; to 

disable a block, change the block’s region to None or Disabled. 

Taxonomy: Categorizing Content 
Drupal allows you to easily classify content using the core Taxonomy module. You can define your own 
vocabularies (groups of taxonomy terms) and add terms to each vocabulary. Vocabularies can be flat or 
hierarchical, can allow single or multiple selection, and can also be “free tagging” (meaning that you can 
add new terms on the fly when creating or editing content). Each vocabulary can then be attached to one 
or more content types; in this way, nodes on your site can be grouped into categories, tagged, or 
otherwise classified in any way you choose. 

■Tip  A major use of applying taxonomy terms to content is that content with a given term can then be listed 
together. Drupal core provides this by default at the path taxonomy/term/8, where 8 is the taxonomy term ID. 

(This is the path you go to when you click on a term on a piece of content—it will list that piece of content and any 
others that have that term. You can use taxonomy to show content in many more ways (see Chapter 3 on the most 
important of these, Views). For example, you could make events that are listed by format and topic, or album 

listings that are sorted by music genre. 

Let’s go back to the requirement that registered users shall be able to share suggestions for the book 
such as tips or warnings, anecdotes about Drupal, or concepts that should be covered. You’ve already 
created the Suggestion content type; now you need to allow it to be categorized. 

For organizing all the different types of suggestions the authors will accept for the book, go to 
Administration  Structure  Taxonomy (admin/structure/taxonomy). Next, create a new vocabulary by 
clicking + Add vocabulary. Enter a name that is logical; in this case Book element. Click the edit link next 
to the automatically generated machine name to shorten it to element, as shown in Figure 1–16. In the 
optional description text field, used for the administrative interface only, put in something like Content 
or concepts in, or suggested for, the book. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

25

 

Figure 1–16. Using Taxonomy module to add a Book element vocabulary 

Now you can add taxonomy terms to this vocabulary by pressing the + Add term link. Add the 
following terms: 

• Tip 

• Note 

• Gotcha 

• Caution 

• Reality 

• New in Drupal 7 

• Concept 

• Anecdote 

Next, create another vocabulary called Status and add these terms to it: 

• Don’t waste pixels on it 

• If there’s room 

• Slated to go in 

• Already in the book 

Now you need to add a field to your Suggestion content type for each vocabulary. The option for 
people adding suggestions to select these associated taxonomy terms will then show up right near the 
title and body fields. 

Go to Administration  Structure  Content types, and click on the Manage fields link for your 
Suggestion content type. Under Add new field, enter Book element for your new field’s label, enter 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

26 

element for the field name, and select term reference for the data type. This last selection will bring up 
options in the last column; select “check boxes/radio buttons” for the form element, as shown in 
Figure 1–17. Click Save. 

 

Figure 1–17. Adding a vocabulary to a content type with term reference field 

■Note  If a “Check boxes/radio buttons” field has a Number of values limit of only one value, it will be radio 

buttons. If it can have two or more or unlimited values, it will be checkboxes. 

On the configuration page you are brought to after saving, choose the vocabulary called Book 
elements and click Save field settings. On the next screen, checkmark Required field and save the page. 

■Tip  New in Drupal 7, the same vocabulary can be attached to the same content type twice by adding a new field 

that references the same vocabulary. This allows, for instance, a Location vocabulary to be used as both the origin 

and destination of a product content type. 

Follow the same steps used to add the Book element field to add a Status term reference field for the 
Status vocabulary to the Suggestion content type. This time, make the field optional by leaving the 
Required field checkbox unchecked. 

With this done, you can test it out by clicking Add content (in the default shortcut bar) and then 
choosing Suggestion. You’ll see the text field for the title and text areas for the body and explanation, 
followed by the radio buttons for the taxonomy terms. Cool! 

 You can adjust the order of these fields by returning to the content type’s field management page at 
Administration  Structure  Content types  Manage  Suggestion  Fields 
(admin/structure/types/manage/suggestion/fields). Drag the fields up and down using the cross icon. 
This affects the field order on Suggestion add and edit forms (the order of fields when displaying can be 
changed independently at the Display fields tab). Don’t forget to click Save. 

Now, registered users of DGD7 can add suggestions and classify them, too. Or can they?  Nothing in 
Drupal is finished until you have configured permissions. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

27

Users, Roles, and Permissions 
Every visitor to your site is considered a user by Drupal. Users on your site can be assigned permissions 
via roles. Drupal supports multiple roles, and each user can be assigned to one or more of these roles. 

■Note  Drupal 7 tries to be polite and uses “people” for its administration section, but the term “user” is more 

correct for a person who uses the site. You will add users and configure user settings. 

A standard installation of Drupal starts out with the following three roles: 

• Anonymous user: any visitor to your web site who is not logged in. 

• Authenticated user: any visitor to your web site who is logged in. 

• Administrator: a role that automatically receives all permissions when a new 
module is enabled.  

The first two roles cannot be deleted; they are needed for Drupal’s functioning. The administrator 
role can be deleted, but you really shouldn’t. If you do delete it or you install Drupal with the minimal 
installation profile, you can choose which role will be the administrator role at Administration  
Configuration  People  Account settings (admin/config/people/accounts). 

The more interesting thing about roles is you can create any number of your own custom roles. 
Each role can be assigned specific permissions that control what the users in that role can or can’t do on 
the site. For example, if you have content editors who should be able to add or edit content, but 
shouldn’t be able to handle other administrative tasks, you would create a role called “editor” and assign 
appropriate permissions to it. 

■Tip  Giving a permission to the authenticated user role means all other roles receive it. Note, however, that giving a 
permission to the anonymous user role does not mean that the authenticated role or any other role has that 
permission. The anonymous user role is entirely separate from the authenticated user role. All other roles require that 

a user be logged in to have it, however, so they inherit the permissions given to the authenticated user role.  

On the DGD7 web site, all registered, or authenticated, users should be able to submit suggestions 
and edit or delete their own suggestions, but they shouldn’t be able to edit or delete someone else’s 
suggestion or add other types of content. Authors should be able to add any type of content and edit 
chapter content. Let’s go ahead and do that for book authors. 

First you’ll need to add an author role. This can be done at Administration  People  Permissions  
Roles (admin/people/permissions/roles). On the People administration page, Permissions is the tab 
farthest to the right and Roles is in the next level of tabs below it (after you click the Permissions tab). In the 
text field beneath the existing roles type author and press the Add role button, as shown in Figure 1–18. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

28 

 

Figure 1–18. The roles administration screen. You can have many roles on your site. 

Next, you assign permissions to the role that tell Drupal what users with that role can and can’t do 
on the site. So that your site has users to have roles assigned to them, you will need to allow anonymous 
users to sign up, configured at admin/config/people/accounts, or you will need to add users yourself, at 
admin/people/create. 

For Suggestions on the DGD7 website, registered or authenticated users should be able to submit 
suggestions, but the Status field should be reserved for the book’s authors when filtering through the 
suggestions. Chapter 8 introduces the Field Permissions module for even more fine-grained 
permissions— making the Status vocabulary field you just created available only to authors and 
administrators. 

To assign permissions, you can click the Edit permissions link next to your newly created role to edit 
the permissions for that role, or you can edit the permissions for every role at once by clicking back to 
the Permissions tab. Checking the appropriate boxes in the user role columns will grant role-specific 
permissions. This will allow all users in the author role to take the actions specified, when they are 
logged in. Users can have any number of roles, and permissions aggregate across the roles they have. 

To finish the Suggestion requirement, scroll down to the Taxonomy section and give authors the 
ability to edit and delete terms from Status. Authors will also need the following permissions:  

• Access the content overview page. 

• Create new Basic page content. 

• Edit own Basic page content. 

• Edit any Basic page content. 

• Create new Suggestion content. 

• Edit own Suggestion content. 

• Edit any Suggestion content. 

• Use the administration pages and help.  

• Use the administration toolbar.  

Once the author role permissions are configured, you can assign users to that role. Clicking on 
People in the Administration menu will show you a list of users that have registered on the site. You can 
create accounts for people with the + Add user link. While creating a new user account, you can select 
roles for that user and ask Drupal to e-mail the person that their account has been created. (Note that 
people can’t use your site and likely can’t get e-mail from it until it is online, of course; see Chapter 12.) 

■Tip  You can add or remove a role from many existing users at once by checking the chosen people and using 

the appropriate option from the Update options drop-down menu. See Figure 1–19. 



CHAPTER 1 ■ BUILDING A DRUPAL 7 SITE 

29

 

Figure 1–19. Easily change or add roles for multiple users simultaneously on the People page under the 

Administration menu 

Time for a Celebratory Beverage 
Congratulations, you have just built a web site using Drupal 7!  It might be overwhelming to think that 
you have only scratched the surface—you have not yet added a single contributed module to Drupal's 
core functionality—but there’s nothing to be worried about. The best way to learn Drupal is to get it 
installed and start playing around with it. That’s what Chapter 1 was all about. 

You planned a web site and built it. Specifically, you: 

• Installed Drupal 7 locally and configured a core theme. 

• Created new content types and taxonomy vocabularies to categorize them. 

• Configured blocks and created a custom block to serve as a mission statement. 

• Enabled and disabled selected core modules. 

• Created a role and configured permissions to give authors and visitors different 
levels of access to adding and editing content. 

In the next chapter we’ll cover some essential tools for doing work with Drupal at a high level, Drush 
and Git. (The important matter of good tools is continued in Chapter 12, which covers setting up your 
development environment). In Chapter 3, you will move beyond Drupal core with the extremely 
powerful and versatile Views project. Chapter 4 provides a survey of some contributed extensions (called 
modules) available for Drupal 7 and some advice on choosing which ones to use. With this new 
knowledge, building the DGD7 site continues in earnest in Chapter 8. 

■Note  See additional material and ask question questions about this chapter at dgd7.org/firstsite. 



C H A P T E R   2 

■ ■ ■ 

31

Essential Tools: Drush and Git 

by Dani Nordin and Benjamin Melançon 

“There is no knowledge that is not power.” 

—Ralph Waldo Emerson 

Whether building sites, developing themes or modules, or trying to make a Drupal distribution that can
drive your car, Drush (the Drupal shell) and Git (the open source version control system) will help you
get where you are going quickly and safely. This chapter will give you a brief overview of Drush and Git
and then it will help you get started with these powerful tools. If you are already familiar with Drush, or
want to go deeper into all of the things that you can do with it, check out Chapter 26, “Drush.”  

Drush is easy to explain. It lets you perform all manner of repetitive Drupal tasks much, much faster.
Need to upgrade your code? Use drush up. Need to download a new module? Use drush dl MODULE_NAME.
Drush does the rest of the work—usually within a minute or two (see Figure 2–1). 

Git may be a little harder to explain. The short explanation is that if you are not using version
control, you need to. If you are the pesky type of person that expects reasons for doing things, here’s a
slightly longer explanation: have you ever wanted an undo or rewind button for life? That’s version
control. The best way to perform backups of your work is with a properly configured version control
system (VCS), which you use constantly to record changes to a file or set of files over time so that you can
revert to or compare specific versions later. 

Like most developers, we made our first sites without version control. And like most developers, we
have a tale or two of minor catastrophes, from the change that broke a site in Internet Explorer to the
deleting of three days’ work. But you get the benefit of our experience, and we’re going to make you start
off doing it right. Before we get into that, however, we need to set up some foundations. You need to
install Drush and Git. 

■ Tip  You can also use Git to track changes for non-Drupal projects, even folders with only one file in them. 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

32 

 

Figure 2–1. Upgrading Drupal with the drush up command. Total time? About 30 seconds. Manually? 15 

minutes to a couple of hours, depending on how many modules need to be upgraded. 

A Beginner’s Guide to Installing Drush 
Installing and using Drush—a command line tool that lets you do things on your Drupal site like update 
modules via two word commands—is a no-brainer. But even hard-core Drupal users have been late to 
experience the benefits of Drush because they put off the little bit of up-front work that would make 
their lives easier. For people new to Drupal, or those of us raised with a love of pixels and a distaste for 
the command line, the idea of installing Drush can be overwhelming. 

This section provides a simple guide to installing Drush. 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

33

THINGS TO KNOW BEFORE YOU GET STARTED 

• You’re going to use the command line now.  

• On Mac OSX or Ubuntu, you can open Terminal to reach the command line. If 
you’re developing in Windows, see Appendix F on setting up a Windows 
development environment for instructions, or you could consider setting up a 
virtual machine running Ubuntu for your Drupal development environment 
(discussed in Appendix G). 

• For this exercise, you’re going to focus on local development. When working on 
sites that are staged on a remote host, you’ll want to also install Drush and Git on 
the host servers and log into those servers on the command line. If you’re on Mac 
OSX, Panic’s Coda (www.panic.com/coda/) includes a Terminal editor that will let 
you do this automatically. If you’re developing locally, you’ll still have to use 
Terminal. 

• Whether you’re installing Drush locally or remotely, be ABSOLUTELY SURE to put 
Drush outside your web root (i.e. where your Drupal installation is stored). Putting 
a site with Drush inside it on a remote server could make it very easy for attackers 
to break into your Drupal site. 

Once you have Drush installed (covered next), you’ll be able to run many Drush commands from within 
folders containing the Drupal site root. Once you’re on the command line, using the command cd 
/path/to/drupal will get you there (where ‘/path/to/drupal’ is replaced with the path to your Drupal site 
in your file system). Then you can execute Drush commands using drush commandname. (If you run Drush 
commands from your Drupal folder, drush targets the default site on your installation (the one in 
sites/default); if you're running several sites on the same installation, navigate to your site directory [cd 
/path/to/drupal/sites/example.com] or add [-l http://example.com] to your drush command.) The 
following is an example of downloading and enabling the Date module using Drush. The first command, cd 
Dropbox/MAMP/dgd7, navigates you to the Drupal site’s folder; the path will differ on your system: 

 
 

The three steps that follow are adapted from a blog post by Laura Scott and used with permission; 
these steps walk you through the process of installing Drush. She installed Drush on Mac OS X, which 
the authors also develop in, and the instructions will work on any Unix-like system. If you’re on 
Windows, see Appendix F to get started with a Windows development environment for Drupal or 
Appendix G to run Ubuntu Linux in a virtual machine (you can also consider using Cygwin to mimic the 
UNIX environment).  

http://www.panic.com/coda/


CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

34 

1. Download Drush 
Get Drush at drupal.org/project/drush. Drush works for every version of Drupal, so just find the latest 
version and download it (see Figure 2–2). (Drush may be the last project you need to download 
manually!) 

Put the tarball into your working folder, which, ideally, is a folder in your home directory. We 
created a working folder called dev in our home directory. 

Double-click on the tarball to open it up. When you go into the drush folder, you’ll see a number of 
files, including the README.txt file. Read it! 

 

Figure 2–2. The Drush project page. The latest version under “Recommended releases” is the one you want.  

If you’re already comfortable with the command line, you can also do this via Terminal by copying 
the link to the tar.gz on the project page, then typing the following into Terminal from the home folder 
(see Figure 2–3). Note that comments are surrounded by **.  

wget http://ftp.drupal.org/files/projects/drush-7.x-4.4.tar.gz 
        ;** downloads the Drush tarball - replace what’s after wget with the current link **  
tar xzf drush-7.x-4.4.tar.gz 
        ;** unpacks the tarball into your folder ** 
rm drush-7.x-4.4.tar.gz 
        ;** removes the original tarball ** 

http://ftp.drupal.org/files/projects/drush-7.x-4.4.tar.gz


CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

35

 

Figure 2–3. Installing Drush via the command line. This is highly useful when you have to install Drush 

on multiple servers, or for a new project. 

2. Make Drush Executable 
Now you venture into the command line. We hope that doesn’t vex you, because Drush is a command 
line tool. 

Open your Terminal. This opens up to your home directory, which corresponds to the Finder folder 
that bears your Mac username. 

The path to your drush will depend upon where you put it. 
You will want to type the command chmod u+x /path/to/drush/drush (replacing “/path/to/” with 

the actual path where you placed Drush). So in our case, with Drush residing in the dev folder, it’s 

chmod u+x dev/drush/drush 

Now that you’ve made Drush executable, you want to set things up so you actually can execute the 
drush command outside of the actual Drush folder (such as in the working folder for the site you’re 
building).  

3. Create an Alias 
This part may seem a bit mysterious, but it’s really quite simple. You will be adding to your bash profile 
file the path to the drush command so that you can run the drush command from anywhere in your 
filesystem. 

A handy UNIX shortcut to your home folder is “~” (the tilde character). You can use that in any path 
designation. 

Find your bash profile file using the Terminal in your home directory. 
If you’re not there, go ahead and enter on the command line: 

cd ~ 

The bash profile files are hidden from normal view, so to see what files you have in your home 
directory, enter this command: 

ls -a 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

36 

You’ll get a list of all the files in that folder, similar to that in Figure 2–4. The hidden files start with a 
dot (.), so look for one of these files: 

.profile 

.bash_aliases 

.bashrc 

.bash_profile 

 

Figure 2–4. Use the ls command to list the files in your home folder. 

Your bash profile can have any of these four names. If you don’t see any of these in your home 
folder, create one using the nano editor (the really simple, old school text editor that comes with UNIX); 
nano will create the file if it doesn’t find one with that name. 

Any one will do, so just pick an existing file. (We picked .bash_profile.) 
To edit the file, enter nano [filename]. For us, that means 

nano .bash_profile 

This takes you into the editor. You might be looking at one or two lines of code. Cursor down to the 
end of the file; make sure you’re on a new line, and add: 

alias drush='/path/to/drush/drush' 

Replace the “/path/to/” part with the actual path—but this time it needs to be relative to the system 
root. Remember that shortcut to the home directory? Now is a time to use it (see Figure 2–5). 

alias drush='~/dev/drush/drush' 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

37

 

Figure 2–5. Another recommended approach to having the drush command at your fingertips: Add the 

path to the Drush folder to your shell's path, also done in a file such as .bash_profile or .profile. 

Save the file using <control>-x, y(es), <enter>. Now you’re back at your Terminal prompt. 
Now all you need to do is reload the updated bash profile using source [filename]. In my case: 

source .bash_profile 

4. Test 
Yes, we said it was three steps. But this is testing, an everpresent understood additional step. To test, 
type: 

drush 

You should get a long list of available Drush commands. You’re done! (Or rather, now you can get 
started!) See Figure 2–6 for details. 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

38 

 

Figure 2–6. Success!  

Now that you’ve got Drush installed, you can do all sorts of things that would take a long time 
through the Drupal interface. First, make sure you have a working Drupal installation on your system 
and navigate to it: cd /path/to/drupal. Now, need to install a module? Type drush dl projectname. 
(Note that for Drush, the project name is the name of the folder containing the module or group of 
modules, not the human-readable module name. For example, if you want to install X-ray module, use 
its machine name xray.) Need to update your code? Type drush up. Be sure to check out Chapter 26 to 
see all the great things that Drush is capable of (and how you can extend it to do even more). 

Git: Development Grease 
Continually backing up your work is an essential practice for any web developer. Whether your workflow 
is based on downloading and installing modules, building custom themes, or writing code, putting 
everything in version control lets you focus on progress. You don’t need to worry about taking the wrong 
route because you can always go back. 

Version control is development grease. It makes everything run smoothly and helps you get in the 
zone. Chapter 14 discusses how to use version control (also called revision control) in achieving a state 
of optimal productivity.  



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

39

Why Git? 
There are many different version control systems for you to choose from. This book will focus on Git. 
Why? Because it’s free, it’s easy(ish) to use once you know a few basics, and Drupal.org has moved over 
to using it. This last part means that, once you get the hang of Git, contributing code to the community 
will be much easier. (And while getting the hang of Git—which will be a lifelong learning process—you 
can ask the Drupal community for help.) 

■ Note  If you do choose another VCS, we highly recommend you make it a modern one—a distributed version 
control system, or DVCS. Bazaar and Mecurial are both ones that were considered by Drupal.org (the infrastructure 

team uses Bazaar) but the Drupal community had already voted for Git with its feet. In other words, many more 

people were already using Git. 

Installing Git 
To install Git, the first thing you’ll need to do is grab the installer. You can find the Git software at git-
scm.com. Download the installer appropriate to your OS, indicated by the handy icons on the right side of 
the page (see Figure 2–7). 

■ Tip  If you’re using a UNIX-like OS with a package manager, you can use that to install Git; feel free to skip this 
section. For instance, on Debian or Ubuntu, sudo apt-get install git will take care of it for you. If you’re on 
Mac OS X and you want to enjoy the goodness of a package manager, set up Homebrew 
(mxcl.github.com/homebrew), the latest and greatest apt-get clone for Mac. If you’re on Windows see Git for 

Windows (code.google.com/p/msysgit), or Cygwin will help you create a UNIX-like environment on your 

machine that will help you to use the command line effectively. 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

40 

 

Figure 2–7. The Git homepage. The box in the upper-right corner provides a quick way to download the 

Git code for your OS. 

Follow the instructions on the website to install the Git software. Git is a command-line program, 
which means that you won’t find it in your Applications folder. To access it, you have to go into 
Terminal. (The Windows installer adds an icon to your start menu, which launches a Git terminal for 
you.) Once you’re in there, just type git. You should see a handy list of commands, much like you did 
when you typed drush previously (see Figure 2–8). 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

41

Figure 2–8. The git home screen within Terminal 

■ Note If the command git doesn’t work after installing, try quitting Terminal (File > Quit in most operating

systems, or Cmd+Q on the Mac) and re-opening the program. 

Working with Git 
Git is primarily a command line tool and is very easy to use on the command line. We recommend
learning Git on the command-line first, before trying the visual tools. Knowing the command-line gives
you a common vocabulary with other Drupal git users. The basic steps to get started are discussed in the
following sections. It is possible, however, to find some clients that will create a GUI for you. See
drupal.org/node/777182 for some examples, including SmartGit and (for Mac OS X only, proprietary)
Tower (git-tower.com). 

■  Tip  See dgd7.org/git for common Git commands and useful tricks. 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

42 

Bonus One-time Step: Identify Yourself 
To properly identify yourself for every commit in case you share your code later, you should use these 
two commands: 

git config --global user.name "Your Name" 
git config --global user.email you@example.com 

You will only have to do this once. 

Creating a Repository 
In order to start using Git, the first thing you need to do is create a repository. This repository should be 
in your project folder. You create the repository with the command git init. (You can navigate to the 
folder using the command cd). This only needs to be done once per project. 

We’ll go over some of the additional commands here in a moment; but say you were starting with 
the DGD7 web site project you created in Chapter 1, you would use these commands in succession to 
create your repository: 

cd ~/code/dgd7 
git init 

This creates a new .git folder in your Drupal project (see Figure 2–9), which will store all of your code 
versions. 

 

Figure 2–9. Creating your Git repository 

While developing, it’s important to put your code in the repository as early and often as possible. We 
recommend committing each time you make a change to your project, such as adding a module, 
updating the CSS on a site theme, or changing functionality in code. Once you’ve created a repository, 
all the files that you are working with are considered the working copy of that repository. It can be clean 
(all your changes are committed) or changed. Currently, with no files committed, it is considered in a 
changed state. 

The first step to committing your code is to add it to “stage.” The stage temporarily holds your 
changes until you commit them. To add your changes to stage, use the command git add . from within 
your working copy of the site project. The final period is important—it tells Git to prepare to add 
everything that’s changed in your code in that directory (and any directory nested below it) to the 
repository. You can see what you are about to commit (and what’s still not staged for committing) with 
git status (see Figure 2–10). 

mailto:you@example.com


CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

43

 

Figure 2–10. Adding your DGD7 site code to stage and viewing the status 

Next, you actually commit your code to the repository. This is done using the command git commit 
(see Figure 2–11). No path name is needed here; Git will commit everything that you just added. You can 
also add a message to your commit by using -m “Message goes here” where “Message goes here” is the 
text of your message. The message should inform anyone who downloads your code what they’re 
downloading (e.g., “Initial build of DGD7 demo site”). In practice, the act of adding and committing 
code would happen in succession, like so: 

git add . 
git status 
git commit -m "Added photo of kittens to the theme header per client request." 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

44 

 

Figure 2–11. Committing your DGD7 code for the first time 

This will commit any code in your site that has changed since the last time you committed. It’s 
worth noting that if you’re adding code for the first time, the process might take some time; Git will be 
copying every file and piece of code to stage.  

Ideally, you commit constantly (see Chapter 14). At the very least commit after you’ve made any 
major change to your site’s files (for example, after downloading a module or theme) or periodically 
while writing custom modules for your site.  

What to Do When Things Go Wrong—Throwing Away Changes and Reverting 
in Git 
There are many ways to fix your mistakes in Git while you’re developing. If, while you’re developing, you 
realize that you don’t want to save what you just did at all, and you haven’t yet committed your changes, 
you can use the following command:  

git reset --hard HEAD 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

45

■  Caution  This command will throw away everything you did since your most recent commit.  

If you don’t want to replace all of your code, but retrieve just one file, you can use the following 
command: 

git checkout -- path/to/filename.php 

This command will restore filename.php to the last committed revision. If you’ve already 
committed your code, you can use this command 

git revert HEAD 

to return your code to the last committed revision. If you want to go back one further (i.e. the next-to-
last revision), you can amend it to  

git revert HEAD^. 

Other Useful Git Commands 
Now that you have the lay of the land, here are some other Git commands that you might find useful:  

• git status shows what you’re about to commit. 

• git log provides a list of what you’ve committed. Variations of this command, 
such as git log --pretty=oneline, are a lot more practical. And git log --
pretty=oneline -n5 gives you the last 5 commits, useful when you have hundreds. 
Also, “:q” might have to be typed in order to get back to the command line after 
viewing the log. 

• git checkout mymodule.info lets you check out (i.e., download) a specific file or 
revision.  

For a full list of Git commands, type man git into Terminal. 

Database Backup Tools 
While Git will help you keep your files and code backed up via version control, it is also important to 
back up your database regularly. This is vitally important for a site being used by other people, such as 
clients. Since much of Drupal websites (including content) resides in the database, not backing up could 
have serious consequences if things go wrong. 

The Drupal Git Backup Drush script, available at github.com/scor/dgb, can be used to easily export the 
database tables you care about and commit them to version control. This is covered more in Chapter 12. 

If the setup is too much for you—heck, even if you do nothing else in this chapter—please install the 
Backup and Migrate module (drupal.org/project/backup_migrate), which will allow you to easily and 
regularly back up your entire database into a folder that you set up in the configuration settings.  

Another way of backing up your database using Drush directly is the command  

drush sql-dump > /path/to/filename.sql 

This will create a backup of your database file in the location of your choosing. One thing that Drush 
doesn’t do automatically, however, is empty the cache tables; this can cause the database backups to be 



CHAPTER 2 ■ ESSENTIAL TOOLS: DRUSH AND GIT 

46 

overly large, which will fill up your repository quickly. The Drupal Git Backup script addresses this, and 
Chapter 26 explains how to exclude selected tables from export. Another approach is to simply clear 
your cache using the command drush cc all before making a database backup. This command will 
clear all of the database cache tables.  

Summary 
We hope that this chapter has given you a quick overview of how important (and how easy!) it is to keep 
your code in version control and your database backed up during development. By setting up a few key 
processes up front, you can save yourself hours of headaches down the line; ask anyone who has ever 
taken their programming down the wrong path or dealt with a crashed site. You’ll thank us later. 

■ Note  Get the essential updates to the tools and tips we missed as people correct us at dgd7.org/essential. 



P A R T   II 
 

■ ■ ■ 

 

47 

Site Building Foundations 

Chapter 3 takes you on a journey of thorough understanding for the most important contributed project 
Drupal has: Views. Most if not all sites you build will rely on the Views module for the powerful ways it 
provides to list, filter, and sort content. 
 
Chapter 4 introduces many other modules (bundles of functionality) available from the Drupal 
community that you may want to use and, more important, how to find and evaluate modules to meet 
your site-building needs. 
 
Chapter 5 gives a tour of the Organic Groups suite of modules, which can give people the power to 
organize content and themselves on your site. This chapter includes an extended cameo by Panels, 
another powerhouse module for displaying content, especially in concert with Views. 
 
Chapter 6 teaches security practices and provides ways to keep your site secure, from configuration to 
evaluating and even writing code. 
 
Chapter 7 follows up on the security chapter with several approaches to keeping Drupal core and 
contributed modules up-to-date. 
 
Chapter 8 continues the site build begun in the first chapter by configuring Fields, Views, and chosen 
contributed modules to showcase authors, present a table of contents, connect authors and resources to 
chapters, and allow visitors to participate. It gives a taste of how far you can go in Drupal without writing 
any code. 
  



C H A P T E R   3 
 

■ ■ ■ 

49

Building Dynamic Pages 

Using Views 

by Michelle Lauer and Greg Stout 

Views changed my life. If you have built dynamic web sites for any period of time, you know that there 
are two main tasks that you perform over and over. You create content and store it in a database and 
then requests nuggets of that content to build stuff for your web pages. The latter requesting often 
requires complex formulas where the slightest typo will return you the wrong items or, more likely, 
nothing at all. 

The Views module allows you to easily specify the criteria for displaying a subset of content, even 
combining multiple content types. It also allows you to massage the format in which the data is 
displayed. As new content is added to your web site, the resulting View is dynamically updated to reflect 
the new content. It helps you to do all of this—without asking you to write a single line of code; thank 
you, Earl! Views changed my life; and it’s about to change yours. 

What Are Views? 
The name Views comes from database terminology. A database view is a complex stored query that you 
use like a table in the database. When you request items from a database view, you get the things that 
you need in exactly the way you need them.  

Drupal Views work in a similar manner but they let you use a graphical user interface to create the 
database query. When you create a Drupal View, the module writes the queries for you so you don’t have 
to know anything about database administration. 

The Views module was envisioned/created and is maintained by Earl Miles (merlinofchaos on 
drupal.org). All downloadable versions, documentation, and the issue queue can be found on its project 
page at drupal.org/project/views. 

This tool is essentially a smart query builder that, given enough configuration, can 
build the proper query, execute it, and display the results.   
 
Among other things, Views can be used to generate reports, create summaries, and 
display collections of images and other content. 

—Excerpted from drupal.org/project/views 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

50 

Like Drupal itself, the Views module offers powerful functionality right out of the box. With only a 
few clicks, you can put a block on your home page that lists your site’s most recent content. A few more 
clicks and you can turn that block into a tabbed menu, so that the first tab shows your site’s most 
popular content, the second tab shows recent comments, and a third lists new members.  

The Views Module provides the dynamo in a dynamic web site. It makes your work—in building the 
site and especially in maintaining it—easier and more powerful. One could easily write a book only 
about Views and not run out of interesting things to do.  

For all these reasons, the essential thing to learn in this chapter is not what you can do with Views or 
how to do it, but how to do it in a way that makes it easier for you to maintain your site—and pass on 
that responsibility to the next person. In other words, it is the process, the tags, the descriptions, and the 
naming conventions that I want you to really learn. Once this is ingrained, you will be able to visualize 
and use Views to build almost anything. 

Examples of Views Usage 
The following are just a few examples of common usages of Views: 

• The five most recent press releases 

• Upcoming events 

• All posts written by a specific person, like a blog 

• A monthly archive of content 

• List of content for administrative purposes (see Figure 3–1) 

 

Figure 3–1. An example list of content for administrative purposes 

You really can display any type of content and also bring in related content as well. If it’s in the 
database, you can use the Views module to display it. 

The most common display types for Views are pages and blocks. With pages, you assign your output 
to a URL of its own, and with a block, your output can be placed in any region on any page in your site. 

Download, Enable, and Configure Permissions for the Views 
Module(s) 
To begin developing with Views, you need to download the module and enable it by following the 
standard procedure for downloading a module.  



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

51

Download 
In your web browser, go to drupal.org/project/views. When you scroll down to the Downloads section, 
you see a table titled “Recommend releases” shown in green. Click on the download link for the format 
that you want (tar.gz or zip) that accompanies the version of Drupal that you have installed, like 7.x-3.x. 

Unpack the compressed files and put them in your contributed modules directory. For most 
developers, this is at sites/all/modules/contrib or simply sites/all/modules so that you can find all of 
the Views files in sites/all/modules/contrib/views or sites/all/modules/views. (Drush, covered in 
Chapter 2, can download and place the files for you.) 

Enable 
On your web site, make sure you are logged in as a user with permission to administer modules or as a 
user with the Administrator role (or user/1). Use the administrative menu at the top and click Modules 
(admin/modules).  

Scroll down to the Views fieldset. You will see three modules: Views, Views exporter, and Views UI. 
Underneath the description of the Views module, you will notice that CTools is a required module for 
Views to work. If you already have the CTools module downloaded and enabled on your site, the text 
noting the dependency will say “enabled.” If you have CTools downloaded, but not enabled, the text will 
say “disabled.” And lastly, if you have not downloaded CTools, the text will say “missing.” Drupal will not 
allow you to enable a module if all dependencies are not present in your site files. 

If you haven’t already done so, please download the CTools module from its project page at 
drupal.org/project/ctools. Unpack the compressed files and put the ctools folder in your contributed 
modules directory. For most developers, this is at /sites/all/modules so that you can find all of the 
CTools files in sites/all/modules/ctools. 

■ Note  CTools (Chaos Tools Suite) is a module that provides helper code for other modules. 

In your browser, go back to the Modules page (admin/modules) and click Refresh. Scroll down to the 
Views fieldset. The text noting the CTools dependency should say “disabled.” Since all required files are 
available, you may now enable Views. Check the checkboxes for Views and Views UI, then Save 
configuration (see Figure 3–2). 

■ Note  We will be discussing the Views exporter module later in this chapter. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

52 

Figure 3–2. Modules list administration page. The needed modules have been downloaded but not yet 

enabled. 

Drupal knows that the Views module needs another module enabled and prompts you. 

You must enable the Chaos tools module to install Views UI.  Would you like to continue with
the above? 
Please "Continue". 

Configure Permissions 
One of the features that Drupal offers is the ability to grant permissions to different roles, as covered in
Chapters 1 and 8. Most modules have associated permissions that need to be granted to roles in order to
interact with them. Users of your web site will either have the role of Anonymous User or Authenticated
User and will possibly have additional roles assigned to them.  

■ Tip  After enabling any module, it is best to configure the permissions right away. Waiting until the end of

development often leads to an overwhelming permissions audit. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

53

Go to the Administrative menu at the top and click People. Once on this page, click the Permissions 
tab. Scroll down to the bottom and find the Views section. There are two permissions for the Views 
module, “Administer views” and “Access all views”.  

■ Note  You may also use the Permissions link for Views on the module administration page. This will take you 

directly to the Views section on the permissions page. 

“Administer views” grants access to the Views administration pages allowing users the ability to 
create, edit and delete Views. Only give this permission to roles assigned to users that are appropriate 
and trained to use them properly. Most “Administer” permissions are only given to the Administrator 
role. 

“Bypass views access control” is another permission that should be used sparingly. For a specific 
View, you can specify which roles can see the results. Selecting the “Access all views” permission for a 
role will override that setting. We recommend only granting this permission to roles assigned to users 
that are appropriate and are trained properly to use them properly, like your site administrator. 

Confirm that neither checkbox is selected for Authenticated User and Anonymous User roles. 
Confirm that both checkboxes are selected for Administrator role. If you made any changes, click Save 
permissions. 

■ Tip  During development, make sure you check your web pages as different users to confirm they are having 
the correct user experience as defined by the permission settings. Try having three different browsers open, each 
demonstrating a different Role, such as Administrator in Firefox, Authenticated user in Chrome, and Anonymous 
user in Internet Explorer. You need a different brand of browser for each role because your browser shares among 

its open windows/tabs the user account you are logged in with. 

Congratulations! You have now successfully downloaded and configured permissions for the Views 
modules. You are now ready to administer Views. 

The Views Administration Page 
Using the Administration menu, click Structure and then on that page, click Views 
(admin/structure/views). This is the Views list page where all Views in your web site are listed. 

Advanced Help Module 
If you have not yet installed and enabled the Advanced Help module, you will see a status message at the 
top of the page (see Figure 3–3). 

The Advanced Help module will provide some additional information explaining the options while 
you build your Views. You may choose to download it at drupal.org/project/advanced_help or click 
Hide this message. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

54 

 

Figure 3–3. Advanced Help status message 

Action Links 
Beneath the status message, you will see Add new view and Import. We will be discussing using those 
later in this chapter. 

Change Which Available Views Are Listed 
By default, all available Views display on this page. Although it may not be necessary now, if your site has 
a lot of views, sorting and filtering them makes this administration page much more manageable. You 
can sort the table of views by clicking the columns heading of View Name, Tag, and Path. Click once to 
sort first to last and again for the reverse. 

You can also enable a set of additional filters by clicking the Settings tab, checking the box next to 
“Show filters on the list of views,” and clicking Save configuration. 

Above the table you will see a Search box for finding a view by name and the drop-down filters 
shown in Table 3–1. 

Table 3–1. Filtering Controls 

Filter  

Tags What extra classification (similar to metadata) has been added to this View to 
make it easier to find related Views? 

Displays Does this View display as a full page with its own URL, a feed, or as a block that 
can be placed on any page in your web site? 

Types Is the View display about content that is nodes, users, files, etc.? 

Storage Is the View stored in the database, in code only, or in the database overriding 
code (more on this later)? 

Status  Is the View enabled or disabled? 

Any filter selection is automatically applied to the list but you can click “Reset” to return the list 
display to its default settings (see Figure 3–4). 

 

Figure 3–4. Refine the list of available Views 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

55

Available Views 
The Views module comes with several default Views that you may choose to enable and use in your site. 
Other modules in your site may also define Views that could appear in the listing. By the end of this 
chapter, you’ll be creating your own Views. 

Elements of a View Listing 
For each View listed, there is a lot of information provided. The following elements are mapped in 
Figure 3–5 and relate directly to how you can refine which Views are displayed in the list:  

 

Figure 3–5. Elements of a View listing 

A. What is the name of the View? 

• This is the human readable name of the View. 

• You can hover over this label to see the machine name. 

B. What is the description?  

• The description only appears in the administrative list. This is useful when 
looking at all the available Views and determining what each one does. 

• Optional 

C. What are the tags? 

• Tags are metadata for Views. They are additional information that helps you 
categorize your Views and find them easier on the list page. An example 
would be to tag all Views about company information including employees 
and departments as “internal.” 

D. What is the path?  

• This is used only for display types of pages. 

• If your View is set to display as a page, you are required to enter a path. This 
is the URL where you find the display of your View on your web site. Drupal 
only needs the part after your domain name. For example, if your View is to 
display at http://www.example.com/archive, you would only see archive 
shown here. 

E. Is it enabled or disabled?  

• This is the ability to change that setting. 

http://www.example.com/archive


CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

56 

• When a module defines a View, it is often an optional feature that you may 
toggle on and off. Some modules will create a View with the initial state as 
disabled, allowing you to decide whether or not you want to you use it. If 
this is the case, you are provided with a link to enable it. Once enabled, you 
may then disable it if you choose not to use it.  

• Also under this menu you will find clone and export (discussed later). 

■ Tip  The word that is displayed is the action you want to take, not the current state. If Enable is displayed, it 

means that the View is disabled; you may click Enable to enable it. 

F. What displays are used? 

• When you create a View, you can select in what format you would like 
content to be displayed in. Do you want a page, a block, or something else? 
A single View may have several displays created. For example, a View of 
press releases may have a block that shows the title of the most recent five 
and a page that shows all teasers for press releases in a single month. 

G. What is the storage format? There are three possibilities for storage format.  

• In code means that the code for the View is stored in a module file. Any 
module may define any number of Views. 

• Database overriding code means that a module originally defined the View, 
but you have modified it and saved a copy in the database. It is the copy in 
the database that is currently being used on the site. 

• In database means that you created the View using administrative interface 
and the code is stored only in the database. 

H. What type of View is it? 

• This describes the type of content you want to display in your View. Options 
include content, user, comment, term, file, etc. 

The Default Views 
The main page for administering Views (admin/structure/views) displays a list of all Views available. 
Table 3–2 lists the Views that are defined by the Views module. Other contributed modules may define 
additional default Views. A default View is stored in code whereas when you create a View using the 
administrative interface, its definition is stored in the database. Because your web site may be set up 
differently, you probably have additional Views in your list. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

57

Table 3–2. Views Defined By the Views Module 

View Definition 

Archive Displays a list of months that link to content for that month. 

Backlinks Displays a list of nodes that link to the node, using the search backlinks table. 

Front page Emulates the default Drupal front page; you may set the default home page path 
to this view to make it your front page. 

Glossary A list of all content, by letter. 

Recent comments Contains a block and a page to list recent comments; the block will 
automatically link to the page, which displays the comment body as well as a 
link to the node. 

Taxonomy term A view to emulate Drupal core’s handling of taxonomy/term; it also emulates 
Views 1’s handling by having two possible feeds. 

Tracker Shows all new activity on system. 

Deconstructing a View 
The Views module is a very powerful module with many configuration options. Looking at all of these 
options for the first time can be very intimidating. We will explain all of them but will highlight the ones 
that are the most important to know when you are getting started.  

Let’s look at a default View and inspect all of its elements. On the Views administration page, locate 
the default View named Front page. Locate the operations column on the far right and click Enable. Now 
that you have enabled the View, the operations link has changed to Edit.  

This small menu of option allows you to perform a series of different actions with the chosen View.  

• Edit: You may edit this View and save your revised version. If this View was stored in 
code, you will be making an active copy of its definition and saving it in the database. 
You will always have the option to revert to that original version that is stored in code. 

• Disable: If the View you are working with is stored in code and you no longer want to 
use it, you may disable it. If you disable it, the View’s displays are no longer visible on 
your web site. That means blocks or pages may disappear. 

• Clone: As mentioned, you can edit and save a View that is stored in code. If you prefer 
to make a View that is similar to an existing View, you can clone it. This makes an 
exact copy of the View so that you may rename it and make as many changes as you 
would like. Rather saving over a View that is stored in the database or overriding a 
View in code, cloning allows you to create a brand new View that is identical to an 
existing one. You can then edit the new View without affecting the original.  



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

58 

• Export: If you are interested in the code that creates a View, you may export it. 
Clicking this will take you to a page where you may copy the code and place it in your 
module (more on this later). 

■ Tip  If your new cloned View uses a page display, be careful to not use the same identical path as the original 

View. 

For the Front page View, click Edit, as shown in Figure 3–6. 

 

Figure 3–6. An enabled View in the listing and its operations menu 

Display Types 
Clicking Edit brings you to the configuration page for a specific View. In this case, you should be looking 
at the Front page View. The first item to notice is the horizontal navigation for each display in the View. 
When you first edit a View, you are shown the first display available, indicated by its dark highlight (see 
Figure 3–7). 

 

Figure 3–7. Displays with Page active (left) and the operations menu(right) of a View 

This Front page View has two displays; Page and Feed. If you wanted to, you could use the +Add 
button to add a new display (more on this later). 

On the right of the display bar is another menu of operations. Clone and Export have identical 
functionality to the same items on the Views list. In addition, you find the following: 

• Edit name and description: This opens a dialog that allows you to edit the human-
readable name for the view and the View description which you’ll use to describe 
the purpose of the View (see Figure 3–8) 

You can also create or look up an existing View tag; these can be incredibly 
helpful. As you use Views more and more you will create dozens and dozens for 
every project. Using a tag will help you to organize and manage the Views in your 
project. While this is not required, I highly suggest you take advantage of it. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

59

• Analyze: The Analyze button will look to see if you have any settings that are in 
conflict with each other or report any other relevant development information. 

 

Figure 3–8. The Edit name and Description Dialog 

Views Configuration Detail 
Now we come to the heart of defining a View. Get comfortable, because you will spend a large portion of 
your development career creating, editing, tweaking, and massaging you Views using this interface (see 
Figure 3–9). While it might seem a little daunting at first, you will quickly learn your way around the 
interface. Each grouping of functionality, designated by the black headers, controls one aspect of your 
View. You’ll use these to set what content is to be displayed and how it will be displayed, as well as 
setting metadata and providing functional controls like a pager. 

 

Figure 3–9. View details with the advanced section expanded 

We will briefly discuss all the options for the Page display for the Front page View, then we’ll circle 
back around and give much more detail about the pivotal players in creating a View. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

60 

Display Name 
The first item that you can edit is the display name. To edit, click the text “Page.” Clicking the current 
setting will open a modal dialog that allows you to edit the information for the specific display. 

• Name: The same of the display of the View you are editing. When you create a new 
display, this name field is prefilled with the type of display you just created. It’s 
important that you edit this field to distinguish between several displays of the 
same type. For example, you could have a View that has a block that displays the 
five most recent posts and another block that displays five random posts. When 
you created each of these block displays, Views would pre-fill the name of the 
display as “block” for both of them. It’s a good idea to change the name to 
something more descriptive, like “Block: 5 recent” and “Block: 5 random.” 

• Description: A human-readable description of the view display. 

Title 
The title appears in different places depending on the display type. If the display type is a page, the title 
will become the page title, both the H1 tag and in the metadata. If the display type is a block, the title will 
appear as the block title above the content output. Click the current title to open the modal dialog with 
the following settings, as shown in Figure 3–10: 

• For menu: This drop-down controls whether the title you enter here is applied to 
only this display if you choose “This page (override),” or all displays if you choose 
“All displays (except overridden).”  

• The text field for the Title. 

 

Figure 3–10. Display title dialog, an example modal dialog 

Format 
What kind of HTML markup do you want the results of the View to use? Options include a list, table, grid, 
or unformatted, which wraps each result in a div tag. Other contributed modules can add additional 
ways to display the results. 

• Settings: Allows you to add a custom CSS class to each row’s output container. 

• Show: Do you want to display the content or teaser as a whole pre-formatted 
chunk or select specific fields to display? 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

61

• Based on your first choice, you will have options after the “|” symbol (pronounced 
as “pipe”) to specify the formatted chunk options or options for how the fields are 
grouped or arranged. If you choose fields, a whole new section labeled Fields will 
appear that lets you add and configure field specific settings. 

Fields 
This grouping is hidden if Content is selected as the Show option, but appears if you select to display 
your results as fields. Here you would select fields from a catalog of available options provided by 
Drupal. 

Filter Criteria 
So as not to display all possible content, limit the result set based on specified criteria. By default you’ll 
see that “Content: Published (Yes)” is set as a filter. This is a gift from the wise programmatic forefathers 
of development who have added this for you, as if to say, “May you never know the shame of creating a 
View that shows the world your unpublished content.” Know that if you seek to remove it, their eyes are 
upon you. 

Sort Criteria 
In what order should the results be shown? By default you’ll see that “Content: Post date (desc)” is set as 
a sort. This will put your content in reverse chronology (also known as blog order) where the most recent 
content is at the top. 

Display Settings 
These setting will vary to reflect the display type you are currently editing. In our example it will be a 
page.  

• Path: This is the URL where this View will display its content. In this example, it’s 
http://www.example.com/frontpage. 

• Menu: Create a menu item that will bring users to your View. You can also make 
tabs and other options. 

• Access: Do you want to only allow users with certain permissions or roles to see the 
content? “None” means that there are no special restrictions. 

Header 
Is there any content you would like to display above the Views results? 

Footer 
Is there any content you would like to display below the Views results? 

http://www.example.com/frontpage


CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

62 

Pager 
• Use pager: If you decide to display 10 results, yet your View produces 35 results,

you can tell Drupal to automatically paginate it. After 10 results, there will be a
pager to take you to the next page with another 10 results. This is a great solution if
you have a lot of content that is making your page too long to be usable. 

• More link (only appears for blocks and attachments): Creates a link to a page with
more results. If you have a block that only displays five results and a page that
displays all results, you can let Drupal create a link on the block to the page. 

Contextual Filters 
If you would like to create dynamic pages that use the URL to make decisions about what content is
displayed, you can specify that here. This section used to be called Arguments. 

Relationships 
If there is content that you want to display that is related to the actual result but not a part of it, you may
join to it and display it using a relationship.  

If you are scratching your head at that description, I hear you. Relationships are a hard concept to
grasp but once you do, you’ll find them rewarding, just like real relationships. We’ll cover this in detail
later. 

No Results Behavior 
If there are no results, would you like to display any text to the user? This setting used to be called Empty
text. 

Exposed Forms 
• Exposed form in block: If you have set filters to be exposed, would you like to

render them in a separate block rather than with the View results? Filters and how
to expose them will be discussed later in this chapter. 

• Exposed form style: Allows more configurations for the exposed filters including
labels. 

Other 
• Machine Name: This field lets you define a machine-friendly name, one without

spaces or special characters. 

• Comment: A block where you can enter notes or message about this View. 

• Display Status: Just as you could enable or disable a whole View, you can enable or
disable a display within a View. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

63

• Use AJAX: Do you want paging, table sorting, and exposed filters to load content 
on the fly without a page refresh? 

• Hide attachments in summary: Hide attachments when displaying a contextual 
filter summary. 

• Use grouping: Do you want to allow Views to group results together based on a 
certain field? If you also specify a sort order, the results will be grouped first then 
sorted. 

• Query settings: 

• Disable SQL rewriting: Do you want to disable the fact that results are tested 
to make sure the user has permission to see them? This skips node_access 
checks and any other implementation of hook_query_alter().In most cases, 
it’s not recommended to change this setting.  

• Distinct: Do you want to ensure that there are no duplicate results? By 
selecting Distinct, if your View results had the same node several times, this 
setting would remove it.  

An example of when you don’t want multiple instances of a node would be 
if you had a View that displayed all nodes with file attachments. Because 
this is a multi-value field, the node would show up for every attachment. 

An example of when you want multiple instances of a node would be if your 
View grouped nodes by taxonomy terms and your nodes are tagged with 
several terms, you would want it to display in all appropriate groups. 

• Use Slave Server: This is a performance option. This will make the query 
attempt to connect to a slave server if available. 

• Caching: Do you want to cache the results of this View so they are delivered faster? 
Note that if content is updated, it won’t be immediately updated in the View. 
Cache would only be cleared at the interval you set here. For Views where the 
content is changing often, like a list of the most recent posts on a very active site, 
you might not want to cache your results. However, if your View displays content 
that doesn’t change that often, caching is a good idea. Even short intervals of 
caching can dramatically improve site performance. 

• Link display: If you are using the More link, to which display would you like it to go 
to? For example, if your block uses the More link and you also have several Page 
displays in your View, to which page would you like the More link to go to? 

• CSS class: Do you want to add a CSS class to the wrapper div so you can apply 
styling? 

• Theme: This is not a setting, but rather information to help you create templates 
so you can customize the output of the View further. Click on it to see the template 
information available to you. Note that these templates need to be saved in code 
to be functional and are not used in this administrative interface. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

64 

Overriding: A Views Concept 
Many settings can be overridden for a particular display. Before we go any further, it’s important to 
understand the concept of a settings override.  

When you create a View for the first time, the settings you configure for the first display will get 
inherited by subsequent View displays. In other words, when you add additional displays, like Pages or 
Blocks, all the settings that they can have in common with the first display will be set the same. This 
makes developing related displays very efficient but you also have the option to override any of these 
settings for an individual display. 

Understanding when a setting has been overridden is important to building consistent Views and 
there are clear visual cues for identifying overrides. When a setting on a view configuration has been 
overridden a broken link icon will be displayed to the left of the setting, as shown in Figure 3–11. 

 

Figure 3–11. The broken link icon indicates this title has been overridden. 

Understanding What Type of Content Will Be Output: Views Filters 
No matter which display you are editing, there are three columns of configuration options. To 
understand the type of content that will be displayed, look at the Filters section in the first column. A 
filter reduces the content that will be displayed to match your criteria. The Front page View has two (2) 
filters. 

Click Content: Promoted to front page, as shown in Figure 3–12.  

 

Figure 3–12. Configuring a filter 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

65

The title of this dialog tells you a lot: “Configure filter criterion: Content: Promoted to front page”.  

• Configure filter criterion tells you that you are working with filters as opposed to 
another grouping of configurations, like fields or sort criteria. 

• Content: Promoted to front page is the name of the filter. “Content” refers to the 
type of filter and “Promoted to front page” is the specific one. 

• For All Displays drop-down tells you that this display uses the same setting as all 
other displays that have not been overridden. 

You have the option to expose a filter. This will allow the web site visitor to determine the value of 
the filter. This will be discussed in more detail later. 

This particular filter has two (2) values for you to choose from, either Yes or No. Think of this filter as 
asking you a question. Do you want to only show content that has been promoted to the front page? Yes 
or No? In this case, the answer is Yes. 

Below, the configuration options are three (3) buttons: 

• Apply: This will set the configuration with the option selected. Note that it doesn’t 
actually save the View. 

• Cancel: This will exit you out of this configuration setting. Even if you changed 
something, it will not set those changes. 

• Remove: If you no longer want this filter as part of your View, it will remove it 
completely. 

All filter configurations are composed of the following parts: 

• A descriptive title. 

• Option to expose the filter and if set, those configurations. 

• The actual settings. 

• Buttons to set or cancel the filter configuration and remove the filter. 

Looking at the three (3) columns again, click “Content: Published.” This configuration block is set 
up just like the previous one. It asks the question: Do you want to only show content that has been 
published? Yes or No? 

■ Tip  It is extremely important that unless you have another intention, you include a filter for the published state. 
While managing your site’s content, you may choose to unpublish a node because you do not want your visitors to 

see it. In order to keep this content hidden, you must filter the View to only show published content. A published 

state filter is provided as a default filter for each new View you create. Remove it with extreme caution. 

Click Cancel to exit out of this configuration dialog. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

66 

Advanced Filter Criteria Groups: Combining Sorts with Logical 
Operators  
The Views module has the ability to build logical combinations of filters to achieve more complex groups 
of content. For example, you might want a block of all stories that  

• have more than ten comments, or  

• that received a comment in the past hour. 

Having either of these conditions met keeps the content in a block very fresh. However, if you added 
both the Comment count filter and the Last comment time filter you would instead get a block with 
stories that had gotten ten comments and the one last within the last hour. That would be a very 
different group of items that what you wanted. Instead, you need to specify that items need to meet the 
first or the second criteria as opposed to both. 

On the right of the Filter Criteria section, open the option list and select And/Or. 
You will see the dialog “Page: Rearrange filter criteria,” as shown in Figure 3–13. You can set the 

standard For option to say whether this filter change will apply to just this display or all displays in the 
View. By default, all of the filters you have specified will be included in one filter logic group and the 
operator is set to And. This configuration will make the filters have the same effect as filters do by 
default, meaning all content must pass each filter to be included in the results for the view.  

In the current example (Front page View), if you change the Operator to Or, you will get a list of 
content that is published OR promoted to the front page. This will include any unpublished content in 
your Views output, so use logical operators with caution.  

Clicking “Create new filter group” will create another operator box; if you had many more filters, 
you could use the small arrow next to each filter to drag them into more logical groups, potentially 
creating combinations where the same filter is used in multiple filter groups.  

■ Tip  Remember, each grouping in an Or logical group works autonomously from the other groups; for example, 
((A and B) or (C and D)). You will need to add multiple Content: Published Yes filters to your Filter Criteria and one 

to each group so that each requires its content to be published.  

 

Figure 3–13. Configuring an And/Or filter group 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

67

■ Tip  You most likely noticed the More toggle at the bottom of each filter. If you open it, you’ll see a field called 
Administrative title. This allows you to give each filter a customized name. You’ll most likely only use this if you 

have multiple copies of the same filter as you might for use in logical groups. 

Understanding the Order in Which Content Will Be Output: Views 
Sort Criteria 
To understand in what order content will be displayed, look at the Sort criteria section in the first 
column. Multiple sort criteria allow you to be very granular with this setting. The Front page Views has 
two (2) sort criteria. 

Click Content: Sticky. This particular filter has two (2) values for you to choose from: Sort ascending 
or Sort descending. Think of this filter as asking you a question. Do you want content that is marked as 
sticky to rise to the top or sink to the bottom of your results? In this case, the answer is Sort descending. 
All content marked as sticky will be at the top of the page. 

Looking at the three (3) columns again, click Content: Post date under Sort Criteria. This 
configuration block is set up just like the previous one. It asks the question: Do you want the most recent 
content displayed first or the oldest content displayed first? If you would like what is considered Blog 
Chronology where the most recently posted content is the top, you would chose Sort descending. 

Because there are two (2) sort criteria, the first one is called and sorts the results. Where there are 
results with the same sort weight, the next sort criteria is called. You can have as many sort criteria as 
you want for a very granular result order. 

In the current example, the results would first show all posts as sticky at the top. Then it would go 
through the sticky posts and sort them to make sure the most recent are at the top and also go through 
all posts not marked as sticky to sort those to make sure the most recent posts are listed first.  

Click Cancel to exit out of this configuration dialog. 

Understanding What Pieces of Content Will Be Output: Views 
Format Settings 
You have already figured out what type of content will display and the order in which it will be displayed. 
But what will it look like? What pieces of the content will display? In the first column, the Format box 
allows you to configure several elements. The Front page View displays its results as content teasers with 
a container div. Under Settings, you can see that no extra CSS classes are set (see Figure 3–14). 

 

Figure 3–14. Format settings configuration box 

When editing or creating a View, the first item you should look at is the Show setting. Yes, it’s the 
second one in the list, but has more of an impact on what the results will look like. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

68 

You may click the word link Content to change the Show setting. If you click the Teaser, you change 
the settings for the selected Show style. 

Configuration Options for Format Settings 
When you click the current value for Show setting, Content, you see all available options. The Views 
module provides two options: Fields and Content. Other contributed modules may provide additional 
options that would display here. Examples include displaying results as points on a map, a slide show, or 
as customizable HTML. 

To see the settings for Content Show setting, click Teaser. The select box for View Mode is currently 
set as Teaser. This means the shortened version of the content displays with a linked title and a Read 
More link. If your theme uses a custom template for teasers, your Teaser may look different than 
described.  

In addition to the Show setting, you may also configure the Format of the whole View, as described 
in Table 3–3. 

Table 3–3. Configuration Options 

Option Description 

Grid A Grid puts all of the content of a View into a box and you choose how many 
boxes you want in a row or a column. 

HTML List You have the option of either an ordered list (numerical) or an unordered list 
(bullets). 

Jump Menu If you put content titles in a jump menu, when you select that title, you will 
automatically be directed to that content. 

Table A table puts the resulting fields into a table that resembles a spreadsheet. You 
can allow the column headers to act as sort links. 

Unformatted A simple div with a customizable CSS class goes around each class. 

Creating a Basic View 
Let’s dive right in and create the first View. For this example, it is assumed that you already have content 
in your web site. Near the top of the Views administration page (admin/structure/views), find the link 
that says Add new view and click it.  

The Goal 
You want to create a page that has teasers that lead to all articles authored by a specific person and a 
block that shows the five most recent titles for those articles, linked to the actual content. You also want 
a more link to take the user to the main page for all articles. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

69

Systematic Approach 
When I create a View, I follow the same pattern each time. I ask myself a series of questions that 
correspond to a different configuration box. This ensures that I get the results that I expect and that I 
don’t miss a step. 

If I am creating a new View, the wizard has an initial window that allows me to answer some of these 
questions. The answers I type in will prepopulate some of the configuration boxes on the primary editing 
page.  

If I already have a View and I am adding an additional Display to it, I follow all of the following steps: 

1. Create the display: Should this be a block or a page or something else? 

2. Name: When I look at the displays, what name should appear to help me 
understand which one I am editing? When I want to place a block somewhere in 
the site using other administrative interfaces, what name would make sense? 

3. Title: What should the title be? What should the web site users see as the title of 
this content? 

4. Filters: What type of content do I want to display? 

5. Fields or Show Content/Teaser: What parts of the content do I want to display? 

6. Format: Do I want the results to display as a table or a list? 

7. Sort: In what order should the results be? 

8. Contextual Filters/Relationships: Do I need to use parts of the URL in order to 
further customize the result set? Do I need to pull in related data? Contextual 
Filters and Relationships are discussed in a later section. 

Set Up the Basics for Your Views 
Thanks to the wizard, you can configure much of your Views on the Add new view screen. Let’s do that! 
Use the Administration menu and go to Structure ➤ Views (admin/structure/views) and click Add new 
view. 

It is important to think about the Views you will need on your site and create a naming convention 
that will facilitate managing them. Consider including the site section or content type in your view 
name.  

For this example, name your View “articles by {author name}.” Mine is named “articles by bob.” The 
machine name is automatically generated from the name you type.   

Check the Description box to display the field where you can enter your Views description. The 
description should be something similar to “Show articles written by {author_name}.”  

The next section of the wizard helps you articulate the type of content that you want to display. 
From start to finish, you want to show “Content” of type “Article” tagged with “___” sorted by “Newest 
first.” 

You can see that Create a page was checked by default and that much of the information for the 
page is now filled in for you by using your title.  

The Page title and Path have been prefilled using the {author_name} you used in the title. In this 
example, I’m choosing a fictitious Bob, so my page title becomes “Articles by Bob” and my path 
“articles-by-bob.” 

The Display format settings also look good with the defaults: an unformatted list of teasers with 
links (allow users to add comments, etc.) without comments.  

Items per page can be left at 10. 
You could add a menu here or include an RSS feed, but let’s wait. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

70 

Check the Create a block box. You can accept the default settings for now but change the Block title 
to “Articles by Bob.”  

If your settings look like those in Figure 3–15, you’re ready. Click “Continue & edit” to create you 
first view.  

 

Figure 3–15. Add New View wizard 

Other types of Views will be discussed later in this chapter. Click Continue & Edit. 

■ Tip  While creating/editing, it’s important to periodically save your View. Also note that if you are 
creating/editing on a production site, when you save the View, it will be available to your users. To avoid this, read 

the “Exporting to Code” section later in this chapter. 

You are now looking at the main page for editing a View.  



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

71

■ Tip  The URL is admin/structure/views/edit/articles_by_bob. To edit any View, you can find it in the 
listing on the Views administration page or just replace articles_by_bob with the machine name of the View you 

want to edit. 

Define the Administrative Information 
As mentioned, if your View has multiple displays, it can be difficult to decipher which one does what. 
Fortunately, Views allows you to set an administrative name for each display. It is important that you use 
a name that is meaningful so other developers can easily edit the View you created. 

For this example, next to Display name, click the active link Page. When the dialog opens, change 
this to “Page: by {author_name}” where you replace {author_name} with the username you chose earlier. 
Remember, I chose “Bob.” You can repeat the same text for Description. Click Apply and the Save your 
View. You might need to scroll up to see the Save button. 

Notice how the Page display buttons at the top now reflect the name you entered. 

Define the Title 
When you set a display for your View (either as a page or a block), you want a title to appear above the 
results so that the user knows what the content is about.  

In the Title box, you can see Title: Articles by {author_name}. This title will be displayed with the 
View wherever titles are normally displayed: as the page title, block title, etc. If you want to change it, 
click the linked title and then click Apply. 

Define What Type of Content You Want to Display 
You are going to jump over a configuration box so that you can specify Filter Criteria. Unless you are 
creating a View for site administrators, you always want your first filter to be Content: Published. This 
will ensure that you don’t inadvertently display hidden content. This filter is added by default, but 
always check for it. 

Now, you want to make sure you only display nodes authored by a specific person. Click Add in the 
Filters Criteria section. Select User from the Filter select box and select the User: Name filter from the 
list. Click “Add and Configure filter criteria.”  

In the new dialog, select the operator to be “Is one of.” For the Usernames auto complete, just start 
typing a username of a person who has authored Articles on your site, like Bob. Apply. 

■ Note  In the previous example, you selected and configured one filter at a time. When adding filters, you may 
select several filters from different filter groups. After you click Add, you will be guided to configure each one. 

Doing it this way can be a time-saver because there are significantly less clicks! 

You have successfully set the filters! Now your result set will only display published article nodes 
authored by a certain person, as shown in Figure 3–16. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

72 

Figure 3–16. Filters selected for Articles by Author Name View 

Define What Elements of the Content You Want to Display 
Now you can go back to the Format configuration box. As you can see, this section has been
prepopulated with your selections in the wizard. Show is set to Content | Teaser, which is both the type
and the way you want your content to display. If you had chosen fields as the display format in the
wizard, you would now need to start adding and configuring fields to a Fields configuration box.  

Define Format Settings 
You have already set the row settings to be Content | Teaser. Now you can confirm the HTML markup
around each result. For results that are either Content | Teaser or Content | Full Content, I like to choose
Unformatted as the style. This means each result will have a div around it, as opposed to being in a list or
table. This is the default setting, but you may also specify a CSS class to go on that row div. This can be
helpful when you are theming/styling your web pages. In the Format section, click Settings next to
Unformatted list to enter in a CSS class. 

Additionally, if you want several Views to look the same, you may add a CSS class to the entire View.
This can be specified by clicking the active link None for CSS Class in the Other section in the third
column under the Advanced header. 

Define the Order in Which You Want Your Content to Display 
Consistent with many listings of content, you want your View to display the results with the most
recently posted article at the top and the older articles at the bottom. 

You can see that Sort Criteria is set to Content: Post date (desc), which is exactly what you want, so
again you move on. 

Define the Number of Results 
In the middle column, click the active link for Use Pager: Full. This is where you set what kind of pager
style you want or if you only want to display a fixed amount of results. Click Cancel to exit the modal
window. 

Click “Paged, 10 items” to change the number of items to display. I think 10 will be too few so let’s
have 15 items per page.  

There are quite a few options to explore under Exposed Options. These are the settings for what to
display to the user, including allowing the user to determine how many items to display per page. 

Click Apply to save the change for number of items to display per page.  



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

73

Add a Menu 
Let’s add a menu for your page so it will appear in the site’s main navigation. Under Page settings, next 
to Menu, click No Menu to open the modal dialog. Choose Normal menu entry. Enter the title “Articles 
by {author_name}” for the title. Also select Main Menu in the Menu drop-down. Click Apply. 

■ Note  We will discuss Menu Tabs in a later exercise. 

Define Advanced Settings 
In the Advanced Settings box, you are going to leave Use AJAX as “no” because this is the main content for 
the page. If you choose to change this setting to “yes,” the subsequent paged pages will not be indexed by 
search engines since the HTML is never printed in the source code, but rather created on the fly. 

You won’t be using the Grouping or Query settings on this View, so you can skip those 
configurations in this step.  

Views Caching can be very useful for sites with a lot of traffic. If you choose to do a time-based cache of 
either the query or the results, the data is not generated each time someone visits the page. This can save 
some processing resources on high-traffic sites, but it also means that the most up-to-date results only get 
displayed after the cache expiration. So, for highly dynamic or time-sensitive content, I don’t recommend 
setting up caching, but for content that doesn’t change that frequently, caching can be useful. 

■ Tip  If you decide to use Views caching, during development, you may want to clear Views cache periodically to 
see the changes rather than waiting for the set expiration. To clear Views cache, click the tab at the top that says 

Tools and click the Clear Views’ Cache button at the top. 

Preview Your Work 
The Views module allows you to preview the settings you just configured without leaving the Views 
interface. If you scroll down to just below all of the configuration boxes, you will notice the Auto Preview 
area. It demonstrates the display that you are currently editing; assuming the user you selected has 
authored some content, you should have a nice preview. 

Dynamically Editing Your View 
One of the nifty features in Views is the ability to edit your View results in the auto preview area. Once 
you have set up some display options so your view is displaying content, it can sometime be easier to 
make editing decisions that are based on the actual content.  

For instance, now that I see my Title, “Articles by Bob” I just don’t like it. The “by Bob” simply has 
too much alliteration for me to take it seriously and I want to change it. I’m going to make that change 
right here in the preview area.  

Above my title I’m going to click on the Gear icon. I’ll see a small menu appear with the item Edit 
Title, so I’ll click that item (see Figure 3–17). 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

74 

 

Figure 3–17. Preview area Edit menu 

The same dialog opens that would appear if I clicked the link next to Title in the main settings area. I 
make my change and click Apply.  

Wow, that was great. In fact, if you’d rather work by just tweaking what you see in the preview area, 
you can actually collapse the main setting area by click the “Page: By {author_name} details” name at the 
very top of the dialog, just below the display buttons. Don't forget to save your view when you are done! 

Admire Your View 
At the start, you assigned a path to your page display. Go to that page in your browser. If you followed 
my suggestion, it should be something like http://example.com/articles-by-author_name. Also, if you 
created a normal menu item in the main menu for this page, you can go to any page and click the link in 
your navigation bar. 

Congrats! But there is more…. 

Add More Features 
As I mentioned in the goal of this exercise, you also want a block that shows the five most recent titles for 
those articles, linked to the actual nodes. 

For each display, follow the steps outlined in the systematic approach. Although many of these 
settings won’t need to be changed, it is important to adhere to the process and check your work. 

Create Another Display 
You already created your block using the wizard; if you needed another, you could easily create it by 
editing your view and clicking the + Add button at the top left. You can also clone an existing display. 

Since you have your block, click the Block button at the top left to see that display’s settings. 

Define Administrative Information 
For ease of usability while administering Views, update the Name in the Display name to be “Block: titles 
only” or something else meaningful. 

Override the Format 
For your block, you want to display only the content titles. This means you need to have it set to show 
fields, so that you can choose exactly what fields to show (with the title considered a field by Views for 
this purpose).  Formerly, the Show setting was called Row Style. 

Look at the Show line in Format box. It has a broken link next to it. This means that it is using your 
overridden format and you can see that it is set to Fields.  

If you click Fields, you can see the scope for this configuration is set to “This block (override).” Click 
Cancel to exit out of this modal window. 

http://example.com/articles-by-author_name


CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

75

Edit Fields 
You need to confirm that you have the fields you want and that they are outputting the markup you need 
for both semantic quality and styling. 

If you look in the Fields section, you can see that when you created the block in the wizard, it added 
Content : Title by default. 

1. Click Content : Title to open the field configuration dialog. 

2. Configure the options as described below (I am only noting the ones that need to 
be changed). 

3. Confirm that “Link this field to the original piece of content” is checked.  

One thing you want to change is the HTML markup that is being output. Currently all the titles are 
simply being output in div tags but you want to indicate that they are headings to your readers and to 
search engines. 

1. Click on Style Settings to expand the setting box. 

2. Check the box “Wrap field in HTML” and more settings will appear. From the 
HTML element box, select H2. 

3. Check the “Create a CSS class” box and enter “title” in the field that appears. 

You settings should now look like those in Figure 3–18. 

 

Figure 3–18. Title field Style Settings 

4. Click Apply and scroll up to Save your View. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

76 

Add a More Link 
It would be a nice touch to add a More link to your block display so a user won’t have to do a lot of 
paging to see all the items.  

In the Pager Settings box, click the link “More Link: No.” The first thing you want to do is change the 
For setting so that your link only appears on this display. Set the drop-down to “This block (override).” 
Click the checkbox for Create More Link. Click Apply and check out your work in the Auto preview area. 

Save the View. 
You can test your More link in the preview area. Note that if you have less content than your block is 

set to display, a More link will not appear. 

■ Note  The wildly astute in our audience might say, “How did my More link know to link to the Page view?” 
Since it’s the only page in this View, it’s likely to share the block’s criteria and so that’s where Views linked it. You 
might also then say, “That’s a lame answer because what happens if I have more than one page in my View?” Ah 

yes, if you have more than one Page, a new item will appear in the Block’s Options section called “Link display: 
[page name]”. Clicking the name will open a dialog where you can designate which page should be your 

destination for things like summary links, RSS feed links, More links, and so on.  

Place the Block 
Once you save your View, your block will appear in the list of disabled blocks on the Block 
Administration page. Enable the block as you would any other. For more information on placing blocks, 
please refer to Chapters 1 or 8. 

Extend a View  
There are other configurations you can make to the View you created to increase usability. Let’s start 
with the basic View you created showing articles by a specific author. 

Handling the Use Case of Zero Results 
Sometimes we create Views with the anticipation of content in the future. It is conceivable that, as a 
developer, we knew we needed to show all articles by {author_name} even though those articles hadn’t 
been written yet. If our View goes to the production site before the content is created, we need to 
account for that when users navigate to the page. 

For the Page display, in the right column, click Add for No Results Behavior. Check Global: Text area 
and then Add and Configure. 

For the administrative label, type “default”. Enter in your default no results text, something similar 
to “There are no articles available yet. Check back soon as we are updating content frequently.” Apply. 

If you want to check to see this is working as expected, you can change one of your filters to 
something that you know will product zero results and look at the Auto Preview area. 

Because you didn’t change the For setting, your message was applied to both the Page and the Block 
display—twice the work accomplished in one shot. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

77

One Page, Multiple Displays to Highlight First Result 
The page you previously created shows 15 teasers with a pager. This is a great way to show all the 
content. However, in another area of the site, you might want to highlight the most recent node. 

Let’s make a page where you display the most recent article as a full node and the following 14 
nodes in a table below it. 

To accomplish this, follow these steps: 

1. Add a new page display. 

2. Update the Display name to “Page: Highlight”. 

3. Add a Path “highlights” under Page Settings where this View will display. Add a 
normal menu item in the Main Menu so you can easily find it. 

4. Under Format, change the Show setting to display full content; make sure you set 
“For” to “This page (override).” 

5. Override “Use pager” and set it to “Display a specified number of items” and set 
this to 1 for only this display 

■ Tip  When you went to add the page title, you saw the error message “Display ‘Page’ uses a path but the path 
is undefined.” Don’t worry; this is the first display you have created without using the wizard and you just need to 

set a path for the display before it lets you save it.  

Look at the Auto Preview area to see if the results are as you expect. 
Now, you need to add the table below that highlighted node. 

6. Add a new attachment display. 

7. Update the administrative name to “Attach: table to highlight”. 

8. Override the Show Style to use fields. You don’t need to make any other further 
configurations. 

9. Click Add in the Fields menu. In the Content group, select Content: Post Date, 
and Add. Change the Date Format to whatever you want it to be. Apply. 

10. Experiment with adding two other fields. 

11. Override the Format from Unformatted to Table. 

The Table style option dialog is pretty fancy. You are probably hoping for 
guidance but just take a look and read the text. You’ll quickly see that it’s 
powerful but not hard or confusing. You can accept the defaults or make all kind 
of changes; it’s up to you. 

12. Override the number of items to display under Pager to display 14 with an offset 
of 1. This means that the first result will not display, but the subsequent 14 will. 
This is exactly what you want since you are going to use the full display for the 
first node. 

13. Override the More link in Pager to create a More link. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

78 

14. In order to attach this table to the full node page display, click on the link in 
Attach to: Not defined in the Attachment Settings box. Select Page: Highlight and 
Apply. Click Before under Attachment position and change this to After. Apply. 

15. Save your View and go to Page: Highlights. You can now see your awesome table 
view below the Contents. 

Using Tabs for Unique Displays 
You can create a page that has several tabs so your users don’t have to leave the page to see a lot of 
content. 

Let’s create a new View that has a primary page that shows all Article nodes, a tab for all Event 
nodes, and a tab for Blog nodes (see Table 3–4). 

Table 3–4. Creating a New View Using Tabs for Unique Displays 

+Add new View 

Add new Page Display: 

Display name Name = Page: landing  

Title Title = Content 

Filter Criteria Content: Published = Yes 
Content: Type = Article 

Fields Content: Title 
 –Element Class = H2 
 –Remove Label 
 –Link this field to its content 

Sort Criteria Content: Post Date = Sort Descending 

Pager Use Pager = Display all items 

Format Style = HTML List 
 –List Type = Unordered List 

Page Settings Path = content 
Menu =Normal Menu Item 
 –Title = Content 
 –Menu = Main Menu 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

79

+Add new View 

Add new Page Display: 

Display name Name = Page: Articles 

Title Title = Articles 

Page Settings  Path = content/articles 
Menu = Default Menu Tab 
 –Title = Articles 
  –Parent Menu Item = Already Exists 

Add new Page Display: 

Display name Name = Page: Blog 

Title Title = Blog 

Override – Filter Criteria  Content: Type = blog 

Page Settings Path = content/blog 
Menu = Menu Tab 
 –Title = Blog 

Add new Page Display: 

Display name Name = Page: Events 

Title Title = Events 

Override –Filter Criteria  Content: Type = event 

Page Settings Path = content/events 
Menu = Menu Tab 
 –Title = Events 

Save your View and go to a page where you can see your main menu. Click on the Content link you 
created, as shown in Figure 3–19. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

80 

 

Figure 3–19. A View with tabs 

Cloning and Making Administrative Tables Using Exposed Filters 
There are often cases where you want a group of your administrators to be able to see content lists and 
be able to filter them to get an exact result set of their choice. The Views module provides this 
functionality with exposed filters. By exposing filters, you allow the user to set the conditions. 

Let’s create a new View for administrators (see Table 3–5)that shows all content in table format, but 
is filterable and sortable, as shown in Figure 3–20. 

Table 3–5. Creating a New View for Administrators 

Add New View: 

Add Page Display: 

Title Title = All Content 

Filters Content: Published 
  –EXPOSE 
  –Published = <Any> 
  –Options = Yes 
Content: Type 
  –EXPOSE 
  –Unlock Operator = Yes 
  –Optional = Yes 
  –Force Single = No 
Content: Post Date 
  –EXPOSE 
  –Operator = Is Between  
  –Unlock Operator = Yes 
  –Optional = Yes 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

81

Add New View: 

Fields Content: Post Date 
Content: Published 
Content: Title 
  –Link this field to its Content 
Content: Type 

Pager Use Pager = Display all items 
Access = Role 
  –Administrator 

Format  Format = Table 
  –Make sure all columns are sortable 
  –Set Post Date as Default Sort, Descending 

Header Global: Text Area 
  –Use the filters below to refine what displays in the list. 

Page Settings Path = administer/content 
Menu = Normal Menu Item 
  –Title = Content 
  –Menu = Navigation 

 

Figure 3–20. A View with exposed filters 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

82 

Advanced Views Implementations 
We have discussed how to create Views where we set criteria and even where the user sets criteria, but
we can also create a View where a variable is passed in that will determine what the results are.
Additionally, we are able to pull information that is related to the result to display alongside it.  

In this section, we discuss the only configuration boxes left: Contextual Filters and Relationships. 

Contextual Filters 
Contextual filters are input that usually come from the URL, often called arguments. A typical use of an
argument might be to reduce a View to a single node, a single user, or nodes with a given taxonomy
term. It is like a filter, but rather than setting the value in a form, it is coming from the URL. 

Similar to the View created earlier in this chapter, let’s create a View where each user with at least
one blog node gets their own page and these pages are created dynamically so that you never need to
explicitly filter on username (see Table 3–6). You’ll also create a menu and a block. 

Table 3–6. Creating a View with Contextual Filters 

Create a new node View 

Add new Page display 

Title Title = Blogs 

Format  Show = Content | Teaser 

Filters Content: Published = Yes
Content: Type = Blog 

Sort Criteria Content: Post Date = Sort Descending 

Page Settings Path = blog 
Menu = Normal Menu Entry 
  –Title = Blog 
  –Menu = Main Menu 

Contextual filters User: Name 
  –When the filter value is NOT in the URL = Show “Display all 
    results for the specified field” 
  –Override Title = Blogs by %1 
  –Specify validation settings = Basic Validation, Display contents of “No  
    results found”  
  –More Section:  
  –Case = Capitalize each word 
  –Case in path = lowercase 
  –Transform spaces to dashes in the URL = Yes 

Add new Block display  

Override Contextual Filters User: Name 
-Action to take if argument is not present = Display a summary
-Sort order = Ascending 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

83

■ Tip  The contributed module Pathauto (drupal.org/project/pathauto) allows you to specify patterns for URL 
aliases so that they are automatically created. These aliases are user and SEO friendly. In this example, you should 
set Pathauto for blog node to use the pattern blog/[user]/[title] so that this page URL follows the Views you 

are creating. 

Place your block on pages with a path of “blog/*” so that it is on all blog pages, both Views and 
nodes. Go to your main page and click the Blog link in your Main Menu. 

Relationships 
The Relationship configuration allows you to bring in content that is related to the content you are 
displaying, but not stored in the same area of the database. Once you create a relationship, you then 
need to associate it with either a field or contextual filter.  

For this example, you want to display who created the node and who edited/revised the node for 
each node result. Use the View you created in the Contextual Filters example and make some 
modifications. You’ll pretend that instead of blog nodes, you have a View of wiki nodes (Table 3–7).  

While you are building, look at the Live Preview area once you finish adding the new fields. Then 
look again after you associate the relationship with the username field. 

Table 3–7. Creating a View of Wiki Nodes 

Update the Page display  

Format Show = Fields 

Fields Content: Title 
  –Link this field to its Content 
  –Wrap field and label in HTML = H2 
User: Name 
  –Label = Created by 
  –More: Administrative title = Created by 
User: Name 
  –Label = Revised by  
  –More: Administrative title = Revised by 
Content: Body 
  –Remove the Label 
  –Formatter = Trimmed, 300 

Relationships Content Revision: User 

Edit Fields User: Name (the 2nd one you added with an  
  administrative title of Revised by) 
  –Relationship = revisions user 

Format Style = Grid 
  –Number of columns = 3 

Pager Settings User pager = Paged output, full pager 
  –Items per page = 9 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

84 

You just assigned a relationship to a field. Before the relationship, it printed the author of the node. 
After the relationship, it printed the author of who saved it last (the revision), as shown in Figure 3–21. 
The reason you needed to use a Relationship to accomplish this is because of where the data for the 
node, the node revision history, and the user are stored in the database. You needed to relate the 
information. 

 

Figure 3–21. A View using a relationship to display the username of the person who edited the node most 

recently 

■ Tip  Some contributed modules that you choose to install will require relationships in order to display the 
desired content. If you are having difficulty finding the filter or field in the available groups and know that is has to 

be there, it probably requires a relationship. 

Other Modules 
There are many modules that extend what you can accomplish with Views. Often, they will create Views 
for you to customize so most of the work is already done. This list is far from exhaustive, but some 
modules you should investigate include: 

• Administration 

• Views Bulk Operations (VBO) – drupal.org/project/views_bulk_operations 

• Maps 

• OpenLayers – drupal.org/project/openlayers 

• Gmap – drupal.org/project/gmap 

• Calendars 

• Calendar – drupal.org/project/calendar 

• Styles and Displays 

• jCarousel – drupal.org/project/jcarousel 

• Views Accordion – drupal.org/project/views_accordion 

• Views Infinite Scroll – drupal.org/project/views_infinite_scroll 

Remember, that all modules are a continual work-in-progress and it is up to the members of the 
community to help strengthen them by reporting issues and testing patches. 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

85

Exporting to Code 
You must, you must!! And I’ll tell you why…. 

I mentioned during the exercises that it is important to save your Views periodically, but the catch 
was that it would display on your site even if you weren’t ready. I suppose it really isn’t that big of a catch 
for a new View since there is a configuration to change the Display Status in the Basic Settings box. But 
what if you are make changes to an existing View? 

Additionally, if you are initially making your View in a development environment, how do you get 
your View to display on the production server? Do you have click 100 times to replicate it? 

Of course not; you export your View to code!  
Use your development environment to create, edit, and fine-tune your Views; export the final 

version; and copy the file to your production server. It is so easy and reduces human error from mis-
clicking. 

However, before you export the View, you need to create a module to keep the code. Based on what 
you learn in Chapter 22, create your module folder, .info, and .module files. Also, create a folder in your 
module named views. This is where you will put each export. In that folder, create an empty text file 
named articles_by_author.inc or whatever the name of your View is.  

Open the .inc file that you just created and type the following code at the top: 

<?php 
//put export code here 
$views[$view->name] = $view; 

Go to the Views Administration page at /admin/structure/views and locate the View you want to 
export. Click Export in the Operations menu for that view on the right side of the View listing. This will 
take you to a page with lots of code. Copy all the code in the text area and paste it over the one middle 
line (//put export code here) in articles_by_author.inc. 

For every View you want to export, you will need to create a file in your module’s views folder and 
paste in the export code just like you did for this one. 

The next step is to add some code to your module that tells the Views module to look in your 
module’s views folder. In your module’s .module file, add the following code, replacing “dgd7glue” with 
the name of your module: 

/** 
 * Implements hook_views_api(). 
 */ 
function dgd7glue_views_api() { 
  return array( 
    'api' => '3.0', 
  ); 
} 
 
/** 
 * Implements hook_views_default_views(). 
 */ 
function dgd7glue_views_default_views() { 
  $path = './' . drupal_get_path('module', 'dgd7glue') . '/views/*.inc'; 
  $views = array(); 
  foreach (glob($path) as $views_filename) { 
     require_once($views_filename); 
  } 
  return $views; 
} 



CHAPTER 3 ■ BUILDING DYNAMIC PAGES USING VIEWS 

86 

Enable your module like you would any other module at admin/modules.  
Just to make sure the Views module knows you added a View into code, you want to clear Views 

cache. Go to the Views Tools tab at admin/structure/views/settings/advanced and click Clear Views’ 
Cache. 

Go back to the Views listing page. Find the View you just exported. You will notice the words 
“Database overriding code” on the left. This means that Drupal knows you have this View in code, but it 
is using the version in the database. You want to use the code version you just added and delete the 
database version. Click Revert in the Operations menu for the View you just exported. It will confirm that 
you really want to. After you say, “Yes, I want to Revert my View!”, it will redirect you back to the listing 
page. Notice how the words next to your View are now “In code.” 

Congratulations! 
This greatest benefit of exporting Views into code is how easy you can make changes and transfer a 

View you created from one environment to another. Just don’t forget to clear Views’ cache. 

Additional Resources 
Because the Views module is popular, there are a lot of resources online and presentations at Drupal 
events. If you are looking for more help, check out these places: 

• Drupal Documentation pages: These are updated by the community; although 
Views has matured over the years, the concepts and strategies have remained 
relative consistent. 

drupal.org/documentation/modules/views 

• Views Issue Queue: Search through these issues to see if someone is discussing 
something similar. If you don’t find it, you can create a support ticket. 

drupal.org/project/issues/views 

• Google: There are so many blog posts, tutorials, and videos on Views online. 

google.com/search?q=drupal+views 

• Your local Drupal group: Every region has monthly meetups and this is a great 
place to ask questions. Find you local group and join! 

groups.drupal.org/groups 

• Professional Training: There are many professional paid training sessions to take 
you to the next level. See Chapter 9 for more ways to get involved in Drupal and 
get help, but never hesitate to play and experiment on your own (just work locally 
and not on a live site). 

 

 



C H A P T E R   4 
 

■ ■ ■ 

87

There’s a Module for That 

by Dani Nordin, Dan Hakimzadeh, and Benjamin Melançon 

When building a Drupal site, “there’s a module for that” can be the sweetest words you can hear. 
Modules are nicely packaged bits of code that extend what Drupal can do. With thousands of 
contributed modules, the odds are good that someone has written one that does something close to 
what you need. The main challenge, then, is two-fold:  

1.  Figuring out exactly what you need. 

2.  Finding the best module to accomplish that goal. 

This chapter will start you off with some essential modules that will benefit many kinds of Drupal 
sites. Then we’ll take on the creative challenge of finding the right modules for specific use cases. Once 
you find the module that fits your use case, it’s important to learn how to evaluate the module’s 
effectiveness and sometimes to compare it against several modules with similar functionality. Reporting 
bugs and requesting features usefully and respectfully is another learned art. 

■  Tip  Finding a module that does exactly what you need in one package is most often not what you want in 
Drupal. Many pieces each doing their part and working together well is the way Drupal is headed. Fields and views 

are a prime example. You don’t want three specialized modules for a page of recipes, a list of sponsors, and a 
news and events section. You want Field and Views modules and friends, which you can configure to do all that 
and much more. (Features modules, and other modules that define their own views and create content types for 

you, try to provide the best of both worlds by packaging up this configuration work to have drop-in functionality, 

but you can modify or extend it if you need to using flexible, widely used tools.) 

Modules for Drupal Are Constantly Evolving 
There are many different ways to evaluate modules to use for Drupal. The folks at NodeOne did a series 
called “49 Modules You Should Know” (nodeone.se/blogg/49-modules-you-should-know), which provides 
a good way to think about it. NodeOne.se’s recommendations are modules you should know, but not 
necessarily use, and certainly not on every site. Palantir has a more in-depth series called “Better Know a 
Module” (palantir.net/blog/series/14), which is the same idea. Drupalistas put out lists of top 10 or 
top 100 modules all the time, all of which are good ways of keeping up-to-date on what’s available.  



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

88 

Fewer Modules Is Better 
The Drupal community likes to brag about its thousands of contributed modules, but here’s a very 
important fact: the more modules you install, the worse your web site will perform.  

Performance and scalability expert Khalid Baheyeldin of 2bits.com regularly gives presentations 
about helping Drupal sites serve two to three million page views a day, tens of millions of visitors a 
month, on a single server with none of the reverse proxy, caching, content delivery network, noSQL 
databases, or Drupal modifications that are often associated with scaling. 

His first step, after making sure the server itself is tuned for serving Drupal and doesn’t have extra 
stuff going on, is to remove all unnecessary modules. This means: 

• Less code to load/execute. 

• Less memory to consume. 

• Fewer database queries. 

More important than performance considerations, adding too many additional modules increases 
the complexity of your site, making it harder to develop and maintain. To prevent the code and 
conceptual overhead of unneeded module bloat, we don’t necessarily recommend creating a list of 
“essential” modules. Every module should have a reason to be on a particular site. Nevertheless, as you 
continue to create web sites in Drupal, certain modules will prove to be consistently useful. This is one 
of the reasons it’s helpful for people or teams working with Drupal to develop documentation on their 
workflow and process as soon as they start creating web sites; over time, these documents become 
essential to the efficiency of your team. Check out Chapter 11 for more info on creating project wikis.  

How to Find and Choose a Module 
The important thing to understand is this: every module needs to be evaluated from the perspective of 
the site you are building. This is one of the key reasons that appropriate site planning is such an 
important part of the Drupal development process; knowing the business objectives and required 
functionality for your site ahead of time makes it much easier to find the right module to suit your site’s 
needs. Even powerhouse, super-useful modules—such as Views, an essential part of most sites to which 
Chapter 3 is devoted—could be left off of certain specialized projects.  

In a few cases, some modules should be seen as either/or: two or more modules may do similar 
things, or in rare cases are completely incompatible, and you must choose between or among them. 

While there’s no magic formula for finding the right module for a specific project, the following tips 
can help weed out the less-than-helpful modules from the truly fantastic modules:  

• Filter by compatibility. Drupal.org, as part of the recent redesign, allows you to 
filter modules by compatibility with versions of Drupal core at 
drupal.org/project/modules (see Figure 4-1). This should become a default 
behavior when searching for modules for a specific project. By filtering modules 
by the version of Drupal you’re specifically working with, you can avoid filtering 
through hundreds of modules that aren’t yet available for your version of Drupal 
core. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

89

 

Figure 4-1. The Drupal.org modules page (drupal.org/project/modules) allows you to filter by category, 

popularity, or by compatibility with your version of Drupal. 

■ Note  At the time of this writing, the Drupal “Most installed” sort includes all versions of Drupal in determining 
ranking even when you are filtering by compatibility. Therefore, you are not necessarily seeing the most popular 
modules for Drupal 7 but a module that may be of little use in Drupal 7, was very popular in Drupal 6, and happens 
to have a Drupal 7 release. To see module popularity in a specific version, click the View usage statistics link in 

the Project information section of the module’s project page, above the Downloads section. This link takes the 

form drupal.org/project/usage/modulename. 

• Find modules that are actively maintained. Most modules on Drupal.org will 
include a Recommended Release and a date on which that release was made. You 
can also see the most recent date for which commits were made to that module. It 
is generally a good idea to choose modules that are listed as “Actively Maintained” 
and were updated within the last six months. While it’s certainly possible to find a 
module that works perfectly well and hasn’t been updated in a year or more, it’s 
enough of a red flag that you want to look deeper into the module before using it 
on your site. See Figure 4-2 for an example of release information on the popular 
Views module. If you visit drupal.org/project/views now you will see there have 
been many releases since this screenshot was taken. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

90 

■  Tip  You can also sort by “Last release” to get a view focused on better-maintained or simply more recent 

modules. 

 

Figure 4-2. Release information for the Views module 

• Restrict your search to Full projects until you are desperate. By default, developers’ 
sandbox modules—which have no official release—are hidden from your searches 
at drupal.org/project/modules. You generally do not want to even try this 
unsupported code, but if you can find nothing else, and you’re willing to 
contribute to its development somehow, you just may find some hidden gems 
among the sandbox projects. 

• As with all searches, try a mix of keywords. If your first search doesn’t bring you a 
good module, try again with fewer or different keywords. You can also take your 
search off Drupal.org to the general internet, to benefit from the wider array of 
language people may have used to talk about your hoped-for module. (And if you 
want to benefit everyone else, and quite likely yourself in a month or three, keep 
track of the words you searched for to find a module and post them with a link to 
the successful result.) 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

91

• Ask for help. Ask for the module you need to be made! When all else fails, including 
asking in Drupal support forums or IRC (see Chapter 9), post your dream module 
to the Contributed Modules Idea group at groups.drupal.org/contributed-
module-ideas. (It is highly unlikely to be made just on your request, but it can be a 
start!) 

What to Do When Something’s Wrong with a Module 
While all of these contributed modules can prove incredibly useful in improving the functionality of your 
Drupal site, occasionally you’ll find that a module doesn’t work exactly as you hoped, or worse—it 
breaks your site entirely. When that happens, the easiest thing to do is uninstall the module and find 
another one. But, the Drupal community gives you some additional options for making modules work 
better. 

One key bit of help can be found in the Drupal.org issue queues. Often, entering error text or a 
description of the problem into the Drupal.org search field will uncover a wealth of information from the 
community about the problem you’re facing. This may include a quick list of ways that others in the 
community have solved the problem, or it may include a patch that you can tack onto the module that 
fixes the issue. If you have the initiative to write a patch yourself, contributing patches for specific 
modules is a great way to give back to Drupal. For more information on patches, check out Chapter 38 
on contributing to the community and drupal.org/patch. 

Modules in Core 
If you installed Drupal with the standard installation profile, the following modules are likely installed 
and enabled already in your Drupal installation: 

• Block—allows you to create and manage blocks in your theme. Blocks are like 
widgets, or bits of functionality, that you can drop into a defined region on a page. 
The display of blocks in a region can be controlled based on the URL path the 
block should or shouldn’t appear on, the type of content a user is viewing, the role 
of the user viewing the content, and the theme which is currently applied to your 
web site.  

• Color—allows you to change the color of themes that support this option. End 
users can define a hexidecimal color code or a select a color from a color wheel 
that they would like to use in a specific region of their site. If your theme is not 
recolorable (or you are done recoloring it) you can disable Color module. 

• Comment—allows visitors to post comments on any piece of content within the 
site. All content types can have comments enabled, and comments can have 
custom fields added to them.  

• Contextual Links—controls links that help you more easily access actions related 
to page elements. By default, Drupal 7 will place an edit and delete link on each 
node and on each block. This provides fantastic usability for Contributed modules 
(and modules you make) and can define additional contextual links.  

• Dashboard—enables an administrative Dashboard on your site. The admin 
dashboard offers a page in the administrative interface with a two-column layout 
on which blocks can be assigned to display “quick glance” information about the 
web site (e.g., recent comments and logged-in users).  



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

92 

• Database Logging—logs and records items into the database. This module
provides a reporting screen in the administrative interface that lists all recent
activity and errors on the site. Administrators can filter through these logged items
and click through to see more details.  

• Field SQL Storage, Field UI—allow you to create fields and attach them to content
types, comments, and other entities on your site. Fields can be stored in different
formats and formatted in different ways using the following optional core modules
as well as the required Text module: 

• File 

• Options 

• List 

• Number 

• Image 

• Help—displays help text. Using this module, other modules display information to
users and especially site administrators explaining various settings or actions
available in the Drupal user interface. 

• Menu—allows site administrators to manage the site’s navigation menus. 

• Overlay—enables the administrative overlay. The overlay was an attempt to
provide context to tasks by presenting administration screens (and optionally
content creation/edit forms) in an overlay on the page. This module can be
disabled without any loss of functionality. 

• Path—allows users to create search engine-friendly URL’s. Drupal by default uses
a URL pattern of node/[node ID], such as node/123, for content. Path allows you to
change this to whatever-path-you-want. (See the Pathauto module, discussed
later in this chapter, to create path aliases automatically from node data such as
the title.) 

• RDF—attaches metadata to your content defining what items you write about are
in the real world. For example, the module adds RDFa semantic markup
indicating that the poster of a piece of content is its creator. This lets other sites or
tools understand your content in ways that allow them to query or combine it in
intelligent ways. See Chapter 28 on Drupal and the Semantic Web for much more
about Drupal 7’s new RDFa capabilities. 

• Search—allows users to search site content. The search module provides a basic
search form as a block and a search page with advanced search filters to allow
users to find more relevant results. 

• Shortcut—allows administrators to create helpful lists of shortcut links available
through the administration toolbar. These links are presented in the expandable
portion of the toolbar, which can be exposed by clicking on the gray tab on the far-
right-hand corner of the toolbar. 

• Taxonomy—gives the ability to categorize content using vocabularies, or groups of
tags. You can create an unlimited number of vocabularies and add them to
content and users in the same way you add fields. You have some options over
how the vocabulary is presented—single select, multi-select, or free tagging. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

93

• Toolbar—creates the admin menu at the top of the administrative interface. The 
toolbar offers quick links to administrative functions within Drupal. 

• Update manager—handles updates to Drupal core and contributed modules and 
checks for available updates. You can download and update more modules from 
the Update Manager itself. 

Additionally, the following modules are required by Drupal: 

• Filter—formats content before displaying it. 

• Node—controls site content. 

• System—handles general site configuration for administrators. 

• Text—defines simple text field types. 

• User—manages the user recommendation and login system. Drupal provides still 
more modules in core that are not enabled by default in the Standard installation 
profile. You may consider enabling the following modules according to your site’s 
functional requirements: 

• Aggregator—allows you to import RSS feeds into your Drupal site. The 
aggregated items are not stored as nodes. 

• Blog—enables multi-user blogs and sets up some standard options that 
blogs need, such as recent posts listings, etc., without the need for Views 
modules. 

• Book—allows you to create and organize content in an outline format. 

• Contact—creates a contact form on your Drupal site and assigns different 
recipients of e-mails based on the reasoning selected by an end user. 

• Content translation—allows you to translate content into different 
languages. 

• Forum—creates discussion forum-like functionality to facilitate organized 
conversations on the site. 

• Locale—allows you to translate user interface elements into different 
languages (or even different jargon). While it may seem that Content 
translation and Locale would provide all your site’s translation needs, in fact 
they are just a start. Translation of content and interface is a very 
complicated space—and still in flux for Drupal 7 at the time of this writing, 
but we’ll try to keep you up to date with contributed module resources at 
dgd7.org/translate. 

• Open ID—allows users to log into your Drupal web site using the Open ID 
online identity management service. 

• PHP filter—allows users to use PHP when creating content or custom blocks 
in the Drupal administrative interface. For security and maintainability 
reasons, use of this module is discouraged. 

• Poll—suitable for simple popularity polls, this module has not historically 
received much attention or work despite being in core. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

94 

• Profile—unless you are upgrading from Drupal 6 and had the Profile 
module enabled, you won’t even see it in Drupal 7. It is deprecated in favor 
of Fields and contributed solutions such as Profile2. 

• Syslog—this module can be used instead of the Database logging module to 
store Drupal’s Watchdog log to the less resource intensive system log (at 
/var/log/syslog on Debian and Ubuntu systems). 

• Testing—a developer-oriented module that allows module developers to 
run automated tests of custom code they write for Drupal.  

• Tracker—stores information about site visits and changes to content, which 
are displayed to site administrators. 

• Trigger—a simple workflow system that allows users to add actions or 
system responses to tasks completed on the site, such as sending an e-mail 
when someone comments on a post.  

A quick look at the Modules screen of any Drupal installation (Modules from the administration 
menu, at path admin/modules) will show you all these modules that come pre-installed with Drupal. Now,
let’s start talking about rounding out Drupal’s functionality with contributed modules. 

Where to Store Contributed Modules 
Before we start our deep dive into the world of Drupal’s contributed modules, also referred to as contrib, 
we need to know where to put them. Contributed modules you download should go in 
sites/all/modules/contrib. Being in the all directory means they will be available for every site on a 
multisite installation (should you go that route). Being in the contrib directory (which you will have to 
create) establishes proper separation from any custom modules you may make, which can go in 
sites/all/modules/custom (which you would also have to create). 

Contributed modules should not be placed anywhere outside of sites. Everything you add to 
Drupal beyond core or an installation profile should go in the sites folder. When you eventually update 
your Drupal installation—which is necessary to apply security updates and bug fixes (see Chapter 7)—
having all non-core data in the sites folder allows you to back up just that folder, and replace everything 
else, without worrying about losing anything. 

Site Building Essentials 
All of the modules in this section are available on Drupal.org and can be found by going to the overall 
listing at drupal.org/project/modules. As we’ve already mentioned, not every module that we list here 
will be necessary for any given Drupal site; however, experience has shown that these are well 
maintained and useful modules to know about. Further, this is by no means a complete list, for any 
purpose. Thorough searching as described earlier is recommended when seeking particular 
functionality. 

Technically, everything we list here is a project, not a module per se, and each module project may 
contain one or more modules. To go to a specific project page, use the project short name listed under 
each project name headline as drupal.org/project/project_shortname. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

95

■ Tip  If you’re using Drush, the command drush dl project_shortname will automatically download and 
unpack your module with short name project_shortname into the sites/all/modules/contrib folder if you 
create it first (and sites/all/modules if you do not create a contrib directory). If you still need to get started 

with Drush, see Chapter 2. For power tips, check out Chapter 26. 

Views 
Project: views 

The Views module is a powerful tool for building custom displays of content. Think of it as a query 
builder—it allows you to, through a point-and-click interface, request content, users, and other data that 
you want to present on your site from Drupal’s database. You can then, using Views “style plug-ins,” 
display that content in some very interesting ways, such as a listing, slideshow, or a map. 

The reasons and motivations behind using Views on a Drupal site are so extensive that Chapter 3 is 
devoted to it. While some sites—extremely simple sites, for example, or highly customized 
applications—can flourish without views, the great majority of web sites built on Drupal now use Views. 

Views comes prepackaged with a number of “helper” modules. Of these, Views UI is the most 
important one—as it controls the user interface for Views. If you are working on a Drupal site and can’t 
access any of your Views, check that Views UI is enabled. 

Chaos Tools (Dependency) 
Project: ctools 

Chaos Tools, also known as CTools, is a developer-oriented module that provides a set of helpers for 
making difficult development tasks in Drupal easier. Some of these options include exporting Drupal 
configuration to code, building multistep forms, easier implementation, and management of AJAX 
requests. Views has a dependency on some of the helpers provided by CTools. 

As described in Chapter 3, Views UI requires CTools to function. Modules included in the CTools 
package set the stage for a variety of interesting site building tools. 

■ Note  All modules can be found at drupal.org/project/project_shortname, and this project short name is 
listed underneath each module project’s human-readable name. For example, the CTools suite of modules is 
available at drupal.org/project/ctools. If you want to download a module with Drush, use the project short 

name in that command; for example, drush dl ctools. 

Pathauto 
Project: pathauto 

Every page on your Drupal site has its own unique internal path. By default, Drupal shows this 
internal path in the browser'’ address bar. For example, your first node on a Drupal site would be at the 
path node/1. Pathauto allows you to automatically create human readable, search engine-friendly URLs 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

96 

for each of your nodes. You can also use Pathauto to set up automatic prefixes depending on content 
type or any other aspect of content that is understood by the Token module.  

Using the content type machine name token and the title token, for example, would allow all blog 
entries to automatically have path aliases such as example.com/blog/blog-post-title. Pathauto is 
powered by tokens and depends on the Token module, covered next. See also Chapter 8 for more 
examples of Pathauto in use. 

Token (Dependency) 
Project: token 

Token allows you to create simple placeholders for users, nodes, or other references, in different 
areas of your administrative interface. These placeholders are replaced by the value of that token when 
appropriate. In the example of creating search engine-friendly URL’s with Pathauto, defining a default 
pattern for all posts of [node:content-type:name]/[node:title] and posting an article with the headline 
“Education is the path from cocky ignorance to miserable uncertainty” would create the URL 
example.com/article/education-path-cocky-ignorance-miserable-uncertainty. 

■ Note  (By default, words like “a” and “the” that carry little meaning are excluded from Pathauto-created 
aliases, but you can configure this at Administration ➤ Configuration ➤ Search and Metadata ➤ URL Aliases ➤ 
Settings (admin/config/search/path/settings) under Strings to Remove. You can create Views to match 

Pathauto-generated content type prefixes (for instance, providing a view of all story content at the story path). 

See Chapter 33 for an example of creating hackable URLs. 

Additional Field Types 
Prior to Drupal 7, fields were handled through a module called the Content Construction Kit (CCK) and 
various add-on modules that would format fields for adding images, links, videos, and other types of 
data to content. This functionality has been rolled into Drupal 7 as the Fields and Fields UI modules.  

Below is a listing of helpful modules that add custom field types to the Fields module:  

• References (drupal.org/project/references) allows you to create references to 
users or nodes, which can then be displayed in the content doing the referencing. 
In time, it may be superseded by the Relation module 
(drupal.org/project/relation), a much more powerful—and more complex—
way to relate any Drupal entity to any other entity. Block reference 
(drupal.org/project/blockreference) and View reference 
(drupal.org/project/viewreference), for their part, create fields that allow 
administrators to choose to display a specific block and view, respectively. 

• Field Group (drupal.org/project/field_group) allows you to cluster fields into 
groups to create a more intuitive and streamlined content creation screen and 
display of content to end users. Useful for keeping address information together, 
for example, or project related information. You can display field groups as 
collapsed field sets, vertical tabs, or horizontal tabs. 

• Link (drupal.org/project/link) provides storage and formatters for URLs with 
associated titles.  



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

97

• Media (drupal.org/project/media) is much more than a field module, but it does 
provide formatters for different types of media, such as videos, images, and 
documents. It also implements a centralized storage space and system for 
managing various types of media on a Drupal site. 

There are dozens of further fields available for download on Drupal.org. You can also create your 
own custom modules to implement new field types if one does not exist. 

WYSIWYG 
Project: wysiwyg 

Drupal defaults to plain text and manual HTML input on content creation and edit forms. While this 
is often not a problem for developers or those experienced with HTML, site editors and users are often 
more comfortable with some form of WYSIWYG editor (think word processor) that will let them format 
text more easily. The WYSIWYG module allows you to do just that, choosing from many WYSIWYG 
editors including TinyMCE, CKEditor, and FCKeditor. 

■  Tip  Any WYSIWYG editor adds a lot of complexity, and none can fully deliver on the promise of “What You See 
Is What You Get”—which can lead to a lot of headaches working with content whose HTML markup is not as clean 
as it would be if it were entered by hand. Therefore, you are much better off if your site users are able to handle 

plain text content entry, assisted by Drupal’s automatic paragraph tags and perhaps by an HTML markup aid such 

as BUEditor (drupal.org/project/bueditor). 

In order to use WYSIWYG, you’ll need to download an editor library and install it in your 
sites/all/libraries folder. See WYSIWYG module’s README.txt file and its configuration page for more 
information. 

We highly recommend downloading the WYSIWYG line breaks 
(drupal.org/project/wysiwyg_linebreaks) in addition to the WYSIWYG module. This add-on module 
helps fix some of the HTML oddness that WYSIWYG editors can cause. 

Alternatives 
If it is possible to avoid WYSIWYG, do so. The keep-it-simple approach will benefit users of mobile 
devices and keep the code in your content cleaner. For an alternative to full WYSIWYG controls, you can 
use the excellent BUEditor module (bueditor), which adds buttons for inserting HTML markup. Or you 
can use Markdown filter (markdown), which allows you to use markdown syntax in your edit fields. 
Markdown syntax is a very simple method of formatting that mimics old-school word processing 
applications. As an example, you add bold text to your content by surrounding the text with asterisks 
(e.g., *Bold text*), italics with underscores (e.g., _Italics_), and so on. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

98 

Webform 
Project: webform 

Drupal comes with Contact module available, which will allow any user on your site to send a quick 
e-mail either to configurable addresses (via a main contact form at path contact) or, if so configured, to a 
registered user on the site (at user/[uid]/contact). The limitation with this is that the form is very basic. 
All it collects is the user’s name, e-mail address, and a brief comment. Furthermore, the submitted 
messages are not stored in the site database, so there is no reference point to go back to other than your 
e-mail account. 

For many sites, this is not enough—some sites require more flexibility in building forms with any 
number of custom fields, flexible layout options, and reporting. The Webform module allows you to 
build customized forms that can be used to collect data. You can use Webforms to build contact forms, 
surveys, online applications, and so forth. The module comes with reporting out of the box and allows 
you to configure e-mail notifications that can be sent out upon each form submission. 

AntiSpam or Mollom 
Projects: antispam, mollom 

One of the most important things in any site, at least a site that includes any kind of social 
interaction, is to protect the site from spam. Drupal’s contributed modules have several ways of doing 
this. Two with an acceptable balance between preventing spam and not irritating users are AntiSpam 
and Mollom. Both modules require signing up for a spam detection web service, which is either free or 
paid depending on the number of requests sent. 

Mollom is a service started by Drupal’s founder, Dries Buytaert. It is free up to a limit of blocked 
spam messages per day. To use the Mollom module, create an account at Mollom.com and register your 
site. Then copy the public and private API keys to the Mollom settings page on your site 
(admin/config/content/mollom/settings). 

■ Note  By default, Mollom blocks all form submissions if its service is not working. If you would rather deal with 
the occasional influx of spam than denying all form submissions when Mollom is down, change the When Mollom 

is down or unreachable setting to Accept all form submissions. 

To use the AntiSpam module sign up for Akismet at akismet.com, which is free for most non-commercial sites. 
Akismet is the most widely used anti-spam service and was created and primarily used with the WordPress 

content management system. The configuration is very similar to that of Mollom—just copy the API keys to the 

Mollom settings page on your site (admin/config/content/antispam/settings). 

By default, the module will e-mail users when a submission is blocked. To change this, select disable 
e-mail notifications under general options on the Antispam setting screen.  



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

99

■ Note  Instead of using an external spam-detecting service, the CAPTCHA suite of modules 
(drupal.org/project/captcha) allows you to plug in a wide range of CAPTCHAs (see 
drupal.org/project/captcha_pack), including simple math problems and configurable questions that can be 

tailored to your community. You can also extend it to use the reCAPTCHA service 
(drupal.org/project/recaptcha), which has the needed accessibility fallback of an audio CAPTCHA. A solution 
that avoids CAPTCHAs entirely, even as a fallback for spam detection, is the Hashcash module 

(drupal.org/project/hashcash), which relies on JavaScript and the hashcash algorithm to thwart spam 

submissions. 

Other Modules That May Prove Useful 
Now that you’ve gotten a rundown of some of the most useful Drupal modules, here’s a truncated list of 
additional modules that may prove useful for your specific site plan. This list is by no means 
comprehensive; if you don’t see a module that suits your needs here, a quick search on Drupal.org for 
modules is likely to result in at least something close to what you need. 

Administrative Interface and Content Entry 
The Drupal community offers a number of helpful modules that make administering your web site and 
managing content a better experience. 

Workbench 
Project: workbench 

An all-new-for-Drupal-7 project, the Workbench suite of modules provides usability improvements 
for content creators and editors, including a customizable editorial workflow. 

Environment Indicator 
Project: environment_indicator 

Environment indicator adds a colored strip to the side of your site to make the environment you’re 
currently in (Development, Staging, Production, etc.) extremely clear. Though this is more of a developer 
module, it proves very useful if you don’t appreciate entering content on the wrong version of a site. 

Smart Crop 
Project: smartcrop 

Smart crop helps to better automate the cropping of photographs. It provides an image style that 
crops based on entropy, which produces a more effective result when cropping to a fixed shape. For 
example, it can reduce the likelihood of cutting off a person’s head when cropping a profile picture to a 
square. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

100 

Content Type Overview 
Project: content_type_overview 

This extremely useful module gives you the ability to edit the settings for multiple content types 
from one place. 

CONFIGURING AND USING A MODULE: CONTENT TYPE OVERVIEW 

After obtaining the module via its page at drupal.org/project/content_type_overview or drush dl 
content_type_overview, enable it at the Modules administration page (admin/modules). 

It’s hard to know in which category a module will put itself on the administration page, so it is always 
easiest to find it by using our browser’s within-page search (try the key combination ctrl f or command f) 
and typing the module’s name (its official name, not its system name). In this case, Content Type Overview 
is alone under Administration. 

 

We checkmark it and submit the modules page with the Save configuration button at the bottom. Drupal 
tells us, “The configuration options have been saved.” We go back to the entry on the administration page 
in the hopes that the Content type overview module will have one of those nifty configuration links that 
Drupal 7 makes possible, but we are disappointed to see nothing at all in the Operations column. We make 
a mental note to file a patch to add the link to the .info file so that it will appear on the Modules page here, 
and this will be easier next time. (The issue is posted at drupal.org/node/1032930.) 

When a module does not provide a link to its configuration page, you can go looking for it. We look in 
Configuration (admin/config) first, because that’s the most common place for module configuration to be 
put. 

Searching via ctrl f is again a good way to try to find the module, this time amid the other configuration. 

 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

101

It’s under “Development”, which seems a little odd for a configuration aid, but we should have stopped 
expecting everything to make perfect sense much earlier in our work with Drupal. We click the link there to 
get to admin/config/development/content_type_overview. We check off every content type on our 
site. 

 

Then we submit the form with the Save configuration button. Yay! 

But now what? This is a too-common annoyance with Drupal. Couldn’t we get some clue where we’re 
supposed to go next? Are we supposed to be psychics? 

All right. We know content types are under Administer ➤ Structure (admin/structure), let’s look for the 
content types overview there. Hmm, no. Well, let’s click on Content types (admin/structure/types). 
Mmm... aha! There, on the far right, a new tab, Overview. 

 

Let’s go to that tab (admin/structure/types/overview). Wow. We have dozens of options for all the 
content types we chose, all in one place! 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

102 

This is awesome. We can set the publishing options of Create new revision for every content type at once,
along with all the other publishing options such as Promoted to front page and Published. Also from this
page we can change any content type name, description, the label for the title field, whether or not the
preview before submitted button is disable, optional, or required, the submission guidelines text, whether
to Display author and date information, the Comment settings, Menu settings, and even contributed
module settings such as the submit again option (see Chapter 21 for how that module was upgraded to
Drupal 7). 

We can see from the messages after we submit that it saves each content type individually, just as if we’d
gone to all eight content types one by one. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

103

Masquerade 
Project: masquerade 

Normally, testing user permissions when building a site requires you to log out of the site and log in 
as a different user. The Masquerade module allows users (who have the correct permissions set) to 
switch users without logging out. 

Content Display 
This group of modules will help you customize the way that your site looks and displays content. 

Panels 
Project: panels 

Another Earl Miles (merlinofchaos) tour de force, Panels allows site administrators to create custom 
page layouts that can be used in multiple areas throughout the site. It also creates a drag-and-drop 
interface for managing content and block placement. While by no means essential to creating dynamic 
Drupal sites, many site builders base their entire site around the modules provided by the Panels project 
and the required Chaos Tools (ctools) project. 

Code Filter 
Project name: codefilter 

This module is by no means essential for successfully developing a Drupal site, but it is key if you 
want to write about development and include code snippets! This module provides a simple way to add 
snippets of code and have it formatted nicely. 

It does this by providing an input filter, which you must enable for one or more text formats before 
your newly enabled module will do anything for you. 

1. Go to Administration ➤ Configuration ➤ Content authoring ➤ Text formats 
(admin/config/content/formats) and edit (to start) the Filtered HTML format.  

2. In the list of Enabled filters, enable Code filter. 

3. Under Filter processing order, put Code filter after “Limit allowed HTML tags.” 

4. Don't forget to Save configuration at the bottom of the form. 

■  Tip  If you put the Limit allowed HTML tags filter after Code filter, it strips out the HTML that the code filter 

adds. As a rule, put Limit allowed HTML tags first and Correct faulty and chopped off HTML last. 

Do the same for the Full HTML format, except you don’t have to worry about the filter processing 
order because Full HTML does not limit allowed HTML tags by default. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

104 

Colorbox 
project: colorbox 

A Drupal 7-ready successor to popular Drupal 6 modules such as Lightbox2, JQuery Lightbox, 
Thickbox, and others, Colorbox helps you use JQuery to show images, videos, forms, and other content 
in an overlay in front of a web page. 

Menus and Navigation 
The next group of modules will help with the placement of custom navigation menus.  

Menu block 
Project: menu_block 

This module allows you to create blocks from menus—starting at whatever level you want. For 
example: let’s say that you have an About section on your site, with sub-items for Team, History, and 
The True Story. This module lets you create a custom sub-menu block that only appears on pages in the 
about section. This is just the beginning of the awesomeness you can have with this module. 

Menu position 
Project: menu_position 

Menu position can tell the menu system that a page belongs in a certain place in the menu 
hierarchy, without having to create menu items for them. This is especially useful for making sure the 
menu system knows that all 12,000 blog posts “belong” beneath the Blog menu item (so the Blog menu 
item stays highlighted when any of them are viewed) without actually adding them as menu links. An 
overly large number of menu links can really slow down a site. 

Community Building and Social Networking 
While Drupal is a powerful option for many different types of sites, it’s especially good for creating sites 
with a social component. The following modules are designed to help users build community on the 
web. 

Comment notify 
Project: comment_notify 

Comment notify lets your site visitors—signed-in and anonymous—request to receive e-mail 
notifications about subsequent comments while they are leaving a comment themselves. (This module 
has been suggested to Drupal founder Dries Buytaert and is now in use on his blog, and it is being 
considered for inclusion in Drupal core. That’s always a good sign.) 

Comment notify requires the core Token module (drupal.org/project/token). If a required module 
is present but not enabled, Drupal will be prompt you to enable it, as shown in Figure 4-3. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

105

 

Figure 4-3. Drupal prompting to enable the Token module, a dependency of the Comment notify module 

When Comment notify is enabled, it starts working immediately. At Administer ➤ Configuration ➤ 
People ➤ Comment notify (admin/config/people/comment_notify), there is a settings page to configure 
which content types  can have notifications, whether all comments or just replies to one’s comments 
send notices, what the default settings are, and even the format for the messages. 

Organic Groups 
Project: og 

Organic Groups provides a way to add social activity to Drupal by allowing users or administrators 
to create their own “groups” within a Drupal site. Each Group can set its own standards for membership 
and can contribute to the group using either the standard content types that you are using for your site 
or custom content types that you create. See Chapter 5 to get started using this suite of modules. 

Rate 
Project: rate 

Rate provides an assortment of voting widgets for nodes and comments, which are added and 
arranged using Drupal 7’s fields system. 

Dependency: Voting API 
Project: votingapi 

Voting API gives modules a standardized set of functions and database schema for storing, 
retrieving, and tabulating votes. It is a well-established best practice for voting and rating modules. The 
Fivestar module (fivestar), a very popular module using Voting API in Drupal 6, also has a Drupal 7 
version. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

106 

Userpoints 
Project: userpoints 

Userpoints gives you a way to give registered users “points” for doing certain things on your site; for 
example, posting comments or content. 

Profile2 
Project: profile2 

This module is designed to allow users to create personal profiles on your site, which can be 
customized with Drupal’s Field API. This is recommended over core’s Profile module, which Drupal 
developers set out to convert to use Fields but ended up having to hide it instead. 

Role Limits 
Project: role_limits 

Role limits allows you to set limits on how many users can inhabit a specific role. This is especially 
useful, for example, if you want to put a limit on how many members a specific group can have or how 
many users on the site can be given administrative or editor roles. 

Paths, Search and 404 Errors 
This next group of modules help control and expand Drupal’s handling of search and 404 errors. 

Apache Solr 
Project: apachesolr 

Apache Solr brings content search capabilities that far exceed Drupal’s core search module, but it 
doesn’t do this alone. Apache Solr is an integration module, meaning it makes Drupal work with an 
outside application. You don’t need to write any code to use it, but it’s a bit more complex to set up than 
most modules and is covered in Chapter 31. 

Search 404 
Project: search404 

This module replaces the less-than-helpful File Not Found page with a search of your site using any 
keywords in the path that wasn’t found. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

107

■ Caution  Performing searches instead of serving up a lightweight page when a path is not found can put 
immense strain on your server’s resources. You should frequently check for 404 errors in your Drupal watchdog 
logs (at admin/reports/dblog if using the Database log module and your server’s system log if using the Syslog 

module). If there are common incorrect 404 paths that should go to particular pages, you should set up redirects 
for those pages in your server configuration or, at the least, with the Redirect module (which provides a handy link 
on 404 pages to do this). If you regularly notice paths that aren’t relevant to the site, you’ll want to block them so 

that the significant amount of work done each time a path is searched for is not a drain on your hosting resources. 
The best way to do this hasn’t been figured out yet, so see dgd7.org/fast404 for the most up-to-date 

recommendations. 

404 Navigation 
Project: navigation404 

This smallish module solves a simple but annoying problem that happens often in Drupal sites. 404 
Navigation makes sure that Drupal keeps your site’s navigation menus on “File not found” pages. 404 
Navigation is not necessary if you set an alternate page for file not found, including if you use the Search 
404 module. 

Global Redirect 
Project: globalredirect 

Global redirect makes sure that when people visit a page on your site, they see your latest beautiful 
alias, not the Drupalish internal path or your second-to-last alias. Enable Global redirect, and it starts 
doing its work: There is a configuration page, but the defaults will work fine for you in almost all cases. 

Note that Global redirect is not necessary to keep search engines from interpreting multiple paths as 
duplicate content (Drupal 7 adds a canonical link identifier), and it will not work with multilingual sites 
and some server setups. 

Miscellany 
If there weren’t a few things that defied categorization, it wouldn’t be Drupal: If you can imagine it, you 
can make a module out of it. 

Bot 
Project: bot 

Bot module runs an IRC bot. For more about IRC, a central gathering place for Drupalistas real-time 
chat, and the Druplicon bot that is powered by this module, see Chapter 9. 



CHAPTER 4 ■ THERE’S A MODULE FOR THAT 

108 

OpenLayers 
Project: openlayers 

OpenLayers enables you to combine maps from various sources with data from your Drupal site to 
make amazing online maps. 

The Beauty of It All 
We could fill the rest of this book with useful modules and descriptions, but, as the world of modules is 
evolving, we recommend using Drupal.org and the multitudes of blogs out there. We’ve even built a 
special forum section on the companion web site to this book, listing many recommended modules and 
their descriptions, complete with links to many other web resources. 

By now, hopefully you’re realizing how easy it is to build powerful web sites with Drupal. Most of the 
heavy lifting has already been done for you, and there’s a whole community out there that understands 
the value of sharing, meaning you will be able to achieve more, even if you’re not a php developer. So the 
next time someone asks you if Drupal can do this, start searching and maybe you can say, “There’s a 
module for that!” 

■  Tip  This chapter does not claim to list the best modules nor a module for every purpose, but given the title of 
the book and human nature there are going to be a lot of strong opinions about what was left out! Join the fun at 

dgd7.org/modules. 



C H A P T E R   5 
 

■ ■ ■ 

109

Creating Community Web Sites 

with Organic Groups 

by Ed Carlevale 

Many aspects of Drupal will be recognized as revolutionary in the years to come, but the revolution, still 
largely undeveloped, has to do with the power buried within the Roles and Permissions settings. Most 
web platforms offer two or three roles, some variant on User, Member, Administrator, then call it a day. 
The exception is Facebook, of course, with its brilliant interface and variations on Friend categories. 
Facebook turns its Users into Administrators and its Visitors into Contributors, and that’s a redivision of 
duties that both Marx and Wall Street would applaud. 

Drupal can do the same and more… and it’s the “and more” that causes the problems. Hundreds of 
options has a lot in common with none. Yet it is here that group-building in Drupal offers the most 
power, and revolutionary power at that, so we’ll return to this idea after working through the basics 
involved in deploying the Organics Groups module. 

The steps involved in getting Organic Groups up and running are, well, basic. Create a content type 
called Group and use it to create as many groups as you want on your site. Then create other content 
types such as Blog, Events, and Aggregator to create the content that you post into your groups. Then 
add Members and assign them appropriate roles—e.g., Group Manager, Administrator. One of the 
quirks of Organic Groups is that it works its magic mostly within the database. To show the relationships 
between Members and content and groups on your web site requires the help of other modules, 
primarily Views, which was introduced in Chapter 3, and Panels, which will be introduced here. Views 
selects and orders information from the database, and Panels allows you to position it on a page. Blocks 
and Regions can do the same, but they’re dependent on your theme. Panels breaks you loose from your 
theme, so you can select and arrange content in more powerful and flexible ways. 

The exercise in this chapter involves building a web site for senior citizens. As anyone who has tried 
to teach a parent the basics of a computer knows, the instructions have to be clear, the opportunities to 
ask questions abundant, and patience remains a virtue. The same is true for building a community-
based web site. The essence of that effort is that you are trying to engage others in your group. Drupal’s 
peculiar mix of power, simplicity, and quirkiness can present a barrier to newcomers. So an interface 
designed for simplicity is key, as are site resources such as how-to guides and videos.  

The good news is that one of the best aspects of Drupal 7 has to do with improvements to Drupal’s 
interface. What used to require ten clicks now requires one or two, and developing a web site no longer 
feels like commuting to work on a pogo stick.  



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

110 

Installing and Configuring Organic Groups 
You’ll start with a clean install of Drupal 7 and download and enable new contributed modules as you 
move through the chapter. The ones you need at the outset are Organic Groups and Views modules. 
Each of these in turn requires a helper module—the Entity module for Organic Groups and CTools for 
Views—so we’ll download those as well. To install the modules, we’ll use Drupal 7’s new automated 
install feature (admin/modules/install) and add the currently recommended versions of each module: 

• Organic Groups (drupal.org/project/og) 

• Entity (drupal.org/project/entity) 

• Views (drupal.org/project/views) 

• CTools (drupal.org/project/ctools) 

■ Note  Organic Groups for Drupal 7 was still in major development at the time of writing. This chapter will focus 
on the basic functionality that is likely to remain unchanged. The concluding section will touch on the functionality 

that is likely to evolve in future releases. 

The Organic Groups project consists of seven modules (see Figure 5–1)—we’ll be using all but the 
Migrate module in this chapter, so it is probably easiest to enable them all here at the outset.  

 

Figure 5–1. The suite of Organic Groups modules 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

111

■ Note  When you enable the OG access control module, you will be prompted to rebuild your permissions. Click 

yes so that the Drupal system can perform this update. 

You also want to enable the OG Example module (see Figure 5–2). This is grouped in the Features 
section on the Modules page. In fact, you could enable the module through the Features UI 
(structure/features). But if you do it on the Modules page, we’ll be prompted to enable the various 
helper modules that the example requires (see Figure 5–3). 

 

Figure 5–2. OG Example module 

 

Figure 5–3. Helper modules required by the OG Example module 

Group Content Types 
By default, a Standard Drupal installation includes two content types: Article and Basic page. When the 
OG Example module is enabled, two more content types are added, Group and Post (see Figure 5–4).  



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

112 

Figure 5–4. Two new content types, Group and Post, are added when the OG Example module is enabled. 

We’ll use the Group content type to create the groups for our site and the Post content type to create
content that we’ll post into our group. Let’s open up the Group content type so that you can tweak some 
of its settings. Go to Structure  Content types and select the Group content type 
(admin/structure/types/manage/group). Make the following changes: 

• Change title field label to Group name. 

• Description: “Create a new group.” 

• Publishing options: Uncheck ‘Promoted to front page’ 

• Display settings: Uncheck this option. 

• Comment settings: Closed. 

The result should look close to Figure 5–5.  



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

113

 

Figure 5–5. Group content type 

Note the new vertical tab, Group, added to the form when the OG modules are enabled. This setting 
allows you to designate a content type as a group, group content, or neither. The nodes created with the 
Group content type should be groups, so the radio button is set to Group type. Save the modified form. 

Next, open the Group content type again and this time, under the Manage Fields tab, change the 
body label from Body to Mission statement (see Figure 5–6). As any motivational speaker will tell you, 
defining a strong mission statement is the first step toward success in any endeavor. Even if you don’t 
display the label for this field on our web site, knowing that this is what we’re supposed to be doing here 
will help clarify our goals for each group added to the site. Click Edit and change the label from Body to 
Mission statement. 

 

Figure 5–6. Modifying field label for the Group content type 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

114 

Next, click the Manage Display tab to make one final adjustment. In order to allow visitors to the site 
to subscribe themselves to a group, you need to enable the Subscribe option. You do that by setting the 
format for the Group type to Group subscription (see Figure 5–7).  

Then save the form. 

 

Figure 5–7. The Manage Display tab. Subscriptions to groups are controlled by modifying the display of the 

group type field to be Group subscription. This places a Join link on every group page. 

Creating Groups 
Using the Group content type, we’ll go ahead now and create some groups for the web site. Click Add 
content on the Shortcuts toolbar, which brings up the content types available on the site. Select Group 
(node/add/group). We’ll add an iPad Users Group, fill in a Mission Statement, and save the form (see 
Figure 5–8). 

 

Figure 5–8. Home page for iPad Users Group 

A new tab, Group, has been added to group home pages, visible to users with appropriate 
permissions, as indicated by the message “You are the group manager.” Non-group members and 
administrators will see a link, “Request group membership.” The Group tab allows the group manager to 
add Members and modify roles and permissions. We’ll deal with those options later.  

But basically, there’s not a lot of design going on here, which is why help is needed from the Views 
and Panels modules. 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

115

Using Views with Organic Modules 
Four views are included with the OG modules (see Figure 5–9), and they’ll get you started. 

 

Figure 5–9. Four default views included with the OG modules 

OG List will be used as the groups landing page, so open that one and make some adjustments. Out 
of the box, the page view has a path (group-list) but no menu (see Figure 5–10), and you want to access 
this page from the Main menu. So add a menu item to the Main menu. 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

116 

 

Figure 5–10. Group-list view 

Click the menu link under the Page Settings and add a Menu item called Groups to the Main 
menu. Click and save the View. Now you have a Groups tab and a barebones Groups landing page (see 
Figure 5–11). 

 

Figure 5–11. Groups landing page 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

117

The other views create blocks that show group members and group content, so you need to add 
some content and members to the group before those views can do anything.  

Creating Group Content  
In order to add some content to the groups, you need to create content types that can be used to create 
nodes that you post to the groups. You could simply use the Post content type that is included with the 
OG Example module. But instead, enable Drupal’s own blog module (see Figure 5–12) by going to the 
Modules page (admin/modules).  

 

Figure 5–12. Enabling the Blog module 

Once enabled, open the Blog content type (admin/structure/types/manage/blog) and designate this 
content type as a group content type (see Figure 5–13). This means that when you create content with 
this content type, you’ll have the option to post that content into any of the groups on the site. 

 

Figure 5–13. Designating Blog entries as Group content 

For some reason I imagine that Golfers are more likely to blog than iPad Beginners, so I created a 
new group (via node/add/group), the Tee-Birders Golfing Group, and created a blog entry (via 
node/add/blog) to post into the group (see Figure 5–14).  



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

118 

 

Figure 5–14. When a content type has been designated as Group content, a Group audience pull-down 

menu is added to the node creation form, allowing users to post the content in one or more groups. 

 

Figure 5–15. Blog post to the Tee-Birders Golfing Group 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

119

A group link is added to group content (see Figure 5–15). But both the group content and the group 
landing page (see Figure 5–16) still look a bit bare, so now you need to enable the Panels module to help 
with the layout. 

 

Figure 5–16. Home page for Tee-Birders Golfing Group 

Getting Started with Panels 
You already enabled Panels and its helper modules when you enabled the OG Example module. Now 
you need to enable the Panel itself. Go to Structure  Pages (admin/structure/pages) and enable the 
Panel that controls the Node template (Figure 5–17).  

 

Figure 5–17. Enabling the Panels example included in the OG modules 

The enabled Panel immediately takes over the layout of your Group home page (see Figure 5–18). In 
addition to the Mission statement, the group home page is now showing three more group-related 
elements: 

• Group content, displayed in teaser format 

• Contextual links to add new content and post it into the current group 

• A list of group members 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

120 

 

Figure 5–18. A group home page using the layout provided by Panels 

If you click the Edit panel link, you’re taken to the panel’s administrative interface (see Figure 5–19). 
The vertical menu on the left provides links to different sections of the panels administrative interface.   

 

Figure 5–19. Summary of settings for OG Example panel 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

121

The key settings are Selection, which determines the conditions under which the panel becomes 
active, and Layout, which determines whether a 1, 2, or 3 column layout will be used, and what content 
will be displayed. The default settings for the OG Example panel include: 

• Selection: The panel will become active for all Group nodes (see Figure 5–20).  

• Layout: The 3-column layout is selected (see Figure 5–21). 

• Content: (see Figure 5–22). 

 

Figure 5–20. This shows the Selection settings. Panel will be used for all Group nodes.  

 

Figure 5–21. This shows the template layout. Two column stacked layout is selected. 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

122 

Figure 5–22. Panel content 

A full discussion of Panels is beyond the scope of this chapter, but the head start provided by the OG
Example panel serves as a useful introduction to this powerful module. More information, including
videos and tutorials, is provided on the Panels 3 Documentation page (drupal.org/node/496278). 

Members, Roles, and Permissions 
For the most part, the functionality related to management of Group Members mirrors Drupal  
itself, except that the settings are available on a group-by-group basis. Once a new role is  
created (admin/config/group/roles, see Figure 5–23), then group-specific permissions can be set for that
role (admin/config/group/permissions, see Figure 5–24).  



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

123

 

Figure 5–23. Group-related Roles 

 

Figure 5–24. Group-related Permissions 

Still in active development, Organic Groups for Drupal 7 will continue to evolve, so following the 
module’s issue queue is strongly recommended (drupal.org/project/og). 



CHAPTER 5 ■ CREATING COMMUNITY WEB SITES WITH ORGANIC GROUPS 

124 

Summary 
In this chapter I’ve covered the basics of building group-based web sites in Drupal 7, deploying the 
Organic Groups module on the backend to create Groups and Groups Content, and to establish 
relationships among groups, content, and users. Then I showed how to enable the Views and Panels 
modules to organize and position content on your pages. User experience is key to building successful 
member-driven web sites, and I touched on some of the key issues involved, including Roles and 
Permissions. 



C H A P T E R   6 
 

■ ■ ■ 

125

Security in Drupal 

by Stéphane Corlosquet 

“Security is a process, not a product. Products provide some protection, but the only 
way to effectively do business in an insecure world is to put processes in place that 
recognize the inherent insecurity in the products.” 

—Bruce Schneier  

The Internet is rife with spammers and hackers threatening to deface or take down your site, ruin your 
brand, paralyze your community, or steal confidential data. Whether you are a site administrator, 
module developer, themer, system administrator, or user, you ought to bear security in mind when 
administering your site or writing code. You could put your own site or other people’s sites at risk if you 
don’t follow some simple rules and best practices. Fortunately, you are not alone in this situation, and 
the Drupal community has developed a solid process to help you avoid major headaches when dealing 
with security matters. 

Setting Up a Secure Drupal Site 
Let’s start off with the good news: Drupal is configured to be secure out of the box! This is because it 
adopts fairly conservative settings by default. You will most likely want to change these settings to extend 
and tweak your site to your needs, and that’s where you run the risk of opening some doors for 
unwanted visitors to damage your site. However, you’re in good hands: with its improved user interface, 
Drupal 7 will often warn you when a setting could have an impact on security. Don’t just rely on it, 
though; exercise common sense, and read on to know the common pitfalls of misconfigured Drupal 
sites. 

Use Strong Passwords 
This advice is true for any system using passwords for authentication: you must use a strong password 
(see Figure 6–1). Anyone who knows your password can log in and perform potentially damaging actions 
on the site. This is especially true for the user id 1 or any other account with elevated permissions. 



CHAPTER 6 ■ SECURITY IN DRUPAL 

126 

 

Figure 6–1. Use a strong password to keep your user account safe. 

But what makes a password strong?  
The article at www.baekdal.com/tips/password-security-usability demonstrates that having a 

three-common-word password is 10 times more secure than a regular one-word password. (Drupal 
passwords can contain spaces, by the way.)  

It’s also important to avoid sharing your password with anyone. Likewise, don’t create accounts 
shared among users for site management and moderation purposes. If a group of users needs to perform 
similar actions on a site, create an account for each user and grant them the same role(s); this will make 
it easier to track who did what.  

Your account will also be linked to an e-mail address. While you’re at it, make sure you trust your e-
mail provider and have a strong password there, too; if your e-mail account is compromised, your 
Drupal account password can be reset in a few seconds, defeating the effort you put into creating a 
strong password. 

Reserve User 1 for Administration Purposes Only 
The first user created during the installation process is given permission to do everything on the site, 
always. Therefore, it’s considered best practice to reserve this user not as one's own personal account, 
but as a superuser or superadmin account. (Drupal requires account e-mail addresses to be unique, so if 
you have only one e-mail address, it’s better to make the first account your own than to have an account 
with a broken e-mail address. Note, however, that some e-mail services allow you to use variant 
addresses: for instance, example@gmail.com will receive e-mail sent to example+site1@gmail.com, and 
Drupal will accept the latter as a separate address.) 

■ Note  While sharing uid 1 password was sometimes necessary in Drupal 6 to run update.php without editing 

settings.php, it is no longer the case in Drupal 7 because the ability to run update.php is now role-based. 

http://www.baekdal.com/tips/password-security-usability
mailto:example@gmail.com
mailto:site1@gmail.com


CHAPTER 6 ■ SECURITY IN DRUPAL 

127

Be Cautious When Assigning Permissions 
Each user can be given a set of roles, and each role includes a set of permissions. While some 
permissions are fairly benign, such as View published content, others can have dramatic consequences. 
Generally, permissions starting with “Administer” should only be granted to highly trusted users. Others, 
like Bypass content access control, can give the ability to view, edit, and delete any content: this can lead 
to information loss if granted to a careless user. Drupal 7 highlights these permissions with a warning 
indicating they should only be given to trusted users, as shown in Figure 6–2. 

 

Figure 6–2. Some permissions have security implications and should only be granted with care. 

Beware that the Authenticated User role is given to any user able to log in to your site unless their 
account has been blocked. By default, Drupal is configured to require administrator approval for new 
accounts, but if you have changed this setting at admin/config/people/accounts to allow visitors to 
register accounts without approval, you should review what permissions the Authenticated User role has 
and ensure they are all safe. Failure to do so could lead to unintended consequences, like a flood of spam 
on existing nodes since the Post comments and Skip comment approval permissions are both granted to 
the Authenticated User by default. 

Keep Text Formats Tight and Secure  
User input is evil and should never be trusted. With the exception of a few places like the e-mail address 
where user data is validated on input, Drupal sanitizes user submitted data on output. This has the 
advantage of preserving user input data so that it can be escaped properly depending on which context 
it has to be rendered. See the excellent article by Steven Wittens on “Safe String Theory for the Web” at 
acko.net/blog/safe-string-theory-for-the-web for an in-depth explanation of this design choice. Thus, 
failure to escape any user submitted data can lead to the one of most common web application 
vulnerabilities: cross-site scripting (XSS)1. Drupal uses text formats  when displaying a piece of content 
submitted by a user in a text field (e.g., the body of a node), for example. Each text format contains a set 
of filters that will escape content and make it safe for display in a given context. By default, the text 
formats Filtered HTML and Plain Text are safe, which is why they can be both used by anonymous users 
and authenticated users. Be cautious if you change the settings of these text formats; they can become 
unsafe if misconfigured. The Security Review module2 makes it easy to check text format configurations. 

                                                

1 Wikipedia, “Cross-site scripting,” http://en.wikipedia.org/wiki/Cross-site_scripting, 2011. 

2 http://drupal.org/project/security_review 

http://en.wikipedia.org/wiki/Cross-site_scripting
http://drupal.org/project/security_review


CHAPTER 6 ■ SECURITY IN DRUPAL 

128 

Avoid Using the PHP Filter Module 
Although it’s handy to be able to write PHP code directly into your Drupal web interface without having 
to create a module, it’s also very dangerous! All PHP code should live in the form of modules or themes. 
Writing PHP in Drupal’s web interface is a bad idea for the following reasons:  

• It’s unfriendly to edit and debug (no syntax highlighting and no proper error 
reporting). 

• It makes code reviews difficult and versioning impossible. 

• A trusted user might inadvertently damage your site with malformed PHP code. 

• If your site was to be compromised, a hacker could penetrate and damage your 
server using well-crafted PHP code. Keeping the PHP Filter module turned off (or 
even better, removing it entirely from the filesystem) could help contain such 
intrusion to the Drupal level only.  

• In terms of performance, storing PHP code in the database will prevent any 
opcode caching mechanism from working on this piece of code 

Note that some contributed modules might offer a functionality similar to that of the PHP Filter 
module; they will suffer from the same flaws noted previously. Also, be careful when using PHP snippets 
found on drupal.org or elsewhere: make sure you understand what they do and how they can affect your 
site. Many of these snippets have not been reviewed from a security standpoint and might expose your 
site to vulnerabilities. Code snippets are also generally less reliable than code found in a module. 

Security Process 
As a site administrator, security is not just something to consider when setting up your site. The Drupal 
core project maintainers can only go so far as to release software with no known security holes on the 
day of the release. However, that does not guarantee that there will never be any security problems in 
the future. Things evolve quickly on the Web, and new security vulnerabilities and techniques are 
discovered frequently. They might not be specific to Drupal and might impact any we6–based system. 

The Drupal Security Team is a group of volunteers with an interest in keeping Drupal secure by 
helping both site administrators and developers understand how to avoid security issues on their site 
and in their code. The first goal of the Drupal Security Team is to help resolve security issues in Drupal 
core and contributed modules. All issues reported to the Security Team are first discussed privately with 
the reporter and the project maintainer until a solution is found and a fix is made to the code repository. 
The Security Team coordinates Security Advisories (SA) in release cycles, usually on Wednesdays. Each 
SA has a unique ID including its type and year. There are three types of advisories. 

• Drupal Core security advisories (e.g., SA-CORE-2010-002) are the most important 
type of advisories as they concern every Drupal site. Updating is strongly 
recommended. 

• Contributed projects security advisories (e.g., SA-CONTRI6–2010-015) are the 
highest volume type of advisories published by the Security Team. Each advisory 
refers to a particular contributed project (or sometimes several of them), and site 
maintainers should carefully evaluate whether any of the sites they maintain are 
affected and update them appropriately. 



CHAPTER 6 ■ SECURITY IN DRUPAL 

129

• Public service announcements (e.g., PSA-2011-001) aim at educating the 
community and contain general security-related information such as security 
policy changes, recent threats, or social engineering attacks that don’t affect any 
particular module but are nonetheless relevant to site administrators and 
developers. 

Security advisories and announcements are communicated publicly through the following 
channels: 

• Drupal.org security announcements listings at drupal.org/security 

• RSS feed for each listing: 

• Core: drupal.org/security/rss.xml 

• Contrib: drupal.org/security/contrib/rss.xml 

• Public service announcements: drupal.org/security/psa/rss.xml 

• E-mail via the Security Announcements mailing list; all three types of 
announcements are included. You can subscribe in the “My newsletters” tab 
when editing your profile on drupal.org.  

• Twitter: twitter.com/drupalsecurity 

All security advisories include steps to resolve the security vulnerability at hand. In most cases, it 
will be a link to a security release for site administrators to update their site. In the rare case when 
project maintainers are not responsive or available to fix the issue, the Security Team might advise to 
turn off a particular module. PSAs include more general advice on security best practices.  

Choosing Modules and Themes: How Secure Are Contributed 
Projects? 
Each line of code in Drupal core goes through a rigorous peer review process before it is committed to the 
code base; even after being committed, this code is continuously audited by hundreds of contributors due 
to the nature of open source software. Several thousands of contributed projects are available for free on 
drupal.org. The Drupal community tries to find the right balance between keeping a low barrier of entry 
for new contributors and accepting code that is clean and secure, but a growing community and only a 
handful of volunteers monitoring this growth in terms of code quality makes the task very difficult. The 
consequence is a varied level of quality of code in the land of contributed projects. However, code found on 
Drupal.org is more likely to be of higher quality than code found elsewhere outside Drupal.org, since the 
community tends to scrutinize code on Drupal.org more than anywhere else.  

As a site administrator looking at installing a module or a theme on your site, you are responsible for 
evaluating the quality of a project from a security standpoint. Neither the Drupal community nor the 
project maintainer can be held responsible for any damage done to your site, whether the damage is 
done during the installation or later on due to a security bug. 

Assessing the value of a project is a somewhat subjective task. Each of the criteria in the next 
sections will not give you the complete picture when taken on its own; hopefully, by combining them 
you will be able to make an educated decision when choosing contributed projects for your site. 



CHAPTER 6 ■ SECURITY IN DRUPAL 

130 

Project Home Page 
A project home page includes a lot of useful information to assess the health of a project. These elements 
will help you in your evaluation. An example of contributed project page is drupal.org/project/views. 
Figures 6–3 and 6–4 contrast an abandoned project with a well-maintained project. 

• How reputable are the maintainers? You can find the list of maintainers as well as 
their activity on the right-hand side of the project page. If you don’t know a 
maintainer, look up his profile on drupal.org to see his participation in the 
community; he might maintain other modules that you might know or use. It’s a 
good sign if the project in question has a reputable maintainer with fairly recent 
activity. 

• How active is the module development? Is the module abandoned or seeking a new 
maintainer? This information is available on the project description page (see the 
example of an abandoned and obsolete module in Figure 6–3). Modules falling 
under these categories are not likely to receive any attention in the future and 
might contain security vulnerabilities. Although the Drupal Security Team will 
generally add a warning message on the description of projects that are 
abandoned and known to contain a security vulnerability, the absence of such 
message does not mean that an abandoned project is safe to use. 

• Popularity: Check how many sites report using a project in the “Project 
Information” section shown in Figure 6–4. The more sites using a project, the 
more likely it has been reviewed and is trusted. 

 

Figure 6–3. The Project Information section of an abandoned project 

 

Figure 6–4. The Project Information section of a well maintained project 



CHAPTER 6 ■ SECURITY IN DRUPAL 

131

• Releases: Avoid using development releases on production web sites. Pick a stable 
release if one is available for your Drupal version. Unstable, alpha, beta, or release 
candidate releases can contain security bugs, which are generally discussed 
publicly. If you make the decision to use such modules on your site, be sure to 
know what these bugs are and take the right measures to protect your site. 

• Does the project have known security bugs? The issues block located on the right 
hand side of each project’s home page shows some statistics on the issues and bug 
reports on the project (see Figure 6–5). Click on the number of open issues to view 
an exhaustive list of issues, as shown in Figure 6–6.  

• Check the issue queue to see what pending outstanding issues have been reported so 
far, and whether some of them have an impact on security. Looking at the last 
updated column in the issue queue will give you a sense of how active a project 
development is (see Figure 6–6). Seeing issues with the status of Fixed is a strong 
indication of a well-maintained project. You might want to use the filters at the 
top of the list of issue to narrow down your search on a particular version of the 
module or on a particular type of issue, such as bug reports. 

 

Figure 6–5. Click on the number of open issues to browse the issue queue 

 

Figure 6–6. An active issue queue is the sign of a healthy module. 



CHAPTER 6 ■ SECURITY IN DRUPAL 

132 

Security Code Reviews 
What do you do if you’ve found a contributed project that matches your needs but you have doubts
about its level of security? It might not have reached a stable release yet, or your department might
require that any code be security reviewed prior to being used. 

If you’re a developer, the Coder3 and the Secure Code Review4 modules will be of great help at
identifying pieces of code that do not comply with Drupal security standards. While these modules are
quite good for a first pass at a security review, they can’t guaranty that a module is secure, and they don’t
replace the eyes of a security expert. 

If you would rather hire skilled consultants to do code reviews, several Drupal shops specialize in
this area of expertise, most notably Drupal Scout (drupalscout.com) operated by Greg Knaddison and
Ben Jeavons, both members of the Drupal Security Team. 

Keep Your Code Base Current 
Configuring Drupal properly is only the first step towards a secure Drupal site. Dynamic web
applications like Drupal can’t be left unmaintained on the Internet where new threats and exploits are
discovered every day. It is a mistake to think that once you've built a site and pushed it to production,
you can just leave it there and not worry about it. Just as you monitor your server performance or
maintain your software stack, you will want to run the latest version of Drupal core and its contributed
modules. Fortunately, the Drupal community has a very good infrastructure that helps site
administrators know when they need to upgrade a given module. 

Drupal core ships with the Update Manager module that will warn you when new security releases
are available for your installed modules. You will see a red warning message in the administrative area
encouraging you to update your modules. An e-mail notification is also configured by default. You can
view the list of available updates at Admin  Report  Available updates (admin/reports/updates). Any
security update will appear with a red background, as depicted in Figure 6–7. 

                                                

3 http://drupal.org/project/coder 

4 http://drupal.org/project/secure_code_review 

http://drupal.org/project/coder
http://drupal.org/project/secure_code_review


CHAPTER 6 ■ SECURITY IN DRUPAL 

133

 

Figure 6–7. The Update Manager module shows available updates for installed modules and themes. It is 

strongly recommended that you update any module with a security update. 

Updating a module or theme is very easy with the tools available for Drupal. The core Update 
Manager module lets you to update any module via the web interface. You can also use Drush5 or update 
the code manually by downloading the tarball from the project download links or via git. See Chapter 7 
for more detailed information on how to update Drupal. 

Writing Secure Code 
Drupal offers great APIs for module and theme developers. As long as these APIs are used properly, 
writing secure code for Drupal is easy, even with little knowledge about security. There are, however, 
some basic rules to keep in mind. The first rule is to use Drupal's APIs as much as possible and use them 
properly, even if they do not seem to make sense; there is generally a reason for using them. Here are a 
couple of examples: 

                                                

5 Drupal, “Drush,” http://drupal.org/project/drush, 2011. 

http://drupal.org/project/drush


CHAPTER 6 ■ SECURITY IN DRUPAL 

134 

• When displaying a link, it might be more intuitive to build the HTML string by 
concatenating the <a> and href elements, but this can introduce a cross-site 
scripting vulnerability if the input is not trusted. By using the link function l()6, you 
save yourself some headaches since Drupal will take care of the proper escaping 
for you and will also filter for malicious protocols. 

• Form API: You should never use data straight from the $_POST variable, but 
instead rely on the Form API validation and submit functions which prevent 
cross-site request forgeries7. 

• Database API: When writing SQL queries, it's tempting to use PHP variables 
directly in the SQL query. That can create a SQL injection8, and it can be avoided  
with proper use of the Database API9. 

There are many more examples where the Drupal framework prevents security vulnerabilities. Here 
is a list of helpful resources for developers willing to learn more about security in Drupal: 

• Publications: 

• Greg Knaddison, member of the Drupal Security Team, wrote the only book 
to provide a deep dive into security in Drupal: Cracking Drupal: A Drop in 
the Bucket (Wiley, 2009), crackingdrupal.com 

• The Drupal Security Report was written by Ben Jeavons and Greg Knaddison. 
This is a useful document for decision makers and people interested in 
understanding how Drupal has been handling security in the past. 
drupalsecurityreport.org 

• Online resources: 

• Get familiar with Drupal's APIs at api.drupal.org where all Drupal 
functions and APIs are documented. Notes on security are included where 
relevant. 

• The Develop for Drupal handbook gives a higher perspective on how to 
leverage Drupal APIs at drupal.org/documentation/develop 

• The “Writing Secure Code” section of the Develop for Drupal handbook 
gives a series of examples with code snippets on how to use Drupal APIs in a 
secure manner at drupal.org/writing-secure-code 

• Security blogs: 

• Heine Deelstra, Drupal Security Team lead, blogs about security in Drupal 
at heine.familiedeelstra.com 

• Greg Knaddison and Ben Jeavons write about security at 
crackingdrupal.com/blog  

                                                

6 Drupal, “common.inc,” http://api.drupal.org/api/function/l/7, 2011. 

7 Wikipedia, “Cross-site request forgery,” http://en.wikipedia.org/wiki/Cross-site_request_forgery, 2011 

8 Wikipedia, “SQL injection,” http://en.wikipedia.org/wiki/SQL_injection, 2011 

9 Drupal, “Database API,” http://drupal.org/developing/api/database, 2011. 

http://api.drupal.org/api/function/l/7
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/SQL_injection
http://drupal.org/developing/api/database


CHAPTER 6 ■ SECURITY IN DRUPAL 

135

• DrupalScout is building a Knowledge Base on security at 
drupalscout.com/knowledge-base 

Dealing with Security Issues 
The Drupal Security Team has a process for dealing with security issues found in the contributed 
projects hosted on drupal.org. As a developer, if you come across some piece of code that appears to 
contain a security vulnerability, you should know how to deal with such a situation. 

You Found an Issue in Drupal core or a Contributed Project 
The process is detailed in this section; note, however, that this process could change in the future, so 
check at drupal.org/security-advisory-policy for current information on the Drupal security policy. 

First, make sure the code is hosted on drupal.org; the Drupal Security Team does not deal with code 
hosted elsewhere. Secondly, if the questionable code has not been released as part of a stable release (in 
other words, it's in a development snapshot, alpha, beta, or release candidate release), you are 
encouraged to discuss this issue publicly in the issue queue. If the code has been released as part of a 
stable release (e.g., 7.x-1.2), you should not discuss this vulnerability publicly, unless it requires one of 
these permissions to be exploited: 

• Administer filters  

• Administer users  

• Administer permissions  

• Administer content types  

• Administer site configuration  

• Administer views  

Any user with any of the above permissions can already do a lot of damage to a site, so it is expected 
that only trusted users would be granted these permissions, and therefore it is fine to discuss these types 
of issues publicly. Please check drupal.org/security-advisory-policy for the current policy, which 
might change over time. 

In any other case, don’t discuss your findings publicly, but instead contact the Security Team by e-
mail at security@drupal.org and explain in detail how to reproduce the issue and what version of 
Drupal core, modules, and themes you are using. The Security Team will investigate the issue and work 
with the project maintainer to create a fix, patch the code, create a release, and announce the release. 
You will be credited in any announcement made about this issue. At the time of this writing, issues 
should be reported to the Security Team by e-mail; however, this is likely to change in the future, so 
please check drupal.org/node/101494 for current information on how to report an issue to the Security 
Team. Make sure to subscribe to the security mailing list to be notified of any change (see the beginning 
of the "Security Process" section). 

Fixing a Security Issue in Your Project 
If you find a vulnerability in one of your projects, contact the Security Team before doing anything about 
it. If the Security Team receives a report about a vulnerability in one of your projects, you will be 
contacted privately by e-mail. As a project maintainer, it is your duty to collaborate with the Security 
Team in order to keep the vulnerability secret until a fix is made available to the public. You will be 

mailto:security@drupal.org


CHAPTER 6 ■ SECURITY IN DRUPAL 

136 

invited to send a patch fixing the issue so that the Security Team can review it and possibly suggest a 
better way to solve the issue. When the patch is ready and has been approved by the Security Team, a 
date will be chosen for the patch to be committed and a security release to be published. You will be 
asked to help draft a Security Advisory (SA) for your project to be sent out on the day of the security 
release. Security releases usually happen on Wednesdays. You will be invited to commit the patch and 
push the fix to the drupal.org repository as soon as 24 hours before the agreed release date. Then you 
will be able to create a new release for all the branches that were affected by the vulnerability and tag it 
“Security update,” as shown in Figure 6–8. Send the links of the releases to the Security Team so they can 
add them to the SA. The releases will remain unpublished until the Security Team publishes them and 
sends the SA at the same time. 

 

Figure 6–8. The Create Project release form on drupal.org. Make sure to tag your release as "Security 

update" if it includes security fixes.You should already have contacted the Security Team at this point! 

Any issue reported publicly in the issue queue of your module can be fixed at your convenience as 
long as it is not present in a stable release. The new release can be marked as "Security update," as 
depicted on Figure 6–8, although you will need to contact the Security Team to get it published. 

Summary 
In this chapter you have learned the security processes to keep your Drupal site secure and how to 
leverage the infrastructure that the Drupal community has put in place to help site maintainers keep 
their code base secure. You’ve also learned that the APIs supplied by Drupal make it easy for module 
developers and themers to write secure code. Give it a try! 



C H A P T E R   7 
 

■ ■ ■ 

137

Updating Drupal 

by Benjamin Melançon 

“Another flaw in the human character is that everybody wants to build and nobody 
wants to do maintenance.” 

—Kurt Vonnegut, Jr. 

Updating Drupal 7 means staying within Drupal 7. This is known as a minor version update. In Drupal 
core, the version numbers for a minor update such as the second and third updates to the Drupal 7 
release look like 7.2 to 7.3. In contributed modules, version numbers for minor updates such as the 
eleventh and twelfth updates to the second version of a module for Drupal 7 look like 7.x-2.11 to 7.x-2.12. 
(Drupal version numbers do not have leading zeros, which can be confusing. Remember that the order is 
7.1, 7.2, ... 7.8, 7.9, 7.10, 7.11.) 

There is a very large difference between a minor version update and a major version upgrade. A 
major version upgrade such as Drupal 6 to Drupal 7 will require replacing all your modules with versions 
compatible with Drupal 7 core; your custom theme and custom code will need changes; and it will take a 
lot of work to get a complex site working well again. You don’t have to worry about any of that in this 
chapter. When updating Drupal core from 7-point-something to 7-point-something-higher, nothing is 
supposed to break in the API. All the modules and the theme should continue to work, and nothing 
should need to be reconfigured. If you need to upgrade a Drupal 6 site to Drupal 7, Appendix A will get 
you started with that. 

Why Update 
Keeping Drupal core current, then, is easy. It’s also very important. Primarily, it’s critical for the security 
of your web site. Secondarily, bug fixes and other improvements will make it into the current release. 

Drupal’s security record, by the way, is excellent. As a rule, security vulnerabilities in Drupal are 
uncovered first by the security team (drupal.org/security-team) or other friendly Drupalistas—not fixed 
after they have been exploited by hostile parties. Once a security vulnerability has been identified and a 
release of Drupal made, however, it’s easy for anyone with ill intentions to read the security advisory and 
take advantage of that vulnerability. This is why you must keep your site current. 

It’s worth noting that most of the security vulnerabilities fixed during the course of a Drupal release 
are unlikely to matter for a well-configured site; to exploit the vulnerability, you must give less-trusted 
users generous permissions. Chapter 6 covered Drupal’s excellent security and other ways to make your 
web site secure. 



CHAPTER 7 ■ UPDATING DRUPAL 

138 

■  Tip  In addition to being easy and important, updating Drupal core is too rarely done. Show the world you know 

what you’re doing and keep all your sites running on the latest security release of Drupal 7. 

New versions of Drupal 7 core, the minor version updates, will be released for as long as the 
community supports Drupal 7 (which, officially, is until Drupal 9 comes out). 

■ Note  On drupal.org, only the current and previous releases are supported with bug fixes and security 
updates, but nothing stops someone in the community from offering more. Openflows Community Technology Lab 

has done just that: http://openflows.com/drupal/security has applicable security updates backported to 

older major versions of Drupal. 

This chapter covers three approaches to updating core between minor version updates. First, you’ll 
look at the manual update process described in Drupal core itself. Next, you’ll look at the Drush 
command to update Drupal core. Last and perhaps least, you’ll look at my preferred method of creating 
a diff via a shell script and applying it as a patch. This latter approach works best if you have a known 
modification to Drupal core that you wish to preserve (which does not necessarily mean you have 
hacked core; the .htaccess file, for instance, can legitimately be changed). The first approach is 
necessary if there are known or unknown modifications to core you need to be sure are removed and is, 
in general, the surest approach. 

The following preparation steps apply no matter which approach you take to update Drupal core. 

Preparation 
Whenever you touch Drupal’s code, there’s the potential for something to go wrong. So even a minor-
point–release update, as described here, should be: 

• Tested offline and/or on a development server first. 

• Scheduled to go live at a time when your site will be less heavily used. 

■  Tip  Take a look at your analytics to determine what time of day and time of week your site is least-visited. Get 
this insight with server-based statistic gathering and reporting such as AWStats (awstats.sourceforge.net) or 
use a service such as Google Analytics (which has a Drupal module for easier integration; see 

drupal.org/project/google_analytics). 

Check the release announcements. If anything unusual is needed during the update process, it will 
be noted here. Are you updating through more than one minor release (for instance 7.0 to 7.3) at once? 

http://openflows.com/drupal/security


CHAPTER 7 ■ UPDATING DRUPAL 

139

Check all the release announcements. Go to drupal.org’s Download & Extend  Drupal core 
(drupal.org/project/drupal) and click on the “View all releases” link at the bottom (or go directly to 
drupal.org/node/3060/release). 

■  Tip  If an update is not a security release, you can safely choose not to update. The release notes and the 

available updates page at Administration  Reports  Available updates (admin/reports/updates) will tell you 
what is not a security update. This helps you avoid risking that changes not crucial to your site’s security will 
affect the way your site operates. Drupal core is moving to a model where you can choose to apply only security 

releases. For contributed modules, skipping a non-security release will delay the need to update, but you’ll have to 

do all updates when there is a security release. 

Make sure everything in your version control is committed. If using Git, type git status while 
within a directory in your Drupal project. (And if you’re working with others, make sure you git pull 
first.) 

Back up your database immediately before the update, in addition to your regular nightly (or more 
frequent) backups. You can use a web graphical interface such as the one provided by phpMyAdmin or 
you can use Drush or the following command line:  

mysqldump -u exampleuser -p examplepass example > example_backup.sql 

■ Note  Another option is the Backup and Migrate module at drupal.org/project/backup_migrate. 

Manual Update 
This approach follows the UPGRADE.txt recommendations included in every copy of Drupal core. It is, 
then, the officially recommended way of updating Drupal from one minor version to another. It’s not the 
easiest way, and so for something that must be as regular and automatic as you can make it, not the best 
way. But it’s important to know it as a failsafe way. 

■  Tip The manual update process is not the most convenient, but it is the most robust. If you have a Drupal site 

and you don’t know where it’s been or the state of its code, this is the way to go. 

All Drupalistas soon learn the rule Don’t hack core. In general, you’re not supposed to touch 
anything in your Drupal installation outside the sites directory. There are two files in Drupal core, 
however, that you won’t be chastised for changing: .htaccess and robots.txt. You might not need to 
touch them, but modifying them is not considered hacking core. As these files live outside the sites 



CHAPTER 7 ■ UPDATING DRUPAL 

140 

folder (which you will preserve in its entirety, described shortly), they require special attention to 
preserve any changes you have made. 

The final preparatory step for the manual update is to download the latest release of your version of 
Drupal via the following code (note that this code is for version 7.1; you will want the latest release): 

cd ~/code 
wget http://ftp.drupal.org/files/projects/drupal-7.1.tar.gz 
tar -xzf drupal-7.1.tar.gz 

■ Hint The latest release of Drupal is featured on the front page of Drupal.org at drupal.org/home. 

Follow the Steps in UPGRADE.txt 
These instructions follow the steps from UPGRADE.txt but I’ve changed them a little bit in certain cases, 
mostly because some of the work has been covered in the “Preparation” section. 

1. Log in as a user with the permission “Administer software updates” (the first user 
created, also referred to as user 1, always works). 

2. Go to Administration  Configuration  Development  Maintenance mode 
(admin/config/development/maintenance). Checkmark the “Put site into 
maintenance mode” checkbox and press Save configuration at the bottom of the 
page. (You can put something personal and reassuring for your visitors as the 
“Maintenance mode message” since they will see that instead of your site.) 

3. Copy all changed files out of your codebase. This should be the entire sites 
directory and possibly .htaccess and robots.txt. If you don’t know if anything’s 
changed in these files, copy them out; you can use the diff command to compare 
files later. Also, move out any other files you added or have changed outside of 
sites. I recommend copying everything. Then delete the entire codebase, and 
copy only the sites directory back in and optionally other changed files such as 
.htaccess and robots.txt. 

This is accomplished in the command line steps below by moving and then 
copying the desired files back in. In this example, the Drupal directory was 
example/web. 

mv example/web examplewebtmp/ 
mkdir -p example/web 
cp -pr examplewebtmp/sites/ example/web/ 
cp examplewebtmp/.htaccess example/web/ 
cp examplewebtmp/robots.txt example/web/ 

4. Copy the latest Drupal release into the codebase directory that is empty except 
for sites and other modified files. Don’t overwrite anything in the sites directory. 

This command line step copies a new Drupal into its install directory around 
sites and other files you have put there (files are not overwritten): 

cp -R drupal-7.1/* drupal-7.1/.htaccess example/web/ 
rm example/web/sites/default/default.settings.php 

http://ftp.drupal.org/files/projects/drupal-7.1.tar.gz


CHAPTER 7 ■ UPDATING DRUPAL 

141

5. Re-apply any modifications to files such as .htaccess and robots.txt. 

If the release notes indicate changes to settings.php, make these changes. If 
you’ve made changes to .htaccess and robots.txt, reapply them. If you’re not 
sure what exactly has changed in any of these, use a comparison tool such as 
diff. Compare the new version of .htaccess to your old one that you moved back 
in; do the same for robots.txt. For settings.php, compare it with the new 
default.settings.php that’s replaced your old default.settings.php.  

You can use a graphical diff tool or these command lines to see changes 
between files: 

diff -up example/websites/default/settings.php/ 
example/web/sites/default/default.settings.php 

diff -up example/web/robots.txt drupal-7.1/robots.txt 

diff -up example/web/.htaccess example/web/.htaccess 

The first diff shows what has changed in the new recommendations for a 
settings.php file. The second and third diffs compare the new, core robots.txt 
and .htaccess files with your old, possibly modified versions. Evaluate what you 
see with + signs in front as things you may want to add or add back, and things 
with - signs in front as things you may want to remove— but most of these will be 
changes you yourself made. 

■  Tip If you don’t know if core in the Drupal version you’re dealing with has been hacked, and you know 

precisely what version of Drupal you are using, you can download a pure copy of it and diff between it and your 

copy to see what modifications, if any, have been made. See the “Diff Update” section for the commands. 

6. Go to update.php, such as http://example.localhost/update.php on a local test 
site and http://example.com/update.php on a live site. Although this is not 
necessary if the point release (or releases) you are updating have not had any 
database changes, this information is not yet noted specially in the release notes. 
Go to update.php to check. Click continue; if it doesn’t have to be run, it will tell 
you “No pending updates”, as shown in Figure 7–1. If there are updates, run 
them. 

http://example.localhost/update.php
http://example.com/update.php


CHAPTER 7 ■ UPDATING DRUPAL 

142 

Figure 7–1. No pending updates 

7. Go to Administration  Reports  Status report (admin/reports/status) to see if
Drupal has problems with anything. Visit all your key pages to test key
functionality and also check Drupal’s watchdog log (at admin/reports/dblog if
using Database logging module or in your operating system’s syslog if using the
Syslog module). 

8. This step (Step 8 from UPGRADE.txt) only applies if you couldn’t log in and had to
set $update_free_access to TRUE in settings.php; you probably won’t have
needed to do this. 

9. Go back to Administration  Configuration  Development  Maintenance
mode (admin/config/development/maintenance). Uncheck “Put site into
maintenance mode” and Save configuration. 

Now Do It Live 
If all goes well, commit your code changes, perform steps 1 and 2 on your production site (or better, first
on a staging site), deploy the updated code to your live site, and repeat steps 6 through 10 on your live
site. See Chapter 13 for deployment recommendations. 

Drush Update 
With Drush, the process is a lot easier. It first takes care of all contributed modules that need updating.
The command for this is drush pm-update, or simply drush up.  

Remember to always try this first on a copy of your site and database before trying it on a
production site. Instead of the previous command, which combines code and database updates, you can
use drush upc to update only code, which you can commit to your repository. With drush updatedb (for
updating the database) tested successfully on a test site, you can deploy the code to a live site and
immediately run drush updated there (or visit update.php). 

Contributed module updates are discussed in a later section.  To update only Drupal core with 
Drush, use the command drush up drupal.  

As for most things Drush, see Chapter 26 for more complete coverage. 



CHAPTER 7 ■ UPDATING DRUPAL 

143

Diff Update 
Now we come to the method that I personally use. It can be made a Drush script, I believe, but I haven’t 
managed to do it yet, to my shame. So I leave it as an exercise for the reader! 

Listing 7–1 is a script for downloading a fresh copy of the latest Drupal version and your current 
Drupal version, and applying the difference. This means that in many cases, none of your changes  
to Drupal will conflict with the changes that are simply re-applied over your existing code. 

■  Tip  You should still do a diff of your current site or use the module Hacked (drupal.org/project/hacked) 
to see what has changed on your site. Preserving hacks is not recommended without knowing exactly what they 

are and why they are necessary. 

It should also be possible to generate this diff directly from git.drupal.org, which would be a more 
efficient and refined improvement than this script, but the same in effect. This improvement might be 
made to this script, which is another reason to download it from dgd7.org/update; don’t try to type it in! 
The commands for using the script are following Listing 7–1. 

Listing 7–1. Shell Script for Automating the Update of Drupal Core Using Old-to-New Version Difference 

#!/bin/sh -e 
 
if [ $# -lt 2 ]; then 
    echo "Usage: $0 oldversion newversion (optional) directory (e.g. 5.5 5.6 dir)" 
    exit 1 
fi 
 
# If you change TMP, you will have to change the -p3 option in the patch command! 
TMP=/tmp 
# Change the version below to what you have 
VER_OLD=$1 
VER_NEW=$2 
 
if [ $# -gt 2 ]; then 
  DRUPAL_DIR=$3 
else 
  DRUPAL_DIR=`pwd` 
fi 
 
# Change that to the directory where Drupal is installed 
PATCH_FILE=$TMP/drupal-$VER_OLD-to-$VER_NEW.patch 
cd $TMP 
 
# Download your current version 
wget http://ftp.drupal.org/files/projects/drupal-$VER_OLD.tar.gz 
 
# Extract it 
tar -xzf drupal-$VER_OLD.tar.gz 
 

http://ftp.drupal.org/files/projects/drupal-$VER_OLD.tar.gz


CHAPTER 7 ■ UPDATING DRUPAL 

144 

# Now, download the new version 
wget http://ftp.drupal.org/files/projects/drupal-$VER_NEW.tar.gz 
# And extract that too 
tar -xzf drupal-$VER_NEW.tar.gz 
 
# Now create the diff file 
# echo "This command, or the next one, breaks the script so you'll just have to do the rest 
yourself." 
echo `diff -Naur $TMP/drupal-$VER_OLD $TMP/drupal-$VER_NEW > $PATCH_FILE` 
 
# Now change to the directory where your Drupal installation is 
cd $DRUPAL_DIR 
 
# we'll want to see the output for this 
set -vx 
 
# Check that the patch would apply without errors 
patch -p3 --dry-run < $PATCH_FILE 
 
# turn off verbose output 
set +vx 
# turning it back off (naturally, on is a minus sign and off is a plus sign) 
 
echo "If the above dry run patch applied without errors, you can press Y to apply the patch 
for real." 
echo "If there are errors, or you just aren't ready to apply the patch, press N to abort." 
read YN 
if ( test -z "$YN" ) 
then 
  echo -e "Please enter either \"Y\" or \"N\" " ; 
  eval "$0" "$@" ; 
  exit ; 
fi 
# at this point 'YN' contains Y, y, N, or n 
if ( test "$YN" = "N" -o "$YN" = "n" ) 
then 
  exit ; 
fi 
 
set -vx 
# Assuming there are no error from the previous step, you can 
# now apply the patch for real 

patch -p3 < $PATCH_FILE 

To use the script, you need to provide the path to your Drupal site. I apologize for naming this script 
“upgrade,” although it could possibly be used to start major version upgrades, too. 

/path/to/version-upgrade-diff.sh 7.0 7.1 

If the script is in your home directory scripts, and the site at hand is ‘dgd7’ in the code directory 
within your home directory, with the Drupal installation in web, this command will work when run from 
anywhere: 

~/scripts/version-upgrade-diff.sh 7.0 7.1 ~/code/dgd7/web 

http://ftp.drupal.org/files/projects/drupal-$VER_NEW.tar.gz


CHAPTER 7 ■ UPDATING DRUPAL 

145

Contributed Modules 
It is also vital to keep your contributed modules current. The report page provided by update.module, 
Administration Reports  Available updates (admin/reports/updates), will give you a list of ones that 
need updating. Modules are really updated not by the module, but by the project; some projects contain 
more than one module, and the update page indicates the modules contained in each project with the 
“Includes” line, as shown in Figure 7–2. 

 

Figure 7–2. Contributed modules shown in the available updates report, with links for download and 

release notes of modules with updates available 

The manual way to update contributed modules is to delete each out-of-date module and untar a 
freshly downloaded latest stable release one in its place.  Then go to update.php for your site, such as 
http://example.localhost/update.php for your test and http://example.com/update.php for your live 
site. There’s really no reason to recommend the manual download approach over the automated 
options, which are described below. 

No matter how you update, first test the results thoroughly on a copy of your production site. As 
with core, always perform contributed module updates first on a local or test copy of your live site. Much 
more than with core, you have to check carefully that contributed modules have not changed their 
behavior when you update them. See Chapter 13 on deployment or Chapter 26 on Drush for automated 
approaches to bringing copies of your live database onto a local or testing environment. 

■  Caution  A module with a major version upgrade means the module maintainer is telling you that there are 
major changes. There may not even be a clean upgrade path. If you need to go from 2.x to 3.x for a contributed 
module, for instance, read the release notes carefully and test thoroughly. Expect that you may need to adjust the 
configuration of the module. The release notes are linked directly from the module’s page on drupal.org, right 

next to the download links for different versions of a module. 

http://example.localhost/update.php
http://example.com/update.php


CHAPTER 7 ■ UPDATING DRUPAL 

146 

There are two easy, automated way to do the updates. (Neither of them, however, get you out of 
testing the update before applying it to your live site.) 

Drupal’s Automated Module Installer 
To automatically update the modules that need updating, visit Administration  Reports  Available 
updates  Update (admin/reports/updates/update) on your Drupal site. Checkmark the modules you 
want to update and press the “Download these updates” button at the bottom of the form, as shown in 
Figure 7–3. 

 

Figure 7–3. The automated update page with an example of a no-longer-supported branch of a module 

and two modules needing simple minor-point updates 

It’s best to apply one or a limited number of related updates at a time, especially any with a major 
version upgrade warning, so that you can more easily identify the cause of any changes you notice in 
testing. After Drupal automatically places the code for you, don’t forget to run the database updates 
(after you try, Drupal will tell you if none are necessary, as shown in Figure 7–1). 

You can run Drupal’s automated contributed module updater locally, and then commit the code to 
bring the changes to live. This allows you to continue to follow best practice of not changing code on the 
live server. 

If Drupal’s update manager module can’t run the upgrade for you through the user interface (if it 
asks you for FTP information you are not sure you have), don’t bother trying to make it work. That time 
would be much better invested making Drush work instead. 

Updating Modules with Drush  
The Drush commands for updating contributed modules are, as mentioned, exactly the same as for 
Drupal core. By default, Drush will try to do all at once:  first all the contributed modules, and then 
Drupal core. 

For installing Drush, see Chapter 2. For much more about Drush and the great things you can do 
with it, see Chapter 26. 

At the time of this writing, there is a (long) issue (drupal.org/node/1002658) about making sure 
Drush checks for all available updates and somehow not take a minute or two looking them up (the 
behavior in the current patch). Drush will also sometimes claim that it failed in an update (because of an 
unavailable release or some other minor failure) and was unable to recover from its backups. In fact, 
Drush almost certainly succeeded in updating the code; you don’t have to manually roll anything back 



CHAPTER 7 ■ UPDATING DRUPAL 

147

and can instead run database updates, commit the code, and deploy and run database updates on stage 
and production sites. To avoid some of these issues, and as a matter of best practice for testing and 
identifying what caused (or solved) a problem, you can have Drush update one or a few projects at a 
time, such as updating only CTools and Views project code with drush upc ctools views. 

To choose modules to update when using Drush, look at Administration  Reports  Available 
updates (admin/reports/updates) to decide what you want to update and hover over the download link 
to see what project name you should give Drush. (You can also run drush up to see what updates are 
available and cancel (n) before updating anything, so as to pick and choose one to run at a time.) From 
the previous example, the LoginToboggan module’s download link is 
ftp.drupal.org/files/projects/logintoboggan-7.x-1.2.tar.gz which means the command you want 
to use to download it is 

drush up logintoboggan 

Not all projects have nearly identical human-facing and system-facing names. Image resize filter is 
image_resize_filter and Meta tags is nodewords. If there are several possible versions to update to (such 
as when there’s a new major version upgrade available), you can include the version you want, also in 
the form seen in the download link, like so: 

drush up logintoboggan-7.x-1.2 

Summary 
This chapter has served at least two purposes. It showed you several ways to keep your Drupal sites 
current, so just pick one and do it! It also showed that there are always multiple ways to do things within 
and around Drupal. 

■  Tip  In addition to there being multiple ways of performing updates, there are (or will be) better ways than 
those discussed here. Check out dgd7.org/update for new information relevant to this chapter, and stay up on 

the latest ideas and practices for all things Drupal by getting involved in the community (see Chapter 9). 

 

  



C H A P T E R   8 
 

■ ■ ■ 

149

Extending Your Site 

by Dan Hakimzadeh and Benjamin Melançon 

“There is a great satisfaction in building good tools for other people to use.” 

—Freeman Dyson 

Chapter 1 got you started with a Drupal site, Chapter 3 taught you the power of the Views module, and 
Chapter 4 gave you a sense of the variety of modules available for you to use. This chapter shows how far 
you can go building a site with fields and views, optional core modules, and chosen contributed 
modules—in short, configuring your site to within an inch of its life. 

Showcasing Authors with Profile Pages 
A multi-author book site cannot ignore its authors, so you might as well put them on the site. Authors 
who are also users of the site should be able to edit their own profiles, but it should not be assumed that 
authors will create and manage their own profile pages. You can give the Author role permission to 
create content of the type Profile and trust the authors not to create more than one profile piece for 
themselves. 

■ Tip  While building profiles on top of user accounts may seem to be the obvious step to take, it isn’t always the 
best idea. Consider an About page featuring a board of directors; while all of them ought to be able to log in and 
edit their own profiles, how many actually will? Even for a Drupal-savvy crew like the authors of this book, not all 

can be expected to join a web site on demand. Besides, does creating user accounts with usernames, e-mails, 
and passwords really make sense when the immediate need is full names, a portrait photograph, and a short 
third-person biography? Profiles of the kind made possible by Profile2 module (drupal.org/project/profile2) 

make the most sense for people certain to be active users. When profiles or biographies are meant primarily as 

content, rather than a byproduct of a user account, consider the lighter weight option of a simple content type. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

150 

Let’s get started: 

1. As shown in Chapter 1, create a new content type by going to Administration ➤ 
Structure ➤ Content types, + Add content type (admin/structure/types/add).  

2. Give it the name Author profile, and then click edit next to the automatically 
created machine name to bring it up in its own form field, enabling you to 
change author_profile to profile. 

3. In the vertical tabs at the bottom of this form, under Submission form settings, 
change Title field label from Title to Name (see Figure 8–1). 

 

Figure 8–1. Submission form settings for the Author content type: Title field label changed to Name 

4. Next in the vertical tabs, in Publishing options checkmark Create new revision 
to add it to the default options.  

5. In Display settings uncheck Display author and date information (see Figure 
8–2). 

 

Figure 8–2. Configuring a content type to not display posting (author and date) information 

6. Finally, change Comment settings to Hidden (don’t show any comments) or 
Closed (don’t allow any additional comments to be left). Both have the same 
effect if set before any comments are left. 

The author profile content type should certainly have fields, so submit the form with Save and add 
fields. Now you are on the Manage fields tab of content type. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

151

Giving Authors a Headshot Image 
Good image handling capability is included in Drupal 7 core. Under Add new field specify:  

• A label of Headshot  

• A machine name of headshot  

• A field type of Image 

■ Tip  Avoid the temptation to reuse an existing image field for a use like this. Drupal 7 does heroic work at 
allowing most field settings to be specific to the content type or other bundle the field is attached to, but both the 
option for a default image and the number of images that can be uploaded are set globally per field, not per 

instance of a field on a content type or other bundle. Even if an existing field matches the global settings we need 
for a new field now, there is no good way to separate a shared field should a global setting need to change later. 
Unless you are certain their field-level settings will not diverge, and you know you need to use the same field from 

different sources in a listing, you should create a new field rather than reuse an existing field. 

The default settings can remain the same on the instance (Author profile settings), though a 
subdirectory of “headshot” can keep the files directory more organized. Also, under Field settings, leave 
the Number of values set to 1. Providing a default image, which is optional, will help provide visual 
consistency until all authors provide headshots for their profiles. 

Linking from Profiles to Web Sites 
No web site is an island, and definitivedrupal.org should certainly link to the personal and professional 
sites of its authors (although sometimes the parable of the cobbler’s children having no shoes applies to 
the web sites of Drupal developers). If we break the rules and judge a module by its name, Link module 
(drupal.org/project/link) is the front-runner. Indeed, Link has been the go-to module to provide a 
special field for URLs since the days of Drupal 4.7 and CCK, and it still is for Drupal 7 and Fields. In 
addition to the URL, Link module provides an option for a title (the text to be hyperlinked) and adding 
CSS classes and a link target, among other things. (You could use a text field to store links, but it 
wouldn’t offer any of this.) 

Before you can add Link fields to anything in Drupal, of course, you need to install the module. 
Chapter 4 covered installing modules; here we give the Drush instructions (see Chapters 2 and 26). Also 
shown are the commands for adding the module to version control using Git (see Chapter 2). 

drush dl link 
Project link (7.x-1.0-alpha2) downloaded to                        [success] 
/home/ben/code/dgd7/drupal/sites/all/modules/link. 
git add sites/all/modules/link/ 
git commit -m "Link module for link fields." 
drush en -y link 
The following extensions will be enabled: link 
Do you really want to continue? (y/n): y 
link was enabled successfully. [ok] 



CHAPTER 8 ■ EXTENDING YOUR SITE 

152 

■ Note  If enabling Link module through the user interface, a search for link on the Modules administration page 

(as with control + f) would find it grouped under the Fields package. 

There is no configuration link on the Modules administration page for Link module because all its 
settings are per field. To begin doing anything, attach it to a content type. For this site, the content type 
that needs a Link field is Profiles, the content type for author bios. To add a link field: 

1. Go to Administration ➤ Structure ➤ Content types. 

2. Click on the Profile content type’s Manage fields link 
(admin/structure/types/manage/profile/fields) . 

3. Go to the part of the form labeled Add new field.  

4. Give it a label like Web site and the machine name website (which is 
automatically prefixed by field_) and the field type Link (see Figure 8–3). 

 

Figure 8–3. Adding a new field of type Link 

5. Link module provides only one widget (a widget displays the field on the form for 
the person adding or editing), but the Field settings that you will come to next 
give all kinds of options that affect the widget, too. Click Save and you are there. 

■ Tip  When adding a field, you can drag it to the position you want it to be in before submitting with Save. It’s 
safe and it works! (This affects where it shows up on the node add/edit form; its display position can be arranged 

on the Manage display tab.) 

6. On the Field settings page leave Optional URL unchecked–allowing that would be 
an unusual circumstance for a Link field–and leave the Link title as optional.  

7. You may want to up the URL Display Cutoff to 120 characters because we do not 
want to cut off the display of an address unless it’s going to impact page layout.  



CHAPTER 8 ■ EXTENDING YOUR SITE 

153

8. Leave Link Target set to the default, which is none, as forcing people’s links to
open in new windows is likely to confuse them, not help them get back to your
site.  

9. Finally, do not set the Rel Attribute. There are not many interesting  things to do
with rel on non-navigation links (see w3.org/TR/html401/types.html#type-
links), unless you define your own. (Do not set “nofollow,” as in the example;
doing so is disrespectful to the people who use your site and against the nature of
the Web.) An Additional CSS Class isn’t likely to hurt anything, but on the other
hand you can always come back and add it later if you want to theme web site
links specially.  

10. Now click Save field settings. 

This takes you to a second settings page, divided into Profile settings (meaning settings that only
apply to the Web site field when it is on the Profile content type) and Web site field settings (meaning
settings that will affect the Web site field on anything you may attach it to). Pretty much all of these are
duplicative of what you already filled out, but there is one important setting you have not seen before.
Down the page a little, the first of the Web site field settings is Number of values (see Figure 8–4). By
setting this, you can make your field able to be repeated and filled out with multiple values. 

This means that rather than creating a Link field for company web site, another Link field for
personal web site, another for secret project web site, and another for pet’s web site–that is, trying to
guess how many and what kind of web sites an author may be linking to–you can make one Web site
field that can be repeated some number or an unlimited number of times. 

Figure 8–4. The Web site Link field configured to allow an unlimited number of values 

Everything else you have already set. Save settings at the bottom of the form, and this field is ready
for use. Drupal takes you back to the Manage fields tab of the Profile content type where you can edit or
arrange the existing fields—or add more. 

Authors’ Other Homes on the Internet 
As most of the authors are public figures in their own right (present authors excepted), the site should
provide a standardized way of linking to their other most relevant pages (drupal.org user page,
groups.drupal.org user page, and Twitter). These could have all been made Link fields, but with more
work on the development side you can ensure consistent presentation by taking only IDs and wrapping
a link around them yourself. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

154 

■ Note  Using the Link field to link to drupal.org and other specific web site accounts would be much easier, and 

perfectly acceptable. You won’t get to the payoff for this until chapter 33 with some custom code. 

Add two fields of type Integer (note: you have to add fields one at a time through Drupal’s user 
interface, unless one of the fields you are adding already exists):  

• Drupal.org User ID, which can take the machine name do_uid  

• Groups.Drupal.org User ID, which can take the field name gdo_uid. (As always for 
fields created through the user interface, both machine names will be prefixed 
with “field_”.) 

You can immediately click past the Field settings page that comes next, as the integer fields have no 
settings to configure on this page. 

■ Note  Perhaps empty configuration pages will be removed if this issue is resolved: drupal.org/node/552604. 

Although it’s best to store the data of user IDs as integers, they should each be displayed as links to 
user accounts on their respective web sites. Integer fields allow you to define prefixes and suffixes, which 
will be used on their input and edit forms and displayed with their values. This is a per-content-type 
settings, available on the second configuration screen after adding a field. (You can return to it at any 
time, as from Administration ➤ Structure ➤ Content types ➤ Author profile ➤ Manage fields ➤ 
Groups.Drupal.org user ID, admin/structure/types/manage/profile/fields/field_gdo_uid). However, 
these are meant for currency symbols or units of measurement. Attempting to provide the beginning of 
the HTML link code as prefix and the rest of the HTML link code as suffix does not work. 

Sure enough, however, there’s a module for this. Providing a special wrapper for fields could be 
done with Custom Formatters (drupal.org/project/custom_formatters)—define a custom formatter, 
make it available to integer or text fields as appropriate, and then define the HTML code to surround the 
data. Alternatively, you can write your own module to define a formatter, which could be cleaner (one or 
two formatters with options, rather than a formatter for every field) and more extensible (say with 
something crazy like looking up drupal.org account usernames). See Chapter 33 for more. 

■ Tip  One of the great things about the field system is that we can collect data right away and finalize the display 

later.  

Save it, and you are back at the Author profile content type’s manage fields page, ready for the next 
field. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

155

A Non-displaying Data Field: Approximate Pages 
Create another integer field to hold the approximate number of pages each author contributed to the 
book. This will be used later for sorting the display of author names and profiles, described in the 
“Listing the Authors” section. Hiding it from display will then be covered, in the “Fine-Tuning Content 
Display” section, and you’ve already made integer fields, so there’s not too much to cover here! 

Connecting Author Profiles to Authors’ User Accounts 
We decided against making Author profiles tied to user accounts, but you can have the best of both 
worlds by allowing profiles to reference user accounts. 

1. Node and user references are a powerful addition to Drupal’s content type and 
Fields system that currently lives in the References project 
(drupal.org/project/references). We need to add it: 

drush dl references 
Project references (7.x-2.x-dev) downloaded to                      [success] 
/home/ben/code/dgd7/drupal/sites/all/modules/references. 
 
Project references contains 2 modules: node_reference, user_reference. 
 
git add sites/all/modules/references 
git commit -m "Added project references (node_reference, user_reference)." 

2. Enable the User reference module (and you’ll be needing Node reference later, so 
enable it at the same time).  

3. Add new field with the Label DefinitiveGuide.org account and Field (machine) 
name field_user, and of course change the Type of data to store to User reference. 
As soon as you select this, the User reference field type provides three different 
widgets from which you can choose one for entering data: Select list, Check 
boxes/radio buttons, and Autocomplete text field (see Figure 8–5). 

 

Figure 8–5. Adding a User reference field, with the three widget options shown 

■ Note  The Check boxes/radio buttons widget is radio buttons if the field is configured to allow a single value and 

checkboxes for a multiple value field. Likewise, the select list will be a select form rather than a drop-down if 

multiple values are allowed. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

156 

4. It would seem that since the site may have thousands of users to choose from, the 
only widget you can use is Autocomplete text field—since the other two both 
show all users, and choosing one out of a thousand is not a usable user interface. 
However, you’ll find on the next screen that you can limit the users that can be 
referenced by role. Therefore, choose the Select list widget, as a compact way to 
show the site users available to be chosen.  

5. You can come back to this page (the Author profile content type’s Manage display 
tab) to change the widget at any time, so go ahead and Save. 

6. You are brought to a configuration page that includes options for limiting 
referenceable users by role and status. Only users with the author role should be 
available, and there’s generally not any harm in limiting to active users, so select 
that box (see Figure 8–6). 

 

Figure 8–6. Limiting the users available to be referenced by role and status 

7. Click Save field settings and you get to move on to the next configuration screen.  

8. Not much to do here: Don’t make it a required field, don’t set a default value, and 
leave the Number of values at 1. The point of this field is to associate an Author 
profile with that author’s user account, if there is one. So click Save settings just 
to get off this page, and you are done! 

Giving Authors Permission to Create Profiles 
Permissions were introduced in Chapter 1, and you will be returning to that wall of checkboxes now and 
often as you build Drupal sites. The new content type you created, Author profiles, will be available to 
have its permissions set at Administration ➤ People ➤ Permissions (admin/people/permissions), under 
Node. 

Checkmark the Author role for two permissions: Author profile: Create new content and Author 
profile: Edit own content. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

157

■ Note  The Administrator role has not been given create, edit, and delete rights on this new content type, but it 
does not matter because the Administrator role already has the Node module permission “Bypass content access 

control.” 

 

■ Tip  Most sites should create a content editor or content administrator role that has both the Administer content 
and Access the content overview page permissions, probably the Administer comments and comment settings 
permission, and possibly the Bypass content access control permission. See the bonus chapter “Content 

Administrator Convenience” at dgd7.org/content for discussion about managing content and comments and 

creating views and other tools to make this more convenient. 

You can create an author profile or two at Add new content ➤ Create Author profile 
(node/add/profile). You should test creating a profile as a user account that only has the author role—
permissions are the most common way to look stupid by telling people to do something on your site and 
it does not work. Create a test account or use the Masquerade module (drupal.org/project/masquerade). 

■ Tip  As an administrator, you can assign content to other users when you create it or at a later date. Under 
Authoring information, in the vertical tabs at the bottom of the node add/edit form, replace the user name in 
Authored by with the name of the user you want to be the owner (author) of that content. Type patiently—it will 

autocomplete. 

You can also create users for willing authors at Administration ➤ People, + Add user 
(admin/people/create) and give them the author role right there. Finally, you can ask people to create 
their own accounts on the site, and add the author role to their user account after they register (see the 
online material for this chapter at dgd7.org/moresite for ways to set up notification of user registration). 

Listing the Authors 
The authors have the capability to have profiles now, but there’s no way for visitors to find them. The 
book site should show off the authors a little. The profiles will be shown in three ways: 

• A page, linked from the main menu, featuring a grid of author pictures and names, 
where each name and picture links to the full author profile, sorted at random. 

• A page, available from the picture grid page, with small profile pictures and the 
first paragraph or two of short biographies, each linking to the full author profile, 
sorted by pages written. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

158 

• A block, in the footer of every page, with each author’s name linked to his or her 
full author profile, sorted by pages written. 

For all three of these purposes, the Views module is the natural choice. 

■ Note  For a short time before there was an official release of Views for Drupal 7, this site displayed author 
profiles using an excellent class provided by Drupal core, EntityFieldQuery. See dgd7.org/180 for how to make a 

page of author profiles without Views and only a few lines in a custom module. 

Building the Authors Headshot View 
The Views module can reach into the data stored when administrators or authors add author profiles 
and display just part of it to make the page of names and pictures that link to their author profile pages. 

1. First off, go to Structure ➤ Views in the toolbar and click the Add new view link 

(admin/structure/views/add).  

2. On this page go ahead and name your new view. In the View name field add Author 
profiles but change the automatically generated machine name to simply profiles.  

■ Note  Once the view machine name has been chosen, it cannot be changed. 

3. Checkmark description to get the View description field and put a quick 
description such as A view to show all the author profiles. 

4. The rest of this page helps you get your view built faster. Leave Show set to 
Content (meaning nodes) and change “of type” to Author profile.  

5. Under Create a page, change the Page title that has been automatically filled in for 
you to Authors.  That’s the title that will be shown to visitors to this page.  Set the last 
part of the path URL to authors.  And change Display format to Grid of fields.  

6. Now press the Continue & edit button. This brings you to the edit view page. 
Saying that a lot can be done here is an understatement. However, most of what 
you need to do has already been set up for you based on your settings on the 
previous page. All of that can be changed or tweaked. For instance, in the Grid 
settings change the Number of columns to 4.  

■ Tip  The theme developed for the site (see Chapters 15 and 16 and dgd7.org/theme for theming) is flexible 
width and includes an inline class in its stylesheet. Changing the Format to HTML List and using the class inline 

would give more perfect results. Drupal’s separation of data and presentation lets you make this change later. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

159

7. Head to the Fields section and again click the Add button to add some fields to 
your view. Here’s where a lot of the magic happens. The Authors page 
requirements call for the authors profile image and name to be displayed in a grid 
with both the images and the author names linking to their corresponding 
authors profiles. So, go ahead and choose Content: Image (remember adding this 
to the author profile content type?) and Content: Title.  

8. In the configuration for Content: Image, remove the Label text (uncheck “Create 
a label”) and under Image style select thumbnail. Make sure “Link image to” is set 
to Content. In the Content: Title settings similarly remove the label text and make 
sure “Link this field to the original piece of content” is checkmarked. 

9. Don’t forget to save the view! 

You just created a dynamic page on your site that queries the database and displays the image and 
title from profiles nodes (and only profile nodes), in a 4 column grid format. You can visit the page by 
going to the path you entered for it; in this case, authors. 

Creating an Image Style 
You could leave the view you just made just as is. But the drawback of this is that some authors may 
upload landscape style profile images and others may upload portrait. This means that the authors 
listing page could look like a jumbled mess of long and wide images. The default thumbnail image style 
that you selected for the image field display is only set to scale images down to a certain pixel width or 
height. 

The capability of automatically resizing images is cool, but it’s not good enough and Drupal is way 
cooler. What we want are profile images that are perfectly square, then our grid won’t have so much 
white space or oddly shaped images. With Drupal’s Image styles we can easily create an image style to do 
this for us using the Scale and Crop effect. 

Can Drupal do even better? Of course. The Smart Crop module (drupal.org/project/smartcrop) 
provides alternatives to Image modules’ cropping ability. Smart Crop tries to identify the center of action 
of a picture and make that the middle of its cropping. If you want to use it, download and enable Smart 
Crop. 

■ Tip  Smart Crop tries harder than Drupal core’s image crop, but it’s not infallible. If you need images cropped to 
an exact size without cutting off anything important, try Imagefield crop 

(drupal.org/project/imagefield_crop), which has users crop their images when they upload them. 

1. First, we have to edit an existing image style (by clicking on its name or the edit 
link) or create a new image style (by clicking the + Add style) link above the table 
(see Figure 8–7). Because thumbnail, medium, and large are always provided by 
the image module, every module that uses images can count on their existence. 
Any changes you make to one of these image styles will take effect everywhere 
they are used on your site, including as the default image styles used by modules 
you have not even thought of installing yet. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

160 

 

Figure 8–7. Image styles listing page. Clicking on the Style name or the edit link under Operations lets you 

edit. 

■ Note  You can edit a module-provided image style if you want to affect every module that might use that style. 

The first time you edit, when it still has its default settings, you will have to click Override defaults first. 

2. The author views needs are pretty specific, so let’s not override a default style. 
Instead, create a new style with the + Add style link. Give it a Style name such as 
small_square, and click Create new style. 

■ Tip  As image styles are about presentation, we recommend you name them based on their appearance, not 

their use. 

3. You will be taken to the image style edit page where you can build your style by 
adding all kinds of different effects. In our case we want square images, so select 
and add the Scale and Smart Crop effect (see Figure 8–8). This takes you to 
another configuration page; set a width and height of 150px each and allow 
upscaling. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

161

 

Figure 8–8. Giving a new image style the effect Scale and Smart Crop 

4. Submit this form by clicking the Add effect button. Now you are brought back to 
the image style edit page, which includes a preview of the example image with 
that style applied. If you see a beautiful hot air balloon scene, you have a special 
prize-winning copy of Drupal! Well, not really, but the example image was drawn 
special for Image module by its primary author, Nate Haug (quicksketch). Below 
the image preview, there is the effect you just added in the list of the effects used 
in this image style and an opportunity to add more. 

■ Caution  Although image styles allow you to change their name (which is effectively a machine name), views 
and other site elements using the image style don’t get the memo. Therefore, it is strongly recommended you do 

not change your image style name, and if you do, remember to go through the site updating wherever it was used. 

5. The last step is to go back into your authors view and set the image field to use 
your newly created image style instead of the default thumbnail one. 

While you are back in your view and editing it again, this will be a good chance to also create a menu 
item for the biographies page so that your site’s visitors can access it from a menu item and not just by 
entering the path. 

Creating a Menu Link for a Page View 
Start by editing the View page display you created.  

1. Find Page settings and within it Menu: No menu. Click No menu to give it a menu 
link. (Views’ new, more intuitive user interface did not get more intuitive here, 
sorry!) Be sure to select Main menu under the Menu option, as shown in Figure 
8–9. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

162 

 

Figure 8–9. Adding a menu link to a page view 

2. Click Apply and then Save. If the link is not where you want it in the menu, it’s 
easiest to go to Administration ➤ Structure ➤ Menu (admin/structure/menu) and 
reorder the menu there. 

■ Note  You can also create menu links for View pages, as for all pages, through the Menu administration. Click 

Add link and give the path—the same way the Table of Contents menu link was created. 

Building an Author Biographies View Page, Reachable As a Tab on 
the Authors View 
The main way of showcasing the authors is the grid of images, but visitors should also be able to peruse 
the authors all at once in a listing that includes their short biographies. See Table 8–1 for the key 
elements for this display. 

■ Note  We won’t be covering every aspect of this view. Refer to Chapter 3 for any additional Views reference you 

need. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

163

Table 8–1. The Key Elements of the View Page Display 

Title 

Advanced settings 

(override) Title: Author biographies 

Machine name: biographies 

Display name: Page: Biographies 

Format (override) Style: HTML List 

(override) Row style: Node (teaser) 

Page settings Path: authors/biographies 

Menu: Tab: Biographies (weight: 5) 

Sort criteria Fields: field_pagecount (desc) 

Filters (unchanged) Node: Type = Profile 

Node: Published = Yes 

There is one more thing we have to do to make this menu tab show up on the existing author
pictures view—we need to make that page a default tab (see Figure 8–10).  

1. Go back to the profile view images display. In Page settings change the Path to
authors/pictures, and in Menu select Default menu tab.  

2. Keep the title Authors, and keep the same description.  

3. Change the Weight to -5, as this is the weight for the default tab (rather than the
link in the main menu), and it should always appear first.  

4. Click Update. For the Parent menu item, you must choose Normal menu item 
(not Already exists).  

5. Give this the title Authors and the same description, too. Put it in the Main menu
(and expect to have to adjust its weight from Menu administration later).  

■ Note  You cannot create these menus and tabs through the Menu administration user interface, only through
Views (or your own code or something else that creates menu items, not merely menu links). To be perfectly clear:

Even though you already have a menu link pointing to the path authors, you need to tell Views to create the menu
entry for the parent of the default tab. When Views creates the menu entry for you, it is creating not simply a menu
link but a menu item, which is substantial enough to peg tabs too. Also, the default tab must have a different path

from its parent menu item.  That is why the path “authors” was replaced with “authors/pictures” so that the

parent menu item could have the "authors" path. See Chapter 29 to learn about the menu system. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

164 

 

Figure 8–10. Two menu tabs, the Biographies and the default menu tab Authors, provided by your views 

■ Tip  Even if two View displays are logically related, if structurally they are too different–different filters, fields, 
sorts, etc.–performance-wise it is best to make them as separate views. If a display will be overriding almost all 

defaults, it should be a separate display (unless it is an Attachment display, which needs to be in the same view as 

the displays it attaches to). The two displays in Figure 8–10 could justifiably have been split into separate views. 

Fine-tuning Content Display 
The ability to add fields to hold all different sorts of information is great, and the ability to flexibly 
change how this information is displayed is even better. The magic happens in the Manage display tab 
of every content type. With it, you have a great deal of control over the display of your content without 
the need to theme nor do any other coding. 

Turn first to the Manage display page (see Figure 8–11) for the Author profile content type at 
Administration ➤ Structure ➤ Content types ➤ Author profile ➤ Manage display 
(admin/structure/types/manage/profile/display). 



CHAPTER 8 ■ EXTENDING YOUR SITE 

165

 

Figure 8–11. The Manage display page for the Author profile content type, Default view mode 

■ Note  This is a powerhouse of a page, and you have a version of it for every fieldable entity (nodes per content type 

such as here, comments per content type as seen in the tabs to the right, taxonomy terms per vocabulary, users, etc.). 

Figure 8–11 shows an in-progress configuration of the default display of the Author profile content 
type (which you built earlier in this chapter). The Headshot image field has its label hidden and, more 
noticeably, has its format being set to display in the large image style. Those options were opened up by 
clicking the gear icon on the right of the Headshot table row. The main content Biography field also has 
its label hidden, and the various ID and account fields have their labels placed inline. 

A field can be hidden from display by either selecting <Hidden> as its format or dragging it to the 
Hidden section at the bottom. This is the case with the Approximate pages field, which is only used for 
sorting the profile views, not for display. The order of fields can also be changed with drag-and-drop (or, 
optionally or without JavaScript, by weight textfields). In Figure 8–11, the DefinitiveGuide.org account 
should probably be placed above the multivalue web site field, so that it is with the other single-value, 
label-inline fields. 

■ Caution  Drupal warns you nice and clearly when you drag fields up and down that you need to submit your 
changes with the Save button at the bottom of the page. It does not alert you at all when you change label or 
format. Even when you use the gear to configure advanced display settings, you are not warned that these 

changes are not yet stored. (See issue at drupal.org/node/857312). In every case, none of your changes are 

saved until submitting by clicking Save at the bottom of the page. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

166 

Did you remember to click Save at the bottom of the page? Even though you clicked Update, Drupal 
isn’t saving a blessed thing until you submit the form as a whole with the Save button. Now you know, 
though it might take getting burned a couple of times to get used to it: Field display settings are not 
saved until the full manage display form is submitted. So, Save this form. 

Using View Modes to Display the Same Content in Different Ways 
The previous changes were made to the Default view settings for the Author profile content type, as seen 
in the subtab selected beneath the Manage display tab. The other tab is Teaser, which is the other view 
mode automatically configured for node content. 

When viewing the Default view settings, hidden in the collapsed fieldset labeled Custom display 
settings (toward the bottom of the page) are a set of checkboxes for view modes. For content (nodes) in a 
standard installation of Drupal core, these are Full content, Teaser, RSS, Search index, Search result, and 
Print. Two, notably, are provided by the Search module included in Drupal core. 

By default, the teaser is the only specially configured view mode; everything else, including the full 
node view, falls back on the default configuration. Selecting an additional view mode will add it to the 
subtabs under the Manage display tab. 

■ Tip  You can define additional view modes in a small custom module you write yourself (as will be done in 
chapter 33) or with Display Suite (drupal.org/project/ds). View modes (called build modes in CCK for Drupal 6) 
can be used to display referenced content when using the Node reference display formatter. View modes are also 

available when creating listings with the Views module (row style: node), which makes them a useful alternative to 
building field-based views that require a large number of fields. This is put to good use in the Anjali Forber-Pratt 

(Paralympic athlete and educator) case study (see dgd7.org/anjali). 

Modifying Teaser Display and Setting Trim Length 
The Teaser view mode is used in the view of author biographies, so you definitely want to pay attention 
to how it looks. The point of a teaser is to only show some of the content, so it’s a good time to use the 
ability to hide fields from display. 

1. Edit the teaser display (see Figure 8–12) at Administration ➤ Structure ➤ Content 
types ➤ Profile ➤ Manage display ➤ Teaser. 
(admin/structure/types/manage/profile/display/teaser). 



CHAPTER 8 ■ EXTENDING YOUR SITE 

167

 

Figure 8–12. Setting the trim length for the Author profile Teaser view mode, with all other fields but 

headshot hidden. The Show row weights link has been clicked to show the way to move fields without drag 

and drop. 

2. Change the Headshot Image style to medium and Link image to content (so that 
clicking on it will take people to the full author profile page). 

3. The field you labeled Biography (machine name body) by default for the teaser 
has the format Summary or trimmed with its trim length set to 600 character. 
(Yes, that is characters, not words; Drupal gets points off its work for not showing 
units of measurement.) To change the default trim length, you need to click the 
gear icon at the left. To force the length to never be more than 300 characters, 
change the formatter to Trimmed and set the trim length. 

■ Tip  The Summary or trimmed formatter will use an explicitly defined summary even if it is longer than its Trim 
length setting. The Trimmed formatter will always use the Trim length and ignore any summary. That means it 
takes the text it trims form the main content, not the summary. In Drupal 7, summaries are never considered a 

way of indicating the break point of the full content; if a summary is provided it is always separate and not 
considered part of the full content. Therefore, if you use textfields that allow summaries—as Drupal does by 
default for every content type, providing a body field of the type “Long text and summary”—you will likely need to 

educate users that the summary does not get shown when viewing the full content type. 

4. Hide all the other fields, and you have nice tight teasers for the author 
biographies. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

168 

Making the Table of Contents with Book Module 
Commonly, in the world of Drupal, modules already exist that will do what you want. That’s the case 
with the next DefinitiveGuide.org web site requirements to take on: The site should have a table of 
contents with optional chapter summaries that all authors can edit and rearrange. 

A table of contents made up of chapter titles and summaries is effectively an editable hierarchy of 
pages, which is precisely what the Book module provides: “A set of pages tied together in a hierarchical 
sequence,” as its handbook page puts it (drupal.org/handbook/modules/book). You don’t have to go far 
to find this module: it’s in Drupal core. Go to Administration ➤ Modules (admin/modules) and you’ll see 
the Book module says there that it “allows users to create and organize related content in an outline.” 
Sounds good! 

Although included with Drupal core, the Book module is left disabled by the standard installation 
profile. Enable it by checking the box to the left of the Book module name and submitting this change by 
clicking the Save configuration button at the bottom of the page. 

■ Note  The Book module’s in-site documentation (admin/help/book) fails to say where the module is configured 
or mention that it creates a content type. Hunting around for what has changed when you enable a module is 
something you’ll have do from time to time, but you can help make Drupal and its contributed modules better by 

improving documentation and by directly improving the user experience. Start by searching the appropriate issue 
queue and adding your observations or filing a new issue if no one has reported a problem. The issue to improve 
the Book module’s help page is at drupal.org/node/1041498. (Changes to text may not be accepted except for 

Drupal 8, and even then, improvements will only happen if we step up and do them. See chapter 38 for more 

about contributing to the Drupal community.) 

When enabled the first time, Book module runs an installation process that creates a new content 
type for you, Book page. The DefinitiveGuide.org web site plan does not call for using the Book module 
for any other purpose, so take over and edit its content type. 

■ Tip  If you want to add outlining ability to other content types, you can do so at any time at Administration ➤ 

Content ➤ Books ➤ Settings (admin/content/book/settings). 

The book content type is edited like any other (and, new in Drupal 7, can be deleted; it is just like a 
content type you create yourself). Go to Administer ➤ Structure ➤ Content Types and click Book page’s 
configuration link (admin/structure/types/manage/book), as shown in Figure 8–13. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

169

 

Figure 8–13. The edit form for the book content type, modified to serve for Chapter content 

Change the name from Book page to Chapter (you can leave the machine name as book), and 
change the description to make sense for chapter summaries. You should also make some changes to 
the options stacked neatly into vertical tabs at the bottom of the content type edit form. 

1. In Submission form settings, you can change the Title field label to Chapter 
title. 

2. Next, in Publishing options, be sure Default options has both Published and 
Create new revision checked. 

■ Tip  Turn on Create new revision for every content type. Be restrictive in which roles can delete content, and 
you can be generous in which roles can edit content with less fear of permanently losing anyone’s work. We will 

set these permissions, among others, in the next section. 

3. Then, in Display settings, uncheck the Display author and date information 
option. By default, a new node or post in Drupal includes the name of the user 
that posted it and the time it was first submitted. This should be removed on 
chapter summaries because it would be misleading to associate a chapter with 
the person who posted it, rather than the actual author or authors of that 
chapter (see Figure 8–14). 



CHAPTER 8 ■ EXTENDING YOUR SITE 

170 

 

Figure 8–14. Opting to not display author and date information (“submitted by” text) on content of a given 

type 

4. Now save the content type. The content type originally provided by Book 
module is now configured to handle the chapter summaries for the 
DefinitiveDrupal.org web site. 

Setting Permissions for Organizing and Writing Chapters 
As mentioned in Chapter 1, it’s best to set permissions soon after enabling a new module or defining a 
new content type. You’ve just enabled Book module and edited its content type, so it’s definitely time to 
review permissions. These include the permissions provided specially by the Book module and content 
type permissions for the new content type (see Figure 8–15). 

For the four permissions provided specifically by the Book module, Administrators can continue to 
have all powers, and people in the Author role should be able to Administer book outlines (to be able to 
arrange the table of contents) and Add content and child pages to books (to be able to add their chapters). 
There will be only one table of contents, so authors do not need the Create new books permission. 
Finally, the View printer-friendly books permission should be given to both anonymous and 
authenticated users, though you could reward the people who log in a little and only give the permission 
to the authenticated user role. 

 

Figure 8–15. Permissions for Book module (admin/people/permissions#module-book) 

You should also set the permissions for the Chapter content type you just modified while on the 
permissions page (see Figure 8–16). Again, let the Administrator role keep all permissions. Give the 
Author role all create and edit permissions but not delete permissions. With the Chapter content type 



CHAPTER 8 ■ EXTENDING YOUR SITE 

171

having been set to keep revisions, authors can collaborate on each other’s chapters but cannot 
permanently lose work. 

 

Figure 8–16. Permissions for Chapter (book) content type, found under the Node heading 

■ Tip  Content types that you create and most content types provided by modules will be under the control of the 

Node module and so listed under Node on the permissions table, sorted by machine name (not the name shown). 

Like most modules, once Book is enabled it adds new pages to your site’s administration. In this 
case, the Book module adds a pages to the Content section. You should now see a Books tab at 
Administration ➤ Content (admin/content), as shown in Figure 8–17. 

■ Tip  The Configure link or the Help link added next to a module’s listing on the Modules administration page can 

help you find your way to its settings page or pages. 

 

Figure 8–17. The Books content tab (admin/content/book) with its List and Settings subtabs 

On the administrative listing page for books, there is no link for creating new books. Instead, a book 
is made by creating an outline-enabled node. In the Settings subtab (admin/content/book/settings) next 
to the List subtab, you can assign which types of content can be added to book outlines, but because the 
Chapter content type was originally the Book content type provided by Book module, it is already 
selected. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

172 

Adding Metadata to the Chapter Content Type with Fields 
In order to refer to chapters without numbers while the final order of the book is undetermined, they 
should have short internal names. (In the chapter drafts, these “machine names for chapters” are used 
instead of a number to refer from one chapter to another.) This information needs to be stored with the 
chapter summaries—clearly a case for adding a field to the Chapter content type. 

1. From the content type listing page–Administration ➤ Structure ➤ Content types–
you can click a manage fields link (admin/structure/types/manage/book/fields). 
(If you’re already on a content type’s edit page, you can get to the same place by 
the Manage Fields tab, which is up and to the left with the seven theme.) 

2. While here, let’s improve the label for the main text area (body) field. Edit the 
body field by clicking the edit link 
(admin/structure/types/manage/book/fields/body).  

3. Change the Body label to Chapter summary and make sure Required field is not 
checked (keeping it optional to provide anything more than a title for a chapter) 
and click Save settings. 

4. Now add a Chapter number field (see Figure 8–18). Making this field an Integer 
type feels like the right thing to do, but unfortunately chapters include 
appendices, which take letters, not numbers. Fall back on the Text field type. 

 

Figure 8–18. Adding the final field, the Chapter number text field, to the Chapter content type, in its 

desired position on the content editing form 

5. You can pretend you still have some control over the data type by limiting its 
maximum number of characters to only two, as shown in Figure 8–19. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

173

Figure 8–19. On the first field settings configuration page after adding a new text field, set its maximum 

length. 

6. On the next configuration screen, the size of the field should not be greater than
the maximum length, so cut that down to 2, too, as shown in Figure 8–20. 

Figure 8–20. Setting the size of the textfield in the Chapter settings for the Chapter number text field 

7. Everything else can stay at its defaults, though adding help text for people who
will be putting in values for the field is often a good idea: The chapter number
(integer) or an appendix letter. 

Setting How the Chapter Content Type Displays Its Fields 
Immediately after setting up the fields for a content type (the Manage fields tab) is a good time to take a
first pass at setting how they will look when displayed (the Display fields tab). 

1. In this case, hide the labels of everything, move the chapter summary to the top
image below the Chapter number, and set the image style to large, as shown in
Figure 8–21. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

174 

 

Figure 8–21. Configuring the display of the fields of the Chapter summary content type for the default view 

mode (which includes full content view)–and setting the view mode for referenced Author content 

■ Note  This section is called “Making the Table of Contents,” but you’ll note that what you really do is make a 
table of contents possible. If this causes a little cognitive dissonance, good—you are on the same wavelength as 

most people you will build web sites for. From the perspective of a Drupal site builder, a finished site is one that 
will accept particular content, put it in the right place, and generally do everything it needs to do. From the 
perspective of a site initiator, a finished site is one that has all the content written or added. In an ideal world the 

people who will be responsible for updating content will add the content in the first place, which achieves real 
content, testing, and training all at once. You need to be certain at this point that you won’t lose their data; this is 

another benefit of capturing the development of site features in code (see Chapters 13 and 34 and Appendix A). 

2. Always put in at least a couple of examples. Chapter 4 mentions the Devel 
module for generating content pre-filled with Lorem ipsum (fake filler text), 
random images, and meaningless taxonomy terms. For quickly pasting in filler 
text there is also a Firefox plug-in (sogame.cat/dummylipsum). Whenever possible, 
however, it is best to test your functionality and design with real examples. 

3. For the table of contents, you need to start with making the “Chapter” that will be 
the top-level page and contain all the others. Go to Add content ➤ Chapter 
(node/add/book). The Chapter title in this one case is the book title, and the 
internal name can be dgd7. The summary is optional. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

175

■ Note  Book module would allow you to create the top level of the book as one content type and keep the 
children a different content type, but there was no compelling reason for the top level of the table of contents to 

have truly different functionality. 

4. The action starts with a new vertical tab on the content adding form, Book 
outline. Change Book from <none> to <create a new book>, and Drupal updates 
the page in place to let you know “This will be the top-level page in this book.” 
Don’t worry about the confusing wording, you are indeed creating a new book 
outline (see Figure 8–22). 

 

Figure 8–22. Create the piece of content that will be the top level of a new book 

■ Note When creating or editing outline-enabled content after a top-level page (and hence a book outline) 
already exist, you will be able to select that book here. You will then be given a further option to choose the parent 

item within the book for the new content you are creating. 

5. After creating your first (or any) content that is part of a book outline, you will 
note that it displays a link for adding a child page. Use the Add child page link to 
add a section placeholder and a few chapter summaries to the outline (See Figure 
8–23). 

 

Figure 8–23. The Add child page link (and Printer-friendly version link) provided by Book module 



CHAPTER 8 ■ EXTENDING YOUR SITE 

176 

Using Menu Block to Display a Better Table of Contents 
The outlining ability of Book module allows outline to go nine levels deep, but the book navigation only 
shows the first level. This means that if we divide the chapters into the Parts of the book, people visiting 
the site will only see the Parts listed below the top-level page and in the block provided by Book module. 
Surely Drupal can do better. And it can, with help from a contributed module you might not expect to be 
of help here: Menu Block. 

Even though book outlines do not show up on the menu administration pages, Book module is 
secretly using Drupal’s menu links under the hood. The fantastic Menu Block module takes advantage of 
this to let you create exactly the book navigation menu you want. Download and install the Menu Block 
module (project page drupal.org/project/menu_block). 

When installing, Menu Block confirms its quality by going the extra mile and providing a message 
with a link to where and how to administer it (see Figure 8–24). 

■ Tip  If you use Drush to install modules (drush dl menu_block; drush en -y menu_block), you still get a 

module-provided message (albeit not the link). See Chapters 2 and 26 for much more Drush! 

 

Figure 8–24. Helpful message and link from the Menu block module when it is installed 

1. Couldn’t be easier—follow the link to the usual Blocks administration page 
(admin/structure/block). There next to the + Add block link is a + Add menu block 
link (admin/structure/block/add-menu-block). Once on the Menu block form, 
immediately click over to the Advanced options tab—not to worry, it just shows 
(via JavaScript) a few otherwise hidden pieces of the form (see Figure 8–25). 

2. Block title as link will make the block title link to the top-level book page, which 
happens to mimic the behavior of Drupal core’s book block title when Show 
block only on book pages is checked. Might as well keep that behavior. 

3. What gets interesting is that for the Menu you can select Definitive Guide to 
Drupal 7—which is a book outline. In a strange quirk, the Parent item allows 
something it calls <root of Definitive Guide to Drupal 7> but the real root, 
from the perspective of the Book module, is the top-level page, which is the next 
choice in the select drop-down: Definitive Guide to Drupal 7. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

177

 

Figure 8–25. Key menu block settings for the table of contents (advanced options view required to set them 

all) 

4. Below this, as a feature provided by the core Block module, you can immediately 
configure the region the new block should show in and its visibility settings. Put it 
in the left sidebar of all but the front page by setting the Region settings for your 
theme to Left sidebar and in Visibility settings set Pages to Show block on specific 
pages: All pages except those listed, and then listing in the box, <front>.  

■ Tip  When selecting a region for a block through the main block listing administration page, the JavaScript-
powered UI will whip it away and put it in that region. It may appear at the top of that region, but it will really place 

it at the bottom when you save (until this bug is fixed: drupal.org/node/1039666). Move it to the spot you want, 

or drag it down a slot and back up (you don’t have to let go) to put it at the top for real. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

178 

 

■ Tip  If using a theme that omits sidebars on the front page, or otherwise controls what blocks get seen on what 
pages, it is important to match those visibility options in the block configuration. Otherwise, Drupal is loading 
blocks only to throw them out, never to be displayed. The Omega theme (drupal.org/project/omega), which 
allows radical changes in presentation through the UI, recommends the Context module 

(drupal.org/project/context) to determine block visibility so as not to load blocks that are not displayed. 

Adding the Table of Contents to the Main Menu 
Site visitors need a way to see the table of contents, so link to it from the main menu.  

1. Under Administration ➤ Structure ➤ Menus, click the Add link in the Main menu 
row (admin/structure/menu/manage/main-menu/add). 

■ Tip  While developing a site, you may want to add this Add menu link page to your Toolbar with the black plus sign. 

2. Put in a title for the menu link and the path to the content you want to link to (in 
this case the root book page is node number 50). 

• Menu link title: Outline of Chapters 

• Path: node/50 

• Give it a little weight, a 3, just to see where it goes 

3. The best you can do with weights on this page is guess, so don’t worry much 
about it. After saving a new menu link, Drupal takes us to a page listing all the 
links in the menu, which you can reorder via drag and drop. 

Linking Chapters to Their Authors 
With both chapter summaries and author profiles represented on the site, we should make a connection 
between them. This could be done by editing the chapter summary text and inserting an HTML link to the 
main page holding the author profile. The Drupal way, as usual, is more complicated and more powerful. 

What you’re doing in the technical sense is referencing the Author profile content type from the 
Chapter summary content type. You will see later in this chapter one way to follow the connections in 
the other directions as well—viewing the author profile and seeing the chapters that author wrote. This 
is directly analogous to the user reference field added to the Author profile content type. This time, you’ll 
configure fields on the Chapter summary content type (admin/structure/types/manage/book/fields) 
and add a node reference field limited to content of type Author profile. This same process is described 
in more detail in “Connecting Content Types with a Node Reference,” the third part of the next section. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

179

■ Tip  When the Relation project (drupal.org/project/relation) is mature (it is the more modestly named 
successor to the Awesome Relationships module), you will be able to use a field to reference any entity—for 
instance, if you had created the author profiles with the Profile2 module. Until then, the References project 

provides Node reference and User reference modules to connect anything that takes a field to nodes and to users. 

Adding a Resource Content Type That References Chapters 
For supplemental online material referenced from chapters in the book, we need to add another content 
type. 

1. Give it a name, Resource. The machine name that Drupal gives it is just fine as it 
is, resource.  

2. Give it a description, A reference page or other resource for the Definitive Guide to 
Drupal 7. Connects to a book chapter. 

3. Set the default publishing options to published and create new revision. There’s 
no reason to have any menus available in Menu settings, as resources will not be 
listed in any menu. Instead, we’ll be making links to these resources from their 
respective chapters. Therefore, we uncheck the Main menu option. 

4. Select to use the submit again button provided by the Add Another module (this 
module was ported from Drupal 6 to Drupal 7 in chapter 21). 

5. Comments can stay enabled and other settings as default also. 

■ Tip  You can administer most content type settings for all content types at once with the Content Type Overview 

module (drupal.org/project/content_type_overview) described in Chapter 4. 

The normal textarea will work fine for people to write up the resource, but we still have some fields 
to add. 

Reusing Chapter’s Image Field 
Like chapter summaries, resources can contain images and diagrams as well as written text. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

180 

■ Note  When to reuse a field, and when to create a new one? The most important consideration is whether you 
will ever want to access data for that field type from two content types at once. If the data is dissimilar even 
though it uses the same field type–such as number of miles on a race course content type and number of gallons 

in a gas tank for a car content type, both stored as decimal–create a new field. However, content types that have 
the same relationship to a taxonomy vocabulary, for instance, should share the same field, as is done with 
Suggestions, Resources, and the original Articles all using the tag term reference field on the 

definitivedrupal.org site. 

It’s possible you’ll want to create a view of all images attached to chapters or to resources and you 
do want image fields to act exactly the same on both content types. Therefore, reuse the chapter image 
field. 

Allowing People to Attach Generic Files to Content 
A basic purpose of the resource content type is to include anything associated with chapters that doesn’t 
fit in the pages of the book—meaning it absolutely needs to allow authors to upload files. This is simply 
adding another field—of type File. Give it the label Attachments and the machine name file (or really, 
anything you like). 

1. Two options unique to File fields (including Image fields, which extend the basic 
File type) are Allowed file extensions and File directory. We’ll add sql to the 
allowed extensions, so database files ending in .sql can be attached, and make the 
directory used within the files directory resource (see Figure 8–26). 

 

Figure 8–26. File field settings specific to the a content type: Allowed file extensions and File directory 

2. For the Attachments field everywhere settings, make the Number of values 
Unlimited. (Keep Enable Display field checked so that authors can choose to hide 
an attached file and link to it in the content, and for the preselected behavior 
keep Files displayed by default checked also.) 

3. Next and finally, the resource content needs a way to reference the nodes it is 
attached to, the book chapter content type. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

181

Connecting Content Types with a Node Reference 
You’ve used the References modules, Node reference, and User reference, already in this chapter, so you 
know the drill.  

1. On the Resource content type’s Manage field’s page 
(admin/structure/types/manage/resource/fields) add a new field of type Node 
reference, and on the next page you’ll get to limit it to the chapter content type 
(see Figure 8–27). 

 

Figure 8–27. Add new field to the Resources content type that will reference Chapter summary content 

2. Change the widget from the default Autocomplete text field to Select list, and 
Save the form.  

3. For Content types that can be referenced, checkmark only Chapter summary and 
Save field settings.  

4. Make it a Required field, leave the number of values at 1 and other settings as 
they are, and Save settings. 

Managing Resource Content Type Display 
Now that you’ve added all your fields, switch over to the Manage display tab 
(admin/structure/types/manage/resource/display) and do a quick tuning of the display of these fields. 
Do this for the Default view mode; resources are not expected to be seen as teasers so that and the other 
view modes can be ignored, at least for now. Hide the body label, change the file attachments display 
format to Table of Files, and make the chapter title inline (see Figure 8–28). 

 

Figure 8–28. Manage display form for the Resource content type, Default view mode 



CHAPTER 8 ■ EXTENDING YOUR SITE 

182 

Showing Content That References the Post Being Viewed 
You have made it so each Resource references the Chapter it belongs to, but how do you show these 
resources when someone views that chapter? Similarly, you have made it so the Chapter content type 
references the authors who wrote it. How, though, do people viewing an author profile get to see what 
chapters that author helped write? 

At the time of this writing, the various modules that provided this capability in Drupal 6 have not 
been ported to Drupal 7, and the new Relation project (drupal.org/project/relation) is not ready. It 
should not be a huge surprise, though, that the powerhouse module you are already familiar with, Views, 
is up to the task. Let’s do a view that shows related resources when viewing a chapter first. 

1. Create a new view. You can name it Resources (machine name will be resources). 

2. This will be an unusual view, compared to the listing page views built earlier in 
this chapter, but as usual, start with Filter. Uncheck Page, checkmark Block (the 
defaults here are fine), and Press Continue & edit. 

■ Tip  In the main Views edit page, these same filter criteria appear as Content: Published (yes) and Content: 

Type (=Resource), and here you could set more and more complex values. 

3. Next, if only to make Views stop complaining about it, add a field, of group 
Content, Content: Title. Uncheck Create a label; people don’t need to be told that 
it’s a title. Leave Link this field to the original piece of content checked. Under 
Style settings, checkmark Wrap field in HTML and give it the HTML element H4. 
Press Apply. 

Now, the most unique and important part of this view is the Contextual filters, found under the 
collapsed Advanced fieldset in the third column (in previous versions of Views, Contextual filters were 
called Arguments). This is how you can get one view to behave differently depending on its context—
that is, depending on the arguments passed in. To show all the resources associated with a chapter, the 
view needs to know what chapter is being looked at and how all resources (potentially) relate to it. A 
more technical description: to show all the nodes of type Resource when viewing a node of type Chapter 
summary, the View needs to know the node ID of that chapter summary, and it needs to know which 
Resource nodes reference that node ID. Views contextual filters provides both these things. 

1. Add a contextual filter from group fields, Fields: field_chapter (field_chapter) - 
nid. Views also provides here the information Appears in: node:resource. If you 
cannot find the field you are looking for by scanning the long list visually, nor by 
searching for the title with the Search box provided, a search in the modial 
dialog, as by typing control+f can allow you to search the “Appears in” text to 
bring you to the right field filter after a few tries. The addition of this field as an 
argument–really, an argument handler–takes care of the need to know which 
resources reference a chapter. Next, you need to hand in a chapter node. 

2. A block view is considered as never receiving any argument. This means the 
setting that matters is When the filter value is NOT in the URL, which you need to 
set to Provide default value.  

3. Once you’ve told the view that you’ll provide the default value, you can proceed 
to set this default value to the Type Content ID from URL. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

183

■ Note  Even if a node has a path alias (such as moresite for this chapter’s page online), Views uses the internal

path ('node/198' for this chapter’s online summary), so it is always able to access the node ID (198) from the URL. 

Save the view, and go to Administration ➤ Structure ➤ Blocks (admin/structure/block) to put the
block just created by you and the Views module in the region in which you want it to display. The new
block will be the name of the view followed by the machine name of the view followed by the human-
readable name of the display (which is Block by default). 

■ Tip  Views is so powerful it can be hard to figure out. It has good (and, with your help, continuously improving)
documentation through the Advanced Help module (drupal.org/project/advanced_help), but clicking to
configure and testing, clicking and testing, clicking and testing, and some more clicking and testing is inevitable at

some point. Views is also wildly popular, which means at least two things. First, you can often find tutorials on
Drupal.org and the blogs of Drupalistas for just what you need if you search for the right combination of words.
Second, Views-related questions asked in IRC (that are not so obscure that no one has done anything like it before)

have a pretty good likelihood of getting answered. 

Giving Faces to the People Posting on Your Site 
We love the people who leave suggestions and comments and would like to see their faces. Drupal has
user pictures built in (and already enabled by the standard installation profile). A module created by
Arnaud Ligny (Narno) and maintained by Dave Reid (davereid) uses the eponymous Gravatar service to
use people’s already associated avatars. (It allows the use of other services and will likely support
libravatar.org out of the box.) Download and install this module, which you can read more about at
drupal.org/project/gravatar. 

1. Configure it at Administration ➤ Configuration ➤ People ➤ Gravatar
(admin/config/people/gravatar). The module provides a large number of options
for default images, including using a default you can upload yourself with the
user module, and will preview the choices in real time as you select them (see
Figure 8–29). 

Figure 8–29. The default image provided by the Gravatar module (which is in addition to ones provided by 

the Gravatar service) 



CHAPTER 8 ■ EXTENDING YOUR SITE 

184 

2. Set the Gravatar size to be 100 pixels—the same as the thumbnail image style (see 
admin/config/media/image-styles/edit/thumbnail), which is the image style set 
for people’s uploaded pictures (see admin/config/people/accounts).  

3. For the book site, leave the Image maturity filter at G (you don’t want everything 
listed as allowed in PG fit into a single image). 

Now when people comment, whether registered with the site or not, if they are on Gravatar with the 
e-mail address they give, they’ll get their picture with their comment. 

Display Tricks: Tilting Images 
The main use for Drupal 7 core’s media styles is the different sizes you can assign, but there is a range of 
other effects you can apply to a given image style. The first step is finding where Drupal hides these 
image styles, which is Administration ➤ Configuration ➤ Media ➤ Image styles 
(admin/config/media/image-styles). 

■ Tip  You won’t see anything happen when you apply rotate or desaturate effects to an image style if your site’s 
Status report page (admin/reports/status) reports a problem with the GD library. You’ll need to install it 
correctly; see drupal.org/node/256876. (Drupal core may be changed to allow these image effects using the 

alternative Imagemagick library, as discussed 27 comments into this issue: drupal.org/node/758628.) 

Tilt thumbnails (and so user pictures) one degree up and to the left, just because you can (and to see 
if anyone notices). 

If you do not want a tilt applied to every thumbnail to appear anywhere on your site—which 
includes, by default, the example shown after uploading an image—you will instead want to add a new 
style and configure user pictures to use it specially. 

■ Note  By the time you read this, the Gravatar module will very likely support image style transformations on 

gravatar images (see drupal.org/node/334630). For the moment, the tilt you see is done with CSS3 (see Chapter 

15 and its online resources at dgd7.org/86). There’s more than one way to munge an image! 

Adding a Text Format That Allows Images 
The Filtered HTML text format that exists allows users to post content that includes basic HTML—
without allowing the inclusion of any scripts or code that could compromise the security of your web 
site. Unfortunately, malicious code can be placed in files included with the img tag, and so the ability for 
people to include images is left out. The Full HTML text format, for its part, allows images but is far less 
secure and should be restricted to administrators and other highly trusted users. (A user could easily add 
malicious or merely page-breaking code to your site unwittingly just by copying and pasting from 



CHAPTER 8 ■ EXTENDING YOUR SITE 

185

something including script tags.) Conclusion: If you want to allow unknown users to include some 
HTML, and trusted users to include images, you need to create a new text format. 

Text formats are collections of input filters. Input filters process people’s text input—when the 
content is output. The Filtered HTML text format is different from the Full HTML text format (as 
provided by the Standard installation profile) because it includes a Limit allowed HTML tags filter. The 
tags to which content is limited is configurable per text format in Drupal 7. 

The allowed HTML tags made available to content authors by default in the Limit allowed HTML 
tags input filter used in the Filtered HTML text format are a bit too limited. In addition to images, if you 
want to let people add headings or superscript text, you need to add the tags that make these possible: 
img, h1 or h2 through h6, and sup. 

1. To create a new text format, go to Administration ➤ Configuration ➤ Content 
authoring ➤ Text formats, + Add text format (admin/config/content/formats/add) 
and give it a Name like Filtered HTML Plus (the machine name will be 
filtered_html_plus).  

2. Give it the Roles administrator, author, and trusted (provided you have created 
these last two).  

3. Checkmark the same Enabled filters as Filtered HTML uses: Limit allowed HTML 
tags, Convert line breaks into HTML, Convert URLs into links, and Correct faulty 
and chopped off HTML. (Include Code filter if you installed that module when it 
was discussed in Chapter 4; be sure to set it to come after Limit allowed HTML 
tags in Filter processing order.) 

■ Note  Through the miracle of JavaScript, any filter newly checkmarked enabled under Enabled filters will appear 
under Filter processing order for drag-and-drop sorting. (Without JavaScript or in a screen reader, all options are 

provided with weight select fields.) 

4. The one change you want to make from the Filtered HTML text format is in the 
Filter settings. Here you will have a tab for Limit allowed HTML tags and will be 
able to edit the Allowed HTML tags. Here is an example of an expanded allowed 
tags list (see Figure 8–30): 

<a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <img> <h2> <h3> 
<h4> <h5> <h6> <tt> <output> <q> <sub> <sup>  

 

Figure 8–30. Allowed HTML tags configuration in the vertical tabs at the bottom of the text format form 

5. Save it all with Save configuration at the bottom, and you have a new text format 
that allows images, available only to users to whom you have given a role 
indicating trust. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

186 

Bonus: Making It Easy to Insert Images into Posts 
The authors will want to add pictures, screenshots, and diagrams to the draft chapters or bonus content 
hosted on the web site, and readers will undoubtedly want to leave comments with pictures of 
themselves with this book on Caribbean beaches and at the summit of Kilimanjaro. You can make this 
easy with two contributed modules for inserting and automatically resizing user-added images, cleverly 
named Insert (drupal.org/project/insert) and Image resize filter 
(drupal.org/project/image_resize_filter). 

You know the drill with Drush by now:   

drush dl insert image_resize_filter; drush en -y insert image_resize_filter 

■ Tip  Many modules don’t do anything until they are configured, and some do not have their own settings page 
but hide their configuration in some already-existing administration page. We always check the messages at the 
top of the page after installing modules, because some helpful modules provide notes and even links to their 

administration pages. (Drush reports back to you with the notes, but not links, when it installs modules.) 

Image resize filter does an exemplary job of self-documenting and links to the text format 
administration page (admin/config/content/formats) following the note “The image resize filter has 
been installed. Before this does anything, the image resize filter needs to be added to one or more text 
formats.” (Remember that you need to add <img> to the list of allowed HTML tags, as you just did 
previously, for Insert and Image Resize Filter to have the desired effect.) 

Edit the Full HTML and your new Filtered HTML Plus text formats and under Enabled filters enable 
Image resize filter in each (don’t forget to click Save configuration both times). 

Now you need to configure the Insert module, which at the time of this writing did not provide any 
helpful notes on installation. Its settings are hidden in each Image field on every content type or other 
entity (including comments per content type, for which you may want to add an image field and use this 
setup). 

Go to a content type and add a new image field or edit an existing image field. You can improve the 
image field for the Chapter summary (book) content type at Administration ➤ Structure ➤ Content types 
➤ Chapter summary ➤ Manage fields, click the edit link in the Image row 
(admin/structure/types/manage/book/fields/field_image/edit). You shouldn’t need to change any 
properties for this field, just make your way down to the Insert settings, which are collapsed and easy to 
miss. 

■ Tip  Double-check that you have checkmarked Enable Alt field. This is a requirement for sites to meet basic 
accessibility standards: every information-carrying image should have alternate text conveying as best as possible 

the same information as the image. Read more about accessibility in Appendix E. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

187

Expand the collapsed Insert fieldset and checkmark Enable insert button. Make the Maximum 
image insert width 600 pixels; this is very useful to make it easier for people to set the size of images they 
upload (and less likely for huge images on a page to ruin your site’s design). 

Now if users browse for an image for Chapter summary content and upload it right away, they will 
have an Insert button next to the images thumbnail. When they click the Insert button the HTML for 
displaying that image will be inserted into the text area. The magic of the Image resize filter module is it 
uses Drupal core’s image handling to make a version of the image that is the size that the HTML img 
tag's height and width properties declare it to be. This correctly sized image is cached, giving much 
better performance than if a large uploaded image stays full size and is merely resized by the browser. If 
you have a WYSIWYG set up (see Chapter 4 and dgd7.org/modules) this often becomes dead simple for 
the user: resizing by dragging the images borders. 

■ Tip  Insert module inserts the image with the full URL, so if you are doing any sort of content staging or simply 
working on the site at a temporary domain before taking it officially live, you will want to install the Pathologic 
module (drupal.org/project/pathologic) and enable its input filter Correct URLs with Pathologic (yes, yet 

another module that works its magic through the text formatting system) and configure it to convert your local, 
staging, or temporary domain to the live domain (for instance, tell it to consider http://dgd7.localhost/ as 
“local” to have it converted to http://definitivedrupal.org/ when on the live site). Pathologic can also ensure 

your in-site links and images work for people viewing your content with an RSS reader or on an aggregator like the 

Drupal Planet (drupal.org/planet). 

Limiting Access to the Suggestion Status Field 
You have hidden a field from site visitors, but how do you hide a field from people who are allowed to 
edit? That’s what you need to do for the Suggestion content type’s Status field—regular users should be 
able to submit suggestions, but only administrators should be able to set its status. Fortunately, there’s a 
module for that: the Field Permissions module (drupal.org/project/field_permissions). 

1. The Field Permissions module, once enabled, does not (at the time of this 
writing) provide a Configure link by its entry on the modules administration 
page. It does provide a Permissions link, but that is only for its own Administer 
Field Permissions permission, which Drupal has been kind enough to grant to the 
Administrator role already. There aren’t any new field permissions on the 
permissions page, yet. The magic must start elsewhere... ah, there it is, in 
Structure: Administration ➤ Structure ➤ Field permissions 
(admin/structure/field_permissions). 

2. The table on this page shows all the fields on your site and indicates for each 
whether any permissions handling is enabled for that field. Scroll down through 
the fields to the field_status row (they are sorted alphabetically by machine 
name) and click on Suggestion in the Used in column.  

http://dgd7.localhost/
http://definitivedrupal.org/


CHAPTER 8 ■ EXTENDING YOUR SITE 

188 

3. This takes you to the Suggestion content type’s Field settings page for the Status 
field. This is the same page you reach when adding or editing a field; the Field 
Permissions module just gives you an easier way to get there than Administration 
➤ Structure ➤ Content types ➤ Suggestion ➤ Manage fields ➤ Status 
(admin/structure/types/manage/suggestion/fields/field_status/field-
settings). 

4. Ignore the scary warning “There is data for this field in the database. The field 
settings can no longer be changed.” Drupal core (at the time of this writing) 
doesn’t understand that the Field permissions settings (unlike the locked 
Vocabulary setting, for instance) are perfectly acceptable to change at any time 
(see Figure 8–31). 

 

Figure 8–31. Field settings page with the new Field permissions options 

■ Note  The user interface for Field permissions may change to avoid such unhelpful warnings and other oddities, 
but the basic concepts are likely to remain the same: choose what fields you want to set permissions on, and then 
set their permissions via the usual Permissions pages. (One oddity that is unlikely to change, though, is that the 
Field permission settings are per field regardless of content type, yet can only be edited through a content type 

page. This approach is pretty baked into the Drupal 7 Field UI.) 



CHAPTER 8 ■ EXTENDING YOUR SITE 

189

5. Checkmark three of these permissions: Create field_status (edit on content 
creation), Edit field_status, regardless of content author and View field_status, 
regardless of content author. This may seem backward, marking the very 
permissions we want to take away, but that is how Field permissions module 
works: once selected, each of these becomes a permission you can edit on the 
main Permissions page (see Figure 8–32).  

■ Note  Create field may seem to be a special case of edit field, but Field permissions module does not treat it 
that way—if you had not checkmarked it on the field settings page to make it available here on the permissions 

page, all roles would continue to be able to set status while creating Suggestion content. 

6. Do heed this warning from the Field permissions module: “When permissions are 
enabled, access to this field is denied by default and explicit permissions should 
be granted to the proper user roles from the permissions administration page.” 
After you Save field settings, then, head over to Administration ➤ People ➤ 
Permissions (admin/people/permissions), and things are a little more interesting. 

 

Figure 8–32. Field permission permissions. The first permission is about access to the module itself, but all 

additional permissions control access to fields and came into being when you selected them in field 

settings. 

7. For the three permissions you made available, give them to the administrator and 
author roles. With these settings, non-administrator, non-author users will not 
have any access to the Status field. Don’t forget to Save permissions at the bottom 
of the form, and you are done limiting access to the status vocabulary on the 
Suggestion content type. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

190 

■ Note  If you only wanted to hide a field from non-privileged users on the node edit form, you could write a few 
lines of custom code implementing hook_form_alter() instead of using Field permissions module. You could of 
course write custom code to conditionally show a field based on users roles, but that’s getting to be more trouble 

than it’s worth. (In this case the site initiators can’t decide whether visitors should see the Suggestion status or 

not, so making it controllable in the UI makes perfect sense.) 

Autogenerating Human-readable URLs with Pathauto 
Doing this is much slicker than that awkward headline. The first step, as always, is getting the required 
modules. Pathauto’s project page (drupal.org/project/pathauto) requires Token module 
(drupal.org/project/token), which you have already installed if you set up a module that also requires it 
such as Comment Notify. 

drush dl pathauto; drush en -y pathauto 
Project pathauto (7.x-1.0-beta1) downloaded to                      [success] 
/home/ben/code/dgd7/drupal/sites/all/modules/pathauto. 
The following extensions will be enabled: pathauto 
Do you really want to continue? (y/n): y 
pathauto was enabled successfully. [ok] 

■ Note  If Token module, which Pathauto requires, had not already been installed for the sake of another module, 

the first line would have had to be drush dl pathauto token; drush en -y pathauto. 

Pathauto does not add a single link to the Configuration overview section of administration (nor to 
Structure or Content). If you are clever enough to look under Administration ➤ Configuration ➤ Search 
and metadata ➤ URL aliases you will find four new tabs provided by the Pathauto module.  To get 
started go to the first one, Patterns (admin/config/search/path/patterns). 

First, change the Default path pattern from containing the static text content. By default Pathauto 
prepopulates this fallback pattern as content/[node:title], but the word content is an uninformative 
space waster. Instead, use the content type machine name token, [node:content-type:machine-name], 
like this: 

 [node:content-type:machine-name]/[node:title] 

■ Tip  You can insert tokens into the text field your cursor is in by clicking on the token’s name. 

The Basic page content type can have no prefix—just use the title token, [node:title]. This means, 
for example, that your About page path might be about rather than page/about. For everything else the 
recommended content type machine name and node title should work quite well. 



CHAPTER 8 ■ EXTENDING YOUR SITE 

191

■ Note  The Suggestion content type could do better than the generic suggestion replacement. It could use its 
value for the required suggestion type vocabulary–attached to the content as a single-value taxonomy term 

reference field–once Dave Reid’s patches in drupal.org/node/691078 are committed to Token module. 

Summary 
Congratulations! You’ve built a fairly complex site. By configuring Views and other selected contributed 
modules you were able to showcase the book’s authors, present the table of contents, connect authors 
and resources to chapters, and allow visitors to participate. This is a taste of how far you can go in 
Drupal without writing any code. (You can go even farther by writing code, and after covering theming 
and module development in the next sections we will revisit this site in Chapter 33.) 

Following publication of this book, the DefinitiveDrupal.org site will continue to have 
enhancements and new features built into it by adding contributed modules and configuring both core 
and contributed modules. To follow these developments as they are done, check in at 
dgd7.org/moresite. 

  



P A R T   III 
 

■ ■ ■ 

 

Making Your Life Easier 

Chapter 9 is perhaps the most important in the book: how to engage with the Drupal community. 
 
Chapter 10 brings some more advice to bear on the critical and unavoidable practice of planning and 
managing projects. 
 
Chapter 11 is about documenting your work for clients and colleagues, because it is only useful when 
understood by others. 
 
Chapter 12 is all about getting your computer set up to help you in configuring or coding your projects. 
 
Chapter 13 tackles the matter of getting your site online and then touches on how you can continue.  
 
Chapter 14 carries a message of attaining joy from your coding or contributing by removing obstacles to 
unrestricted effort. 
  



C H A P T E R   9 

■ ■ ■ 

195

Drupal Community: 

Getting Help and Getting Involved 

by Ben Melançon and Susan Stewart 

“Drupal: come for the software, stay for the community.”  

—Dries Buytaert, Drupal founder 

You might be wondering how Drupal is made and where its thousands of contributed modules, themes,
features, profiles, and other resources come from. The Drupal community is a somewhat nebulous
concept from an outsider’s perspective. Who are these people? What makes them part of the
community? What’s in it for me? 

The Drupal community is anyone who has made Drupal better—through code, theming,
translation, support, organizing, or other avenues. Becoming a community member is easy: hang
around Drupal IRC, forums, or mailing lists and help people solve their Drupal problems. Hang around
the issue queues on drupal.org and do bug triage, test patches, or contribute fixes. Create your own
Drupal modules or themes and share them on drupal.org. Learn how to do something with Drupal, then
write or improve the documentation on it. 

There’s a lot more to Drupal than the files delivered in one of its core downloads. Drupal 7 is great.
Drupal 5 was great, too—back in 2007. Great software is constantly evolving to meet new demands.
Powering Drupal’s evolution is a living, breathing community that you can be part of. 

There is no Central Authority assigning tasks in the Drupal ecosystem; thousands of individual
Drupalistas find their own niches, all of which grow Drupal in some way. Documentation, support, issue
queue triage, patch testing, bug fixing, bug reporting, test writing, and contrib module/theme
maintenance are just a few of the many ways that Drupallers make Drupal better. 

To the new Drupalista, or the Drupal user who is looking to contribute for the first time, this may
seem like chaos. How could a bunch of strangers with different opinions, backgrounds, and motivations
come together and build something as complex as a CMS—and succeed? There is order to the chaos,
and this chapter intends to help you understand it and find your own niche in the Drupal ecosystem. 

You’ll find that during the support-giving, documenting, bug-fixing, code-writing, theming, patch-
testing process you evolve from a mere consumer to a full-fledged community member. You will
understand Drupal’s development cycle better than a mere observer could. You’ll know what to expect
as Drupal’s next version evolves because you are in the thick of getting it out. You’ll become a more
skilled, more aware, and more marketable Drupaller. You’ll also be a more influential and efficient
Drupaller; when you’re the one reporting bugs and helping to fix them, you can draw attention to the
ones that bug you the most. When you contribute code to the community, you get the eyes of other 



CHAPTER 9 ■ DRUPAL COMMUNITY: GETTING HELP AND GETTING INVOLVED 

196 

Drupallers on it; those who want to use it will help improve it and you get more return for your time 
invested. 

In short, the community member’s Drupal-foo is always greater than the consumer’s—not because 
you have to be awesome to be part of the community, but because being part of the community grows 
your awesome. 

How to Get the Most from Your Participation 
While there are many places to get your feet wet in the Drupal world, the fastest way to get into the thick 
of things is via our IRC (Internet Relay Chat) channels. The #drupal channel is something of a free-for-all 
while #drupal-contribute is dedicated to community activities—core development, contrib 
development, drupal.org infrastructure, and so on. 

Perhaps the best way to get a feel for the drupal community is to idle in our IRC channels and watch 
the goings-on. Most of us multitask while chatting, or leave our clients logged on while we are gone, so 
no one minds folks who are in the channel but don’t say anything, or who only chime in every now and 
again. It’s a great place to ask questions and an invaluable resource when one begins to wander about 
the issue queues for the first time. 

Where to Find the Community 
There are literally hundreds of places to find the Drupal community. While some venues (such as the 
drupal.org web forums) are decidedly newbie-oriented, most cater to the entire breadth of Drupal 
experience. Because this book is written in English, we’ll focus on English-language resources. Speakers 
of other languages can check drupal.org/language-specific-communities for resources in their 
preferred tongue. Chances are someone who speaks your language is already doing Drupal. 

Reading, Listening, and Watching 
There’s a great deal going on in the Drupal community at any given moment. One great way to keep up 
on it all is through the blog posts, podcasts, and videos of your fellow Drupallers. Reading and listening 
aren’t, strictly speaking, interacting with the Drupal community (unless you write or call back or post 
your own), but it’s an easy way to keep up on things, learn new skills, and get into the community vibe. 

Drupal Planet 
The Drupal Planet aggregator (drupal.org/planet) collects Drupal-related blog posts from feeds 
submitted by community members to provide a central source for news and ideas from the wider Drupal 
community. Here you can read how-tos, announcements, wrap-ups of meetups and conferences, don’t-
do-what-I-did warnings, well thought-out questions, musings on Drupal’s future, and reviews of Drupal 
distributions. In other words, you can read or watch whatever someone felt like posting that day. 

Podcasts 
Podcasts (lightly edited audio recordings of discussions made easily available online) have for several 
years been a popular, informal way for people interested in Drupal to keep up on goings-on in the 
community. Drupal podcasts (so far) are recorded, not done live, so you can’t call in and ask questions. 
Nonetheless, and in part because you don’t have to respond, they are a fantastic low-commitment way 



CHAPTER 9 ■ DRUPAL COMMUNITY: GETTING HELP AND GETTING INVOLVED 

197

to get oriented and catch some of the excitement—and downright giddiness—people have about 
Drupal. Each episode also usually has a comment thread with links and follow-ups from the podcast. 

• Lullabot (lullabot.com/podcast) is a high-profile Drupal consulting and training 
shop that has been doing podcasts since the beginning of 2006 without fail (if not 
quite on a regular schedule). These tend to be more than an hour long and cover a 
lot of ground with five or more Drupalistas participating. While at 
lullabot.com/podcast, be sure to check out Kent Bye’s excellent Drupal Voices 
series in which he interviews a different person from the Drupal community each 
time; these podcasts are usually about five minutes long.  

• DrupalEasy (drupaleasy.com/podcast ) brings long-form but more focused 
interview-style discussions on topics relevant to the Drupal community.  

• Acquia (acquia.com/podcasts), a company co-founded by the founder of Drupal, 
is focused on bringing Drupal to enterprise projects. It does short podcasts that 
usually feature a person currently making significant contributions to Drupal 
code.  

• Geeks&God, a podcast helping Christian ministries use technology, has long 
discussion podcasts that include a Drupal spotlight. These podcasts may be of 
interest for their attention to applying Drupal solutions for specific communities: 
geeksandgod.com/podcast 

Each of these sites are listed because they have a track record of releasing episodes up to the time of 
this writing. The authors will try to keep a current list of Drupal-related podcasts at dgd7.org/podcasts. 

Drupal.org Forums 
While  most veteran developers don’t frequent them, the forums at drupal.org/forum are extremely active 
and focus mostly on issues facing new users. The forums include places to post advertisements for paid 
gigs, places to get help with your Drupal questions, and more. 

Groups.Drupal.org 
Groups.Drupal.org (often abbreviated g.d.o) lets Drupalistas create groups around an interest or 
geographic area, so that it’s easy to share news and information with others who want to hear it. So, if you 
are passionate about accessibility, live in the greater Indianapolis area, or want to use Drupal for your 
newspaper’s web site, there is a Drupal group for you. If something else is your cup of Drupal tea, you can 
start your own group. 

Mailing Lists 
If you prefer to get the Drupal community delivered to your inbox, join one of Drupal’s mailing lists. You 
can find a list of Drupal lists at drupal.org/mailing-lists. Lists are pretty straightforward: send an e-mail 
to the list address (be on-topic, please!) and it will go on to everyone subscribed to that list. You can read 
and reply to list messages just like any regular e-mail. Most people find it helpful to tell their mail client to 
sort e-mail list messages to specific folders to lessen inbox clutter. 



CHAPTER 9 ■ DRUPAL COMMUNITY: GETTING HELP AND GETTING INVOLVED 

198 

Face to Face 
Drupal has two large conferences per year, many well-attended but less formal and often free Drupal 
Camps, and innumerable meetups around the world. DrupalCons are always announced on the front 
page of drupal.org, among other places. The best place to find your local Drupal Camps and meetups is 
the groups.drupal.org group for your region. 

DrupalCamps 
Drupal Camps are perhaps the most newbie-accessible of in-person Drupal events. Camps are held in 
many locations throughout the world and are usually free or exceptionally low-cost to attend. Camps are 
generally put together by volunteers from the local Drupal group and you don’t need to be a Drupal 
expert to help out at a camp. Help is always needed with setup and take-down, handing out lunch, 
recording sessions, or checking in the attendees. 

Attending a Drupal Camp is a fantastic way to learn new things about Drupal on a budget; working a 
Drupal Camp gives you all that plus a chance to network with the local Drupal community and to 
become an active contributor yourself. 

DrupalCons 
DrupalCon is the Drupal community’s twice-annual conference held in North America each spring and 
Europe each autumn. Thousands of Drupallers from scores of countries come together in one place, and 
the results are consistently astounding. DrupalCon has grown from about 300 attendees in 2007 
(Sunnyvale, CA) to about 3,000 attendees in 2010 (San Francisco, CA), and even more attendees in 2011 
(Chicago, IL). DrupalCon offers dozens of sessions on everything from community participation to the 
database abstraction layer, presented by people who create and maintain Drupal. 

However, if you only attend formal sessions at DrupalCon, you are missing out. Smaller “BoF” (Birds 
of a Feather) gatherings provide opportunities for greater interaction while learning, and impromptu 
“hallway track” gatherings are just as valuable. Moreover, each night after hours, a ragtag bunch of 
Drupal hackers gather in the Chx Coder Lounge for all-night development. The coder lounge is a 
fantastic opportunity to get a little face time with some of our most prolific contributors and/or get help 
in making your own contributions come to life. 

Drupal Meetups 
If DrupalCon or DrupalCamp feels too big for your first foray into the face-to-face Drupal world, or if you 
need that Drupal fix more often than these events are held, the answer is your local Drupal meetup. 

The most comprehensive list of Drupal happenings can be found on g.d.o at 
groups.drupal.org/events. This is a great way to find out where events are on a particular day, but 
unless you’re prepared to perhaps fly thousands of miles to Mumbai for a Drupal meetup, looking up 
events by the day may not be the most practical way to go. Instead, take the time to join your local 
Drupal group(s). 



CHAPTER 9 ■ DRUPAL COMMUNITY: GETTING HELP AND GETTING INVOLVED 

199

■ Tip  No authority bestows the right to call Drupal meetups. Anyone can do so. If you are in a place without a 
meetup group, even a neighborhood of a city, or a suburb, or just between regularly scheduled meetups, you can 
call one yourself. This is the other trick about meetups: you don’t need to know any Drupal to call or help with 

them, let alone attend! It’s better to do meetups with planning (line up at least one Drupal guru) and some 
promotion, but longtime Drupalista Cristefano set a responsiveness record by showing up at a Cambridge, 
Massachusetts, Drupal meetup called by this author with only a half-hour’s notice. More on organizing and hosting 

meetups is in Chapter 38. 

Knowing that it brings in people who may not have even seen g.d.o yet, some Drupalistas use their 
own funds to maintain Drupal groups on Meetup.com. In addition to true local Meetup.com groups, there 
is a Drupal Meetup group that tries to track Drupal events internationally (meetup.com/drupal-
worldwide). However, anyone who posts a Drupal event on Meetup.com, Facebook, or any other service is 
encouraged to post to the appropriate groups.drupal.org group. 

IRC 
For the most immediate Drupal community involvement, head on over to IRC (Internet Relay Chat). You 
can find setup instructions and a full list of Drupal’s IRC channels at drupal.org/irc. All the main 
channels are on irc.freenode.net: support questions are taken in #drupal-support, general discussion 
happens in #drupal, and anything involving community contributions can be discussed in #drupal-
contribute. There are dozens more specific channels and language-based and regional channels as well. 

IRC, like any other meeting place, has its own customs and courtesies. To help you jump in without 
feeling or looking like an outsider, here are some of the most important points to remember: 

• Ask your question in the right channel. #drupal-contribute is not the place to ask 
for help with your site; #drupal-support is. See the list at drupal.org/irc for info 
on all of Drupal channels. 

• Don’t ask permission to ask a question; that’s what we’re here for. Don’t ask who 
uses a module or if someone can help you with a problem. Do ask a specific 
question like “I have a view in a panel; how do I pass it an argument?” Assuring 
people that it’s okay to ask or giving our resumes to every visitor is seen as a waste 
of time—and is disrespectful to the work our volunteers do. 

• Ask your question to the entire channel. Only highlight someone (by saying their 
nickname in full) after they have begun to help you; this helps them easily follow 
the conversation. 

• Do not pm (private message) any user without first asking and receiving permission 
in the channel. Support is kept in the channel so that everyone can participate and 
so that volunteers have one place to track all the people they are helping. 

• Never paste large amounts (over a line or two) of code, log entries, or other text 
into an IRC channel. Instead, paste it into a pastebin (such as drupalbin.com) and 
provide the channel with a link to that paste. 



CHAPTER 9 ■ DRUPAL COMMUNITY: GETTING HELP AND GETTING INVOLVED 

200 

• Do a quick Internet search before you ask a question. Chances are someone has 
already written documentation about your problem, and it will probably be more 
detailed than what you can get on IRC, or at least it will give you the information 
you need to ask a more informed question. 

• Don’t repeat your question, especially to multiple channels. If anyone who can 
help you is watching, they will help you. If not, you should consider posting your 
question on the forums or mailing list. Repetition harms our volunteers’ workflow 
because it interrupts other conversations; in an empty channel, it alerts everyone 
to new conversation when there is none. (Trying again after half a day, or a 
different time of day, is reasonable, especially if you have refined your question 
and have an issue or forum post to which you hope to draw someone's informed 
attention.) 

• Do be polite. Everyone on Drupal IRC is there because they enjoy the support side 
of the Drupal community. When people are rude and disrespectful, volunteers get 
frustrated and burn or leave. Keeping a pleasant atmosphere makes more people 
want to volunteer their time. 

• Use correct English (or the appropriate language for non-English channels). 
Txtspk and 13375p34k (modern variants of the English language used for mobile 
and online communications) are obnoxious to some and completely 
incomprehensible to others. It only takes a few more keystrokes to use proper 
English and it makes your questions much more likely to be answered. 

“How to Ask Smart Questions” (catb.org/~esr/faqs/smart-questions.html) and “The Anatomy and 
Habits of the Common Support Leech” (binaryredneck.net/support-leech) are must-reads for learning 
what to do and what not to do. 

Newbies often find that IRC requires a bit more getting used to than the web forums. This is true, 
but the effort is certainly worth it. In return for taking the time to learn IRC customs, you get the chance 
to have your questions answered by any of the hundreds of experienced Drupalistas inhabiting these 
channels, including some of our most active contributors. 

When you aren’t asking a question, please idle (hang out) in the Drupal channels anyway. You may 
be able to help someone else with their question or even participate in a deep discussion about Drupal’s 
future. You will certainly learn something new pretty regularly. 

■  Tip  Have a thick skin. When the talented Amitai Burstein converted the popular Organic Groups project to take 
excellent advantage of Drupal 7’s new capabilities (see Chapter 5), he also changed the name and asked the 
community for its input. A respected core contributor (and by many accounts a very nice person) advised against 

the name change in no uncertain terms. Amitai noted the harshness and received this reply: “Yes—I am being a 
bit harsh to try to make clear that I think it’s really a bad idea.” If every person with something to offer the 
community (or gain from the community) left and disengaged the first time someone was unreasonably (or 

reasonably) severe in critique, we wouldn't have anyone remaining here. 



CHAPTER 9 ■ DRUPAL COMMUNITY: GETTING HELP AND GETTING INVOLVED 

201

The Issue Queues 
There are many great places to find the Drupal community, but at the center of it all are the Drupal issue 
queues. An issue queue is basically a collaborative to-do list where contributors come together to get 
things done. Drupal core and each contributed module and theme have their own issue queues on 
drupal.org. 

Drupal core’s issue queue can be found at drupal.org/project/issues/drupal, you can find a 
project’s queue at drupal.org/project/issues/projectname where projectname is the name of a module 
or theme project or from the link on its project page on drupal.org.  

Most of Drupal’s major core code and community infrastructure decisions happen in the issue 
queues; the same goes for modules and themes. The issue queues are how Drupal gets better by 
thousands of incremental improvements. Someone posts a task, bug, or feature request. Others confirm, 
comment, etc. Someone posts a patch, others test it. 

From your profile’s edit page on Drupal.org, you can check Contributor Links under Block 
Configuration to give you a list of useful links for participating in Drupal development, including several 
ways to see different kinds of issues being worked on. Chapter 38 covers a little on how to use the issue 
queues, to review or submit patches, and Chapter 37, on maintaining a project with Git, covers how to 
submit your own project to drupal.org so that others can find it (and participate on its issue queue). 
Here are some tips worth knowing before you jump in: 

• You do not have to be an expert to contribute in the issue queue. Issue triage 
(marking duplicates as such, asking for more info in vaguely-worded bug reports, 
and so on) is a huge help, as is testing the patches that others have written. These 
activities are also great ways to get to know other Drupal coders and become 
familiar with the code base. You can learn more about patch testing from Angela 
Byron’s excellent blog post at webchick.net/6-pass-patch-reviews. 

• Before filing a bug, search the bug tracker to see whether someone else has already 
filed it. Duplicates hamper progress because at best someone has to take the time 
to mark duplicates; at worst, no one notices the duplication until after energy has 
been expended on more than one copy of the same problem in parallel. 

• When you write a bug report, be as specific as possible by including relevant information 
about both your Drupal install and the environment in which you are running it. 

• Describe the symptoms of the problem or bug (or missing feature) carefully and 
clearly. 

• Describe the environment in which it occurs (Drupal version, browser, 
server, operating system). 

• Describe the steps you took to try and pin down the problem yourself before 
asking the question. 

• Describe any possibly relevant recent changes in your server setup or web 
site configuration (even if it doesn’t seem possibly connected). 

• Most importantly, provide everything others need to know in order to 
reproduce the problem. 

• When you file a bug, follow up on it. Oftentimes, the people fixing issues need 
more information in order to reproduce the problem (and start fixing it). 



CHAPTER 9 ■ DRUPAL COMMUNITY: GETTING HELP AND GETTING INVOLVED 

202 

Summary 
The Drupal community includes site administrators, programmers, designers, and themers (or front-
end developers), site owners, project managers, system administrators, community organizers, jacks of 
all trades, documentation volunteers, instructors, and even marketers spanning all six regularly 
inhabited continents. (“Noneck” Noel Hidalgo made a valiant attempt to bring Drupal representation to 
Antarctica as well, but he couldn’t hitch a ride from the Southern tip of Chile.) 

Most people fall into more than one role and often define new categories (like Noneck Noel, an 
“advocate for open communities, free culture, and transparent government”). The non-Drupal interests 
of those in the community are diverse and not cohesive, especially as many people discover Drupal 
when looking for an online platform for their own community of interest. (Indeed, Dries Buytaert 
initially created Drupal for people who wanted to talk to each other about new Internet technologies.) 
Although there is a strong sentiment that anything in a Drupal channel should be about Drupal, Drupal 
people’s other interests and qualities are being increasingly accepted as part of their Drupal identities. 
The common thread in the Drupal community is doing things with Drupal—in particular, in the words 
of Drupal’s founder: “innovating, collaborating, sharing, striving toward simplicity, and having fun.” 

What makes one a part of the Drupal community? It’s not simply using Drupal. Even some site 
administrators and Drupal programmers may not play a significant part in the Drupal community, and 
of course site visitors and participants may never even know they are using a Drupal site. 

The Drupal community is the people who participate in the Drupal community. This sounds 
tautological, yet it is the act of participation, of bringing something back, that builds the community. 
The something that we bring back does not have to be a contribution in the sense of something material; 
it can simply be our presence. Being part of the Drupal community might take the form of: 

• Sharing a module or theme with the world on Drupal.org. 

• Suggesting a line of code for someone else’s module or theme. 

• Providing a one-word correction to a comment that explains a line of code in Drupal. 

• Calling a Drupal meetup in a local café or library–or simply showing up at one. 

• Writing a blog post anywhere on the Internet about a Drupal problem solved or a cool thing 
done with Drupal. 

• Giving a useful response to someone’s question on any of a dozen means of communication. 

• Discussing business practices and Drupal 8 settings API (Application Programming 
Interface) improvements while riding in the back of a pickup truck on a side trip to go 
skydiving during a Drupal conference. 

• Demonstrating a site or asking a question (or responding to someone else’s demonstration 
or question) in person at a Drupal event anywhere in the world. 

Membership and status in the Drupal community is not based on anything like the academic 
concepts of merit or a professional certification. It’s not what we know or what credentials we have that 
matters to other Drupalistas. What matters is what we do. Chapter 34 covers some of the many ways we 
can contribute back to Drupal (which includes much more than code). 

Reading this book doesn’t make us part of the Drupal community, either. Going and doing 
something with or for the Drupal community makes us part of the Drupal community. Seeking 
knowledge from others and sharing knowledge with others, building something and bringing something 
back, both makes the community and makes us a part of it. Welcome! 

■  Tip  While most Drupal participation should revolve around the *.drupal.org family of sites, feel free to look for 
more help in getting involved with the Drupal community at this chapter’s online home, dgd7.org/participate. 



C H A P T E R   10 
 

■ ■ ■ 

203

Planning and Managing a Drupal 

Project 

by Amye Scavarda 

Welcome! This chapter is about planning and managing Drupal web site projects. You’ve seen what 
Drupal has to offer, and you’re ready to build yourself a web site. 

Consider this chapter with a bit of measured enthusiasm: building web sites is harder than it looks, 
and I have lots of silly analogies for describing the difficulty. It’s like trying to make a swing set out of an 
erector set, or like riding a rollercoaster without the rails. Get excited about the possibilities, but know 
that not everything will go smoothly. Building a web site in Drupal is also a creative process, because it 
takes thought, talent, and technical learning to meet the goals that you’ve set. The best advice for 
beginners is to remove any preconceptions about what’s easy and what’s hard. Just let yourself learn. 
Enjoy being a beginner. 

This chapter is about laying out your goals, clearly defining what you need, setting yourself up to be 
able to tackle a large project in small chunks, and learning what you need to research to be able to finish. 
It’s also about time management, a bit about project management methodologies to help keep 
everything running smoothly, and what a reasonable project plan looks like. I’ll go through the various 
parts of Drupal that impact planning, what to be aware of, and what the biggest challenges are.  

By the end of this chapter, you should be able to clearly define what it is you’d like to build and have 
a rough outline of what needs to be done where. You’ll also understand the responsibilities of the project 
manager. Even better you’ll have the ability to break those responsibilities down into manageable tasks 
and the tools to be able to complete those tasks. 

The Role of Limitations  

“It’s not what you start in life, it’s what you finish.” 

—Katharine Hepburn 

Limitations are a necessary thing to be aware of when you’re planning a project. Setting the 
expectation that you’re awesome and that you’ll have a fully built community site by this time tomorrow 
is great, but it’s unreasonable. It’s better to know your limitations, because you know what you can 
commit to in a reasonable amount of time—that’s where the real awesome comes in.  

Knowing how much time you have to devote to a project is the first step, so that when it looks like 
something really big is coming, you have clear boundaries around what effort you can put in and still 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

204 

stay sane. This is popularly referred to as “work-life balance,” but it’s really about being able to maintain 
the systems that maintain your own productivity. If you haven’t set aside enough time to be able to keep 
up with your own e-mail, personal connections, and laundry, you won’t have a life while you get this 
project done and it won’t be fun for anyone. 

It’s possible to have a site up and running in about 60 minutes, but I usually schedule 4 hours of 
time for an initial site build. I want to make sure that I can get the development hosting environment 
right, get e-mail (Google Apps) and SMTP servers set up, the DNS servers pointing at the right place, the 
Drupal install done, modules installed, a theme applied, and some content up.1 While these tasks can be 
broken up over several days with an hour or so here and there, I find that I lose track of what I need to do 
next. A fully functioning site with working e-mail and some placeholder pages gives me at least a place to 
start. 

Putting Down Your Concept on Paper 
Once you know how much time you can devote to building your site, think about what kind of web site 
you want to build. 

Here’s what I think of as the 1 to 10 scale of difficulty: 

1. is “I have an idea for a web site, but I haven’t totally decided on the concept”. 
(Also known as “I’m going to install Drupal on my own computer and play with 
it.”)2  

2. is “I have an outline of what this web site is, and I might have an idea of what the 
title is. I have a domain name registered.” (This is the bare site build that I’d 
budget 4 hours for.) 

3. is “I already have a site that I built a long time ago in Dreamweaver/Publisher, 
but I can get the content out in straight text files. I don’t want to improve it this 
week, but I’d like to migrate to a new site.” 

4. is “I built my site a long time ago, and it has a lot of content that I want to move, 
like a photo gallery or all of my blog posts going back to 2001.” 

5. is “I have a site that I need to migrate, and it had a custom design. I’d like to 
recreate that in this new system.” 

6. is “I have an idea for a new community site, I’m going to have some users, and I’ll 
start with some content.” 

7. is “I want a new community site. I have lots of content that needs to be served 
dynamically, I’m going to have a lot of users, and I want them to be able to do six 
different things to communicate with each other. “ 

8. is “I have a community site already. I’d like to move over all of the content that I 
have now. I’d like to move over all of the users that I have now. Also, I want to add 
mapping, geolocation, feeds from different sites, and private messaging.” 

                                                

1 More experienced developers may budget less time than that (maybe 2 hours). I don’t do it often enough to trust 
that I won’t forget a step when it’s important, so I budget 4 hours to give myself the breathing room to move slowly. 

2 Note: You don’t need to install Drupal on your own computer in order to be able to play with it (see Buzzr at 
http://buzzr.com or Drupal Gardens at http://drupal.gardens.com), but it’s good practice. 

http://buzzr.com
http://drupal.gardens.com


CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

205

9. is “I have three different sites that I want to move over to Drupal. They all need to
work with the users I have now, but I don’t want to change any of the passwords.
Users are going to be able to interact with each other in 10 different ways. I have a
lot of content now, but I don’t want to move over all of it, so I need to decide what
to move and what needs to be recreated in the new site. I’m also tired of my
current design, so I want to do something new.” 

10. is the same as number 9, with the addition of “I need it to happen in three weeks.
Or maybe yesterday. Can I build this today?” 

These are just some rough sketches; there are thousands of different examples for each category. My
hope is that you won’t try to tackle anything above a 6 on your own. I deliberately left out “And I’d like to
be able to sell things on my site,” because adding a store generally pushes any of these projects up a
notch in terms of complexity. So it’s possible that this scale goes to up to an 11, but anything above a 5
will usually require more than one person’s help, and anything above a 6 will require anywhere from 3 to
10 people’s time and input. 

If you have an idea of what you want to do, start taking notes about what category your idea might
fit into. What’s the purpose of your site? Who’s going to use it? If you’re having trouble narrowing it
down, try thinking about what it isn’t. This is your brainstorming space. 

Before I get too deep into the brainstorming, take a look at Figure 10–1, which shows what the
lifecycle of web site development looks like. 

Figure 10–1. Lifecycle of a project 

The difficulty scale takes this lifecycle into account. A site that’s going through the first phases will be
much less complex than a site that’s moving through the fourth iteration. Sites that are more established
are not starting from a bare idea anymore; they have established content, or established users, or they’re
moving from a system that isn’t fitting all of their growth needs anymore. Consider that your project, too,
may need to grow over time. Drupal is pretty good about accepting input from a wide variety of sources
and outputting information in a wide variety of formats. It’s flexible, but it’s just a tool to put your
requirements on paper. Let’s walk through the project lifecycle using the stages in Figure 10–1. 

1. Discovery 
If you’re just starting out, you’re in the discovery phase: What do I want? What does it need to do? What
does it look like? Who’s participating in this project? Who are the decision makers? 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

206 

Project plans come out of discovery; these plans inform the rest of the lifecycle. They’re the guiding 
documents that help determine the scope and schedule of the project.  

2. Information Architecture 
Information architecture is about taking those brainstorms and putting them down concretely. 
Wireframing lets you build a prototype of what information the pages will contain. Think of it like the 
blueprints for a web site, just like an architect draws plans for a house. Figure 10–2 is an example of a 
video site wireframe created in GoMockingbird. (http://gomockingbird.com). 

 

Figure 10–2. Example of a wireframe 

This lays out information on the pages. There’s a title for the whole site, which could also be an 
image. There are login and signup links, which means that there are users for the site. There’s a search 
bar and links to Facebook and Twitter. There’s a main content area where videos and text live. There’s a 
sidebar for related content. This wireframe provides a visual reference that the designers can work with 
without having to recreate a web site from scratch. 

Another part of the IA stage are functional requirements. Functional requirements are meant to 
capture all of the features that the site needs to have and what it needs to do. Functional requirements 
are not the “how” but rather the “what.” If you’re able to answer what needs to happen in plain English, 
that’s the start of the functional requirements. 

3. Design 
Once you have the wireframe of where everything goes, the design stage puts clothes on it, adding a look 
and feel. Colors, fonts, how the site will look—it all happens here. After the design is complete, it will 
look like a web site, but it’ll be just a Photoshop file. Warning: there’s the expectation that anything that 
can be done in the Photoshop file can be exactly matched by the web site. Sometimes a Photoshop file 
goes beyond what’s possible. Expecting an arrow to be exactly 3 pixels away from the link will lead to 

http://gomockingbird.com


CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

207

disappointment in the end. Changing the expectations to reflect that there will be an arrow next to a link 
is much easier to fulfill. 

4. Development and Implementation 
If the functional requirements are the “what”, development and implementation (along with the 
timeline and project plan) are the “how.” All of the things that you said you needed—this is where you 
decide how long it’ll take and who’s going to make it happen. This is where the wireframes get put into 
an actual working site, the design gets added, and the site starts to look like something that you’d see in 
your browser. But there’s still something missing. 

5. Content 
The soul of a web site is content: stories and photos and videos. This is the stage of the project where you 
add the content. It’s also leading into the quality assurance phase where you make sure that it works like 
you expected it to and it looks like you expected it to. If it doesn’t, you either fix it or change your mind 
about what you need. 

6. Deployment/Launch 
Your site is completely done. It’s ready to go live, but if you’re doing it right, you have two separate 
environments: one for development that you can tinker with, and one for production that is the site the 
world sees in a browser. You’ll need to migrate everything from the development site to the production 
site. This takes a bit of time and work. 

You also need to check all of your work. Do the links work correctly? Did you remember to turn on 
the automatic path creator when you were adding content, so that /node/X isn’t the URL? Did all of your 
images move over correctly? Did you lose the files directory in the migration? Is the theme working 
correctly for IE6/IE 7/IE8, Firefox, and Safari? Check your views to make sure that they’re formatted 
correctly and display what you want. Did the favorite icon on the top of the URL bar in the browser get 
lost? This is also your chance to test multiple user roles. Can an anonymous user see things you didn’t 
intend? Check and make sure. Keep a spreadsheet handy and note everything you need to change before 
you change the domain to point to your new site.  

7. Maintenance 
Your project will probably need updating as it goes along: modules get updated, Drupal core gets 
security updates, and new versions of Drupal come along. Eventually, you’ll want to take advantage of 
new features or a new design, or you’ll want to change the site entirely, and so the lifecycle will begin 
again. 

Project Management Methodologies and Drupal 
The lifecycle phases get documented into an overall project plan, and that project plan is also directed 
by methods to help you succeed. There are a few ways to think about this and some project management 
methodologies to touch on here. Drupal has adopted two basic methodologies: the more traditional 
“waterfall” style and the more iterative “agile” style. 

Waterfall comes out of traditional project management. The planner assumes that there are a finite 
number of tasks, however large the list of tasks list may be, and that each of those tasks can be put in a 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

208 

sequence to bring the project to completion. Every task is estimated and known ahead of the start of the 
project. This style is usually used in large construction projects or projects that have a very concrete 
deliverable at the end. Waterfall also usually works off of an exact budget or an exact timeline. For 
example, when I’m planning an event, like a conference, I tend to use waterfall as a guiding principle to 
keep everything on track. I know that I can’t adjust the timeline, so I do what I can do within the 
timeframe and make it work. 

Agile is an iterative process for planning your projects. It assumes that you don’t have as much 
knowledge about the finished deliverable. It’s a collaborative process with all of the people who have a 
stake in the project. It emphasizes teamwork in planning, short bursts of development, and feedback at 
the end to adjust the project goals. I tend to use agile when I have an internal project that doesn’t have 
billable hours attached to it or a project that doesn’t have a very firm deadline. Agile works well to kick 
off a project that doesn’t have enough information to let waterfall be effective; however, agile isn’t 
helpful when trying to finish a project that has a set launch date, a concrete budget, and many required 
features. 

Knowing both of these approaches is useful, because a Drupal project benefits from a combination 
of the two. In Table 10–1, I’ve broken out the tasks into tasks that benefit from a waterfall approach and 
tasks that benefit from an agile approach. 

Table 10–1. Waterfall and Agile Breakdown by Drupal Project Stage 

 Drupal Tasks That Use Waterfall Drupal Tasks That Use Agile 

Discovery Documenting the project plan,  
timeline planning 

Brainstorming 

Information Architecture Functional requirements Wireframes 

Design (Very little about design work fits  
with waterfall) 

Creating design layouts 

Development Only on a high level matching of 
functional requirements 

 

Building out all of the features in a 
site, creating the site. 

 

Content Staging Deciding which content is added Active work works best in sprints 

Quality Assurance Matching with functional  
requirements 

Not as effective 

Deployment/Launch Checklists for launch Not as effective 

Maintenance No methodology preference No methodology preference 

In general, if the project has a lot of uncertainties, agile will make for a better end product. You’re 
better able to add more features later on in the process as you get more familiar with the project and its 
needs. 

Waterfall will allow you to sketch everything out ahead of time, leaving very few uncertainties. You’ll 
know when you’re launching, what your minimum viable product is, and how much it’ll cost. As you 
become more familiar with the project, you may not be able to take advantage of some brilliant thoughts 
without changing the scope of the project.  



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

209

Site building and implementation is where “agile-fall” comes into play. Your team will probably 
work better in a focused agile environment to complete tasks, but your client may not be comfortable 
with watching agile happen. The project manager can lay out the lifecycle in a waterfall style (I’ll be done 
with X by this time) but manage the team’s work through agile user stories. It makes development and 
project management a lot less stressful if you don’t have to explain how agile works at the same time as 
you’re trying to discover what a client needs for a project. 

Taking the Lifecycle into Account on Paper 
You now have a good idea of what you’re building and a rough idea of how to structure it. Now you need 
to answer these questions: 

• Why you are building this? 

• What it’s going to do? 

• When will each stage of the cycle be complete? 

• When did they need to be completed? 

• What needs to happen within each phase? 

• Who’s going to do this? 

Understanding the complexity involved is helpful. This will all come together in the project plan.  

What’s a Project Plan? 
A project plan is a document that speaks to the purpose and methods of a project. It defines what’s at 
stake in the project, who the main stakeholders are, the scope of the timeline (as well as what that 
timeline is driven by), and the outcomes of the project. It also breaks down what happens in what order 
and who’s both responsible and involved for each phase. It is a client-facing document because it’s 
designed to create alignment between everyone involved. When a project plan is complete and clear, 
everyone knows why this project is being done, what sense of urgency is attached to it, and when the 
project is potentially launching. When it’s done right, a project plan doesn’t gloss over the hard parts: 
how difficult the project is, how fast it needs to be done, and who’s actually committing to making it 
happen. 

Purpose is a distinct part of the project plan, although it can be no more than a few sentences. With 
a startup, it can be: “This is the public face of our new start-up. We want to show off what we’re working 
on and get our first sale.” With a larger, more complex project that’s migrating from an existing platform, 
the purpose can be: “We want to update our web properties to take advantage of a new level of customer 
engagement. We want to be able to have more satisfied customers and more sales.” For a community 
site, “I want our users to find content that is relevant to their needs.”  

The purpose statement should be written in plain English: it articulates the goals of the project. 
Print it out. (Yes, a dead tree.) Keep it around for tricky meetings—those meetings where everyone 
comes to the table with something they’re invested in seeing happen for the site, well after the scope has 
already been determined. This purpose statement can also be used to answer questions such as “Does X 
idea help fulfill our purpose? Is it worth changing the scope to incorporate this?” The purpose statement 
will help keep your project on track. 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

210 

Example Project Plan for BeachHouse Non-Profit 
Mission: BeachHouse is a nonprofit that wants to update their web properties to take advantage of 
online event management and donations. 
Features: 

• Static pages that are easily updated by non-technical staff 

• Images on pages 

• Documents available for download 

• Donations 

• Events 

• Email newsletter signup 

• Photo gallery for past events 

Timelines: 

• Week 1: Kickoff, discovery, and planning, June 18 - 25 

• Kickoff meeting on Friday 

• Project plan and review on Monday

• Layouts for home page, i ternal site pages 

• Thursday meeting: Theme discussion with site view, layout review  

• Week 2: Initial site build, June 28 - July 3 

• Monday: choose theme 

• Site map for content 

• Feature review 

• Content strategy overview 

• Content types documentation 

• Roles documentation 

• Week 3: Alpha site build, July 5 - 9 

• Monday: Themed site up and running 

• Wireframes for landing pages built 

• Content types built 

• Feature functionality built 

• Initial roles and permissions built 

• Thursday: review 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

211

• Week 4: QA, July 12 - 16 

• Monday: Review of site map 

• Content staged by development for landing pages  

• Content types, roles, and QA 

• Donations tested 

• Thursday: Review 

• Week 5: Content Staging, July 19 - 23 

• Monday: Site review with available content  

• Content staging 

• Content checklists 

• Thursday: review 

• Week 6: Beta Site, July 25 - 30 

• All content complete for launch 

• All QA completed 

• Site launch on Thursday, July 29 

• Week 7: Post-Launch Support, August 1-7 

• Training screencasts reviewed with staff 

• Support time 

• Maintenance contract discussions 

Estimating Completion Dates 
Remember: Dates in Calendar Are Closer Than They May Appear. Be careful; allow yourself a reasonable 
amount of time according to what you’ve done before. In an ideal world, it might be possible to turn 
around a fully themed, content-complete site in less than two weeks. A site that will involve a lot of 
custom development or one that requires migrating from a legacy system will require more time. 

To start with, go through the lifecycle on paper. How much is there to discover? Will you have to 
spend a week of active work reviewing the legacy site before you have a good idea what’s there? Does the 
client want a very complex design? Plan for 30% more allotted time for a few revisions of design. Are the 
features they want something you’d heard about someone else doing? Have you installed those modules 
on another site? Your development estimates will be much lower if you don’t have to build modules 
from scratch, but leave time for configuration. Estimating your time is a major part of succeeding at 
projects and keeping everyone satisfied with the pace of work. 

What Happens If I Don’t Do Anything? 
Be willing to raise this question in the planning process. When the purpose is defined, it also raises other 
possibilities. If your community site doesn’t have content that resonates with your users, what happens? 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

212 

They might never come back and you could lose your advertising revenue and go out of business! It’s 
possible, so you should be sure that you’re doing the absolute best thing you can be doing for this 
project to support the business behind it. The answer may be that you shouldn’t do this project until X is 
in place. If a project isn’t set up to succeed, it won’t, and there will be many awkward conversations. I 
guarantee it. 

Risks 
One of the biggest risks in a project is the integration/migration of the old system with current systems. 
This problem is usually compounded by the need to have the new site done yesterday in time for x event 
or y publishing event or z holiday. Whenever possible, those hard deadlines need to be known and 
factored into the plans. However, ours is not a perfect world: things happen and hard deadlines don’t get 
met. For those deadlines, defining a minimum viable project is critical to maintaining the relationships. 

When everyone knows what the minimum is, they know how bad it can be. It can also sometimes 
have the opposite effect, turning the project’s deliverables into a “race to the bottom,” cutting down on 
deliverables until the minimum amount of work is expected. It’s the project manager’s job to hold both 
ideals: the amazing web site project that was created in sales, and the bare bones version that will meet 
the client’s needs, if not their expectations. 

Minimum Viable Project/Product 
This is the bare bones project that will meet the purpose of the project. This will probably not meet 
everyone’s expectations for features or designs or both. For some projects, the MVP can be a domain 
name with a simple splash page featuring a logo and a color palette; it’s a version of a “Coming Soon” 
page or the “Under Construction” icon.3 Or it can be a newsletter signup or a contact form that gives the 
wider audience an opportunity to engage with the project, a series of static pages that speak to the 
project’s mission. Think about the minimum that needs to be available at a given date when there’s no 
engagement from the client, when the development team has been stalled by a tricky problem, or there’s 
a change in the main stakeholders of the project. Laying this out in the project plan helps set the 
expectations of what’s needed versus what’s wanted; it’s crucial to laying a foundation for expectations. 
Define this at the beginning, and then it’s a question of being able to build up from it or scale down to it. 

Keeping Track of Commitments 
There’s an estimated completion date, the milestones have been laid out, and there are clear deadlines. 
Something else is missing: the tracking/ticket system. This system needs to be something that will hold 
deadlines and help manage accountability for the entire team—including you, the project manager. It 
needs to track milestones and tasks against dates, and have a way to change the status of a task. It’s also 
useful if it has a reminder system through e-mail or SMS. 

Here are some personal favorites: 

• Unfuddle 

• Basecamp 

• ManyMoon 

                                                

3 I rarely recommend the “Under Construction” icon. It looks like 1998 called and wants its Web back. But if you’re 
into that sort of thing, great! 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

213

• 5pm 

• LiquidPlanner 

• Teambox 

Note that none of these are Drupal-based task management systems. This list is about being able to 
manage large and small projects with ease. A system is for peace of mind, and the ability to manage 
more than one project at a time. When something is added to the ticket system, it’s visible to the entire 
team that’s working on it. Nothing is forgotten in an e-mail inbox somewhere, and there’s a record of 
what’s happening when. 

So from this point on, everything is about putting this project plan into action. I’ll let you in on a 
secret: you’ve already done a lot of the hard part. The build is not all smooth sailing, but you now have a 
road map. 

You’re now the project manager in charge. It’s your main task to keep everything else organized, 
working on the right thing at the right time, and making sure that everything finishes when it’s supposed 
to. You’re also going to be the main person who communicates with the people who matter to the 
success of the project. This may be the people who are sponsoring this new web site within your 
organization, or the people who are paying you for it, or even Mom and Dad, if you’re building Mom and 
Dad a blog. You’re going to have to be able to ask questions without expecting the answers, and you’re 
going to have to translate Drupal-speak into human language. On a good day, it’s actually a lot of fun. 

I’ll lay out most of the events of a project manager having a good day, so that you’ll be able to have 
more good days and less bad days. 

Project Manager Tasks Beyond Development 
The project manager's job doesn't end after the project plan. You're now in charge of producing the 
project through kickoff meetings, design meetings, check-ins, and milestone closing meetings. This is 
the “Day in the Life of a Project Manager.”  

Kickoff Meetings 
These are the meetings when introductions happen, when all of the team gets to see each other for the 
first time. Finding out who’s filling each role on the team is critical, and I find that face-to-face meetings 
have a much better outcome over the whole life of the project. This is a relationship-building time where 
everyone makes sure that they’re talking about the same thing. Some terms might come up that people 
don’t understand, so here’s a quick glossary of some words I use when I talk about Drupal in a project 
kickoff meeting: 

• Wireframe: The nonworking prototypes for what a site will look like. It’s a skeleton. 

• Mockup: Photoshop or other files that take the wireframe and add a look and feel 
to it. It looks like a full site, except that nothing works. 

• Layout: How information (graphical or otherwise) is laid out on a page. 

• Concept design: Another term for mockup. 

• Theme: A set of files that change the look and feel of a web site. This is where 
design is involved. 

• Module: Pieces of functionality that can be installed into Drupal. It’s the system of 
interchangeable parts. 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

214 

• Features: A set of files for Drupal that combine the functionality of a lot of different 
modules into one. It’s sort of like interchangeable engines over interchangeable 
parts. However, the word “features” is also used to describe the simple functions 
of a site. 

Design words for Drupal are more difficult because design is usually the only part of the site that 
most non-technical people can touch. You can see it, you can describe it, and it’s something that you’re 
comfortable looking at. Expect kickoff meetings to usually run about an hour or two. You’ll be discussing 
the project plan, timelines, and resources for the project, and agreeing on any modifications. 

The questions that everyone will want answered include the following: 

• What are we building? 

• Who will be working on it? 

• Who’s responsible for which part? 

• What’s the project cost? 

• When will it be done by? 

• Bonus question: What’s driving this project? 

Ideally, this will not be the first time that everyone in the project will have thought of these 
questions, but by the end, you should have the same answers. 

Discovery Meetings 
These are the brainstorming meetings. They’re unstructured; there isn’t a whole lot of deciding that goes 
on in these meetings, but they’re integral to the success of the project. Documenting what comes out of 
these meetings is challenging, but it’s invaluable to the designers as they put together concepts. 

The following questions get answers in these meetings: 

• What are some other sites you like? 

• What features do they have? 

• What do you not like? 

• What message do you want to convey through design about your site? 

• What are some examples of this that you’ve seen on the Web? 

Know your own abilities here, so that you don’t promise to implement the latest Facebook redesign 
for your first Drupal site. It’s easy to get carried away with design, so be careful. Prioritize features over 
design if at all possible. 

Information Architecture/Design Meetings 
These meetings usually involve a deliverable of a wireframe or a concept design. They’re meetings with 
the project manager, the information architecture expert, the designer, and the clients. It’s a discussion 
about the features and what needs to be added, removed, or changed. It’s also a conversation about the 
look and feel of a site: too light, too dark, wrong treatments, more rounded corners. These meetings are 
better if they’re short (30 minutes) and frequent (twice a week) until the IA expert and designer have 
reached their final drafts. 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

215

The following questions get answers in these meetings: 

• Is everything where it’s supposed to be? 

• What’s missing? 

• Out of these three designs, what elements do you like best? 

• Is this the final design, or do we need another round of revisions? Based on the
estimates, we’re X dollars through the design phase. Adding another round of
designs will increase the budget of the entire project by Y. Is this something that
you want to do? 

This is where budgets will start to get pinched. Watch carefully and be transparent about what
resources are available. 

Development Meetings 
These meetings are usually internal between the project manager and the developers. They lay out
what’s been done, what’s left to do, and what’s blocking things. In agile, they’re held daily and they’re
very short—no more than 20 minutes. These development meetings help coordinate the development
team, make sure that everyone else knows that progress is being made, and can jointly solve problems.
These meetings happen through the life of the project. 

The following questions get answers in these meetings: 

• What am I working on? 

• What’s next? 

• What things will be/are a blocker?  

Checkins 
The project manager is the one that goes back and forth between the developer team and clients to make
sure that questions are being answered. This requires translating between development and the client;
the content will change depending on what phase of site building is occurring.  

The following items are covered in these meetings: 

• This is what we are working on. 

• This is what’s coming next 

• What do we need your help on? 

• How’s your content coming? 

Milestone Closing Meetings 
As a phase of the cycle gets closed, the project manager, lead developer and client meet to make sure
that everything that needed to get done during the phase has been completed and that the next phase
can begin. If any changes need to be made, they should be small, or this will also turn into a change of
scope conversation. 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

216 

The following items are covered in these meetings: 

• Here are all of the tickets we closed in this project. 

• Here’s where this is on the development site.  

• Does this need to be added to the next phase, or is this complete? 

• If we change this, it will add X amount of time to the project. Is this OK, or what 
else needs to be dropped to make this happen? 

Launch Meetings 
The final meetings before launching the site are when all of the developers, the project manager, 

and the client get together and discuss any final changes before the site goes live. If communication has 
been good all along, there will be no major surprises in this meeting. If something has gone awry, this 
meeting can bring up unpleasant surprises. As the project manager, you need to match any requests in 
this meeting with the functional requirements document. If it wasn’t in the functional requirements 
document, it shouldn’t be on the table for this particular meeting; it should be pushed out to a future 
phase of work.  

The following items are covered in these meetings: 

• Everything is done according to what we talked about before. 

• What small changes need to be made? 

• All of our content is here accurately. 

• We’ve tested our work on the production site and we’re ready to take this project 
live. 

Post-Project Debriefs 
Sweet! The site’s live, everyone’s happy, and now the team can sit down and talk about what went right, 
what didn’t go so well, and what could be changed. This is usually an internal 
design/development/project management meeting because candid feedback is the main goal of this 
meeting. 

Other Tasks for Project Managers 
Outside of all of these meetings, a project manager has real tasks beyond tracking what's going on in a 
project. The project manager helps to create clarity around what is happening and why.  

Creating User Stories 
One of the best ways to know what the expectations are for your project is to break the scope down into a 
series of stories. What should a user be able to do? What kind of things should an administrative user be 
able to do? These are larger stories that tell concrete things, not a series of tasks. They will probably be 
written throughout the project, not just at the beginning. They’re easy to take to the entire team as an 
explanation of what each element needs to do. 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

217

Here are some structures for the user stories: 

• I want to [do something] with [x part of site] so that I can [reason]. Example: I want 
to be able to bookmark things within my profile so that I can find them again. 

• As a [role], I want to [goal], so that I can [reason]. Example: As an administrator, I 
want to delete comments on a post so that I can moderate my site’s user-created 
content. 

A traditional agile workflow has these stories written on small cards: story, some concept, and 
confirmation that it works. These three things have to be present so that any single team member could 
complete this task without being dependent on another card being completed. It’s a great ideal. More 
often, teams aren’t big enough to need this sort of interchangeability, so these user stories serve as 
reminders for what complete features look like within a site. 

Implementing Tasks and Task Workflow 
Out of user stories, you’ll need to create tasks. Tasks are small concrete things that need to be 
built/done/taken care of, and they integrate into a full workflow. Most ticket trackers can support this: a 
task can be in different workflow states. 

A task will start out as “new” and will move to “assigned” after it’s been assigned to a team member. 
That team member can “accept” that task if they feel like they have enough information to complete it. 
The task can also be “rejected” if the team member feels that it needs more clarification or shouldn’t be 
done right now; the project manager and team member should discuss it with the whole development 
team or the client.  

When a task has been completed, it will move to “resolved,” and then it’s the job of Quality 
Assurance (QA) to test it and confirm that it works as designed on a variety of platforms. 

A task can be “closed” when there’s no further action needed, or QA can “reopen” the task if there’s 
something that needs to be changed. QA can report bugs back to the PM and development team. 

It’s helpful to have a separate bug tracker that isn’t in the same space as a development workflow. 
The actual workflow is the same, but a different system allows for separation of development and fixing. 
Giving a client access to the bug tracking system (not the entire development ticket system) is helpful to 
move the project forward because it is easier to ask for and receive focused feedback. 

Tasks are not always all in development. Design tasks can be to create Photoshop mockup for 
BeachHouse or create HTML/CSS layouts from approved mockups. Project management tasks can be to 
create project plan or populate discovery milestone with tasks. Tasks are assigned to milestones, with all 
of the estimated times for each task added together to create that milestones. 

Tasks That Make up Milestones 
When all of the tasks in a milestone are completed, the site can be reviewed by both the client and the 
project manager for approval. There’s usually some time built into the project timeline to account for 
necessary review time before the meeting. 

It’s helpful for all sides to see what was accomplished, what’s working, and what’s left to do. These 
milestone sessions are also a good time to review the budgets. Ask the following questions: 

• Based on the amount of work that’s already done, how are our budgets looking?  

• What’s left to complete in the project?  

• Do I have the budget for the next phase?  

• If I don’t have enough budget, what can be cut to make this work, or how do I get more budget?  



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

218 

Take the time to review and prioritize the next steps, and be honest about the project scope and the 
budget. 

This can also be a time where things get added that weren’t originally in the scope. It’s the project 
manager’s job to keep the original agreed-on scope in mind, manage the budgets to be able to meet the 
expectations, and get the project completed. Reviewing the scope before each milestone meeting is the 
best way to keep on track, but it’s a struggle. The project manager has to set the tone; the best way to do 
this is to remain consistent throughout the entire project. 

Bad Days 
All of the above events and tasks happen as a normal part of a project manager’s life. A bad day is when 
pieces of your project break, aren’t meeting the expectations of a client, or are pushed aside entirely and 
forgotten.  

You’re the keeper of the relationships in all of these projects, and while it’s your job to make sure 
that the project gets finished, sometimes that also means putting egos away and having the tough 
conversations. 

Tough conversations include: 

• “I need more communication.” 

• “I need more focused communication.” 

• “I’ve already talked about that, and we said we were done.” 

• “This is what it will take to change course.” 

• “We’re out of budget.” 

• “I can’t implement that design.” 

• “We’re behind schedule.” 

Having the tough conversations is no fun, but not having them is worse in the long run. Don’t let 
this happen to you! Take a deep breath. Be willing to have these conversations when necessary. 
Document what you needed to do, how you did it, and the outcome. Every conversation can be handled 
in a way that gives a good outcome for both parties. A good template is: 

• What happened 

• Taking responsibility 

• Your team promises to do X by Y 

• What happens next 

Be willing to take a few hits for the team. Promises will get broken. Tests that should have happened 
won’t happen. Designs that should have been delivered won’t be. Content that should have been added 
won’t be ready in time. E-mails will land more harshly than intended in stressful moments. It will feel 
awful. 

If you can, let the rest of the team in on those calls/meetings. Let them watch how you handle the 
failures of your team without making it anyone’s fault, how you take responsibility, how you manage the 
breakdown in communication, how you restore trust with the team, and how you help the project move 
forward. 

In the end, the best projects are the ones that have the teams that understand each other the best. If 
you can communicate the goals of the project to different personalities, you’ll have a much better time. 



CHAPTER 10 ■ PLANNING AND MANAGING A DRUPAL PROJECT 

219

You’ll also need to recognize various skill levels in every project, including your own. You’re not only a 
project manager; you’re a coordinator, leader, and mentor. 

Have fun! 

Further Resources 
Managing Humans by Michael Lopp http://managinghumans.com 

Making Things Happen by Scott Berkun www.scottberkun.com/books/making-things-happen/ 

Becoming Agile: In an Imperfect World by Greg Smith 

More about Managing Budgets from a Drupal Project Manager - affinitybridge.com/blog/managing-

budgets-and-billing-while-practicing-agile-development 

■ Tip  Stop by dgd7.org/manage for more resources and recommendations on planning and running projects. 

  

http://managinghumans.com
http://www.scottberkun.com/books/making-things-happen/


C H A P T E R   11 
 

■ ■ ■ 

221

Documenting for End Users and 

the Production Team 

by Dani Nordin 

Documentation is one of those things that many designers and developers hate doing, but it’s 
important—not only for the happiness of clients and editors who have to take over a site but also for 
preventing the production team from making the same mistakes over and over again.  

This chapter will give you an overview of creating effective documentation for Drupal project teams. 
Ideally, you’ll be creating documentation for a specific site’s eventual editors and administrators while 
also creating in-house documentation for the production team to help increase the efficiency of their 
workflow. I’ll also discuss some ways that members of the Drupal community have found to create 
documentation for the benefit of their fellow Drupallers—and how you can do the same. 

What Makes Good Documentation? 
While there’s no set formula for good documentation, there are a few things to bear in mind when 
creating your documents. Good documentation: 

• Is easily editable and evolves with the site. 

• Is consistently formatted so you don’t have to reinvent the wheel every time you 
add to the documentation (includes visuals such as screenshots). 

• Covers the most common things users need to worry about—preferably in the 
order that they need to worry about them. 

• Discusses common errors users might run into and how to troubleshoot them. 

• Is written in simple English. 

That last point is the most important to bear in mind when creating documentation, whether it’s for 
a client site, a Drupal module or theme, or your team’s internal documentation. This is not to say that 
there’s no place for code or technical requirements in documentation; rather, it’s to say that it’s 
important to assume that your end user is not the expert that you are but is willing to gain that expertise 
if you’re willing to give it in a way that makes sense to them. 



CHAPTER 11 ■ DOCUMENTING FOR END USERS AND THE PRODUCTION TEAM 

222 

■  Tip  A special supplement by Claudina Sarahe covers best practices for documenting for different audiences 
and tools for creating and maintaining documentation. Find it and more at this chapter’s online home, 

dgd7.org/document. 

Getting Clients into Content Entry Early 
Since content curation, creation, and entry form such an important part of any Drupal site, it’s 
important to get your client’s intended content team to start entering content into the site as soon as 
possible. Doing this accomplishes several key goals: 

• It gets the development team into the habit of rapidly iterating prototypes.  

• It gets the client accustomed to interacting with the Drupal interface. 

• It helps identify areas that need tweaking early in the process, which makes development 
easier. 

• It gives the client a sense of the complete development process. Ideally, it moves them 
away from concerns about aesthetics (i.e., what things look like) and toward user 
experience and functional concerns—until it’s truly time to talk about aesthetics.  

This last point is the most important reason to get clients involved in the entry process early. It is 
easy for clients to get stuck on choices about fonts, colors, and images early in the site planning process. 
For the design process to work efficiently and produce effective results, that’s a habit that both clients 
and designers need to break early and often. 

The best way to get clients involved early in the content entry process is to set up a staging server 
(e.g., staging.newsite.com) on a password-protected URL as soon as you have a working prototype of 
the site. A staging server is a “work in progress” version of your web site; it allows both clients and the 
development team to see how a project is progressing and prevents the world from seeing the work as 
it’s happening on the production (i.e., live) site. For more on this, check out Chapter 13. 

If you set up a staging server, by the time the site goes live, your client’s content team will (ideally) 
have enough experience with managing content in their Drupal site that it will become second nature. 
So why create documentation after the fact? The answer is simple: people change jobs. The person who’s 
entering content into the site now isn’t necessarily going to be the only person who enters content into 
this site until the end of time. Having good end user documentation, in the form of a PDF (or better yet, 
internal Wiki in a hidden area of the web site) that you deliver to the client, is an important way to create 
client good will. It also prevents anguished phone calls from the new client editor down the road. 

Creating End-User Documentation Post-Launch 
The best, and easiest, way to create effective documentation for clients is to do it during the site building 
process as soon as certain areas of the site have been approved. While every site is different, the key 
areas that should be covered include:  

• Information on how to log into the site, including login URL, username, and password. 

• A brief overview of the administration menu and any shortcuts that you’ve set up. 

• How to add content and how to format each content type. While it can seem repetitive 
to include an entry in the documentation for each content type, getting into the habit 
can be extremely useful—especially for clients who aren’t terribly tech-savvy.  



CHAPTER 11 ■ DOCUMENTING FOR END USERS AND THE PRODUCTION TEAM 

223

• If applicable, information on how to create new users and how to assign them roles. 

• A brief overview of the menu system and how to add/remove menu items.  

• A brief overview of the taxonomy system and how to add/remove terms.  

• A brief overview of the block system and how to add/remove blocks. 

Note that the last three items are somewhat controversial. Many developers resist giving clients the 
level of control over their site’s architecture and menu/block system that access to blocks, menus, etc. 
will offer—with good reason. However, experience shows that clients expect and often demand that level 
of control; after all, part of the reason they choose a content management system such as Drupal is that 
they want the ability to manage their content without having to call their web team.  

For this reason, it is important during the development process to create ways for site editors to 
manage things like menu items and taxonomy without destroying the rest of the site. By using 
permissions, you can do the following:   

• Allow site editors to create new taxonomy terms, but not new vocabularies. 

• Allow site editors to create new menu items, remove, or move around menu items, 
but not create new menus.  

• Allow site editors to create and place new blocks, but not change Views.  

Another important thing to think about during the production of your site is how users will be 
entering content into the site. While WYSIWYG editors (such as the buttons you use in Microsoft Word to 
format copy) can be a controversial topic among Drupal site builders, it is safe to assume that almost any 
site that you build will eventually be managed by someone who isn’t a site builder. Content editors for 
Drupal sites often include business owners, secretaries, interns, and volunteers. Some may be tech 
savvy, but it isn’t fair to your clients (or your team, who will have to field support calls from confused site 
editors) to insist that clients learn HTML in order to enter content into a plain text editor. Clients expect 
some sort of WYSIWYG editor, and it’s important as site builders that we give it to them. Fortunately, the 
WYSIWYG module (drupal.org/project/wysiwyg) supports multiple different libraries. For more 
information, check out Chapter 4. 

The Anatomy of Good Client Documentation 
Good documentation should be:  

• Written in language that is easily understandable by people with a baseline of 
technical knowledge. Assume they don’t know HTML. 

• Easily updated by the development team as parts of the site change.  

• Comprehensive; it covers everything that the client’s management team is going 
to have to deal with when managing the site. 

For these reasons, I use a simple word processing program such as Microsoft Word or OpenOffice to 
create site documentation. For the documentation team, it gives them the ability to create 
documentation quickly and to easily update it when the site changes. The files are delivered to the client 
as a PDF file, which helps ensure that things don’t get deleted accidentally down the line.  

The process of creating documentation is equally simple, but often requires a slight shift in thinking 
for someone who’s used to being nose-deep in code. The basic process is to do everything that a site 
editor would have to do—from creating a new piece of content to changing a menu item to adding a 
taxonomy term—and document the process with screen shots.  

For example, here’s a bit of sample documentation from the site that we built in Chapters 1 and 8.  



CHAPTER 11 ■ DOCUMENTING FOR END USERS AND THE PRODUCTION TEAM 

224 

SITE DOCUMENTATION :: DGD7.ORG 

 



CHAPTER 11 ■ DOCUMENTING FOR END USERS AND THE PRODUCTION TEAM 

225

 

  

Documenting for the Development Team 
While client documentation is an essential piece of the Drupal development process, the importance of 
internal documentation for development teams can not be understated. As smart people, it’s incredibly 
easy to keep things in our heads—which makes sense when we’re the only ones touching things, but 
causes problems when other folks come into the picture, especially on larger projects.  

Team documentation can take the form of almost anything from internal Wikis (which can be 
created using MediaWiki (www.mediawiki.org/wiki/MediaWiki) or built in Drupal!), to intranets (check 
out openatrium.com for a team intranet solution built in Drupal), to shared Evernote notebooks or 
Dropbox folders full of random code snippets. When creating your documentation, the most important 
part is to think of not only the team you currently have, but the team that you ultimately want to have. 
Teams grow; old members leave, new members come in. Having good internal documentation gets new 
team members up to speed quickly and helps avoid production bottlenecks. 

The most important, and most difficult, factor in creating good internal documentation is creating a 
logical organization for it; having everything stored in a common location is important, as is adding 
comments or references for code snippets, blog entries, and other pieces of documentation you decide 
to save. Lastly, it’s important to periodically look through documentation and weed out old or outdated 
information. Drupal evolves constantly, as does the team’s development experience. The point of 
documentation isn’t to cover everything you’ve ever done, but rather to compile a list of best practices 
that the team can share among themselves. 

Good internal documentation should cover:  

• Code snippets that the team uses over and over again, with a description of the 
use case.  

http://www.mediawiki.org/wiki/MediaWiki


CHAPTER 11 ■ DOCUMENTING FOR END USERS AND THE PRODUCTION TEAM 

226 

• Idiosyncrasies with specific modules and what the team did to fix them (bonus
points if you contribute the code as a patch to the module!). 

• A site launch checklist, which covers commonly encountered issues (and how to
recover from them) for launching sites. 

• Site “recipes” (combinations of specific modules and configurations) for
commonly built sites. 

• Locations of commonly used files, modules, site configurations, and base themes
(more on theming in Chapters 15 and 16). 

• Coding and development standards shared by the team.  

There are as many ways to organize documentation as there are ways to make macaroni and cheese.
While the flavors may change depending on what you put in, the key ingredients are always the same:
you can use any kind of cheese or shape of macaroni, but you still need cheese and macaroni.  

Documenting for the Community 
While contributing code is a great way to contribute to the Drupal community, contributing quality
documentation is arguably even more important. Good documentation is essential not only for current
Drupal site builders and designers in helping them work through sticky issues, but it helps new site
builders ease into creating sites in Drupal, which makes the community stronger.  

There are several ways that Drupallers can contribute documentation back to the community. One
of the more popular ways is via webcasts; for example, the Lullabots (lullabot.com) have a number of
paid and free webcasts that cover concepts related to working in Drupal. Bob Christenson’s
MustardSeed Media video podcast (mustardseedmedia.com/podcast) is a great way to get used to theming
and working with display modules. The screencasts offered by Drupaltherapy
(www.drupaltherapy.com/screencasts) focus on site building by using recipes of specific module
combinations. Without people like these folks making the content that helps us learn how to use Drupal,
many smart and talented designers and developers would not be part of the community. 

So, if you are working in Drupal and you learn something new, blog about it or do a screen cast. If
you find something that doesn’t work with a module, contribute it to the issue queue on drupal.org or
mention it on Twitter. And don’t be surprised if you get an e-mail one day thanking you for your
contribution. 

The More You Know 
Good documentation isn’t about adding more work to an already busy schedule. It’s about helping your
clients, yourself, and the community enjoy the great sites you made with Drupal. It’s about avoiding
frantic midnight e-mails from clients who can’t figure out how to add a page to the site. It’s about saving
the next Drupaller from the headaches you’ve been dealing with as you struggle to get a certain module
or theme to work. It’s about broadcasting a cool trick you learned in that one site that you wish you
remembered now. Good documentation helps everyone. The sooner you start compiling it, the better. 

■  Tip  Documentation examples and lessons learned will be posted to dgd7.org/document as work continues on

dgd7.org itself and on other model projects such as dgd7.org/anjali. 

http://www.drupaltherapy.com/screencasts


C H A P T E R   12 
 

■ ■ ■ 

227

Development Environment 

by Kay VanValkenburgh 

Pay special attention to this chapter. The topic may be as glamorous as visiting Home Depot on a first 
date, but this chapter will spare you reinventing the wheel. Whether you intend it or not, when you start 
a project of any sort, you set up a development environment: you choose tools and create spaces that 
define your processes and either limit or advance your efforts. So here’s your chance to capitalize on the 
mistakes of others. In this chapter, I’ll look at efficient, interrelated tools and appropriately defined 
spaces. I will focus on a handful of possible approaches, each of which takes minimal setup and 
maintenance. The result will be a development environment that positions your projects to run 
smoothly, that builds in flexibility for changes in size and complexity of projects and teams, and that lets 
you focus your energy on deliverables rather than on tinkering with an inadequate setup. 

For people who have no experience with programming and want to get started with the bare 
necessities, go to the section called “The Most Basic Development Environment” for the bare-bones set 
of tools needed to complete essential tasks like uploading and installing a site. You can start there and 
return to other sections of the chapter to expand your development environment as your familiarity and 
needs grow. In short, here’s what is covered in this chapter: 

• Quickstart, a full-fledged, pre-configured development environment that is ready 
to use on startup. Download it, add credentials, add your project, and you’re up 
and running with a powerful local setup. (For experienced developers as well as 
beginners who are on a developer career track.) 

• Adding key tools to your existing development environment and the reasons for 
including these additions. (For experienced developers.) 

• Signing up for and configuring a web hosting account and domain registration. 
(For beginners and non-programmers.) 

• Installing and configuring basic graphical user interface (GUI) tools needed to 
create and maintain a simple Drupal site. (For beginners and non-programmers.) 

■ Note  The options for setting up your development environment are nearly limitless. This chapter describes two 
broad approaches: using a fully stocked Linux build in a virtual environment and using tools native to Windows or 

Mac. See dgd7.org/devenv for more approaches.  



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

228 

Starting with Quickstart 
Quickstart (drupal.org/project/quickstart) is a virtual appliance for Mac and Windows machines that 
launches a preconfigured, LAMP-centric development environment in just a few steps. It eliminates 
hours of work, handing you a very well thought-out and thoroughly assembled environment that takes 
minutes to set up. Like Drubuntu (a Drush script that sets up a pre-configured development 
environment on Ubuntu; see Appendix G), Quickstart offers the considerable bonus of Drupal-specific 
documentation (drupal.org/node/788080), issue queue (drupal.org/project/issues/quickstart) and 
usergroup (groups.drupal.org/quickstart-drupal-development-environment)—in other words, all the 
benefits of a growing developer community that shares common tools in addition to codebase. 
Quickstart uses VirtualBox with Ubuntu, and is open source through and through. 

As with most virtualization solutions, Quickstart can have performance challenges and requires 
significant resources. The Virtual Box application needs at least 1024MB RAM, and the Quickstart image 
will take 18GB of disk space as shipped, so check first whether you need to make room or install more 
RAM. Regarding performance, users on a variety of machines and host operating systems have 
complained of slowness. In a casual test, Quickstart ran flawlessly within Windows XP Pro on an older 
Intel Core Duo machine with only 2GB RAM. Yet a newer, more powerful machine had performance 
concerns (albeit mild ones): on a well-furnished MacBook Pro i7 (Snow Leopard, 8GB RAM, solid state 
drive), screen refresh was just jerky enough that the mouse was hard to use. Typical tasks like resizing a 
window required extra focus and patience. Brief experiments with upping base memory, video memory, 
and number of processors did not eliminate the jerkiness (see drupal.org/node/819720 for a few brief 
instructions on making Quickstart faster). 

If you’ve not used a well-assembled development environment before, it’s worth dealing with 
performance concerns to get familiar with this one. You can then choose what you find most valuable 
and take the time to install it on your preferred development OS. Here are the installation steps 
described on the drupal.org project page (drupal.org/project/quickstart). Note that installation 
requires importing an appliance rather than creating a new machine (when VirtualBox finishes 
installing, it will prompt you to create a new machine; you will need to cancel that operation and follow 
the directions here). 

1. Download Quickstart 0.9.1 virtual machine with bittorrent. (Need a client? 
uTorrent (Win and Mac) from www.utorrent.com) 

2. Install Virtualbox (version 4.0.4+). 

3. Import Quickstart virtual machine. 

a. Start Virtualbox. 

b. File ➤ Import Appliance ➤ Choose file ➤ (select the downloaded ova file) 

c. Set RAM to 50% of your system RAM (min 1024MB, max 2048MB). 

d. Import ➤ (wait for import to finish). 

4. Start the new machine from the list. 

5. Username: Passwords 

a. Unix = quickstart:quickstart 

b. MySQL = root:quickstart 

c. Drupal = admin:admin 

6. Update to latest official versions: drush, drush make, drush Quickstart, etc. To 
get the latest updates to drush commands: 

http://www.utorrent.com


CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

229

a. cd ~/quickstart 

b. git pull 

c. bash -x update.sh 

Once Quickstart is operational, open the readme file (shown in Figure 12–1) for links to 
documentation, tutorials, and a few of the browser-based developer tools. It’s worth clicking through 
these links as well as looking closely at the Firefox toolbars that open above the page. 

 

Figure 12–1. The readme file contains useful links to documentation, tutorials, and a few of the browser-

based tools. 

Virtualization has additional benefits. See the upcoming section on browser testing for a challenge 
particularly well addressed by virtual machines. If virtualization is not the direction you wish to take, 
though, continue to the next section of this chapter, which has instructions on installing several of the 
key components of a Drupal-friendly IDE on Windows and Mac operating systems. 

Enhancing Your Existing Dev Environment 
There’s a developer tool for almost any task. The more often you perform a task, the more useful the 
“right” tool becomes and the more individualized your setup. This section will cover setting up some of 
the more common tools and look at the factors that might lead you to include them in your custom-
assembled dev environment. I’ll touch on the following major development needs: 

• Hosting your site locally. 

• Accessing the command line. 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

230 

• Working with rendered HTML, CSS, and JavaScript. 

• Testing for browser and device compatibility. 

• Working with PHP files. 

Hosting Your Site Locally 
Hosting the site you are developing on your local machine is generally recognized both as a matter of 
convenience and as a best practice. With Git to facilitate the work of merging a team of developers’ 
efforts, local development instances allow each team member to work with their own copies of files, 
database, and server software. This setup lets each team member experiment more freely and work out 
the kinks before uploading partially formed modifications that might interfere with other team 
members’ work. As a bonus, local development travels with developers whether they are online or not, 
and network outages don’t stop the entire team from working (both reasons for the lone developer also 
to adopt the practice). 

Several reliable, comprehensive solutions for running the LAMP stack locally on Mac and Windows 
have been bundled into well-tested installation packages. The various systems each have somewhat 
different approaches and tools for the task; this book provides an appendix dedicated to each of the four 
common solutions. 

• Appendix F covers local hosting on Windows with WAMP. 

• Appendix G covers the setup of Drubuntu on Linux. 

• Appendix H focuses on MAMP for the Mac. 

• Appendix I focuses on Acquia Dev Desktop, which works on both Windows and 
Mac. 

Another option on Windows is Microsoft WebMatrix (microsoft.com/web/drupal), which sets up 
Drupal to run locally on IIS. 

Accessing the Command Line 
From a distance, the command line strikes some developers as a relic of the dark ages, a pre-GUI tool 
probably used for torture. Despite its unfriendly appearance, the command line is an important, 
efficient, and powerful element of your development environment.  

Mac and Linux ship with Terminal, the “go-to” command line interface. To open Terminal on the 
Mac, go to Applications ➤ Utilities ➤ Terminal; on Ubuntu go to Applications ➤ Accessories ➤ Terminal. 

There are a few options for using Terminal with Windows. The two most common are hosting Linux 
via virtualization (e.g., Quickstart) or installing a Linux emulator. Cygwin (cygwin.com/) is widely used for 
the latter approach.  

To install Cygwin, follow these steps: 

1. Download the installer at cygwin.com/setup.exe. 

2. Run setup.exe, accept the defaults, and follow the on-screen instructions until 
you reach the package selection screen 

3. On the package selection screen, locate and enable the following choices 
(clicking once on a package selects the most recent version and clicking again 
selects a previous version, so resist the urge to double click): 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

231

a. In Shells, “rxvt: VT102 terminal emulator for both X and Windows”. 

b. In Net, “openssh: The OpenSSH server and client programs”. 

c. In Archive, “unzip: Info-ZIP decompression utility”. 

d. In Editors, “nano: A pico clone text editor with extensions” (you may also 
want to add vim). 

e. In Web, “wget: Utility to retrieve files from the WWW via HTTP and FTP”. 

■ Note  Terminal doesn’t interpret spaces in file and directory names as Windows and Mac operating systems do. 
Use a backslash to escape spaces when you are entering paths, like so:  
$ cd Documents\ and\ Settings 

As an alternative to typing the full path of a file or directory, you can drag its icon onto a Terminal window. 

When you have completed installing Cygwin, open Terminal by launching the Cygwin program. 
Type help to get a list of command-line functions. See other chapters in this book for instructions on 
using the command line. 

Working with Rendered HTML, CSS, and JavaScript 
The single most valuable tool for front-end developers is the Firebug plug-in (http://getfirebug.com/). 
At its most basic implementation, Firebug allows web developers to inspect and experimentally change 
setting in the CSS and HTML of a page while it runs in a web browser. Full functionality requires the 
popular open source Firefox web browser, though versions of the tool are available that provide partial 
functionality in other browsers. Some other browsers also implement their own tools that provide 
similar functionality, notably the Safari Developer Tools (to use these, turn on the Develop Menu in the 
menu Safari ➤ Preferences ➤ Advanced).  

■ Note  Before you begin working with Firebug, ensure that CSS and JavaScript aggregation for your site is off at 

Administration ➤ Configuration ➤ Development ➤ Performance (admin/config/development/performance). 

To enable Firebug, first add it to Firefox (browse with Firefox to getfirebug.com and click Install 
Firebug), then activate it by going to the menu Tools ➤ Firebug ➤ Open Firebug. By default, Firebug 
opens with an HTML view in the left pane and the styles associated with the highlighted element in the 
right pane. Styles are listed in order of precedence: styles at the top of the list supersede those listed 
lower down (note that this display order is the reverse of CSS stylesheets, well suited to the purpose of 
on-screen readability). Navigate the code either by expanding and selecting HTML elements or by 
enabling the inspector zoom tool (icon in upper left corner of the Firebug panel showing a mouse 
pointer and rectangle). To use the zoom tool, click the inspector zoom tool, then hover over the web 
page until the area you want to inspect is highlighted. Click the page and the HTML view will zoom to 
the nested HTML element associated with the highlighted area. 

http://getfirebug.com/


CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

232 

Once you are on the HTML element you wish to affect, you can change the values shown in the Style 
pane or in the HTML pane. Changes will immediately affect the loaded page accordingly. However, 
Firebug does not save these changes. The changes affect only the loaded instance of the page (that is to 
say, you leave the changed page in its existing window and open a new instance of the page in another 
window, you will see that the changes you made do not apply in the new window or tab). 

To implement the changes you want to keep, open the related PHP or CSS documents in your text 
editor. As you develop the desired settings, modify the related PHP/CSS document accordingly. 
Remember only to modify your own custom theme or module files, not core or contributed code; see 
Chapters 15 and 16 on theming for the correct way to override rendered HTML, CSS, and JavaScript. Also 
keep in mind that best practice is to avoid making changes to the code of a live site; be sure to carry out 
your changes on a development server, then deploy to staging and production servers as appropriate. 

Also check out the Drupal for Firebug module, which adds Drupal debugging and SQL query 
information to the Firebug window (see drupal.org/project/drupalforfirebug). 

Browser and Device Compatibility Testing 
As you fine-tune a site’s theme, it is crucial to test the site thoroughly in each of the browsers and on 
each of the devices used by your target audience. As amazing as it may seem to the uninitiated, the 
display of a site can vary significantly between Internet Explorer and Firefox, the two most popular 
browsers available. It can also be disastrously different across IE versions themselves (IE6 has been very 
tenacious in certain markets, reportedly still with more than 15% of IE usage overall, even though IE9 is 
now available). Note, too, that some industries, and certainly academia, are more prone than others to 
continuing the use of old browsers rather than upgrading. As choices among web-enabled mobile 
devices grows, the challenge to test sites thoroughly becomes greater. 

Limiting the breadth of the testing effort can be useful. Start by identifying which browsers and 
devices are most important. There are various sources of statistics on current browser market share; 
en.wikipedia.org/wiki/Usage_share_of_web_browsers references a good list of such sources. In the end, 
the best indicator of which browsers and devices you should test are statistics collected for the specific 
target audience of your project. If you are working with an existing site, you can typically get such data 
from the host’s site statistics; you can also add the Browscap module to your Drupal install to capture 
browser version information (drupal.org/project/browscap). Keep in mind the rapid growth in mobile 
Internet use as you view historical data. 

Even once you have identified a limited set of browsers and devices you need to account for, it can 
be a challenge to execute the tests. The most methodical approach to testing compatibility for desktop- 
and laptop-based browsers is to run (virtual) machines that host each combination of operating system 
and browser release of interest. For mobile devices, device manufacturers typically release emulators 
with their developer tools; visit their web sites for downloads and instructions.  

Not everyone can justify the labor that goes into building and maintaining this array of test beds, 
and third party services can be engaged to handle testing. However, here are some potential shortcuts 
for desktop browser versions: 

• Utilu IE Collection is a download of all the major releases of Microsoft Internet 
Explorer set up to run simultaneously on the same machine; find it at 
utilu.com/IECollection. 

• Mozilla maintains a directory of Firefox releases at 
releases.mozilla.org/pub/mozilla.org/firefox. 

• Multi-Safari offers individual downloads of Apple Safari, bundling the 
corresponding Web Kit framework of each version into the application (see 
description on the site; michelf.com/multi-safari); Apple also appears to leave 
the download pages in place for previous versions, findable via search engines. 

3



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

233

• Opera maintains a number of downloadable releases at opera.com/docs/history. 

• A resource for previous releases of Google Chrome has not yet surfaced. 

When testing browsers, keep in mind that there may be different plug-ins installed on your target 
users’ machines that can affect display and performance, not to mention the effect of screen resolutions 
and sizes, and the fact that visitors can resize windows (for the latter concern, be sure you resize the 
browser window on each test platform to ensure that any fluid or undefined widths behave as expected). 

Working with PHP Files 
Eclipse and Netbeans are two open source Integrated Development Environments (IDEs) well suited to 
the needs of Drupal development. They are quick to install and configure, and they provide a great way 
to navigate and modify your Drupal modules and themes. Get Eclipse PDT (PHP Development Tools) 
from eclipse.org/pdt; get Netbeans from netbeans.org. Here are the basic steps to get the Eclipse PDT 
package set up on your machine: 

1. Start Eclipse. On the startup splash page, select Workbench. 

2. Set preferences to recognize Drupal PHP content types at Window ➤ 
Preferences ➤ General ➤ Content Types; enter the following document types 
individually starting with the dot: .engine, .install, .inc, .module, .profile, 
.theme, .test) 

3. Set text encoding and line delimiters at Window ➤ Preferences ➤ General ➤ 
Workspace; at the bottom of the window use Text file encoding ➤ Other ➤ 
UTF-8 and New text file line delimiter ➤ Other ➤ Unix 

4. Set tabs to be converted to two spaces at Window ➤ Preferences ➤ General ➤ 
Editors; set Displayed tab width to two, and select Insert spaces for tabs. 

The Most Basic Development Environment 
This section is intended to help beginners and non-programmers put together a set of tools for 
occasional use. 

Let’s say you’ve never worked with Drupal, and you have no programming experience. You’ve heard 
the first step is to download a Drupal distribution (see Chapter 34), but for now you’re still in the 
bookstore with this book in your hand. It’s fallen open to this page. You want to know what tools are 
required when Drupal is in your plans: the essential set. 

Here’s the short list. Most computer owners today already have the majority of these things, but if 
you’re new to web development, pay special attention to the last four on the list. 

• A computer able to connect to the Internet. 

• An Internet connection. 

• A small amount of free disk space (you can do quite a lot with Drupal in 100MB, 
though you’ll also need to account for file sizes of any media like video, audio, or 
large images). 

• A web browser (the latest version of Firefox is strongly recommended). 

• A code or text editor (important distinction: typical word processors are 
unsuitable for this work). 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

234 

• A program for uncompressing gzip/zip files. 

• To take your site online, you will also need: 

• A domain name (registered and managed either by your web site host or by 
a registrar). 

• A web server with database capabilities (typically a remote web server; 
Linux is the most common choice of operating system, Apache the most 
common web server, and MariaDB/MySQL the most common database; see 
drupal.org/requirements for system requirements). 

• A way to transfer files to and from a remote server (Drupal 7 provides a 
method for adding modules and themes through the administrative pages; 
it requires your server to have FTP properly configured, as most hosted 
servers do; you can also use software known as an FTP client). 

The list of tools you need to get started is stunningly basic. Drupal and contributed modules provide 
the tools you will use most often, especially as you start out. All the other basic tools you need, and a 
good number of the advanced tools, are available as open source software (no matter what your 
operating system).  

Each component in this section of the development environment chapter is relatively easy to set up 
and learn, so new users can focus their energy on climbing the Drupal learning curve. If you do the tasks 
repetitively, you will want to add some more complexity to your toolkit in exchange for greater 
efficiency. 

You may also find you will try out a few FTP clients and text editors before identifying one you like. 
There are a lot of possibilities, especially with text editors, and many published discussions on the merits 
of certain solutions over others. For the sake of simplicity, I’ll only look at a couple of good, all-purpose 
choices. 

■ Tip  Host your production web site with a professional host; hosting it yourself requires significant expertise and 

time. When choosing your host, be sure to refer to the recommendations at drupal.org/requirements. 

Select Hosting Service 
There are a lot of options when it comes to hosting configurations, and a large number of providers. See 
drupal.org/hosting; the providers listed are likely all to meet the minimum requirements to host 
Drupal. However, once those requirements are met, there are several important considerations and a 
few simple tasks you need to be able to complete. Here are some guidelines on choosing and setting up 
your host. 

Choose a Host According to Performance and Service Needs 
Right-sizing your hosting arrangement for the performance you will need is an important first step. 
Consider the expense and hassle that can go into changing hosts, or even changing server arrangements 
with the same host, choose a service that leaves room for increases in requirements. Here are some 
general categories of hosting with broad expectations of performance: 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

235

• Providers of Drupal as a Service (also known as Drupal SaaS) provide attractive 
combinations of price and performance; be sure to check that the specific 
functionality you need is part of their offering. 

• If you are creating a basic Drupal site, can live with slower page loads, and expect 
light traffic (say not more than a few dozen simultaneous visitors), you can get by 
with one of the many readily available, inexpensive, shared hosting accounts.  

• If you need fast page loads and capacity for higher traffic, the best balance of 
performance and budget is likely to be a virtual private server (VPS).  

• If your site serves gigabytes of media to an international audience, you will likely 
need a content distribution network (CDN).  

• If you anticipate severe traffic spikes, you will need an auto-scaling solution that is 
typical of cloud-based hosting.  

Be sure that your host provides any services you are unable to provide. Some provide server space 
but leave the rest to you. You can get more details by comparing the services lists and reported up-time 
of various providers. (Review sites regarding hosts do not generally appear to be reliable). Key attributes 
include: 

• A well-capitalized, well-run company. 

• Adequately housed servers with complete, correctly configured software and 
equipment. 

• 24 7 server software and equipment monitoring and issue resolution. 

• Proactive performance of security and maintenance tasks. 

• Adequate customer support. 

• Acquisition of new infrastructure and expertise as appropriate. 

In addition to hosting, you also need to register a domain and have it propagate to domain name 
servers. Not all hosts provide these services. If yours does not, you will need to sign up for an account 
with a registrar. Expect to pay around $10/year for this service (it is often included free with a hosting 
account). ICANN, the body responsible for coordinating internet addresses, also accredits registrars. 
They maintain a list of registrars at icann.org/en/registrars/accredited-list.html. 

Once you have selected a host, the registration process is typically quick. Look for an e-mail once 
registration is complete. It will contain important information for the next steps. If you have a separate 
account with a registrar, the e-mail will also contain instructions on pointing your new URL to your 
hosting account (look for instructions regarding Domain Name Servers, also referred to as DNS). 

FTP Client Setup 
FTP clients let you transfer files between your local computer and a remote server. Start the setup of 
your FTP client after you receive a confirmation e-mail from your host provider. It will typically contain 
the URL, username, and password needed to access your online files. 

A popular choice of standalone FTP utilities, Cyberduck is a powerful open source FTP client for 
both Mac and Windows (cyberduck.ch). A popular choice among Firefox add-ons is FireFTP 
(fireftp.mozdev.org). Setup of FTP connections is similar once these clients are installed, and both offer 
various ways to log in and transfer files. 

The following sections show how to access your remote server. 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

236 

1. Create a Bookmark with Your Server Access Settings 

In Cyberduck: create a bookmark for your hosted account via the menu Bookmark ➤
New Bookmark.  

In FireFTP: click Create an account in the upper left corner of the window, as shown
in Figure 12–2.  

Figure 12–2. In FireFTP, click Create an account to save your FTP login credentials. 

Always give the bookmark a clear nickname so you know at a glance where you are connected.
Servers look identical when you are inside the file structures, so the nickname is often your surest
landmark. The best nicknames contain the name of the project and indicate whether the server hosts a
live, staged, or development version of your site.  

2. Select a Security Protocol 

In Cyberduck: select security protocols from the drop-down menu at the top of the
New Bookmark window (see Figure 12–3).  

In FireFTP: security settings are under the Connection tab of the bookmark window.  

If your host offers SSH, you should be able to connect with SFTP using your SSH credentials. If it
offers FTP-SSL, you should be able to connect with your FTP credentials. If it’s not clear how to make a
secure FTP connection, get in touch with their support. 

Figure 12–3. Cyberduck connection types 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

237

■ Tip  Most hosts provide a secure method of file transfer. Traditional FTP sends your password as plaintext, and 
broadly-available software makes it easy to record, especially on a shared network such as your favorite 

coffeehouse wireless hookup. 

3. Enter Login Credentials Provided by Your Host  

In the e-mail you receive from your host, you will find the server address, username, and password 
appropriate for the type of connection you have chosen. The various pieces of information may be 
named different ways. The server address may be called the host address or URL. For file transfer over 
SSH, the e-mail may use the acronym SCP. No matter the nomenclature, you should be able to recognize 
the pieces you need: a server address typically resembles a web URL; a username sometimes looks like 
an e-mail address; the password is typically a mix of letters, numbers, and symbols. 

Fill in these pieces of information and be careful not to alter other settings in the window unless you 
have specific instructions to do so. Make sure the Anonymous Login box stays unchecked. Note that 
Cyberduck doesn’t have a password field on this screen; once you click connect, it will ask for a 
password. 

Save these settings. When you need to connect in the future, you will only need to click the 
bookmark.  

4. Start a Connection and Upload Files 

Click the bookmark. You should get a new screen showing a tree of files and directories. You will 
typically work within a directory labeled either public_HTML or www (sometimes both are listed and go 
to the same subdirectory).  

You are now ready to upload your files. Both Cyberduck and FireFTP let you drag files from a local 
directory and drop them on the remote directory into which you want them loaded. See Chapter 1 for 
the steps to set Drupal in a directory on your server; the “Implementation” section provides the details. 

If your connection fails, confirm that you have entered all credentials exactly as the host provided 
them. Small deviations can be hard to spot but almost always explain the problem (check that caps lock 
is off and that you are entering upper and lowercase letters as shown). The security protocol can be 
another source of trouble. To ensure you have the credentials entered correctly, you can also try with no 
security protocol. If you successfully connect with plain FTP but not with a secure protocol, contact your 
host about the correct settings. 

5. Basic Text Editor Setup 

Most every programmer has a favorite, no-frills text editor, even if they also have full-fledged Integrated 
Development Environments (IDEs) as well as high-end desktop publishing tools. A good, basic text 
editor is as handy as a Swiss Army knife.  

The defacto standard for Windows machines is Notepad++ (sourceforge.net/projects/notepad-
plus); Windows also ships with Notepad, which will suffice for small editing tasks in a pinch. If you use 
Notepad, be sure to save your documents with the UTF-8 encoding (see the drop-down menu in the 
Save dialog box).  

For Mac, a very good choice is TextWrangler (free but not open source); the Mac also ships with 
TextEdit, which can be set to plaintext and is serviceable.  

Linux users wanting a GUI-based text editor should try gEdit.  
Don’t attempt to use a word processor like Microsoft Word, WordPad, or OpenDoc. Servers and 

browsers can’t easily digest the output of these programs. Sometimes you’ll get instant feedback on their 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

238 

shortcomings (the page displays incorrectly or you get error messages). In the worst case you never see 
the problems on your own computer and only your site visitors experience the variety of issues that 
arise. 

6. Configure Text Editor Preferences 

Notepad++ and many other text editors typically need a few adjustments to the Preferences. 
TextWrangler and gEdit, on the other hand, ship with the default settings needed for web development. 
In Notepad++, go to Settings ➤ Preferences ➤ New Document/Default Directory. Set the New Document 
Format to Unix and set the Encoding to UTF-8. 

One warning: TextWrangler, gEdit, and Notepad++ each inserts tab characters when you hit the tab 
key. Tab characters may produce unexpected results, often appearing as single spaces or collapsing with 
spaces around them. They do not typically cause fatal errors, but a better practice is to use two spaces to 
indent lines of code and to use CSS to indent lines of text. 

7. Set Your FTP Client to Use Your Text Editor 

At times, using your local text editor to modify a file that is on your remote development or staging 
servers can be the most efficient way to get things done (note that this practice is not recommended on 
production servers). FTP clients like Cyberduck and FireFTP let you associate file types (including 
images) with appropriate editing programs. 

For Cyberduck: go to Edit ➤ Preferences, click the Editor tab, and select the program you want to 
use from the list. If the program isn’t listed, click Add program.  

For FireFTP: right-click any file in the FireFTP file view area, select Open With ➤ Add Programs. 
Under the Extensions window, click Add, and type an extension such as .txt. With the extension 
highlighted, click Add under the Programs window. Click Browse and locate your program. Type a name 
(e.g., Notepad++) and click Apply.  

Uncompressing Archives 
Most modern operating systems ship with a utility for uncompressing archives. If you’ve installed a 
command line interface on Windows (e.g., Cygwin, as described earlier in this chapter), one of the 
recommended packages is unzip. In Terminal, the command looks like $ unzip filename.  

If you don’t have a command line interface, the archive files you download from drupal.org will 
need to have a program associated with them (see Figure 12–4), and you may need to download one. 
(Double-click an archive to open it; if it doesn’t open, you’ll be invited to select a program to open it 
with). A popular open source utility for uncompressing common archive types is 7zip 
(sourceforge.net/projects/sevenzip/). 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

239

 

Figure 12–4. When a program is properly associated with archives, the archives typically show a zipper 

icon. 

Server-Side Tasks and Tools 
Once you have the aforementioned basic tools, your next tasks are to set up a database, upload files, and 
run the Drupal installer. The Introduction of this book and Chapter 1 describe these tasks in general 
terms. Since different hosts provide different tools and methods for completing these tasks, I’ll cover a 
few common setups here in more detail. Some of the tools provided by hosts can actually introduce 
critical issues for Drupal, so we will look briefly at workarounds. If your host offers one-click installation, 
skip to the “Circumventing the One-Click Installers” section.  

■ Tip  More details about creating a database can be found at drupal.org/documentation/install/create-

database. 

Database Setup with phpMyAdmin 
Setting up a database can be quite simple. If your server includes direct access to the database creation 
features of phpMyAdmin, the broadly distributed open source database manager, the process requires 
these few steps: 

1. Start phpMyAdmin, go to the Privileges tab, and click Add a New User. 

2. Enter a username that relates to your project and phase (if you create several 
databases, a recognizable name will help you single it out if the need arises); 
note the name you use. 

3. Select Local as the host and enter a password (or click Generate to have one 
created for you); note the password—you will be prompted for username and 
password when you run the Drupal installer. 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

240 

4. In the box labeled Database for user, select Create database with same name 
and grant all privileges, then click Go at the bottom of the page. 

5. In the left sidebar, click on the name of the database you created, then go to 
the Operations tab. 

6. Set the collation to utf8_general_ci and click Go.  

7. Upload your files and launch the Drupal installer as described in Chapter 1. 

Database Setup with Wizards and Manual Tools  
Hosts commonly provide a dedicated utility for database and user creation and disable the related tools 
in phpMyAdmin. In the best of situations, the host implements a manual form or a wizard that requests 
the same inputs described above.  

Circumventing the One-Click Installers  
The greatest pitfalls in setting up your Drupal site on a hosted server are likely to come in the guise of 
one-click installation utilities. You will typically be forced to use them if they are present. Unfortunately, 
they frequently introduce wholly avoidable issues that are relatively difficult to discover and fix. 
Fantastico and SimpleScripts are broadly used utilities of this sort. Each has its own problems. To add to 
the confusion, manual/wizard methods are frequently available alongside one-click installers. When 
both methods are available, the manual/wizard methods typically also result in installs that don’t work. 
The best workaround appears to be to use the one-click utility. It will set up database, user, and the 
required non-Drupal files. You can then remove the Drupal files and tables created by the installer and 
proceed with a normal install. 

Here are the steps for this workaround when you are forced to use a one-click install utility: 

1. Follow the host’s directions for installing Drupal; when it instructs you to 
create a new subdirectory for this version, give it an easily recognized name 
(e.g., fantastico-drupal7) 

2. Once installation is complete, follow the 1-click installer’s directions for 
launching the site; ensure the installation works as expected (you will see the 
front page as pictured in Chapter 1); if it doesn’t, contact the host for support. 

3. After confirming that the installation works, use your FTP client to place your 
own Drupal distribution in a different directory (e.g., public_HTML) as 
described in Chapter 1. 

4. Navigate to the subdirectory created by the installation script (the one I 
suggested naming fantastico-drupal7 in step 1); inside the directory, navigate 
to sites/default/settings.php; open the file; and note the database name, 
username, password, host, and port, as shown in Figure 12–5. 



CHAPTER 12 ■ DEVELOPMENT ENVIRONMENT 

241

 

Figure 12–5. The settings.php file showing the connection information to note for use when running the 

Drupal installer  

5. Next, launch phpMyAdmin and click the database name in the left sidebar that 
you noted from settings.php. 

6. Scroll to the bottom of the list of database tables and click Check All; in the 
adjacent drop-down menu labeled With selected, choose Drop, then confirm 
your choice. 

7. Click on the to the Operations tab, set the collation to utf8_general_ci, and 
click Go 

8. Launch Drupal install as described in Chapter 1 of this book and enter the 
connection information recorded from settings.php. 

Summary 
In this chapter we have explored a few possible approaches to setting up your development 
environment. Most of the chapter focuses on two ways to build advanced suites of tools that offer 
significant gains in efficiency but also have a relatively steep learning curve. The last section of the 
chapter (Your Most Basic Development Environment) presents a vastly simplified setup suitable for 
occasional use, for casual beginners, and for non-programmers. We cover the basics of selecting, signing 
up for, and configuring a web hosting account and domain registration. Throughout, we touch on best 
practices and on workarounds for known issues related to development and shared web hosting. Further 
information on topics related to development environments can be found on the book’s web site, 
www.dgd7.com. 
 

  

http://www.dgd7.com


C H A P T E R   13 
 

■ ■ ■ 

243

Putting a Site Online and 

Deploying New Features 

by Benjamin Melançon and Stefan Freudenberg 

If only you can see it, your Drupal site isn’t quite as useful as it could be. If something happens to it, and 
you can’t restore it, that’s really bad. If you need to take the site offline for a week to add a complex new 
feature, that’s not great either. This chapter covers putting your site online, backing it up, and then 
treads lightly into Drupal’s new frontier of deploying major features. 

Putting Your Site Online 
Your web site deserves to be on the Internet. This section covers the steps to put a site online (or “take it 
live”) in general terms that apply no matter what software is available. We’ll explain each step and we’ll 
provide the command line steps that should work for any serious setup. If you deploy more than a 
couple times, you’ll want to automate these steps. There is no Drupal community consensus yet on the 
best way to do this, but we’ll include some tips and point to some resources for best-practice 
approaches. 

Taking a site from your local computer or a development server to a live web server can be broken 
into five steps. 

1. Export the database. 

2. Transfer a copy of the site code, user files, and exported database to the server. 

3. On the server, import the site’s database. 

4. Create or edit the site’s settings.php on the server to use the database settings. 

5. Direct traffic for your domain name(s) to the site’s web root on the server. 

These steps can be followed with different tools on any platform, such as graphical database and 
SFTP programs. Likewise, any build tool, such as rake or ant, can perform steps 2 through 4. 

■ Tip  When choosing a company to host your web site, look for one that will let you access your host server with 

SSH. See the online notes and resources for possible hosts at dgd7.org/deploy. 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

244 

We’ll look at the specific command line steps for Linux, Mac OS X, or Cygwin now. These steps 
should work even for environments you have not been able to set up. On the server side, the commands 
are based on a typical Debian or Ubuntu setup; if you’re setting up your own server, see 
wiki.debian.org/LaMp. 

When you’re dealing with more than one site, you will certainly want to script the process. 
Deployment scripts are usually specific to your hosting and development workflow and needs. (For an 
example, the evolving practice of the Drupal collective I am part of is documented at 
data.agaric.com/deploying-the-agaric-way.) Aegir, which makes heavy use of Drush, is a Drupal 
deployment solution (using Drupal to help deploy Drupal) that has a significant, longstanding, and 
growing community. It is a free software hosting system for automating common tasks associated with 
deploying and managing web sites. For information and downloads, see aegirproject.org. 

■ Tip  See how Drush can enhance your deployment workflow in the “Using Remote Commands to Deploy Sites 

with Drush” section in Chapter 26. 

1. Export the Database 
Thus far, this book has had you work with your site installed locally on your computer. To take your 
configuration online with any content you’ve added, you will want to first export the database. 

■ Caution  This first step only applies the first time you take a site online. Exporting your development database and 
replacing an existing live database would, in most cases, be a mistake. If you aren’t already backing up your live site 

(using tools mentioned in Chapter 2 or described later in this chapter), it would amount to a colossal mistake. 

In the following commands, the key action is mysqldump. The other commands just refer to a place to 
put the database in the meantime. 

The Drush command drush sql-dump can save you looking up the database connection 
information, when run from within the site root or with an alias. 

# Change to your project's folder. 
cd ~/code/dgd7 
# If a database ("db") directory is not made already: 
mkdir db 
# Export the database, where dgd7 is the name of the database. 
mysqldump -udgd7 -pdgd7 dgd7 > db/development.sql 

The options used in the mysqldump command are the following: 

• -u for database username, which can be followed immediately by the user (dgd7 
here). 

• -p for database password, which is followed immediately by the password (dgd7). 

• The lone word (dgd7) is the database name itself. You can get these values from 
your local site’s settings.php file. 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

245

■ Note  Find out more about the mysqldump command by typing man mysqldump on the command line in UNIX-
like environments (Linux, Mac OS X, Cygwin). The command man is short for manual, as in a user’s manual; you 

can use it to get more information on almost any command. 

2. Transfer to Server 
This is the step you don’t need to be reminded about: moving the site’s code, any user files associated 
with it, and the exported database from your development environment to a server that is online. The 
remote file copy program secure copy (scp) will work. 

scp -r ~/code/dgd7 username@host.example.com:/var/www/ 

■ Tip  Don’t forget to transfer the .htaccess file; as a “hidden” file beginning with a dot, it’s easily missed. 

Set Files Directories Permissions 
After moving the codebase and user files, you need to make sure the user files directories are writeable. 
The scp command created the directory dgd7 in /var/www while moving in your site code and dumped 
database, so after logging into your server, you can go to that directory to access them conveniently. 
(Note that it’s assumed you are deploying to an Apache web server running as user www-data.) 

ssh username@host.example.com 
cd /var/www/dgd7 
chown -R www-data:www-data web/sites/default/files 
chown -R www-data:www-data private_files 

The latter command only applies if you do a private files directory and should be done where you 
choose to create your private files directory (which should be outside of your web root). 

3. Create a Database on the Server and Import Your Database 
On your host server, log in to create a new database and load the transferred database dump into it. 

■ Note  It’s quite possible your host will provide a control panel for creating database users and databases. 

We name the database user and the database itself after the project name, which in this case is dgd7. 

ssh username@host.example.com 
mysqladmin -u root -p create dgd7 
mysql -u root -p -e "GRANT ALL ON \`dgd7\`.* TO 'dgd7'@'localhost' IDENTIFIED BY  
 'S3cUr3p4s5w0rD'" 

mailto:username@host.example.com:/var/www/
mailto:username@host.example.com
mailto:username@host.example.com


CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

246 

You will be prompted for your MySQL root password after issuing each of the last two commands. 
It’s better not to write this password inline, as that would put this important password in your server’s 
shell command history. In this example, the third command gives the new database the password 
“S3cUr3p4s5w0rD”, which you will then use to import the database, to use along with the database user 
and database name.  

If you followed the steps in the “Set Files Directories Permissions” section, you are already logged 
into the host server and in the directory /var/www/dgd7, so the database directory used in the section 
before that, db, is right there. 

mysql -h localhost -u dgd7 -pS3cUr3p4s5w0rD dgd7 < db/development.sql 

The mysql command used to import the database has the same parameters as mysqldump when 
exporting the database, with one addition: -h for host, the server on which the database lives. Typically, 
the database will be on the same server as everything else, so you can use localhost. Note that the angle 
bracket is turned around—think of it as accepting the database file into the command. 

4. Set the Database Settings in settings.php 
Your Drupal site is almost ready to go live. The code is in place on your production server, the user files 
were transferred along with it, the databases are loaded, and now it needs to know about the database. 

You can manually edit settings.php to use these values or you can use Drupal to set it up for you (if 
the file permissions in settings.php are set to allow it) by going to the site in your browser, for instance: 

 
http://example.com/install.php 

 
To edit the file manually, the following commands will open it in vim; go to the correct line (around 

line 181), and enter insert mode: 

vi sites/default/settings.php 
:181 
i 

Make the relevant section (the $databases = array() line) look something like this: 

$databases['default']['default'] = array( 
  'driver' => 'mysql', 
  'database' => 'dgd7', 
  'username' => 'dgd7', 
  'password' => 'S3cUr3p4s5w0rD', 
  'host' => 'localhost', 
  'prefix' => '', 
); 

■ Tip  Remember that the array you are defining is nested two deep (typically with the key 'default' for each)! It’s 
not simply $databases = array() as Drupal starts you off; it is a twice-nested array and you might as well start 
off like $databases['default']['default'] = array( ... ); The first default is for the default database 
rather than an additional one and the second default indicates that it is the main (master) database rather than a 

supporting (slave) database. 

http://example.com/install.php


CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

247

Every automation tool has to perform the steps described so far. We presume a functioning web
serving environment, so this section on initial deployment is done with a final step: telling your web
serving software the location of the document root of your web site. The preconditions we are not
covering include a module capable of interpreting or running php (such as, for Apache, mod_fcgid or
mod_php). 

5. Point Incoming Traffic for Your Domain(s) to Your Site on the
Server 
This step is about pointing visitors looking for your domain to your site. This means configuring your
web server software (most commonly Apache) to match the corresponding location and setup of Drupal
from the previous steps. Before visitors can see your site at a public address (web domain), however, a
few prerequisites need to be met. 

• First, you need a domain name, which you can purchase through a domain name registrar
(see icann.org/en/registrars/accredited-list.html for the full list of registrars). 

• Second, you need the Domain Name System (DNS) settings for your domain
name to point to nameservers you control. Your nameservers may be provided
through your registrar, your host, or a dedicated DNS service. 

• Finally, the nameservers need to be telling your domain to point to your server’s
Internet Protocol (IP) address. 

■ Note  After telling your domain to use new nameservers, it can take up to two days to resolve (start working). If
you purchase hosting and domain names from the same company (not recommended), these steps may have

already been done for you. 

Once all that is established, you can configure the web server software to send incoming requests for
your domain name to the folder that contains your site’s web root. In this example, that folder is
/var/www/dgd7/web. (Drupal’s code was placed in the sub-directory web in the directory dgd7 in Chapter 1.) 

■ Note  As with most things you’ll do in Drupal, there are multiple ways to serve a web site. Even if your host is
using Apache, it may have a graphical user interface set up or command line tools to automate some or all of the

upcoming tasks, so look for the easy solutions first! 

Apache is the most-used web server; like Drupal, it’s Free Software. A common way for Apache to
direct visitors to your web site is with a virtual host configuration. These can be written as individual
files, one for each web site, and added to /etc/apache2/sites-available (in a Debian installation). You
can create a new file and begin editing it with the Vim editor (see Appendix I) with the command vi
/etc/apache2/sites-available/dgd7 (where dgd7 can be any filename that lets you identify your site)
and put something like the code in Listing 13–1 in it. 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

248 

Listing 13–1. Example Apache Virtual Host Configuration File for definitivedrupal.org 

<VirtualHost *:80> 
     ServerAdmin webmaster@agaricdesign.com 
     ServerName definitivedrupal.org 
     ServerAlias www.definitivedrupal.org dgd7.org www.dgd7.org definitivedrupal.mayfirst.org 
     DocumentRoot /var/www/dgd7/web 
     <Directory /> 
        Options FollowSymlinks 
        AllowOverride None 
     </Directory> 
     <Directory /var/www/dgd7/web> 
        Options Indexes FollowSymLinks 
        AllowOverride All 
        Order allow,deny 
        allow from all 
     </Directory> 
</VirtualHost> 

A symlink to this file in Apache’s sites-enabled directory can be created with the command sudo 
a2ensite dgd7 (where dgd7 is the name of the file you created in Apache’s sites-available directory). 

Apache must reload its virtualhost configuration files before they take effect. An error in one of these 
files can cause all web sites served by Apache to fail, so we highly recommend you test first (the first 
command here): 

sudo /usr/sbin/apache2ctl -t 
sudo /etc/init.d/apache2 reload 

The second command reloads your configuration, and you should be able to see your web site at 
your domain name now! For more information about Apache virtual hosts, see 
apache.org/docs/current/vhosts. 

Note the AllowOverride directive which permits Drupal’s included .htaccess to give Apache 
instructions necessary for Drupal’s proper operation. 

■ Note  You may have noticed that one of the domains listed as a server alias in the example Apache Vhost file 
was definitivedrupal.mayfirst.org, not one that acts as a public domain for the site. This allows you to test 

all the configuration done in this section before anyone can access your site through its usual domain name or 
names. This is especially useful when replacing an existing site. This particular domain and subdomain is set up 
by our host, May First People Link, for each project, but you could set up your own, even directing a subdomain 

such as livetest.definitivedrupal.org at your server for this purpose. 

Your web site is online! Now (or earlier!) comes backups, and soon comes deploying updates and 
new features. 

mailto:webmaster@agaricdesign.com
http://www.definitivedrupal.org
http://www.dgd7.org


CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

249

Before You Go Any Further, Back Up 

“Another mortal mistake is not backing up your site.”  
 

—Jeff Robbins(from a Lullabot podcast) 

Karen Stevenson immediately added that everyone has committed this sin, and most have horror 
stories. Permit us to help you avoid this fate. If you do nothing in this section, at least set up the Backup 
and Migrate module (drupal.org/project/backup_migrate) described in Chapter 2. Again, if you don’t 
get going with a server-based backup solution such as the one described below, set up the Backup and 
Migrate module on every of your Drupal sites. Configure it to take daily backups, uploading them to a 
place on your server and/or sending them to your mailbox. 

■ Tip  Do not skip this section. If you do not yet have automated backups, before you go any further, back up your 

work—and then set up your work environment and servers so that backups are automated. 

If you are building anything you want to see again, you need to back it up. If you don’t believe this, 
ask any developer who’s had a server malfunction, user or developer error, or an attack on a site that 
wasn’t backed up. Heck, ask anyone who has lost their computer or had a hard drive die. 

Continually backing up your work is an essential practice for any web developer. As introduced in 
Chapter 2 and elaborated upon in Chapter 14, whether you are downloading modules to construct a site, 
authoring a theme, or coding a module, you can have peace of mind and comfortable creative flow by 
using version control. 

Even more important than your code, however, are the words, the pictures, the stories and facts that 
people using your site have crafted and placed there. This content is a sacred trust; the worst thing you 
can do to your users is lose all their data. And that is, in fact, very bad. Don’t do it. 

Back up the database and the files. If you have configured a private file directory, don’t forget to 
back the private files up as well, wherever you have placed them. Do whatever you need to do to make 
sure all data and files are regularly backed up, locally and to a separate computer. A server malfunction, 
user or developer error, or an attack on your site can mean that failure to back up comes at a very high 
price. 

■ Note  A database backup that extends Drush is DGB, for Drush Git Backup. It provides Drush commands for 
backing up a Drupal database such that each table of the database is a separate file. This approach is more 
suitable for adding database exports to version control (the Git part), as you can see changes in a table with the 
git diff command (some tables are more useful to look at than others). It also improves on Drush’s handling of 

cache_* tables, conveniently excluding data in these that doesn’t need to be part of any backup. DGB is available 

on GitHub: github.com/scor/dgb. 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

250 

See many more options for backing up a site at drupal.org/node/22281. Next, we present a proven 
approach with a handy tool, Backupninja. 

BACKUPNINJA 

Backupninja lets you drop simple config files in /etc/backup.d to coordinate system backups. It is a 
master of many arts, including incremental remote filesystem backup and MySQL backup. On systems 
using Debian’s package management tools, you can install it by executing apt-get install 
backupninja. 

■ Note  For Linux without Debian’s package manager, you can get backupninja through its project page, 

https://labs.riseup.net/code/projects/show/backupninja. 

Running man backupninja gives some basic information; most notably, it mentions a small program called 
ninjahelper. It has a simple user interface offering the following two basic functions when you start it for 
the first time: 

• new to create a new backup action 

• quit to leave ninjahelper 

A basic setup involving a dump of your database, system configuration, and remote storage involves 
creating three actions: 

• sys  

• mysql 

• rdiff (make sure to include all the relevant directories mentioned earlier) 

The last option requires a user account on a remote machine with ssh access. The really helpful 
ninjahelper creates and copies an ssh public key, installs required packages, and leaves you with a 
working backup configuration. 

Testing Backups 
Your site is not backed up if you can’t restore it. Find out where your backups are (if you used the 
backupninja setup previously mentioned, it will all be specified in your /etc/backup.d directory). 

Decide also what sort of restoration you need. If it’s good enough that you can manually restore 
everything within a couple hours to a day if something catastrophic happens, you just need to know 
where everything is. If you need to have very rapid restoration no matter what happens, you will need to 
have a backup server ready to go and script your restoration. 

https://labs.riseup.net/code/projects/show/backupninja


CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

251

■ Tip  This is entirely unrelated to backups, but another scenario when a client or other site user will get upset 
about lost data is if they type a brilliant essay into the web site and something goes wrong (with the web site or 
their browser). Don’t write anything of significance directly into a browser window, and tell others to avoid it. Edit 

your precious work in a text editor or word processor like MS Word or OpenOffice.org and copy and paste it into 
the form. Using a browser that tries hard to safeguard your data, such as Firefox or Chrome, can also make you 

much happier. 

Your web sites aren’t the only thing you should be backing up, of course. As mentioned in the next 
chapter, include your coding area in your personal computer’s overall backup. If you aren’t backing up 
your personal computer, now is the time to start. After all, it’s not just treasured personal notes, 
irreplaceable photographs, and potential blackmail material anymore; we’re talking truly precious lines 
of Drupal code. 

Staging and Deployment 
By staging and deployment, we mean the process of putting all the work going into a web site (the 
development and the content) somewhere they can be seen together (a staging site), and then taking this 
to a live web site where it can be seen in all its glory by everyone (deployment). 

The trick is doing this when people are using the live web site every day and multiple people may be 
contributing to development. 

■ Note  Taking the security measures and bug fixes covered in Chapter 6 to a live site is a special case for 
deployment and by far the easiest case of what is described here; the most basic update code and running of 

update.php (after testing on stage) will work to deploy these sorts of updates. This process is described next. 

There is no definitive way to stage Drupal. There are many ways. The best way depends on the 
specific needs of the web site project. In our experience, the most common needs involve adding 
features to an already operating web site. The recommended approach for deployment of new 
functionality is to make a distinction between content and configuration, and capture the configuration 
in code where it is version-controlled and easily moved from one environment (such as your local 
computer) to another (such as stage or live). This approach is commonly called “everything in code.” 

■ Tip  No one in Drupal—not even Greg Dunlap, author of the Deploy module (drupal.org/project/deploy)—
considers deployment a completely solved problem in Drupal 7. He and others do think we’ll be able to solve it in 
Drupal 8. The Deploy module is not covered here; it is especially well suited when you need to push content as 

well as configuration from a staging site. In particular, the Deploy module is essential for a frequent content 

publisher staging and previewing lots of content on a staging site, then pushing it all forward to the live site. 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

252 

Approach 
The approach in this section assumes: 

• Competent Drupal developers 

• Straightforward publishing workflow (significantly, no need to stage content) 

In this case, we recommend an “everything in code” approach to development by using the 
Features suite of modules to automate major parts of it, keeping the live database the final authority, 
and making all development impacts on the database testable and re-playable. 

In this approach, the database of the live site remains canonical, correct, and never has to be 
merged. Database changes required for configuration can be replayed in a testable fashion on the 
staging site before being re-played on live. 

If you have a Drupal site you’ve been working on for a while, you do not need to go back and move 
all existing configuration in the Drupal site into code. Development will always build on a copy of your 
working, live database. It does mean that new features must use code to make any changes to the 
database. 

Drupal has some pitfalls when it comes to updates, like all applications that rely heavily on a 
database. That’s an architectural decision that has its pros and cons. Applying “everything in code” to an 
application that follows at its core an “everything through the web” philosophy has its challenges, but 
the Drupal community is rising to meet them, as you’ll see soon. 

The Workflow 
Given this approach, a model workflow would look like the following: 

1. Make a copy of the live database and work with it locally. 

2. Add functionality or change appearance through code (modules, themes, etc.). 
All changes made through pointing and clicking must be exported or otherwise 
reproduced in a form that is captured in code. 

3. Test a fresh copy of the live database against your code from step 2 and run 
update.php if you have written code to change the database. You can do this on 
a staging server for other people to see and assess. 

4. On the live site, apply the exact code updates you just tested in step 3 and 
immediately run any needed database update. 

■ Tip  To always know what site you’re looking at, you can use the Environment Indicator module 

(drupal.org/project/environment_indicator). 

All content changes and additions, everything done by users, and the user accounts themselves flow 
from the live site. All code changes (including everything typically done by a site-building administrator 
exported to code) flow from the development site or sites. The database and user files meet the code on a 
quality assurance (QA), test, or stage site for, well, quality assurance and testing, before they meet again 
on the live site. Figure 13–1 diagrams the flows. 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

253

 

Figure 13–1. Diagram of an “all configuration in code, all content changes on live” code and database/files 

flow 

A key thing about this setup is that the local development environments can be multiplied many 
times (one for every developer working on the site) and the code and data flow and the workflow remain 
the same. This is made possible by the bare repository, a common repository that you and other 
developers can push code changes to and pull code changes from. The staging and live sites should only 
pull changes. This is discussed in the “Bring Code Changes from Development to Stage, then Live” 
section later in this chapter. 

Can you still make configuration changes on live? Of course. What we present here is a 
recommended ideal, not the laws of physics. A hybrid approach where content types and views are built 
in development and imported to live, but many other changes and tweaks are made directly on live, is 
quite common. Simply be aware that live configuration changes will burn you sooner or later: something 
will go wrong on live and you will not know how or why. The more people involved in a site, the more 
likely this will be. The less acceptable it is to roll back to the previous night’s snapshot backup, the more 
serious this problem can be. Meanwhile, the more you put all your configuration changes into code, the 
faster you will get at it; likewise, the more everyone uses this approach, the better the community tools 
will be. Some of these tools are covered in the upcoming “How to put ‘Everything in Code’” section. 

Bringing Content from Production to Development (and Stage/QA) 
The same commands from the “Putting Your Site Online” section can be used here. Dump and import 
the databases. Drush (drupal.org/project/drush) can do this even better; see Chapter 26. Don’t forget to 
bring user files, which can be done with rsync. 

Try to make this a one-command solution in your setup. To reduce unneeded strain on your live 
server, you may want to automate the nightly dump or simply get the copy from your most recent 
backup, rather than exporting the live database directly each time you sync production to development 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

254 

and stage. The important thing is to make it easy so that developers use it regularly. The database should 
always be considered to belong to live, and any changes you wish to keep must be captured in code. 

■ Note  The Demonstration module (drupal.org/project/demo) can help your workflow of testing your code 

changes by re-loading a database. 

Bring Code Changes from Development to Stage, then Live 
Your code changes don’t have to be major—you could simply updated core or contributed code (as from 
Chapter 7). It just has to be done on a development site first. So, download updates or make your code 
changes on your web site on your local development environment. Then commit these changes to your 
local repository, push changes to a shared repository, and pull the changes to a staging or QA site for 
testing. When everything checks out there, the code changes can go live. 

A key part of this scenario is that all the environments talk to one repository. This repository can be 
hosted by a service such as http://gitorious.org or http://github.com, or you can create it yourself and 
place it on your own server. 

SETTING UP YOUR OWN CENTRAL REPOSITORY 

Git is a distributed version control system, which means it does not need a central repository— it carries 
its full version history with your project wherever you take it. 

However, for the purpose of pushing code from one server to another and for working with a team, 
creating a central point of reference can be very valuable. 

You can do this by making a bare clone of your project repository (which you set up in Chapter 2).  Here, 
“bare” means the repository alone—those files in .git directory that mean nothing to a human, without the 
working copy around it. 

From your local development environment, run a git clone --bare command and move the resulting 
folder (given the suffix .git, but a folder not a file) onto a server (this server has been set up to be 
accessible at the git.example.com address and to have a /srv/git directory). 

git clone --bare ~/code/dgd7 dgd7.git 
scp -r dgd7.git you@git.example.com:/srv/git/dgd7.git 

Your new central repository is probably ready to go already, but from the server you can do a few extra 
things to make it work in every case. 

ssh you@git.example.com 
cd /srv/git/dgd7.git 
git init --bare --shared 
git update-server-info 

To associate this new external repository with your original project on your local computer, do the 
following: 

cd ~/code/dgd7 

http://gitorious.org
http://github.com
mailto:you@git.example.com:/srv/git/dgd7.git
mailto:you@git.example.com


CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

255

git remote add origin git 

To access your project on another computer, including putting it on your staging or production server, do 
the following: 

ssh you@test.example.com 
cd /var/www 
git clone you@git.example.com:/srv/git/dgd7.git dgd7 

This gives you a repository with working copy in a dgd7 folder. For more about putting a bare Git 
repository on your server, see Chapter 4.2 in the Pro Git book (http://progit.org). 

With everything set up, the commands for adding and committing your changes to local version 
control and pushing to a shared repository are quite simple. Once you’ve done whatever you feel needs 
to be done to your code (much more on that in a following section) you can push it to your central 
repository, like so: 

git add -A 
git commit -m "Updated pathologic module to the latest security release." 
git push 

Note that git add -A captures every change you have made (added, edited, or removed files) and 
prepares them for committing. Use git status to see what you are proposing to commit (and git reset 
to undo an add before committing).  

This pushes your code to the remote repository it’s associated with. If it is associated with more than 
one repository, you may have to specify it in the push command (for instance, git push origin master). 

Now the code is ready to be tested in a fresh environment. First, sync the database from the live site 
(manually, as in the “Putting Your Site Online” section, or using Drush), and likewise bring the user-
created files from live by using the rsync command. Next, bring the code changes over to your test site (a 
clone and working copy of the repository). You can use something like the following commands: 

ssh you@test.example.com 
cd /var/www/dgd7 
git pull 

■ Note  As with every step in this chapter, you can see an example of helper scripts in the (evolving) practice of 

one Drupal shop at data.agaric.com/deploying-the-agaric-way. 

Don’t forget to go to update.php, as in http://test.example.com/update.php, if your code changes 
include any database updates that need to be run. (Updated core and contributed code, even for security 
releases, can require updating something in the database, so if you aren’t completely sure, go to 
update.php on your site to check.) 

When everything has been checked out, you can make the code change on production (continuing 
to use source control as a deployment tool or using rsync for the go-live) and run update.php, exactly as 
you did on the test site. 

mailto:you@test.example.com
mailto:you@git.example.com:/srv/git/dgd7.git
http://progit.org
mailto:you@test.example.com
http://test.example.com/update.php


CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

256 

How to Put “Everything In Code” 
The approach outlined in this chapter is to export or otherwise capture in code all changes that you wish 
to make to a site. It’s work—though the tools and techniques mentioned here make it less work—but the 
benefits are substantial. 

• Code can be versioned and there are well-established procedures for resolving 
conflicts between different versions of the code using version control tools. You 
can see who did what change and when. 

• The quality assurance (QA) environment enables you to test exactly what will 
happen when you take changes to production. 

• Separated configuration and content means that your updates don’t overwrite 
user activity on the live site. 

In short, you want to capture in code every single configuration thing you possibly can. There’s a 
movement in Drupal to make configuration exportable, and they have successfully implemented this 
idea for the most important elements of modern Drupal configuration: content (node) types, fields, and 
views. Arguably, most menus, blocks, and taxonomy can be considered configuration and thus given 
over to the control of code rather than the user interface on a live site. The Chaos Tools project 
(drupal.org/project/ctools) brought us the clearly defined concept of exportables and tools to help 
other modules export their configuration. Much of this has been further automated by the Features 
project, which is the most convenient way for most people to get configuration into code, and so is 
covered next. 

Features 
The Features project (drupal.org/project/features) is not the only approach to putting site 
configuration in code. Even within a single Drupal shop, some teams may only use update hooks 
(covered next), and some may use the Features module. However, there is pretty universal agreement 
that making Drupal configuration exportable is a key part of a robust deployment solution, and Features 
is helping drive the automation of this. 

Variations of the word “feature” are used to mean different things in the Features world, and the 
distinctions are important. This book follows the official definitions: 

• Features: The Drupal module that allows for the capture of configuration into 
code. 

• Feature: A module that contains a collection of Drupal parts that do something 
specific. 

• feature: Something you want your web site to do. 

• features: A set of things you want your web site to do. 

“Yes, I’m sorry. It seemed like a good idea at the time.” 

—Jeff Miccolis, Development Seed,  
on the terminology used by Features 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

257

To use these forms in a sentence: A Feature module (which is created by the Features module) will
typically have a tightly related set of features. See Figure 13–2 for a typical workflow of how a feature
becomes a Feature module and can be deployed to another site. 

Figure 13–2. From feature to Feature module 

Drupal developers working on a relatively simple site can choose to have just one Feature module
for the whole site. The single sitewide update Feature evolves with the site. Separate custom Feature
modules can be useful for multiple developers working on a complex site. The real ideal of Features,
however, is a shareable Feature module that encapsulates useful functionality and configuration that
can be deployed on multiple sites. See the Kit specification (drupal.org/project/kit) for best practices
for making a shareable Feature. 

■ Tip  Major new developments related to a given piece of functionality should be done in a dedicated custom
module or, better yet, a module you contribute on drupal.org. Use of Features for content types and views and
other elements specific to your site does not prevent you from handling the export and storage of selected of these
elements with individual modules, when their use can be generalized. These additional modules you make can

also use and require the Features, or not. In either case, they would be required by the sitewide Feature module to

keep everything tied together. 

Features and Drupal 7 core do fairly well at exporting content types, fields, permissions, input
filters, menu items, image styles, and taxonomy vocabularies. And if necessary, it’s possible to hook up
almost anything else to CTools’ exportables framework yourself. In this way, you can make additional or 

x



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

258 

custom modules’ database-stored configuration exportable. (For contributed modules, check their issue 
queue first for other’s progress!) Additional modules add to Features export and restore capabilities. In 
particular, the Strongarm module (drupal.org/project/strongarm), which also requires CTools, can be 
used by modules (including the Features module) to export and override settings stored in the much 
used and abused variable table. 

What all this gives you is the ability to configure your Drupal site as always through the 
administrative UI (creating content types, views that use these content types, image styles that fields in 
these content types use in different views and view modes, etc.) and then, using Features UI or Drush, 
export it all to code and into a Feature module. 

■ Tip  The Features module allows you to automate and do through the graphical user interface what would be a 
lot of custom coding. You make your changes locally, and Features exports your changes into code in a special 

Feature module. 

Telling a Feature to use what it has in code is called reverting a feature, which is confusing from the 
perspective of the workflow followed in this chapter because we’re actually updating. Features calls this 
reverting because using a Feature module’s saved configuration reverts to what is in code; it is only 
because you are not making any changes through the user interface on the live site that this always 
results in an update, and not what you would commonly think of as reverting. 

Writing Update Hooks 
This is the approach mentioned as an alternative to the Features approach, but really it’s 
complementary. Export functionality is often still inconsistent and incomplete, but you can supplement 
exportables and Features-generated modules with your own custom code. 

The essence of this approach is still the same: all changes are coded in a module. You write your 
own update code for every change you make. Each new change that affects the database goes in a 
hook_update_N() function, and the same change goes in hook_install() or hook_schema() to be kept in 
synch. See api.drupal.org/hook_update_N for the basics of update hooks. 

■ Tip  We highly recommend even if you are doing everything with features to also write an update hook to trigger 

the feature with features_revert().  

Try to use APIs, rather than direct database calls, whenever possible in your update hooks. (Note, 
though, that for creating content programmatically, API functions such as node_save() don’t always pull 
in everything properly; faking out a form array and submitting with drupal_form_submit() may prove 
necessary.) 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

259

■ Note  Anything that can be done in your module by submitting a form should also be doable with a line of code. 
Indeed, the submit function that handles your form should always use an API function to save the change. 
Unfortunately, Drupal core itself is not there yet, so you will sometimes have to resort to faking out a form and 

using drupal_form_submit() rather than a proper API function. For instance, node_save() currently fails to 

accept free-tagging taxonomy terms except when called in the context of drupal_form_submit(). 

Dependencies have to be really careful to do things in the right order. Keep in mind that update 
code runs for disabled modules, and in this case you must explicitly load any code you need for this 
module that is not in its .install file. First, check if a module is enabled with if module_exists(). 

This chapter does not go into the details of using Feature modules nor writing update hooks. The 
latter is covered in the context of module development in Chapter 24. Look for updates and resources at 
dgd7.org/deploy; for examples using Features and update hooks to add features to a site, follow 
dgd7.org/anjali. 

Creating, Editing, and Reviewing Content on Production 
This chapter’s approach entails that all content changes be made on a live site, with robust revision 
moderation as needed, using Drupal’s capabilities as a CMS, and that you not try to deploy content 
changes from a staging site. (Instead of a place for content creation or configuration, the staging site in 
this workflow is the place where the live production site’s database and the development sites’ code are 
tested together.) 

The approach discussed in this chapter takes staging content out of the equation. Do it on live. Use 
the staging site for confirming that bringing the literally codified development changes to a copy of the 
live database works as expected, then bring the code changes live and enable the feature/run 
update.php. 

For “staging” content on live (creating or editing and reviewing before anything is made public), 
there are several options for main content that extend Drupal’s content management capabilities. For 
instance, the Revision moderation module (drupal.org/project/revision_moderation) allows content to 
be edited without the edits going public until after they have been reviewed. (At the time of this writing, 
it was in the process of being ported to Drupal 7.) 

Another module to protect live content from breaking is the Path redirect 
(drupal.org/project/path_redirect) module. Path redirect ensures that even if Pathauto module 
changes the path of a piece of content because, for instance, the title changed, the old path redirects to 
the new URL. 

If your publishing needs mandate that content be staged on a separate site, we refer you again to the 
Deploy module (drupal.org/project/deploy). However it happens, if significant content is already or 
does get generated on a development or staging site, Deploy or possibly Feeds 
(drupal.org/project/feeds) or Migrate (drupal.org/project/migrate) may be called for. 

Node export (drupal.org/project/node_export) could also work, and it can create code that can be 
run in update hooks by update.php to import the exported content. If doing this, the Pathologic module 
(drupal.org/project/pathologic) can be used to fix absolute paths in content. 

Pages or Content Sections That Require Functionality 
Pages and sections with a great deal of functionality can be created via hook_menu() and callback 
functions instead of as nodes. See api.drupal.org/hook_menu and Chapter 29. 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

260 

■ Tip  If the PHP Filter module is enabled, try to disable it. PHP Filter module should not be used to provide 
functionality on node (content) pages. Avoiding that is a good idea from both code quality and deployment 
perspectives. For placing functionality, rather than content, on a page or part of a page, use Drupal’s 

hook_menu(), hook_block(), or hook_page_build().  

You can make content to go with your functionality—you can have code create content—but this is 
problematic where content has to relate to each other (e.g., primary key issues). This is a priority for 
Drupal 8, and a lot of thought is being put into Universally Unique Identifiers (UUIDs). 

Development Workflow Recap 
There are many possible development workflows. It’s important that you safeguard production data and 
incorporate testing, and that everyone you are working with understands and follows the same 
approach. A basic development workflow is to pull content and user data from a live site (if any), add 
features and fix bugs locally, push the changed code to a staging site for people to test it, and only after 
testing, push it to the live site. 

• New functionality is added to an existing or new module. Database-related 
aspects of this functionality are exported using Features (and committed to a 
module) or more manually encoded into a module. 

• Other developers can pull from the developers repository (or from a central 
repository), run update.php in a browser on the development environment, and 
have a working version of the site. 

• Fresh imports of the production database are taken regularly in the development 
process, but particular attention is paid to taking a fresh copy and doing quality 
assurance on stage with code updated and update.php run, but with no manual 
configuration changes, before updating the code and running update.php on live. 

• If necessary, create shared development environments for collaboration on 
database configuration (before these changes are exported to code) but keep stage 
for quality assurance. 

■ Tip  Set up testing for your development (in part, an automated deploy to staging) with Jenkins Continuous 
Integration tool (jenkins-ci.org). See groups.drupal.org/node/47686 for a Drupal-oriented setup. (Note that 
Jenkins was called Hudson until 2011; it is the same software but was renamed to preserve its independence as a 

Free Software project.) 



CHAPTER 13 ■ PUTTING A SITE ONLINE AND DEPLOYING NEW FEATURES 

261

Summary 
This is just one approach to deployment. The concept of “everything in code” is most comfortable to 
people who like making modules, but the Features project makes it a reasonable approach for people 
who prefer the site builder role. 

■ Note  See reader comments and updated links to resources at dgd7.org/deploy. To see the principles of code-

driven deployment put into practice, follow the Anjali project at dgd7.org/anjali. 

We encourage you to consider deployment from the needs of your site and your team’s workflow. 
You may find that a variation of the approach outlined here works best, or you may find a completely 
different alternative to be preferable. This is an area of a lot of movement and potential in Drupal, and 
the more people who get involved, the better it can be. See the Packaging & Deployment group at 
groups.drupal.org/build-systems-change-management to follow some of the conversations about 
developing better deployment tools and techniques in Drupal 7 and beyond. 
  



C H A P T E R   14 
 

■ ■ ■ 

263

Developing from a Human Mindset 

by Károly Négyesi 

This book seeks to give you the tools to understand Drupal, to use it to do great things, and to contribute 
back to the Drupal community. This chapter will help in making your work not just highly productive 
but a source of joy. 

Use Revision Control 
To put it simply, revision control stores a copy of your files whenever you instruct it to do so, thereby 
allowing for later restoration. Of course, it stores the files more efficiently by storing only changes. It 
offers many other features, but for the purpose of this section, only the “restore later” feature is 
important. 

The code repositories on Drupal.org have migrated to a modern revision control system, Git 
(http://git-scm.com), and I recommend using it. Keeping track of your work with Git is as simple as 
running the following code snippet once: 
git init . 
git add . 
git commit -m 'Initial commit.' 

Also, every time you save, run a git commit -a -m "something". The “something” is a message; it 
doesn’t matter what it says, so don’t fret. You can also enter the date by using a system command to 
enter it for you (git commit -a -m "'date'") or by defining a keyboard shortcut. The important thing is 
that you make it effortless to keep every revision of your work. (The importance of being effortless will be 
clear later.)  

In a better world, the OS would do this for you; more often than not, it doesn’t. When you reach a 
milestone, write a meaningful commit message in case you want to share the work with someone else. 
But the commit-by-the-minute routine is not about sharing; it’s about making sure you can get back to 
any previous state. Study git bisect on how to find the revision where the error occurred. For more 
information on Git, see Chapter 2. 

Backup 

You should use mysqldump (dev.mysql.com/doc/refman/5.5/en/mysqldump.html) or the Backup and 
Migrate project (drupal.org/project/backup_migrate) to provide SQL dumps. SQL dumps are text files, 
so you can commit them into Git, too. Indeed, it doesn’t matter what kind of text file you work on—
throw them into version control! 

http://git-scm.com


CHAPTER 14 ■ DEVELOPING FROM A HUMAN MINDSET 

264 

Your web site probably has files, so don't forget to back up those as well. Windows and Mac OS X 
have GUI tools (Windows Backup and Time Machine) to achieve this; Linux has some command line 
tools (tar and rsync) to help. I recommend both the free and commercial offerings from r1soft 
(r1soft.com). 

Experiment Freely 

If you learn nothing else from this book, learn this: experiment freely. It’s a very important component of 
being a successful web developer. Don’t be afraid—you can’t break it. That’s why I use revision control 
constantly and why I back up regularly. Never work on a production server; setting up a development 
environment is very important and not difficult (and it is the focus of Chapter 12). 

I often see people on IRC or other forums asking “What would happen if...?” Well, here’s news for 
you: nothing serious! At worst, you get an error message. If you get one, remove the pieces that are too 
specific (like the local path to Drupal) and throw the error message into Google to find out why it 
occurred. Experiment freely not just by trying various strategies to a given problem but also with web 
searches.  

A web search takes a fraction of a second and you just can’t do too many of them. Search on 
something, take a look at the findings, rephrase your search based on them, and sooner or later you’ll find 
what you were searching for. It’s an iterative process and the only way to master it is to experiment a lot.  

This is true not just for searches but for everything. The phrase “lifelong learning” means 
continuous learning. And if what you learn isn’t useful right now, it might be useful later. My motto is “a 
day when I learned nothing is a day wasted.” 

On the other hand, don’t learn rote facts! Google simply knows more rote facts than we could ever, 
ever learn but continues learning them at speeds far exceeding any human. Learn patterns instead; learn 
the vocabulary that’s useful for searches. In this age of the ubiquitous web search, the very meaning of 
“knowledge” changes. If you know how to wield the search engine weapon well, you can just carry the 
skeleton of the necessary knowledge in your head; the meat can be filled with a quick search. 

Experimenting freely is a step toward flow. Flow is a curious state where the mind, according to 
Mihaly Csikszentmihalyi, is “completely involved in an activity for its own sake. The ego falls away. Time 
flies. Every action, movement, and thought follows inevitably from the previous one, like playing jazz. 
Your whole being is involved, and you’re using your skills to the utmost.” Reaching flow is joyous and 
leads to outstanding performance. Some expressions for this mental state include “in the moment,” “in 
the zone,” “in the groove,” and “keeping your head in the game.”  

We are not saying you always should be in a state of flow, nor is it advisable to always strive for flow 
(that probably would make it impossible to reach it). Rather, just organize things in a way so that flow 
can happen. Alas, there is no simple recipe, but the following things definitely help: 

Have clear goals. This can easily be achieved if you’re working on a well-defined project. 
(This is another reason why a good specification is vital to success!) If the specification has 
problems, break it down to tasks that are themselves clear. 

Concentrate. I recommend listening to music to help you concentrate. It can put you in 
the mood, and it can mask other distracting noises. 

Enjoy direct and immediate feedback. This is the reason why flow is easier to achieve for a 
web programmer: direct and immediate feedback is a given in our profession. Save the 
code, press refresh in the web browser, and ta-da! Immediate is important here; waiting 
for the code to compile or a test to finish does not fit this pattern. 

Make the activity neither too easy nor too difficult. This is a tricky one to achieve in a work 
setting. Consider yourself lucky when it happens. 



CHAPTER 14 ■ DEVELOPING FROM A HUMAN MINDSET 

265

A sense of personal control over the situation or activity. Remember what I said about 
breaking down the problem into tasks? Doing so gives you a feeling of control. Working on 
a non-fixed schedule helps, too. 

The activity is intrinsically rewarding, so there is an effortlessness of action. Have you ever 
felt elated because your code worked? 

Contribute 
Contributing to open source projects might not present you with a paycheck biweekly, but it will benefit 
you in other ways. First, if you want money, there is a community involved, so your professional network 
grows, which leads to more job opportunities. This is especially true with Drupal where the demand for 
quality workers far exceeds supply (for now, but it’s so uneven that it is expected to continue for quite 
some time). 

Second, peer reviews provide you with a chance to learn. This is one of the reasons why open source 
is such a great opportunity—we learn together. 

Third, we humans are social animals. Belonging to a community and receiving the praise of our 
peers is important to everyone. 

Fourth, review the flow list above! When working on your own issue, you have clear goals, so choose 
one that is doable (but only just). Of course, you have total personal control over the whole situation.  

Finally, although there is no paycheck to receive, it’s intrinsically rewarding. 
So, how can you contribute? Contribution takes many forms (marketing, event organization, etc.), 

but the two I would like to highlight are documentation and code.  
Documentation is best written by those who have just reached the point where they feel they 

understand their topic. Once you are intimately familiar with something, it takes an unusual talent to be 
able to reflect on what was hard to understand in the beginning. So while you struggle to understand 
something, write notes on the problems you find. At the end, write down the answers you learned and 
you have a handbook page. It might not be smooth. It might be in slightly broken English. Don’t worry. 
It’s way easier to clean up a handbook page than to write one. 

Code contributions most often happen in the form of writing patches or reviewing them. Both are 
very important. You can go to any project page, click the “open issues” link, and then either fix an 
outstanding bug or review a patch. There are excellent handbook pages that help with this process at 
drupal.org/patch, drupal.org/patch/apply, and drupal.org/handbook/git.  

Once again, don’t try to come up with the perfect solution. Do something that works and then work 
with the community. Note that many patch reviews are terse and not too flattering; remember that the 
negative criticism is about your code, not you! We love everyone who contributes. Spending time with 
their contribution is appreciation in itself, as time is the scarcest commodity in an open source 
community. 

You can make a valuable contribution to the issue queue even if you don’t code. You can open a bug 
report and check whether it contains enough information to be reproduced. If not, mark it as “needs 
more information.” If it does, try reproducing it. If it’s not reproducible any more, close it as “fixed.” We 
need a lot of people doing this so those who are more familiar with Drupal—like you after reading this 
book, putting it into practice, and spending time—can concentrate on fixing the real problems. 

For more on this and many other ways to contribute to Drupal, see Chapter 38. 

■  Tip  For more discussion about developing from a human mindset, visit dgd7.org/think. 

  



P A R T   IV 
 

■ ■ ■ 

 

Front-End Development 

Chapters 15 and 16 take you on a thorough tour of using Drupal’s theming system to transform how 
your site looks in ways that are both powerful and maintainable. 
 
Chapter 17 introduces another key part of front-end development, enhancing site visitor experience 
with JavaScript, and in particular the powerful and relatively easy-to-use, even fun, jQuery library. 
 
See also Appendix D, which covers designing for Drupal. 
  



C H A P T E R   15 
 

■ ■ ■ 

269

Theming 

by Jacine Luisi 

Drupal’s theme layer, and the themes that use it, are responsible for the look and feel of a Drupal web 
site. Good themes consist of all the same elements that you would find on any reputable web site, 
including standards-compliant XHTML markup, CSS, and JavaScript. How it all comes together is what 
is so special and what makes Drupal themes so flexible and powerful. 

Drupal themes can be as simple or as complex as you need them to be. Themes have the final say 
and ultimate control over almost every aspect of each page. Like Drupal itself, themes are flexible and 
powerful. Admittedly, taking full advantage of Drupal's theme layer means overcoming a rather steep 
learning curve, and without a general understanding of what’s going on under the hood, it is easy to 
make mistakes early on. 

In this chapter, you will learn about the basic aspects of Drupal's theme layer. You’ll learn how to go 
about making customizations and changes in a sustainable way and best practices for common tasks. 
You will be well on your way to creating flexible and sustainable custom Drupal themes in no time! The 
next chapter will build on this one and will cover the more advanced intricacies of Drupal themes. 

Some of the examples you'll find throughout this chapter and the next can be found in the DGD7 
theme. It's available at https://github.com/jacine/dgd7 for download if you'd like to follow along. 

The Core Themes Directory 
When starting out, one of the first things people do is navigate to the core /themes directory and take a 
look at the files in the themes to get an idea of the general structure and contents. Unfortunately, many 
people make the mistake of starting out by directly customizing core themes. Do not make this mistake! 
They usually run into roadblocks and frustration shortly thereafter. Drupal has a large and diverse user 
base, and the main goal of a core Drupal theme is to cater to the masses. 

Aesthetics aside, core themes have many requirements and different use cases to satisfy. A few 
themes support the Color module in order to make it easy for site administrators to change color 
schemes in the user interface. This is not a bad thing; however, it can easily become confusing and 
frustrating when trying to customize colorized themes because CSS is generated programmatically and 
stored outside of the theme directory. Core themes must also function if used as an administration 
theme and they must support bidirectional text; in general, they can’t stray far from Drupal’s default 
regions and settings. 

It’s not easy to please everyone, and Drupal core themes have the tough job of trying to do just that. 
As a result, core themes are nowhere near as flexible or as cutting edge as they could be. Most of the 
time, your goal and approach will be very different when creating custom themes. You’ll be able to focus 
on coding your own front-end or back-end focused design, customize the markup, decide which CSS 
files to use (if any), and other exciting decisions. 

https://github.com/jacine/dgd7


CHAPTER 15 ■ THEMING 

270 

Core Themes 
Drupal core contains four themes. They are introduced in the following sections. 

Bartik 
Bartik is a new and welcome addition to Drupal 7. Drupal enables Bartik as the default user-facing
theme upon installation. It is a clean and simple theme that supports the color module and makes
excellent use of regions (see Figure 15–1). In addition to the default regions Drupal recommends, the
Bartik theme has seven custom regions for laying out blocks in the footer and sub-footer. 

Figure 15–1. Bartik is a clean and simple theme.  



CHAPTER 15 ■ THEMING 

271

Garland 
Garland originally made its debut as a core theme in Drupal 5. It is a more complex theme with excellent 
color module support (see Figure 15–2). It contains fifteen color schemes and provides an option to 
toggle between a fixed or fluid layout. 

 

Figure 15–2. Garland is a more complex theme with excellent color module support. 



CHAPTER 15 ■ THEMING 

272 

Seven 
Also new to Drupal 7, Seven is Drupal’s default administrative theme. Born out of the Drupal 7 User 
Experience project (http://d7ux.org), Seven drove many of Drupal’s user interface improvements. It 
contains very few regions, as its focus is on performing administrative tasks (see Figure 15–3). 

 

Figure 15–3. Seven is Drupal’s default administrative theme.  

Stark 
Stark is a unique and literally minimal Drupal theme (see Figure 15–4). Its main purpose is to expose 
Drupal’s default HTML markup and CSS. It does not provide any template files and barely provides any 
CSS at all, other than basic layout styles that place the default sidebar regions. Don’t let its simplicity fool 

http://d7ux.org


CHAPTER 15 ■ THEMING 

273

you; it is actually quite useful. Stark is the perfect theme for developers to code against when writing CSS 
for their modules. It can also assist theme developers when trying to troubleshoot issues where they’re 
not positive if the problem is with their theme or another module. 

 

Figure 15–4. Stark is a unique and literally minimal Drupal theme.  

Theme Engines 
Drupal’s theme directory also has an engines directory that contains a theme engine called 
PHPTemplate. Theme engines provide an easy way to separate themable output into template files as 



CHAPTER 15 ■ THEMING 

274 

opposed to plain old PHP. The main benefit of using the PHPTemplate engine is that separating logic 
from presentation is simplified. Those who are unfamiliar with PHP can accomplish a great deal because 
they are able to work in template files that mainly contain markup and print variables. 

While other theme engines such as Smarty, XTemplate, and PHPTal may be used, PHPTemplate is 
Drupal’s default theme engine and is by far the most popular theme engine used by Drupal themes (and 
many popular contributed modules), so we will cover it in this chapter. It is also possible to write pure 
PHP Drupal themes. See the Chameleon theme for an example of a pure PHP theme at 
http://drupal.org/project/chameleon. For a full listing of available theme engines, visit 
http://drupal.org/project/theme+engines. 

Theme Administration 
Theme configuration tasks are located in the Appearance section of Drupal’s administration. This is 
where you can control things like which themes you want to enable or disable, which settings you want 
to apply, which color scheme you want to use (if your theme supports the color module), and more. 

Enabling and Setting a Default Theme 
In a fresh installation of Drupal 7, the default theme (Bartik) appears at the top of the Appearance page, 
followed by other enabled and disabled themes (see Figure 15–5). What is a default theme? Simply 
enabling a theme is not enough with Drupal. Setting a theme as the default is what makes it the front-
end theme (the theme your site visitors will see). 

 

Figure 15–5. The Appearance page in a default installation showing enabled themes 

http://drupal.org/project/chameleon
http://drupal.org/project/theme+engines


CHAPTER 15 ■ THEMING 

275

Enabling a theme without setting it as the default is useful when you want your site to utilize 
multiple themes at once. This setting is typically more useful when used in conjunction with contributed 
modules. An example of this is the SwitchTheme (http://drupal.org/project/switchtheme) module, 
which allows users to change the site theme by selecting the name of a theme from a list that is 
populated with all enabled themes. 

Administration Theme 
In Drupal 7, the Seven theme is the default administration theme. The administrative theme is used 
when performing all administrative tasks, most of which happen under the /admin path. You can also 
choose to allow the administrative theme to be used when editing site content. Although some themes 
support Drupal’s administrative interface better than others, any Drupal theme can be used as an 
administration theme if desired. 

The administration theme’s configuration settings are located below the theme listings on the 
admin/appearance page. To use the same theme in both the front and back end of your Drupal site, 
simply choose Default theme as the Administration theme. 

Global Theme Settings 
Drupal comes with some theme settings that can be configured in the administrative interface. This is 
where most of the site identity assets are defined, as well as a couple of other miscellaneous settings. A 
Global Settings page located at admin/appearance/settings contains these settings. When global settings 
are saved, the settings apply to all themes. Each theme also has its own Settings page accessible via a 
Settings link located next to each enabled theme on the admin/appearance page. When theme settings 
are applied on an individual theme’s Settings page, they override the global settings. The following 
sections will detail what each of these are and where you’ll encounter them in your themes. 

Quite a few of these settings determine whether or not variables are populated and therefore printed in 
template files. The settings pictured in Figure 15–6 represent the defaults provided by Drupal. These can be 
overridden by themes by defining features in the theme’s .info file, which is discussed further in the 
“Defining Theme Metadata” section. When specifying features in .info files, you’ll need to make sure you 
include all the features you want to support, as having just one will override all of the defaults provided by 
Drupal. The following is a quick reference of these settings as they’d be entered in a .info file: 

features[] = logo 
features[] = name 
features[] = slogan 
features[] = favicon 
features[] = main_menu 
features[] = secondary_menu  
features[] = node_user_picture 
features[] = comment_user_picture 
features[] = comment_user_verification 

 

http://drupal.org/project/switchtheme


CHAPTER 15 ■ THEMING 

276 

 

Figure 15–6. The Global Settings page 

Logo 
By default, Drupal will look for a file named logo.png in the root of the theme directory. There is also an 
option to specify a path to a different file to use for the logo, as well as the ability to upload a logo to use. 
When the Logo checkbox is checked, a variable called $logo is populated with the path to the logo, which 
will be available in page.tpl.php. If unchecked, the logo will not print.  

Name and Slogan 
The site name is defined during the installation process. Both the site name and slogan can be changed 
on the admin/config/system/site-information page. On the theme’s Settings page, you can toggle their 
visibility. Both are available in page.tpl.php as $site_name and $site_slogan. 



CHAPTER 15 ■ THEMING 

277

Shortcut Icon 
The shortcut icon, also known as the favicon, is the small Drupal icon that appears in the address bar, 
bookmarks, and tabs of most browsers. Like the logo, the shortcut icon’s visibility can be toggled and a 
custom file can be used. The default file is misc/favicon.ico. 

User Pictures in Posts and Comments 
These settings control whether or not the variables $user_picture in node.tpl.php and $picture in 
comment.tpl.php are populated, and therefore whether or not the pictures are displayed when viewing 
nodes and comments. 

User Verification Status in Comments 
This option will display “(Not verified)” next to the user name for users that do not have a verified 
account. This text is defined in template_preprocess_username() and printed in theme_username() as 
$variables[‘extra’]. See the “Preprocess and Process Functions” and “Theme Functions” sections to 
learn how to change this. 

Main and Secondary Menus 
When the checkboxes for the Main and Secondary menus are checked, $main_menu and $secondary_menu 
variables are populated in page.tpl.php with arrays containing the menu links for each menu. On the 
Menu Settings page, located at admin/structure/menu/settings, you can choose which menu is used for 
each. By default, the Main menu, which can be managed at admin/structure/menu/manage/main-menu, is 
used as the source that populates $main_menu. The default menu for the source of the Secondary menu is 
the User menu, which can be managed at admin/structure/menu/manage/user-menu.  

These are simple one-level menus output using the theme_links() function (which will be covered 
later in this chapter) in page.tpl.php. This makes them hard to use when styling complex navigation 
designs. Because complex navigation is often required, many theme developers create regions for 
navigation and use blocks to output their menus instead of using these menus. We highly recommend 
the Menu Block module (http://drupal.org/project/menu_block), which allows you to do pretty much 
anything you’ll ever need to do with menus very easily. 

Custom Theme Settings 
Custom theme settings are similar to the global theme settings and can be provided by themes and 
modules. An example of custom theme settings can be found in the Garland theme in the garland.info 
file. It creates a setting called garland_width that can be set to fixed or fluid. The Shortcut module also 
provides a setting to display the “Add or remove shortcut link” used in the Seven theme to provide the 
icon you see in the Overlay next to the title. To learn how to create custom theme settings for your 
theme, visit http://drupal.org/node/177868. 

Installing a New Theme 
Drupal scans its theme directories for available themes, so it’s important that you place your themes in 
the right place for Drupal to recognize them. You might also be tempted to add themes to Drupal’s 
/themes directory, but technically this is considered “hacking core” and should be avoided. After 

http://drupal.org/project/menu_block
http://drupal.org/node/177868


CHAPTER 15 ■ THEMING 

278 

downloading and unpacking your theme, choose one of the following directories in which to place the 
theme. Using one of these directories will help ensure that any updates you make to Drupal itself will not 
result in accidentally overwriting your theme. 

• sites/all/themes: Use this directory when you want the theme to be available to 
all sites in your Drupal installation. 

• sites/sitename/themes: Use this directory when you only want the theme 
available to a specific site in your multisite Drupal installation. 

You may also use the theme installer to download and install contributed themes by clicking the 
Install new theme link at the top of the Appearance page. This will bring you to a form where you can 
enter the link to the project download’s tarball location and click Install. The theme installer will 
automatically download your theme and place it in the sites/all/themes directory. Once completed, 
you can enable the theme as usual on the admin/admin/appearance page. 

Defining Theme Metadata (.info Files) 
.info files (pronounced “dot info files”) contain important metadata about your theme, such as the name 
of the theme, which version of Drupal it supports, as well as things like the stylesheets and regions the 
theme will contain. Writing a .info file is usually the first step you take when creating a Drupal theme. 

The first part of the file name is the machine-readable name of the theme, which Drupal uses to 
store information about your theme in the database. Dashes and other special characters are not 
allowed. While underscores are allowed, it is considered a best practice to avoid using them when 
naming your .info file. Use themename.info instead of theme_name.info. This name will also be used to 
prefix function names when implementing theme function overrides. When overriding 
theme_menu_link(), for example, a function named themename_menu_link() is considered easier to read 
than theme_name_menu_link() when trying to determine the override being performed. 

■ Caution  Your theme (machine) name must be unique. Do NOT to give your theme the same name as any 

existing modules as it will likely cause namespace issues and make it difficult to track down PHP errors.  

Each theme requires some basic properties to be set in the theme’s .info file. The name, core, and 
engine properties are the bare minimum requirements for all Drupal themes. The following sections 
contain a brief description of each available property followed by an example of the syntax. 

■ Tip  To add comments to your .info file, add a semicolon to the beginning of each line, like so: 

; This is a comment. Comments are good. Make frequent use of them.  



CHAPTER 15 ■ THEMING 

279

Required Properties 
Core: Drupal will only allow your theme to be enabled if the core setting is set to 
support the current major version of Drupal. Major versions are simply 6.x, 7.x 
or 8.x, and so on. 

core = 7.x  

Name: The human-readable name of your theme. It doesn’t need to match or 
resemble the machine-readable name, so feel free to be creative here. 

name = Theme Name  

Additional Properties 
Base theme: Drupal allows themes to establish a relationship with each other. 
Creating a subtheme allows you to inherit the functionality and assets of the 
base theme (more on this in the next chapter). When creating a subtheme, 
you’ll need to specify the base theme. It’s important that the machine name of 
the base theme is used here. 

base theme = themename 

Description: The basic features or purpose of the theme should be described 
here. The description will appear in the admin/appearance page and may 
contain HTML. 

description = The description of my theme  

Engine: Specifies the theme engine. PHPTemplate is the default and most 
common, so unless you want to change this, it doesn’t have to be manually set. 
Other options include smarty and theme for a pure PHP theme (see Chameleon 
at http://drupal.org/project/chameleon for an example). 

engine = phptemplate  

Features: Setting features are a way of overriding Drupal’s default global theme 
settings. The following is a list of the default theme settings provided by Drupal. 
These settings can be toggled on an off in the administrative interface on the 
Settings page of each theme. Specifying even one will disable Drupal’s defaults 
and use yours.  

features[] = logo 
features[] = favicon 
features[] = name 
features[] = slogan 
features[] = node_user_picture 
features[] = comment_user_picture 
features[] = comment_user_verification 
features[] = main_menu 
features[] = secondary_menu  

PHP: Drupal 7 supports PHP version 5.2.5, and by default, so does your theme. 
This is something you will probably never need, but in case your theme has 
code that only works with a certain version PHP, you may specify it here. 

php = 5.3 

http://drupal.org/project/chameleon


CHAPTER 15 ■ THEMING 

280 

Regions: Regions are sections of your page layout where content (blocks) are
placed. Each entry is prefixed with regions and contains the system name of the
region in brackets with the human readable name as the value. For example,
regions[system_name] = Human readable name. The default regions are as
follows: 

regions[page_top] = Page Top
regions[header] = Header
regions[highlighted] = Highlighted
regions[help] = Help 
regions[content] = Content
regions[sidebar_first] = Sidebar First
regions[sidebar_second] = Sidebar Second
regions[footer] = Footer
regions[page_bottom] = Page Bottom 

Settings: The setting property is reserved for custom setting implementations in
themes. The Garland theme provides a theme setting for the type of layout
(fixed or fluid), which the site administrator can choose. While we won’t be
covering custom theme settings, we highly recommend checking out the
Omega (http://drupal.org/project/omega) and Fusion
(http://drupal.org/project/fusion) themes to get an idea of how theme
settings can be used. For more information, visit
http://drupal.org/node/177868. 

settings[garland_width] = fluid  

Screenshot: Drupal will automatically look for a file named screenshot.png in
the root of your theme directory, so this line is only required if you want to use
an alternative path or file name for your theme’s screenshot. The
recommended dimensions for the screenshot image are 294 x 219 pixels. 

screenshot = screenshot.png  

Stylesheets: There are quite a few options for adding CSS files in Drupal 7. You’ll
want to add stylesheets via the theme’s .info for CSS files you want to load on
every page. I’ll cover this in much more detail in the Managing CSS Files section
in the next chapter. 

stylesheets[screen][] = path/to/screen-stylesheet.css
stylesheets[print][] = path/to/print-stylesheet.css  

Scripts: JavaScript files can be defined in .info files using the scripts property.
Like stylesheets, you’ll only want to load JavaScript files here that need to be
loaded on each page. 

scripts[] = path/to/script.js  

version: Specifying the version is discouraged for both contributed themes and
modules. This is because drupal.org has a packaging script that takes care of
adding the version when releases are created. However, you may use this for
custom themes, if desired. 

version = 7.x-1.1  

Now let’s see the basics in action by taking a look your DGD7 theme’s .info file, as shown in Listing
15–1.  

http://drupal.org/project/omega
http://drupal.org/project/fusion
http://drupal.org/node/177868


CHAPTER 15 ■ THEMING 

281

Listing 15–1. The Top Portion of the DGD7 Theme’s .info File 

name = DGD7 Theme 
description = A theme written for The Definitive Guide to Drupal 7 book website. 
core = 7.x 

  With the exception of the core property, all of the above can be seen in the user interface on the 
admin/appearance page, as shown in Figure 15–7. This is all you’ll need to get started with your theme.  

 

Figure 15–7. DGD7 theme as shown on the theme listing page admin/appearance.  

CREATE YOUR FIRST THEME! 

Taking into account what you have learned so far, create a custom theme. 

1. Start by creating a new folder in sites/all/themes called dgd7. 

2. Inside the dgd7 folder, create a new file named dgd7.info and add the following 
code inside it: 

name = DGD7 Theme 
description = A theme written for The Definitive Guide to Drupal 7 book website. 
core = 7.x 

3. Grab the screenshot.png file from the chapter source code and copy it into the dgd7 
directory. This is an optional step. If the screenshot is not defined, you will see the text “No 
screenshot” instead. 

4. Now visit admin/appearance and reload the page. You should now see the theme under 
Disabled Themes. Click the “Enable and set default” link to begin using this theme on your site. 

 



CHAPTER 15 ■ THEMING 

282 

■ Tip  You will need to clear your site caches in order for changes in .info files to take effect! To clear the site 

caches, visit the Performance page at admin/config/development/performance. 

Working with Regions 
Most of the content found on Drupal pages is output inside a region. Typical regions include the header, 
footer, sidebars, and content (see Figure 15–8); these regions often play a large part in defining the high-
level structure of your HTML markup. An option appears in the blocks interface at 
admin/structure/block for each region, allowing site administrators to control and position the blocks 
inside them. 

 

Figure 15–8. The Bartik theme’s regions and block placement options on the Blocks administration page 

regions[header] = Header

regions[help] = Help

regions[highlighted] = Highlighted

regions[featured] = Featured

regions[featured] = Featured

regions[content] = Content

regions[sidebar_first] = Sidebar first

regions[triptych_first] = Triptych first

regions[triptych_middle] = Triptych middle

regions[triptych_middle] = Triptych middle

regions[footer_firstcolumn] = Footer first column

regions[footer_secondcolumn] = Footer second column

regions[footer_thirdcolumn] = Footer third column

regions[footer_fourthcolumn] = Footer fourth column

regions[footer] = Footer



CHAPTER 15 ■ THEMING 

283

Themes have full control over defining and determining the placement of printing and styling 
regions. An example of what this looks like in the Bartik theme is shown in Figure 15–9. 

  

Figure 15–9. Bartik regions filled with custom blocks  



CHAPTER 15 ■ THEMING 

284 

In addition, themes may also use regions for less obvious purposes in combination with JavaScript 
or jQuery. Common use cases for regions include containing modal or hidden content to enhance the 
user interface or embedding blocks into node content. 

Default Regions 
Drupal core defines nine regions for themes to utilize programmatically by default. The code in 
Listing 15–2 duplicates the default core regions in .info file format. Like most theme layer 
implementations, the reason themes define regions is because they want to modify or add to the 
defaults. Until a theme defines its own regions, Drupal will use the defaults. This means that if the 
default regions are sufficient for your design, you will not need to define regions in your theme’s .info 
file. 

Listing 15–2. Drupal’s Nine Predefined Theme Regions in Chronological Order  

regions[page_top] = Page Top 
regions[header] = Header 
regions[highlighted] = Highlighted 
regions[help] = Help 
regions[content] = Content 
regions[sidebar_first] = Sidebar First 
regions[sidebar_second] = Sidebar Second 
regions[footer] = Footer 
regions[page_bottom] = Page Bottom 

However, including this code in your theme’s .info file to begin with is a good practice. Once you 
define a single region in your theme, it will override core defaults, so having the full list of defaults and 
commenting out regions that you have disabled (instead of deleting or omitting them entirely) is a good 
way to keep track of what you’re doing with them. You will need some of these regions, namely the 
page_top, content, and page_bottom regions. These are required and must be printed in every Drupal 
theme to maintain a properly functioning site. An example of how one might organize regions in an 
.info file, taking defaults into account, is shown in Listing 15–3. 

Listing 15–3. An Example of Region Implementation in a Theme’s .info File 

; CORE REGIONS - DISABLED 
;regions[highlighted] = Highlighted 
;regions[help] = Help 
;regions[header] = Header 
;regions[footer] = Footer 
 
; CORE REGIONS - REQUIRED 
regions[page_top] = Page Top 
regions[content] = Content 
regions[page_bottom] = Page Bottom 
 
; CORE REGIONS 
regions[sidebar_first] = Sidebar First 
regions[sidebar_second] = Sidebar Second 
 
; CUSTOM REGIONS 
regions[my_custom_region] = My Custom Region 



CHAPTER 15 ■ THEMING 

285

■ Tip  If you’re curious where Drupal defines the default regions, take a look at the 

_system_rebuild_theme_data() function at http://api.drupal.org/_system_rebuild_theme_data. 

As shown in Figure 15–10, the intended display of Drupal’s default regions is a standard three-
column layout. The gray regions are required and the rest are optional. Header, sidebar_first, 
sidebar_second, and footer are layout regions. The page_top and page_bottom are special regions; they 
are discussed in the “Hidden Regions” section of this chapter. 

 

Figure 15–10. Drupal’s default layout for regions 

The highlighted region replaces the old Site Mission, which used to be a static variable containing 
the site’s mission statement or a brief summary text that was output manually in page.tpl.php. The prior 
implementation was not ideal for a few reasons, but mainly because its display was limited to the front 
page. It was decided that using a custom block to display this information was a better option, so the 
highlighted region was created. 

The Help region also used to be a page.tpl.php variable that printed error and status messages. The 
status messages are now displayed in a block called System help and the Help region was created to 
contain it. However, the System help block may easily be placed inside the Content region, weighted 
above the Main content block for the same effect. 

page_bottom

page_top

sidebar_first

header

footer

sidebar_second

highlighted

help

content

http://api.drupal.org/_system_rebuild_theme_data


CHAPTER 15 ■ THEMING 

286 

The Content region is new to Drupal 7. It was introduced to contain the Main page content block, 
which is somewhat special because it can be moved from region to region but can’t be disabled. Since 
the Block module is optional and the contents of the Main page content block are critical to operate a 
Drupal site, the contents of this block will always display via the $page['content'] variable in 
page.tpl.php.  

As a result, some of the Block module’s functionality doesn’t work as you might expect. If you place 
the Main page content block in the disabled area or set block visibility settings to exclude it from a page, 
the Block module’s UI will lead you to believe that it has been disabled. However, the content will still 
appear. You’ll also notice changes in the markup, which may lead to undesired results, such as un-styled 
content, depending on how your CSS is written. 

Hidden Regions 
Notably missing from the options on the Blocks administration page in Figure 15–8 are the page_top and 
page_bottom regions. Both are hidden regions, which Drupal intentionally excludes from the user 
interface so that site administrators can’t interact with or control their content. The main purpose of 
hidden regions is to act as a placeholder where modules or themes can dynamically add markup to in a 
structured way. Themes may declare hidden regions within .info files by using the following syntax, 
with each region on a separate a line: 

regions_hidden[] = the_region_name 

Both the page_top and page_bottom regions are printed in html.tpl.php (see Listing 15–4) and should 
not be removed or rearranged. The page_top region, for example, is utilized by the Toolbar module to add 
the markup needed for the administrative toolbar shown at the top of each page when a user is logged in as 
a site administrator. The page_bottom region exists for modules to add any final closing markup, which 
specifically needs to be at the very bottom of the page. An example of this is the Google Analytics module, 
which adds markup to load JavaScript files that track the site visitor activity and needs to be loaded last. 
The page_bottom region replaces the $closure variable that was used in prior versions of Drupal.  

Listing 15–4. The Contents of html.tpl.php, Highlighting the Placement of the page_top and page_bottom 

Regions 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" 
  "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<?php print $language->language; ?>" 
version="XHTML+RDFa 1.0" dir="<?php print $language->dir; ?>"<?php print $rdf_namespaces; ?>> 
<head profile="<?php print $grddl_profile; ?>"> 
  <?php print $head; ?> 
  <title><?php print $head_title; ?></title> 
  <?php print $styles; ?> 
  <?php print $scripts; ?> 
</head> 
<body class="<?php print $classes; ?>" <?php print $attributes;?>> 
  <div id="skip-link"> 
    <a href="#main-content" class="element-invisible element-focusable"><?php print t('Skip to 
main content'); ?></a> 
  </div> 
  <?php print $page_top; ?> 
  <?php print $page; ?> 
  <?php print $page_bottom; ?> 
</body> 
</html> 

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd
http://www.w3.org/1999/xhtml


CHAPTER 15 ■ THEMING 

287

■ Tip  Drupal uses hook_system_info_alter() to declare the page_top and page_bottom hidden regions. For 

more information, see http://api.drupal.org/api/function/system_system_info_alter/7. 

Module-Specific Regions 
The Dashboard module’s Dashboard Main and Dashboard Sidebar regions are an example of regions 
created by a module. These regions are nontraditional in the sense that they can’t be administered via 
the Blocks administration page, and the theme does not control defining or printing them. The 
Dashboard module defines them programmatically using hook_system_info_alter() and takes care of 
displaying them on the administrative Dashboard located at /admin. The Dashboard module allows you 
to drag and drop available blocks to those regions to create a dashboard for site administrators (see 
Figure 15–11). 

 

Figure 15–11. Administrative Dashboard in edit mode 

Available Blocks

Dashboard Main

Dashboard Sidebar

http://api.drupal.org/api/function/system_system_info_alter/7


CHAPTER 15 ■ THEMING 

288 

Regions and Your Theme 
Getting started with your theme regions requires taking a good look at design requirements as well as 
planning for the unexpected. There are many things to consider, including how site administrators will 
need to work with blocks and regions, what types of content you have, and how regions play a part in 
your general layout strategy. As discussed earlier, the default regions are a great starting point. We 
recommend that you begin defining the defaults in your theme’s .info file and tweaking from there, as 
shown in Listing 15–5. 

Listing 15–5. Drupal’s Default Regions  

regions[page_top] = Page Top 
regions[header] = Header 
regions[highlight] = Highlight 
regions[help] = Help 
regions[content] = Content 
regions[sidebar_first] = Sidebar First  
regions[sidebar_second] = Sidebar Second 
regions[footer] = Footer 
regions[page_bottom] = Page Bottom 

■ Tip  In addition to defining regions in your theme’s .info file, you’ll need to print it in the appropriate template 
file. The page_top and page_bottom regions print in the html.tpl.php template and the rest print in 

page.tpl.php. Printing regions and template files are discussed in more detail later in the chapter. 

Using Regions vs. Hard-coding Variables in Template Files 
When deciding whether or not to use regions in your theme, it’s useful to consider the content that will 
be included in each section, how likely the position of the content is to change, and who needs to be able 
to change it. Blocks are flexible by nature and were designed to allow site administrators to easily move 
them around. This can cause problems if blocks are expected to be in a certain region and then moved 
or reordered. 

When working on a site alone, or when only a few trusted individuals have control over the 
configuration of blocks, this is probably not something you need worry about. Alternatively, in cases 
where less trusted individuals have access and can potentially cause problems, taking extra measures to 
identify potential problem areas and doing what you can to prevent them is well worth it. For example, 
headers and footers are especially prone to this sort of problem. They usually have a tightly defined 
design and CSS to match. When blocks are moved around inside these regions, especially highly styled 
content such as the main menu navigation, things can go wrong quickly in the wrong hands. Sometimes 
defining an additional region, even if its purpose is to hold only one block, is a safer option compared 
with placing the block in the header region with other blocks. This will help ensure it is always printed in 
the right location and reduce the chance of user error. If site administrators do not need control over 
positioning, it may be best to print using a hardcoded variable in page.tpl.php, where it can’t be affected 
by actions taken in the blocks interface. 

As a general rule, consider using a region when content needs to be moved between regions or 
rearranged in the Blocks interface. When content doesn’t need to be controlled via the Blocks interface, 
and it is risky for it to be there, consider hardcoding it in template files so it can’t be affected by actions 
taken in the Blocks interface. 



CHAPTER 15 ■ THEMING 

289

■ Tip  The main menu ($main_menu) and secondary menu ($secondary_menu), which are located in 

page.tpl.php, are examples of hardcoded variables. 

Layout Strategies 
The core defaults for sidebars (Sidebar First and Sidebar Second) were designed to handle multiple 
sidebar combinations with the help of body classes. Drupal is extremely flexible, and pages can be 
changed on a whim. Whether this will actually look good or not depends on how flexible and well coded 
the theme is. Since Drupal only prints regions that contain content, having a well planned and flexible 
layout is very important. 

For example, let’s say you have a two-column layout theme where the first column contains the 
main content and the Sidebar First region contains a single block. If you were to set the visibility of that 
block to only show on the home page, the entire Sidebar First region would only print on the home page 
and the inside pages would print just the main column. If your layout CSS only accounts for having both 
of those columns on each page, instead of including CSS for both a single column and the two-column, 
your layout will break. While regions are fairly easy to add or modify at any given time, oversimplifying 
the layout in the beginning of a project may come back to bite you in the form of extra CSS work. 
However many sidebars your theme will have, it’s generally best to account for all possible sidebar 
combinations (one, two, or three columns) to avoid running into problems down the line. A great way to 
do this easily and sustainably is to use an established base theme. 

There are also certain types of content that often work better in separate regions. For example, 
custom blocks containing advertisements and blocks that have significantly different design 
requirements are often easier to work with and write CSS for when they are abstracted. Figure 15–12 
shows what adding a region for an ad banner and main navigation might look like. 

It is also important to consider how the pages will be built and who will be working with them. If 
your site is going to be using regions and blocks to implement more complicated designs and you want 
to make it easy for site administrators to use, it may make sense to predefine multiple regions to lay out 
smaller sections of your pages. A good example of this is the Bartik theme, which contains seven 
additional regions to organize blocks in the footer, as shown in Figure 15–13. The same look could be 
achieved by defining two regions (Footer First and Footer Second) instead and style them using CSS to 
float the blocks in each to the left, but Bartik’s implementation, shown in Listing 15–6 and illustrated in 
Figure 15–13, is arguably easier to understand for those who are not interested in the inner-workings of 
the code and just want to use the theme. 



CHAPTER 15 ■ THEMING 

290 

Figure 15–12. Example of custom advertisement banner and navigation regions  

Listing 15–6. Excerpt from Bartik Theme’s .info File Where Its Seven Custom Regions Are Defined 

regions[triptych_first] = Triptych first
regions[triptych_middle] = Triptych middle
regions[triptych_last] = Triptych last
regions[footer_firstcolumn] = Footer first column
regions[footer_secondcolumn] = Footer second column
regions[footer_thirdcolumn] = Footer third column
regions[footer_fourthcolumn] = Footer fourth column 

page_top

sidebar_first

banner_ad

footer

page_bottom

sidebar_second

highlight

help

content

header

navigation
banner_ad
New region for 728 x 90 banner
advertisements above the header.

navigation
New region for the main
navigation block.



CHAPTER 15 ■ THEMING 

291

 

Figure 15–13. Populated footer regions in the Bartik theme 

CREATING NEW REGIONS 

The creation of a new region is a two-step process. Using the example in Figure 15–12, here’s the process 
of creating the new Banner Ad and Navigation regions. 

1. Define the regions in the dgd7.info file. Begin by adding the code for your new 
regions to the defaults you started with in Listing 15–3, plus the definition of the 
banner_ad and navigation regions to your dgd7.info file. 

; DEFAULT REGIONS 
regions[page_top] = Page Top 
regions[header] = Header 
regions[highlight] = Highlight 
regions[help] = Help 
regions[content] = Content 
regions[sidebar_first] = Sidebar First 
regions[sidebar_second] = Sidebar Second 
regions[footer] = Footer 
regions[page_bottom] = Page Bottom 
 
; CUSTOM REGIONS 
regions[banner_ad] = Banner Ad 
regions[navigation] = Navigation 



CHAPTER 15 ■ THEMING 

292 

2. Print the regions in the page.tpl.php template file. Once you clear your site 
caches, you’ll be able to see and populate the new regions on the Blocks 
administration page at admin/structure/block. In order to get them to display 
on the page, you’ll need to override the page.tpl.php file in your theme and print 
the new regions.  

Navigate to the modules/system directory, copy the page.tpl.php file and paste 
it into the sites/all/themes/dgd7 directory you created earlier. 

Open the page.tpl.php file in the theme and scroll down to the <div id="page-
wrapper"> and paste the code to print the region below it, and above the <div 
id="header">. 

<div id="page-wrapper"><div id="page"> 
  <?php print render($page['banner_ad']); ?> 
  <div id="header"><div class="section clearfix"> 

Remove the default markup for the $main_menu and replace it with the region 
code for your new navigation region.  

Remove this code: 

<?php if ($main_menu || $secondary_menu): ?> 
      <div id="navigation"><div class="section"> 
        <?php print theme('links__system_main_menu', array('links' => $main_menu, 
'attributes' => array('id' => 'main-menu', 'class' => array('links', 'inline', 
'clearfix')), 'heading' => t('Main menu'))); ?> 
        <?php print theme('links__system_secondary_menu', array('links' => 
$secondary_menu, 'attributes' => array('id' => 'secondary-menu', 'class' => 
array('links', 'inline', 'clearfix')), 'heading' => t('Secondary menu'))); ?> 
      </div></div> <!-- /.section, /#navigation --> 
    <?php endif; ?>     

Replace with this code: 

<?php print render($page['navigation']); ?> 

3. Technically you’re finished, but let’s add some content to illustrate what you’ve 
done. 

Add a new custom block for the Banner Ad code. Title the block “Banner Ad” and 
add the following code to fake the appearance of an ad banner in the Block body 
(be sure to select the Full HTML text format). Then, select the Banner Ad region for 
the region settings and save it.  

<img style="width: 728px; height: 90px; border: solid 1px #000;" alt="728 x 90 Banner 
Ad" src="image.png" /> 

Go back to the admin/structure/block page. Find the Main Menu block and 
place it inside the Navigation region and click Save blocks. 

You’ve just added and populated two new custom regions! 



CHAPTER 15 ■ THEMING 

293

Template Files 
Drupal core, its modules, and contributed modules provide much of their output in the form of template 
files. Template files consist of HTML markup and PHP variables. This makes it fairly easy for those with 
little or no PHP experience to make changes to HTML code. 

A simple example of a template file is user-picture.tpl.php (see Listing 15–7). This template is 
located in the modules/user directory and its purpose is solely to print a site user’s picture as either an 
image or an image with a link (depending on whether or not the user viewing the photo has access to 
view user profiles). It wraps the picture in a <div class="user-picture">. This template file will be used 
anywhere the user_picture theme hook is called, such as the user profile page and author information 
for nodes and comment (where enabled). 

Listing 15–7. Contents of user-picture.tpl.php File 

<?php 
// $Id: user-picture.tpl.php,v 1.5 2009/08/06 05:05:59 webchick Exp $ 
 
/** 
* @file 
* Default theme implementation to present a picture configured for the 
* user's account. 
* 
* Available variables: 
* - $user_picture: Image set by the user or the site's default. Will be linked 
*   depending on the viewer's permission to view the users profile page. 
* - $account: Array of account information. Potentially unsafe. Be sure to 
*   check_plain() before use. 
* 
* @see template_preprocess_user_picture() 
*/ 
?> 
<?php if ($user_picture): ?> 
  <div class="user-picture"> 
    <?php print $user_picture; ?> 
  </div> 
<?php endif; ?> 

A typical page on a Drupal site is essentially a big tree of nested template files and theme functions. 
As Figure 15–14 illustrates, this tree begins with larger templates such as html.tpl.php and page.tpl.php 
files and goes all the way down field.tpl.php, which is used to print fields. 



CHAPTER 15 ■ THEMING 

294 

 

Figure 15–14. An example home page using the Bartik theme, which highlights the use of major template 

files and many custom regions 



CHAPTER 15 ■ THEMING 

295

Common Core Templates 
Drupal core contains over forty template files, but there are six major template files (described in Table 
15–1) that are tasked with making up the majority of each page. These major template files are the ones 
you’ll be working with most when writing Drupal themes and they will allow you do most of the heavy 
lifting in your theme. 

Table 15–1. Common Core Template Files  

Name Origin Purpose 

html.tpl.php modules/system Prints the structure of the HTML document, 
including the contents of <head> tags, e.g. 
$scripts, and $styles, as well as opening and 
closing <body> tags with $page_top, $page and 
$page_bottom regions printed inside. Unless 
you need to change the DOCTYPE, there’s 
probably no reason to override this file. 

page.tpl.php modules/system Prints the page level regions and other hard-
coded variables such as $logo, $site_name, 
$tabs, $main_menu, etc. Full control of the site 
layout is possible by manipulating this file, 
and most themes provide their own version of 
it. 

region.tpl.php modules/system Prints the HTML markup for regions. 

block.tpl.php modules/block Prints the HTML markup for blocks. 

node.tpl.php modules/node Prints the HTML markup for nodes. 

comment.tpl.php modules/comment Prints the HTML markup for comments. 

field.tpl.php * modules/field/theme Prints the HTML markup for fields. There are 
many different types of fields, and since this 
file needs to cover every case, its 
implementation is very general. If having 
semantic markup is important to you, you’ll 
probably end up with a few versions of this 
template. 

* field.tpl.php is used only when overridden by a theme. The one in modules/field/theme is only provided 
as a base for your work. 

Overriding Template Files 
The template files provided by Drupal core and contributed modules represent the default markup 
implementation chosen by the original author or team, but every last one of these template files—and 
the markup and variables printed inside of them—is customizable. When developing a theme, if you 



CHAPTER 15 ■ THEMING 

296 

decide the default implementation is not going to suit your needs, you can simply choose to override it. 
Drupal’s theme layer is designed to be extremely flexible and easy to manipulate in this way. 

The beauty of theming Drupal sites is that you can easily make changes without having to modify 
templates where they originate. The process of overriding template files is extremely simple: 

1. Find the original template file by browsing through code or checking 
http://api.drupal.org 

2. Copy and paste it into your theme directory. 

3. Clear the site cache and reload! 

After following these three steps, Drupal will begin using the theme’s version of the file, and you are 
free to make whatever changes you wish. It’s that simple. 

■ Tip  A quick way to ensure that Drupal is using the template file you’ve just overridden in your theme is to add 
text to the top of the template file, like “Hello World.” If your text appears when you reload, you’ll know you’re 

working with the correct file. 

Global Template Variables 
Template files usually contain a few more variables than they actually print. In some cases there are 
many more. This is a great thing for theme developers because it opens up many possibilities for 
manipulating the display of markup without the need for much PHP knowledge. Table 1-2 describes 
some of the helpful variables available in all templates (with the exception of the attribute variables; 
these are covered section the “HTML Attributes” section). Identifying available variables is covered in 
detail in the next chapter. 

Table 15–2. Variables Available in All Templates 

Variable Description 

$is_admin Helper variable that equals TRUE if the currently logged in user is an 
administrator, and FALSE otherwise. 

$logged_in Helper variable that equals TRUE if the current user is logged in, and FALSE 
otherwise. The $user->uid is used to determine this information, as 
anonymous users always have a user ID of 0. 

$is_front Helper variable that uses the drupal_is_front_page() function to determine 
if the current page is the front page of the site. Equals TRUE on the front page 
(unless the database is offline), and FALSE otherwise. 

$directory The directory in which the template being used is located. 

http://api.drupal.org


CHAPTER 15 ■ THEMING 

297

Variable Description 

$user An object that contains account information of the currently logged in user. 
It may be accessed by adding the line global $user; to the template you are 
working in. Never print any properties of it directly because it contains raw 
user data and thus it is insecure. Instead, use theme('username'); for 
example, theme('username', array('account' => $user)). 

$language An object that contains information about the language currently being 
used on the site, such as $language->dir, which contains the text direction, 
and $language->language which would contain en for English. It may be 
accessed by adding the line global $language; to the template you are 
working in. 

$theme_hook_suggestions An array containing other possible theme hooks, which can be used as 
variants for naming template files and theme functions or to determine 
context. See the “Theme Hook Suggestions” section. 

$title_prefix and 
$title_suffix 

Render arrays containing elements, such as contextual links, to be printed 
before and after the title in templates or at the top and bottom of template 
files where a title does not exist. 

HTML Attributes 
In Drupal 7, we began storing attributes in arrays. Part of the reason this was done is the RDF module. 
The RDF module utilizes these variables to tack on its data during the preprocess phase. Another reason 
was to allow theme developers more control over the classes printing out in their template files in 
preprocess functions. 

Each of these variables, described in Table 15–3, has an array and string version. The array version, 
which contains the suffix _array in the variable name, is populated during various preprocess functions, 
such as template_preprocess() and template_preprocess_node() or template_preprocess_block(). 
Then, during the template_process() phase, new variables containing a flattened or string version of 
these arrays is created for use in templates. This process is illustrated in Figure 15–15. See the 
“Preprocess and Process Functions” section of this chapter for more details. 

Table 15–3. Pluggable HTML Attributes 

Variable Description 

$attributes Contains HTML attributes provided by modules (mainly RDF), except for the 
class attribute, which is handled separately (see below). $attributes, available as 
$attributes_array in preprocess, is usually reserved for the top-level HTML 
wrapper element, such as <body> or outermost <div> in other template files. 

$classes Contains HTML classes for templates. Usually reserved for the top-level HTML 
wrapper element, such as <body> or outermost <div> in other template files. 

$title_attributes Contains classes for the top-level heading, such as a node or block title, of the 
template file, which is usually an <h2> for node teaser or block content. 

$content_attributes Contains classes for the content wrapper <div>, or post body of templates. An 
example of how these variables are used can be found in the node.tpl.php file. 



CHAPTER 15 ■ THEMING 

298 

 

Figure 15–15. Excerpt from node.tpl.php, which highlights how the pluggable HTML attributes are used 

■ Tip  If you don’t see these attributes in your source code, be sure to enable the RDF module. 

All of the common core templates provide detailed documentation of the available variables. A 
quick look at the default block.tpl.php template file, located in the modules/block directory reveals that 
most of the contents of the file is actually documentation for the available variables. As shown in Listing 
15–8, you can get a good idea of what you have to work with by just looking at the documentation and 
code. 

Listing 15–8. Source Code for Default modules/block/block.tpl.php, Including Variable Documentation 

<?php 
/** 
* @file 
* Default theme implementation to display a block. 



CHAPTER 15 ■ THEMING 

299

* 
* Available variables: 
* - $block->subject: Block title. 
* - $content: Block content. 
* - $block->module: Module that generated the block. 
* - $block->delta: An ID for the block, unique within each module. 
* - $block->region: The block region embedding the current block. 
* - $classes: String of classes that can be used to style contextually through 
*   CSS. It can be manipulated through the variable $classes_array from 
*   preprocess functions. The default values can be one or more of the following: 
*   - block: The current template type, i.e., "theming hook". 
*   - block-[module]: The module generating the block. For example, the user module 
*     is responsible for handling the default user navigation block. In that case 
*     the class would be "block-user". 
* - $title_prefix (array): An array containing additional output populated by 
*   modules, intended to be displayed in front of the main title tag that 
*   appears in the template. 
* - $title_suffix (array): An array containing additional output populated by 
*   modules, intended to be displayed after the main title tag that appears in 
*   the template. 
* 
* Helper variables: 
* - $classes_array: Array of html class attribute values. It is flattened 
*   into a string within the variable $classes. 
* - $block_zebra: Outputs 'odd' and 'even' dependent on each block region. 
* - $zebra: Same output as $block_zebra but independent of any block region. 
* - $block_id: Counter dependent on each block region. 
* - $id: Same output as $block_id but independent of any block region. 
* - $is_front: Flags true when presented in the front page. 
* - $logged_in: Flags true when the current user is a logged-in member. 
* - $is_admin: Flags true when the current user is an administrator. 
* - $block_html_id: A valid HTML ID and guaranteed unique. 
* 
* @see template_preprocess() 
* @see template_preprocess_block() 
* @see template_process() 
*/ 
?> 
<div id="<?php print $block_html_id; ?>" class="<?php print $classes; ?>"<?php print 
$attributes; ?>> 
  <?php print render($title_prefix); ?> 
<?php if ($block->subject): ?> 
  <h2<?php print $title_attributes; ?>><?php print $block->subject ?></h2> 
<?php endif;?> 
  <?php print render($title_suffix); ?> 
  <div class="content"<?php print $content_attributes; ?>> 
    <?php print $content ?> 
  </div> 
</div> 

At the top of the file there is a @file block, which briefly describes the purpose of the file. 
Underneath, there is a long list of variables, some of which are printed in the template file and some that 
are not. There are also @see references to applicable preprocess and process functions, which are 
discussed in more detail in the next chapter. 



CHAPTER 15 ■ THEMING 

300 

To get an up-close idea of what this template file produces, take a look at a block produced by the
Bartik theme. Bartik does not include a block.tpl.php file; it uses Drupal’s default, which is provided by
the Block module. Create a custom block with the title “My Custom Block” and some dummy text as the
body, and place it in the Sidebar First region of the Bartik theme. 

Figure 15–16. Screenshots of our rendered custom block as viewed using the Bartik theme and the 

configuration page for the block  

Your custom block, shown in Figure 15–16 along with the block.tpl.php template file in Listing 15–9,
produces the output displayed in Listing 15–9 for anonymous users. The block title is printed by <?php
print $block->subject ?> and the body is printed by <?php print $content ?>. Drupal will only
populate variables and display content that the user viewing it has access to. 

Listing 15–9. HTML Output of a Custom Block Titled “My Custom Block” When Logged Out  

<div id="block-block-1" class="block block-block"> 
  <h2>My Custom Block</h2> 
  <div class="content"> 
    <p>Enim quam iusto quam iis enim. Molestie at et diam ut legere. Feugiat tation facilisis
quarta soluta quam. Facilisis lectorum modo nam modo suscipit.</p> 
  </div>
</div> 



CHAPTER 15 ■ THEMING 

301

 
Listing 15–10 shows the HTML for the same block as it is displayed to users logged in as 

administrators. You’ll notice that the code is different. Administrators have access to contextual 
administrative links, added by the Contextual Links module. These links are printed via the <?php print 
render($title_prefix); ?> line. The Contextual Links module also adds a class to the wrapper <div> 
identifying it as a contextual-links-region. This behavior is not specific to the Block module or the 
block.tpl.php template file. The $title_prefix and $title_suffix variables were created to allow 
modules to inject content before and after titles in template files, which the Contextual links module 
takes advantage of. 

Listing 15–10. HTML Output of a Custom Block Titled “My Custom Block” When Logged  

In as an Administrator, Highlighting the Output of $title_suffix 

<div id="block-block-1" class="block block-block contextual-links-region">  
  <h2>My Custom Block</h2> 
  <div class="contextual-links-wrapper contextual-links-processed"> 
    <a class="contextual-links-trigger" href="#">Configure</a> 
    <ul class="contextual-links"> 
      <li class="block-configure first last"><a 
href="/admin/structure/block/manage/block/1/configure?destination=node">Configure 
block</a></li> 
    </ul> 
  </div> 
  <div class="content"> 
    <p>Enim quam iusto quam iis enim. Molestie at et diam ut legere. Feugiat tation facilisis 
quarta soluta quam. Facilisis lectorum modo nam modo suscipit.</p> 
  </div> 
</div> 

Theme Functions 
The purpose of a theme function is the same as a template file in that its goal is to provide HTML 
markup in a way that makes it customizable by themes (and modules, too). There are many, many 
theme functions in Drupal core, from form elements to menu items to full administration page 
implementations. For a full list of theme functions available in Drupal 7, visit 
http://api.drupal.org/api/group/themeable/7. 

How Theme Functions Are Created 
Drupal core and modules usually define theme functions, but they can be defined by themes as well. 
hook_theme() implementations are where all the juicy information about most generic theme functions 
resides, including what parameters these functions accept. Theme hooks are covered in detail in the 
“Theme Hook Suggestions” section later in this chapter, but Listing 15–11 shows what a simple 
hook_theme() implementation looks like. 

Listing 15–11. Example hook_theme() Implementation 

<?php 
/** 
* Implements hook_theme(). 
*/ 

http://api.drupal.org/api/group/themeable/7


CHAPTER 15 ■ THEMING 

302 

function mymodule_theme() { 
  return array( 
    'my_theme_hook' => array( 
      'variables' => array('parameter' => NULL), 
    ), 
  ); 
} 
?> 

Implementations of hook_theme() let Drupal know about theme hooks. Once Drupal is aware, it will 
search for a theme function called theme_my_theme_hook() in this case, which might look like the code in 
Listing 15–12. 

Listing 15–12. Example Theme Function Implementation 

<?php 
function theme_my_theme_hook($variables) { 
  $parameter = $variables['parameter']; 
  if (!empty($parameter)) { 
    return '<div class="my-theme-hook">' . $parameter . '</div>'; 
  } 
} 
?> 

Calling Theme Functions 
Throughout this chapter we refer to theme functions as theme_this() and theme_that(). That’s what the 
functions are named and usually referred to as. However, you should never call a theme function 
directly. Doing so will reverse the wonderful functionality that comes along with Drupal’s theme layer, 
such as overrides, suggestions, etc. Always use the theme() function to generate theme output. It takes 
care of routing the request to the appropriate theme function. For more information on how this works, 
see http://api.drupal.org/api/function/theme/7. 

Using theme_image(), Listings 15–13 and 15–14 illustrate the right and wrong way to call theme 
functions, respectively. 

Listing 15–13. The Correct Way to Call a Theme Function. 

<?php print theme('image', array('path' => 'path/to/image.png', 'alt' => 'Image 
description')); ?> 

Listing 15–14. The Wrong Way to Call a Theme Function 

<?php print theme_image(array('path' => 'path/to/image.png', 'alt' => 'Image description')); 
?> 

Overriding Theme Functions 
Overriding theme functions is very similar to overriding template files. The main difference is that you 
are working with functions, and your overridden theme functions all reside in template.php. The steps 
involved in overriding a theme function are as follows: 

1. Find the original theme function by browsing through Drupal’s source code or 
checking http://api.drupal.org. 

http://api.drupal.org/api/function/theme/7
http://api.drupal.org


CHAPTER 15 ■ THEMING 

303

2. Copy and paste it into your template.php file. 

3. Change the beginning of the function name from theme_ to yourthemename_. 

4. Save template.php, clear the site cache, and reload! 

■ Caution  If creating template.php from scratch, remember to include <?php at the top of the file. Also note that 
a closing tag should not be added at the bottom of the file. Omitting the closing PHP tag prevents unwanted 
whitespace, which can cause “Cannot modify header information” or “Headers already sent” errors. For more 

information, visit http://drupal.org/node/1424. 

LET’S OVERRIDE A THEME FUNCTION 

Here is a theme function called theme_more_link(). It is used to print a link to additional content in 
blocks. To find the code for the theme function, take a look at 
http://api.drupal.org/api/function/theme_more_link/7. 

1. Copy and paste the original theme function code into template.php. 

<?php 
/** 
* Returns HTML for a "more" link, like those used in blocks. 
* 
* @param $variables 
*   An associative array containing: 
*   - url: The url of the main page. 
*   - title: A descriptive verb for the link, like 'Read more'. 
*/ 
function theme_more_link($variables) { 
  return '<div class="more-link">' . l(t('More'), $variables['url'], array('attributes' 
=> array('title' => $variables['title']))) . '</div>'; 
} 
?> 

2. Change the beginning of the function name to your theme’s name, save it, and 
clear the site cache. 

<?php 
/** 
* Returns HTML for a "more" link, like those used in blocks. 
* 
* @param $variables 
*   An associative array containing: 
*   - url: The url of the main page. 
*   - title: A descriptive verb for the link, like 'Read more'. 
*/ 
function dgd7_more_link($variables) { 

http://drupal.org/node/1424
http://api.drupal.org/api/function/theme_more_link/7


CHAPTER 15 ■ THEMING 

304 

  return '<div class="more-link">' . l(t('More'), $variables['url'], array('attributes' 
=> array('title' => $variables['title']))) . '</div>'; 
} 
?> 

3. Drupal will now use your version of the theme function, so make changes! 

<?php 
/** 
* Overrides theme_more_link(). 
*  - Changed the text from "More" to "Show me More" 
*  - Changed the class from "more-link" to "more" 
*/ 
function dgd7_more_link($variables) { 
  return '<div class="more">' . l(t('Show me MORE!'), $variables['url'], 
array('attributes' => array('title' => $variables['title']))) . '</div>'; 
} 
?> 

 

■ Tip  In Step 3, you’ll notice that the comment block has been changed to indicate what function was overridden 
and the changes that were made. Documenting your code is always a good idea, and explicitly listing the reasons 
why you’ve overridden a theme function can be a big time saver in the future. Theme functions change, and some 
aren’t as small as a few lines. When upgrading major versions of Drupal, such as Drupal 7 to Drupal 8, such 

comments will make your life a lot easier. 

Theme Hooks and Theme Hook Suggestions 
Theme functions and templates are defined by theme hooks. By making use of theme hook suggestions, 
you have a lot more flexibility to override theme functions or templates in certain situations. This section 
covers both ways to greatly increase the power and maneuverability of your custom theme. 

What Is a Theme Hook? 
In Drupal, theme hooks refer to template files and functions that have been specifically registered via 
hook_theme(). This may sound scary or over-technical to non-PHP developers, but honestly it’s not. 
You’ve already learned about template files and theme functions, so technically you already have a 
pretty good grasp on theme hooks. 

Whether a template file or function is implemented in core is decided on a case-by-case basis, and 
the criteria for making this decision is usually a balance between how likely it is to be reused by other 
modules, how often it is expected to change, and whether or not it makes sense for performance 
reasons. Template files are slightly slower than theme functions so they are not always desirable. Smaller 
bits of markup for things like form input elements are more efficiently implemented as theme functions, 
whereas larger chunks like nodes and blocks are better as a template file. 



CHAPTER 15 ■ THEMING 

305

• Both theme functions and template files exist as a way for Drupal and its modules 
to create output consisting of markup and variables in a way that you, the themer, 
can override and make it your own. They are both entirely YOUR domain, and you 
get the last word as to how they should look. 

• Both share the same exact theme hook. For example, a template file called 
node.tpl.php and a function called theme_node() share the same node theme 
hook. The difference is in the implementation, as both cannot be used at the same 
time. 

• Both can take advantage of preprocess functions, which allow you to intercept and 
alter variables before rendering. Using the node hook as an example, this would 
look like template_preprocess_node(); in your theme it would be 
yourtheme_preprocess_node(). 

Theme Hook Suggestions 
The default implementation of template files and theme functions offer a very generic set of markup that 
is sufficient, but not ideal in all cases. When doing a standard override, such as copying block.tpl.php 
into a theme, the changes made will apply site-wide whenever a block is rendered. At times this the 
desired result, but you’ll often want to make changes to a specific block, a set of blocks provided by a 
specific module, or even a group of blocks in a specific region. 

Theme hook suggestions allow you to implement targeted overrides in your theme for both 
template files and theme functions with naming patterns. The options and naming patterns vary 
depending on what type of object you are working with. During the preprocess stage, before each 
template is rendered, a variable called $theme_hook_suggestions is created and populated with 
alternative hook suggestions.  

Suggestions and Template Files 
All of the common template files listed in Table 15–1 can be overridden to allow for more targeted 
customization by simply changing the name of the template file. When working with blocks, for 
example, Drupal suggests the options in Listing 15–15 during template_preprocess_block(). 

Listing 15–15. Excerpt from template_preprocess_block() where template suggestions for block template 

files are defined 

<?php 
  $variables['theme_hook_suggestions'][] = 'block__' . $variables['block']->region; 
  $variables['theme_hook_suggestions'][] = 'block__' . $variables['block']->module; 
  $variables['theme_hook_suggestions'][] = 'block__' . $variables['block']->module . '__' . 
$variables['block']->delta; 
?> 

Drupal automatically converts the underscores to dashes and searches for these templates in your 
theme when determining which one to use. This code translates to the suggestions shown in Table 15–4. 



CHAPTER 15 ■ THEMING 

306 

Table 15–4. Template Suggestions for Blocks  

Suggestion Template File Equivalent Description 

block block.tpl.php Default block implementation. 

block__REGION block--REGION.tpl.php REGION is replaced with the theme region 
name, and the template targets blocks in 
that region. 

block__MODULE block--MODULE.tpl.php MODULE is replaced with the name of the 
module that created the block. For example, 
a template file that targets custom blocks 
would be block--block.tpl.php and a block 
created by the menu module would be 
targeted by using block--menu.tpl.php. 

block__MODULE__DELTA block--MODULE--DELTA.tpl.php The DELTA value, which used to be a number 
in previous versions, is the system name of 
the block as defined by the module. For 
example, to target the System module’s 
Navigation block, you would use block--
system--navigation.tpl.php. In this 
example, “system” is the module and 
“navigation” is the delta. 

Page-Level Suggestions 
Because of their special nature as the highest-level template files in Drupal, both html.tpl.php and 
page.tpl.php are given special attention when it comes to generating their suggestions. A function called 
theme_get_suggestions() is used to automatically generate suggestions using arguments based on the 
context of the current page. This means that if you wanted to, you could literally have a different version 
of these template files for every page on your site. Of course, this is something you should never even 
think about doing, but in certain cases, like a very different home page or landing page, having a 
different page.tpl.php makes perfect sense. 

As mentioned, the theme hook suggestions for these files are generated with the help of arguments. 
Arguments in Drupal are the elements or pieces of system path of a page. For example, when viewing the 
URL http://yoursite.com/node/1, the first argument is “node” and the second argument is “1.” 
Understanding arguments in Drupal is one of the key things that will help you understand Drupal. They 
are extremely useful in determining context and can allow you to perform more advanced 
manipulations in your theme. 

Figure 15–17 illustrates how you can use theme hook suggestions and arguments to make separate 
page.tpl.php and html.tpl.php templates for just about any page on your site.  

http://yoursite.com/node/1


CHAPTER 15 ■ THEMING 

307

 

Figure 15–17. Suggestions for page.tpl.php on different types of pages 

* Drupal’s front page is set to “node” by default under Admin  Configuration  Site Information. This 
page is not a typical node. It is a custom page provided by the node module’s node_page_default() 
function. It lists posts that have been marked as “Promote to front page.” The “front” suggestion is specific 
to the front page (or home page), regardless of what type of page it is. Should you change your front page to 
a different path, additional suggestions will become available to you.  

■ Caution  Figure 15–17 lists examples of named paths that you’ll likely encounter when using contributed 

modules such as views and panels. These become system paths and can be used as template suggestions. 
However, attempting to create a template file using a path that was created using a custom alias (or the Pathauto 
module) such as about/team for a node/1 will not work. The same applies to taxonomy, terms, and user profiles. 

The real system path is always required when working with templates. 



CHAPTER 15 ■ THEMING 

308 

Some observations of $theme_hook_suggestions include: 

• Underscores are used instead of dashes. 

• File extensions are not present because these hooks can be implemented as theme 
functions or template files. At this stage in the process, it doesn’t matter whether a 
template or a theme function will be used. When it’s time to render the content, 
theme() will determine which should be used and make the necessary 
adjustments. 

• Each suggestion begins with a hook__ (double-underscore) prefix. In the example 
shown in Listing 15–15, that hook is block. This allows Drupal to fall back on the 
generic theme hook, which in this case is block, and use block.tpl.php when a 
more specific template, like block--module.tpl.php, doesn’t exist. 

The order in which these suggestions appear in the $theme_hook_suggestions variable determines 
which hook/template file will be used in FILO (first in, last out) order. When it comes time to render the 
template, the last suggestion will be used, with one exception. A variable called $theme_hook_suggestion 
(note that it is singular, not plural) is also available. If it’s set by a module or theme, it will take 
precedence over anything defined in $theme_hook_suggestions. 

■ Tip  Use the dpm() function (provided with the Devel module) inside the generic template file you are working 
with to find out what options are available. <?php dpm($theme_hook_suggestions); ?> will show the options 

that are available for the page you are working on. 

Suggestions and Theme Functions 
As explained in the “Suggestions and Template Files” section, alternate $theme_hook_suggestions are 
usually defined in the preprocess function for that hook. This works well because template files usually 
serve a specific purpose, like printing a specific entity such as a node or block. Theme functions, 
however, are much more diverse and end up being used within many different types of output, such as 
form elements, fields, and render elements. Module developers may also use theme functions to create 
one-off, custom content. This makes the prospect of implementing a theme function override of a 
widely used function such as theme_links() much less attractive, as it could potentially break styling in 
unexpected places all over your site. 

Luckily, theme hook suggestions also exist for many theme functions, and Drupal core has 
implemented suggestions for some of the popular theme functions, like theme_links(). Using theme 
hook suggestions with theme functions simply means that you can choose to override a theme function 
in a specific context as opposed to overriding the base theme function, which would have a site-wide 
effect. 

As mentioned, theme_links() is a good example of where to use theme hook suggestions when 
overriding theme functions. This theme function is used in many, many places, such as the main 
navigation, node, comment, and contextual links. Note that to implement the functions named in the 
“Theme function equivalent” column in Table 15–5, you need to replace THEME with the name of your 
theme in template.php. 



CHAPTER 15 ■ THEMING 

309

Table 15–5. Some Example Template Suggestions for theme_links()  

Suggestion Theme Function Equivalent Description 

links THEME_links() Default implementation, which is used 
for all implementations unless a more 
specific implementation like those 
below is specified. 

links__node THEME_links__node() Targeted implementation of 
theme_links() that only applies to links 
lists inside of nodes. 

links__comment THEME_links__comment() Targeted implementation of 
theme_links() that only applies to links 
lists inside of comments. 

links__contextual THEME_links__contextual() Targeted implementation of 
theme_links() that only applies to links 
generated for contextual links. 

links__contextual__node THEME_links__contextual__node() Targeted implementation of 
theme_links() that only applies to 
contextual links inside of nodes. 

You’ll notice in Drupal’s default page.tpl.php file, located in the modules/system directory, that both 
the main and secondary menus are printed using suggestions. You might also notice that theme 
functions called theme_links__system_main_menu() and theme_links__system_secondary_menu() do not 
exist, and that’s okay. In this case, the base hook, or the fallback, theme_links() will be used unless a 
more targeted theme function is created (see Listing 15–16).  

Listing 15–16. Excerpt from modules/system/page.tpl.php 

  <?php if ($main_menu || $secondary_menu): ?> 
    <div id="navigation"><div class="section"> 
      <?php print theme('links__system_main_menu', array('links' => $main_menu, 'attributes' 
=> array('id' => 'main-menu', 'class' => array('links', 'inline', 'clearfix')), 'heading' => 
t('Main menu'))); ?> 
      <?php print theme('links__system_secondary_menu', array('links' => $secondary_menu, 
'attributes' => array('id' => 'secondary-menu', 'class' => array('links', 'inline', 
'clearfix')), 'heading' => t('Secondary menu'))); ?> 
    </div></div> <!-- /.section, /#navigation --> 
  <?php endif; ?> 

In this situation, the theme hook suggestions are hardcoded into the function arguments. When 
theme() processes this, it will check to see if an implementation of theme_links__system_main_menu() 
exists first. If the function is found, it will be used to render the content. If not, the original (or fallback) 
theme_links() will be used instead. theme() handles this automatically and can determine the base hook 
from the use of the double underscore that appears directly after it.  



CHAPTER 15 ■ THEMING 

310 

■ Caution  It’s important to note that theme hook suggestions are NOT the same as theme hooks. Given what
you’ve learned about theme hook suggestions, it’s natural to think that preprocess and process functions can be
written for the specific suggestion. Theme hooks, which are the default implementation and suggestion, are

specifically registered in an implementation of hook_theme(). This means that you may create a preprocess

function called THEME_preprocess_page() but you may not use THEME_preprocess_page__front(). 

Summary 
This chapter has covered the basics of Drupal themes, including how to: 

• Define .info files and work with regions. 

• Override and create targeted template files and theme functions. 

• Make sense out of theme hooks and suggestions. 

Armed with this knowledge, it’s time to move onto some more advanced theme topics in the next
chapter. 



C H A P T E R   16 
 

■ ■ ■ 

311

Advanced Theming 

by Jacine Luisi 

One of the best things about Drupal’s theme layer is the sheer amount of flexibility it provides. In the 
previous chapter you learned the basics of creating a theme: working with .info files, template files, and 
theme functions. When implementing more custom themes, sometimes these tools alone are not 
enough and you need to dig deeper. This is the point where the line between front-end developer and 
back-end developer gets a little blurry, but stay with us. 

By the time you finish reading this chapter you’ll know how to work with variables in preprocess 
functions, customize forms, and use the new render API. I’ll also cover the ins and outs of working with 
CSS files and the basics of subtheming, and leave you with basics rules for creating sustainable Drupal 
themes. You’ll be transformed into a theming ninja in no time. 

Finding Available Variables in the Theme Layer 
When working in the theme layer, you’ll find that the variables are different depending on the type of 
entity with which you are working. You’ll also find that the various templates and theme functions don’t 
use or document all of the variables that are available, so one of the things you’ll often need to do is print 
the contents of arrays to the screen. 

There are various ways to print arrays using PHP. One of the most common ways is to use the 
print_r() function. There’s also var_dump(), get_defined_vars() and Drupal’s own debug(). These 
functions are great for small arrays, but Drupal’s arrays are known for being tremendous, thus using 
these functions while coding the front end of a site is annoying, to say the least. Luckily, thanks to the 
Devel module (http://drupal.org/project/devel) and the Krumo library, printing compact and easily 
readable arrays is a piece of cake. Upon installing the Devel module, you’ll have access to functions like 
dpm() and kpr() among others.  

When working with templates and preprocess functions, you’ll usually print $variables using dsm() 
or dsm(). As an example, try adding <?php dpm($variables); ?> to the top of your node.tpl.php file. 

 

Figure 16–1.The result of printing <?php dpm($variables); ?> in node.tpl.php 

In Figure 16–1, you see the result of printing the contents of the $variables array using the dpm() 
function. What’s nice about using dpm() is that the array is neatly printed using the $messages variable in 

http://drupal.org/project/devel


CHAPTER 16 ■ ADVANCED THEMING 

312 

page.tpl.php, which is where system status messages are located. As shown in Figure 16–2, you can click 
the heading and expand the contents of each part one by one. 

 

Figure 16–2. An expanded array printed using the dpm() function 

When working inside template files, these variables are made available as top-level variables. This is 
done as a convenience for theme developers. For example, instead of printing $variables['status'], 
just print $status in templates. When working inside functions, such as theme functions or preprocess 
functions, use $variables['status']. 

Using the Theme Developer Module 
Of course, when you’re first starting out with Drupal, you’ll need to get an idea of where the code is 
located and what you need to override in the first place. The Theme Developer module 
(http://drupal.org/project/devel_themer) is the perfect tool to help you figure this out. Once enabled, 
a checkbox will appear in the bottom right corner of the page. When clicked, a semi-transparent, 
resizable, and draggable window appears in the top right corner of the page. You can then move it 
around and click on any element of the page and the window will populate with all the information you 
need to know—and more (see Figure 16-3). 

http://drupal.org/project/devel_themer


CHAPTER 16 ■ ADVANCED THEMING 

313

For example, when clicking a node, the following information is made available in the window: 

• The parent functions and templates that affect the element 

• The template or theme hook suggestions (candidates) 

• The preprocess and process functions being used 

• A printout of the variables available 

 

Figure 16–3. The Theme Developer window shows theme-related information about the element that was 

clicked (a node in this case). 

Preprocess and Process Functions 
Preprocess functions are a theme developer’s best friend. There are so many use cases where preprocess 
functions can make your life easier, your code more efficient, and your template files clean and crisp. If 
you haven’t used them before, either because you think you don’t need them or are afraid of delving too 
deep into PHP, you are truly missing out. We hope to change that. 



CHAPTER 16 ■ ADVANCED THEMING 

314 

By now you are familiar with the general purpose of template files, which is mainly to provide markup 
and print variables. But what if you’d like to change those variables or add your own? Your first inclination 
might be to create a template file and do everything there, but that is often the wrong way to go. 

Preprocess functions were designed for this exact purpose. When implementing a preprocess or 
process function you are basically telling Drupal, “Hey, wait! I have some changes to make to this data 
before you send it off for rendering.” It’s sort of like an editor getting a final review of an article before it’s 
allowed to be published. By definition, “preprocess” is a phase of processing that happens before 
templates are rendered. "Process" functions, which are new in Drupal 7, serve the same purpose, with 
the only difference being that they run later (after preprocess) in the processing cycle. 

A good example of how Drupal uses preprocess and process functions is the $classes_array and 
$classes variables. In template_preprocess() in Listing 16–1, which is the default implementation of 
preprocess by Drupal and the first preprocess function called, the $classes_array variable is initialized; 
see http://api.drupal.org/api/function/template_preprocess/7. 

Listing 16–1. Excerpt from template_preprocess() Where $classes_array Is Defined 

<?php 
function template_preprocess(&$variables, $hook) { 
  // Initialize html class attribute for the current hook. 
  $variables['classes_array'] = array(drupal_html_class($hook)); 
} 
?> 

This first step provides a class indicating the hook that’s being used. For example, if this preprocess 
function is being called for a node, this code will add the class node to this array. After this function runs, 
all modules and themes also have a chance to run it themselves and add or change any of the variables. 
Next up is the Node module, which implements template_preprocess_node(); see 
http://api.drupal.org/api/function/template_preprocess_node/7. As you can see in Listing 16–2, quite 
a few classes are added to this array. 

Listing 16–2. Excerpt from template_preprocess_node() Where Additional Classes Are Added to the 

$classes_array Variable 

<?php 
function template_preprocess_node(&$variables) { 
  // Gather node classes. 
  $variables['classes_array'][] = drupal_html_class('node-' . $node->type); 
  if ($variables['promote']) { 
    $variables['classes_array'][] = 'node-promoted'; 
  } 
  if ($variables['sticky']) { 
    $variables['classes_array'][] = 'node-sticky'; 
  } 
  if (!$variables['status']) { 
    $variables['classes_array'][] = 'node-unpublished'; 
  } 
  if ($variables['teaser']) { 
    $variables['classes_array'][] = 'node-teaser'; 
  } 
  if (isset($variables['preview'])) { 
    $variables['classes_array'][] = 'node-preview'; 
  } 
} 
?> 

http://api.drupal.org/api/function/template_preprocess/7
http://api.drupal.org/api/function/template_preprocess_node/7


CHAPTER 16 ■ ADVANCED THEMING 

315

Once again, after template_preprocess_node() runs, all modules and themes have a chance to 
implement their own version, making any changes or additions they want. Once all the preprocess 
functions have completed, the process functions have their chance. In Drupal core, there are only two 
process implementations for nodes: template_process(), the default implementation, and 
rdf_process(), an implementation by the RDF module. 

In template_process(), after all the modules and themes have had a chance to modify it, a new 
variable called $classes is created. It contains a string version all of the classes provided in 
$classes_array. The $classes variable is printed in the class attribute of the wrapper <div> in the 
node.tpl.php template file. This is shown in Listing 16–3. 

Listing 16–3. Excerpt from template_process() Where $classes Is Created from the $classes_array Variable 

<?php 
function template_process(&$variables, $hook) { 
  // Flatten out classes. 
  $variables['classes'] = implode(' ', $variables['classes_array']); 
} 
?> 

Listings 16–1 through 16–3 illustrate some of the flexibility and power that Drupal provides with 
preprocess and process functions as well as the order in which these functions occur. The most 
important thing to understand is that in the theme layer, you’ve got the last call on all of these variables. 
You can easily add, modify, and remove any variables you please by simply implementing preprocess 
and process functions in your theme; this will be covered in more detail in the following pages. 

The big advantage of using preprocess functions is that they allow you to keep most of the logic 
outside of your template files. This allows for cleaner and easier to understand template files plus more 
efficient themes that are easier to maintain, manage, and extend over time. There are many changes you 
can make, such as affecting classes and modifying existing variables, that don’t require any changes to 
template files at all—just a few simple lines of code. 

Implementing Preprocess and Process Hooks 
Preprocess functions are implemented by creating a function that is named in a certain way. Listing 16–4 
shows an example of this naming convention. 

Listing 16–4. Naming Convention for Preprocess and Process Hooks 

<?php 
/** 
 * Implements template_preprocess_THEMEHOOK(). 
 */ 
function HOOK_preprocess_THEMEHOOK(&$variables) { 
   // Changes go here. 
} 
 
/** 
 * Implements template_process_THEMEHOOK(). 
 */ 
function HOOK_process_THEMEHOOK(&$variables) { 
   // Changes go here. 
} 



CHAPTER 16 ■ ADVANCED THEMING 

316 

There are four points to consider in naming these functions: 

1. The hook of a default implementation, usually created by a module, is 
“template.” In all other implementations, the hook is replaced by the system 
name of the module or theme implementing it. 

2. Which stage of the process do you want to affect? There are two options: the 
preprocess, which runs first, or process, which runs after all of the preprocess 
functions have been executed. 

3. The theme hook matches the theme hook as defined in hook_theme(), which is 
ultimately output using either a theme function or a template file. 

4. The &$variables parameter contains data needed by the theme function or 
template file rendering it. Since preprocess functions run before templates are 
rendered, you can make all sorts of changes and additions to its contents. 

■ Caution  By default, only theme hooks that have been explicitly defined in hook_theme() are able to use 
preprocess hooks. For example, hook_preprocess_node() is perfectly fine, but 
hook_preprocess_node__article() will not work. This is because node__article is a theme hook suggestion, 

which is a variation of a theme hook but is not actually a real theme hook. 

Default Implementations 
Listing 16–5 illustrates what a preprocess implementation for a default theme hook looks like, using 
template_preprocess_node(), which creates variables for the node.tpl.php template file as an example. 
This function resides in node.module along with a hook_theme() implementation, node_theme(), where it 
defines “node” as a theme hook. 

Listing 16–5. Naming Convention for Default Implementations of Preprocess and Process Hooks 

<?php 
function template_preprocess_node(&$variables) { 
   // Changes go here. 
   // See http://api.drupal.org/api/function/template_preprocess_node/7 for contents. 
} 
 
function template_process_node(&$variables) { 
   // Changes go here. 
   // See http://api.drupal.org/api/function/template_process_node/7 for contents. 
} 

■ Tip  Browsing http://api.drupal.org and looking through the default implementations is a great way to learn 

how the variables were created. 

http://api.drupal.org/api/function/template_preprocess_node/7
http://api.drupal.org/api/function/template_process_node/7
http://api.drupal.org


CHAPTER 16 ■ ADVANCED THEMING 

317

Theme and Module Implementations 
Both modules and themes are able to use preprocess functions in the same way, and a given theme hook 
can have many preprocess implementations, originating from both modules and themes. This 
introduces the opportunity for conflicts to occur, so keeping that in mind and knowing the order in 
which these functions run is important. Preprocess implementations from modules run first, and 
implementations by themes run last. When dealing with base and subthemes, the base theme will run 
first and the subtheme will run last. A good way to remember this is that the active theme always wins. 

Preprocess functions implemented by Drupal core and modules reside in various files, such as 
modulename.module or theme.inc, and many others, while preprocess functions implemented by themes 
always reside in template.php. 

As an example, implement a preprocess function for a theme called “dgd7” for the node theme 
hook. As shown in Listing 16–6, you simply place a function in template.php beginning with the theme 
name (the implementing hook), followed by _preprocess_ and the theme hook, which in this case is 
“node.” Finally, you pass in the &$variables parameter by reference (the & before the $ indicates a 
variable being passed by reference). 

Listing 16–6. Implementation of template_preprocess_node() in a Theme 

<?php 
/** 
 * Implements template_process_node(). 
 */ 
function dgd7_preprocess_node(&$variables) { 
  // Changes go here. 
} 

The code in Listing 16–6 is all that’s needed, along with a quick cache clear, for Drupal to pick up 
your preprocess function and run it before rendering a node. Now the fun can begin! 

Finding the Contents of $variables 
The contents of the $variables array are different for each theme hook; even the contents of the same 
theme hook vary based on other factors, such as the view mode or user role. 

The first thing to do after creating the function is to print the array and find out what’s inside for you 
to work with. As explained in the “Finding Available Variables in the Theme Layer” section, using the 
dpm() function is a great way to do this, as shown in Listing 16–7. 

Listing 16–7. Printing Variables to the Screen for Debugging Purposes 

<?php 
/** 
 * Implements template_preprocess_node(). 
 */ 
function dgd7_preprocess_node(&$variables) { 
  dpm($variables); 
} 

■ Caution  Debugging functions should only be used temporarily during development. 



CHAPTER 16 ■ ADVANCED THEMING 

318 

Preprocess Functions in Action 
There are so many things you can change using preprocess functions that we can’t possibly get into all of 
them. Now that you’ve got your preprocess function all set up and are aware of how to view existing 
variables, you are equipped with enough knowledge to start making some changes. Let’s just jump right 
in and get started with a few practical examples of how to use preprocess functions.  

Add Classes to Template Wrappers 
In the DGD7 theme at http://definitivedrupal.org, the header, sidebar, and footer areas are black and 
the content area is white. In order to style the contents of each of those sections more easily, you can add 
a couple of helper classes to the region wrapper. To do this, you’ll need to implement a preprocess 
function for the region theme hook in your template.php file; see Listing 16–8. 

Listing 16–8. Adding Classes to Region Wrapper <div> Using the $classes_array Variable in 

template_preprocess_region() 

<?php 
/** 
 * Implements template_preprocess_region(). 
 */ 
function dgd7_preprocess_region(&$variables) { 
  $region = $variables['region']; 
  // Sidebars and content area need a good class to style against. You should 
  // not be using id's like #main or #main-wrapper to style contents. 
  if (in_array($region, array('sidebar_first', 'sidebar_second', 'content'))) { 
    $variables['classes_array'][] = 'main'; 
  } 
  // Add a "clearfix" class to certain regions to clear floated elements inside them. 
  if (in_array($region, array('footer', 'help', 'highlight'))) { 
    $variables['classes_array'][] = 'clearfix'; 
  } 
  // Add an "outer" class to the darker regions. 
  if (in_array($region, array('header', 'footer', 'sidebar_first', 'sidebar_second'))) { 
    $variables['classes_array'][] = 'outer'; 
  } 
} 

$variables['classes_array'] turns into $class in the process phase, and the class(es) added during 
preprocess are automatically modified as a result. So, just like that you’ve added a class to a region 
wrapper <div>. 

The alternative in template files is lengthier. Adding logic to each affected template file would be 
required, which means you’d need to override the file, even if you didn’t need to change the markup. If 
you have multiple template files for regions, the change would have to be made manually across all of 
them, which is clearly less efficient as you can see in Listing 16–9. 

Listing 16–9. Adding Classes in Preprocess Functions Can Dramatically Increase the Efficiency of Your CSS 

Code. 

/* Using classes and ID's provided by default. */ 
#header fieldset, 
#footer fieldset, 

http://definitivedrupal.org


CHAPTER 16 ■ ADVANCED THEMING 

319

.sidebar fieldset { 
  border-color: #333 
} 
 
/* Using the class added in Listing 16–8, which is more efficient. */ 
.outer fieldset { 
  border-color: #333; 
} 

■ Tip  This example changes classes for the region template, but this technique can be applied to any of the 
major templates, including html.tpl.php, block.tpl.php, node.tpl.php and comment.tpl.php in their 

respective preprocess functions. 

Making Changes to Nodes 
Listing 16–10 demonstrates making three changes: 

1. Drupal’s page title prints in page.tpl.php. When a node title prints inside of the 
node.tpl.php file, it’s usually because it’s being viewed in teaser mode, and 
therefore, the node title is marked up with an <h2> by default. Usually, the 
content inside the node body also contains one or more <h2> tags. Adding a class 
to single out the node title can make styling easier. Listing 16–10 utilizes the 
$title_attributes_array to add a node-title class to help make styling easier.  

2. When viewing a node that has a comment form directly under the node links, it 
doesn’t make much sense to have an “Add new comment” link as well. In Listing 
16–10, the comment links are hidden when the comment form is below it by 
using the hide() function, which will be covered in more detail later in this 
chapter. 

3. Designs often call for differences when viewing the teaser of a node versus the full 
page. Listing 16–10 demonstrates using $variables['teaser'] to suppress the 
$submitted information and truncate the node title to 70 characters when viewing 
in teaser mode. 

Listing 16–10. Demonstrates Making Changes to the Display of Node Content During Preprocess 

<?php 
/** 
 * Implements template_preprocess_node(). 
 */ 
function dgd7_preprocess_node(&$variables) { 
  // Give the <h2> containing the teaser node title a better class. 
  $variables['title_attributes_array']['class'][] = 'node-title'; 
 
// Remove the "Add new comment" link when the form is below it. 
  if (!empty($variables['content']['comments']['comment_form'])) { 
    hide($variables['content']['links']['comment']); 
  } 



CHAPTER 16 ■ ADVANCED THEMING 

320 

  // Make some changes when in teaser mode. 
  if ($variables['teaser']) { 
    // Don't display author or date information. 
    $variables['display_submitted'] = FALSE; 
    // Trim the node title and append an ellipsis. 
    $variables['title'] = truncate_utf8($variables['title'], 70, TRUE, TRUE); 
  }
} 

Add a Change Picture Link Underneath the User Photo 
As you’ve probably noticed by now, there are many variables available to you within the $variables
array. These variables can be used to create new variables very easily. You know the path to edit a user
profile is user/UID/edit, so you can use the information inside of $variables to determine whether or
not the user viewing the page is the account holder. Once you’ve determined this, you can easily create a
variable containing a link for the user to edit the photo everywhere it appears on the site by
implementing template_preprocess_user_picture(), as shown in Listing 16–11. Once you do this, you’ll
be able to print it in the corresponding template, user-picture.tpl.php, as shown in Listing 16–12. 

Listing 16–11. Creating a Custom Variable for the user-picture.tpl.php by Implementing 

template_preprocess_user_picture(). 

<?php
/** 
 * Implements template_preprocess_user_picture(). 
 * - Add "change picture" link to be placed underneath the user image. 
 */ 
function dgd7_preprocess_user_picture(&$vars) { 
  // Create a variable with an empty string to prevent PHP notices when 
  // attempting to print the variable 
  $vars['edit_picture'] = ''; 
  // The account object contains the information of the user whose photo is 
  // being processed. Compare that to the user id of the user object which 
  // represents the currently logged in user. 
  if ($vars['account']->uid == $vars['user']->uid) { 
    // Create a variable containing a link to the user profile, with a class 
    // "change-user-picture" to style against with CSS. 
    $vars['edit_picture'] = l('Change picture', 'user/' . $vars['account']->uid . '/edit',
array( 
      'fragment' => 'edit-picture', 
      'attributes' => array('class' => array('change-user-picture')), 
      ) 
    ); 
  }
} 



CHAPTER 16 ■ ADVANCED THEMING 

321

Listing 16–12. Printing Your Custom Variable Into the user-picture.tpl.php File, Which You’ve Copied Into 

Your Theme to Override 

<?php if ($user_picture): ?> 
  <div class="user-picture"> 
    <?php print $user_picture; ?> 

    <?php print $edit_picture; ?> 

  </div> 
<?php endif; ?> 

Using the Render API 

What Is a Render Array? 
Many of the variables in template files are straightforward, but you’ll notice that some of the variables 
are printed along with a function called render(). Render arrays are structured arrays that contain 
nested data and other information needed by Drupal to turn them into HTML using Drupal’s Render 
API. Variables that are render arrays are generally easy to spot in template files because they are printed 
using a function called render(). 

In page.tpl.php, you’ll notice that all of the regions are printed using the render() function. Each 
region is an element (another array) nested inside the $page array. The code in Listing 16–13 is all that’s 
needed to render each region. Each render() call returns fully formatted HTML for all the contents of the 
render array. 

Listing 16–13. Printing Regions in page.tpl.php Using the render() Function 

<?php print render($page['sidebar_first']); ?> 

In prior versions of Drupal, you would just include <?php print $sidebar_first; ?>, which contained 
a fully formatted HTML string ready for printing. This worked, of course, but it wasn't very flexible. Let’s 
face it; there are only so many things you can do with a big glob of HTML markup at that stage. 

In Drupal 7, these variables are sent to templates as nicely structured arrays. Instead of a glob of 
HTML markup, you get an array containing all sorts of information about the content inside it, down to 
attributes of specific links deep inside of it. This makes it incredibly easy to target specific content of the 
arrays and make any sort of changes you want to it at the last possible minute before it's rendered in the 
first place. 

To find out what’s inside this array, use the dpm() function provided with the Devel module to print 
it inside of page.tpl.php: <?php dpm($page['sidebar_first']); ?>. As you can see in Figure 16–4, there 
are two top-level render elements inside this array, the Search form block and the Navigation block, 
which are currently printing in the first sidebar. 

 

Figure 16–4. Contents of the $page['sidebar_first'] render array printed from page.tpl.php using dpm()  



CHAPTER 16 ■ ADVANCED THEMING 

322 

Identifying Render Elements 
An easy way to identify arrays as render elements is the presence of properties. Render elements are 
always arrays, and they always contain properties that always begin with a hash tag. In Figure 16–4, you 
can immediately tell that $page['sidebar_first'] is a render element because it contains a few 
properties: #sorted, #theme_wrappers, and #region. These properties are used by drupal_render()which 
is called when using drupal_render() to determine how to render the output. For details about 
drupal_render() see http://api.drupal.org/api/function/render/7. 

As themers, you won’t be getting deep into the more developer-centric properties, but there are a 
few that will be helpful for you to make sense of out what these arrays mean. These are described in 
Table 16–1. 

Table 16–1. Helpful Render Element Properties 

Property Description 

#theme Specifies the theme hook, which can be either a function or a template to use 
when rendering the element. 

#theme_wrappers An array containing theme hook(s) to be used to wrap the rendered children of 
the element. For example, when theming a block, the #theme property would be 
block and the #theme_wrappers property would contain region. This ensures 
that after the block(s) are rendered, the children would be run through the 
region template as well. 

#type The type of element that will be rendered. The default properties for element 
types are defined in hook_element_info() implementations. 

#prefix & #suffix A string containing markup to be placed before (prefix) or after (suffix) the 
rendered element. 

#weight A number that is used to sort the elements to determine the order in which they 
will print. 

#sorted A Boolean (TRUE or FALSE) that indicates whether or not the children have been 
sorted. For example, this is used in conjunction with the #weight property to 
sort the blocks in a region. When reordering blocks in a theme via 
hook_page_alter(), you'll need to specify #sorted => FALSE in addition to the 
#weight to trigger a new sort when you need to move a block to any other 
position than below the already sorted elements. 

#attached The #attached property is used to specify corresponding CSS, JavaScript, or 
libraries to load when the element is rendered. 

See the documentation at http://api.drupal.org/api/function/drupal_render/7 for more information. 

Manipulating the Output of Render Elements 
As mentioned, having a structured array to work with is far more flexible than a bunch of HTML. This 
allows you to make only the changes you want to make with ease, whether big or small, without having 
to re-write code from scratch. 

http://api.drupal.org/api/function/render/7
http://api.drupal.org/api/function/drupal_render/7


CHAPTER 16 ■ ADVANCED THEMING 

323

The prospect of using render arrays to generate markup and using alter hooks in general are 
completely new concepts to Drupal theme developers. It’s very different than what you are used to, in a 
good way, but it takes some getting used to. In a lot of ways it’s easier than creating templates and theme 
functions for one-off implementations. The biggest issues front-end developers face when using the 
Render API are: 

1. Thinking about generating markup differently. 

2. Figuring out how to modify the content of a render array. 

3. Getting comfortable with implementing alter hooks. 

Unlike theme hooks, render arrays are modified using alter hooks, not preprocess functions and 
templates. This can be confusing at first because render arrays are similar to theme hooks in that their 
purpose is to ultimately generate HTML markup, and they use templates and theme functions to do so. 
With render arrays, the #theme property, which allows you to define which theme function or template 
should be used to render the element, is just one of many properties used and can be changed at any 
time.  In general, you’ll use templates and theme functions to modify the markup itself, and you’ll use 
alter hooks to modify contents, structure, or placement of the elements before it’s rendered.  

The following sections contain a few examples of things you can do with render arrays. 

Generate New Content on the Fly 
Generating new content is as simple as adding a new element to the page array. Listing 16–14 shows the 
addition of a new element called “new_stuff” to the pre-existing Highlighted region by implementing 
hook_page_alter() in a theme’s template.php. 

Listing 16–14. Adding a New Element to the Highlighted Region  

<?php 
/** 
* Implements hook_page_alter(). 
*/ 
function mytheme_page_alter(&$page) { 
  $page['highlighted']['new_stuff'] = array( 
    '#type' => 'container', 
    '#attributes' => array('class' => 'my-container'), 
  ); 
  $page['highlighted']['new_stuff']['heading'] = array( 
    '#type' => 'html_tag', 
    '#tag' => 'h2', 
    '#value' => t('Heading'), 
    '#attributes' => array('id' => 'my-heading'), 
  ); 
  $page['highlighted']['new_stuff']['list'] = array( 
    '#theme' => 'item_list', 
    '#items' => array( 
      'First item', 
      'Second item', 
      'Third item', 
    ), 
  ); 
} 



CHAPTER 16 ■ ADVANCED THEMING 

324 

The first thing you did was name your new element “new_stuff,” gave it a #type of container, and 
defined a class attribute of my-container. Note that container is an element, defined in 
system_element_info(), which uses the theme_container() theme function as a theme wrapper by 
default. This means the children of your element (heading and list) will be run through 
theme_container(). The resulting markup is shown in Listing 16–15. 

Listing 16–15. The Output Generated for $page['highlighted']['new_stuff'] by theme_container() 

  <div class="my-container"> 
    ... 
  </div> 

Then you added a subelement called “heading” and specified the #type element property as 
html_tag. This will cause the element to use theme_html_tag() when rendering. You also specified #tag, 
#value, and #attributes properties. These are parameters of the theme_html_tag() function as you can 
see at http://api.drupal.org/api/function/theme_html_tag/7. The resulting markup is shown in Listing 
16–16. 

Listing 16–16. The Output Generated for $page['highlighted']['new_stuff']['heading'] by theme_html_tag() 

<h2 id="my-heading">Heading</h2> 

Finally, you added a subelement called “list.” Here you specified item_list as the #theme property 
and included an array containing your #items, which is a required parameter for theme_item_list(). The 
resulting markup is shown in Listing 16–17. 

Listing 16–17. The Output Generated for $page['highlighted']['new_stuff']['list'] by theme_item_list() 

<div class="item-list"> 
  <ul> 
    <li class="first">First item</li> 
    <li>Second item</li> 
    <li class="last">Third item</li> 
  </ul> 
</div> 

When the Highlighted region is rendered, the code in Listing 16–14 produces the final result shown 
in Listing 16–18. 

Listing 16–18. The Final Rendered Result of Listing 16–14  

<div class="my-container"> 
  <h2 id="my-heading">Heading</h2> 
  <div class="item-list"> 
    <ul> 
      <li class="first">First item</li> 
      <li>Second item</li> 
      <li class="last">Third item</li> 
    </ul> 
  </div> 
</div> 

http://api.drupal.org/api/function/theme_html_tag/7


CHAPTER 16 ■ ADVANCED THEMING 

325

■ Caution  The previous examples are meant to illustrate how the Render API works to generate content. 
However, it’s worth noting that it should not be abused to output every piece of HTML on a page as separate 
elements because there can be serious performance implications. Using the markup #type is preferred for small 

bits of markup, such as headings, instead of html_tag, as it requires the theme_html_tag() theme function to 

determine the output. 

Move Content from One Region to Another 
Inside a hook_page_alter() implementation, you can move the content of regions around at will. Listing 
16–19 contains a few simple lines of code that move the contents of the entire first sidebar to the second 
sidebar, which results in the layout changing from a left sidebar layout to a right sidebar layout on full 
node pages. In Listing 16–19, you’ve also moved the breadcrumbs to the bottom of the footer region. 

Listing 16–19. Relocating the sidebar_first Region to sidebar_second and Adding Breadcrumbs to a New 

Element in the Footer Region 

<?php 
/** 
* Implements hook_page_alter(). 
*/ 
function dgd7_page_alter(&$page) { 
  // Check that you are viewing a full page node. 
  if (node_is_page(menu_get_object())) { 
    // Assign the contents of sidebar_first to sidebar_second. 
    $page['sidebar_second'] = $page['sidebar_first']; 
    // Unset sidebar_first. 
    unset($page['sidebar_first']); 
  } 
 
  // Add the breadcrumbs to the bottom of the footer region. 
$page['footer']['breadcrumbs'] = array( 
    '#type' => 'container', 
    '#attributes' => array('class' => array('breadcrumb-wrapper', 'clearfix')), 
    '#weight' => 10, 
  ); 
  $page['footer']['breadcrumbs']['breadcrumb'] = array( 
    '#theme' => 'breadcrumb', 
    '#breadcrumb' => drupal_get_breadcrumb(), 
  ); 
  // Trigger the contents of the region to be re-sorted. 
  $page['footer']['#sorted'] = FALSE; 
} 

Altering Content Inside a Render Array 
Altering the contents of a render array to change bits and pieces of the actual content is where you get 
into a very gray area. It could be argued that a change like this belongs inside a module. When making 



CHAPTER 16 ■ ADVANCED THEMING 

326 

changes like this, it’s important to ask yourself whether or not the changes you are making should still 
apply when the theme you are developing is not active. Listing 16–20 changes the View and Edit tabs to 
read Profile and Edit profile on user profile pages. 

Listing 16–20. Implements hook_menu_local_tasks_alter() to Change Tab Names on User Profile Pages  

<?php 
/** 
* Implements hook_menu_local_tasks_alter(). 
*/ 
function dgd7_menu_local_tasks_alter(&$data, $router_item, $root_path) { 
  if ($root_path == 'user/%') { 
    // Change the first tab title from 'View' to 'Profile'. 
    if ($data['tabs'][0]['output'][0]['#link']['title'] == t('View')) { 
      $data['tabs'][0]['output'][0]['#link']['title'] = t('Profile'); 
    } 
    // Change the second tab title from 'Edit' to 'Edit profile'. 
    if ($data['tabs'][0]['output'][1]['#link']['title'] == t('Edit')) { 
      $data['tabs'][0]['output'][1]['#link']['title'] = t('Edit profile'); 
    } 
  } 
} 

Notable Render Arrays in Core Templates 
There are quite a few render array variables scattered across core templates that are worth noting. 
hook_page_alter() contains the entire page so it can always be used to alter anything. However, finding 
that particular anything is not always trivial as other modules can move stuff around, so using more 
specific alters is advised. Table 16–2 is a quick reference of notable render arrays. This is by no means a 
full list, but it covers quite a bit and should give you an idea of how to begin figuring out where to look to 
edit these things. 

Table 16–2. Notable Render Arrays in Core Templates 

Variable Found in Alter Hook Description 

$page page.tpl.php hook_page_alter() Contains the entire page from 
regions down to fields and 
comments. 

$content node.tpl.php, 
comment.tpl.php, 
taxonomy-term.tpl.php 

hook_node_view_alter(), 
hook_comment_view_alter(), 
hook_taxonomy_term_view_alter() 

Contains the contents of each 
entity. For more details see 
http://api.drupal.org/hook_e
ntity_view_alter. 

$tabs page.tpl.php hook_menu_local_tasks_alter() Contains primary and 
secondary tabs, themable via 
theme_menu_local_tasks() and 
theme_menu_local_task(). 

http://api.drupal.org/hook_e


CHAPTER 16 ■ ADVANCED THEMING 

327 

Variable Found in Alter Hook Description 

$action_links page.tpl.php hook_menu_local_tasks_alter() Contains action links, 
themable via 
theme_menu_local_actions(). 

$item field.tpl.php hook_field_display_alter() and 
hook_field_display_ENTITY_TYPE_
alter() 

Contains display settings for 
fields, which can adjust label 
settings or control the 
formatter used to display the 
contents of field.tpl.php. 

Introducing render(), hide(), and show() 
One of the best new theming features of Drupal 7 is the ability to selectively render bits of content in 
templates. As detailed in the previous sections, the content of some variables (render arrays) is sent to 
templates as structured arrays instead of chunks of HTML. This is really awesome news for the theme 
layer. 

To understand just how awesome this is, you need to look into the past. In prior versions of Drupal, 
theming complex nodes with fields wasn’t the easiest task. Fields were lumped into the $content 
variable, and while they could be printed and manipulated individually, there were issues. You had to be 
very careful to properly sanitize variables, and once you decided to break up the content variable, you 
needed to rebuild it entirely. This was not future-proof, as the addition of new fields would often require 
going back to the template file and printing the new field. 

In Drupal 7, those problems have been solved quite gracefully. You now have the ability to very 
easily render individual pieces of content, such as fields, with three new functions called render(), 
hide(), and show(). They can be used inside theme functions and templates files as well as preprocess 
and process functions. All three of these functions take a single argument, which is the element (or child) 
you wish to target. 

• hide(): Hides a render element or part of a render element by tricking 
drupal_render() into thinking it has already been printed. Example usage:  

<?php hide($element['something']); ?> 

• show(): Does the opposite of hide(). It can be useful to revert a previously applied 
hide() status. Example usage:  

<?php show($element['something']); ?> 

• render(): Converts a render array to HTML markup. It returns HTML, so it should 
be used along with print in templates. Example usage:  

<?php print render($element); ?> 

To illustrate these functions in action, look at node.tpl.php (see Listing 16–21). 



CHAPTER 16 ■ ADVANCED THEMING 

328 

Listing 16–21. Excerpt from the Default node.tpl.php Template 

<div id="node-<?php print $node->nid; ?>" class="<?php print $classes; ?> clearfix"<?php print 
$attributes; ?>> 
  <?php print $user_picture; ?> 
  <?php print render($title_prefix); ?> 
  <?php if (!$page): ?> 
    <h2<?php print $title_attributes; ?>><a href="<?php print $node_url; ?>"><?php print 
$title; ?></a></h2> 
  <?php endif; ?> 
  <?php print render($title_suffix); ?> 
  <?php if ($display_submitted): ?> 
    <div class="submitted"> 
      <?php print $submitted; ?> 
    </div> 
  <?php endif; ?> 
  <div class="content"<?php print $content_attributes; ?>> 
    <?php 
      // Hide the comments and links now. so they can be rendered later. 
      hide($content['comments']); 
      hide($content['links']); 
      print render($content); 
    ?> 
  </div> 
  <?php print render($content['links']); ?> 
  <?php print render($content['comments']); ?> 
</div> 

As you can see in Listing 16–21, this template is already making use of both render() and hide() 
functions out of the box. There are three render arrays in this node template: $title_prefix, 
$title_suffix, and $content. Inside the <div class="content"> wrapper, both $content['links'] and 
$content['comments'] are hidden using hide(), and then $content is rendered directly underneath. 

The reason that the comments and links are hidden is to break them out of the $content variable 
and allow them to be placed outside of the <div class="content"> wrapper. Both of the items are then 
rendered afterward using render() individually. 

Of course, the fun doesn’t have to stop at top-level variables. These functions work as deep into the 
array as you can go. As long as you pass in a proper render element (see the “Render API” section), you’ll 
be able to manipulate it with these functions. 

As an example, say you wanted to hide the “Add new comment” link when viewing a node that has a 
comment form on the page you’re viewing. You can simply check to see if the form exists in your array, 
and then hide that specific link group (comment). The code in Listing 16–22 demonstrates how to do 
this. 

Listing 16–22. Hiding the “Add new comment” Link when the Comment Form Is Present 

<?php 
// Hide the "Add new comment" link when the comment form is present. 
if (!empty($vars['content']['comments']['comment_form'])) { 
  hide($vars['content']['links']['comment']); 
} 
// Print the rendered links afterward. 
print render($content['links']); 

 



CHAPTER 16 ■ ADVANCED THEMING 

329

Because the show() function resets the print status but does not print anything, it can be helpful to 
revert a previously applied hide(). In most cases, you’ll likely just use render() because it will allow you 
to print the element as many times as you need, as shown in Listing 16–23. 

Listing 16–23. Hiding the “Add new comment” Link when the Comment Form Is Present, but Showing It 

Again if Some Other Condition Is Met  

<?php 
// Hide the "Add new comment" link when the comment form is present. 
if (!empty($content['comments']['comment_form'])) { 
  hide($content['links']['comment']); 
  if ($some_exception) { 
    show($content['links']['comment']); 
  } 
} 
// Print the rendered links afterward. 
print render($content['links']); 

■ Tip  For complex templates, this code begins to get very messy in templates files. In those situations, it's best 
to do these operations in preprocess or process functions in order to keep your templates clean and more 

manageable. 

Theming Forms 
Theming forms is a little different than working with the usual template file or theme function. Form 
markup is generated using Drupal’s Form API. This makes it really easy for modules to build forms and 
guarantees consistency among generated elements. While the process of theming forms is quite 
different from what most front-end developers are used to, we think you’ll begin to appreciate the 
consistency and flexibility of theming Drupal’s forms. 

One thing Drupal is famous for is the ability to accomplish a single task in many different ways. 
Although none of Drupal’s forms ship with template files, they can easily be made to use them. Forms 
can also use preprocess functions, process functions, and alter hooks. So, how do you know when to use 
one over the other? This section will explain how forms are generated and will present a couple of 
examples using each method. 

How Form Markup Is Generated 
Forms are generated by modules. The simple function shown in Listing 16–24 is all that is required to 
generate form markup. It looks really easy, doesn’t it? It is. Of course, there is more to the process to 
make it functional, such as validating the form and saving the submitted values, but the rest is not your 
concern in the theme layer. What’s important to you is the structure of a form and how it’s transformed 
from the $form array to actual markup. 



CHAPTER 16 ■ ADVANCED THEMING 

330 

Listing 16–24. A Simple Unsubscribe Form  

<?php 
function exampleform_unsubscribe(&$form, $form_state) { 
  $form['email'] = array( 
    '#type' => 'textfield', 
    '#title' => t('E-mail address'), 
    '#required' => TRUE, 
  ); 
  $form['submit'] = array( 
    '#type' => 'submit', 
    '#value' => t('Remove me!'), 
  ); 
  return $form;
} 

In Listing 16–24, you define a very simple form with two elements: a textfield for the e-mail address
and a Submit button. When rendered, the result looks like those in Figure 16–5. The resulting markup is
shown in Listing 16–25. 

Figure 16–5. Rendered form based on the code from Listing 16–24 

Listing 16–25. The Markup Generated by Drupal for the exampleform_unsubscribe() form in Listing 16–24  

<form action="/example/unsubscribe" method="post" id="exampleform-unsubscribe" accept-
charset="UTF-8"> 
  <div> 
    <div class="form-item form-type-textfield form-item-email"> 
      <label for="edit-email">E-mail address 
        <span class="form-required" title="This field is required.">*</span> 
      </label>  
      <input type="text" id="edit-email" name="email" value="" size="60" maxlength="128"
class="form-text required" /> 
    </div>  
    <input type="submit" id="edit-submit" name="op" value="Remove me!" class="form-submit" /> 
    <input type="hidden" name="form_build_id" value="form-jKkl1KLWJLnv0hM4DSVd8-
40boTgBQAzWWhUn44c15Q" /> 
    <input type="hidden" name="form_token" value="LB07DqsDXK9idWdOHLxUen7jKxm52JqTyHiR7-pNumA"
/> 
    <input type="hidden" name="form_id" value="exampleform_unsubscribe" /> 
  </div>
</form> 



CHAPTER 16 ■ ADVANCED THEMING 

331

Form API Elements and Default Properties 
In the exampleform_unsubscribe() form, you’ve defined two form elements: the e-mail address and the 
submit element. The e-mail element’s #type property is textfield, which provides a single line text input. 
The submit element’s #type is submit, which is the Form API equivalent of <input type="submit" />. 

If you look closely at the generated markup in Listing 16–25, you’ll see that you only set two 
properties in each element, but your markup ended up with some additional attributes. This is because 
Drupal assigns a default set of properties to each element. In this case, you are using form, textfield, 
and submit elements, which are defined in system_element_info(), as shown in Listing 16–26. When the 
form is processed, Drupal merges the properties defined in the form with the default properties. 

Listing 16–26. Default Element Properties As Defined in system_element_info() for Textfield and Submit 

Elements  

<?php 
$types['form'] = array( 
  '#method' => 'post', 
  '#action' => request_uri(), 
  '#theme_wrappers' => array('form'), 
); 
$types['textfield'] = array( 
  '#input' => TRUE, 
  '#size' => 60, 
  '#maxlength' => 128, 
  '#autocomplete_path' => FALSE, 
  '#process' => array('ajax_process_form'), 
  '#theme' => 'textfield', 
  '#theme_wrappers' => array('form_element'), 
); 
$types['submit'] = array( 
  '#input' => TRUE, 
  '#name' => 'op', 
  '#button_type' => 'submit', 
  '#executes_submit_callback' => TRUE, 
  '#limit_validation_errors' => FALSE, 
  '#process' => array('ajax_process_form'), 
  '#theme_wrappers' => array('button'), 
); 

■ Tip  This form only touches on a few of form elements, but Drupal has many of them. For a full list of elements 
available through the Form API and their default properties, see 

http://api.drupal.org/api/file/developer/topics/forms_api_reference.html/7. 

Rendering of Form Elements 
The element properties contain critical information required to render them. Of these properties, two 
are very important in the theme layer: #theme and #theme_wrappers. When it’s time to render the form, 

http://api.drupal.org/api/file/developer/topics/forms_api_reference.html/7


CHAPTER 16 ■ ADVANCED THEMING 

332 

these properties tell Drupal which theme functions to use. There’s also the option to use the #pre_render 
property to define a function(s) that should run prior to rendering.  

• #theme: Specifies the theme function to use when rendering the element. 

• #theme_wrappers: Specifies a theme function or functions that should be used to 
wrap the rendered children of the element. 

To illustrate this process, let’s use the $form['email'] field from the previous form to walk through 
the process: 

1. theme('textfield', array('element' => $form['email'])) is called. This 
results in the following markup:  

<input type="text" id="edit-email" name="email" value="" size="60" maxlength="128" 
class="form-text required" /> 

2. theme('form_element', array('element' => $form['email'])) is called. This 
results in the following markup: 

<div class="form-item form-type-textfield form-item-email"> 
  <label for="edit-email">E-mail address 
    <span class="form-required" title="This field is required.">*</span> 
  </label>  
  <input type="text" id="edit-email" name="email" value="" size="60" maxlength="128" 
class="form-text required" /> 
  <!-- RESULT OF THE RENDERED TEXTFIELD --> 
</div> 

3. Finally, after all of the form elements are rendered, the form itself is run 
through theme_form(), which is specified as the #theme_wrappers in the form 
element. The theme_form() function takes care of generating the rest of the 
form markup, including the hidden elements form_build_id, form_token, and 
form_id. 

■ Caution  As mentioned previously, you never use theme_ to call a theme function directly, and similarly theme 

functions are entered in #theme and #theme_wrappers without the prefix theme_. 

First Steps for Theming Forms 

Find the Form ID 
Before you can do anything, you’ll need to find the ID of the form you’re working with. It appears in the 
following two places in the markup of every form: 

1. There’s a hidden field near the bottom of the form named form_id that 
contains what you’re looking for.  

<input type="hidden" name="form_id" value="exampleform_unsubscribe" /> 



CHAPTER 16 ■ ADVANCED THEMING 

333

2. Although it’s not copy/paste ready because it contains dashes instead of 
underscores to separate words, the <form>‘s ID attribute also contains the form 
ID.  

<form id="exampleform-unsubscribe"> 

Each Form ID has a corresponding function, which follows Drupal module naming conventions. In 
this example, exampleform is the module name and unsubscribe is what the form is named by the 
module.  

Sometimes it helps to look at the original form and code comments when theming. You’ll often find 
the original function that generates the form in the .module file of the module that created the form. If 
you find that the form doesn’t exist in the .module file, it’s definitely inside the module somewhere, but 
you may have to look around. Sometimes developers use .inc files for organization and code efficiency 
purposes.  

Implement hook_theme() 
In order to be able to use template files, preprocess, or process functions with forms, the first thing you’ll 
need to do is register the form ID as a theme hook. This is necessary so that Drupal knows about the 
theme hook. Drupal core does this for some forms in core, mostly for administrative forms that use 
tables, but chances are you’ll need to do this manually. 

In your theme’s template.php file, you’ll create an implementation of hook_theme(), with your 
theme’s name in place of the hook prefix. As an example, you’ll theme the contact form located at 
/contact when the Contact module is enabled, whose form ID is contact_site_form. Inside you’ll specify 
the form ID as the key and the render element as form, as shown in Listing 16–27. The render element 
key is required for theme hooks that use the render API to generate markup, such as forms. Its value 
indicates the name of the variable that holds renderable element, which in this case is form. 

Listing 16–27. A hook_theme() Implementation that Defines the contact_site_form() Theme Hook As 

Render Element “form” 

<?php 
/** 
* Implements hook_theme(). 
*/ 
function THEMENAME_theme() { 
  return array( 
    // Defines the form ID as a theme hook. 
    'contact_site_form' => array( 
      // Specifies 'form' as a render element. 
      'render element' => 'form', 
    ), 
  ); 
} 

After doing this and clearing the cache, you’ll be able to create a theme function and use preprocess 
and process functions for this form, which you’ll get into later in the chapter. 



CHAPTER 16 ■ ADVANCED THEMING 

334 

■ Tip  When registering theme hooks, if you are unsure what to enter, look at some of the default 
implementations. In this case, you are dealing with a form, so a quick look at http://api.drupal.org/api 
/function/drupal_common_theme/7 reveals the defaults for the original form theme hook, which are exactly 

what you need here. 

Theming Forms with Theme Functions 
The decision of whether to use a theme function or a template file is a personal/team preference. If 
you’re comfortable using PHP, you might be inclined to use theme functions. If not, you’ll probably 
prefer a template file, which is explained in the next section. 

As discussed above, you’ll need a hook_theme() implementation, without a template or path index, 
as shown in Listing 16–28. After doing this, hook_contact_site_form() is an official theme hook that can 
be overridden like any other theme function. Even though a theme_contact_site_form() function 
doesn’t exist, you still name it as you would any other theme function override: 
THEMENAME_contact_site_form(). 

Listing 16–28. The Basic Required Code for Theming a Form with a Theme Function 

<?php 
/** 
 * Implements hook_theme(). 
 */ 
function dgd7_theme() { 
  return array( 
    'contact_site_form' => array( 
      'render element' => 'form', 
    ), 
  ); 
} 
 
/** 
 * Implements theme_forms_contact_site_form(). 
 */ 
function dgd7_contact_site_form($variables) { 
  // Renders all elements of a form. 
  return drupal_render_children($variables['form']); 
} 

Using drupal_render_children() Is a Must! 
drupal_render_children() takes care of rendering all of the children of the form. This function alone will 
result in the exact same code Drupal would have provided without your theme function, which makes 
the function in Listing 16–28 pretty useless by itself, but it’s worth stressing that it’s VERY important to 
always use drupal_render_children($variables['form']) at the bottom of your function. 

Even if you call render() on every element you have added to the form, Drupal will have added 
some important hidden elements identifying the form and those need to be rendered, too. So calling 

http://api.drupal.org/api


CHAPTER 16 ■ ADVANCED THEMING 

335

drupal_render_children($form) at the end of the theme function is mandatory. This won’t re-print 
$form['foo'] because drupal_render() knows it has printed already. As an added bonus, it will take care 
of any additional elements added by other modules. 

Manipulating Form Elements in Theme Functions 
Now that you’ve gotten that out of the way, let’s make some changes to the markup. Just like any theme 
function, the code this function returns will be inserted directly into the page markup. Since forms are 
render elements you need to render them. The code in Listing 16–29, does the following: 

1. Changes the labels of the name and mail elements. 

2. Renders the name and mail elements individually. 

3. Arranges the markup and individually rendered elements in a variable called 
$output. 

4. Includes drupal_render_children($form) in the $output at the bottom of the 
theme function. 

5. Finally, it returns the $output. 

Listing 16–29. Implements theme_contact_site_form() 

<?php 
/** 
 * Implements theme_contact_site_form(). 
 */ 
function dgd7_contact_site_form($variables) { 
 
  // Hide the subject field. It's not required. 
  hide($variables['form']['subject']); 
 
  // Change the labels of the "name" and "mail" textfields. 
  $variables['form']['name']['#title'] = t('Name'); 
  $variables['form']['mail']['#title'] = t('E-mail'); 
 
  // Create output any way you want. 
  $output = '<div class="something">'; 
  $output .= '<p class="note">'. t("We'd love hear from you. Expect to hear back from us in 1-
2 business days.") .'</p>'; 
  $output .= render($variables['form']['name']); 
  $output .= render($variables['form']['mail']); 
  $output .= '</div>'; 
 
  // Be sure to include a rendered version of the remaining form items. 
  $output .= drupal_render_children($variables['form']); 
 
  // Return the output. 
  return $output; 
} 

Forms and their contents are render elements, so you can use hide(), show(), and render() 
functions to manipulate the elements of the form. When using hide() or making changes to the form 
array inside the theme function, you’ll need to make sure you do so before attempting to render. There 



CHAPTER 16 ■ ADVANCED THEMING 

336 

are a lot of other things that can be done here. We can’t possibly cover all of them, but here are a few 
quick examples of what can be done: 

• Adjust the #weight property of an element to change the order in which they print. 
The following code would cause the message element to print at the top of the 
form: 

$variables['form']['message']['#weight] = -10; 
$variables['form']['message']['#sorted] = FALSE; 

• Add a description underneath an element by setting the element #description 
property, like so: 

$variables['form']['mail']['#description'] = t("We won't share your e-mail 
with anyone."); 

• Set the default value of form element, such as checking the "Send yourself a copy" 
checkbox, by default setting the #checked property to TRUE, like so:  

$variables['form']['copy']['#checked'] = TRUE; 

• Unset the #theme_wrappers property to remove the label and wrapper <div> and 
re-create the markup exactly the way you want it, like so: 

unset($variables['form']['mail']['#theme_wrappers]); 

• More advanced changes include making the form display in a table by using the 
theme_table() function. 

• ... and so on! 

■ Tip  Using theme functions over templates is slightly faster performance-wise, but the difference is very 
minimal. Performance isn’t something you should worry about when deciding whether to use a template file over a 

theme function. 

Theming Forms with Template Files 
Creating template files for forms is surprisingly easy given what you’ve already learned. As mentioned in 
the “First Steps for Theming Forms” section, you’ll need to open template.php and implement a 
hook_theme() function. Instead of just defining the render element, you’ll need to add two more things, 
as shown in Listing 16–30: 

1. A path key (optional) that contains the path to where the template file is located 
in your theme. 

2. A template key that contains the name of the template file, without the .tpl.php 
suffix. 



CHAPTER 16 ■ ADVANCED THEMING 

337

■ Caution  Template files defined this way are not auto-discovered. If the path is omitted, Drupal will only look for 
your template file in the root of the theme. Specifying the path of the template directory is only required if your file 

exists in a subdirectory of your theme. 

Listing 16–30. hook_theme() Implementation for Using Templates with Forms  

<?php 
/** 
* Implements hook_theme(). 
*/ 
function mytheme_theme() { 
  return array( 
    'contact_site_form' => array( 
      'render element' => 'form', 
      'path' =>  drupal_get_path('theme', 'mytheme') . '/templates', 
      'template' => 'contact-site-form', 
    ), 
  ); 
} 

After creating the hook_theme() function shown in Listing 16–30, you’ll need to create the template 
file. In this case, it’s located in the templates directory within your theme: 

sites/all/themes/mytheme/templates/contact-site-form.tpl.php.  

Once that’s complete, simply clear the cache and Drupal will begin using your template file. 
If there’s nothing in your file to begin with, you’ll get a blank page where the form used to be. The 

first thing you should do is add this line back to the template file: <?php print 
drupal_render_children($form); ?>. This will get the entire form back, and even though you may not 
want to keep everything in the form, you need to print the contents of this at the bottom of the form to 
ensure everything works properly as we detailed in the “Using drupal_render_children() is a Must!” 
section. 

Manipulating Form Elements in Template Files 
For the sake of covering this topic in detail, let’s use the example from the “Manipulating Form Elements in 
Theme Functions” section. The code in Listing 16–31 represents the result of completing the following tasks: 

1. Changing the labels for the name and mail elements. 

2. Rendering the name and mail elements individually. 

3. Arranging your markup and individually rendered elements as you want them. 

4. Finally, printing drupal_render_children($form) at the bottom of the template. 

Listing 16–31. contact-site-form.tpl.php Implementation of the Contact Form 

<?php // Change the labels of the "name" and "mail" textfields. 
$form['name']['#title'] = t('Name'); 
$form['mail']['#title'] = t('E-mail'); 



CHAPTER 16 ■ ADVANCED THEMING 

338 

?> 
 
<?php // Render the "name" and "mail" elements individually and add markup. ?> 
<div class="name-and-email"> 
  <p><?php print t("We'd love hear from you. Expect to hear back from us in 1-2 business 
days.") ?></p> 
  <?php print render($form['name']); ?> 
  <?php print render($form['mail']); ?> 
</div> 
 
<?php // Be sure to render the remaining form items. ?> 
<?php print drupal_render_children($form); ?> 

While there are slight differences, it’s mostly the same (with less PHP). All of the possibilities that 
apply in theme functions apply just as well in template files. The variables themselves are slightly 
different. In theme functions and preprocess functions, the name element would be located in 
$variables['form']['name']. In template files, that same variable would be $form['name']. This is done 
specifically to make Drupal’s monster arrays easier on template authors. 

■ Caution  Be sure not to hide or omit required form elements. In Drupal, presentation is totally separate from 
form processing. Drupal will expect those elements and prevent the form from being submitted if they are not filled 

in. These types of changes should be done in a hook_form_alter() implementation, using the #access property. 

See the “Modifying Forms Using Alter Hooks” section and Chapter 22 for more information. 

Keep Your Template Cleaner with Preprocess Functions 
In our example of theming a form with a template file, the template is quite messy. The definition of a 
clean template file is one that contains hardly any logic and that simply prints variables and maybe an 
occasional IF statement. If you are dissatisfied with the appearance of the template file, this is a perfect 
opportunity to use preprocess functions. To make this really clean, you’d do the following in a 
preprocess function: 

■ Perform all modifications to the form array. 

Create any new variables. 

Render each field individually and provide easy variables for templates. 

Of course, this is not something you’d want to do on every form on your site. However, it’s very 
useful and convenient for highly styled user-facing forms that you want to take extra care to get right, 
such as the login, registration, and contact forms. The process of doing this is very easy, as demonstrated 
in Listing 16–32 with the contact form. 

Listing 16–32. Using a Preprocess Function to Do the Heavy Lifting for the Template 

<?php 
/** 
* Implements hook_preprocess_contact_site_form(). 
*/ 
function mytheme_preprocess_contact_site_form(&$variables) { 



CHAPTER 16 ■ ADVANCED THEMING 

339

  // Shorten the form variable name for easier access. 
  $form = $variables['form']; 
 
  // Change labels for the 'mail' and 'name' elements. 
  $form['name']['#title'] = t('Name'); 
  $form['mail']['#title'] = t('E-mail'); 
 
  // Create a new variable for your note. 
  $variables['note'] = t("We'd love hear from you. Expect to hear back from us in 1-2 business 
days."); 
 
  // Create variables for individual elements. 
  $variables['name'] = render($form['name']); 
  $variables['email'] = render($form['mail']); 
  $variables['subject'] = render($form['subject']); 
  $variables['message'] = render($form['message']); 
  $variables['copy'] = render($form['copy']); 
 
  // Be sure to print the remaining rendered form items. 
  $variables['children'] = drupal_render_children($form); 
} 

Because you’ve done all the work in the preprocess function, the template file in Listing 16–33 is 
crispy clean. Adding markup and classes and moving elements around is a piece of cake, and it’s very 
easy to see what this template file does at first glance. 

Listing 16–33. A Preprocess Function Can Provide a Clean, Minimal Template for the Contact Form.  

<p class="note"><?php print $note; ?></p> 
<p><span class="form-required">*</span> <?php print t("Denotes required fields."); ?></p> 
<ol>  
  <li><?php print $name; ?></li> 
  <li><?php print $email; ?></li> 
  <li><?php print $subject; ?></li> 
  <li><?php print $message; ?></li> 
  <li><?php print $copy; ?></li> 
</ol> 
<?php print $children; ?> 

Modifying Forms Using Alter Hooks 
The ability of themes to use alter hooks is new in Drupal 7. Templates are great for situations where you 
want to have a lot of control over the markup itself, but there are quite a few situations where simply 
using hook_form_alter() can make things a lot easier, especially if you are comfortable with Drupal’s 
form markup either by default, or in combination with changes you can make site-wide via theme 
functions. Using an alter hook is perfect for quick changes like: 

• Simple changes to form labels, descriptions, and other properties. 

• Changing the order in which the form elements print using the #weight property. 

• Wrapping a few elements in a <div> or <fieldset>. 

• Hiding or removing form elements that are not required. 



CHAPTER 16 ■ ADVANCED THEMING 

340 

• Adding some markup to a form. 

It’s also arguably easier because there are fewer steps involved in the process. You don’t need to
implement hook_theme(). You also get full control over the elements. There are certain limitations to the
changes you can make within theme functions, as it’s already too late in the process. 

Technically, there are two hooks you can use. 

■ hook_form_alter(): Runs for all forms. 

hook_form_FORM_ID_alter(): Runs for a specific form ID. 

There are reasons for using hook_form_alter() over  hook_form_FORM_ID_alter() all the time, but
those reasons mainly apply to the tasks a module developer needs to perform. Unless you are
specifically targeting more than one form to do the same thing, as shown in Listing 16–34, it’s probably
best to use hook_form_FORM_ID_alter(), as shown in Listing 16–35. 

Listing 16–34. Implementation of hook_form_alter() to Target all or Multiple Forms 

<?php
/** 
* Implements hook_form_alter(). 
*/ 
function mytheme_form_alter(&$form, &$form_state, $form_id) { 
  // Changes made in here affect ALL forms. 
  if (!empty($form['title']) && $form['title']['#type'] == 'textfield') { 
    $form['title']['#size'] = 40; 
  }
} 

Listing 16–35. Implementation of hook_form_FORM_ID_alter() to Target a Specific Form 

<?php
/** 
* Implements hook_form_FORM_ID_alter(). 
*/ 
function mytheme_form_contact_site_form_alter(&$form, &$form_state) { 
  // Add a #markup element containing your note and make it display at the top. 
  $form['note']['#markup'] = t("We'd love hear from you. Expect to hear back from us in 1-2
business days."); 
  $form['note']['#weight'] = -1; 

  // Change labels for the 'mail' and 'name' elements. 
  $form['name']['#title'] = t('Name'); 
  $form['mail']['#title'] = t('E-mail'); 

  // Hide the subject field and give it a standard subject for value. 
  $form['subject']['#type'] = 'hidden'; 
  $form['subject']['#value'] = t('Contact Form Submission'); 

} 



CHAPTER 16 ■ ADVANCED THEMING 

341

Managing CSS Files 
Every good Drupal theme needs a stylesheet or two, or ten! You might be caught off guard by the sheer 
number of CSS files that Drupal loads, before you even start on your theme. Being the modular 
framework that it is, Drupal uses that same approach for CSS stylesheets and JavaScript files. CSS and 
JavaScript files are provided separately by module—and sometimes a few per module. This is done on 
purpose for the following reasons: 

• It’s easier to read and understand the purpose of the code and what module it 
belongs to. 

• It allows Drupal to load only the code needed on a given page. 

• It’s easier for Drupal to maintain these files and their contents. 

That said, in Drupal’s theme layer you have full control over all stylesheets and scripts. You can do 
whatever you want with them, literally. If you decide you don’t want to load any stylesheets from 
modules, you can remove them all. If you aren’t happy with a few files, you can override them 
individually by removing them or override them and change the contents within the theme. You can 
even change the order in which the files load if you want to. This section will show you how to do all of 
that. 

Aggregation and Compression 
As mentioned, Drupal has many stylesheets. Of course, you want to keep the number of files at a 
minimum on your live sites for performance reasons, so Drupal has a way of handling this. During 
development, it’s normal to deal with anywhere from 10-40 CSS files, and even more if you are working 
on sites in languages that display text in right-to-left order. In the Performance section at 
admin/config/development/performance there are options to aggregate and compress CSS and JavaScript 
files. When turned on, Drupal will minify and combine the files into as few automatically generated files 
as possible. This also effectively works around the Internet Explorer 31 stylesheet limit bug. Drupal 
aggregates files in two ways: it creates a per-site aggregation file from files that would be loaded on every 
page, and it creates a per-page aggregation files for the remaining files that are conditionally loaded 
depending on the page. For CSS files, it further aggregates by media type. To remain correct, if the 
contents of CSS and JavaScript files are changed, when the site cache is cleared Drupal will regenerate 
the aggregated versions of the files and give them a different name. Enabling aggregation and 
compression for CSS files on all live sites is highly recommended, as it will speed up page loads quite a 
bit. This process is very effective and allows themers and developers to continue developing sites in a 
modular manner, without having to worry about the number of CSS files. 

■ Caution  Do NOT use the @import directive to load CSS files manually within Drupal. Doing so will cause 
performance and possible aggregation issues when combined with <link>’ed stylesheets and will cause the files 

to be excluded from override features. 



CHAPTER 16 ■ ADVANCED THEMING 

342 

Patterns and Naming Conventions 
In your theme, you are free to name your CSS files whatever you want. Many themes tend to create a 
directory called “css” in which they place a few stylesheets. It’s very common to create a layout.css for 
page layout styles and style.css for the rest. Some themes, like Zen, take it much further with almost 30 
stylesheets. How you decide to organize your CSS is completely up to you. There are no restrictions on 
how many stylesheets a theme can have. Most front-end developers have their own way of working, and 
Drupal is happy to oblige. 

Core and Module CSS Files 
Most modules that provide CSS will typically include a file in the root of the module directory called 
module-name.css. Some of the modules have a few CSS files, and the better modules create a separate file 
for any CSS used to style the administrative user interface. Modules are not restricted to any number or 
specific organization of CSS files, but developers are generally urged to be conservative and style 
elements as little as possible. 

It’s also worth mentioning that Drupal’s System module, located in modules/system, contains quite 
a few CSS files that seem to all be dumped there because there is no better place to put them. Table 16–3 
is a quick description of each, so you have an idea of what their purpose is and can decide whether or 
not to keep them in your theme. 

Table 16–3. System Module’s CSS files, Excluding RTL Versions 

CSS File Purpose Loads… 

system.base.css Contains CSS that is heavily 
relied upon by JavaScript for 
certain functionality, including 
collapsible fieldsets, 
autocomplete fields, resizable 
textareas, and progress bars. 

Every page. 

system.theme.css Contains general styles for many 
generic HTML and Drupal 
elements. 

Every page. 

system.menus.css Contains default styling for 
menu tree lists, tabs, and node 
links. 

Every page. 

system.messages.css Contains default styling for 
error, warning, and status 
messages. 

Every page. 

system.admin.css Contains styles needed on 
administrative pages throughout 
Drupal. 

Admin pages. 

system.maintenance.css Contains styles for installation, 
maintenance, and update tasks. 

Maintenance pages. 



CHAPTER 16 ■ ADVANCED THEMING 

343

Bi-Directional Text Support 
One of the things Drupal is known for is its superb language support. This includes bi-directional text 
support. While most languages display text from left-to-right (LTR) on screen, certain languages, such as 
Arabic and Hebrew, display text from right-to-left (RTL) on screen. Browsers handle much of the styling 
differences needed by reading the dir attribute defined in the <html> tag and using User Agent CSS files, 
but many times CSS floats, text alignment, and padding need to be accounted for in CSS, especially 
when you are running a site with multiple languages. 

Drupal handles RTL stylesheets in an automated way based on CSS file naming conventions. If you 
have a stylesheet named style.css, which contains the CSS for the LTR version of the site, you can 
simply create another file called style-rtl.css to contain the necessary tweaks to fix the display for the 
RTL version. Drupal will automatically load it when needed, directly after the original file so that the 
same selectors can be used and RTL styles will override the LTR styles, taking advantage of the natural 
CSS cascade. When writing CSS for a site that will support both LTR and RTL displays, it is customary to 
write the CSS for the LTR version first, while keeping track of what will need to change (per property) 
with a comment. This is one of the coding standards Drupal has adopted for core and contributed CSS 
files. Listing 16–36 shows an example. 

Listing 16–36. Example CSS Denoting a LTR Property and the RTL Version 

// In style.css: 
// .my-selector floats content to the left, which is LTR-specific, so an inline comment is 
added to note this. 
.my-selector { 
  border: solid 1px #ccc; 
  float: left; /* LTR */ 
} 
 
// In style-rtl.css: 
// The RTL version of .my-selector needs to be overriden and floated right instead of left. 
.my-selector { 
  float: right; 
} 

Adding, Removing, and Replacing CSS Files 
There are three ways to manipulate CSS files within Drupal themes. This section will explain what the 
implementation options are, the reasons for each method, and when it’s advantageous to use certain 
methods over others. 

Quick and Dirty Stylesheets via .info Files 
Adding stylesheets via your theme’s .info file is the easiest way to add a CSS file to your theme; see 
Listing 16–37 and Listing 16–38. However, there are a few drawbacks to doing this in certain situations.  

1. Any stylesheet you define in the .info file will load on every page.  

2. You don’t have the full use of the features available in drupal_add_css().  For 
example, you can’t add conditional stylesheets for Internet Explorer or change 
the weight of a module’s CSS file in your .info file. 



CHAPTER 16 ■ ADVANCED THEMING 

344 

Listing 16–37. .info Syntax for Adding Stylesheets 

stylesheets[CSS media type][] = path/to/file.css 

Listing 16–38. Typical .info Stylesheet Definition Example 

stylesheets[all][] = css/layout.css 
stylesheets[all][] = css/style.css 
stylesheets[print][] = css/print.css 

■ Caution  Stylesheets may also be removed via .info files by creating an entry for a file as if you were 
overriding it, but then not actually including the file in the theme directory. However, there is a bug that allows 

these stylesheets to return when AJAX rendering occurs. To be safe it’s best to remove stylesheets in 

hook_css_alter(); this is explained later in this section. 

Conditionally Loading Stylesheets with drupal_add_css() 
drupal_add_css() is the main function used by modules and themes to add CSS files via PHP code. Some 
themes use it in their template.php file, typically within preprocess functions. One of the advantages of 
using drupal_add_css() in the theme layer as opposed to defining CSS files in a .info file is that files can 
be conditionally loaded based on certain criteria or context. For example, you may want to create a 
special CSS file that only loads on your site’s home page. In your theme’s template.php, you could do 
this within template_preprocess_html(), as shown in Listing 16–39. 

Listing 16–39. Adding a Stylesheet that Loads Only on the Home Page  

<?php 
function mytheme_preprocess_html(&$variables) { 
  // Add a stylesheet that prints only on the homepage. 
  if ($variables['is_front']) { 
    drupal_add_css(path_to_theme() . '/css/homepage.css', array('weight' => CSS_THEME)); 
  } 
} 

There are many different options for adding CSS to your pages in Drupal using drupal_add_css(), 
some of which include: 

• Specifying the type as “inline” to print a block of CSS code within <head>, as 
opposed to adding a CSS file. 

• Specifying the group of a file to determine where the file should appear using 
constants such as CSS_SYSTEM (top), CSS_DEFAULT (middle), and CSS_THEME (bottom). 

• Specifying the weight of a file to control the order in which it loads within its 
group. 

• Adding conditional stylesheets to serve different files to different browsers. 

• Adding externally hosted CSS files. 

• Forcing a CSS file to be excluded from the aggregation and compression process. 



CHAPTER 16 ■ ADVANCED THEMING 

345

Adding Conditional Stylesheets for Internet Explorer 
According to Wikipedia at the time of this writing, about 43 percent of users are visiting web pages using 
Internet Explorer. This statistic varies from source to source, but for many of you, supporting older 
versions of Internet Explorer is a fact of life. Using conditional stylesheets is considered a best practice 
when the need arises to write CSS that targets Internet Explorer. 

One of the great new features in Drupal 7 is that conditional stylesheets can be added using 
drupal_add_css(). In fact, all three of Drupal’s core themes do this in template_preprocess_html(). The 
reason this is done in template.php is that .info files only have very basic support for drupal_add_css(). 
Listing 16–40 and Listing 16–41 demonstrate how this works using code from the Seven theme as an 
example. 

Listing 16–40. Excerpt from the Seven Theme, Using drupal_add_css() to Add Conditional Stylesheets for 

IE in template_preprocess_html() 

<?php 
function seven_preprocess_html(&$vars) { 
// Add conditional CSS for IE8 and below. 
  drupal_add_css(path_to_theme() . '/ie.css', array('group' => CSS_THEME, 'browsers' => 
array('IE' => 'lte IE 8', '!IE' => FALSE), 'preprocess' => FALSE)); 
  // Add conditional CSS for IE6. 
  drupal_add_css(path_to_theme() . '/ie6.css', array('group' => CSS_THEME, 'browsers' => 
array('IE' => 'lt IE 7', '!IE' => FALSE), 'preprocess' => FALSE)); 
}  

Listing 16–41. The Source Code that Results from Adding IE Conditional Stylesheets  

<!--[if lte IE 8]> 
<link type="text/css" rel="stylesheet" href="http://drupal-7/themes/seven/ie.css?l40z2j" 
media="all" /> 
<![endif]--> 
 
<!--[if lt IE 7]> 
<link type="text/css" rel="stylesheet" href="http://drupal-7/themes/seven/ie6.css?l40z2j" 
media="all" /> 
<![endif]--> 

The code in Listing 16–40 and Listing 16–41 gives you two conditional stylesheets that will load for 
Internet Explorer only. The first stylesheet will load for Internet Explorer 8 and under, and the second 
stylesheet will load for versions of Internet Explorer prior to IE7.  

Completely Control Stylesheets Using hook_css_alter() 
Drupal core and modules add CSS files individually via the drupal_add_css() function. During 
template_process_html(), a variable called $styles is created; it contains the fully formatted HTML 
output for all the stylesheets that are specified for each page. This variable is eventually printed inside 
the <head> tags in the html.tpl.php template file, as shown in Listing 16–42. 

Listing 16–42. $styles Variable Is Created in template_process_html() for Use in html.tpl.php  

<?php 
/** 
* Implements template_process_hmtl(). 



CHAPTER 16 ■ ADVANCED THEMING 

346 

*/ 
function template_process_html(&$variables) { 
  ... 
  $variables['styles'] = drupal_get_css(); 
  ... 
} 

During the call to drupal_get_css(), Drupal gathers up all the CSS files previously added, and then 
provides an opportunity for any modules or themes to make changes by calling drupal_alter('css', 
$css). At this time, Drupal looks for functions in modules and themes that fit the naming pattern 
hook_css_alter(), where the word “hook” in the function name is replaced by the module or theme name 
implementing it. This function allows for the most granular control over all aspects of your CSS files. 

An example of why a module might want to implement hook_css_alter() can be found in the Locale 
module. The Locale module checks to see if the language direction is right-to-left, and if so, finds the 
related RTL versions of the CSS files and adds them to the page. 

In themes, the main reasons to implement hook_css_alter() is to remove or override CSS files 
provided by modules. An example of this can be found at the bottom of Seven theme’s template.php file 
(see Listing 16–43). Seven chooses to override the stylesheet vertical-tabs.css file provided by core 
with its own version. 

Listing 16–43. The Seven Theme’s hook_css_alter() Implementation  

<?php 
/** 
 * Implements hook_css_alter(). 
 */ 
function seven_css_alter(&$css) { 
  // Use Seven's vertical tabs style instead of the default one. 
  if (isset($css['misc/vertical-tabs.css'])) { 
    $css['misc/vertical-tabs.css']['data'] = drupal_get_path('theme', 'seven') . '/vertical-
tabs.css'; 
  } 
  // Use Seven's jQuery UI theme style instead of the default one. 
  if (isset($css['misc/ui/jquery.ui.theme.css'])) { 
    $css['misc/ui/jquery.ui.theme.css']['data'] = drupal_get_path('theme', 'seven') . 
'/jquery.ui.theme.css'; 
  } 
} 

■ Caution  Overriding a module’s CSS files in .info files (creating an entry with the same CSS file name) will 
work, but not always in an efficient way. Stylesheets that are defined in .info files will load on every page. 
Whether or not they are actually needed is never taken into account. This is not the case when using 

hook_css_alter() as you are given the opportunity to make sure the file is set to load before attempting to 

replace it. 



CHAPTER 16 ■ ADVANCED THEMING 

347

MANAGING STYLESHEETS IN YOUR THEME 

In this section, you’ve learned quite a few ways to manipulate CSS files in Drupal’s theme layer. Now you’ll 
go through the steps again with practical examples. 

Exercise A: Define stylesheets for all pages in the .info file 

1. Begin by creating a new directory in your theme called css in 
sites/all/themes/mytheme. This step is optional but helpful for theme file 
organization. 

2. Create two files inside the css directory called style.css and print.css.  

3. Open the sites/all/themes/mytheme/mytheme.info and add the following two 
lines to define the stylesheets so Drupal knows to load them: 

stylesheets[all][] = css/style.css 
stylesheets[print][] = css/print.css 

4. Clear the site cache at admin/config/development/performance. Once you 
return to the front end of your site, you’ll see that both files have been added.  

Exercise B: Add a conditional stylesheet for IE using drupal_add_css() 

1. Create a file inside the css directory called ie.css. 

2. Create a file in the root of the theme directory called template.php if you haven’t 
already done so, and make sure to include <?php at the top of the file. 

3. Use the following code to implement template_preprocess_html() and load the 
IE stylesheet using drupal_add_css():  

<?php 
/** 
* Implements of template_preprocess_html(). 
*/ 
function mytheme_preprocess_html(&$vars) { 
  // Add conditional stylesheet that targets Internet Explorer 8 and below. 
  drupal_add_css(path_to_theme() . '/css/ie.css', array('weight' => CSS_THEME, 
'browsers' => array('IE' => 'lte IE 8', '!IE' => FALSE), 'preprocess' => FALSE)); 
} 

Exercise C: Add a custom stylesheet for the homepage using drupal_add_css() 

You’ll use the $is_front variable, which already exists, to detect if the home page is being displayed and 
then add the homepage.css stylesheet. Add this code directly above the conditional stylesheet code you 
added in Exercise B. 

<?php 
// Add a stylesheet that prints only on the homepage. 
if ($variables['is_front']) { 
  drupal_add_css(path_to_theme() . '/css/homepage.css', array('weight' => CSS_THEME)); 
} 



CHAPTER 16 ■ ADVANCED THEMING 

348 

Exercise D: Override and remove module CSS files using hook_css_alter() 

To implement hook_css_alter(), you'll need to create a function called mytheme_css_alter() in your 
template.php file. The $css parameter, which is passed by reference, contains all the stylesheets in array 
format, and you can do what you please with it. The following code shows how to remove the node.css 
file if it’s set to load. 

<?php 
function mythemename_css_alter(&$css) { 
  // Remove the node.css file. 
  if (isset($css['modules/node.css'])) { 
    unset($css['modules/node.css']); 
  } 
} 
 

Working with Base and Subthemes 
Chances are you have a certain way you do things. You may tend to structure your markup similarly in 
all your themes. You might frequently override certain theme functions, or have special way you like to 
style forms, or maybe you tend to use a certain grid framework for your layout. These are all great 
reasons to take advantage of Drupal’s base and subtheming functionality.  

Subthemes share a special relationship with their base (parent) theme(s). They inherit template files 
and assets from their parent themes. This makes them a great tool to help streamline your theming 
workflow and essentially create your own “frameworks” or “resets” for theming Drupal sites. Of course, 
you can also use an existing base theme. Drupal offers quite a few base themes, which we’ll tell you more 
about later in this section. 

Creating a Subtheme 
Both base and subthemes are regular Drupal themes as far as characteristics go, and any theme can be a 
base theme. The process of creating a subtheme is very straightforward. 

1. Start by creating the shell of a new theme. Create a directory for it, and create the 
.info file containing at least the name and core properties.  

2. In the .info file, add the “base theme” property containing the name of the 
theme you want to use as a base, like so: 
 
base theme = basethemename 

3. If the base theme has regions and/or features defined in the .info file, you’ll need 
to copy those to the subtheme as well.  

For basic Drupal themes, these three steps are all you’ll need to do to create your subtheme. Once 
you’ve done this, you’ll be able to enable the theme on the admin/appearance page. It’s also worth noting 
that the base theme you are using does not need to be enabled in the UI to function properly.   



CHAPTER 16 ■ ADVANCED THEMING 

349

■ Caution  Most of the popular contributed base themes require a little more to set up. Themes like Zen, Omega, 
and Fusion come with a starterkit or starter directory, which you can copy and use to start your subtheme. Make 

sure you refer to each theme’s README.txt file for full instructions on how to begin using it, as each is different. 

Inheritance and How It Works 
You already know that Drupal provides a lot of markup in its modules, and that this markup comes in 
the form of templates, theme functions, or the Render API. In Drupal themes you have the opportunity 
to override and take over this behavior. So, technically, you are inheriting it in the first place. Using 
subthemes allows you to add one more step to the process. When using a parent theme, all of the 
assets—including template files, CSS files, JavaScript files, theme functions, and pretty much everything 
in template.php—are inherited.  

CSS, JavaScript, template files, and theme functions defined in a base theme will automatically be 
available for the subtheme. The subtheme doesn’t have to do anything for this to happen. It just works. 
Preprocess and process functions will run for both the base and the subtheme, so they can be used in 
both themes simultaneously without issue. Of course, the subtheme can override anything the base 
theme has done. 

Some things don’t work this well. Regions are not inherited, and neither are features or theme 
settings. In order for these to work properly, you’ll have to copy the information from the base theme 
into the subtheme’s .info file. Table 16–4 shows which assets are automatically inherited and which 
ones are not.  

Table 16–4. Inheritance of Assets from Base Theme to Subthemes 

Asset Automatically Inherited? 

CSS files Yes 

JavaScript files Yes 

Template files Yes 

Theme Screenshot Yes 

Regions No 

Theme Settings  No 

Finding a Good Base Theme 
Thousands of contributed themes are available at http://drupal.org/project/Themes. Unfortunately, 
Drupal themes have a reputation for being ugly. While there is some truth to that, there are many gems 
out there; you just need to know what to look for. Themes on drupal.org are sorted by popularity, based 
on project usage stats, so it is easy to see which themes are the most popular. However, popularity is not 

http://drupal.org/project/Themes


CHAPTER 16 ■ ADVANCED THEMING 

350 

always the best measure. There are a few things you should understand when evaluating a contributed
Drupal theme. 

• Type: All of the themes on drupal.org are lumped together into one,
uncategorized list. As you can see on http://drupal.org/project/themes, a large
portion of the themes on the first page are base themes. While any theme can
technically be used as a base theme, it’s important to read the project information
so you know what to expect. Maintainers will be a lot less inclined to help you with
a problem if you’re not using the theme how they intended. 

• Maintenance and development status: Each project has a Maintenance and a
Development status which can be viewed on the project page. These will give you
a good idea of how the module is supported. If the project has an “Actively
maintained” maintenance status and an “Under active development”
development status, chances are that the module developer intends to fix bugs
and will entertain feature requests made in the issue queue. 

• Usage statistics: On each project page, the Project Information section contains
the number of reported installations and a link called “View usage statistics” that
shows a long term graph and table of this data and how it has changed over time.
Usage statistics can be a good indication of whether or not a theme has been well
tested. If many people are using it or it shows steady growth, chances are that it’s a
better theme.  

• Issue queue: Most projects contain issues queues where users can report bugs and
request features. Reading through the issue queue is a good way to gauge the
community participation in a project. It is also a great way to learn what bugs the
theme may have and how quickly the community and maintainer(s) respond to
such issues.  

Popular Base Themes 
There are many great base themes available from seasoned theme developers on drupal.org. A
comprehensive list of available base or “starter” themes is available at http://drupal.org/node/323993.
Some of the most popular base themes available for Drupal 7 include: 

Zen: http://drupal.org/project/zen 

Fusion: http://drupal.org/project/fusion  

AdaptiveTheme: http://drupal.org/project/adaptivetheme 

Genesis: http://drupal.org/project/genesis 

Basic: http://drupal.org/project/basic 

Blueprint: http://drupal.org/project/blueprint 

NineSixty: http://drupal.org/project/ninesixty 

Omega: http://drupal.org/project/omega 

Mothership: http://drupal.org/project/mothership 

http://drupal.org/project/themes
http://drupal.org/node/323993
http://drupal.org/project/zen
http://drupal.org/project/fusion
http://drupal.org/project/adaptivetheme
http://drupal.org/project/genesis
http://drupal.org/project/basic
http://drupal.org/project/blueprint
http://drupal.org/project/ninesixty
http://drupal.org/project/omega
http://drupal.org/project/mothership


CHAPTER 16 ■ ADVANCED THEMING 

351

Tips for Creating Your Own Base Themes 
• Don’t do too much: It’s important not to make too many assumptions in your base 

themes. Ask yourself if what you are doing will fit in well on any project you work 
on. If the answer is no or maybe, it’s likely not a feature you should include in your 
base theme. 

• Look at contributed themes: Looking at what other contributed themes have done 
is one of the best ways to learn. Chances are you’ll find some things you like and 
some things you don’t from each of them. Don’t be afraid to mix and match. 

• Provide styles for layout and others structural elements: Take care of things that 
you consistently do on each project. For example, normalize font sizes, provide 
CSS resets, and make sure that the general padding and margins are set so blocks 
and nodes are not on top of each other. 

• Use multiple CSS files: Aggregation and compression will take care of combining 
these files automatically, so don’t be afraid of using a few CSS files. This will allow 
you to easily choose between what you want and don’t want in your subthemes. 

Sustainability and Best Practices 
Drupal contains many, many template files. For a front-end developer, these are one of your greatest 
tools in taking over a Drupal theme and turning it into exactly what you need it to be. However, with 
power comes responsibility. Because working with template files is so easy, it’s also an area where you 
can get in trouble quickly. 

Most front-end developers experience some frustration working with Drupal’s markup. Because it’s 
relatively easy to go in and make changes, doing exactly that is often a first reflex. Resist it. While you’ll 
definitely feel the power and control you have over things, changing too many template files is often the 
wrong approach. Just because you can change things doesn’t always mean you should. 

Start With a Good Base 
A great way to ensure minimal template overrides is to define your markup in such a way that it is 
flexible enough to work in most cases. Think of the major template files like node.tpl.php, views-
view.tpl.php and block.tpl.php, for example, as having two purposes. The first is to provide a container 
and the second is the actual content, which can include any number of different elements inside it. 
Drupal does this reasonably well to begin with, but there is always room for improvement, and your 
needs may vary from site to site depending on the design. 

As an example, look at the contents of the block.tpl.php file, shown in Listing 16–44, which is 
provided by Drupal’s Block module and can be found in modules/block/block.tpl.php. Most blocks, 
even those produced by other modules, will use this template file to output their contents. There could 
be a menu inside the block, a few paragraphs in a custom block, a snippet of JavaScript that will load an 
advertisement, a poll, a user listing, and so many other possibilities. 

Listing 16–44. Default block.tpl.php Implementation 

<div id="<?php print $block_html_id; ?>" class="<?php print $classes; ?>"<?php print 
$attributes; ?>> 
  <?php print render($title_prefix); ?> 
  <?php if ($block->subject): ?> 



CHAPTER 16 ■ ADVANCED THEMING 

352 

    <h2<?php print $title_attributes; ?>><?php print $block->subject ?></h2> 
  <?php endif;?> 
  <?php print render($title_suffix); ?> 
  <div class="content"<?php print $content_attributes; ?>> 
    <?php print $content; ?> 
  </div> 
</div> 

■ Tip  The Bartik theme uses Drupal’s default block.tpl.php template file. This is easy to determine because 

the Bartik theme does not include a block.tpl.php file in its directory. 

Using a simple custom block as an example, the template code in Listing 16–44 translates to the 
output in Listing 16–45. 

Listing 16–45. Block Output Using the Default block.tpl.php Implementation  

<div id="block-block-1" class="block block-block first last odd"> 
  <h2>Block title</h2> 
  <div class="content"> 
    <p>Block content.</p> 
  </div> 
</div> 

The resulting code is pretty minimal. In most cases, when creating custom themes, you will not 
want these to look the same, so you will use CSS to style them differently. It may not be immediately 
apparent, but there are some potential problem areas to take note of with the default block.tpl.php 
implementation. Certain design aspects need more flexible markup. Some examples of this include: 

• Grids: You may choose to lay out your blocks within regions using a CSS grid 
framework. This will prevent you from adding left and right padding directly to the 
.block class. 

• Background images: Your design might require adding multiple background 
images to achieve a design for the block that is content agnostic. Sounds easy 
enough, right? The top and tiling background image can be declared in .block, 
but where can the bottom background image be defined? As soon as you add 
padding to the .block class itself, you lose the ability to place the second 
background image on the existing .content class.  

The previous examples are a small taste of what you might encounter while coding a Drupal theme. 
You may be tempted to take the minimalist markup approach and deal with problems as they arise, and 
this is where we would stop you! As mentioned, these main template files are responsible for containing 
many types of content. You don’t want to create a new template file for every different kind just to 
modify structural aspects. It’s much more sustainable, not to mention easier to code, to create solid and 
flexible defaults and deal with exceptions as they arise. 

This can be achieved fairly easily by separating structure from content. As shown in Listing 16–46, 
by simply adding <div class="inner"> to surround the contents, you can solve many potential 
problems before they arise. In the example of grids, padding can be applied to the <div class="inner">. 
As for background images, the top background image can be applied to .block, and the bottom can be 
applied to .block .inner or vice versa.  



CHAPTER 16 ■ ADVANCED THEMING 

353

Listing 16–46. Modified block.tpl.php Containing a More Flexible Container Structure 

<div id="<?php print $block_html_id; ?>" class="<?php print $classes; ?>"<?php print 
$attributes; ?>> 
  <div class="inner"> 
    <?php print render($title_prefix); ?> 
    <?php if ($block->subject): ?> 
      <h2<?php print $title_attributes; ?>><?php print $block->subject ?></h2> 
    <?php endif;?> 
    <?php print render($title_suffix); ?> 
    <div class="content"<?php print $content_attributes; ?>> 
      <?php print $content; ?> 
    </div> 
  </div> 
</div> 

Override Template Files with Purpose 
While core template files are less likely to change during the course of a major release cycle, there are 
usually massive changes to template files for each major Drupal release, and contributed modules are a 
constantly moving target. Template files can change at any time, and sometimes drastically. There are 
many potential reasons for these changes. A module developer may decide to take a different approach, 
there might be new features or security updates, or there may be no good reason at all. The point is that 
once you override a template file by adding it to your theme, you are responsible for maintaining it. This 
can easily get out of hand if you have too many template files. 

Another thing to remember is that Drupal is a framework. The whole idea of using Drupal is to take 
advantage of its modularity. Having too many template files in your theme can essentially remove that 
modularity; once that happens, your theme can become more of a hassle to maintain than all of Drupal 
and whatever custom modules you have combined. The key to avoiding this problem is to use overrides 
sparingly and take advantage of the many tools that Drupal provides. 

Just adding the <div class="inner"> as you did in Listing 16–46 can go a long way in saving you the 
need to create additional template files. The following tips will help you stay out of trouble when 
working with templates in Drupal themes: 

• Structure for the majority. Explore options for handling one-offs separately by 
using preprocess functions where possible. 

• Take advantage of theme hook suggestions. When the differences between the 
markup warrant it, use node--article.tpl.php to style article nodes and use 
theme_links__node() to target only node links. 

• Take advantage of CSS classes as arrays. If all you need is a class, don’t create a new 
template file. For example, block titles are output in a simple <h2> tag by default. 
When applying even minimal CSS to .block h2, you run the risk of affecting <h2> 
tags that may end up inside <div class="content">. Add a class to the title to style 
against, so you can prevent these issues. 

Leverage Default CSS Classes 
Don’t just rip out or change CSS classes without good reason for doing so. Think about it. While many 
front-end developers and web designers gasp at the sight of all the CSS classes that Drupal makes 
available, there really is a purpose to the madness. These classes (especially body classes) not only 



CHAPTER 16 ■ ADVANCED THEMING 

354 

provide helpful information that guides you through figuring out what is generating the markup and 
what characteristics the contents of a given <div> might have, but they are designed to give you the 
opportunity to do a large portion of your theme development within the CSS. 

Keep in mind, especially when using contributed modules, that you will need to update and likely 
upgrade your site at some point in the future, and that you can’t control the changes that may be made 
to templates and often to the classes applied inside them. It’s also important to note that modules may 
rely on classes and certain CSS files, such as system.base.css to be loaded in order to function properly. 
Of course, you can try to manage these things, but we can report from experience that this can easily 
turn into a frustrating waste of time. We’re not saying there’s not room for improvement or that you 
shouldn’t code your site the way you want to. We simply want to make you aware of some of the risks 
involved when stripping markup down to barebones. 

Do My Changes Belong in a Module? 
With each new release of Drupal, the theme layer becomes more and more powerful. With the advent of 
Render API and the ability to use alter hooks in themes, Drupal 7 is packed with more power than ever. 
As powerful as Drupal themes can be, there are still many things that just do not belong in the theme 
layer. As you are plugging away coding your awesome Drupal theme, constantly ask yourself these 
questions: 

• Does what you are trying to accomplish require an SQL query? These should never 
be in a theme. Period. 

• Does your task seem particularly difficult to accomplish? Are you completely 
rebuilding data? 

• Are your changes really theme-specific? For example, if you are changing form 
labels and descriptions, shouldn’t these be available if you were to disable your 
theme? 

If the answer to any of these questions is yes, then your changes belong in a module.  

Summary 
Throughout this chapter we’ve covered more of the many different methods you can use to bend Drupal 
themes to your will. We’ve covered almost everything you’ll need to know to create truly awesome and 
sustainable themes, including how to: 

• Find the variables that are available to you in the theme layer. 

• Understand and use preprocess and process functions. 

• Use and alter contents of render arrays. 

• Theme forms with templates, theme functions, and alter hooks. 

• Manage CSS and JavaScript files in your theme. 

• Work with base and subthemes. 

It’s easy to become overwhelmed with Drupal’s theme layer in the beginning. Just remember that 
your themes can be as simple or as complex as you need them or want to be. We hope that you’ll take 
this knowledge and use it to create awesome Drupal themes, and contribute them back to the 
community. 



C H A P T E R   17 
 

■ ■ ■ 

355

jQuery 

by Jake Strawn with input from Dmitri Gaskin 

jQuery has become an essential part of Drupal since Drupal 5. Many of the interfaces in the 
administrative area use jQuery to enhance the user experience, and Drupal 7 is no exception, continuing 
to improve the ability for developers and themers to implement advanced JavaScript functionality.  

Drupal 7 currently ships with jQuery 1.4.4 and now also ships with jQuery UI 1.8 (jqueryui.com) in 
core which enables advanced User Interface elements/widgets and effects.  

Implementing jQuery and JavaScript 
This first section will be dealing with the basics of getting your own custom JavaScript/jQuery 
functionality added to your Drupal 7 project.  

I will be going over the basics of including new JavaScript files in your theme or module, adding 
entire JavaScript libraries, overriding JavaScript and/or jQuery that has already been included, using 
Drupal Behaviors, and finally, ensuring that your jQuery/JavaScript degrades nicely for those users that 
are unable to or choose not to view JavaScript functionality. 

Including JavaScript 
It is possible for theme and module developers to add JavaScript and jQuery functionality in a variety of 
ways depending on the needs of the code being implemented. This first section will deal with adding 
basic JavaScript to your site and will cover the various methods and use cases. In some instances, you 
may want your JavaScript coded added to every page on the site; in other circumstances, it may only be 
necessary to include it on a single page if certain requirements are met.  

Adding JavaScript in Your .info Files 
Themes and modules have the ability to include JavaScript files very easily in the .info file, as 
demonstrated in Listings 17–1 and 17–2. In the same manner that stylesheets can be added using 
stylesheets[all] = file.css, JavaScript files may be added by simply using scripts[] = file.js. 

Listing 17–1. Adding JavaScript in a Theme’s .info File 

name  = Gamma 
description = Omega Sub-Theme starter kit 
screenshot = screenshot.png 
core = 7.x 



CHAPTER 17 ■ JQUERY 

356 

base theme = omega 
 
stylesheets[all][] = css/text.css 
stylesheets[all][] = css/regions.css 
stylesheets[all][] = css/gamma.css 
stylesheets[all][] = css/dark.css 
 
scripts[] = js/gamma.js 

Any scripts that are included in this manner are automatically loaded on every page where the 
theme that implemented the JavaScript is being used. So, if you use this method, your JavaScript would 
not apply to the administrative section of your site when using Seven as the administrative theme. 

The location of gamma.js in Listing 17–1 is relative to the root path of the theme or module. So since 
the .info file for this theme is likely in /sites/all/themes/gamma/gamma.info, the JavaScript you are 
attempting to load here would be located in /sites/all/themes/gamma/js/gamma.js. 

Listing 17–2. Adding JavaScript in a Module’s .info File 

name = DGD7 Test Module 
description = An example module 
core = 7.x 
 
files[] = dgd7_test.module 
 
scripts[] = dgd7_test.js 

Adding JavaScript in your module’s .info file will ensure the file is included on every page load. 

drupal_add_js() 
Themes may also add JavaScript files in template.php using drupal_add_js(). This is the preferred 
method if you only wanted your JavaScript to be included under certain conditions and not on every 
page. Modules also use drupal_add_js() to include any JavaScript files related to the functionality or 
presentation of the output it produces. 

The following examples of drupal_add_js() can be placed either in your theme OR module, but 
keep in mind that any calls to drupal_add_js() declared in your theme will only be present on pages 
where your theme is being used. If you need a JavaScript file included on every page site-wide, including 
administrative pages (possibly to manipulate a node form), you will want to include the JavaScript in a 
module using drupal_add_js() or by adding it to the .info file for the module (as described previously) so 
that it will appear on any page, regardless of the theme being used to render the page. The full 
documentation for this function can be found at http://api.drupal.org/drupal_add_js. 

So, to add a JavaScript file from the local filesystem, use the following code:  

drupal_add_js('misc/machine-name.js');  
drupal_add_js(drupal_get_path(‘module’, 'example') . '/example.js'); 
drupal_add_js(drupal_get_path('theme, 'omega') . '/js/example.js'); 

With just a single parameter, Drupal assumes the JavaScript you are including is a type of ‘file’. In 
the first line, using the relative path to the file misc/machine-name.js is fine, since machine-name.js, a 
JavaScript include that handles creating system names (replacing spaces with dashes or underscores, 
making all text lowercase, etc.) for generic text input, is included in Drupal core and is unlikely to move. 
However, if you are including a JavaScript file that is located in a module or theme directory, the best 
practice is to use drupal_get_path() to properly find the location of the module or theme, then append 
the location in the directory the JavaScript file would be stored. Using drupal_get_path() is quite 

http://api.drupal.org/drupal_add_js


CHAPTER 17 ■ JQUERY 

357

important since if you were using the file example.js in your module called example, the path could be 
any number of locations including:  

• sites/all/modules/example/example.js 

• sites/default/modules/example/example.js 

• sites/example.com/modules/contrib/example/example.js 

With all these potential locations where a valid module could be stored, calling 
drupal_add_js(drupal_get_path('module', 'example') . '/example.js'); will ensure that the 
example.js file is loaded, no matter where the module is stored. 

In previous versions of Drupal, it was not possible to add a JavaScript include from a remote server 
using drupal_add_js(), but this is now possible in Drupal 7. This is a great way to add JavaScript code 
from other locations—a very common need if you are running many sites that need the same JS 
functionality across your network of sites. Previously, this had to be done creatively with symlinks on the 
server to appropriately map a relative path to the location or by managing multiple copies of the same 
JavaScript includes. The following code shows how easy it is to now add a remote JavaScript file: 

drupal_add_js('http://example.com/example.js', 'external');  

It is also possible to quickly add a line or two of JavaScript inline (instead of creating an entirely new 
.js file) and implement the code by adding it directly to the page. The following code shows how you can 
quickly add an alert to the page using the inline property in drupal_add_js(): 

drupal_add_js('jQuery(document).ready(function () { alert("Drupal Love!"); });', 'inline'); 
 
drupal_add_js('jQuery(document).ready(function () { alert("Drupal Love!"); });',  
  array('type' => 'inline', 'scope' => 'footer', 'weight' => 5), 
); 

This method should only be used for JavaScript that can’t be executed from a file. When adding 
inline code, make sure that you are not relying on $() being the jQuery function. Proper namespacing 
for jQuery will make sure that another JavaScript library doesn't conflict with jQuery when using the $(). 
In order to ensure your JavaScript/jQuery snippet works as you expect when using inline JavaScript, 
wrap your code in (function ($) { $('div').addClass('page-div')})(jQuery);.  

Note also that this method, rather than just passing ‘inline’ as the second parameter, uses the 
array of options to further manipulate how the JavaScript will be added to the page. Using the ‘scope’ 
=> 'footer' setting, you are telling Drupal to render the JavaScript at the end of the page in the 
$page_bottom region, making it appear just before </body>. In addition, you are telling Drupal that you 
would like this JavaScript include to be weighted a little heavier than normal, ensuring that if other items 
are declared in the scope of ‘footer’, this will be rendered after any items with a weight less than 5. 

Weight and Group in drupal_add_js()  
A couple of the fantastic new features available to drupal_add_js() in Drupal 7 are the weight and group 
options inside of $options. In the past, adding JavaScript using this function happened in the order in 
which it was called during the page building process. 

The weight and group options allow you to reorder JavaScript inclusions any way you like; so if late 
in the page build process certain conditions have been set, you can make a new file included using 
drupal_add_js() appear early (or even first) in the source order. Following up on that idea, you can add 
an included file early but ensure that it is the absolute last item to be included in the source code by 
making the weight a higher number. 

The ordering of JavaScript in Drupal page rendering adheres to the following rules: 

http://example.com/example.js


CHAPTER 17 ■ JQUERY 

358 

• First by scope, with 'header' first, 'footer' last, and any other scopes provided by 
a custom theme coming in between, as determined by the theme.  

• Then by group.  

• Then by the 'every_page' flag, with TRUE coming before FALSE.  

• Then by weight.  

• Then by the order in which the JavaScript was added. For example, all else being 
the same, JavaScript added by a call to drupal_add_js() that happened later in the 
page request gets added to the page after one for which drupal_add_js() 
happened earlier in the page request.  

Examples of Weight in drupal_add_js() 

With weights, Drupal can place JavaScript includes in a logical order. Just as when the jQuery library 
(jquery.js) is added in early so that other files may rely on it being available, you can also add weights to 
your own JavaScript since you may also have code that needs to be included early in the page so other 
includes or inline JavaScript can build off of that. 

The following code declares no weight; items are sorted by scope, group, every_page flag, and then 
the order in which they are called: 

drupal_add_js('misc/machine-name.js'); 

In the following code, the weight being set to -10 will place the file higher up in the default scope of 
header and the group it is associated with: 

drupal_add_js('misc/machine-name.js',  
  array('type' => 'file’, 'weight' => -10), 
); 

In the following code, the scope of ‘footer’ will ensure this file is included before the </body> tag at 
the end of the document: 

drupal_add_js('misc/machine-name.js',  
  array('type' => 'file’, 'scope' => 'footer', 'weight' => 5), 
); 

Examples of Group in drupal_add_js() 

In addition to simply adding weights to JavaScript, you can also now declare them into default groups 
(see Listing 17–3). JS_LIBRARY includes core Drupal includes like drupal.js, jquery.js, and other high 
level JavaScript files. JS_DEFAULT is by default where JavaScript included in modules is grouped. JS_THEME 
is by default where includes from the theme layer will be included.  

It is good to have the ability to regroup your JavaScript files; under certain circumstances, you may 
need a JavaScript file included via your theme to be included at a very high level with the other 
JS_LIBRARY functionality. 

Listing 17–3. The Default Groups: JS_LIBRARY, JS_DEFAULT (module JS), and JS_THEME (theme JS)  

drupal_add_js('misc/machine-name.js',  
  array('type' => 'file', 'scope' => 'header', 'weight' => -15, 'group' => JS_LIBRARY), 
); 
drupal_add_js('misc/machine-name.js',  



CHAPTER 17 ■ JQUERY 

359

  array('type' => 'file’, 'scope' => 'header', 'weight' => -15, 'group' => JS_DEFAULT), 
); 
drupal_add_js('misc/machine-name.js',  
  array('type' => 'file’, 'scope' => 'header', 'weight' => -15, 'group' => JS_THEME), 
); 

Groups are declared in the order you see them in Listing 17–3.  

• JS_LIBRARY includes, like the core jQuery library, need to be declared first in order 
for other files and libraries to use them. 

• JS_DEFAULT is the default value when using drupal_add_js() in the module layer. 

• JS_THEME is the default when using drupal_add_js() in the theme layer 
(template.php). 

Using drupal_add_js(), many other options are available to you for advanced placement, grouping, 
ordering, and caching/aggregation options. You can find further details on the API page for 
drupal_add_js() at http://api.drupal.org/drupal_add_js. 

JavaScript Libraries 
With a revival of usage since the days where it was shunned as “that thing that needs to be turned off in 
Internet Explorer,” JavaScript and its many powerful libraries are now common on a huge percentage of 
the sites you rely on every day. Facebook, Twitter, NY Times, and even the Drupal.org site all rely heavily 
on JavaScript libraries to provide you with enhanced functionality and a cleaner interface. 

jQuery is a cross-browser JavaScript library, and there are literally thousands upon thousands of 
libraries out there. Not all are as complex as jQuery, but the one thing they have in common is they work 
towards providing a certain level of functionality or interactivity with your web page. 

jQuery is a library that is already included by default in Drupal and is always available for use. This 
section will discuss how you can add other JavaScript libraries into your site and/or module.  

■ Note  Drupal 7 features more flexible jQuery and JavaScript. 

hook_library() 
When adding or defining a custom JavaScript library in your site, the first Drupal function you will come 
to learn and love is hook_library(). Adding a library can be simply implementing your own custom code 
as a library or including a library already available from the web. hook_library() registers 
JavaScript/CSS libraries associated with your module. This hook is always located in your custom 
.module file or an appropriate include file for your module.  

To really get an understanding of the basics, you can look at the documentation at 
http://api.drupal.org/hook_library.  

The definition of each library contains the following items: 

• Title: The human readable name of the library 

• Web site: The URL of the library’s web site 

• Version: A string specifying the version of the library 

http://api.drupal.org/drupal_add_js
http://api.drupal.org/hook_library


CHAPTER 17 ■ JQUERY 

360 

• Js: An array of JavaScript elements 

• Path to JavaScript file => array()  

• CSS: An array of CSS elements 

• Path to CSS file => array() 

• Type = file/external/etc. 

• Media = screen/print/all 

• See drupal_add_css() for type and media options 

• Dependencies: An array of libraries on which this library depends 

• Uses the formatting of drupal_add_library(), which will be defined in the
next section on including a defined JavaScript library 

Listing 17–4 demonstrates the basic elements available to hook_library(), and you will see how
quickly you can add a robust library to your module to implement anything from simple functionality to
a full blown interface overhaul, depending on the code your library is including and how it’s
implemented.  

Listing 17–4. The Basic Elements Available to hook_library() 

function hook_library
// Library One. 
$libraries 'library-1' array

    'title' => 'Library One', 
    'website' => 'http://example.com/library-1',  
    'version' => '1.2',  
    'js' => array( 
      drupal_get_path('module', 'my_module') . '/library-1.js' => array(),  
    ),  
    'css' => array( 
      drupal_get_path('module', 'my_module') . '/library-2.css' => array( 
        'type' => 'file',  
        'media' => 'screen',  
      ), 
    ), 
  ); 
      return $libraries; 

} 

Listing 17–5 defines your library as two JavaScript files (js-file-one.js and js-file-two.js) and a
single CSS file (css-file-one.css), and it declares that your library will not function without the default
jQuery UI core and autocomplete libraries that are provided by the system module. 

Listing 17–5. Defining Your Library 

function mymodule_library

$libraries 'my-first-library' array

http://example.com/library-1


CHAPTER 17 ■ JQUERY 

361

'title' 'My First JavaScript Library'

'website' 'http://himerus.com'

'version' '1.0.1'

'js' array

drupal_get_path 'module' 'mymodule' '/js-file-one.js' array

drupal_get_path 'module' 'mymodule' '/js-file-two.js' array

'css' array

drupal_get_path 'module' 'mymodule' '/css-file-one.css' array

'type' 'file'

'media' 'all'

'dependencies' array
array('system', 'ui'), // require the core ui library 

                array('system', ' ui.autocomplete'), // require autocomplete library 

      return $libraries;  

 
You can see that actually implementing a new library is quite easy using hook_library(). The actual 

labor of this process is getting your JavaScript code built (assuming it is custom). The actual definition 
and inclusion of the library is very simple.  

drupal_add_library() 
Now that you have defined your custom library, you can quickly add it to your site in a variety of ways. I 
will outline a few examples here, but there are literally dozens of ways you can include your library and 
call it in specific locations. 

In the past, including the necessary JavaScript and CSS to provide certain functionality required 
many calls to drupal_add_js() and drupal_add_css(). Now, using the previous examples in 
hook_library(), you are able to quickly load all the JavaScript, CSS, and other libraries it may depend on 
by using a single call to drupal_add_library(), as shown in Listing 17–6. 

Listing 17–6. Comparison of Including Libraries in Drupal 6 and Drupal 7 

Drupal 6 

// add required dependencies 
drupal_add_js('misc/autocomplete.js'); 
// add relevant JS files 
drupal_add_js(drupal_get_path('module', 'mymodule') . '/file1.js'); 
drupal_add_js(drupal_get_path('module', 'mymodule') . '/file2.js'); 
// add relevant CSS files 
drupal_add_css(drupal_get_path('module', 'mymodule') . '/file1.css'); 
drupal_add_css(drupal_get_path('module', 'mymodule') . '/file2.css'); 

http://himerus.com


CHAPTER 17 ■ JQUERY 

362 

Drupal 7 

// add my library and all its dependencies 
drupal_add_library('mymodule', 'mylibrary', TRUE); 

The drupal_add_library() function takes three arguments: module name ($module), name of library 
($name), and a Boolean flag ($every_page) to define if it is to be included on every page. If the flag is set to 
FALSE, the JavaScript and CSS with the library can’t be aggregated, which is how Drupal combines 
multiple cacheable JS/CSS files into single files to present on page load, so when possible, it’s best to set 
this to TRUE. The primary time when the $every_page flag would be set to FALSE will be for a module or 
implementation where the JavaScript library is only needed on a single form or on a single page. 

The difference in required work between Drupal 6 and Drupal 7 is dramatic, as you can see in 
Listing 17–7. Instead of declaring a long list of files to include your appropriate JavaScript/CSS and 
required dependencies, you can now define your requirements in hook_library() to tell Drupal that you 
have X number of JavaScript files, Y number of CSS files, and Z number of dependencies that Drupal 
should include before adding your files. drupal_add_library() does have a return value of TRUE or 
FALSE. It will return TRUE should the function have returned appropriately with all files and 
dependencies included properly, or FALSE if one of the items failed to be found or load. 

Overriding JavaScript 
You have learned how to implement JavaScript via standard calls to drupal_add_js(), how to add an 
entire library at one time using drupal_add_library(), and how to implement your own libraries using 
hook_library(), but the fun isn't over yet. You now have the ability, as seen elsewhere in the Drupal 
APIs, to alter some of those elements before they are output to the page. This allows you to manipulate 
the JavaScript files being included or to completely change the definition of a library on the fly through 
your own module. 

hook_js_alter() 
In previous versions of Drupal, modifying the script output to the page was quite cumbersome and 
lacked some level of elegance. The jQuery Update module used a method to scan $variables['scripts'] 
in hook_preprocess_page() to look for items to replace, assign the new replacements, then unset the 
originals. It worked, but it was a rather messy solution to a problem that could be handled better.  

In Drupal 7, you now have the highly useful hook_js_alter() function. This will be easy to 
understand for those familiar with hook_form_alter(), hook_menu_alter(), etc. The hook_js_alter() 
function is available in both the theme and module layer, so you can include your mymodule_js_alter() 
function in your .module file or mytheme_js_alter() in your template.php file for your theme. When 
using hook_js_alter(), the function you will create starts off as follows: 

function mymodule_js_alter(&$JavaScript) { 
  $search = drupal_get_path('module', 'some_module') . '/some-file.js'; 
  if(array_key_exists($search)) { 
    // reset the weight for this item, making it appear higher in the source 
    $JavaScript[$search]['weight'] = -100; 
  } 
} 

Changing the weight of a JavaScript include that was already included is as simple as shown. Taking 
this into account, you can easily replace all of the settings for a JavaScript file and even replace the file 
itself. You can also reset any of the attributes you learned about in this chapter regarding 
drupal_add_js(). This comes in handy when, for example, you would like to replace a version of jQuery 



CHAPTER 17 ■ JQUERY 

363

core that was included to a newer version that is not packaged with Drupal core. You can simply use 
hook_js_alter() in your module or theme and replace the default jquery.js file with one of your 
choosing. 

The following code example shows altering the weight of the toolbar.js file, which is provided by 
the toolbar module in Drupal 7. If some other JavaScript was conflicting and this needed to be added 
earlier in the page source, it can be accomplished this easily. Note that this applies to ANY JavaScript 
included in Drupal. 

function mymodule_js_alter(&$JavaScript) { 
  $search = drupal_get_path('module', 'toolbar') . '/toolbar.js'; 
  if(array_key_exists($search)) { 
    $JavaScript[$search]['weight'] = -100; 
  } 
} 

hook_library_alter() 
Now that you’ve seen how you can alter individual JavaScript files, this section shows how you can 
manipulate an entire JavaScript library defined by hook_library() by using hook_library_alter(). 

The API documentation (http://api.drupal.org/hook_library_alter) offers a great example of 
usage. The code in Listing 17–7 replaces the JavaScript file defined by hook_library() if its version 
number is less than 2.  

Listing 17–7. Replacing the JavaScript File Defined by hook_library()  

function hook_library_alter(&$libraries, $module) { 
  // Update Farbtastic to version 2.0.    
  if ($module == 'system' && isset($libraries['farbtastic'])) { 
    // Verify existing version is older than the one we are updating to.     
    if (version_compare($libraries['farbtastic']['version'], '2.0', '<')) { 
      // Update the existing Farbtastic to version 2.0.        
      $libraries['farbtastic']['version'] = '2.0';  
      $libraries['farbtastic']['js'] = array(          
        drupal_get_path('module', 'farbtastic_update') . '/farbtastic-2.0.js' => array(),  
      );      
    }    
  }  
} 

Listing 17–7 demonstrates the two parameters for hook_library_alter(), which are $libraries, an 
array of included libraries keyed with the system name of the library as declared in hook_library(), and 
$module, the name of the module implementing the library. Usage of this hook should come with caution 
or at the very least a stern warning from your mother. If you were to update the version of a library such 
as jQuery or Farbtastic (in Listing 17–7), it could be possible that another module that relies on that same 
library could be dependent on a specific version, so your updating it could adversely affect the 
functionality of other items in your site. 

That being said, there are a lot of possibilities, even many that the core contributors who 
implemented the addition of hook_library(), hook_library_alter(), and hook_js_alter() couldn't 
possibly have thought of at the time of implementation into Drupal 7 core. Regardless, this new 
flexibility in Drupal gives module developers and themers a much more robust method to add and 
manipulate JavaScript/jQuery functionality into projects. 

http://api.drupal.org/hook_library_alter


CHAPTER 17 ■ JQUERY 

364 

Drupal Behaviors 
Drupal Behaviors provide some great benefits that make enhancing your modules with JavaScript and 
jQuery much simpler. Drupal.behaviors is a property of the Drupal object, as you can see: 

var Drupal = Drupal || { 'settings': {}, 'behaviors': {}, 'locale': {} };  

In Drupal 7, JavaScript behaviors are now objects with two methods: attach and detach. 
Drupal.detachBehaviors() was introduced to allow AJAX elements to remove attached elements before a 
page element is processed or removed. 

Attaching Behaviors 
Rather than attaching behaviors using the traditional $(document).ready(); method to ensure your code 
is fired after the DOM has loaded all objects, you will define your jQuery code the Drupal way using 
behaviors, which lets your code properly interact with the page on initial load. It also deals with the 
situation when AJAX or another method has added objects to the DOM at a later time, attaching your 
behaviors to new objects in the DOM simply by calling Drupal.attachBehaviors().  Defined in 
drupal.js, any property added to the Drupal.behaviors object will be called automatically when 
Drupal.attachBehaviors is called, as shown here: 

Drupal.attachBehaviors = function (context, settings) { 
  context = context || document; 
  settings = settings || Drupal.settings; 
  // Execute all of them. 
  $.each(Drupal.behaviors, function () { 
    if ($.isFunction(this.attach)) { 
      this.attach(context, settings); 
    } 
  }); 
}; 

The next method works as expected when the page loads, adding a new CSS class (custom-css-
class) to any H3 element on the page using $(document).ready(). This is fine in most cases, but this will 
only affect H3 elements that were loaded into the DOM when the page was first loaded and when 
Drupal.attachBehaviors was called. 

$(document).ready(function(){ 
  // act on all h3 elements and give them a custom class 
  $('h3').addClass('custom-css-class'); 
}); 

The following code demonstrates the proper usage in Drupal 7, using Drupal.behaviors attach 
method to define your custom code. Now, any time new elements are added to the DOM and 
Drupal.attachBehaviors() is fired, your code will apply to the new elements.  

Drupal.behaviors.myModuleHeaders = { 
  attach: function(context, settings) { 
    // act on all h3 elements and give them a custom class 
    $('h3').addClass('custom-css-class'); 
  } 
}; 



CHAPTER 17 ■ JQUERY 

365

Detaching Behaviors 
New to Drupal 7 is the Drupal.detachBehaviors method. In previous versions, there was no way to 
remove a behavior that was attached using Drupal.attachBehaviors. This can be useful when your 
JavaScript code is attaching itself to elements that don't persist on a page until another page load. An 
example of this would be a WYSIWYG editor loaded in a modal window that allows editing or saving new 
content; upon submission, the modal window closes, leaving extra behaviors in the DOM that are no 
longer relevant.  

It is optional to supply a detach method inside your module's behavior. As of yet, there aren't many 
examples of the detach method, with the exception of usages in modules/file/file.js. Line 49 of 
file.js demonstrates attaching and detaching behaviors to links that are added to uploaded files:  

 

/** 
 * Attach behaviors to links within managed file elements. 
 */ 
Drupal.behaviors.filePreviewLinks = { 
  attach: function (context) { 
    $('div.form-managed-file .file a, .file-widget .file a', 
context).bind('click',Drupal.file.openInNewWindow); 
  }, 
  detach: function (context){ 
    $('div.form-managed-file .file a, .file-widget .file a', context).unbind('click', 
Drupal.file.openInNewWindow); 
  } 
}; 

Degrading JavaScript/jQuery Nicely 
An issue with using JavaScript/jQuery functionality in your web applications is when a user, for various 
reasons (preference, disability, etc.) has JavaScript disabled in their browser. The days when users were 
told it was good to turn off JavaScript in their browsers for security are long past. In fact, most of the sites 
we visit on a daily basis rely heavily on the use of JavaScript, jQuery, and similar libraries. So the issue is 
not those who actually choose to turn those features off, but instead the users who do not have the 
option to view them in the first place.  

The more common reason today for users to have JavaScript disabled would be blind or sight 
impaired users that rely on screen readers to access Internet content. Site visitors using screen reader 
technology should have the same ability to interact with the site as a user that is not visually impaired. 
For many of us, testing this type of accessibility can be tough, but there are continual pushes in Drupal 
to ensure everything (core and contributed code) is as accessible as possible; thanks to many visually 
impaired contributors in Drupal, the community as a whole has become much more aware of and 
considerate to these issues.  

It is critical when designing your user interfaces and interactions that the functionality works 
without JavaScript enabled, and that when JavaScript IS enabled, your functionality is simply enhanced 
by it. 

Drupal core is very accessible without JavaScript enabled, and for those of us with JavaScript 
capabilities, greatly improved. A good example of this in Drupal core can be seen in the weights 
property, which allows you to drag and drop to reorder menu items (see Figure 17–1). This same method 
is applied throughout usages of weights in Drupal including taxonomy term weights, block positions 
inside of a region, field ordering on content types, and many more areas. 



CHAPTER 17 ■ JQUERY 

366 

As a simple rule, the best practice when ensuring your JavaScript degrades nicely and will function 
for those users without JavaScript capabilities is to build your JavaScript enhancements only after the 
application works as expected without JavaScript (see Figure 17–2). 

 

Figure 17–1. Menu links with JavaScript enabled, using tabledrag for reordering of menu items 

 

Figure 17–2. Menu links with JavaScript disabled, using standard select menu option for reordering of 

menu items 

jQuery UI 
jQuery UI (http://jqueryui.com) provides abstractions for low-level interaction and animation; high-
level, themeable widgets; and advanced effects. These are built on top of the jQuery JavaScript library 
that you can use to build highly interactive web applications. 

jQuery UI in Drupal Core 
In Drupal 5 and Drupal 6, in order to easily include jQuery UI interactions, you needed the help of the 
jQuery UI module for Drupal  (http://drupal.org/project/jquery_ui). In Drupal 7, jQuery UI 1.7 is 
included in core, making advanced, enhanced interfaces readily accessible to module and theme 
developers without the need of an additional module or manually implementing the jQuery UI code in 
your site/project.  

In order to start implementing jQuery UI functionality, refer to the drupal_add_library() function 
discussed earlier in this chapter. You are able to quickly include the relevant pieces of jQuery UI needed 
to start building out your enhancements.  

http://jqueryui.com
http://drupal.org/project/jquery_ui


CHAPTER 17 ■ JQUERY 

367

jQuery UI Elements in Drupal Core 
The examples in this section are taken directly from the documentation available at www.jqueryui.com, 
adding just the relevant PHP code to implement in Drupal 7 and the appropriate JavaScript to declare 
your functionality via Drupal.Behaviors. Further examples and usage can be found in the jQuery UI 
documentation. 

accordion 

Let’s start with accordion. The following is the PHP to include the accordion library: 

drupal_add_library('system', 'ui.accordion'); 

The following is the JavaScript for creating your Drupal.behavior to implement the accordion: 

Drupal.behaviors.myModuleAccordions = { 
  attach: function(context, settings) { 
    // add accordions to all h3 elements wrapped in a div with a class of accordion 
    $('.accordion').accordion(); 
  } 
}; 

And finally, the following is an HTML example for accordion (which is shown in Figure 17–3): 

<div class="accordion"> 
  <h3><a href="#">Header 1</a></h3> 
  <div><p>Lorem Ipsum dolor sit amet. Lorem Ipsum dolor sit amet</p></div> 
  <h3><a href="#">Header 2</a></h3> 
  <div><p>Lorem Ipsum dolor sit amet. Lorem Ipsum dolor sit amet</p></div> 
  <h3><a href="#">Header 3</a></h3> 
  <div><p>Lorem Ipsum dolor sit amet. Lorem Ipsum dolor sit amet</p></div> 
</div> 

http://www.jqueryui.com


CHAPTER 17 ■ JQUERY 

368 

 

Figure 17–3. Accordion in action 

datepicker 

Now let’s look at datepicker. The following is the PHP for including the datepicker library: 

drupal_add_library('system', 'ui.datepicker'); 

The following is the JavaScript for creating your Drupal.behavior to implement the datepicker: 

Drupal.behaviors.myModuleDatepicker = { 
  attach: function(context, settings) { 
    // add the jQuery UI datepicker to all inputs with a class of datepicker 
    $('.datepicker').datepicker(); 
  } 
}; 

The following code is an HTML example for datepicker. You can see the results in Figure 17–4. 

<p><label for="custom-datepicker">Date:</label> <input id="custom-datepicker" 
class="datepicker" type="text"></p> 



CHAPTER 17 ■ JQUERY 

369

 

Figure 17–4. Datepicker in action 

dialog 

Next up is dialog. The following is the PHP for including the dialog library: 

drupal_add_library('system', 'ui.dialog); 

The following is the JavaScript for creating your Drupal.behavior to implement the dialog: 



CHAPTER 17 ■ JQUERY 

370 

Drupal.behaviors.myModuleDialog = { 
  attach: function(context, settings) { 
    // add the jQuery UI dialog to all elements with id of dialog 
    $('.dialog).dialog(); 
  }
}; 

The following is an HTML example for dialog, the results of which are shown in Figure 17–5: 

<div class="dialog" title="Basic dialog"> 
  <p>This is the default dialog which is useful for displaying information. The dialog window
can be moved, resized and closed with the 'x' icon.</p> 
</div> 

Figure 17–5. Dialog in action 

draggable 

The next example is a draggable, which you can drag around the screen. This is the PHP to include the
draggable library: 

drupal_add_library('system', 'ui.dialog); 

This is the JavaScript for creating your Drupal.behavior for the draggable element: 

Drupal.behaviors.myModuleDraggable = { 
  attach: function(context, settings) { 
    // make all elements with a class of draggable, well… draggable… 
    $('.draggable).draggable(); 
  }
}; 

And this is an HTML example for draggable; you can see the results in Figure 17–6: 

<div class="draggable ui-widget-content"> 
  <p>Drag me around</p>
</div> 



CHAPTER 17 ■ JQUERY 

371

 

Figure 17–6. Draggable elements in action 

droppable 

What’s a draggable without a droppable? The following is the PHP for including the droppable library: 

drupal_add_library('system', 'ui.dialog); 

The following is the JavaScript for creating your Drupal.behavior for the droppable element: 

Drupal.behaviors.myModuleDroppable = { 
  attach: function(context, settings) { 
    // make all elements with an id of droppable, well… droppable… 
    $( ".droppable" ).droppable({ 
      drop: function( event, ui ) { 
        $( this ) 
          .addClass( "ui-state-highlight" ) 
          .find( "p" ) 
          .html( "Dropped!" ); 
      } 
    }); 
  } 
}; 

The following code is an HTML example for droppable. Figures 17–7 and 17–8 show the before and 
after of the droppable action. 

<div class="draggable ui-widget-content"> 
  <p>Drag me to my target</p> 
</div> 
<div class="droppable ui-widget-header"> 
  <p>Drop here</p> 
</div> 



CHAPTER 17 ■ JQUERY 

372 

 

Figure 17–7. The droppable zone before dropping a draggable element inside 

 

Figure 17–8. The droppable zone after dropping a draggable element inside 

progressbar 

There is usually a time in any web app when you need to indicate progress, so let’s see how. Here’s the 
PHP to include the progressbar library: 

drupal_add_library('system', 'ui.progressbar); 

Here’s the JavaScript to create your Drupal.behavior for the progressbar: 

function dgd7progressbarUpdate(){ 
    var progress; 
    progress = $("#progressbar").progressbar("value"); 
    if (progress < 100) { 
      $(".progressbar").progressbar("value", progress + 5); 
      setTimeout(dgd7progressbarUpdate, 500); 
    } 
  } 



CHAPTER 17 ■ JQUERY 

373

  Drupal.behaviors.dgd7progressbar = { 
    attach: function(context, settings) { 
      $(".progressbar").progressbar({ value: 1 }); 
      setTimeout(dgd7progressbarUpdate, 500); 
    } 
  }; 

And here’s an HTML example for droppable, with the results in Figure 17–9: 

<div class="progressbar"></div> 

 

Figure 17–9. Progressbar in action 

resizeable 

The next example shows how to place a resizable element on the screen. Here’s the PHP to include the 
resizable library: 

drupal_add_library('system', 'ui.resizable); 

Here’s the JavaScript for creating your Drupal.behavior for the resizable element: 

Drupal.behaviors.dgd7resizable = { 
    attach: function(context, settings) { 
      $('.resizable').resizable(); 
    } 
  }; 

And here’s an HTML example for resizable element, the results of which can be seen in Figure 17–10: 

<div class="resizable ui-widget-content"> 
  <h3 class="ui-widget-header">Resizable</h3> 
</div> 



CHAPTER 17 ■ JQUERY 

374 

 

Figure 17–10. The resizable element 

selectable 

Web apps often need to gather user input, so you can use the selectable element instead of the usual 
list. Here’s the PHP to include the selectable library: 

drupal_add_library('system', 'ui.selectable); 

Here’s the JavaScript for creating your Drupal.behavior for the selectable element: 

Drupal.behaviors.dgd7selectable = { 
    attach: function(context, settings) { 
      $('.selectable).selectable(); 
    } 
  }; 

And here’s an HTML example for selectable element, the results of which can be seen in Figure 17–11: 

<ol class="selectable"> 
  <li class="ui-widget-content">Item 1</li> 
  <li class="ui-widget-content">Item 2</li> 
  <li class="ui-widget-content">Item 3</li> 
  <li class="ui-widget-content">Item 4</li> 
  <li class="ui-widget-content">Item 5</li> 
  <li class="ui-widget-content">Item 6</li> 
  <li class="ui-widget-content">Item 7</li> 
</ol> 



CHAPTER 17 ■ JQUERY 

375

 

Figure 17–11. The selectable element 

slider 

The slider element adds a slider to the page so you can gather fine-grained values. This is the PHP to 
include the slider library: 

drupal_add_library('system', 'ui.slider); 

This is the JavaScript for creating your Drupal.behavior for the slider: 

Drupal.behaviors.dgd7slider = { 
    attach: function(context, settings) { 
      $('.slider).slider(); 
    } 
  }; 

And this is an HTML example for sortable element; you can see the results in Figure 17–12: 

<div class="slider"></div> 



CHAPTER 17 ■ JQUERY 

376 

 

Figure 17–12. The slider element 

sortable 

When displaying lots of data to the user, it’s sensible to allow them to sort it. Use this PHP to include the 
sortable library: 

drupal_add_library('system', 'ui.sortable); 

This JavaScript will create your Drupal.behavior for the sortable element: 

Drupal.behaviors.dgd7sortable = { 
    attach: function(context, settings) { 
      $('.sortable).sortable(); 
    } 
  }; 

And this is an HTML example for sortable element, the results of which can be seen in Figure 17–13: 

<ol class="sortable"> 
  <li class="ui-state-default"><span class="ui-icon ui-icon-arrowthick-2-n-s"></span>Item 
1</li> 
  <li class="ui-state-default"><span class="ui-icon ui-icon-arrowthick-2-n-s"></span>Item 
2</li> 
  <li class="ui-state-default"><span class="ui-icon ui-icon-arrowthick-2-n-s"></span>Item 
3</li> 
  <li class="ui-state-default"><span class="ui-icon ui-icon-arrowthick-2-n-s"></span>Item 
4</li> 
  <li class="ui-state-default"><span class="ui-icon ui-icon-arrowthick-2-n-s"></span>Item 
5</li> 
  <li class="ui-state-default"><span class="ui-icon ui-icon-arrowthick-2-n-s"></span>Item 
6</li> 
  <li class="ui-state-default"><span class="ui-icon ui-icon-arrowthick-2-n-s"></span>Item 
7</li> 
</ol> 



CHAPTER 17 ■ JQUERY 

377

 

Figure 17–13. The sortable element 

tabs 

A cool way of implementing menus is to use tabs. The following is the PHP to include the tabs library: 

drupal_add_library('system', 'ui.tabs); 

The following is the JavaScript for creating your Drupal.behavior for the tabs: 

Drupal.behaviors.dgd7tabs = { 
    attach: function(context, settings) { 
      $('.tabs).tabs(); 
    } 
  }; 

The following is an HTML example for tabs; you can see the results in Figure 17–14: 

<div class="tabs"> 
  <ol> 
    <li><a href="#tabs-1">Nunc tincidunt</a></li> 
    <li><a href="#tabs-2">Proin dolor</a></li> 
    <li><a href="#tabs-3">Aenean lacinia</a></li> 
  </ol> 
  <div id="tabs-1"> 
    <p>Lorem Ipsum Dolor Sit Amet…</p> 
  </div> 
  <div id="tabs-2"> 
    <p>Lorem Ipsum Dolor Sit Amet…</p> 
  </div> 
  <div id="tabs-3"> 



CHAPTER 17 ■ JQUERY 

378 

    <p>Lorem Ipsum Dolor Sit Amet…</p> 
  </div> 
</div> 

 

Figure 17–14. Tabs in action 

jQuery UI Effects in Drupal core 
In addition to the many widgets already described, there are several effects that can be used for 
animations and enhancements by simply including the appropriate library and then calling the 
appropriate effect in your jQuery animations. Try the following for yourself: 

• blind 

drupal_add_library('system', 'effects.blind'); 

• bounce 

drupal_add_library('system', 'effects.bounce'); 

• clip 

drupal_add_library('system', 'effects.clip'); 

• drop 

drupal_add_library('system', 'effects.drop'); 

• explode 

drupal_add_library('system', 'effects.explode'); 

• fade 

drupal_add_library('system', 'effects.fade'); 



CHAPTER 17 ■ JQUERY 

379

• fold 

drupal_add_library('system', 'effects.fold'); 

• highlight 

drupal_add_library('system', 'effects.highlight'); 

• pulsate 

drupal_add_library('system', 'effects.pulsate'); 

• scale 

drupal_add_library('system', 'effects.scale'); 

• shake 

drupal_add_library('system', 'effects.shake'); 

• slide 

drupal_add_library('system', 'effects.slide'); 

• transfer 

drupal_add_library('system', 'effects.transfer'); 

Further jQuery Resources 
When it comes to JavaScript and jQuery, there are countless resources available on the Internet and 
many resources available via drupal.org that will help answer your questions on implementing specific 
functionality. When searching for information on an issue or question you’re having, you may be 
surprised at how many times it has been answered for you on drupal.org. 

• Drupal 7 JavaScript API Documentation: http://drupal.org/node/751744 

• Documentation for jQuery JavaScript Library: http://docs.jQuery.com 

• Resources for jQuery UI: http://jqueryui.com  

Summary 
Many popular web sites, including Facebook and Twitter, rely heavily on JavaScript interactions to 
enhance the usability of their web sites. Drupal 7 and the JavaScript framework have more than enough 
flexibility and power to accomplish anything you can imagine or have seen on any other site! 

As demonstrated throughout this chapter, the JavaScript framework in Drupal 7 has added a wealth 
of functionality; it’s modified many of the ways our applications utilize the power of JavaScript and the 
jQuery library. The basic examples in this chapter should get you well on your way to providing powerful 
JavaScript enhancements to your already powerful Drupal 7 site. 

■  Tip  For more resources and recommendations on JQuery and AJAX in Drupal 7, including the #attached 

render property and the #ajax form properties, check out this chapter’s online home at dgd7.org/jquery. 

http://drupal.org/node/751744
http://docs.jQuery.com
http://jqueryui.com


P A R T   V 

■ ■ ■ 

Back-End Development 

Chapters 18, 19, and 20 form one unit, originally written as one chapter, covering everything you need to
know to get started writing your own modules. 

Chapter 21 covers porting a Drupal 6 module to Drupal 7, which can be a great way to learn module
development. 

Chapter 22 provides another good onramp to writing modules—“glue code,” or site-specific modules, to
make the final tweaks you cannot quite achieve with configuration. This chapter can be read without
reading any of the previous chapters first. 

Chapter 23 covers writing tests for your module, an essential part of reliable and sustainable code. 

Chapter 24 introduces the concept of an API module and goes into some of the strategy of writing these
building blocks of Drupal functionality. 



C H A P T E R   18 
 

■ ■ ■ 

383

Introduction to Module 

Development 

by Benjamin Melançon 

By now, you know that Drupal is a powerful and modular system. Indeed, much of Drupal’s power is in 
its modules, dynamos of drop-in functionality that build on Drupal’s base system and on one another to 
do wonderful things. 

How do you tap into this power to add your own original features? You can write a module. All you 
need to do is make two files. The first file tells Drupal about the module; it’s not code. The second file 
can have as little as three lines of code in it. In the first section of this chapter, you’ll create the contents 
of both these files, thereby making a working module. Making a module is something that anyone can 
do. There are many (mostly simple) rules to follow and tons of tools to use—and lots of exploration to 
do. Every person developing a module is still learning. 

This chapter is an introduction to module building, and Chapters 19 and 20 will build on it. This 
chapter provides the following: 

• The basics of a module and how Drupal uses hooks in nearly everything it does to 
allow modules to extend and modify Drupal. 

• An overview of technical skills required to develop a module, including PHP basics 
and Drupal coding standards. 

A Very Simple Module 
In this section, you’ll take a quick spin through a small module, and then you’ll come back and revisit 
the route in detail. When feature-complete at the end of Chapter 19, this module will help site builders 
and module developers investigate sites; ideally, they’ll see the skeletal structure of a site, so the module 
is called X-ray. This module will print the form ID at the top of each form on a site. 

Two Files in a Folder 
The simplest module is composed of two files together in a folder: one to identify the module, and the 
other containing the code (the instructions for what the module should do). The information file is 
named for the module followed by .info (pronounced "dot info") while the file with the code is the 
module name followed by .module (pronounced "dot module"). Your module can have any human-
readable name, but the name needed at the start is its machine name: a lowercase version of the name 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

384 

without spaces or special characters. You will use this name consistently for the folder and file names 
and the functions within the code. So in this case, the machine name of X-ray module will be xray, so 
xray.info and xray.module files, defined in Listings 18–1 and 18–2, should go in a folder called xray. You 
will cover this and the code in detail later. 

Listing 18–1. The xray.info File 

name = X-ray 
description = Shows internal structures and connections of the web site. 
core = 7.x 

Listing 18–2. The xray.module File, Including Comments (Text between /** and */) 

<?php 
/** 
 * @file 
 * Helps site builders and module developers investigate a site. 
 */ 
 
/** 
 * Implements hook_form_alter() to show each form's identifier. 
 */ 
function xray_form_alter(&$form, &$form_state, $form_id) { 
  $form['xray_display_form_id'] = array( 
    '#type' => 'item', 
    '#title' => t('Form ID'), 
    '#markup' => $form_id, 
    '#weight' => -100, 
  ); 
} 

Now you know you can make a module! The whole thing fits on a half page and you will know what 
the code means by the end of this section. To use the module, do the same thing you would do with a 
module someone else wrote: put it within a directory where Drupal looks for modules and enable it. 
Within your development site, put the xray folder in a modules folder such as sites/all/modules/custom 
(creating the “custom” directory if necessary). Then, use your browser to view your development site 
and enable the X-ray module on the Administration  Modules (admin/modules) page. (Sure, you could 
enable it with Drush, but the first time you enable a module you’ve made, it feels good to see it on the 
Modules page and do it manually.) X-ray works as soon as you turn it on. You’ll see the changes right on 
the modules page: X-ray alters forms on the site, making them print their internal form ID; the Modules 
administration page is one big form provided, you now know, by the system_modules() function (see 
Figure 18–1). 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

385

 

Figure 18–1. The internal form ID system_modules (the name of the function producing the form) printed 

at the top of the modules administration form 

It’s not the most exciting module, granted, but a fully-functional module all the same, affecting your 
site with only a few lines of code. The mythology of module development as the exclusive domain of 
Drupal ninjas has been definitively smashed. You can proceed with confidence. You will gain the 
knowledge needed to put extra power under the hood of your Drupal site with modules you make 
yourself. 

■ Note  Don’t get caught up in trying to do something unique or awesome or even particularly useful with your 
first module. A module created as a learning exercise doesn’t have to something never done before; all it needs to 

be is new to you. See Chapter 20 to make modules that are both simple and useful. 

Still, that was a bit exciting. A very little code and you’re adding something to every form on your 
site! How does it work? Let’s do a slow-motion replay, with a play-by-play analysis and lots of color 
commentary for background information. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

386 

Where to Put a Custom Module 
Your module is self-contained in its folder and can be put anywhere Drupal looks for modules, just like 
modules you get from drupal.org. But, where should you put it? 

You know you want it somewhere within the sites folder because every customization you make to a 
Drupal distribution belongs in sites. This chapter follows the practice of putting custom modules in 
sites/all/modules/custom, which will need to be created the first time you put a module there. 

■ Note  When making your own distributions, as in Chapter 34, you can bundle modules with your installation 

profile. Modules included with the example_profile would end up placed in profiles/example_profile/modules. 

Every module downloaded from drupal.org can go in the sites/all/modules/contrib directory (as 
shown in Chapter 4 for placing manually downloaded or drushed modules; once you create a 
sites/all/modules/contrib directory, Drush will automatically put modules it downloads from 
drupal.org there). 

As an alternative to putting custom modules in sites/all/modules/custom, many developers adopt a 
convention of placing custom modules in sites/default/modules and contributed modules directly in 
sites/all/modules). This works well as long as you aren’t using Drupal’s multisite capability.  (Multisite 
means using a single installation of Drupal to serve multiple sites by putting additional folders in sites. 
Often, multiple installations of Drupal will serve you as well or better than multiple sites on one 
installation. However, some methods for deploying many Drupal sites, such as Aegir (aegirproject.org) 
do make heavy use of multisite. See INSTALL.txt in the web root of any copy of Drupal for instructions 
on setting up your own multisite.) 

Table 18–1 lists recommended directories for custom modules. 

■ Note  In the directories in which Drupal looks for modules, it does a serious job looking: it will keep burrowing 
down through all nested subdirectories and find any modules that are there. Therefore, because Drupal looks for 
modules in sites/all/modules, it will also find John Albin Wilkin’s Bad Judgment module if you put it in 

sites/all/modules/contrib/experiments/set_a/johnalbin/amusements/bad_judgment. But that doesn’t 
mean you should put it, or any other module, there. (Module projects that contain multiple modules necessarily 
make use of this feature to have Drupal find additional modules in their project folder, and some will put sub-

modules nested a layer or two deeper, such as in a modules sub-directory, an approach used by core’s Field 

module.) 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

387

Table 18–1. Recommended Locations for Custom Modules 

Directory Use case 

sites/all/modules/custom/ For a single site or to be available for all sites in a 
multisite installation. 

sites/example.com/modules/custom/ To be available for only one site, example.com, in a 
multisite installation. 

sites/default/modules/ Acceptable shortcut location for custom modules 
when using a single-site installation. 

You will be developing the X-ray module within a local development site that is a single-site install, 
so any of these will work. (Such a local site is also called a sandbox site, meaning it’s a playground and is 
not used for production.) 

■ Tip  To develop your module, you should have a working Drupal site on your computer. If you don’t have this 
yet, see Chapter 12 on setting up your development environment and Appendix F (Windows), G (Linux), H (Mac), or 
I (for the cross-platform Drupal stack installer from Acquia) for serving web pages locally. Alternatively, some 

developers do all their work SSHing or FTPing into a remote development server. 

USING THE COMMAND LINE 

You can use your computer’s graphical user interface (GUI), or you can use the command line. In the time 
it takes to create a modules folder, and then create an xray folder inside it, and then open a text editor to 
create the xray.info file, you might have written that whole file already using commands. (The mkdir 
command for making directories and the cd command for changing directories are shown below, and the 
vi command for using a common text editor is the subject of the online appendix at dgd7.org/vi.) 

The ability to use the command line is a particularly handy skill to have as you learn web development 
because it allows you to navigate, view, and edit files on servers, which are typically Linux and set up 
without an available GUI. (Don’t use the ability to edit files on a server to touch the code on a live site, 
though!) 

I wanted to say “Do not fear the command line,” but there is no undo on the command line, so in some 
ways it is to be feared—but then, that’s why we use source control. Bottom line: using the command line 
opens up a range of useful, powerful, and convenient tools in your work as a web developer. The 
command line is available to you through Terminal on Linux and Terminal.app on Mac OS X. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

388 

While you can create folders with a graphical file management tool (such as the Mac OS X Finder or 
the Microsoft Windows Explorer), this chapter shows how to do this with the command line (see Listing 
18–3). It will help make you a better and faster developer, and it probably builds character, too. 

Listing 18–3. Commands to Create the xray Folder, Its Parent Folder Called modules, and Change 

Directory to It 

mkdir -p sites/default/modules/xray 
cd sites/default/modules/xray 

Create a Repository for Your Module 
This step has nothing to do with making your module work and everything to do with your workflow 
when making your module. Chapter 2 introduced version control with Git and Chapter 14 expounded on 
its benefits for achieving a state of flow as a developer: you want to feel free to try anything and always 
know you can get back to a working state. You want to develop your module while using source control 
and to commit your changes constantly. 

From the root of the module you are developing (in this case, in the folder xray; on my computer, 
this directory is at ~/code/dgd7/web/sites/all/modules/custom/xray), initialize a Git repository. Then 
make your first commit, which can be as soon as you’ve created your first file, like so:  

it init 

■ Note  You can create a repository in your module’s directory even if it is already in a web site project that is 

version controlled. This will let you separate your module from your site for sharing the module with the world. 

After initializing the repository, add and commit the changes you’ve made in your module directory. 
These are steps you will do again and again and again at each juncture or pause or breath you take while 
coding your module, ensuring that you can get back to any step of the journey should you need to. 

git add . 
git commit -m "Basic xray.info and .module files." 

In Chapter 14, Károly Négyesi, one of the most prolific contributors to Drupal core, said not to worry 
about what the commit message says. The most important thing is to make recording all your changes 
effortless and natural. (I commit frequently but don’t yet follow this practice myself. You can see every 
commit made in the development of X-ray module at drupal.org/node/953650/commits.) 

Another great benefit of version control is that you can now easily share your work with the world. 
See Chapter 37 for how to link your module with a sandbox project on drupal.org so that anyone can try 
out your work. Chapter 37 also has much, much more on using Git to track changes, share code, and 
collaborate with other developers. 

The .info File 
This file only tells Drupal about your module, but there’s still a lot to look at there. A .info file tells 
Drupal “Hey, this is something you can play with.” Drupal reads only the .info and ignores the rest of 
the module until the module is enabled. The information Drupal displays on the Modules 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

389

administration page (admin/modules) therefore comes entirely from the .info file for modules that are 
not enabled. (Once a given module is enabled, Help, Permissions, and Configure links, which are 
dependent on the module’s code to work, may appear). 

Basic .info Directives 
The contents of the .info file are simple and formulaic. I will cover many common directives in the next 
few pages, but all directives can be found at drupal.org/node/542202. The following is the minimum 
contents of a .info file as self-describing examples, as would be found in machine_name.info: 

name = Human-readable name of our module 
description = Describes what our module does in a sentence or two. 
core = 7.x 

There can be additional values, but these are the essentials. The syntax is a simple label equals value 
pairing. It’s always the label (or name) and the value, separated by a space, an equals sign, and another 
space. For instance, in the last directive (or property) above, core is the label and 7.x is the value. 

■ Note  As of Drupal 7, there’s no need to show $Id$. The old version control system used by drupal.org, CVS, 
required that every file hosted on cvs.drupal.org have an $Id$ comment at the top which it replaced with the 
time when it was committed and the name of who committed it. This is unnecessary now with Git and 

git.drupal.org, but Git still knows who committed what and when. 

The human-readable name is required for the module to be selected (and thus enabled) on the 
Module administration page. There is no machine name directive; this is read from the .info file name. 
Though not technically required, including a description is minimum module developer courtesy. The 
core directive must be set to 7.x or Drupal 7 will refuse to work with the module. (Drupal doesn’t 
currently allow modules to require a certain minor “point release” version of Drupal, but you can work 
around this by declaring a certain version of core’s system module as a dependency of your module. The 
dependencies directive is covered next.) 

dependencies[ ] 
One of the most common optional directives is the dependencies[] directive, which lists the system 
names of any modules required by your module to work. If you decided to make the previous example 
dependent on the Views module, you would add the line dependencies[] = views to the .info file. 

You should only list immediate dependencies. For instance, Views depends on CTools, but you 
should only list CTools in your module if your module directly uses CTools. This helps you avoid listing 
false (outdated) dependencies. By the same token, if you change your module so it is no longer 
dependent on another, remove that from the dependencies so that site builders aren’t forced to install 
the extra module. 

What’s with the brackets? When a directive can have multiple values, the name has array notation, 
[], appended to it so that the directive can be repeated as many times as necessary. Thus, a module that 
depends on both the core Help module and the contributed Views module would repeat the 
dependencies[] directive twice, as shown in Listing 18–4. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

390 

■ Note  As of Drupal 7, each dependency must be listed on a separate line, repeating dependencies[] = 

system_name for the system name of each module on which your module relies. 

Listing 18–4. A .info File of a Module Requiring Two Other Modules 

; Require the core Help module and the contrib Views module to be enabled. 
dependencies[] = help 
dependencies[] = views 

The first line in Listing 18–4 is a comment. In .info files, comments are indicated by a semicolon (;) 
at the very beginning of a line. So any line beginning with a semicolon in a .info file will be ignored by 
Drupal. Comments aren’t usually necessary in module .info files because .info files are so simple and 
self-explanatory. The next two lines in Listing 18–4 are the two dependencies, the machine names of the 
Help and Views modules. (Remember that the machine name can vary greatly from the human-readable 
name. The machine name for Views Bulk Operations module, for instance, is vbo.) 

Version-Specific Dependencies 

Dependencies can specify particular versions of modules, such as >=3.x for any major version 3 or 
above. For contributed modules, this is the second part of a module’s version string, after the Drupal 
version, so dependencies[] = views (>=3.x) will allow Views 7.x-3.0 (and the 4.x series, when that exists) 
but not Views 7.x-2.9. Note that the parentheses are required even for the most simple version string. 
The following is an example of a complex version-aware dependency specification, courtesy Károly 
Négyesi (chx): 

dependencies[] = foo (>=2.x, <4.17, !=3.7). 

It means that you need foo module’s major version to be at least 2 and any version up to (but not 
including) 4.17, aside from 3.7 which was horribly buggy. 

As mentioned, you can use this form of the dependencies[] directive to require certain versions of 
Drupal core. If a bug in Drupal 7.0 that prevents your module from working properly is fixed in Drupal 
7.1, you can require that system module (a core module which is required to always be enabled) be 
version 7.1 or above, like so:  

dependencies[] = system (>=7.1) 

configure 
The configure directive, optional but highly recommended, lets you provide the path to your module’s 
configuration page. Drupal uses this path to provide a link on the Modules administration page when 
the module is enabled. The following is an example of a configure directive from the core search module: 

configure = admin/config/search/settings 

(The X-ray .info file does not have a configure line at this point, but you will add one when you 
create a configuration page to link to later.) 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

391

■ Note  As of Drupal 7, the configure directive greatly improves the experience of site builders by providing a 

link to a module’s configuration page from its listing on the modules page. (I really like the configure link.) 

package 
Another optional directive is package, which is used to group modules on the Modules administration 
page (admin/modules). If you don’t know what to put as your module’s package, you are encouraged to 
skip it entirely. Leaving package out will group your module in the “Other” category. If your module 
belongs with a group of modules, you can place it with them by using the same package. 

■ Note  The best approach to grouping modules with the package directive is not a settled matter in Drupal. Keep 

an eye on the handbook page (drupal.org/node/542202#package) for updates to policy and the other eye on the 
package wiki page (groups.drupal.org/node/97054) for the choices module maintainers are making. As noted, 

when in doubt, leave it out. 

You’ll put your X-ray module in the Development package, which is the suggested location for 
development-related modules. You can create and edit your module’s .info file using any code- or 
plain-text editor; do not use a rich text editor or word processor. (See dgd7.org/vi for a little information 
on how to use the Vim editor, which is present in most webserving environments.) Create or edit 
the .info file for your X-ray module to include the package directive set to “Development”, as shown in 
Listing 18–5. (Note that this directive, unlike dependencies[] but like name and description, uses proper 
capitalization.) 

Listing 18–5. The xray.info File with Added Package Information 

name = X-ray 
description = Shows internal structures and connections of the web site. 
package = Development 
core = 7.x 

There you have it—a .info file that tells Drupal your module’s name, its description, what package 
it belongs to for grouping on the Administration  Modules page, and the version of core with which it 
works. Your module is all set to rock Drupal’s world; the only thing it’s lacking is... code. 

■ Hint  If you’re not near this book or another reference when you need to write a .info file for a new module, 
you can look at a core module’s .info file or another contributed module’s .info file (and ignore everything below 

the “Information added by drupal.org packaging script” line), or you can find the handbook page on Drupal 7 

.info files at drupal.org/node/542202. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

392 

The .module File 
The second file, a .module (“dot module”) file, is what tells your module to do something. Its importance
doesn’t dictate length; it can be even shorter than the .info! (Admittedly, it is usually much longer.) 

The .module file must have the same machine name as the .info file, which for both should be the
same name as the folder they are in. (Modules do not have to be named the same as the folder they are
in, but it is common courtesy to do so for the sake of site builders and other module developers. Even for
projects that include multiple modules, each module ought to receive its own folder, and the machine
name of all modules in a multi-module project should begin with the project name.) 

For the X-ray module, the project name, folder name, and machine name are all xray, and so the
main module file name will be xray.module. Open your .module file, as you do every PHP code file, with
the full  <?php tag that identifies the file as containing PHP code to process, like so: 

<?php 

I emphasize this because numerous code samples in this book will not include this line, but all code
is presumed to go in a file that starts with the <?php line.  No PHP code will work without an opening line. 

Next, for the .module and every code file, add a comment explaining the purpose of the entire file. It
uses docblock comments, one of the two PHP comment styles approved by Drupal coding standards.
Comments are so important that they are described in their own section of this chapter. 

Code Comments 
The one-line style of comment that begins with // is for use inside functions, such as the function
xray_form_alter(). Everything following the two slashes to the end of the line is ignored, so inline
comments that span multiple lines need to have each line begin with //. The X-ray module does not
have an example of inline comments inside functions yet, but you will see and write plenty very soon. 

The first lines of the .module file are comments of a different kind, called docblock for
documentation block. Let’s break them down. The first is the @file notation that describes the purpose of
the file as a whole (see Listing 18–6). For a .module file, it will often be similar to the module description
from the .info file. 

Listing 18–6. Code Comments in Docblock Format at the Beginning of a File and Before a Function 

/** 
 * @file 
 * Helps site builders and module developers investigate a site. 
 */ 

/** 
 * Implements hook_form_alter() to show each form's identifier. 
 */ 
function xray_form_alter(&$form, &$form_state, $form_id) { 
  // This is an inline comment telling you the code has been removed.
} 

PHP’s /* */ C-style commenting goes from the beginning /* to the ending */, commenting out
everything in between, and can span multiple lines. In Drupal, it is only used outside of functions and
usually to introduce functions. In Listing 18–6, this block style of comment introduces the file with the
aid of the @file identifier. Note that Drupal coding standards require more than simply opening and
closing comment tags: the start of the comment has an extra asterisk (/**); each line of the comment is
prefaced by an indent of one space, an asterisk, and another space ( * ); the closing is indented one
space ( */). 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

393

The same docblock notation is used to introduce the one function you have in your module so far. 
This comment must be immediately above the function, with no blank lines between them. Its first 
sentence must fit on a single line, including the period it must end with, and additional lines of 
description or explanation must be separated by an empty comment line. In this case, as a simple hook 
implementation, a single-line sentence of documentation can be the only line. The comment informs 
anyone reading the code that the function xray_form_alter() implements hook_form_alter(). 

Wait, “implements hook_form_alter()”?  What is that even supposed to mean? 

Hooks 
Hooks are the magic portals that let any module, including your module, appear in another part of 
Drupal and do something. When Drupal takes an action it considers important (loading content, saving 
a user account, displaying a comment, etc.), it takes a moment to invite any installed module to observe 
or intervene. Every hook is an opportunity for your module to take action in response to something 
Drupal is doing—and there are 251 hooks in Drupal core, according to the list at api.drupal.org/hooks. 

The “hook” in a hook name is a placeholder for the short name of the implementing module. It 
signifies the naming convention that allows functions to behave in this special way. When a typical hook 
is invoked, Drupal looks through all enabled modules for functions that start with the module name and 
end with the hook name, not including the word “hook.” Thus, to implement a hook, take the “hook” 
part off the front of the hook name and replace it with your module’s short (machine) name. This is why 
hook_form_alter() is implemented in the X-ray module by the function xray_form_alter(). 

■ Tip  If you see a function hook_anything_whatsoever(), it’s a demonstration of how to use that hook (and as 
such should live in an .api.php file such as modules/system/system.api.php). Your module’s functions will not 

start with the word “hook.” A function that implements a hook will say which hook it is implementing in its 
documentation block comment, but the function name itself will use the module’s short name in place of the word 

“hook.” 

In computer science terms, Drupal’s hooks fit the event-driven design pattern in the Inversion of 
Control family of design patterns. Every use of module_invoke_all() (or a variant method of invoking 
hooks) is an event that other parts of Drupal, including contributed modules, can respond to (or not 
respond to; that’s also perfectly fine). For example, when comment module shows a comment, it runs 
this code 

module_invoke_all('comment_view', $comment, $view_mode, $langcode);  

to give any module a chance to act on the comment by implementing hook_comment_view(). The 
comment object is passed to implementing functions by reference so that changes can be made on it 
directly. The view mode and language code are provided as context that can be taken into account when 
reacting to the comment being viewed. The hook function signature describes what is passed to a hook, 
and every function signature can be seen on api.drupal.org. For instance, hook_comment_view()’s 
definition can be found at api.drupal.org/hook_comment_view. Each hook’s API documentation will also 
explain if and what a hook implementation should return. 

Larry Garfield (crell) writes that in a procedural system, which PHP applications historically are, this 
hook method is a very good way to keep code loosely coupled, meaning that your code doesn’t have to 
know squat about how the code you’re talking to works, as long as you know what the other code wants. 
For more about approaches to programming and how some of them relate to Drupal, you can read 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

394 

crell’s blog at garfieldtech.com/blog/language-tradeoffs. For what this means for your module, read 
the sidebar on how Drupal displays help text on a page. 

■ Tip  The best way to learn how to use hooks is to download several contributed Drupal modules and find where 

the hooks are really used, says Drupal developer and educator Chacha Sikes. Then you can compare the hooks in 
use to the hook definitions on api.drupal.org to see how the module developer figured out how to implement 

the hook. 

All hooks defined in Drupal core can be looked up at api.drupal.org. Many that are defined in 
contributed modules can be looked up at drupalcontrib.org. All this documentation is being generated 
by comments in Drupal’s code, so you can put in some work yourself to install the (currently Drupal 6) 
API module (drupal.org/project/api) or simply look at the code of the module you are interested in. If a 
module defines hooks, it should have a .api.php module with examples of how to use them. 

HOW DRUPAL USES HOOKS TO DISPLAY HELP TEXT ON A PAGE 

The X-ray module will make heavy use of hook_help() to show text in the help region on pages it 
investigates. Placing the following code in the xray.module file is sufficient to add text to the help block 
when visiting the page Administration  Structure (admin/structure): 

<?php 
// [Existing code not shown due to space considerations]... 
/** 
 * Implements hook_help(). 
 */ 
function xray_help($path, $arg) { 
  if ($path == 'admin/structure') { 
    return t('This site has stuff!'); 
  } 
} 

Displaying the text “This site has stuff!” at the top of the Structure administration page seems like a simple 
task—all right, it is a simple task—yet the complexity of how that text gets there is the secret source of 
Drupal’s power. You don’t need to know how hooks work to use them, but understanding how Drupal 
works never hurts (much). Let’s take a short tour of how Drupal puts help text on a page. 

Drupal Turning Paths into Pages: hook_menu() 

Drupal is going about its business, which usually means displaying a web page. You’ve clicked on the 
Structure link in the toolbar (admin/structure). Your browser tells Drupal that’s where you want to go. 
Every path ultimately matches up to a menu item with a page callback function that has chief responsibility 
for displaying the page at that path. These menu items are provided by implementations of hook_menu() 
and stored in the menu_router table. (The menu system is covered in greater detail in Chapter 29.) 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

395

Menu items can include information to calculate whether the user requesting the page has access or not, 
and if there is any file that should be included before calling the page callback function. Having taken care 
of the main content (typically a renderable array or chunk of HTML that, in this case, is a list of the 
administrative links within the Structure section), Drupal looks to load up all the other regions of the page, 
too. It gets the regions available from the theme in use at the time, and it gets the blocks assigned to each 
region of that theme from the block system. All that information is provided by Drupal calling hooks. Other 
parts of Drupal’s core code or contributed or custom code you’ve added answer the calls with functions 
that implement those hooks. 

And you still have another major hook to go before you reach your little help hook. 

Drupal Showing a Block: hook_block_view() 

When the system_help block (which by default assigns itself to the help region) is reached, Drupal calls a 
specific implementation of hook_block_view(). That is, rather than following the common pattern of 
invoking a hook in all modules that implement it, Drupal here follows an alternate pattern of invoking the 
hook as implemented in only one specific module. Drupal constructs a function name from the name of the 
module providing the block (system)and the hook’s name(block_view). The naming convention of calling a 
function based on the combination of a module’s name and the hook name is the same one used when 
invoking a hook in multiple modules. It allows you to say that the function system_block_view() 
implements hook_block_view(). (Some distinguish this from true hooks by calling them callbacks; see 
drupal.org/node/1114032 to see if this gets done in Drupal 8.) 

When invoking system module’s implementation of hook_block_view() for the system_help block, 
Drupal passes in the text “help” as a parameter. Inside the function system_block_view() is a switch 
statement that decides what code gets run. When the parameter given is “help,” the switch statement 
(and subsequently the function) gives back information for the system_help block. It sets the title of the 
block to nothing and sets the body of the block to the value returned by the function 
menu_get_active_help(). 

Drupal Gathering Help for a Page: hook_help() 

It is now that Drupal finally invokes the hook which your module implements, hook_help(). Inside the 
function menu_get_active_help(), Drupal gets the internal router path of the page that is currently being 
visited. Then it says, pretty much literally, “for each module that implements the hook “help,” give me 
what you’ve got for this path.” It takes what it receives, if anything, from all the implementations of 
hook_help() and combines them into a single string. It returns that output to be used as the body of the 
system_help block. Your module is named xray, the hook is named help. Therefore, you named your 
function xray_help() and stated in its code comment that it implements hook_help(). As noted, the 
entire hook system is based on this naming convention of module name plus hook name; if a function 
exists with that name, Drupal considers the hook to be implemented and calls that function when invoking 
the hook. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

396 

■ Note  The “for each module that implements hook x” step is the same thing that happens whenever Drupal 
calls module_invoke_all('x'), where 'x' is the hook name without the preceding “hook.” Whether or not the 

function module_invoke_all() is used, something very similar occurs each time a hook is invoked. 

The hook_help() function signature lets you know that your function will receive a parameter (you can 
think of a parameter or argument as a piece of information) represented by $path and that your function 
needs to return some text. The function signature for hook_help() is defined at 
api.drupal.org/hook_help and also in Drupal core’s code at modules/help/help.api.php. 

■ Tip  You can look up any hook the same way you look up any function—by searching for it on Drupal’s API site 
at api.drupal.org. You can get to a function or hook, for instance hook_menu, by typing it into the search 
address directly (api.drupal.org/api/search/7/hook_menu) or, even more concisely when searching within the 

current version of Drupal, by simply adding the function name or hook name onto the API site’s address: 
api.drupal.org/hook_menu. Be sure you are looking at the function or hook documentation for your version of 

Drupal; api.drupal.org provides tabs for Drupal 5, Drupal 6, and Drupal 7. 

The function menu_get_active_help(), when called for the Structure administration page by the 
sequence of events I just went over, hands the parameter $path with the value admin/structure to each 
function that implements hook_help(). Block module’s block_help() function checks and tells Drupal it 
has nothing for it at that path. Node module’s node_help() also checks and reports nothing. Taxonomy 
module’s taxonomy_help() function and all the other modules that implement hook_help() check to see 
if they have anything to say for the path admin/structure, and they all say no. (This doesn’t have to be 
the case; they could all return text for a path and Drupal would combine the help text and display it on the 
page, but this is why admin/structure had no help on it before— all of this happens whether your 
module is enabled or not.) Finally, menu_get_active_help() asks X-ray module’s xray_help() if it has 
anything for the path admin/structure. 

function xray_help($path, $arg) { 
  if ($path == 'admin/structure') { 
     return t('This site has stuff!'); 
  } 
} 

Inside xray_help(), it takes the $path parameter and checks if it is equal to the text “admin/structure”. 
Upon realizing that it is, your function exclaims OMG! and immediately returns the text “This site has 
stuff!” to menu_get_active_help(), which in turn passes the same text back up the stack to 
system_block_view(), which returns the same text, now combined with the empty title it set earlier, back 
to the Block module, which you last saw a half-dozen paragraphs ago, but fortunately Drupal works a lot 
faster than this story. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

397

■ Tip  See the hook_help() function signature in Chapter 20 for details about the $path parameter and the as-

yet unmentioned $arg parameter. 

It worked to good dramatic effect, but X-ray module was only last to be asked about the path because it 
came last alphabetically. If you had a Zebra module with the function zebra_help(), or a module that has 
been intentionally set to a heavier weight, either of those would be called after your module. All 
implementations of hook_help() get called. The order doesn’t make much difference, unless you care 
about whether your help text is before or after another module also providing help text on the same page. 
Also note that your xray_help() function gets called by this chain of events on every page, but on all 
those other pages it compares $path to “admin/structure”, realizes they are not equal and that it has 
nothing to say, and returns nothing. 

Drupal Allowing Blocks to be Modified: hook_block_view_alter() and 
hook_block_BLOCK_ID_view_alter() 

Block module, immediately after it receives its response from system_block_view(), builds the block. 
Then it fires off yet another hook using drupal_alter() to allow any module to implement 
hook_block_view_alter() and change the title or the body of the block, based on the block machine 
name (system_help in this case). Actually, Drupal gives you two alter hooks at this point; the second one 
is the precisely named hook_block_view_system_help_alter() for any module that wants to pinpoint 
the system_help block for changes. You don’t implement either hook, and no other module does either, 
but the point is you could; it’s one more way Drupal builds in flexibility and extensibility. 

■ Note  Don’t use alter hooks unless absolutely necessary. You could have given X-ray module a function named 
xray_block_view_system_help_alter() and tacked your text onto the help block’s content by altering that specific 
block. This would have required you to figure out the path you are on yourself, but more importantly it’s the wrong 

way to do it because it’s farther outside the system Drupal has set up for help text. You should always do things at the 
first opportunity Drupal gives you to do them. Doing things later means missing out on tools Drupal provides for you 

and takes away opportunities for other modules to react to and act on what you’re doing in your module. 

Hooks Open Drupal to Change and Extension 

You really get a sense of how Drupal thinks from the story of how Drupal uses hooks when it displays help 
text on a page. Drupal doesn’t hardcode a set of regions for its pages; it gets that from a theme. It lets any 
module provide a block that can be put in any of those regions. And in its own code, when it provides the 
help block, it lets any module stick help messages in there. Then, for good measure, it lets any other 
module take a crack at modifying this block. (The page rendering layer gives still another chance to alter 
parts of the page before it is output.) In general, there’s a hook for everything Drupal does, which is why, 
no matter what you need to do, there’s a module for that—or soon will be! 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

398 

■ Note  The previous story was told by a debugging tool. Chapter 12 and dgd7.org/ide talk about the tools you 

need to read your own “Page request in the life of Drupal” adventure stories whenever you want. 

Technical Skills 
Even if you’re familiar with PHP and Drupal’s coding standards, it may be worth your while to skim this 
section. There’s usually something you can pick up. In fact, I learned new things writing this section. 

PHP Basics 
Some would tell you that you should know PHP and SQL before embarking on a journey into Drupal’s 
innards. To them, you can say you’re sure the authors will remind you what those acronyms mean in a 
minute, and you’ll be good to go. PHP is the programming language in which Drupal is written. (Its 
acronym doesn’t stand for much of anything anymore; officially it is a recursive acronym for PHP: 
Hypertext Preprocessor.) PHP will run, and is likely to be found, nearly anywhere you can run a web 
server. SQL (Structured Query Language) is for communicating with relational databases, which is where 
Drupal stores its configuration and content by default. 

Studying PHP and SQL is a good idea, certainly, but it is possible to get started with Drupal 
development and learn as you go. As this is one book, and not a multi-volume series, it takes the learn-it-
all-through-Drupal approach. I will go over some PHP basics here; SQL will be touched on in the section 
on Drupal’s database layer in Chapter 19. 

Programming, with PHP or anything else, is just logic—almost literally—which makes it easy in 
some ways and hard in others. You can learn the fundamentals of any programming language by 
learning its syntax and applying a little logic. On the other hand, people get PhDs in logic, and that’s 
without the quirks of different programming languages. But don’t worry; you will jump in and learn the 
basics of PHP and apply it in practice within the structure of Drupal programming. 

The best learning advice is to look at a lot of Drupal code. Whenever you see something and you 
don’t understand what it’s doing, look up the operator or function on php.net or, for Drupal-specific 
functions, on api.drupal.org. (If you see a function in Drupal core, and it’s not on one of those sites, it’s 
on the other.) 

■ Tip  The official PHP web site—php.net—is an excellent resource with good documentation for every function 

and many comments by people who have been there and done that before you. Furthermore, it’s easy to find 
function definitions by typing the function name directly after the site URL. To get the definition for the function 
substr(), you would enter into your browser php.net/substr or, if you didn’t remember the function name 

exactly, you would give your best guess. Picking one of php.net’s suggestions, and always checking out the See 
also section underneath most function definitions, is usually a faster way to find the function you need than 

searching the web as a whole. If I have a guess, I make php.net my first stop. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

399

Terminology 
There are some words in code that initially seem like they are just there to confuse things; however, after 
using them for a while you won’t know how to speak without them. 

• A string is literally a string of characters. It could be a word, a phrase, or a random 
group of characters. The closest non-jargon term is probably “chunk of text.” It 
could be a single character or there could be no text in a string at all, which is 
called an empty string. 

• An integer is a whole number (no decimal places), positive or negative, or, as the 
PHP manual puts it, “a number of the set  = {..., -2, -1, 0, 1, 2, ...}.” 
(php.net/integer) 

• An array can hold any assortment of other variable types (strings, integers, 
objects) or it can hold more arrays! The latter happens disturbingly often in 
Drupal and is called nested arrays. An associative array has keys, which are 
integers or strings pointing to values, which, as mentioned, can be anything. 

• An object is sometimes used in Drupal similarly to arrays to hold a collection of 
related data (such as the $user object or $node object). Objects can do much more, 
such as inheriting information and functionality from a parent object and defining 
their own methods, which are functions specific to objects of that type. 

• A variable is a labeled holder for some value that can be changed. Variables in PHP 
have to start with a dollar sign, such as $name_of_variable. A variable can be a 
string, number, array, object, or another variable type such as non-integer 
numbers, called floats. 

• A function is a set of code that can be called by name. It can receive variables (as 
parameters, covered next) and can return a value. You can define your own 
functions and each has a local scope for variables used within it, such that the 
function code is discrete from other code. All code written for a module should be 
within functions you define. Both xray_form_alter() and xray_help(), already 
seen, are functions. 

• Parameters (also called arguments) allow the code calling a function to send 
information to that function. The parameter or parameters a function expects 
constitute that function’s signature. 

Although PHP only mildly complains if it comes across an empty variable that it has not been told 
about before, you should always initialize your variables. This means to define them before, or in the act 
of, your first use of them. Functions allow default parameters to be defined, which can have the effect of 
ensuring the initialization of those variables. For instance, a function with the name of 
example_takes_arguments and defined as function example_takes_arguments($text = 'Hi.') { ... } 
will have the variable $text available inside it (the code that would replace the ... here), set to the value 
'Hi.' 

Operators and Conditional Statements 
An operator is something that receives one or more values and returns a value. A value is also called an 
expression, which makes the point that any combination of things that returns a value is, indeed, a 
value. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

400 

Assignment Operators 
The most common operator is the assignment operator (the equals sign), which is used to assign any 
variable a value or the result of an expression. 

  $num = 5; 
  $an_array = array( 
    'a_number' => $num, 
    'a_letter' => 'k', 
  ); 
  $another_array = array( 
    'a_letter' => "If merged this will overwrite k with a sentence. Oops.", 
  ); 
  $function_result = array_merge($an_array, $another_array); 

These silly examples all have the assignment operator, "=", in common, and indeed you will use it 
constantly to set the value of variables. Note that at the end, the variable $function_result has the value  

array('a_number' => 5, 'a_letter' => If merged this will overwrite k with a sentence. Oops.",  

String Operators 
String operators include the concatenation operator, which per Drupal coding standards is always 
separated on both sides by a space, like so: 

  $end = " completion of string"; 
  $msg = "Start of string" . $end; 

The concatenating assignment operator can take everything in the string already and add onto the 
end of it. 

  $msg .= "!!!"; 

The resulting string $msg is  

Start of string completion of string!!! 

Arithmetic Operators 
From simple addition to getting the remainder in division, the operators work the same as the symbols 
on your calculator. 

• 5 + 2 returns 7 

• 5 - 2 returns 3 

• 5 * 2 returns 10 

• 5 / 2 returns 2.5 

• 5 % 2 returns 1 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

401

Comparison Operators 
Comparison operators compare two values. For instance: 

• 5 == 2 returns FALSE (is equal to; don’t forget both of the equals signs, or it 
becomes the assignment operator and so is always true when comparing a 
variable to a value or another variable) and "apple" == "apple" returns TRUE. 

• 5 != 2 returns TRUE (is not equal to). 

• 5 < 2 returns FALSE (is less than). 

• 5 > 2 returns TRUE (is greater than). 

• 5 <= 2 returns FALSE (is less than or equal to), and 3 <= 3 returns TRUE. 

• 5 >= 2 returns TRUE (is greater than or equal to), and 3 >= 3 returns TRUE. 

There are two more comparison operators that are quite important. These are the identity 
comparisons that check if two values are of the same type before trying to compare them. This means, 
for instance, that FALSE will not equal an empty array, and strings are not converted to integers for 
comparison (which is a nice bonus because that conversion can lead to unexpected results). They also 
are faster than the equality comparisons.  Examples include: 

1 === TRUE returns FALSE, and 1 === 1 returns TRUE. 
 
'' !== array() returns TRUE. 

Ternary Operator 
The ternary operator is an occasionally allowed exception to Drupal’s bias toward more spread out, 
easily understood code. The ternary operator is compact and confusing. 

$resulting_value = ($condition) ? "If TRUE value" : "If FALSE value"; 

Let’s start in the parenthesis (which aren’t required, but are best practice). The expression in this 
first location is evaluated. It can be a simple variable or it can be a complex set of logic. Usually it will be 
a variable or a straightforward comparison such as ($maybe_seven == 7). If the evaluation is TRUE, then 
the value immediately following the question mark is returned. If the first expression evaluates to false, 
the value after the colon is returned. (Technically these latter two values could be expressions and so are 
called the second and third expressions.) For more information, see Comparison Operators page at 
php.net/ternary. 

■ Note  You will frequently come across situations where you want to set a variable equal to a value if that value 
is non-empty or non-zero, such as $result = ($value) ? $value : "default". In these situations, the ternary 
operator seems less than compact because you are repeating the variable for the test and for the assignment. All 
you can do is wait for Drupal 8: Drupal 7 requires a minimum PHP version of 5.2, and it is not until PHP 5.3 that 

you can leave out the middle part of the ternary operator. In PHP 5.3, the expression $value ?: "default" 
returns $value if $value evaluates to anything other than FALSE, and “default” otherwise. (If you have a more 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

402 

compelling reason to require PHP 5.3 and above, you can declare it the minimum version your module or theme

will support by adding the line php = 5.3 in your .info file.) 

Logical Operators 
The more common comparison operators you will see in Drupal are the following: 

• $a && $b which returns TRUE if both $a and $b are TRUE. 

• $a || $b returns TRUE if either $a or $b is TRUE. 

• !$a returns TRUE if $a is not TRUE. 

The words “and” and “or” can also be used and act as lower-precedence (evaluated later) versions of
&& and ||, respectively. (There is one more logical operator, xor, that works such that the expression $a
xor $b returns true if only one of $a and $b is true.) 

You can find more kinds of operators (along with more detail on the ones covered) at
php.net/operator. 

Control Structures 
PHP uses control structures to decide what code gets run, or executed. Often this decision is made with
the help of conditional statements like equals ($a == $b), identical ($a === $b), is less than ($a < $b), is
greater than or equal to ($a >= $b), etc., that were discussed in the previous section on comparison
operators. 

The if, elseif, and else Statements 

An if statement can stand alone, it can be followed by an else statement that is executed instead if the
conditional for the if statement evaluates to FALSE, or it can come in a chain of if statements using the
elseif syntax. This can also end in an else statement, which gets used if none of the above evaluated to
true. See Listing 18–7 for examples. 

Listing 18–7. Chained if/else Statements 

if ($advice == 'good') { 
  $do = 'Follow it.'; 
} 
elseif ($advice == 'bad') { 
  $do = 'Don\'t follow it.';
} 
else { 
  $do = 'Who knows?  If all else fails, do as you please.';
} 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

403

■ Caution  Note the apostrophe in the string Don’t follow it. It is escaped with a backslash (\) because in plain 
text the apostrophe is the same character as a single quotation mark, which is the character used to indicate the 
start and end of the string. If you had used double quotation marks to bound your string, you wouldn’t have needed 

to escape the single quotation mark—but you would have needed to use the backslash to escape any double 

quotation marks in the string. 

These if() statements used comparison operators. An if() statement can also do an implied 
comparison when given just one expression to evaluate; if the expression has any non-zero, non-empty 
value the statement will evaluate to TRUE, so there’s no need for an "== TRUE". Use simply 

if ($condition) { 
  // Take example action when condition is true. 
  take_example_action(); 
} 

A single exclamation point before an expression reverses its true/false evaluation, so for instance: 
 

if (!$condition} { 
  // Take example action when condition is false. 
  take_example_action(); 
} 

The switch and case Statements 

Another control structure, the switch statement, using any number of case statements inside it, doesn’t 
do anything a chain of if, elseif, elseif, elseif... statements couldn’t do, but it is considered a cleaner 
and more readable way to compare one value to multiple options.   

You used to have a single case, handled by the statement if ($path == 'admin/structure')... Now, 
you’re comparing the path variable to more possibilities (five in the Listing 18–8), so you have replaced 
the if statement with the switch/case syntax. (You’ve also offloaded the messages to helper functions. 
You’ll look at what you’re doing in them later.) 

Listing 18–8. A Switch Statement Used in One Version of xray_help() 

switch ($path) { 
    case 'admin/content': 
      return _xray_help_admin_content(); 
    case 'admin/structure': 
      return _xray_help_admin_structure(); 
    case 'admin/appearance': 
      return _xray_help_admin_appearance(); 
    case 'admin/people': 
      return _xray_help_admin_people(); 
    case 'admin/modules': 
      return _xray_help_admin_modules(); 
  } 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

404 

The switch statement does the equivalent of a ($path == 'admin/content') comparison for the first 
case statement, and if it evaluates to true, it executes the code beneath the case 'admin/content': line, 
and so on for each case statement. Note that when executing the code beneath a case statement, a 
break; statement is usually used to leave the switch after a case matches, but a return; statement ends 
the entire function and so makes anything else unnecessary. For more, see php.net/switch. 

Loops 

The other control structures you will see most commonly in Drupal are loops.  A while ($expression) { 
... } statement continues to run the code inside its brackets so long as $expression evaluates to TRUE; 
the value of variables in the expression must of course be changed by this code within the statement so 
that the loop will stop eventually. See php.net/while for more on while. A for ($i = 0; $i < 5; $i++) { 
... } statement will execute the code within its brackets five times in this example, for the values of $i 
from zero to four;  see php.net/for for more information. Finally, the special foreach ($array as $key 
=> $value) { ... } will iterate over all the items in an array, providing the repeated code within the 
brackets with the key and value for each item.  Listing the key is optional. 

      foreach ($lumps as $lump) { 
        $variables['extra'] .= krumo_ob($lump); 
      } 

Drupal Coding Standards 
Why, one might ask, is how the code looks as important as how it works? PHP ignores extra white space, 
so you could write your entire module on one line if you wanted, and it would work. The code would also 
be unreadable. Sure, that’s an extreme case—a straw man argument. But in Drupal, the standards are a 
lot higher than being able to read something yourself. Your code must be as clear as possible to other 
Drupalistas; following coding standards is very important for collaboration. And if beauty and logic are 
not enough to convince you to keep your code up to scratch, you’ll be called out, repeatedly, when you 
violate the standards. This is the character-building chapter, and good coding habits are best formed 
early, so do the right thing. 

Some Important Standards, Explained 
Keeping code readable and maintainable is easier when you know what you need to do and why you 
should do it. The following commandments are among the most important when writing modules. More 
rules and explanation can be found at drupal.org/coding-standards. 

Use <?php Opening Tag 

Always use full <?php tags, not any of its abbreviations. Aside from being uncouth to the eye, anything 
other than <?php is not guaranteed to work in all configurations of PHP. 

Don’t End Files with the Closing PHP Tag 

In most files, you don’t use a closing PHP tag at all. Every module file (.module), include file (.inc), install 
file (.install), settings.php file, and template.php file (in themes) should have <?php immediately at 
the top and not have any closing PHP tag. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

405

Leaving closing PHP tags off prevents a common problem caused by white space after a closing tag. 
It can be seen in the form of an error such as “Warning: Cannot modify header information - headers 
already sent by (output started at /var/www/example/drupal/sites/default/oops/oops.module.php:37) in 
/var/www/example/drupal/includes/bootstrap.inc on line 568”. Any white space after a closing PHP tag is 
sent to the browser and can interfere with when output is supposed to start. 

Of course, there’s an exception to this rule: template files (.tpl.php), which are already supposed to 
be sending output. Generally, a template file starts with HTML, dips into PHP, returns to HTML and goes 
back and forth between them, usually ending with HTML again. Therefore, closing PHP tags are not only 
allowed but necessary. The closing PHP tag is simply ?> and should only be used in templates. 

Precede Internal Functions with an Underscore 

Functions with names that start with an underscore, such as _function_name(), are meant for a module’s 
internal use. They should not be called by other modules. 

The underscore naming convention for private functions has two major benefits. First, it lets 
everyone know the function is for internal use and that if they use it, they are doing it wrong, because 
you reserve the right to remove or modify the function on a whim. You can also change non-
underscored public API functions, but you should strive never to do this unless you are also releasing a 
new major branch of your module (for instance, changing the release number from 1.x to 2.x). Second, 
preceding internal functions with an underscore helps prevent you from accidentally implementing a 
Drupal hook (there are, remember, more than 250 hooks in core alone). 

■ Caution  You still need to precede internal function names with your module’s name as well as the underscore, 
in the form _modulename_function(), or you risk having a function with the same name as someone else’s 

function. Two functions with the same name is a namespace collision that causes PHP to have a fatal error, which 

is nearly as bad as it sounds. 

Indent Two Spaces 

You should indent functions, control structures like loops and if statements, array definitions, and 
pretty much anything that looks indentable; and do so with two spaces, not a tab. (You can configure 
some IDEs and code editing tools to use two spaces whenever you hit the tab key; see Chapter 12 and 
dgd7.org/ide.) 

Everything within a function, for instance, starts on a new line and is indented two spaces; 
everything within an if statement within that function is indented two more spaces, for a total of four. 

All Control Statements, Including else, Start a New Line 

The else clause in an if statements goes on a new line, starting fresh, following the closing bracket: 

if ($following_coding_standards) { 
  drupal_set_message("Good job!"); 
} 
else { 
  drupal_set_message("Follow this example!"); 
} 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

406 

Use a Space Between Control Statements and Their Opening Parenthesis 

To make these control statements more distinguishable from functions, separate their condition (in 
parenthesis) from the control statement name with a space; this can be seen in the if statement line in 
the previous example. As with functions, the opening curly brace is also separated with a space. That 
accounts for both spaces in the "if ($following_coding_standards) {" line. The same goes for foreach 
statements, while loops, etc. 

Use Spaces Between Parameters 

Put spaces between parameters in function definitions and function calls, like so: 

function space_standard($parameter, $another_parameter, $last_parameter) { 
  _space_standard($parameter, $another_parameter, $last_parameter); 
} 

Use Spaces on Either Side of All Binary Operators, Concatenators, and the Like 

A binary operator is simply something that acts, or operates, on two values at once, to return a new value. 
This includes comparison operators such as == or >=, arithmetic operators such as + or /, string operators 
such as . or .=, logical operators such as && or ||, and assignment operators such as = or += (the latter is a 
combined arithmetic and assignment operator, as .= is a combined string and assignment operator). 
The general rule is whenever something is between two values, give it a single space on each side. 

The following code is thick with operators. The point is that every single one of them is politely 
buffered by a single space on each side. 

if ($budget < $money || ($is_broke && !$has_credit)) { 
  $message = 'Your remaining $' . $money - $budget . ' is not enough.'; 
} 

AN ASIDE ON WHAT THE CODE IS SAYING 

It may or may not help to know what the previous code example is saying, but here it is, with values in 
italics and operators in bold:  If budget is less than money or the person both is broke and does not have 
credit, then set the message to equal a phrase made up of a text string ('Your remaining $') 
concatenated with the result of money minus budget, further concatenated with a final text string (‘ is 
not enough.’). 

A few code tricks are worth noting in this example. First, negation is signified by the exclamation point. In 
the code example, it changes the meaning of $has_credit to its opposite: if $has_credit is true, the 
expression !$has_credit evaluates to false. Second, the dollar symbol is everywhere a mark of a variable, 
except in one place—inside the single quotation marks the dollar symbol does not designate a variable 
and is simply a character in the string. Finally, the two ampersands—&&—join $is_broke and 
!$has_credit together, so both must evaluate to true for the combined expression to be true. On the other 
hand, the or symbol—||— signifies that if either expression to its left or right evaluates to true, then the 
whole expression is true. 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

407

Automating Adherence 
Thanks to the fantastic work of Stella Power (stella), Doug Green (douggreen), and Jim Berry 
(solotandem), the art of conforming to coding standards can be automated. You’ll get to see this in 
practice when you polish your module for contributing in Chapter 20. 

Stella’s Coder Review module (part of the Coder project at drupal.org/project/coder) will review 
source code files for code that does not satisfy Drupal coding standards, flagging each violation as 
having minor, normal, or critical severity. The use of this module is explained in Chapter 20, before you 
share your module with the world. 

Solotandem’s Grammar Parser library (drupal.org/project/grammar_parser) will go a step farther 
and put in an effort to rewrite a module file to conform to coding standards. This author, for the 
moment, eschews the Grammar Parser approach in favor of the “eat your veggies” philosophy and 
corrects coding standards lapses by hand (after Coder Review automatically points them out), but it’s 
only a matter of time before the sheer awesomeness of the Grammar Parser contribution overwhelms all 
objections. 

■ Tip  JavaScript also has coding standards. See drupal.org/node/172169 and Chapter 17. 

Development Tip #1: When Something Isn’t Working, Clear Caches 
For the sake of performance, Drupal has dozens of places where information is cached, or stored in an 
easily accessible way, rather than read and interpreted from the database and code every time it’s 
needed. Therefore, when developing, if you don’t see the changes you made in your code, it’s not 
necessarily a problem with your code; it may be that Drupal’s caches and registries are out of date. 

You can manually clear caches and rebuild the theme and menu registries at Administration  
Configuration  Development  Performance (admin/config/development/performance) by clicking the 
Clear all caches button. You may want to link to this page using the Shortcuts module, or use a module 
such as Admin menu that enables you to clear all caches with a single click on a link. 

You can also clear caches by placing the function drupal_flush_all_caches(); in a part of your code 
that is run (that is, not where it is cached); a can’t-miss spot is index.php between drupal_bootstrap() 
and menu_execute_active_handler() but remember to remove it later. 

As usual, the most convenient way to clear all caches including the theme registry is with Drush: 
drush cc all (you can alias this in your shell to be even shorter, see dgd7.org/162). 

However you clear caches, learn to like the method(s) you use, because you’ll be doing it a lot. 

■ Tip  See Chapter 27 for a way to disable caching entirely while developing. However, Drupal also has registries, 
including for hook_menu() and hook_theme(), that are rebuilt using the clear all caches methods mentioned 

previously. 

Development Tip #2: When Anything’s Missing, Check Permissions 
You add a new page, block, or feature of any kind; you reload the page, clear the cache (see above), shift-
reload the page to make sure it’s not the browser cache, and still nothing. It’s time to check access 



CHAPTER 18 ■ INTRODUCTION TO MODULE DEVELOPMENT 

408 

control and permissions. In code, when a page or tab isn’t working, you should check if there is an 
access argument or access callback defined for the related menu item. When it comes to configuration, 
you want to be sure you’ve granted proper access to the user you are testing between the Permissions 
page (admin/people/permissions) and the roles assignment on the given user’s edit page 
(user/[uid]/edit), where [uid] is the user’s numeric ID. 

■ Tip  If something works when you’re logged in as the superuser or an administrator but not when you’re logged 

out or logged in with a lesser role, the problem is pretty certainly in your permissions configuration. 

Development Tip #3: Set Your Site to Show All Errors 
When developing a module, you want every bit of feedback as quickly as possible from the system. 
Adding the code in Listing 18–9 into your local settings.php should ensure that all notices and errors 
are immediately printed to the screen. (In Drupal 6 it’s a little more work; see randyfay.com/node/76.) 

Listing 18–9. Lines to Add to settings.php to Show All Notices and Errors 

error_reporting(-1); 
$conf['error_level'] = 2; 
ini_set('display_errors', TRUE); 
ini_set('display_startup_errors', TRUE); 

The first line sets PHP to report every conceivable notice and error (the -1 is an undocumented 
shortcut). The second line tells Drupal to show all these notices and errors as messages on your screen (2 
equals the constant ERROR_REPORTING_DISPLAY_ALL, but that constant is not defined yet when 
settings.php is loaded). The last two lines help ensure that the infamous “White Screen of Death” 
(WSOD) from PHP errors becomes instead a screen with the error printed on it. 

Summary 
This chapter introduces you to module building, and provides you with the basics of a module and how 
Drupal uses hooks in nearly everything it does to allow modules to extend and modify Drupal. It also 
includes an overview of technical skills required to develop a module, including PHP basics and Drupal 
coding standards, and it offers helpful development tips. 

You’re now ready to take on a full module, which is where Chapter 19 comes in. 

■  Tip  More tips and discussion online at dgd7.org/intromodule. 

 



C H A P T E R   19 
 

■ ■ ■ 

409

Using Drupal’s APIs in a Module 

by Benjamin Melançon 

The nature of the game in making modules for Drupal is using the tools Drupal provides you. API stands 
for Application Programming Interface and is a fancy way of saying that code has clearly defined ways of 
talking to other code. This chapter is devoted to introducing APIs, the hooks and functions Drupal 
provides to you, in the context of building the X-ray module introduced in Chapter 18. As each feature of 
the module requires using another tool from the extensive selection in Drupal’s API toolbox, I will 
introduce it and use it. 

At the time of this writing, Drupal core provides 251 hooks. This chapter covers some of the most-
used ones. Hooks, though the stars of the show, are but one part of the ensemble you have to work with. 
You have a fantastic supporting cast in the form of Drupal’s excellent utility functions. These functions, 
too, are a part of Drupal’s APIs. 

The module made in this chapter is loosely based on a suggestion posted to the Contributed Module 
Ideas group (groups.drupal.org/contributed-module-ideas) by Zoë Neill-St. Clair. She proposed a 
module to give a technical summary of a Drupal site, with relationships between content types and 
explanations of what in Drupal produces each page. You don’t know how to do this yet, but you know it 
can be done; everything else is filling in details. 

In this chapter, you will see instructions and examples for using the hooks and functions provided 
by Drupal. These are covered in the course of building a complete module and include the following: 

• Altering forms. 

• Localization (providing a translatable user interface). 

• Making modules themeable and styling your module. 

• Creating pages with hook_menu(). 

• Using and defining permissions. 

• Retrieving and storing data using the database abstraction layer. 

Altering Forms 
Changing anything about forms calls for my all-time favorite hook: hook_form_alter(). Whether you 
want to modify a form element, change the order of form elements, remove something entirely, or add 
something new, this is the hook for you. It comes in two varieties: the original, general 
hook_form_alter() that runs for every form Drupal outputs, and any number of hooks in the pattern 
hook_form_FORM_ID_alter(), which are specific to particular forms. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

410 

As always, you can find documentation for any function or hook on api.drupal.org, so for this hook, 
type api.drupal.org/hook_form_alter. The first parameter your implementation of hook_form_alter() 
will receive is the nested array that represents the form. The reason this hook is so powerful is because 
Drupal holds all the information about the form in this array when it renders and processes the form, so 
any change you make affects the form cleanly and more than cosmetically. 

Form elements are exhaustively documented at api.drupal.org/api/drupal/developer--topics--
forms_api_reference.html/7. (For convenience, I’ll link to this and related documentation from 
dgd7.org/forms.) Fortunately, to begin altering forms, you don’t need to know about every possible form 
element—you can simply look at the elements present in the form you choose to alter. 

That’s another nice thing about hook_form_alter(), everything you learn while messing with other 
forms is applicable when you build your own forms. Whether creating a new form or adding to an 
existing one, the form element definition looks exactly the same. 

As a refresher, the X-ray module you started in Chapter 18 prints the form identifier for each form 
on the site. Instead of just showing the code this time, I’ll explain what code to write.  Add the code in 
Listing 19–1 to the xray.module file (if you have already defined xray_form_alter(), only add the debug 
line within it—PHP can’t have two functions with the same name). 

Listing 19–1. Implementation of hook_form_alter() by the X-ray Module, Containing Only Debug 

Statements 

/** 
 * Implements hook_form_alter(). 
 */ 
function xray_form_alter(&$form, &$form_state, $form_id) { 
  debug($form, $form_id, TRUE); 
} 

■ Tip  After creating any modulename_form_alter() or modulename_form_FORM_ID_alter() function for the 
first time, clear your caches. You can do this, for instance, with the Drupal shell command drush cc all. (For 

more on the marvelously powerful and convenient Drush, see Chapter 26.) 

The debug() function takes any variable, including an object or an array (such as your form) and 
prints it to the screen. If you don’t see any debug output, it could be that something is interfering (as can 
be the case when Devel module’s backtrace logging option is selected) rather than because your code is 
not running (such as due to the module not being enabled, the hook name being incorrectly formed, or 
caches not having been cleared yet). You can put an exit('Show me a sign'); line in your code (with the 
status text of your choice) as a quick way to establish whether it’s being run at all. 

■ Tip  Drupal 7 introduces a debug() function, which is a great convenience when developing (or, naturally, 
debugging). To use it, you can put any variable or output-generating function as the first parameter, optionally 

followed by a label to help you keep track of multiple uses of debug(). For instance, debug($user, 'User 
object'); prints the contents of the $user variable, which in most places in Drupal is an object representing the 

currently logged-in user. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

411

Visiting any page with a form (which is every public page if the Search module and block are 
enabled) will result in a message for each form printing the array of all form elements (which are more 
arrays), both visible and hidden. The only part of the form that looks likely to always be of interest, 
however, is the Form ID which is printed as the label for the form array in Listing 19–1. 

For your informative addition to forms, you don’t want to use a form element of a type that can be 
submitted. The usual display-only #type is ‘markup’ (and because ‘markup’ is the fallback if #type is not 
defined, it does not have to be stated explicitly). 

■ Tip  New in 7, the output of a default #type ‘markup’ form element must be given in a #markup property, like 

so:  $form['just_for_show'] = array('#markup' => t('Form, not function.')); 

However, Drupal provides another form element type, ‘item’, that is also for static markup but 
includes the trappings of a real form element, such as #title and #description properties. This 
information-only form item is what you’ll use to print out the form ID at the top of every form (see 
Listing 19–2). 

Listing 19–2. Implementing hook_form_alter() to Add a Markup-Only Item to Every Form 

/** 
 * Implements hook_form_alter(). 
 */ 
function xray_form_alter(&$form, &$form_state, $form_id) { 
  $form['xray_display_form_id'] = array( 
    '#type' => 'item', 
    '#title' => t('Form ID'), 
    '#markup' => $form_id, 
    '#theme_wrappers' => array('container__xray__form'), 
    '#attributes' => array('class' => array('xray')), 
    '#weight' => -100, 
  ); 
} 

■ Note  Using #prefix and #suffix for markup can be a quick shortcut while developing; indeed, this form 
element was originally built not with #theme_wrappers and #attributes but simply with '#prefix' => '<div 
class="xray">' and '#suffix' => '</div>', but that's not what should be used in a finished module. (You can 

see the correction made in the X-ray module's repository at 
drupalcode.org/project/xray.git/commit/839927e.) See Chapter 33 for the journey of discovery, but the 
properties to use instead, as used in this example, are '#theme_wrappers' => 

array('container__xray__form') and '#attributes' => array('class' => array('xray')). These have 
identical HTML output to the manual prefix and suffix but eliminate the risk of unmatched markup (such as missing 
the closing </div>). More importantly, they allow themers to change the markup without trying to re-alter the 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

412 

form. The double underscores in front of “xray” and “form” in the theme wrapper container__xray__form mean
that they are optional for theme functions overriding your container markup. If a theme function with the name

THEME_container__xray__form() or THEME_container__xray() exists (where THEME is the name of one’s 
theme), it will be used; if not, then THEME_container() will be used. If no theme function overrides it, see
api.drupal.org/theme_container for the function that will theme the wrapper to this form element. Making

your module themeable is covered later in this chapter. 

The #markup property will print its value directly into HTML, so you need to make sure the argument
passed to your function is HTML safe. Most of the time $form_id is a PHP identifier that can only contain
numbers, letters, and the underscore, so it’s considered safe in any HTML context; in the very rare other
cases, it’s the module author’s responsibility not to allow unfiltered user input to become a $form_id.
Drupal core itself prints $form_id in the form HTML as a hidden variable. 

The large negative weight (-100) ensures that in almost any conceivable form, this added form
element will be printed at the top. 

■ Note  The Form API is a very important API in Drupal. Where one might expect a special API for modules to talk
to each other for a particular reason, Drupal sometimes relies on its robust Form API to bring in new functionality.
Node module enhances Block module with block visibility based on content type by implementing a form alter

hook. In node.module the function node_form_block_admin_configure_alter() is an implementation of
hook_form_FORM_ID_alter(), where  block_admin_configure is the form ID in that pattern of the form that is
altered. Similarly, Open ID module alters the login form with openid_form_user_login_alter() or

openid_form_user_login_block_alter() (for the main user_login form or the user_login_block form,

respectively). 

Localization with t() and format_plural() 
There is one function in the form_alter() implementation that is easy to overlook as it is only one
character long: t(). The t stands for translate and the t() function is Drupal’s most-used function. It is
part of the localization system that makes it possible to translate Drupal’s user interface—the parts of
Drupal generated by code, as opposed to content written by users. This translatable user interface
should include all text you put in any modules you make. For the most part, this means that it should all
be wrapped in the t() function. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

413

■ Note  The tools for translating content (words written by the site’s users) are frequently called 
internationalization and are not part of Drupal core. The gray area of administrator-defined words in Drupal (such 
as site name and slogan; welcome messages; and structure like menus, some taxonomy, and content type names) 

also falls under the rubric of internationalization and is where translation gets most difficult, er, fun. These forms 
of translation are usually not your concern when writing modules, rather, only localization is. In Drupal discussions 
and even module names, localization is frequently abbreviated as l10n and internationalization as i18n. (The 

abbreviations come from each word’s first and last letter and the number of letters in between.) A current list of 

resources for both tasks is at dgd7.org/translate. 

The point may seem obvious, but only text that you write can be translated in advance to be 
available to people who download your module (if you or others take the time to do the translation). Text 
that is modified by users or administrators and output by your module—anything that can’t be known 
ahead of time—should not be wrapped in a translation function. Moreover, don’t try to translate 
variables. From the X-ray module, the subheading on the reports page t('Content summary') is a classic 
example. Strings for translation are always written in English; if you can provide immediate translation 
for your module into another language, that's fantastic! The text in your code, however, must be in 
English so that all localizations can start from the same base. 

This is straightforward. It gets more interesting with the ability to take placeholders for the parts of 
strings that should not be translated. The t() function has built-in security for showing such 
(potentially) user-submitted data when you use its placeholder array. You'll see this used in examples 
throughout this chapter—placeholders prefaced with @ to sanitize the variable, % to sanitize and 
emphasize, and ! to insert without any safety checks or changes (by the way, only use ! placeholders 
when you know the source is safe (never from a user) or already escaped). These placeholders are well 
documented at api.drupal.org/t. The following code shows the use of the % emphasis 
placeholder: %func is replaced with a sanitized value of the %func key from the array (the 
$page_callback variable concatenated with a pair of parenthesis) and wrapped in <em> tags: 

$output = t('the function %func', array('%func' => $page_callback . '()')); 

When you need text that changes based on the quantity of items being discussed (singular or 
multiple), Drupal has a function for you, format_plural(). Note that the t() function is used inside it 
(see Listing 19–3). 

Listing 19–3. Using the format_plural() Function 

  $output .= format_plural( 
    xray_stats_content_type_total(), 
    'The site has one content type.', 
    'The site has @count content types.' 
  ); 

The first parameter that the format_plural() function takes is a number. This should always be an 
integer (one that will vary, of course, because if you already knew if it were a single or a multiple value, 
you could just write your text string accordingly). In this case, that number is being supplied by your 
function xray_stats_content_type_total(). The second parameter is the string to use if the number 
given as the first parameter is just one; the third parameter is what string to use if it is two or more (or 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

414 

zero). The @count placeholder (which is the number provided by the first parameter) is always available 
to both strings, but you can provide more placeholders and values (just like for the t() function) in an 
array in the fourth parameter. 

Finding a Drupal Function That Does What You Need 
Finding a function that does what you need can be a three-step process of identifying a page that does 
something similar to what you want to do or displays information you are also interested in, looking up 
what function produces that page, and looking within that function to see what functions it calls. 

The example below is not the cleanest (this book uses real examples, not contrived ones, precisely to 
show how applying methods like these really work) but don’t be put off by the pages spent tracking a 
function down. The basic steps really are as easy as 1, 2, 3! 

1. Identify a page that produces output like what you want to see. 

2. Look up the page callback function for that page’s menu item. 

3. See what functions are used (or database queries made) in the page callback 
function. 

■ Tip  An analogous process can be followed to see how Drupal produces a given block; see dgd7.org/233. 

You’re looking to display a summary of theme information. As before, you can look directly in the 
database to find your information (themes, along with modules, are in the system table). Whenever 
possible, however, you want to use functions Drupal already provides rather than creating duplicates, 
even if you are just pulling data. You should put in due diligence trying to find a function that does what 
you need before writing your own database queries. 

Finding code that uses the database table that holds information you care about can be a good way 
to find such a function. Even already knowing that themes are in the system table, searching the code for 
the word system isn’t going to help you much. The system.module file alone is nearly 4,000 lines of code. 
Something more precise is needed to find the function related listing theme information. 

This is why you look for a page in Drupal that is doing something similar to what you want to do. 
Especially in Drupal core, often this will be an administrative page. A look through Drupal’s 
administration section for a listing of themes brings a swift victory: Administration  Appearance 
(admin/appearance) appears to show all the themes! 

With a debugger (see dgd7.org/ide), you can try to watch all the functions called as this page loads. 
Without using a debugger, this can sometimes be done even faster and is usually a two-step process. 
First, you find the menu item that loads the page. Second, you see what functions the menu item call. 
You can find the menu item by searching Drupal’s code for the path of the page. 

You know the enabled and available themes are shown to you when you visit the Appearance 
administration page (admin/appearance). Paths are provided by implementations of hook_menu(), hook 
implementations generally live in .module files, and you know this page is provided by Drupal core, so 
you can restrict your search to the top-level modules folder, like so: 

grep -nHR --include=*.module 'admin/appearance' modules 

A search using the powerful command line text search utility grep returns a number of matching 
lines, but this is the hit that’s interesting to you: 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

415

modules/system/system.module:590:  $items['admin/appearance'] = array( 

Now you’ve reached the second step: follow the code to this function. You’re told what file the 
function is in (modules/system/system.module) and the line number the function appears on (590). The 
"$items" is an indicator that this is part of a menu definition (hook_menu() implementations are 
supposed to return an array of menu items). The search output has told you where to look, so you open 
system.module to see for yourselves (see Listing 19–4). 

Listing 19–4. The admin/appearance Path Definition at Line 590 in system.module 

  // Appearance. 
  $items['admin/appearance'] = array( 
    'title' => 'Appearance', 
    'description' => 'Select and configure your themes', 
    'page callback' => 'system_themes_page', 
    'access arguments' => array('administer themes'), 
    'position' => 'left', 
    'weight' => -6, 
    'file' => 'system.admin.inc', 
  ); 

Menu items are fantastic because they tell you exactly what makes a page and where it’s done. The 
page callback is the function that makes the page and the file, if specified, is the file where the page 
callback function lives. In this case, it’s system.admin.inc. If no file is specified, the page callback 
function is in the same .module file as the implementation of hook_menu(). 

Therefore, go to system.admin.inc and look for the system_themes_page() function. And there it is. 
Early in this function, it calls system_rebuild_theme_data() to get the list of themes. 

But wait. This should work... but based on the function name alone, it seems a bit much. Rebuild 
theme data? You just want to know what the themes are! You can look a little deeper in the function to 
assess if it is one you want to use. 

Inside the function system_rebuild_theme_data(), it calls the internal function  
_system_rebuild_theme_data() (note the preceding underscore that indicates it’s not meant as a public 
function for any module to use). You can look this function up in your code, but you can also look it up 
on Drupal’s API site at api.drupal.org/api/function/_system_rebuild_theme_data/7. Doing the latter 
lets you know it is called by exactly two functions. One, of course, is system_rebuild_theme_data(), 
which is how you found it. The other is list_themes(), which is functionally equivalent to 
system_rebuild_theme_data() but has a more comforting name. (There is an issue filed to reduce this 
code duplication in Drupal 8 at drupal.org/node/941980.) 

■ Note  The list_themes() function also has static caching; if it happens to be called twice on a page load, the 
second call will hardly take any resources. Most statically cached functions can be easily spotted by a line at the 

top of the function similar to this one in list_themes():    

$list = &drupal_static(__FUNCTION__, array()); 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

416 

Investigating What the Function Gives You 
So, you have a function list_themes() that... lists themes. X-ray needs to give a summary of how many 
themes are present on a site, what themes are enabled, and anything else that might be useful to a site 
administrator. 

Watching the Appearance administration page load in a debugger would let you look into the 
variable returned by _system_rebuild_theme_data(), which, as noted, is the source for everything given 
out by list_themes(). Or you can make a test PHP file that bootstraps Drupal and prints the output of 
list_themes(). Or, since you already have a module you’re working on, you can stick a debug() call into 
our code. Let’s do that last one; see Listing 19–5. 

Listing 19–5. Printing the Data from list_themes() with debug() within an X-ray Module Stub Function 

/** 
 * Implements hook_help(). 
 */ 
function xray_help($path, $arg) { 
  switch ($path) { 
// ... 
    case 'admin/appearance': 
      return _xray_help_admin_appearance(); 
// ... 
  } 
} 
 
/** 
 * Help text for the admin/appearance page. 
 */ 
function _xray_help_admin_appearance() { 
  debug(list_themes()); 
} 

The important addition is in bold—debug(list_themes());. The rest is an excerpt from our old 
friend hook_help() calling a function when someone visits the Appearance administration page (the 
admin/appearance path). That function, _xray_help_admin_appearance(), is just a stub, now, with nothing 
in it but your debug code. 

The information about themes is lengthy, so please look at your own output or refer to dgd7.org/145 
for the full result. Getting accustomed to huge nested arrays is something you have to do when 
developing with Drupal (see Listing 19–6). 

Listing 19–6. Information for the Bartik Theme Excerpted from the Output of the Function list_themes() 

Debug: 
 
array ( 
  'bartik' => 
  stdClass::__set_state(array( 
     'filename' => 'themes/bartik/bartik.info', 
     'name' => 'bartik', 
     'type' => 'theme', 
     'owner' => 'themes/engines/phptemplate/phptemplate.engine', 
     'status' => '1', 
     'bootstrap' => '0', 
     'schema_version' => '-1', 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

417

     'weight' => '0', 
     'info' => 
    array ( 
      'name' => 'Bartik', 
      'description' => 'A flexible, recolorable theme with many regions.', 
      'package' => 'Core', 
      'version' => '7.0-dev', 
      'core' => '7.x', 
      'engine' => 'phptemplate', 
      'stylesheets' => 
      array ( 
        'all' => 
        array ( 
          'css/layout.css' => 'themes/bartik/css/layout.css', 
          'css/style.css' => 'themes/bartik/css/style.css', 
          'css/colors.css' => 'themes/bartik/css/colors.css', 
        ), 
        'print' => 
        array ( 
          'css/print.css' => 'themes/bartik/css/print.css', 
        ), 
      ), 
      'regions' => 
      array ( 
        'header' => 'Header', 
        'help' => 'Help', 
        'page_top' => 'Page top', 
        'page_bottom' => 'Page bottom', 
        'highlighted' => 'Highlighted', 
        'featured' => 'Featured', 
        'content' => 'Content', 
        'sidebar_first' => 'Sidebar first', 
        'sidebar_second' => 'Sidebar second', 
        'triptych_first' => 'Triptych first', 
        'triptych_middle' => 'Triptych middle', 
        'triptych_last' => 'Triptych last', 
        'footer_firstcolumn' => 'Footer first column', 
        'footer_secondcolumn' => 'Footer second column', 
        'footer_thirdcolumn' => 'Footer third column', 
        'footer_fourthcolumn' => 'Footer fourth column', 
        'footer' => 'Footer', 
        'dashboard_main' => 'Dashboard main', 
        'dashboard_sidebar' => 'Dashboard sidebar', 
      ), 
      'settings' => 
      array ( 
        'shortcut_module_link' => '0', 
      ), 
      'features' => 
      array ( 
        0 => 'logo', 
        1 => 'favicon', 
        2 => 'name', 
        3 => 'slogan', 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

418 

        4 => 'node_user_picture', 
        5 => 'comment_user_picture', 
        6 => 'comment_user_verification', 
        7 => 'main_menu', 
        8 => 'secondary_menu', 
      ), 
      'screenshot' => 'themes/bartik/screenshot.png', 
      'php' => '5.2.5', 
      'scripts' => 
      array ( 
      ), 
      'overlay_regions' => 
      array ( 
        0 => 'dashboard_main', 
        1 => 'dashboard_sidebar', 
      ), 
      'regions_hidden' => 
      array ( 
        0 => 'page_top', 
        1 => 'page_bottom', 
      ), 
      'overlay_supplemental_regions' => 
      array ( 
        0 => 'page_top', 
      ), 
    ), 
     'stylesheets' => 
    array ( 
      'all' => 
      array ( 
        'css/layout.css' => 'themes/bartik/css/layout.css', 
        'css/style.css' => 'themes/bartik/css/style.css', 
        'css/colors.css' => 'themes/bartik/css/colors.css', 
      ), 
      'print' => 
      array ( 
        'css/print.css' => 'themes/bartik/css/print.css', 
      ), 
    ), 
     'engine' => 'phptemplate', 
  )), 
// ... 
) 
 
in xray_help_admin_appearance() (line 109 of 
/home/ben/code/dgd7/web/sites/default/modules/xray/xray.module). 

The Garland, Seven, Stark, and Test themes, and the Update test base theme have all been removed 
from this output. The test themes you’ve probably never heard of; they have an extra attribute in this 
array: hidden, which is set to TRUE. You will want to account for this and not list them with the regular 
themes (see Listing 19–7). 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

419

Listing 19–7. Initial Code to Count and Display the Number of Hidden Themes 

/** 
 * Fetch information about themes. 
 */ 
function xray_stats_enabled_themes() { 
  $themes = list_themes(); 
  // Initialize variables for the data you will collect. 
  $num_hidden = 0; // Number of hidden themes. 
  // Iterate through each theme, gathering data that you care about. 
  foreach ($themes as $themename => $theme) { 
    // Count each hidden theme. 
    if (isset($theme->info['hidden']) && $theme->info['hidden']) { 
      $num_hidden++; 
    } 
  } 
  return compact('num_hidden'); 
} 
 
/** 
 * Help text for the admin/appearance page. 
 */ 
function _xray_help_admin_appearance() { 
  $output = ''; 
  $data = xray_stats_enabled_themes(); 
  $output .= format_plural( 
    $data['num_hidden'], 
    'There is one hidden theme.', 
    'There are @count hidden themes.' 
  ); 
  return theme('xray_help', array('text' => $output)); 
} 

The $num_hidden variable is originally set to zero. A foreach function goes through the array of 
themes, and inside an if statement you add one to the $num_hidden variable each time you are dealing 
with a hidden theme. $num_hidden++ is a shortcut way of writing $num_hidden = $num_hidden + 1;. The 
if statement identifies what is a hidden theme by checking if the 'hidden' item in the theme info array 
exists and has a value equivalent to TRUE. That first isset() function is needed or else PHP will 
complain about you asking it to look for a non-existent piece of information; non-hidden themes don't 
necessarily have the ‘hidden’ item in their info array at all. If it’s not there, the if statement exits 
immediately and moves on to the next code. (In this case, that is the continuation of the foreach loop 
and when that’s done, the return of the information you are gathering.) If the ‘hidden’ item is there, the 
isset() function returns TRUE and so the if statement continues on to the second expression (after the 
&&) and reads the value of $theme->info['hidden']. If this also evaluates to TRUE (which the number 1 
will), the code inside the if statement is run. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

420 

■ Tip  Two expressions that are joined with && both have to be evaluated if the first expression returns TRUE but 
can stop immediately if the first expression returns FALSE (because no matter what the second expression is, the 
combination is FALSE and && is asking “are this expression AND that expression both TRUE?”). It’s the opposite for 

two expressions joined with ||. Here, if the first expression is TRUE, the next need not be evaluated; if the first 
expression is FALSE, the next expression needs to be evaluated because the entire condition will be TRUE if either 

the first OR the second is TRUE. 

The compact() function creates an array out of the named variables (if they are present), and this is 
the value you return. Here it is only ‘num_hidden’ (which uses the $num_hidden variable) but it could be a 
list of several variable names, as you will see in the next code listing. 

You only want a count of the hidden themes, but you’ll show administrators more information 
about the other themes. To do that, you need to continue to look at the information in the theme 
objects. Looking at the printout of data for Bartik in Listing 19–7, one clearly important attribute is 
status. That’s whether the theme is enabled (1) or not (0). Most of the rest of the interesting information 
is nested a layer deeper in an info array. The regions, features, and stylesheets are all things you can 
easily count, at least. They are in arrays, which means you can use the count() function, as shown in 
Listing 19–8. (See php.net/count for a definition of that function.) 

Listing 19–8. Extracting and Summarizing Information from an Array of Data about Themes 

/** 
 * Fetch information about themes. 
 */ 
function xray_stats_enabled_themes() { 
  $themes = list_themes(); 
  $num_themes = count($themes); 
  // Initialize variables for the data you will collect. 
  $num_hidden = 0; // Number of hidden themes. 
  $num_enabled = 0; 
  $summaries = array(); 
  // Iterate through each theme, gathering data that you care about. 
  foreach ($themes as $themename => $theme) { 
    // Do not gather statistics for hidden themes, but keep a count of them. 
    if (isset($theme->info['hidden']) && $theme->info['hidden']) { 
      $num_hidden++; 
    } 
    else {  // This is a visible theme. 
      if ($theme->status) { 
        $num_enabled++; 
        // This is an enabled theme, provide more stats. 
        $summaries[$theme->info['name']] = array( 
          'regions' => count($theme->info['regions']), 
          'overlay_regions' => count($theme->info['overlay_regions']), 
          'regions_hidden' => count($theme->info['regions_hidden']), 
          'features' => count($theme->info['features']), 
          'kindsofstylesheets' => count($theme->info['stylesheets']), 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

421

          'allstylesheets' => isset($theme->info['stylesheets']['all']) ? count($theme-
>info['stylesheets']['all']) : 0, 
        ); 
      } 
    } 
  } 
  return compact('num_themes', 'num_hidden', 'num_enabled', 'summaries'); 
} 

Everything used in this much larger function has just been discussed; it’s taking place in the same 
foreach loop, using the ++ shortcut (note that the variable is defined first), and count() to return the 
number of elements in an array. The ternary operator and isset() are thrown in at the end to only count 
the 'all' sub-array of the 'stylesheets' if the 'all' sub-array is present, and return zero otherwise. See 
dgd7.org/262 for the code used to display all of this theme information! 

■ Tip  One of the great benefits of working in an open source free software community is that you can expect 
others to see and comment on your code and suggest improvements. You don’t have to wait for that to happen by 
chance, however. If something seems a little off, ask about it in IRC. If you’ve done enough investigating to have 

found one or more possible answers but you are unsure about the best answer, no one in a development 
discussion channel or forum will mind you asking a question such as, “I’m trying to show a list of themes, what is 
the simplest way to do it? I have so far only found system_rebuild_theme_data().” Whether you get an answer 

or not depends on if anyone knows the answer, of course, but an interesting question can inspire people to look 
into the answer even when they don’t know! If your question can be answered with yes or no (such as “Is there a 
better way to do X?”), it’s a sign that you could phrase it better. Try “I’m trying to do X and have tried Y and Z. 

What is the best way to do it?” 

Creating a Page with hook_menu() 
Defining a whole page is one of the ways you get to feel the power of making your own modules. You can 
put the page at any path you want and make anything display there, yet still have all the surrounding 
design, blocks, login functionality, and everything else that Drupal provides. 

■ Tip Check out the Examples project’s (drupal.org/project/examples) menu_example module and 
api.drupal.org/hook_menu for just-the-facts implementations of hook_menu(), and see Chapter 29 for more 

about the menu (router) system’s role in Drupal. 

Sure, you could make a node and use Path module to place it at almost any path you want. User-
editable nodes are a bad fit for module-provided information, though. And how does Drupal know how 
to understand the underlying node/1883 path to show you the node with ID 1883 when you go there? 
That’s right: hook menu. If you want your own, better system for handling pieces of data, you could 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

422 

define the path megabetternodes/ that takes arguments in the form of letters instead of numbers, like
megabetternode/rg. That is a terrible idea; the node system is excellent and easily extended with the
Node API hooks (api.drupal.org/api/group/node_api_hooks/7), fields, and many great things it would
be foolish to try to reproduce. The fact remains, however, that all Drupal’s major subsystems with
dedicated paths for displaying entities (think node/, user/, taxonomy/term/) are brought to you by
hook_menu(), and it gives you access to the same power. 

Let’s start with a more modest goal. The X-ray module needs a page of its own. This page will display
all the information that you’ve been displaying on certain administration pages with hook_help() and
more. 

Choosing a Path for an Administration Page 
What path shall you give this page? In a system as extendable and popular as Drupal, you always have to
try to avoid namespace conflicts—two pages can’t have the same path. Therefore, it’s a best practice to
incorporate your module name into paths created by your module, because every project hosted on
drupal.org has a unique system name. 

■ Note The convention of using the module system name in paths provided by the module is followed in Drupal
core by Node and Contact modules, among others. This is the case both for their user-facing paths (such as
node/99 or contact) and also in their administration paths (such as admin/content/node and
admin/structure/contact). (User module has user-facing paths like user/3/edit and user/register, but as of

Drupal 7 its administrative pages are at admin/people and admin/config/people. Moral of this story: On

occasion, core can do things you should not do yourself.) 

As currently conceived, X-ray module is meant for administrators. Therefore, it should be displayed
in the administration section of the site, which is every single page that falls under admin/ in the path.
But you’re not done yet—a path like admin/xray is completely possible with the power of hook_menu()
but terribly presumptuous. That’s like saying your module is as important as the entire configuration
section (admin/config) or the modules listing (admin/modules)! You must look a little more carefully and
play well with others. 

Every module in Drupal core fits its administration pages under the following categories, the top
level of administration menu items: Dashboard, Content, Structure, Appearance, People, Modules,
Configuration, Reports, and Help. Really, the best choice for most module administration pages is
between the Structure and Configuration sections, and in most cases somewhere under Configuration.
X-ray is a little different, however. It is providing information about the site, and so naturally fits under
the Reports menu. This would give your page the path admin/reports/xray. 

Defining a Page with a Normal Menu Item 
Now you know where you want to put your page; all you have to do is put it there. At the root of every
page displayed in Drupal (for nodes, administration pages, or anything else) is hook_menu(). 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

423

■ Note Drupal’s Menu system isn’t accurately named because it does so much more than menus. In addition to 
making possible every page in Drupal, whether they have a link in any menu or not, hook_menu() is ultimately 
responsible for every path, whether it returns a page or not. Some paths used in AJAX requests just return a little 

bit of data. 

As with every Drupal hook or Drupal function, you can get great documentation on hook_menu() by 
adding it in after the address of Drupal’s API site. Case in point: api.drupal.org/hook_menu, which 
redirects to api.drupal.org/api/function/hook_menu/7. 

You can also look for an example of hook_menu() in most any module’s .module file, including for the 
core modules mentioned in the note with regard to their administrative paths, Node module and 
Contact module. 

Let’s look at the file node.module, which is located within a download of Drupal’s code in the 
modules/node folder. Implementations of hook_menu() must return an array containing one or more 
menu items. The menu items themselves are also arrays. Drupal likes arrays. (And arrays of arrays of 
arrays of arrays of arrays. If you are not writing an array about every 5-10 lines, you are probably doing 
something wrong.) I’ll discuss their structure after Listing 19–9. 

Listing 19–9. Excerpt from Node Module’s Implementation of hook_menu() 

/** 
 * Implements hook_menu(). 
 */ 
function node_menu() { 
  $items['admin/content'] = array( 
    'title' => 'Content', 
    'description' => 'Find and manage content.', 
    'page callback' => 'drupal_get_form', 
    'page arguments' => array('node_admin_content'), 
    'access arguments' => array('access content overview'), 
    'weight' => -10, 
    'file' => 'node.admin.inc', 
  ); 
// ... 
  return $items; 
} 

■ Caution Looking at examples from core and other Drupal code is a great way to learn, but you can never expect 

any given section of code you look at to match up one-to-one with your needs. 

The array of menu items is keyed by the all-important path; the path for the menu item in the code 
excerpt above is admin/content. 

The first element in the menu item array is the title. (PHP and Drupal don’t care what order the 
elements of a keyed array are in, but the Drupal developers are noting something about the importance 
of the title by putting it first.) If present, the description element is frequently listed second. For pages, 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

424 

meaning menu items such as the above with the default type of MENU_NORMAL_ITEM, the description 
is used for the title text (the hover-over tool tip) on menu links to the page. It is also shown on 
administrative listings. You won’t see the text “Find and manage content.” at the path admin or hovering 
over the Content link in the Toolbar on your standard Drupal install, however, because Comment 
module changes the description for admin/content to “Administer content and comments.” in its 
implementation of hook_menu_alter(). 

■ Note  As of 7, the title and description of menu items are by default passed through the t() function, so you 
don’t wrap them in the t() function yourself, as you do for all other user-facing text in your modules. It is possible 

to have the title handled by a different function or no function by setting the title callback to another function or 
FALSE. In that case, you should handle running text you provide through a translation function yourself. The 

description is always passed through t(). 

Not even the title is a required element for a menu item, but clearly certain elements must be 
present for the menu item to do anything useful; the required elements depend on a menu item’s 
purpose. The most important element when showing a page is the page callback. Drupal calls the 
function named as the page callback when the menu item’s path is visited. The page callback function 
must provide the main content of the page. 

■ Tip  Node module is showing you a neat trick with the file attribute. Putting 'file' => filename.extension in 
a menu item tells Drupal to include the named file. This allows the function in the page callback to be in that other 
file, outside the .module file. This can help you organize the code for a complex module in a sensible way by 
grouping functions related to one page’s functionality together in one file. It also can boost Drupal’s performance 

(on sites without an opcode cache such as APC) by excluding unneeded code from being loaded and parsed. That 
is why Drupal frequently puts code related to administration in separate files, as it is doing here with the 
admin/content path and the node.admin.inc file. Unlike code related to showing nodes (content), taxonomy 

terms, or blocks, the code for administering nodes only needs to be loaded when a user with sufficient privileges 

goes to this page. 

The code excerpt in Listing 19–9 was the first menu item defined at the top of Node module’s long 
and complex implementation of hook_menu(), and it is a pretty good model for what you want to do. It 
defines an entire administrative section, which you do not want to do, but you can move it down a level 
just by adding to the path; instead of admin/content, you’re going to have admin/reports/xray, as 
discussed earlier. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

425

Defining a Tab with a Local Task Menu Item 
You could stop there, but the Node module is doing something pretty cool with a second menu item. It is 
defined in only five lines, as shown in Listing 19–10. 

Listing 19–10. Excerpt from Node Module’s Implementation of hook_menu(), Second Menu Item Defined 

$items['admin/content/node'] = array( 
    'title' => 'Content', 
    'type' => MENU_DEFAULT_LOCAL_TASK, 
    'weight' => -10, 
  ); 

This second menu item provides a tab that is selected by default. That is how the type 
MENU_DEFAULT_LOCAL_TASK is interpreted. The first menu item did not specify a type attribute, which 
means it defaults to MENU_NORMAL_ITEM, a page, so that the page defined by the first menu item can be 
extended with multiple tabs (see Figure 19–1). 

 

Figure 19–1. The Content local task (tab) is provided by Node module’s admin/content/node menu item. 

Local tasks work such that you see them as a tab on the page you extend. Because it is the default 
local task, the page is identical whether you go to admin/content or admin/content/node. 

You’ll use this to make your page not just a page but also the Overview tab for X-ray reports. This 
way you can easily add new, more in-depth report pages as additional tabs. 

■ Note  Drupal does not display any description for local tasks, which Drupal themes as tabs—not even as link 

title tool-tip text. This may change in Drupal 8 (drupal.org/node/948416), but for Drupal 7 avoid confusion by 

leaving off the description element for menu items of type MENU_LOCAL_TASK or MENU_DEFAULT_LOCAL_TASK. 

Declaring Menu Items for X-ray Module 
After much ado, Listing 19–11 shows a menu declaration of your own. 

Listing 19–11. X-ray Module’s Implementation of hook_menu() 

/** 
 * Implements hook_menu(). 
 */ 
function xray_menu() { 
  $items['admin/reports/xray'] = array( 
    'title' => 'X-ray technical site overview', 
    'description' => 'See the internal structure of this site.', 
    'page callback' => 'xray_overview_page', 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

426 

    'access callback' => TRUE, 
  ); 
  $items['admin/reports/xray/overview'] = array( 
    'title' => 'Overview', 
    'description' => "Technical overview of the site's internals.", 
    'type' => MENU_DEFAULT_LOCAL_TASK, 
    'weight' => -10, 
  ); 
  return $items; 
} 

■ Gotcha  For your menu item—and page—to appear, the menu_router table must be cleared. Saving the 
modules page (without enabling or disabling any modules) no longer does this, as it did in Drupal 6. You 
can instead put the menu_rebuild() function directly into your code— outside of the hook_menu() 
implementation, which is only called when menus are rebuilt! (See data.agaric.com/node/3376 for the code that 

skips over flushing all caches if nothing changes on the modules page.) The reliable drush cc all (or the more 

precise drush cc menu) also work to rebuild menus. 

I still haven’t explained everything going on in the menu declaration. A very important part of every 
new path is access control. In other words, can a user view the page (or access another callback)? The 
access callback is typically a function that returns TRUE if access is allowed and FALSE if access should 
be denied. (By default, it is the user_access() function, and so Drupal can simply take a permission 
name in the access arguments to evaluate if a given user’s role has access to the menu item.) By setting 
the value of access callback to TRUE, you short-circuit any of this and make the page always viewable by 
anyone. This is not recommended but it will hold you over until you choose or define a permission. 

■ Caution  Menu items deny access by default. If you provide no value for either the access callback or access 
arguments attributes, use of your menu item (including trying to visit a page it defines) will be denied to 

everyone—even user 1, which typically bypasses access checks. 

As a menu item that defines an administration page, X-ray module’s admin/reports/xray should 
limit access to authorized users. To set this access, you can create a new permission with 
hook_permission() or re-use an existing permission. 

Using Existing Permissions in Your Module 
The Permissions administration page (admin/people/permissions) is one of the more intimidating 
configuration pages in Drupal—or in any content management system. Drupal’s fine-grained 
permission system is a great strength, but it means a large grid of checkboxes to be able to configure all 
the permissions for each role. For a new site based on Drupal core’s default installation profile, this is 

6



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

427

just three roles (listed across the top) and about 60 permissions (listed down the side), as shown in 
Figure 19–2. 

 

Figure 19–2. The top of the Permissions configuration page of a fresh Drupal core default installation 

profile 

As the number of roles on a site increases, and as functionality increases along with the number of 
permissions, this page becomes more visually overwhelming. Every new content type adds separate 
create, edit, and delete permissions, and then there’s extra edit and delete permissions per content type 
for the author of the piece of content in question.  

The normal rule in Drupal is when in doubt, make it configurable or extendable. In other words, 
don’t try to guess the use cases someone else will need; instead, try to make anything possible. If there’s 
an option, provide it. When it comes to administrative options and especially permissions, however, I 
prefer to avoid contributing to the wall of checkboxes unless a clear use case is present. People who need 
a specific permission can file an issue asking for it; a site developer who needs finer-grained permissions 
for an unusual use case can create her own and make a page require it by modifying the existing menu 
item with hook_menu_alter(). 

■ Note  When you do want to create your own permission or permissions, hook_permission() is a very 
straightforward hook, as seen in the example from system.module, documented at 

api.drupal.org/hook_permission. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

428 

So you want to re-use an existing permission rather than create your own. There’s a catch, however. 
The permissions you can see at Administration  People’s Permissions tab (admin/people/permissions) 
are not named exactly the same as their system or internal name, which your module must use. For one 
thing, all the internal names are (almost always) lower-case only, but the words can change, too. This is 
not something you want to guess at; access will be denied because no user can have a permission that 
doesn’t exist (except user 1, which ignores user access checks). 

■ Note  As of 7, permissions have human-readable names and descriptions. This is great for humans, but you 

developers, trying to write code that speaks to machines, get left out in the cold a little bit. 

There will undoubtedly be a module for matching up Permission’s public human-readable names 
with internal system names—you’ll incorporate the functionality into X-ray, in fact—but as developers, 
you should know how to get this information without a helper module, even if you always use the 
convenience. 

Finding Permissions’ System Names in the Database 
Longtime Drupal developer Moshe Weitzman celebrates exploring the database as a way of 
understanding Drupal (in general and in the case of a particular site). To list all the internal names of 
permissions you can start by looking at your Drupal site’s database. Looking at all the tables in it (via the 
command line as in Listing 19–12 or with a more graphical application such as phpMyAdmin), you can 
see that table role_permission is the only table with a name that mentions permissions. You can then 
look inside the role_permission table to see the permissions it holds. 

Listing 19–12. SQL Commands for Listing Drupal’s Database Tables and the System Names of Permissions  

mysql 
mysql> SHOW DATABASES; 
mysql> USE d7scratch; 
mysql> SHOW TABLES; 
mysql> SELECT * FROM role_permission WHERE rid=3; 

■ Tip  The command line steps in Listing 19–12 use all UPPERCASE letters for SQL commands to help distinguish 

the commands from information like database, table, and field names; however, you don’t need to type SQL 

commands in all caps, and it’s much easier to not mess with hitting the Shift or CapsLk key. 

As you will see, there are a lot of permissions even for an untouched Standard install of Drupal. The 
rid (Role ID) of 3 is Drupal’s administrative role which is given all permissions by default (see Listing 19–
13). Selecting only for this role allows you to see all the permissions present in the fresh installation, 
without duplication. The purpose of the role_permission table is to track which roles have which 
permissions. This is why permission machine names can appear more than once (or for permissions 
never granted to a role, not at all). 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

429

Listing 19–13. Output of the SELECT * FROM role_permission WHERE rid=3 Query on a Fresh Standard 

Installation of Drupal 

+-----+------------------------------------+------------+ 
| rid | permission                         | module     | 
+-----+------------------------------------+------------+ 
|   3 | access administration pages        | system     | 
|   3 | access comments                    | comment    | 
|   3 | access content                     | node       | 
|   3 | access content overview            | node       | 
|   3 | access contextual links            | contextual | 
|   3 | access dashboard                   | dashboard  | 
|   3 | access overlay                     | overlay    | 
|   3 | access site in maintenance mode    | system     | 
|   3 | access site reports                | system     | 
|   3 | access toolbar                     | toolbar    | 
|   3 | access user profiles               | user       | 
|   3 | administer actions                 | system     | 
|   3 | administer blocks                  | block      | 
|   3 | administer comments                | comment    | 
|   3 | administer content types           | node       | 
|   3 | administer filters                 | filter     | 
|   3 | administer image styles            | image      | 
|   3 | administer menu                    | menu       | 
|   3 | administer modules                 | system     | 
|   3 | administer nodes                   | node       | 
|   3 | administer permissions             | user       | 
|   3 | administer search                  | search     | 
|   3 | administer shortcuts               | shortcut   | 
|   3 | administer site configuration      | system     | 
|   3 | administer software updates        | system     | 
|   3 | administer taxonomy                | taxonomy   | 
|   3 | administer themes                  | system     | 
|   3 | administer url aliases             | path       | 
|   3 | administer users                   | user       | 
|   3 | block IP addresses                 | system     | 
|   3 | bypass node access                 | node       | 
|   3 | cancel account                     | user       | 
|   3 | change own username                | user       | 
|   3 | create article content             | node       | 
|   3 | create page content                | node       | 
|   3 | create url aliases                 | path       | 
|   3 | customize shortcut links           | shortcut   | 
|   3 | delete any article content         | node       | 
|   3 | delete any page content            | node       | 
|   3 | delete own article content         | node       | 
|   3 | delete own page content            | node       | 
|   3 | delete revisions                   | node       | 
|   3 | delete terms in 1                  | taxonomy   | 
|   3 | edit any article content           | node       | 
|   3 | edit any page content              | node       | 
|   3 | edit own article content           | node       | 
|   3 | edit own comments                  | comment    | 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

430 

|   3 | edit own page content              | node       | 
|   3 | edit terms in 1                    | taxonomy   | 
|   3 | post comments                      | comment    | 
|   3 | revert revisions                   | node       | 
|   3 | search content                     | search     | 
|   3 | select account cancellation method | user       | 
|   3 | skip comment approval              | comment    | 
|   3 | switch shortcut sets               | shortcut   | 
|   3 | use advanced search                | search     | 
|   3 | use text format filtered_html      | filter     | 
|   3 | use text format full_html          | filter     | 
|   3 | view own unpublished content       | node       | 
|   3 | view revisions                     | node       | 
|   3 | view the administration theme      | system     | 
+-----+------------------------------------+------------+ 
61 rows in set (0.00 sec) 

There, toward the top of the list and provided by the required core System module, is a nice 
permission for X-ray’s overview page: “access site reports.” It’s the same permission used by the other 
pages available at Administration  Reports (admin/reports). You can use it for X-ray’s page too. 

■ Tip  Drupal stores all kinds of interesting and important information in its database. It’s worth putting in some 

time to look around in there. 

Finding Permissions’ System Names in Code 
An alternative way to find the machine name is to search for it in Drupal core. As mentioned, a 
permission only exists in the database if there is at least one role that has been given it. Once you’ve seen 
“view site reports” on the Permissions administration page (admin/people/permissions), you can search 
for it in the code of Drupal’s core modules. Listing 19–14 shows a grep command that can be run from 
terminal; your operating system’s file browser or IDE can also search for a text string in your Drupal 
code. If run from the root of a Drupal install, this grep command searches only .module files within the 
modules folder for the text “view site reports.” 

Listing 19–14. Command Line Step (in Bold) to Search for “View site reports” Text in Drupal’s core   

grep -nHR --include=*.module 'View site reports' modules 
modules/system/system.module:233:      'title' => t('View site reports'), 

As the grep command (or other search) tells you, the one place your text appears is line 233 of 
system.module, which is shown in Listing 19–15.  

Listing 19–15. Excerpt from System module’s Implementation of hook_permission() 

/** 
 * Implements hook_permission(). 
 */ 
function system_permission() { 
  return array( 
// ... 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

431

    'access site reports' => array( 
      'title' => t('View site reports'), 
    ), 
// ... 
  ); 
} 

■ Tip  This is also, of course, how to define your own permission. Chapter 24 describes it in more depth, but it’s 

as simple as the code in Listing 19–15: the array returned by an implementation of hook_permission(). 

Every implementation of hook_permission() needs to return an array of permission arrays keyed by 
the internal system name (and including, at minimum, a title element with the human-facing name). 
The key for the permission with the title “view site reports” in the array returned by system_permission() 
is “access site reports” so that is what you use as the access argument in your menu item, as shown in 
Listing 19–16. 

Listing 19–16. Menu Item Using the “access site reports” Permission for Access Control 

  $items['admin/reports/xray'] = array( 
    'title' => 'X-ray technical site overview', 
    'description' => 'See the internal structure of this site.', 
    'page callback' => 'xray_overview_page', 
    'access arguments' => array('access site reports'), 
  ); 

The default local task will inherit this access control (but other tasks, or tabs, will not). 

A Second Local Task to Complement the Default Local Task 
As mentioned, when you created the first local task, a default local task, no tabs appear from these local 
tasks until there are at least two defined and accessible to the user, as shown in Listing 19–17. 

Listing 19–17. Menu Item Defining a Local Task (Displayed as a Tab) for the X-ray Permission Names Page 

function xray_menu() { 
  $items = array(); 
// ... 
  $items['admin/reports/xray/permissions'] = array( 
    'title' => 'Permissions', 
    'page callback' => 'xray_permission_names_page', 
    'type' => MENU_LOCAL_TASK, 
    'weight' => 10, 
    'access arguments' => array('access site reports'), 
  ); 
// ... 
  return $items; 
} 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

432 

You gave it a weight of ten so it will appear after the Overview tab which was given a weight of
negative ten. Lower (lighter) and negative values are said to float to the top (for elements displayed
vertically) and front (for elements displayed horizontally). In left-to-right languages, this means the local
tasks with the lightest (most negative or lowest) weights are displayed as tabs to the left of heavier-
weighted tabs, as you can see in Figure 19–3. 

Figure 19–3. When at least two local tasks are defined, the tabs are shown. 

■ Gotcha  While the default tab (MENU_DEFAULT_LOCAL_TASK) inherits its access control from the parent menu
declaration, other tabs (MENU_LOCAL_TASK) do not. You must declare access arguments and/or an access callback

in your menu item declaration. 

Now let’s make the function for the page callback you defined, xray_permission_names_page(), and
make this page give you permission names, both human-readable and machine! 

Call All Implementations of a Hook 
You know from your investigation into finding permissions’ machine names that the information you
need is in modules’ implementations of hook_permissions(). How do you get this information for
yourself? There’s a function for that: module_invoke_all() is used for invoking all implementations of a
given hook. From a module, all implementations of hook_permission() in Drupal can be invoked, and
their data gathered, with the following single line: 

  $permissions = module_invoke_all('permission'); 

The $permissions variable is now an array keyed by permission machine name, but the values are
another array that includes the permission description and other information you don't need. It can be
cycled through quickly and the extra data dropped, like so:  

  // Extract just the permission title from each permission array. 
  foreach ($permissions as $machine_name => $permission) { 
    $names[$machine_name] = $permission['title']; 
  } 

Now let’s put these names in alphabetical order by title before handing them off to a theme
function. PHP.net has excellent built-in search, so you can just go to php.net/sort to see what it gives
you. It takes you directly to PHP’s sort() function, but reading the notes for that function indicates it’s
not good enough. It assigns new keys to the array, and you are using a keyed array: the system names are
the keys, pointing to the human-readable title. Throwing out the machine name key would defeat your
purpose of showing what the machine or system permission names match the titles. So, you’ll use
asort(), like so:  

  // Put permission names in alphabetical order by title. 
  asort($names); 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

433 

■ Tip  Always read the Notes and See Also sections of PHP manual pages. The related functions listed in these 
sections, in particular, can teach a great deal about PHP and picking the function you really want, and not your first 

guess. 

The next step, handing the sorted $names array to a theme function for formatting as a table, will 
require a little research. 

Format Data for Display as a Table 
You’d like to show your permission machine names and permission titles in a nice grid as an HTML 
table. This is such a common need that surely Drupal has helper functions, an API, for printing tables. 
Let’s find a place in core that does this. As this is a user interface element, instead of looking at code, you 
can start by browsing the user interface. 

Clickety, clickety... aha! The Permissions page itself, at admin/people/permissions, is a table (a 
complicated table that is also a form with lots of checkboxes, but a table). Searching the code for 
'admin/people/permissions' to find what creates this page and table turns up these two functions in 
modules/user/user.admin.inc: user_admin_permissions() and theme_user_admin_permissions(). You 
can also see the full functions online at api.drupal.org/user_admin_permissions and 
api.drupal.org/theme_user_admin_permissions. 

While stealing code, you can steal your doxygen documentation block from User module. The 
function theme_user_admin_permissions() has the in-code documentation shown in Listing 19–18. 

Listing 19–18. Doxygen Documentation Block for theme_user_admin_permissions() 

/** 
 * Returns HTML for the administer permissions page. 
 *                                                                                                              
 * @param $variables 
 *   An associative array containing: 
 *   - form: A render element representing the form. 
 * 
 * @ingroup themeable 
 */ 

As with all theme functions, it takes one parameter, $variables. Sometimes $variables contains a 
single render element—in this case, ‘form’—but it is still provided in an associative array, as noted in this 
docblock. 

Documenting Themeable Code with @ingroup themeable 
Furthermore, User module put its theme_user_admin_permissions() function in a theme-related group 
with the line @ingroup themeable in the introducing docblock. Using the @ingroup instruction is a way to 
make your code self-documenting. 

This theme function is quite complex, as it is dicing and splicing a large form. You don’t need any of 
that and can skip down to the end to see how the table is generated. That’s the following line: 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

434 

$output .= theme('table', array('header' => $header, 'rows' => $rows, 'attributes' => 
array('id' => 'permissions'))); 

The $rows variable needs to be an array of rows, and each row is itself an array of cells. Each cell, in 
turn, can be just a string, or it too can be an array, that separates data (the contents of each cell) from 
HTML attributes to apply to the table cell. See more at api.drupal.org/theme_table. 

Listing 19–19 is X-ray module’s version of a simple themed table, built from the data returned by 
invoking all occurrences of hook_permission(). 

Listing 19–19. Theme Table for Permission Names (for Machines and for Humans) 

/** 
 * Display the X-ray permission names page. 
 */ 
function xray_permission_names_page() { 
  $names = xray_permission_names(); 
  return theme('xray_permission_names', array('names' => $names)); 
} 
 
/** 
 * Collect permission names. 
 */ 
function xray_permission_names() { 
  $names = array(); 
  $permissions = module_invoke_all('permission'); 
  // Extract just the permission title from each permission array. 
  foreach ($permissions as $machine_name => $permission) { 
    $names[$machine_name] = $permission['title']; 
  } 
  // Put permission names in alphabetical order by title. 
  asort($names); 
  return $names; 
} 
 
/** 
 * Returns HTML of permission machine and display names in a table. 
 * 
 * @param $variables 
 *   An associative array containing: 
 *   - names: Array of human-readable names keyed by machine names. 
 * 
 * @ingroup themeable 
 */ 
function theme_xray_permission_names($variables) { 
  $names = $variables['names']; 
  $output = ''; 
  $header = array(t('Permission title'), t('Permission machine name')); 
  $rows = array(); 
  foreach ($names as $machine_name => $title) { 
    $rows[] = array($title, $machine_name); 
  } 
  $output .= theme('table', array('header' => $header, 'rows' => $rows, 'attributes' => 
array('id' => 'xray-permission-names'))); 
  return $output; 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

435

} 

The final theme function receives an array of permission names with the machine names as the key 
and the version of the name intended for people to look at as the value, which was created by the 
xray_permission_names() function defined immediately above it. 

Neither theme function theme_xray_permission_names() nor any function to override it will receive 
anything or be called at all if you don’t register it with the Drupal theme system. This is covered next. 

Making Modules Themeable 
Modules and themes go together perfectly, as made famous in the Drupal power ballad, “I can be your 
module, you can be my theme” (drupal.org/project/powerballad; listen at your own risk). A well-made 
module allows all elements of its presentation to be overridden by the theme of the site on which it is 
used. This is done by using the theme() function whenever you want to send output to the screen or by 
providing a renderable array to parts of Drupal that will accept one, which includes all page and block 
output. (In the case of providing a renderable array, Drupal calls theme() for you, making use of #theme 
and #theme_wrapper properties.) For complex output, several theme functions may feed into another 
theme function. 

For its theme functions to be recognized, your module must implement hook_theme(), which 
returns an array of theme hooks or callbacks and associated information; most of the time, you just need 
to give the name that you will put 'theme_' in front of and a theme will put its THEMENAME_ in front. So 
from the code in Listing 19–19, it’s just 'xray_permission_names' and you tell it whether it gets a single 
render element or an array of variables (which you can name and provide defaults for). Listing 19–20 
shows an implementation of hook_theme() for X-ray module, defining the xray_permission_names 
theme hook with a single variable and so called ‘render element.’ 

Listing 19–20. Defining the xray_permission_names Theme Hook with a Single Variable and ‘render 

element’ 

/** 
 * Implements hook_theme(). 
 */ 
function xray_theme() { 
  return array( 
    'xray_permission_names' => array( 
      'render element' => 'names', 
    ), 
  ); 
} 

Although ‘xray_permission_names’ is stated here to take a single renderable array, when passed to a 
theming function such as theme_xray_permission_names(), it’s nested within another array and so can be 
treated exactly as the $variables array for passing multiple variables to a theming function, which you’ll 
see later. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

436 

■ Tip  Whenever you make changes to your implementation of hook_theme(), you need to rebuild the theme 
registry for those changes to take effect, including when you first define the hook, if your module was already 
enabled. You can do this in code by placing the function drupal_flush_all_caches(); in a part of your code that 

is run; remember to remove it later. You can manually clear caches and the theme registry at Administration  
Configuration  Development  Performance (admin/config/development/performance) by clicking the Clear 

all caches button.  And as usual, the most convenient way is with Drush via the command drush cc all. 

Resources for Theming in Modules 
Reading Chapter 15, on making themes, will certainly help you understand theming for modules. See 
more on producing quality, overridable output from your module code on drupal.org. 

• Read more about hook_theme() at the Drupal API site at api.drupal.org/hook_theme. 

• See every theme_ function in Drupal core—every function a themer can override to 
change the way Drupal’s output looks—at api.drupal.org/api/group/themeable/7. 

• Read “Using the Theme Layer (Drupal 7.x)” in the Module Developer’s Guide at 
drupal.org/node/933976. 

• See the Drupal Markup Style Guide at groups.drupal.org/node/6355 for a working 
proposal on the kind of HTML modules should produce. 

■ Note  Drupal.org manual pages are entirely written and maintained by volunteers. You may find one talking 
about how to do something in Drupal 6 but not find a handbook page explaining the Drupal 7 equivalent. As you 

figure something out, you can edit or create the appropriate handbook page. 

A More Drupal 7 Approach: Leveraging the Power of Render Arrays 
As noted, the permission names table example was taken from Drupal 7 core, but nevertheless there is a 
more Drupal 7 way to do it! (User module, from which you took the example, could use some love and 
attention.) Renderable arrays are now accepted and preferred as the result from a page callback 
function. In essence, Drupal gathers all the information to display a page as a giant structured array and 
knows what theming function needs to be run on each part of that array, but doesn’t run anything until 
it has everything together. This lets anyone come and easily move pieces of the page around (and is 
described in Appendix C). You call to your own theme function in the xray_permission_names_page() 
callback and your subsequent call to the table theming function short-circuited that page, altering ability 
a bit. Adopting the renderable array approach also makes it sensible to refactor your code to not need a 
custom theming function at all, as shown in Listing 19–21. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

437

Listing 19–21. Refactoring the X-ray Permission Names Page Callback to Take Advantage of Drupal 7’s 

Render System 

/** 
 * Display permission machine and display names in a table. 
 * 
 * @return 
 *   An array as expected by drupal_render(). 
 */ 
function xray_permission_names_page() { 
  $build = array(); 
  // Gather data, an array of human-readable names keyed by machine names. 
  $names = xray_permission_names(); 
  // Format the data as a table. 
  $header = array(t('Permission title'), t('Permission machine name')); 
  $rows = array(); 
  foreach ($names as $machine_name => $title) { 
    $rows[] = array($title, $machine_name); 
  } 
  $build['names_table'] = array( 
    '#theme' => 'table__xray__permission_names', 
    '#header' => $header, 
    '#rows' => $rows, 
    '#attributes' => array('id' => 'xray-permission-names') 
  ); 
  return $build; 
} 

You’re using the same data gathering function and setting up the data in the same way, and you’re 
using the same theme_table() function you identified before, but you’re telling Drupal to call that 
function by identifying it in the #theme property in the sub-array you are returning. What before was the 
array of variables handed to the theme table call becomes additional properties (#rows, #header, 
#attributes) that Drupal will hand to table theming function for you. 

Did you just undo the work you did? Well, yes. Letting go of old code is how code gets better. But 
everything you learned about theming still applies and will be used again shortly! 

You added one innovation here: the extension of the name of the table theming hook from 'table' to 
'table__xray__permission_names'. Each double underscore means that everything after the double 
underscore is optional, so core’s theme_table() function still handles theming for you, but you’ve now 
enabled themers who want to tweak your table to override theme_table() in this instance only (or for all 
X-ray tables, stopping at the first set of underscores) rather than the unworkable proposition of changing 
the theming of all tables in Drupal. This could also have been done for the table function when calling 
via theme(). 

Removing your custom function from the mix means that if themers wanted to add text, for 
example, instead of overriding your theme function, they would be better off adding it to the renderable 
page array with hook_page_alter(). See Appendix C for more about renderable arrays and the flexibility 
they provide in altering pages after the fact. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

438 

Calling a Drupal Function Directly 
Hooks are not the only way to interact with Drupal’s code; it has many useful functions you will want to 
call directly. The example in Listing 19–22 is a pretty internal-focused function used in this case (because 
the goal of X-ray module is to show Drupal’s internal functioning), but it demonstrates the principle of 
getting data from a Drupal function and using parts of it. 

Listing 19–22. Displaying Router Information with menu_get_item() Information 

/** 
 * Provide the page callback function (and other router item information). 
 */ 
function xray_show_page_callback() { 
  // Do not hand in the path; menu_get_item() finds dynamic paths on its own 
  // but fails if handed help's $path variable which is node/% for node/1. 
  $router_item = menu_get_item(); 
  // menu_get_item() can return null when called via drush command line. 
  if ($router_item) { 
    return theme('xray_show_page_callback', $router_item); 
  } 
} 
 
/** 
 * Theme the page callback and optionally other elements of a router item. 
 */ 
function theme_xray_show_page_callback($variables) { 
  extract($variables, EXTR_SKIP); 
  $output = ''; 
  $output .= '<p class="xray-help xray-page-callback">'; 
  $output .= t('This page is brought to you by '); 
  if ($page_arguments) { 
    foreach ($page_arguments as $key => $value) { 
      $page_arguments[$key] = drupal_placeholder($value); 
    } 
    $output .= format_plural(count($page_arguments), 
      'the argument !arg handed to ', 
      'the arguments !arg handed to ', 
      array('!arg' => xray_oxford_comma_list($page_arguments)) 
    ); 
  } 
  $output .= t('the function %func', 
               array('%func' => $page_callback . '()')); 
  if ($include_file) { 
    $output .= t(' and the included file %file', 
                 array('%file' => $include_file)); 
  } 
  $output .= '.</p>'; 
  return $output; 
} 

The first function assigned the return value of menu_get_item() to a variable, $router_item, and 
handed it to a theme function. The default implementation for this theme function is the second 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

439

function in Listing 19–22. It checks the information available and adds it to an output variable, which it 
returns at the end. Note that it uses another function created for X-ray module, 
xray_oxford_comma_list(), which is defined later in this chapter. 

■ Tip  Theme functions are always handed arrays, even for a sole render element. A quick way to deal with the 
array, as demonstrated in theme_xray_show_page_callback() in Listing 19–22, is to make the first line of 

theming function extract($variables, EXTR_SKIP);. This converts a single element in $variables into a 
variable of the name provided for 'render element' and multiple $variables into the names provided for 
'variables' in the implementation of hook_theme(). The EXTR_SKIP parameter is a security precaution 

preventing any existing variable from being overwritten. 

Remember that this theme_xray_show_page_callback() function (and any function that would 
override it), which you are counting on to display the information you gathered, will not be found by the 
Drupal theme system unless you register it with Drupal in hook_theme(); see Listing 19–23. 

Listing 19–23. Addition to hook_theme() Defining the xray_show_page_callback Theme Function with 

Three Variables 

/** 
 * Implements hook_theme(). 
 */ 
function xray_theme() { 
  return array( 
// [existing code not shown to save space] 
    'xray_show_page_callback' => array( 
      'variables' => array( 
        'page_callback' => NULL, 
        'include_file' => NULL, 
        'page_arguments' => NULL, 
      ), 
    ), 
  ); 
} 

Don’t forget to clear caches! 
Any variable passed to a theming function in the $variables array will be available to the theming 

function, but only the ones defined in hook_theme() (in this case, these are page_callback, include_file, 
and page_arguments) can be absolutely counted on to be initialized—to exist and have the values set, all 
NULL in this case, but any defaults can be given. (In this unusual case of providing an entire function’s 
result to the theme, instead of defining the three variables you plan to use, as in Listing 19–23, you could 
have run menu_get_item() in the theme hook just for the purpose of defining every key it returns as 
NULL or an empty string.) 

One final thing necessary to start seeing this work is to use hook_help() to print it; this can be seen at 
dgd7.org/259. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

440 

Styling Your Module: Adding a CSS File 
The first duty of a module, regarding how it looks, is to be modifiable by themes. That doesn’t mean it 
can’t provide its own default appearance. And far be it for Drupal to cramp your style! Modules can have 
their own cascading style sheets (CSS) added to every page by listing them in their .info file, just like 
themes can. The CSS file uses the classes or IDs you gave to the module’s HTML output to style it. 

Add stylesheets with the stylesheets[TYPE][] directive, where TYPE is the type of media (print, 
screen, etc.) that the stylesheet should be used for. The second set of brackets is because there can be 
multiple stylesheets for a given medium. If you want your stylesheet to be used no matter what medium 
the site is viewed through, use ‘all’ for the type, as shown in Listing 19–24. 

Listing 19–24. The .info File with Stylesheets Directive 

name = X-ray technical site map 
description = Shows internal structures and connections of the web site. 
package = Development 
core = 7.x 
stylesheets[all][] = xray.css 

■ Note  Stylesheet files are listed in the .info file with the stylesheets directive, not the files directive. 

Listing 19–25. A CSS file for the X-ray Module Boringly (but Properly) Called xray.css 

p.xray-help, 
div.xray { 
  display: block; 
  color: white; 
  padding: 5px; 
  background-color: black; 
  border: 4px solid white; 
  -webkit-border-radius: 8px; 
  -moz-border-radius: 8px; 
  border-radius: 8px; 
} 

In Listing 19–25, the line added to xray.info tells Drupal to add this CSS (the contents of the 
specified file, xray.css) on every page.  The files xray.info and xray.css are both at the same level in the 
xray directory, or else xray.info would have had to provide the path to xray.css. The style defined in 
Listing 19–25 gives the help messages and form-identifying divs a stylish, slimming black background 
and rounded borders. This works because you wrapped your output in classes when printing via 
hook_help() and hook_form_alter(). 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

441

■ Caution  Always namespace your module’s CSS files; that is, use your module’s name as the name of your CSS 
file or as the first part of the name of your CSS files. This is because Drupal lets themes automatically override 
CSS files simply by having them named the same, and you do not want a theme accidentally overriding your 

stylesheet. 

 

Figure 19–4. X-ray module’s display (including two help-area messages and the form ID printed in the 

form) 

Listing 19–26. Additions to the xray.css File 

/* Make non-help xray font size consistent with help text size. */ 
div.xray { 
  font-size: 0.923em; 
} 
 
/* Remove extra form item padding in X-ray output (for form ID). */ 
div.xray .form-item { 
  margin: 0; 
  padding: 0; 
} 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

442 

Once you have entries in your CSS file that apply to the HTML you need to affect (and have cleared
Drupal’s CSS aggregation and your browser’s cache) you can use an HTML/CSS inspection tool such as
Firefox’s Firebug to tweak properties until you have the visual effect you want. Listing 19–26 shows
additions to the xray.css file. Your module’s style should be tested in at least the core themes of Stark,
Bartik, and Garland. If your module will output anything that will be seen in the administration section,
such parts should also be tested in core’s Seven theme. 

Database API 
Drupal 7 introduced a robust database layer built on PHP Data Objects (PDO), a lightweight, consistent
interface for accessing databases. Dubbed DBTNG (Database The Next Generation) by its lead
developer, Larry Garfield (crell), the Drupal 7 Database API provides object-oriented tools for adding,
changing, and reading SQL data. 

The vendor-agnostic abstraction layer for accessing multiple kinds of database servers is designed
to preserve the syntax and power of SQL when possible but more importantly, it: 

• Allows developers to use complex functionality, such as transactions, that may not
be supported natively by all database engines. 

• Provides a structure for the dynamic construction of queries. 

• Enforces security checks and other good practices. 

• Provides modules with a clean interface for intercepting and modifying a site’s
queries. 

The most obvious benefit is that your Drupal application can run with any database (or more than
one database) that has a driver written to work with the Drupal 7 Database API. All queries properly
written to take advantage of the database layer will not care what database your site is using. Drupal
core, out of the box, works with MariaDB/MySQL, PostgreSQL, and SQLite. Database back ends already
exist for MSSQL (drupal.org/project/sqlsrv) and Oracle (drupal.org/project/oracle). (The so-called
NoSQL MongoDB database used to help scale Drupal in Chapter 27 makes use of pluggable storage for
Field API and does not use the database abstraction layer, which is designed for SQL databases.) 

■ Note  As of 7, Drupal provides transaction support. This means that if you are making changes to the database

and it’s critical to your application that these changes be all or nothing—the classic example is debiting one
account to credit another account—then you need to wrap your interaction with the database in a transaction. This
is done by declaring a transaction variable with the function described here, api.drupal.org/db_transaction.

The transaction continues until that variable is destroyed (which includes at the close of the function in which it is

defined). 

One additional large benefit, derived from the unified structure for dynamic queries (including all
insert, update, and delete queries), is that the intelligent database layer helps your site scale. Multiple
insert operations will be performed in one query for databases that support this (a much faster approach
allowed by the very common MariaDB/MySQL database, among others), and fall back to repeating a
series of single queries for databases that do not support it. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

443

All in all, DBTNG is one of the key developer-experience initiatives of the Drupal 7 release cycle. 
Next, I will cover how to use it. You can also refer to the excellent documentation at 
drupal.org/developing/api/database and api.drupal.org/api/group/database, along with the DBTNG 
Example module in drupal.org/project/examples. 

Fetching Data with a Select Query 
Pulling data out of the database is the most common database-related task you’ll see in Drupal core, 
contributed modules, and your own modules. 

For the summary X-ray provides at the top of the Structure administration page, it would be nice to 
show how many content types the site has. This means counting the number of content types, of course. 
You can get the number of content types by looking in the node_type table. Use a command line 
database client or an application such as phpMyAdmin to browse your site’s database tables and the 
columns and content within them. 

Out of the box, Drupal stores its data in relational databases (that’s what MariaDB/MySQL, Postgres, 
and SQLite are). The data can be accessed, manipulated, and saved by using the standardized structured 
query language SQL. As noted, all dynamic queries (which include manipulating and saving) should use 
the Database API query builder, but non-dynamic, or static, queries can and should use SQL directly. 
(There are lapses in standardization, and working around these is one of the purposes of the Database 
API, but this is not a concern in most cases of selecting data.) 

You’re encouraged to use straight SQL for data access queries (when possible; more on that in a 
moment). This means using the db_query() function for SQL queries starting with SELECT, as shown in 
Listing 19–27. 

Listing 19–27. Basic SQL Query to Count Content Types from the node_type Table 

db_query("SELECT COUNT(*) FROM {node_type}")->fetchField(); 

The SQL is within the quotation marks. Frequently, such SQL will take the form of "SELECT 
column_a, column_b FROM table_y". In this example, instead of selecting data with a column name, it 
selects a count of all rows from the table node_type. When a method for fetching a single field, -
>fetchField(), is added to it, db_query() returns a number directly. That number is 2 for the two content 
types (Article and Basic page) in a fresh Standard installation of Drupal. 

The db_query() function passes whatever you give it to the database almost exactly; it does prefixing 
and expands array-placeholders, but that’s it. This is the simplest and fastest way for Drupal to get data 
that can be fetched with a single standard SQL query. 

■ Tip  You can’t attach methods to db_query() except for the fetch*() methods. 

To be complete, this query should not return anything for disabled content types. That means 
adding a WHERE clause. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

444 

■ Tip  Use phpMyAdmin or the command line mysql to test queries. You’ll need to use actual table names 
(without brackets) and values (not placeholders). You will also have to do escaping yourself (quotes around strings 
but not numbers); with db_query() and db_select() queries properly written using placeholders, Drupal does 

this for you. The advantage is that you can test the query instantly, and tools like phpMyAdmin can help you 

construct the query. 

The code in Listing 19–28 is an example of a raw SQL query that could be run in the command line 
or with an application such as phpMyAdmin. 

Listing 19–28. Raw SQL to Return the Number of Available Content Types from the Node Type Table 

SELECT COUNT(*) FROM node_type WHERE disabled = 0; 

■ Gotcha  If you aren’t familiar with SQL, here’s your first gotcha—the equality comparison is a single equals 

sign, not two. In SQL, you should use <> for the “does not equal” comparison, which will also work in PHP. 

To use this query in Drupal, you use the db_query() function and make several modifications to the 
SQL. Listing 19–29 is the same query as Listing 19–27 but in the style that Drupal needs as the content of 
a db_query(); in other words, it has brackets around the table name and values passed in via 
placeholders. 

Listing 19–29. Recommended Basic-SQL Query to Count Content Types from the node_type table 

db_query("SELECT COUNT(*) FROM {node_type} WHERE disabled = :status", array(':status' => 0))-
>fetchField(); 

You have replaced node_type with {node_type} so that your module will work on sites that use 
database table prefixes. The second, bigger change is using a placeholder. Instead of disabled = 0, you 
have disabled =  :status. In this case, it’s replacing a hardcoded zero, and isn’t strictly necessary. 
When it’s a variable that may come from a user, it is absolutely necessary. You should never see 
something like disabled = $status; it should always be disabled = :status with the array(':status' 
=> $status) in the select queries second parameter. Note that you can have as many placeholders in this 
array as you want. 

Using the placeholder array is a best practice and is absolutely required for potentially user-sourced 
variables, so it should always be used for all variables. Placeholders also take care of quoting string 
values for you (and handing in numeric values without quotation marks). 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

445

■ Tip  You can test simple queries like this (and other code) in a bootstrapped test.php file by creating a file with 
the first three (out of four) lines of code from index.php and then adding the code you want to run after that. Don’t 
forget to print the output. See Chapter 33 or dgd7.org/testphp for a full explanation of using a test.php file to 

help your development flow. 

Drupal’s more complex database function db_select() can also be used to make unchanging 
(static) queries that fetch data, although this use is not recommended. If you already know even a little 
SQL, the simple db_query() approach will be easiest for you. If you are not familiar with SQL, learning 
both normal SQL and Drupal’s object-oriented syntax for databases can be a lot at once. The same 
simple select query written using the db_select() function can look the one in Listing 19–30, which 
counts the number of content types on a site, needlessly using the full Database API (for example only).  

Listing 19–30. A Simple Select Query  

  db_select('node_type') 
    ->fields('node_type') 
    ->condition('disabled', 0) 
    ->countQuery() 
    ->execute() 
    ->fetchField(); 

This query selects the table node_type, adds all fields for the node_type table just so the query runs, 
adds a condition that is equivalent to a "WHERE disabled = 0" clause, adds the countQuery() method, 
executes (runs) the query, and fetches the single field. The countQuery() method makes this query return 
a count of the rows in the result set rather than the content of any of the fields. For more counter-
examples of db_select() versions of static queries, see dgd7.org/235. 

■ Note  Best practices for realizing the virtues of avoiding duplicate code and writing maintainable code dictate 

that you investigate other ways to get this information from Drupal’s APIs, rather than writing your own query. And 
Drupal has APIs coming out of its ears. A new API in Drupal 7 that is eminently relevant to getting information 
about content types (and, as you shall see, other central components of Drupal) is the Entity API. This is covered in 

the upcoming section “Drupal Entities: Common Structure Behind Site Components” (after a whole lot more on the 

Database API). 

Before moving on to dynamic queries that require db_select(), let’s look at a few more examples of 
static queries that put their SQL in the db_query() function. 

Fetching Data with a Static Query with a Join on Two tables 
Another piece of information the X-ray module can provide is the number of blocks enabled for each 
theme. There are several queries in modules/block.module that get information from the block table, but 
they don’t fetch precisely this information, and in any case they aren’t in stand-alone API functions that 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

446 

you could use. You therefore have every justification in writing your own query. You can wrap it in a 
function for easy re-use later, as shown in Listing 19–31. 

Listing 19–31. Static Query to Count the Number of Blocks Enabled for Each Theme 

/** 
 * Fetch the number of blocks enabled per theme. 
 */ 
function xray_stats_blocks_enabled_by_theme() { 
  return db_query("SELECT theme, COUNT(*) as num FROM {block} WHERE status = 1 GROUP BY 
theme")->fetchAllKeyed(); 
} 

The ->fetchAllKeyed() method provided by Drupal’s Database API for db_query() objects takes any 
two-column result set (here, the theme and the count of blocks) and makes an array in which the values 
from the first column are the keys to the values from the second column. 

Listing 19–32. The Array Returned by db_query(“SELECT theme, COUNT(*) as num FROM {block} WHERE 

status = 1 GROUP BY theme”)->fetchAllKeyed(); 

array ( 
  'bartik' => '10', 
  'garland' => '7', 
  'seven' => '9', 
  'stark' => '7', 
) 

■ Caution  The ->fetchAllKeyed() method returns only the first two columns of a result set and silently ignores 

the rest. 

There are still two things wrong in Listing 19–32. First, this section is titled “Static Query with a Join” 
and this query doesn’t have a join yet.  Second, this query is returning the number of enabled blocks for 
every theme, when restricting the report to enabled themes would make more sense. Let’s revise the 
query to solve both those problems, as shown in Listing 19–33. 

Listing 19–33. Static Query Involving a Join from the Block Table to the System Table to Restrict Data 

Reported to Enabled Themes 

/** 
 * Fetch the number of blocks enabled per enabled theme. 
 */ 
function xray_stats_blocks_enabled_by_theme() { 
  return db_query("SELECT b.theme, COUNT(*) as num FROM {block} b INNER JOIN {system} s ON 
b.theme = s.name WHERE s.status = 1 AND b.status = 1 GROUP BY b.theme")->fetchAllKeyed(); 
} 

The first necessary new part of this query is that the reference to the {block} table is followed by a 
letter b (which could be most any characters or word) that acts as its table alias. The next major addition 
is the join statement, which is what makes the table alias necessary; it’s now possible to have two 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

447

columns with the same name from different tables. That b is then used in front of the where condition 
status = 1, such that it becomes b.status = 1.  This is necessary for database engines to differentiate 
between block status and theme status because the table you are joining to the block table, system, also 
has a status column. 

The system table, for its part, is also given an alias, s, as can be seen in the join statement, which 
immediately follows and becomes part of the from statement, such that together it reads FROM {block} b 
INNER JOIN {system} s ON b.theme = s.name. 

 An inner join means that there has to be a match in each table for a row to exist in the result set, and 
the "ON" part of the statement declares the columns to match the tables on; in this case, it’s the block (b) 
table’s column theme (which contains theme system names) with the system (s) table’s column name 
(which contains project names including themes). Table aliases are used consistently throughout to 
prevent any ambiguity, although in this case there is no theme column in the system table, and no name 
column in the block table, so the table alias ‘b’ for the block table could be left off when referring to the 
theme column and the alias ‘s’ left off when referring to the name column, but once you start making 
joins, it’s important to be explicit. 

A Non-Database Interlude: Displaying the Same Data in Two 
Locations 
Before moving on to dynamic, structured queries, let’s take a moment away from the database to close 
the loop and show X-ray’s information to site builders. First, Listing 19–34 shows a function for 
providing a full summary of the Structure page which calls the function you just defined, 
xray_stats_blocks_enabled_by_theme(), and a couple others defined elsewhere. 

Listing 19–34. Displaying Summary Data on the Structure Page 

/** 
 * Summary data for Structure section (admin/structure). 
 */ 
function xray_structure_summary() { 
  $data = array(); 
  $data['blocks_enabled_by_theme'] = xray_stats_blocks_enabled_by_theme(); 
  $data['block_total'] = xray_stats_block_total(); 
  $data['content_type_total'] = xray_stats_content_type_total(); 
  // @TODO menu, taxonomy 
  return $data; 
} 
 
/** 
 * Implements hook_theme(). 
 */ 
function xray_theme() { 
  return array( 
// [existing code not shown for space reasons] ... 
    'xray_structure_summary' => array( 
      'variables' => array( 
        'data' => array(), 
        'attributes' => array('class' => 'xray-help'), 
      ), 
    ), 
  ); 
} 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

448 

 
/** 
 * Implements hook_help(). 
 */ 
function xray_help($path, $arg) { 
  $help = ''; 
// [existing code not shown for space reasons] ... 
  switch ($path) { 
    // Summaries for main administrative sections. 
// [existing code not shown for space reasons] ... 
    case 'admin/structure': 
      $variables = array('data' => xray_structure_summary()); 
      return $help . theme('xray_structure_summary', $variables); 
// [existing code not shown for space reasons] ... 
    default: 
      return $help; 
  } 
} 
 
/** 
 * Returns HTML text summary of Structure section (admin/structure) data. 
 * 
 * @param $attributes 
 *   (optional) An associative array of HTML tag attributes, suitable for 
 *   flattening by drupal_attributes(). 
 * @param $variables 
 *   An associative array containing: 
 *   - data: result of xray_structure_summary(). 
 * 
 * @ingroup themeable 
 */ 
function theme_xray_structure_summary($variables) { 
  // Make direct variables of xray_structure_summary()'s data elements. 
  extract($variables['data'], EXTR_SKIP); 
  $attributes = drupal_attributes($variables['attributes']); 
 
  $output = ''; 
  $output .= "<p $attributes>"; 
  $output .= t('This site has @total blocks available. Of these,', 
             array('@total' => $block_total)); 
  $output .= ' ', 
  $list = array(); 
  foreach ($blocks_enabled_by_theme as $theme => $num) { 
    $item = ''; 
    $item .= format_plural($num, '1 is enabled', '@count are enabled'); 
    $item .= ' ' . t('on %theme', array('%theme' => $theme)); 
    if ($theme == variable_get('default_theme', 'bartik')) { 
      $item .= t(', the default theme'); 
    } 
    elseif ($theme == variable_get('admin_theme', 'seven')) { 
      $item .= t(', the admin theme'); 
    } 
    $list[] = $item; 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

449

  } 
  $output .= xray_oxford_comma_list($list, array('comma' => '; ')); 
  $output .= '.  '; 
  $output .= format_plural($content_type_total, 
    'The site has one content type.', 
    'The site has @count content types.' 
  ); 
  return $output; 
} 

The xray_oxford_comma_list() function is defined in Chapter 20 in the section titled “Writing a 
Utility Function when Drupal’s APIs Miss Your Need.” For now all that matters is that it turns the array 
of items provided to it into a text string output. 

Listing 19–35. Reusing the Summary on the X-ray Reports Overview Page 

/** 
 * Overview page with summaries of site internal data. 
 */ 
function xray_overview_page() { 
  $build = array(); 
  $build['intro'] = array( 
    '#markup' => '<p>' . t("Technical overview of the site's internals.  These summaries also 
appear / can be configured to appear on main administration section.") . '</p>', 
  ); 
  // Repeat each summary from the top of each administrative section. 
// [existing code not shown for space reasons] ... 
 
  $build['structure_title'] = array( 
    '#theme' => 'html_tag', 
    '#tag' => 'h3', 
    '#attributes' => array('class' => 'xray-section-title'), 
    '#value' => t('Structure summary'), 
  ); 
  $data = xray_structure_summary(); 
  $build['structure_summary'] = array( 
    '#theme' => 'xray_structure_summary', 
    '#data' => $data, 
    '#attributes' => array('class' => 'xray-report'), 
  ); 
 
  return $build; 
} 

The overview page is built as a renderable array. Unlike the somewhat antiquated Help system, 
where you must call theme() yourself to process your array of variables to an HTML string, in the page 
callback function xray_overview_page() you can build and return an entire renderable array and Drupal 
will know what to do with it. A site builder could alter this page array by changing the #theme function or 
even adding to the #data array, but it’s unlikely anyone would need to get this fancy. Most themers’ 
needs will be met with CSS, and so you also hand in a different class (in the #attributes array) to make it 
very straightforward to style it differently with CSS should you or anyone else choose to do so. 

There are two more functions providing data for the information you just themed and presented 
about the site’s Structure administration section. This data is also provided by SQL queries. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

450 

Using variable_get() and Another Static Select Counting and 
Grouping Query 
The other inputs for presenting structure-related information also came from static (db_query()-style) 
SQL queries. The one that fetched content type statistics was the function 
xray_stats_content_type_total() returning the query you showed in Listing 19–26 for selecting the 
count of non-disabled content types. 

The other piece of data used was the total number of blocks available, which can be calculated from 
the block table, filtered by theme as the block table has a row for every block for each theme. 

Listing 19–36. Query to Return the Total Number of Blocks Available to a Site 

/** 
 * Fetch the total number of blocks available on the Drupal site. 
 */ 
function xray_stats_block_total() { 
  // Get count of total blocks.  All blocks are repeated in the block table 
  // for each theme, so you filter for one theme (it could be any theme). 
  return db_query("SELECT COUNT(*) FROM {block} WHERE theme = :theme", array(':theme' => 
variable_get('theme_default', 'bartik')))->fetchField(); 
} 

Listing 19–36 uses Drupal's variable_get() function. The variable_get() function is funny because 
it must always provide its own default value as the second parameter (here, 'bartik'). This should be the 
same value a corresponding variable_set() function uses. This is because the variable_set() function 
may not have ever been run, if for instance no one has saved the settings page on which it is used. In this 
case, the configuration value does not exist in the {variable} table (which is loaded into the $conf array 
on every page load), and the variable_get() will return nothing. 

Analogous queries and theming functions are used in the module to get information about other 
sections of the site; see the code or dgd7.org/252. 

■ Tip  Drupal doesn’t have the most consistent naming scheme for its tables. Usually this is due to the need to 
avoid words that are reserved for special use by various databases. Hence, although the rule is that tables take the 

singular form of what they hold (comment, block, variable), the table of user records is called users because the 

term user is reserved in MySQL. 

Dynamic Queries 
As mentioned, it’s best to use the simple SQL queries when possible, and you have begun to 
demonstrate the query builder alternative, but you have not defined what “when possible” means. The 
Database API’s functions and methods (for all the goodness of DBTNG described in the opening section) 
must be used for all dynamic queries, which includes using db_select() instead of db_query() for 
dynamic select queries. A dynamic query is: 

• All INSERT, UPDATE, or DELETE queries (for which the Database API provides 
db_insert(), db_update(), and db_delete() respectively). 

• SELECT queries that Drupal may need to modify, such as to provide access control. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

451

• SELECT queries that you want to change based on user input (meaning the 
structure of the query changes, as db_query can handle what is passed in). 

• SELECT queries that make use of functionality that is not implemented consistently 
across different database engines. For instance, if you use db_select() with LIKE 
(or NOT LIKE) as the third parameter of a ->condition() method, you can be sure 
the comparison will be done in a case insensitive manner. 

■ Note  The need to provide access control includes every time you query the node table, so you must use the 
db_select() query builder and include the method ->addTag('node_access') before the ->execute() method.  
Leaving off this tag constitutes a security hole in that site visitors may see content they are not authorized to see, 
such as unpublished nodes. Don’t tell anyone you read it here, but if you are new to SQL and learning it along with 

the Database API, there’s nothing horribly wrong with sometimes using the heavier Database API functions even 
when you don’t need them, if you’re simply more comfortable with them.  However, the db_query() SQL approach 
has several additional qualities that argue for its use whenever possible: you learn the underlying queries (which is 

valuable for using the query builder approach also); you will be able to test a query more rapidly than with the 
db_select() query builder (such as directly on the database without Drupal at all), and finally, you may need to do 

complex queries that the query builder can’t do. 

You’ve been looking at the database a lot in this chapter. In an ideal Drupal world, your module 
would not be looking at the database tables of another module; instead there’d be an API to get whatever 
information it needs. Practically, it would be an exercise of premature optimization for a module 
developer to try to make a function for anything that another module might want from its data. The 
database layer, as mentioned, is very robust in Drupal 7 and lets the storage of data be handled by any 
database that provides integration with Drupal’s database layer, without your code having to care what 
database gets used. When your module needs to store data, however, it is undoubtedly your job to use 
the database layer! 

You’ve seen one contrived example of a query-builder; now let’s look at some real ones. But first, if 
your module is going to be manipulating its own data with SQL, it needs to make a database table. 

The .install File 
In case you couldn’t guess, creating a database table involves another hook: hook_schema(). 

Every hook you have looked at so far has been implemented in the .module file, but there are four 
main types of hooks that go in a different file: the .install file.  These hooks are hook_install(), 
hook_schema(), hook_uninstall(), and hook_update_N(). When your module has its own database table, 
you need a .install file that implements hook_schema(). There are other reasons to have a .install file, 
too. Your hook_install() can insert data into that database table (or another module’s) and it can be 
used to add a nice message with drupal_set_message() to help people know what to do when your 
module is enabled. One or more implementations of hook_update_N(), such as example_update_7000 and 
example_update_7001(), are needed if the schema of your database tables have changed. While you 
should always ensure hook_schema() has the most current schema, if you’ve released versions of your 
module and then changed the schema, you need hook_update_N() to catch people up who installed your 
module with the old schema. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

452 

Other .install module hooks (or really, all of these are callbacks as they are called for the one
module being installed only) include hook_requirements(), to have any requirement you can code
checked before your module is installed, and hook_update_dependencies(), to make sure
hook_update_N() functions that rely on another module’s hook_update_N() function don’t run before it.
See dgd7.org/253 for conveniently clickable links to api.drupal.org for these functions and for more
information on all .install callbacks. 

■ Note  As of 7, if all your module needs to do is define a database table, you can skip implementing
hook_install() and hook_uninstall(). If Drupal sees a hook_schema() implementation in your .install, it 
figures out that you want the tables defined in it created on install and removed on uninstall. Note that if your

module puts any configuration settings in the variable table, you’ll still have to use hook_uninstall() to clean

that up yourself with variable_del() or your own SQL call via db_delete(). 

Figuring Out Your Data Model 
Before creating your database tables, and ideally before coding related parts, you need to decide what
data model will serve your purposes. 

The X-ray module needs a database table to store a record of hook invocations that are made on a
site, so that it doesn’t have to start fresh at each cache refresh, and so that it can combine hook
information from multiple sources in one, sortable table. The information you’d like to store is: 

• The name of the hook invoked. 

• The time you first recorded the hook being invoked. 

• The time you last recorded the hook being invoked. 

• The list of modules that implement this hook, if any. 

The code that gather shook information, the invocation of the hook module_implements_alter(),
only runs when the hook implementation cache is cleared, so recording the total number of times you
recorded the hook being invoked doesn’t seem likely to mean anything definite. You’ll put a count in
there anyway to see if any patterns arise. 

■ Note  When Drupal stores additional data that may have varying structures or amounts and that it will not want

to sort, Drupal often chooses to stuff it all into a single column as a serialized array. 

Because a database can’t sort on a list of information such as you will be storing in the modules
column, you can add another piece of information you’d like to store separately: the number of
implementing modules. (You could also store the implementing modules in a separate database table
with two columns, hook and module, where the two together provide a unique combination—but a
separate table for this violates the common-sense rule of starting simple and adding what you need
when and if you need it. Initially, X-ray even skipped its own table at all, pulling information for what
hooks were invoked from Drupal’s cache_bootstrap table; see dgd7.org/255.) 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

453

Creating a Database Table 
Drupal core’s .install files and their hook_schema() implementations are a great place to look for how to 
define various data types. For the hook name, you’ll need a basic text string: varchar. For timestamps, 
numbers are used: int. A database field type for a moderately-sized serialized array was harder to find, 
but system_schema() had it for the {system} table’s info array, so you'll copy and modify its definition, 
where the type is blob. For a count, you want an integer again (int). The primary key is the hook (each 
hook should appear only once in the table), and you’re going to be certain to add an index for each 
additional column (field) that you wish to sort by. Note that the primary key is automatically indexed. 

That’s been enough ado.  Now let’s define a database table. Create the .install file, if you don’t have 
one yet, and implement hook_schema(). Listing 19–37 shows the schema definition for X-ray module for a 
table to hold hook invocation and implementation information, with four columns (or fields).   

■ Note  While every module with its own database tables should define them in its .install file, when data 
storage is handled on your module’s behalf, such as is the case with the Field API, you don’t define the table 

yourself. 

Listing 19–37. This Entirety of the xray.install File 

<?php 
/** 
 * @file 
 * Install, update and uninstall functions for the X-ray module. 
 */ 
 
/** 
 * Implements hook_schema(). 
 */ 
function xray_schema() { 
  $schema['xray_hook'] = array( 
    'description' => 'A record of hook invocations (using module_invoke_all).', 
    'fields' => array( 
      'hook' => array( 
        'description' => 'The primary identifier for a node.', 
        'type' => 'varchar', 
        'length' => 255, 
        'not null' => TRUE, 
        'default' => '', 
      ), 
      'first' => array( 
        'description' => 'Timestamp of when the hook was first recorded.', 
        'type' => 'int', 
        'unsigned' => TRUE, 
        'not null' => TRUE, 
        'default' => 0, 
      ), 
      'last' => array( 
        'description' => 'Timestamp of when the hook was last recorded.', 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

454 

        'type' => 'int', 
        'unsigned' => TRUE, 
        'not null' => TRUE, 
        'default' => 0, 
      ), 
      'count' => array( 
        'description' => 'Total count of times the hook is recorded as invoked.  Note that 
this is only recorded after a cache clear.', 
        'type' => 'int', 
        'unsigned' => TRUE, 
        'not null' => TRUE, 
        'default' => 0, 
      ), 
      'modules' => array( 
        'description' => 'A serialized array of module machine names for the modules which 
implement this hook.', 
        'type' => 'blob', 
        'not null' => TRUE, 
      ), 
      'modules_count' => array( 
        'description' => 'Count of the number of implementing modules.', 
        'type' => 'int', 
        'unsigned' => TRUE, 
        'not null' => TRUE, 
        'default' => 0, 
      ), 
    ), 
    'indexes' => array( 
      'xray_hook_first' => array('first'), 
      'xray_hook_last'  => array('last'), 
      'xray_hook_count' => array('count'), 
    ), 
    'primary key' => array('hook'), 
  ); 
  return $schema; 
} 

While you no longer have to tell Drupal to create a database table on install or destroy it on 
uninstall, if you have an existing, released module, you do have to tell it to create the table in an update 
hook. Moreover, you need to copy the schema into that update hook because it needs to be the baseline 
against which any other updates are run. Imagine you add a database table in version 1.2 of your 
module, add a column to it in version 1.3, and change the unique indexes in version 1.4. Someone who 
downloads 1.4 should have a version of hook_schema() that includes all of that. However, your true fan 
(the person you really care about) who had version 1.1 of your module and upgraded to 1.2 needs an 
update hook that creates the database table. When updating to version 1.3, the same fan will need an 
update hook that adds a column. And so again when updating to version 1.4. (In fact, X-ray had a beta 
release before this table was added, and so needs the install-a-whole-table update hook. Details on this 
and the more common uses of hook_update_N() at dgd7.org/261.) 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

455

Inserting and Updating Data 
You have a database; now it’s time to populate it. Frequently you will be either inserting new rows of 
data or updating existing rows of data in about the same place in the code. As noted later, db_merge() is 
often the best function to use for that. That isn’t always the case, though, and isn’t so here: you need 
both db_insert() and db_update() when adding or updating hook information to the {xray_hook} table 
defined in the previous section. 

The reason you can’t use db_merge() is that you want to set the “first time” if you are inserting, but 
leave it alone if you are updating. You also want to increment the count value. Therefore, you need to 
check if the hook has been saved already and fetch the value from the count column. This should be 
done with straight SQL and can be done in one statement. Listing 19–38 shows the use of the db_insert() 
and db_update() Database API functions. Because there are a few bumps in the road on the way to the 
two DBTNG functions you care most about, that portion of the code is in bold.   

Listing 19–38. Use of the db_insert() and db_update() Database API Functions /** 

 * Implements hook_module_implements_alter(). 
 */ 
function xray_module_implements_alter(&$implementations, $hook) { 
  // Because hook_module_implements_alter() is invoked for X-ray before the 
  // xray_hook table is created, check if the table exists and bail on this 
  // function if it does not.  Because this hook can be called many times on 
  // page loads after a cache clear, statically cache this check. 
  static $table = NULL; 
  if ($table === FALSE || !($table = db_table_exists('xray_hook'))) { 
    return; 
  } 
 
  $is_existing = (bool) $count = db_query('SELECT count FROM {xray_hook} WHERE hook = :hook', 
array(':hook' => $hook))->fetchField(); 
  // Increase the count of times this invocation has been checked by one. 
  // $count++ does not work if $count is FALSE. 
  if ($is_existing) { 
    $count++; 
  } 
  else { 
    $count = 1; 
  } 
 
  // You don't want first and last timestamp potentially varying by a second 
  // in cases where they should be the same. 
  $timestamp = time(); 
 
  $fields = array( 
    'last' => (int) $timestamp, 
    'count' => (int) $count, 
    'modules' => serialize($implementations), 
    'modules_count' => (int) count($implementations), 
  ); 
 
  if ($is_existing) { 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

456 

    // Update the hook. 
    db_update('xray_hook') 
      ->fields($fields) 
      ->condition('hook', $hook) 
      ->execute(); 
  } 
  else { 
    // The hook has not been recorded yet, insert it into the database. 
    $fields['hook'] = (string) $hook; 
    $fields['first'] = (int) $timestamp; 
    db_insert('xray_hook') 
      ->fields($fields) 
      ->execute(); 
  } 
} 

■ Tip  If you didn’t need to check if the first time existed (and provide it or not accordingly), you could use the 
wonderfully convenient db_merge() function that automatically does the equivalent of a db_update() if the 

primary key already exists and the equivalent of a db_insert() if it does not.  See api.drupal.org/db_merge 

and drupal.org/node/310085. 

I ran into a bunch of errors when doing this code originally. Many debug() statements were 
deployed in figuring out the places I went wrong; see dgd7.org/256 to commiserate with me about (or 
laugh at) my problems. 

Displaying Data in a Sortable Table 
You know the drill by now. Find something you like in core. The Recent log messages page of the 
Database logging module looks like a good choice. Three of the columns are sortable and there are no 
administrative checkboxes bringing the complications of a form into it. The section “Finding a Drupal 
function that Does What You Need” will take you to where this table is created—or X-ray will tell you: 
“This page is brought to you by the function dblog_overview() and the included file 
modules/dblog/dblog.admin.inc.” Off you go. 

■ Tip  The dblog_overview() function and its helper functions in modules/dblog/dblog.admin.inc also have 

an example of using a filter query and filter form that allow users to filter a table. 

Nearly every part of the table in Figure 19–5 is a simpler version of the log messages table used as 
example code. It uses the renderable array structure to pass several parameters (as properties of the 
array) to a table theming function ('#theme' => 'table'). The first function that chooses to implement 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

457

'table' (and you've fancied it up even more with the double underscore magic, using '#theme' => 
'table__xray__hooks' to allow a theming function to take over for 'table__xray' or 'table__xray__hooks') 
will get to make the HTML table. In this case (and in practically all cases), no modules or themes choose 
to take on the task of theming a table and Drupal core’s theme_table() has the job. You've already looked 
at theme_table() and as before you can look up what it expects at api.drupal.org/theme_table. Even 
better, you have the dblog.admin.inc example. 

The code in Listing 19–39 introduces a legitimate use of the db_query() function (in bold, since this 
section is purportedly about the Database API).  With the method ->extend('TableSort') added to the 
query, and fields using the same table nickname ('h') in the query as they do in the table’s headers, the 
theme_table() function fairly magically knows what query to manipulate to sort the table in different 
ways. 

The use of array_keys() on the array of implementing modules (which is unserialized from the 
database) warrants a moment of explanation. This goes back to the way Drupal handed the 
implementations to xray_module_implements_alter(), which is where you saved this information to the 
database. The implementing modules were listed with the key as the module name and the value as only 
FALSE. If a module’s name is present as a key, that means the module implemented the hook; the value 
is not used. Drupal does this because searching on the key is faster than searching on the value. 
(Elsewhere in Drupal identical keys and values are sometimes used for this same reason.) As you did not 
change this before saving it to the database, you need to use array_keys() to make an array out of the 
keys (and drop the values) before handing it to any listing function. 

Let’s go to the code!  The first segment is adding this menu callback so the page is shown. You’ll 
have to clear caches to see the new Hooks tab added to the Administration  Reports  X-ray section. 

Listing 19–39. The Callback Showing the Information from the {xray_hook} Database Table as a Sortable 

HTML Table 

/** 
 * Implements hook_menu(). 
 */ 
function xray_menu() { 
// [existing code not shown due to space considerations] ... 
  $items['admin/reports/xray/hooks'] = array( 
    'title' => 'Hooks', 
    'page callback' => 'xray_hook_implementations_page', 
    'type' => MENU_LOCAL_TASK, 
    'weight' => 20, 
    'access arguments' => array('access site reports'), 
  ); 
  return $items; 
} 
 
/** 
 * Table of available hooks and the modules implementing them, if any. 
 */ 
function xray_hook_implementations_page() { 
  $build = array(); 
 
  $header = array( 
    array('data' => t('Hook'), 'field' => 'h.hook'), 
    array('data' => t('Implementing modules'), 'field' => 'h.modules_count'), 
    array('data' => t('First recorded'), 'field' => 'h.first'), 
    array('data' => t('Last recorded'), 'field' => 'h.last'), 
  ); 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

458 

  $rows = array(); 
 
  $query = db_select('xray_hook', 'h')->extend('TableSort'); 
  $query->fields('h', array('hook', 'modules', 'modules_count', 'first', 'last')); 
  $result = $query 
    ->orderByHeader($header) 
    ->execute(); 
 
  foreach ($result as $invocation) { 
    // Prepare the implementing modules text. 
    if (empty($invocation->modules)) { 
      $modules_text = t('<em>None</em>'); 
    } 
    else { 
      $modules = array_keys(unserialize($invocation->modules)); 
      $modules_text = xray_oxford_comma_list($modules); 
    } 
    $rows[] = array( 
      // Cells.  Must be in the correct order to match $headers! 
      $invocation->hook, 
      $modules_text, 
      format_date($invocation->first, 'short'), 
      format_date($invocation->last, 'short'), 
    ); 
  } 
 
  $build['hook_table'] = array( 
    '#theme' => 'table__xray__hooks', 
    '#header' => $header, 
    '#rows' => $rows, 
    '#attributes' => array('id' => 'xray-hook-implementations'), 
    '#empty' => t('No hooks recorded yet (this is unlikely).'), 
  ); 
   
  // Return the renderable array that you've built for the page. 
  return $build; 
} 

A little more on the code in a moment, but first...  it works! 
There’s one cool thing a little bit hidden here that’s not from the Recent log messages table. The 

Hooks HTML table is showing data that comes from one column in the database table, but sorting that 
HTML column based on the data from a different database table. This is what allows the modules listing, 
which is coming from an unsortable blob in the database (literally), to be sorted by the number of 
modules. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

459

 

Figure 19–5. Success! You now have a beautiful and sortable table of every hook Drupal has called via 

module_implements(). 

■ Tip  If you are wondering if something can be done, just try it. No one knows everything up front, and coding in 

a development environment with version control means you can always recover from a failure. 

Inconveniently, the first time you click on Implementing modules, it sorts by the number of modules 
ascending, which means it starts with those hooks with no modules implementing them, which is less 
interesting than the most-used hooks.  There’s an issue for allowing a descending sort to be the initial 
one when clicking a table header: see drupal.org/node/109493. How did I find that issue? I found it while 
searching for “drupal table sort different column,” which did not come up with an answer. How did I 
actually discover you could use a different field than is shown to sort a column?  I just tried it.  This is 
perhaps the most important way of learning and succeeding, as advocated in Chapter 14. If you’re 
wondering about it, give it a try. It won’t hurt, and you may make a cool discovery. 

■ Note  An initial iteration of this table used Drupal core’s item_list() function—theme('item_list', 

array('items' => $modules));—to format the list of implementing modules, but the rows for the most-used 
hooks became unreadably high. The xray_oxford_comma_list() defined in the next chapter came to the rescue. 

Another common trick is to use CSS to make HTML lists display inline. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

460 

One final thing: while the guess about sorting the implementing modules column using the 
modules_number field from the database succeeded pretty much right away, twenty other things went 
wrong the first time coding this section.  The database errors took the longest, but even printing out the 
list of implementing modules first silently failed because I left out the ‘modules’ field from the query 
(doh!), then failed very loudly because I had a typo in “$invocaton”, and then failed moderately loudly 
because I forgot to unserialize that column’s data. Three different causes of one problem! (This is 
disturbingly common in programming.) Authors of other books and other chapters are probably less 
error-prone, but trust me, no one gets everything right the first time, and you shouldn’t even try. (But 
don’t leave out a field you want to display. Or leave serialized data serialized. Or make typos. Skip my 
stupid mistakes and reach for intelligent, ambitious mistakes. And when things don’t work, fix the errors. 
And enjoy it all the more when it finally works out!) 

Drupal Entities:  Common Structure Behind Site Components 
Drupal 7 introduced the concept of entities to standardize its treatment of essential data objects. Users, 
nodes, comments, taxonomy vocabularies, taxonomy terms, and files—these are all entities in Drupal 7 
core. Contributed modules can register additional entity types by implementing hook_entity_info(); 
this is covered in Chapter 24. 

Nodes, the main content object on Drupal sites, are the prototypical entity; the creation of the 
entities concept in Drupal 7 had a lot to do with making the other objects act more like nodes. In 
particular, the introduction of Fields in Drupal core made it seem necessary to give non-node objects 
something analogous to content types (also called node types). In Drupal 6, the Content Construction 
Kit project (drupal.org/project/cck) and related modules made it possible to add fields (text fields, 
number fields, e-mail address fields, file fields, image fields, etc.) to content types. Every content type 
represented a set of fields. In Drupal 7, any entity can have fields (if its entity type definition declares it a 
“fieldable entity”) but it was also desired for one entity type to have entities with different sets of fields. 
The word bundle was forcibly conscripted into service in Drupal to describe this generic sense of “thing 
with fields,” the analog of content type for non-node entities. 

■ Note  Entities introduce the concept of bundle and content types are examples of bundles. In other words, a 

content type is a bundle—the most common bundle you are likely to deal with in Drupal 7. 

You can get information about every bundle on a Drupal site with a function named 
field_info_bundles(). While figuring out what to display and how to display it on the Structures 
administration page, you can print the output of this and other functions or variables with the debug() 
function. (You can also, of course, use a debugger; see dgd7.org/ide.) In a bootstrapped test.php file 
(dgd7.org/testphp) or a function that is called such as a callback in hook_help() or a page callback, place 
the code debug(field_info_bundles()); 

The output is a wealth of information about your site’s entities. It would take 11 pages if placed in 
this book, so please look at your own output (or refer to dgd7.org/151) for the full result. This is an 
excessively large array, but huge nested arrays are expected when developing with Drupal. 

From this entity and bundle information, output by the function field_info_bundles(), you learn 
there are six types of entities on your site already in a typical install. These entities are comment, node, 
file, taxonomy_term, taxonomy_vocabulary, and user. Each entity type is further divided into at least one 
bundle. The file entity type, for instance, defines only the file bundle, while the comment entity type has 
bundles for every content type to which comments attach. 



CHAPTER 19 ■ USING DRUPAL’S APIS IN A MODULE 

461

■ Gotcha  The node type is not stored in the comment table. It’s only available in the comment entity, and so 
through a function such as field_info_bundles(). Don’t expect all bundle information to be easily found in the 

database! 

You can use field_info_bundles() to provide a listing of all entities and bundles with X-ray. See 
dgd7.org/254 for turning the debug statement into a nicely formatted informative table—but you can get 
all the information you need from the debug output, of course. 

Summary 
This chapter introduces you to APIs and teaches you how to write a whole module. You saw instructions 
and examples for using the hooks and functions provided by Drupal, which include altering forms, 
localization, making modules themable, creating pages with hook_menu(), and using and defining 
permissions. These were covered in the course of building a complete module. As each feature of the 
module requires using another tool from the extensive selection in Drupal’s API toolbox, I introduced 
the tools and showed you how to use them.  

Now you know what it takes to write a whole module, but there is still more to the module story, 
which is finished off in Chapter 20 where you will learn to create a configuration page and settings form 
and refine your module into a drupal.org-worthy module, including fixing errors and reviewing for 
coding standards. 

■  Tip  Also check out dgd7.org/intromodule for discussion about confusing parts of this chapter and the 

continued development of X-ray module. 

  



C H A P T E R   20 

■ ■ ■ 

463

Refining Your Module 

by Benjamin Melançon 

Chapters 18 and 19 have shown you how to write your module, but there’s more to a module than just
the code you’ve written. In this chapter you’ll see how to: 

• Create a configuration page and settings form. 

• Refine your module into a drupal.org-worthy module, including fixing errors and
reviewing for coding standards. 

Creating a Configuration Page for Your Module 
X-ray module could get away with setting sensible defaults and having no configuration page. The
design philosophy of Don’t Make Me Think (in general, but in particular the now-classic book of that
name by Steve Krug) argues for removing non-essential options. Whenever possible, replace choices to
be made by the user with sensible defaults. Almost as good as or better than leaving out configuration
options, perhaps, is a configuration page most administrators using your module will never have to visit. 

X-ray module will allow administrators to turn off the display of administrative section summaries,
page callbacks, and form IDs. These will all be on by default so that the module just works out of the box. 

Where to Put a Configuration Page 
There is an entire section of Drupal’s administration called Configuration, so there’s not too much
question of where to put a configuration page. It’s not that simple, of course. The Configuration section
in Drupal 7 is divided into many subsections, including (in core Drupal) People, Content authoring,
Media, Search and metadata, Regional and language, System, User interface, Development, and Web
services. As X-ray is clearly a development aid, its configuration should go under Development
(admin/config/development), but you’ll need to decide for each module you create (that has a
configuration section) what category it belongs in, based on core modules and on any related, respected
contrib modules. Personally, I dislike the fragmentation of a module’s administration pages into wholly
separate sections, as it doubles the number of places administrators must look for things. This
separation, however, is the way of Drupal 7; indeed, it is the way of the future as well. A module
providing reports for administrators, as X-ray does, should put them in the Reports section of
Administration; if that module provides any configuration options they go in Configuration. This does
make sense in the long run, as it makes modules work in a way consistent with Drupal core, but for the
site builder who just enabled a module and is trying to figure out how to use it, the separation adds to
the difficulty of navigating an already overwhelming interface. You will use hook_help() again in the 



CHAPTER 20 ■ REFINING YOUR MODULE 

464 

“Using hook_help() as Drupal intended” section to make a helpful link from X-ray’s reports page to its 
configuration and vice versa. 

Defining a Menu Item for a Settings Form 
Configuration forms are such a common need, in Drupal core as well as for contributed modules, that 
Drupal provides a number of helpful functions and shortcuts (see Listing 20–1). 

Listing 20–1. A Menu Item for the X-ray Settings Page 

/** 
 * Implements hook_menu(). 
 */ 
function xray_menu() { 
  $items = array(); 
  // ... 
  // Administration page. 
  $items['admin/config/development/xray'] = array( 
    'title' => 'X-ray configuration', 
    'description' => 'Configure which elements of internal site structure will be shown.', 
    'page callback' => 'drupal_get_form', 
    'page arguments' => array('xray_admin_settings'), 
    'file' => 'xray.admin.inc', 
    'access arguments' => array('administer site configuration'), 
    'weight' => 0, 
  ); 
  return $items; 
} 

The most interesting parts of this menu item declaration, compared to what you have looked at 
before, are the 'page callback', 'page arguments', and 'file' instructions. The 'page callback', rather than 
being a custom function as in other examples, is a Drupal core function for getting forms. This function, 
drupal_get_form(), needs to be given an identifier for a form, which is usually the name of a function 
that returns a form structure as an array of arrays, but it can also be an identifier registered with 
hook_forms() that returns the real function. This form ID is passed in here as the only item in an array 
given to 'page arguments'. Finally, the 'file' is specified because the argument 'xray_admin_settings' 
that you are passing drupal_get_form() means that the function xray_admin_settings() will be called—
and that function, as I will cover below, is defined in a separate file. 

■ Tip  For pages that are solely forms, as many administration pages are, Drupal frequently makes use of a code-
saving trick. Instead of a custom function, the menu item’s page callback is 'drupal_get_form' and via page 

arguments, it is passed a form identifier. This saves creating a function just to handle the page callback to display 

the form. 

You’ll borrow the code for this menu definition, as you will for the settings form it calls, from Drupal 
core. User module provides a good example. This code is directly modeled on the definition of the 
Account settings administration page by user_menu() in user.module. X-ray itself will tell you, regarding 



CHAPTER 20 ■ REFINING YOUR MODULE 

465

admin/config/people/accounts, that “This page is brought to you by the argument user_admin_settings 
handed to the function drupal_get_form(), with the help of the file modules/user/user.admin.inc.” 

Creating a Separate File for Administration Code 
Dividing your code into files provides two advantages. First, it helps you organize your code into 
manageable segments. Second, it allows Drupal to avoid loading the code into memory when it’s not 
going to be used. (This is the point of the file instruction in the admin/config/development/xray menu 
item definition. The file xray.admin.inc is only included when this path is visited.) 

Your page callback is the function drupal_get_form(), which is loaded in Drupal bootstrap. The 
form identifier it is handled is the name of a function returning a form array. The file xray.admin.inc and 
this xray_admin_settings() function are modeled on user.admin.inc and user_admin_settings(). 

■ Note  Not everything in a core file will match your needs, of course. User module’s implementation of 
hook_menu() defines the path admin/config/people and with the callback system_admin_config_page(). Most 

modules you create will not need to do this because their configuration pages will go in a subsection of 
Configuration that already exists. X-ray module, for its part, is in the Development subsection 

(admin/config/development). 

Building a Settings Form 
With an assist from a specialized function of Drupal’s Form API, your settings form can be lean indeed. 
The system_settings_form() function used right before returning the $form array takes the fieldset and 
three checkbox options you provide and takes care of adding the submit button as well as doing all the 
submit handling for anything with a form key that matches the variable name! Note how 
'xray_display_section_summaries' is both the identifier in the form array and the default value in the 
variable_get() function. Drupal will use variable_set() to save the value chosen when someone 
submits the form; you don’t have to handle any of it! Listing 20–2 is an administration file that holds the 
form definition for X-ray’s settings form, which is only loaded when admin/config/development/xray is 
visited, with the form building function for administration settings. 

Listing 20–2. An Administration File That Holds the Form Definition for X-ray’s Settings Form 

<?php 
/** 
 * @file 
 * X-ray module settings UI. 
 */ 
 
/** 
 * Form builder; Configure which X-ray information is shown. 
 * 
 * This form provides feeds the menu callback for the X-ray settings page. 
 * 
 * @ingroup forms 
 * @see system_settings_form() 



CHAPTER 20 ■ REFINING YOUR MODULE 

466 

 */ 
function xray_admin_settings() { 
  $form = array(); 
  // X-ray output visibility settings. 
  $form['display'] = array( 
    '#type' => 'fieldset', 
    '#title' => t('Display options'), 
  ); 
  $form['display']['xray_display_section_summaries'] = array( 
    '#type' => 'checkbox', 
    '#title' => t('Show summaries on administration sections.'), 
    '#default_value' => variable_get('xray_display_section_summaries', 1), 
    '#description' => t('If unchecked, the summaries will still be visible on the  
<a href="@xray-overview">X-ray reports</a> page.', 
      array('@xray-overview' => url('admin/reports/xray')) 
    ), 
  ); 
  $form['display']['xray_display_callback_function'] = array( 
    '#type' => 'checkbox', 
    '#title' => t('Show the page callback function on all pages.'), 
    '#default_value' => variable_get('xray_display_callback_function', 1), 
  ); 
  $form['display']['xray_display_form_id'] = array( 
    '#type' => 'checkbox', 
    '#title' => t('Show form ID in forms.'), 
    '#default_value' => variable_get('xray_display_form_id', 1), 
  ); 
  return system_settings_form($form); 
} 

As you can see in Figure 20–1, you are now producing a form on the administration page you 
defined. 

 

Figure 20–1. Administration page with three checkboxes on by default 



CHAPTER 20 ■ REFINING YOUR MODULE 

467

LETTING DRUPAL STORE CONFIGURATION SETTINGS  
VS. CREATING A DATABASE TABLE 

There are two ways to store configuration settings in Drupal:  letting Drupal do it, and doing it yourself. 
Drupal makes it easy for you to store configuration in the global configuration variable (the $conf array, 
from which individual settings can be retrieved with variable_get()). By default, 
system_settings_form() wraps a naked form array in a submission handler that automatically saves all 
form elements with variable_set() into the variable table. This is loaded into the global $conf variable 
for every page load. 

For once, I don’t think it is necessarily best practice to follow the path of least resistance in Drupal. The 
configuration information available on every page load should not be bloated with settings that are only 
needed in specific situations. Module authors should go through a little extra effort to store separately any 
large amount of data that isn’t required in Drupal’s global context. 

■ Tip  There is an initiative for Drupal 8 to make Drupal’s settings saving more intelligent and pluggable; see 

dgd7.org/config for links, including anything that is backported to Drupal 7. 

If X-ray module were to have settings that were used only when visiting the X-ray reports page, it would 
make sense to save them in your own database table. The settings you have, however, affect many or 
every page view and so should go in the variable table that is loaded into the $conf array. 

Defining New Permissions 
You still have a very big step to take: making your code honor your new settings. Before doing so, 
however, let’s take another look at X-ray’s permissions, or lack thereof. If you’re going to allow 
administrators to turn off certain types of messages, you can accept that some people will want to hide 
X-ray’s messages from whole classes of users. (Such people will not be you or me, as we will be following 
the deployment practices in Chapter 13 and will never have X-ray enabled on a live site, but there’s an 
outside chance people who have not read this book will use X-ray.) 

This calls for a “View X-ray messages” permission. A look at admin/people/permissions shows that 
there is no appropriately fine-grained permission for X-ray module administration. “Administer site 
configuration” is a permission likely to be handed out to most administrators of any kind, while the 
ability to toggle X-ray settings on and off only makes sense to users with at least some developmental 
bent. You could try to save a permission by intuiting that someone with “Administer site configuration” 
and “View X-ray output” should be able to configure displays, but Drupal frowns on such trickery that 
will be opaque to administrators. So two new, straightforward permissions it is: “Administer X-ray” and 
“View X-ray output”. These are shown in Listing 20–3. 



CHAPTER 20 ■ REFINING YOUR MODULE 

468 

Listing 20–3. X-ray Module with an Implementation of hook_permission() with Two New Permissions 

Defined 

/** 
 * Implements hook_permission(). 
 */ 
function xray_permission() { 
  return array( 
    'view xray messages' => array( 
      'title' => t('View X-ray messages'), 
      'description' => t('Allows users to see X-ray output.'), 
    ), 
    'administer xray' => array( 
      'title' => t('Administer X-ray'), 
      'description' => t('Allows administrators to configure which X-ray messages are  
 shown.'), 
    ), 
  ); 
} 

You will have to clear caches before these permissions show up on the admin/people/permissions 
page. 

■ Caution  Remember when using single quotation marks to delineate strings, as above, that using an apostrophe 

in the string will break everything. Use double quotation marks for those strings or escape the apostrophe with a \. 

Back in your most recent additions to xray_menu(), you need to replace 'administer site 
configuration' with 'administer xray' to have your new, finer-grained permission have any effect. And for 
the “View X-ray messages” permission to mean anything, you need to check for it in the code at the same 
time as you check the display-or-not configuration of different types of X-ray messages. 

Conditionally Taking Action Based on Configuration or User 
Access 
In Drupal code you will frequently want to take some action only in the case of certain configuration 
settings or depending on the user’s permissions—or, in the case of X-ray, check both at once. 

Conditionally taking an action on a configuration setting is usually as simple as checking the result 
of a variable_get(). An if statement loads a configuration variable with variable_get() and proceeds if 
that setting is TRUE; for more complex settings, it can compare several possible values from the setting 
to the condition you care about. The simple case can look like the following:  

if (variable_get('xray_show_formid')) { ... } 

Conditionally, taking an action on a permission a user may or may not have calls for the 
user_access() function. It takes a string with the machine name of a permission. It, too, can go in an if 
statement that wraps around the code you only want run if the user has permission to access it (based 
on the permissions given to roles and the roles granted to users). Alternatively, within a function, the if 



CHAPTER 20 ■ REFINING YOUR MODULE 

469

statement can reverse the check and return immediately, meaning all the remaining code is skipped; see 
Listing 20–4. 

Listing 20–4. Using a Permission Check to Bail on an Entire Function if the User Doesn’t Have the 

Required Access 

function example_something($account = NULL) { 
  if (!user_access('do something complex', $account)) { 
    return; 
  } 
  // lots of complex code here that never gets looked at if the user 
  // does not have the permission 'do something complex'. 
} 

It’s a best practice to separate a function from reliance on any global variables, such as the user 
account of the currently logged-in user. With proper separation, the function can be reused for different 
purposes. The user_access() function performs the check for the current user when the $account 
parameter is not present, which would tie the function to checking the access of the presently logged-in 
user only. It’s best if user access checks are done outside of the function that does the work or, at the 
least, able to accept a user account that can be set to something other than the currently logged-in user. 
That is the approach taken in Listing 20–4. When $account is NULL, which is the default there, 
user_access() checks access for the currently logged-in user, but the example_something() function has 
the potential to do the check for any user account handed in. 

The code in Listing 20–5 is not in a potentially reusable function but in a hook implementation, 
where you can expect the global environment variables, such as the currently logged in user, to be the 
only ones that matter. It contains the addition of a configuration check (should you be showing the form 
ID at all?) and a user access check (does this person have the permission to view X-ray messages granted 
to a role they are in?) added to xray_form_alter(). 

Listing 20–5. xray_form_alter() with Configuration Check and User Access Check Addedfunction  

xray_form_alter(&$form, &$form_state, $form_id) { 
  if (variable_get('xray_show_formid', TRUE) && user_access('view xray messages')) { 
    $form['xray_display_form_id'] = array( 
      '#type' => 'item', 
      '#theme_wrappers' => array('container__xray__form'), 
      '#attributes' => array('class' => array('xray')), 
      '#title' => t('Form ID'), 
      '#markup' => $form_id, 
      '#weight' => -100, 
    ); 
  } 
} 

Only the code in bold is new: the opening of the if statement and its closing with a }. The code in 
between has been indented to meet coding standards for clarity. If both the xray_show_formid setting is 
TRUE and user_access returns TRUE, the xray_display_form_id item will be added to the form array. 



CHAPTER 20 ■ REFINING YOUR MODULE 

470 

■ Caution  Don’t forget the default value of variable_get()! Drupal won’t throw an error, but leaving it blank is 
the equivalent of claiming the default is FALSE, which is the opposite of what you mean in this case. Every use of 

variable_get() should have two parameters: the variable’s name and its default value. 

Writing a Utility Function when Drupal APIs Miss Your Need 
After several dozen pages on Drupal’s APIs, you can be forgiven for thinking that all your coding needs 
can be met by drupal.org and PHP.net. And in a way, that’s true; the code you write is of course for 
Drupal and the language it is written in is PHP. But every function in Drupal was created to fill a need, 
and you can write your own. 

■ Note  JavaScript, the client-side scripting language that enhances Drupal’s front end, is the exception to the all-
PHP rule. Even for this, Drupal supplies some PHP API functions for working with JavaScript. And in JavaScript, 

Drupal provides functions for translation and other Drupal-specific capabilities. Not to mention that Drupal includes 
the JQuery library to provide many, many utility functions that make JavaScript much easier to work with, 

especially for cross-browser support. 

Listing Data as Human-Readable, Properly-Punctuated Text 
The X-ray module so far has been more than liberal in sprinkling t()s everywhere, and it probably sets a 
record for the number of times format_plural() has been used in a module. Both provide good handling 
of including variables. Nonetheless, in turning data into natural text, X-ray module had a recurring need 
not met in Drupal core: taking an array of items and making it into a sentence-ready list with commas 
and a conjunction. 

The function I found after searching for “comma separated list PHP” and similar search terms could 
have been in any PHP project—a snippet put up by anyone. Yet it was shared by a Drupalista because 
the community rocks. Building on that snippet is the utility function shown in Listing 20–6. 

Listing 20–6. The Oxford Comma Function 

/** 
 * Make an array of items into a proper, punctuated, and sentence-ready list. 
 * 
 * Based on www.drupaler.co.uk/blog/oxford-comma/503 
 * Grammatically fun helper to make a list of things in a sentence, i.e. 
 * turn an array into a string 'a, b, and c'. 
 * 
 * @param $list 
 *   An array of words or items to join. 
 * @param $settings 
 *   An array of optional settings to use in making the Oxford comma list: 
 *   - type 

http://www.drupaler.co.uk/blog/oxford-comma/503


CHAPTER 20 ■ REFINING YOUR MODULE 

471

 *     The text to use between the last two items. Defaults to 'and'. Pass in 
 *     'or' and 'and' without translation; translate any other join. 
 *   - comma 
 *     The join for the list. Defaults to a comma followed by a space. 
 *     To make an Oxford comma list with semicolons, use '; '. 
 *   - oxford 
 *     Change this from default 'TRUE' and you are a philistine. 
 */ 
function xray_oxford_comma_list($list, $settings = array()) { 
  // Set default settings. 
  $comma = ', '; 
  $type = 'and'; 
  $oxford = TRUE; 
  // Overwrite default settings with any passed-in settings that apply. 
  extract($settings, EXTR_IF_EXISTS); 
  // Translate 'and' and 'or'. 
  if ($type == 'and') { 
    $type = t('and', array(), array('context' => 'Final join')); 
  } 
  elseif ($type == 'or') { 
    $type = t('or', array(), array('context' => 'Final join')); 
  } 
  // 
  if ($oxford && count($list) > 2) { 
    $final_join = $comma . $type . ' '; 
  } 
  else { 
    $final_join = ' ' . $type . ' '; 
  } 
  // Take the last two elements off of the $list array. 
  $final = array_splice($list, -2, 2); 
  // Combine the final two removed elements around the final join string. 
  $final_string = implode($final_join, $final); 
  // Add the combined elements (now a single element) back onto the list array. 
  array_push($list, $final_string); 
  // Return the list as a text string joined together with commas (or other). 
  return implode($comma, $list); 
} 

This function was fun to write, not least because most of the work had already been done. It 
introduces the concept of context for translation functions, making clear with a third parameter given to 
the t() function that this use of 'and' and 'or' are for final joins and not whatever inappropriate use 
someone else might come up with for them. 

Another new thing is the use of extract() with a new constant to tell it to extract if exists. (Rule of 
thumb: never use a bare extract; always add a second argument.) See dgd7.org/245 for an older, more 
verbose version of the default settings code that was made leaner and cleaner with this use of extract(). 

As you do more with Drupal and PHP, you will get a consistently better sense of what is possible 
(most everything), and, knowing something is possible, also know that you can find a way to get there. 
Actually, there will be multiple ways to get there. One beautiful thing about writing code that 
encapsulates its functionality in functions and methods is that readability or performance 
improvements can be made in one piece of code without always having to pay attention to all the rest of 
the code. The xray_oxford_comma_list() function went through several overhauls for adding capability 
and then purely for code elegance—and will undoubtedly go through more. 



CHAPTER 20 ■ REFINING YOUR MODULE 

472 

Making Mistakes and Embracing Error Messages 
Following the advice to write what you know, I’ve decided to do a whole section on messing up. There’s 
no such thing as bug-free code, especially not on the first writing. Knowing what to do when your code 
breaks something is the route to victory. 

Searching for Answers 
Web search is your friend, as always, when it comes to error messages. Be sure to remove any parts of the 
message that are unique to your environment, such as web site URLs or Drupal directory paths. 

■ Tip  Quote enough of the error message to return precise results, but cut out any parts that are specific to your 

site or system (such as site name or the system path to your home folder). Effective searching for solutions to 
errors you encounter will involve trial and error even after you get good at the initial search. It’s usually worth 

trying drupal.org’s search and the general Internet. 

See what other occurrences of the error have been posted and read other people’s comments. With 
luck, and perhaps some perseverance, you’ll find someone who has a solution. Searching for answers 
works most of the time, but it’s also good to know how to recognize and solve certain types of errors like 
those listed below. 

Syntactic Fatal Errors 
Fatal errors mean we are alive. They mean our code is having an effect. And they are usually easy to fix 
by adding, removing, or moving a semicolon, parenthesis, or curly bracket. As PHP isn’t a compiled 
language, it’s almost as fast to fail trying to run the code for real (loading a web page from a local server) 
as it is for code syntax checking in an editor to give you a heads up. However, any good PHP IDE 
provides syntax checking. 

■ Tip  Enable syntax checking with the Vim editor; see dgd7.org/vi. 

Drupal lines should end with a semicolon in most cases (when the line represents a statement); 
when it’s part of a multi-line array definition, each item is separated with a comma. Mistakes like these 
will mostly be easy to fix, with PHP telling you which line the error is on. The hardest syntax error to fix is 
a mismatch in opening and closing curly braces. A missed closing curly brace (also called bracket) can 
produce an error pointing to the end of the file as the problem, when of course the actual cause can be 
much further up the file. 



CHAPTER 20 ■ REFINING YOUR MODULE 

473

Runtime Fatal Errors 
As mentioned, syntactic fatal errors manifest at runtime since PHP is not compiled, but because it’s easy
to catch them before running the code in the context of the whole application (just loading the code
triggers the error), they are treated separately here. What I will call runtime fatal errors can occur only
when taking an action (including visiting a page) that uses your code: 

Fatal error: Cannot use object of type stdClass as array in  
 /home/ben/code/dgd7/web/sites/default/modules/xray/xray.module on line 186 

If your development environment is properly set up, this error will be printed to your screen. Even
on a production site, this will be written to the error log on the server, which is helpful because all that
you see may be the less-than-informative White Screen of Death (WSOD). (Even better, a properly set up
development environment will provide a call stack of all the functions called. The next section shows
how to enable a stack trace with the Devel module. Also, see Chapter 30 for a walk through a stack of
function calls, similar to what you did at the beginning of this chapter.) 

PHP is being very helpful and telling you precisely where and what the problem is. It’s on line 186
and you are trying to use an object as an array. The code in Listing 20–7 shows the error-triggering code
and the corrected code. 

Listing 20–7. The Line That Breaks Everything and the Corrected Code 

<?php 
// Line 186 looks like this: 
    if (isset($theme['info']['hidden']) && $theme['info']['hidden'] == TRUE) {
// ... 
} 

// But it needs to look like this: 
    if (isset($theme->info['hidden']) && $theme->info['hidden'] == TRUE) {
// ... 
} 
?> 

The point is not that code that looks like the former is always wrong (if $theme were an array, it
would be correct); the point is that when you have an error stating “Cannot use object of type stdClass as
array”, it means that you are dealing with an object and should be using object notation, the arrow (->). 

Tracking Down the Cause of Errors and Warnings 
If a new error pops up on your site while you’re coding your module, odds are it’s something you did.
However, the error message may point to some core file that you have never touched. In this case, it is
almost certain that the error has its origin somewhere else, whether caused by code you wrote or
something you installed or configured. The process of figuring out where an error or bug came from and
fixing it is called debugging. Figure 20–2 shows one such error that came up while coding the X-ray
module. 



CHAPTER 20 ■ REFINING YOUR MODULE 

474 

 

Figure 20–2. “Warning: htmlspecialchars() expects parameter 1 to be string” error message 

Warning, array given, warning, object given, on line 1,476 of bootstrap.inc? What are you to do with 
that? You’ve never even looked at bootstrap.inc! You could take a look now to see how the function 
htmlspecialchars() is used in the Drupal function check_plain(), and then you could search through all 
the code of Drupal for the 157 functions that call check_plain(). Yes, 157; see 
api.drupal.org/check_plain for the list. It would be overkill to point out that one of the functions that 
calls check_plain() is the t() translation function, which, at 1,246 calls in core alone, is the most-used 
function in Drupal. So you could look through everywhere that t() is used, and everywhere else that 
check_plain() is used, and the functions that are calling them, and so on up the tree to try to find the 
one that’s making htmlspecialchars() angry at you... 

Or you could let a tool take care of this in an instant. There are standalone debugging tools and 
Integrated Development Environments (IDEs), which are discussed at dgd7.org/ides, but, as this is 
Drupal, there’s also a module for that. The Devel module includes the option to print a backtrace from a 
PHP warning or error back up the chain of functions, formatted for readability with Krumo. Let’s take a 
look at how it works. 

Using Devel Module Trace an Error Back Up the Stack 
Devel module contains tools for Drupal development and deserves to always be on hand. Let’s install 
Devel module with Krumo and watch it transform the error message. 

1. Download Devel module from drupal.org/project/devel or with Drush: drush 
dl devel (and give thanks to Moshe Weitzman, creator of both Devel and 
Drush). 

2. Enable the module at admin/modules or with Drush: drush -y en devel. 

3. Go to admin/config/development/devel (you can get there via the Configure 
link on admin/modules). 

4. Scroll down the page to find Error handler, change it from Standard drupal to 
Backtrace, and then submit the form with Save configuration. 

5. Navigate to a page that causes the error message and enjoy. 

Now, back to your htmlspecialchars() warnings (see Figure 20–3). 

 

Figure 20–3. “Warning: htmlspecialchars() expects parameter 1 to be string” error message with Devel and 

Krumo 



CHAPTER 20 ■ REFINING YOUR MODULE 

475

All right, that’s not helping much yet. Click the “... (Array, 19 elements)” text (where 19 will be the 
number of elements in your backtrace array) to expand the Krumo-formatted array); see Figure 20–4. 

 

Figure 20–4. Krumo-formatted backtrace array for “Warning: htmlspecialchars() expects parameter 1 to be 

string” error 

Now you’re in business. You can see every function involved from htmlspecialchars(), the function 
that is complaining, up through the function that calls it and the function that calls that function and the 
function that calls that function all the way to menu_execute_active_handler(), the function in index.php 
that starts off Drupal most of the time (see Chapter 30 to view Drupal through the eyes of this function). 
In that long list are several functions from X-ray module, which are far more likely culprits than a core 
function spontaneously generating an error. 

You can click on theme_xray_show_callback in the function stack and drill down to the arguments 
given to it. As the error message indicated, the page_arguments array has an object in it and this is the 
fault of xray_show_page_callback(). 

■ Tip  If you don’t have Devel module or anything else handy, you can put a debug(debug_backtrace()); call 

where Drupal reports the error, but the output won’t be nearly as easy to read as Krumo makes it. 



CHAPTER 20 ■ REFINING YOUR MODULE 

476 

To prevent the error, you will have to check each page argument and make sure it is not an object or 
array when you hand it to drupal_placeholder(). This level of complication in a theme function (or 
template) is a clear indicator it should have a preprocess function cleaning up the variables before it. 

Making a Preprocess Function 
When making a preprocess function for a theming function or template file, you can (as is so often the 
case) turn to Drupal core for examples. Node module yields template_preprocess_node() as a possible 
model (after a search for 'preprocess', for instance, with the command line search grep -nHR 
'preprocess' modules/node). 

■ Note  As of 7, theme functions can have preprocess functions just like templates. It’s still considered more 
friendly to themers to be able to copy and modify template files rather than override theme functions in 

template.php. Theme functions have better performance than templates, however, and are preferred for small 
things or things where re-theming is unlikely. See drupal.org/node/933976 in the module developer’s guide for 

more on using the theme layer in your module. 

Preprocess functions defined in a module begin their names with template_ (themes use the theme 
name here); next is preprocess_; and finally the name of the theme function or underscore. There’s no 
need to add anything to your implementation of hook_theme(); Drupal is already looking for preprocess 
functions. Preprocess functions look and act the same whether for a template file or a theme function. A 
key point is that the $variables array is passed in by reference, so any changes or additions to this array 
need to be to the referenced copy. See Listing 20–8 for an example. 

Listing 20–8. A Preprocess Function to Prepare Variables for theme_xray_show_page_callback() 

/** 
 * Process variables for show page callback theme function. 
 */ 
function template_preprocess_xray_show_page_callback(&$variables) { 
  if ($variables['page_arguments']) { 
 
    foreach ($variables['page_arguments'] as $key => $value) { 
      // Arrays and objects can't be easily printed in a message, so instead 
      // identify what they are. 
      if (is_array($value)) { 
        $value = t('array') . ' ' . $key; 
      } 
      elseif (is_object($value)) { 
        $value = t('object') . ' ' . $key; 
      } 
      // Sanitize for security and add emphasis to each argument. 
      $variables['page_arguments'][$key] = drupal_placeholder($value); 
    } 
  } 
} 



CHAPTER 20 ■ REFINING YOUR MODULE 

477

 
/** 
 * Theme the page callback and optionally other elements of a router item. 
 * 
 * @param $variables 
 *   An associative array, as generated by menu_get_item(), containing: 
 *   - page_callback: The function called to display a web page. 
 *   - page_arguments: (optional) An array of arguments passed to the page 
 *     callback function. 
 *   - include_file: (optional) A file included before the page callback is 
 *     called; this allows the page callback etc. to be in a separate file. 
 * 
 * @see template_preprocess_xray_show_page_callback() 
 * 
 * @ingroup themeable 
 */ 
function theme_xray_show_page_callback($variables) { 
  extract($variables, EXTR_SKIP); 
 
  $output = ''; 
  $output .= '<p class="xray-help xray-page-callback">'; 
  $output .= t('This page is brought to you by '); 
  if ($page_arguments) { 
    $output .= format_plural(count($page_arguments), 
      'the argument !arg handed to ', 
      'the arguments !arg handed to ', 
      array('!arg' => xray_oxford_comma_list($page_arguments)) 
    ); 
  } 
  $output .= t('the function %func', 
               array('%func' => $page_callback . '()')); 
  if ($include_file) { 
    $output .= t(' and the included file %file', 
                 array('%file' => $include_file)); 
  } 
  $output .= '.</p>'; 
  return $output; 
} 

Arguably this data cleanup should be done even before the preprocess function. There’s no way of 
requesting review quite like publishing your code in a book, so tune into this chapter’s online 
companion at dgd7.org/61 for what will undoubtedly be more critiques and improvements of this code. 

■ Note  The code in Listing 20–8 has been enhanced (and made more complicated) by offering Krumo output. 
See dgd7.org/259 for the improved and expanded version, which includes a helper function for dealing with 

arrays and objects. 



CHAPTER 20 ■ REFINING YOUR MODULE 

478 

Final Considerations 
You’ve seen a dozen APIs and looked at a lot of code and written your own code, but did you make a 
module? Pretty much, yes! Not every line of the X-ray module has been shown (in particular, the 
repetitive parts), but you can find it, along with all the code from this book, at dgd7.org/code. 

This module lends itself to extension, but you didn’t provide an API for other modules to extend it; 
instead, patches (additions or modifications to code that can be easily applied by a project maintainer) 
are very welcome! Now let’s cover some final considerations, including coder module review and peer 
review. 

The biggest final consideration, of course, is if you met the minimum requirement for what you 
were trying to do. Everything else is secondary—but still important. 

• Try to ensure there’s nothing hardcoded that people will want to change.  

• Look very carefully for security vulnerabilities. Using Coder review module 
(covered next) will help catch many, but it can’t catch everything. Is user access 
checked before anyone is able to see or change anything administrative? Is 
anything a user might enter ever output again without being escaped? The need to 
escape potentially dangerous markup includes user-submitted data being shown 
after it has been saved in the database; the protections the Database API provides 
against SQL injection attacks have nothing to do with the protection against 
HTML and JavaScript injection attacks that sanitization functions such as t(), 
check_plain() (which t() uses), and filter_xss() provide. See Chapter 6 for an 
overview of security considerations. 

• Go over your code to ensure that it follows coding standards; see 
drupal.org/coding-standards. The Coder review module can help with this; see 
the next section. 

■ Note  Most of your code has gone into the .module file, but where in the file should you put, say, your next hook 
implementation? There’s no official coding standard or widely agreed-upon best practice. Use something that 
helps you find your code (a good code editor will let you jump easily to specific functions) and don’t spend too 

much time thinking about it. I keep all hook implementations together at the top of the .module file and favor 
importance, with a fallback on alphabetical order when indecisiveness strikes. Another approach is to put them in 
order of execution (see Chapter 30 for that order). I group the rest of the code by functionality, which is more art 

than science. 

Coder Module Review 
It’s never too early to run an automated review of your module’s code with Coder review module, in the 
Coder project found at drupal.org/project/coder. But it should definitely be run as the last thing you do 
before a release, too. 

Download and enable the Coder review module (drush dl coder; drush -y en coder_review). 
Then go to Administration ➤ Configuration ➤ Development ➤ Coder (admin/config/development/coder) 
and leave everything at their defaults, which means the enabled reviews will be Drupal Coding 
Standards, Drupal Commenting Standards, Drupal SQL Standards, Drupal Security Checks, and 



CHAPTER 20 ■ REFINING YOUR MODULE 

479

Internationalization. You can select “minor” so that coder will show every error or perceived problem it 
comes across. Under “Select specific modules,” find the one you are working on among the module 
machine names, listed alphabetically. 

Running this for X-ray resulted in this message: “Coder found 1 projects, 3 files, 1 critical warnings, 
12 normal warnings, 9 minor warnings, 0 warnings were flagged to be ignored”. Fortunately the critical 
warning was a false positive where the parser had not yet been updated to the new Database API way of 
doing queries. 

The other errors, however, brought to light a coding mistake that wasn’t documented anywhere 
really except by Coder review module: text in t() functions should not begin or end with a space. The 
logic is that translators are not likely to understand or notice the space, but in trying to build sentences 
that depended on whether, say, any page arguments existed at all, I repeatedly violated this rule. (This 
has been fixed in the code in the module and the code shown in the book.) 

The moral of the story is always do a final pass with the automated code review before expecting 
people to look at and use your code. And having people look at your code can be a great way to learn, 
just as you learn from looking at other people’s code. 

Peer Review 

“Contributing to Drupal is like pair programming with the entire community.” 

—Mark Ferree (twitter.com/mrf) 

Contributing to an open source project means potentially thousands of reviewers will help make your 
code better. When you contribute to Drupal core, your work will be reviewed as a matter of course. 
When you publish your first project to its own project page on drupal.org (see Chapter 37), it will get a 
code review, too. The rest of the time, you have to ask specifically. 

For a long time Drupal didn’t have a recommended process for soliciting a review of your work. The 
best contributors ask; even when contributing a patch to core, top contributors find others to review 
their code, often swapping reviews, to keep things moving along. IRC, as is frequently the case, is usually 
the most effective place to ask. You might also find some interest on groups.drupal.org if the module 
relates to an existing group. 

There is now a process for soliciting code reviews, centered around the Peer Review group on at 
groups.drupal.org/peer-review. This initiative aims to match people who want reviews for their 
projects with people willing to do the review. Remember that giving as well as receiving reviews is an 
excellent way to learn and to build relationships in the community. To request a code review, follow 
these steps: 

• Before seeking a review, you’ll need to get your code on drupal.org. See Chapter 
37 for instructions on starting to use a Git sandbox project. 

• Create a new issue for your own project that you want reviewed—the issue should 
be dedicated to the overall project review, rather than the tag being added to an 
existing issue. The category for the issue should be “task” and the status, naturally, 
is “needs review.” (This is a bit of an abuse of the “needs review” status, as usually 
it means there is a patch that needs review, but here you are using it to apply to 
your whole project.) In the description, state what you are most looking for from a 
review and make clear your commitment to make improvements when they are 
recommended. 



CHAPTER 20 ■ REFINING YOUR MODULE 

480 

• Before submitting the issue, add the peer-review tag (with a dash between peer 
and review). All issues requesting peer review use this tag. You can optionally 
focus the kind of review you are looking by adding tags such as code-review, ux-
review, accessibility-review, etc. See groups.drupal.org/peer-review/requests for 
the current list of tags. 

• Any person who volunteers to review will post responses in that issue. The 
reviewer can change the status from “needs review” to “needs work” if he or she 
found issues (which should be described in a comment or created as separate 
issue reports on your project). Normally the “Assigned” attribute is for the person 
working on the code, but as you posted the issue and it’s understood you will be 
working on the code, this should be used by a person reviewing to claim the 
primary reviewer role. 

• After you’ve fixed any problems found, set the status back to “needs review.” With 
luck, the reviewer will come back and mark it “Reviewed and Tested by the 
Community (RTBC)” if he or she has approved your work! 

• Feel free to add “Reviewed by [username (linked to user account)] on [date (linked 
to the issue)]” to the description on your project page! 

Just as for core contributors, it helps a great deal to get a timely review if you solicit one; offer to 
swap a review in exchange. Hanging out in IRC (see Chapter 9) is usually how such casual requests are 
made. Drupal meetups can also be a place to swap code reviews! 

■ Note  It’s very important that you follow the best practices described in this book and stick to coding standards 

(at drupal.org/coding-standards) before asking someone to invest their time in making your code better. 

The best reviewers are people motivated to use your module because they need it. You don’t 
necessarily have to solicit this review— bug reports, feature ideas, and support requests will be filed in 
your issue queue. If you have an opportunity to watch someone try to use your module, that can provide 
invaluable feedback. Many usability problems people run into don’t get self-reported. The best way to 
get a usability review is to watch people try to use something and solicit their feedback immediately. It 
doesn’t have to be done in a lab for you to learn a lot. If you can’t find willing victims/participants in 
person to test your module, ask people you know are interested in using your module to try it out and 
report any bugs or confusion they encounter. 

Using hook_help() as Drupal Intended 
The most common usage of hook_help() is the one you haven’t used it for yet. But first, I promised a full 
look at the hook’s definition. 

The hook_help() Function Signature 
Every hook has a function signature: the parameters passed in to implementations of the hook and the 
nature of the value the invocation expects returned (if any). What you start with and what type of data 
you end with are defined; in the middle you can do whatever you want. That is the nature of APIs. 



CHAPTER 20 ■ REFINING YOUR MODULE 

481

■ Note  Implementations of hook_help() are expected to return an HTML string, most likely because it was 
overlooked during Drupal 7’s conversion to renderable arrays. See Appendix C for more about the render system 

that applies everywhere else in Drupal! 

The Parameters $path and $arg 
What you receive to start with are called parameters or arguments to a function. The $path variable 
passed in to functions that implement hook_help() is the router path, which is Drupal’s idealized 
understanding of what path it is on, based on the paths defined by implementations of hook_menu(). This 
just means that on code-defined pages such as admin/structure, the router path is also admin/structure, 
while on pages that might be created by the user, such as node/1, the router path is node/%. Therefore, to 
put a message on only a certain node (or user, or taxonomy term), you could still implement 
hook_help(), but you will have to use the $arg parameter to see the actual path you are on. 

One way to see what these paths are for any page, as it isn’t always intuitive, is to implement 
hook_help() and have it print the path and arg variables on every page. In a module called test (thrown 
in here just so you remember you can make modules that aren’t named X-ray), this function would do 
that; Listing 20–9 shows the contents of test.module that, with a basic test.info file and when enabled, 
would print the path and arguments as interpreted by help on every page. 

Listing 20–9. Contents of test.module  

<?php 
function test_help($path, $arg) { 
  return $path . '<pre>' . var_export($arg, TRUE) . '</pre>'; 
} 

The same effect could be achieved by adding the return line to xray.module’s xray_help() function. 

■ Tip  You can also use the debug() function almost anywhere in Drupal to print any variable to the screen, like 
so: debug($path, 'path'); debug($arg, 'arg'); The second parameter, a label, is optional. (For variables 

that are large arrays or objects, a third parameter TRUE may be necessary to avoid errors.) 

Using this, you can visit node/add/article and see that the content type machine name (article) is 
present in the router path, node/add/article. This is true even if it is a content type you modify or create 
yourself, because the paths for add node pages for all content types are defined dynamically in 
node_menu(). The paths for edit forms for whole content types, however, like the edit form for nodes, 
make use of a wildcard placeholder in the router path. When you go to 
admin/structure/types/manage/article to edit the Article content type, for instance, the $path 
parameter for this path looks like the following: admin/structure/types/manage/% (article has been 
replaced by a percentage symbol, %, which signifies the wildcard placeholder). To see what content type 
you are editing, you need to look at the $arg parameter, which is an array that includes each part of the 
real path ('admin', 'structure', 'types', 'manage', and 'article'). 



CHAPTER 20 ■ REFINING YOUR MODULE 

482 

On-site Documentation for a Module 
Your use of hook_help() for the X-ray module (to add summaries and pieces of information to various 
places throughout the site) has been unusual. The usual use is for documenting how a site administrator 
should use the module itself. This may be as help messages on configuration pages for the module, 
which works the same as your path-based usage, but the most common use of hook_help() is, ironically, 
a special case as far as the code is concerned. When an implementation of hook_help() returns text for 
the path admin/help plus a hash sign (#) followed by a module name (in your case, admin/help#xray), 
Drupal creates a help page for the module at admin slash help slash module name (admin/help/xray for 
your module) and links to this dedicated help page from admin/help. 

Let’s close out this chapter by adding a proper, ordinary help page for X-ray module; note the path it 
returns on (see Listing 20–10). 

Listing 20–10. Classic Help Page for the X-ray Module  

/** 
 * Implements hook_help(). 
 */ 
function xray_help($path, $arg) { 
  $help = ''; 
  // Display in a help message the function that provides the current page. 
  $help .= xray_show_page_callback(); 
  switch ($path) { 
    // Summaries for main administrative sections. 
    case 'admin/content': 
      $variables = array('data' => xray_content_summary()); 
      return $help . theme('xray_content_summary', $variables); 
    case 'admin/structure': 
      $variables = array('data' => xray_structure_summary()); 
      return $help . theme('xray_structure_summary', $variables); 
    case 'admin/appearance': 
      $variables = array('data' => xray_appearance_summary()); 
      return $help . theme('xray_appearance_summary', $variables); 
    case 'admin/people': 
      $variables = array('data' => xray_people_summary()); 
      return $help . theme('xray_people_summary', $variables); 
    case 'admin/modules': 
      $variables = array('data' => xray_modules_summary()); 
      return $help . theme('xray_modules_summary', $variables); 
    // The main help page for the module itself. 
    case 'admin/help#xray': 
      // This is shown as a regular page; do not include the 
      // xray_show_page_callback $help or it is shown twice. 
      return _xray_help_page(); 
    default: 
      return $help; 
  } 
} 
 
/** 
 * Help page for the X-ray module. 
 */ 
function _xray_help_page() { 



CHAPTER 20 ■ REFINING YOUR MODULE 

483

  $output = ''; 
  $output .= '<h3>' . t('About') . '</h3>'; 
  $output .= '<p>' . t('X-ray module provides a look at the skeletal structure of your site  
 from several perspectives intended to benefit developers and site builders.') . '</p>'; 
  $output .= '<p>' . t('It adds an accounting summary of relevant objects to the help above  
 the main administrative sections (blocks, content types, menus on <a href="@structure">
Structure</a>; themes on <a href="@appearance">Appearance</a>; etc).', array('@structure' =>  
 url('admin/structure'), '@appearance' => url('admin/appearance'))) . '</p>'; 
  $output .= '<h3>' . t('Uses') . '</h3>'; 
  $output .= '<dl>'; 
  $output .= '<dt>' . t('Page callback and arguments') . '</dt>'; 
  $output .= '<dd>' . t('X-ray exposes the function that is primarily responsible for  
 providing a given page in a help message at the top of that page.  It precedes the name of  
 the function with the arguments handed it, if any.  It also provides the name of the file  
 where this function lives if available (the file is only available if the callback does not  
 live in a .module).  Note that just because arguments are handed in to a function does not  
 mean they are used.') . '</dd>'; 
  $output .= '</dl>'; 
  return $output;
} 

The many other functions for displaying summary data about the site on various administration
overview pages, such as People and Modules, are very similar to those shown for the Structure page in
this chapter and can be found at dgd7.org/252. It’s worth noting again that in addition to a data-
gathering function and a theme function, X-ray’s summary data require implementations of
hook_theme(), hook_menu() (plus a page callback function), and hook_help(). Like every module hosted
on drupal.org, you can look at X-ray’s code to see how these messages and any new features are
implemented. 

Summary 
By now, you may have figured out that if I can do this, you can do this. After reading Chapters 18, 19, and
20, I hope that you feel ready to take on the rewarding work of building your own modules to add power
to your web projects and to contribute to Drupal. 

■ Tip  Discuss Chapters 18, 19, and 20, continuing work on X-ray module, and module development generally at

dgd7.org/intromodule. 



C H A P T E R   21 
 

■ ■ ■ 

485

Porting Modules to Drupal 7 

by Robin Monks and Benjamin Melançon 

Drupal, like many open source projects, relies on volunteer contributors to keep its ecosystem of 
development active and current. This is one of the key strengths of open source software; the downside 
is that people who used to volunteer time to Drupal often drop out when other commitments take over. 

As a result, you’ll occasionally discover a module that’s exactly what you need, but the module 
developer hasn’t upgraded it to Drupal 7 yet. In this chapter, I will upgrade a simple Drupal 6 module to 
Drupal 7. I’ll examine the different processes to perform module upgrades, and I’ll show you some of the 
common changes necessary to port a module from Drupal 6 to 7. 

The Add another module is designed to save time when adding lots of items of the same content 
type to a site by presenting an “add another” message after submitting a node. This useful module could 
make your site more usable for contributors. Unfortunately, it’s only available as a Drupal 6 version; 
there’s no Drupal 7 version yet. Happily, with some simple effort, you can fix this! 

Note that even if you don’t know of a module that you personally need ported to Drupal 7, you can 
look for one for which other people have requested a port. Porting a module provides a triple benefit:  

The community gets the functionality it wants.  

Porting is easier than making your own module from scratch.  

You get to expand your Drupal knowledge in two powerful ways—from examining the 
code you are upgrading, and from noting the changes Drupal made between versions 6 
and 7. 

You don’t need to understand every aspect of the project you are upgrading (nor every change in 
Drupal) to upgrade the project to Drupal 7 successfully. You will, however, learn a great deal from the 
process. You may not immediately understand every nuance of how the code works, but in looking at 
another developer’s code and understanding it enough to make changes to the parts where APIs have 
changed, you can’t help but learn. 

Deciding to Upgrade a Module 
Whenever you have a need for a feature for your Drupal site, it’s important to search the existing Drupal 
community to see if someone else has had the same itch. If so, that someone has probably already 
scratched their itch—most likely with a contribution to the Drupal community in the form of a module. 

With very few exceptions, it’s better to take someone else’s similar or out-of-date module (or even 
code snippet, in some cases) and form it to match your own needs than it is to begin development from 
scratch. 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

486 

Fortunately, upgrading a module from Drupal 6 to Drupal 7 can be an easy way to gain the 
functionality you need for your project and, as previously mentioned, a fun way to learn more about 
Drupal and contribute back to the community. 

Before you begin the fun part of actually working on the upgrade, you need to make a few beginning 
steps to make sure you’re not duplicating effort. You also need to let others know that work is happening 
to upgrade the module. 

Throughout this chapter, you’ll be working with the Add another module as your example. It’s 
publically available at drupal.org/project/addanother; I ported it from Drupal 6 to Drupal 7 using the 
methods described here. 

■  Tip  As soon as you determine that a module ought to be upgraded—or that any feature, bug fix, or other 
change should be made to any Drupal project—you should investigate whether anyone else has posted the same 

idea to the project’s issue queue. If not, go ahead and post it yourself. 

Posting the Issue 
When working with code in a community setting, you first need to announce your intentions with the 
code to everyone who might care. While shouting from the rooftop can be a fun first crack at this, it’s 
best to climb down and go to the project’s issue queue. 

A project’s issue queue is always linked to from the project’s page on http://drupal.org, as shown 
in Figure 21–1. 

You can also get to a project’s issue queue directly at drupal.org/project/issues/projectname. For 
the Add another module’s issue queue, go to drupal.org/project/issues/addanother?status=All to see 
what issues people have submitted. The optional "?status=All" query shows all issues; the issue page 
filters out closed ones by default. Issues are shown with the most recently updated ones first; you are 
able to filter by status (if the issue has work being done on it or a patch that needs review), version (such 
as all 6.x or all 7.x issues), and priority (relative importance of the issue), among other criteria. 

■  Tip  To filter without searching, leave the Search for text field blank and use the drop-downs you need to filter 
the list of issues:  
Status filters by the current stage of the issue (e.g., active, fixed) 

Priority filters by the urgency of the issue (e.g., major, minor) 
Category filters by the type of issue (e.g., bug report, support request)  
Version filters by the version of Drupal and the module version 

Component filters by the component of the project (e.g., code, documentation). You still press Search, but without 

text in the search field, the filters are applied against all issues. 

http://drupal.org


CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

487

 

Figure 21–1. The block issues for Add another include a summary of open versus total numbers of issues 

and bug reports. 

 

Figure 21–2. Excerpt from the issues listing for the Add another module 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

488 

Look at all of the information in Figure 21–2; you can see each issue’s title (ideally a short and 
accurate Summary); to whom the issue is Assigned to, if anyone; and the information you can use to 
filter the listing. Issues are color-coded based on their current Status (which is also written out in the 
second column). You can sort by any of the bold-print headers of this table. Last updated is, as 
mentioned, the default sort (click it to reverse it and view the oldest issues first). 

If all issues or all open issues take up more than a page, reading the issue titles will be tedious, so use 
the Search for box to find an issue similar to your own. In the Add another issue queue, you can search 
for “Drupal 7”, “port” and “7.x version” and you’ll find that they come up empty or not related to 
upgrading. 

From the listing of all issues, follow the Create a new issue link (which, in the case of the Add 
another module, takes you to drupal.org/node/add/project-issue/addanother). 

In the issue creation form, Version is a required field; since no 7.x version exists yet, use the latest 
6.x version. The project’s maintainer (or a maintainer; a project can have more than one) will have to 
create a 7.x branch for this issue to be resolved. The issue can be properly assigned the 7.x version tag at 
that time. Component, another required field, is code (most functionality-related issues will be), and 
Category can be task (more typically, you will be filing feature requests or bug reports when 
recommending changes to a module’s code). Priority, Assigned, and Status can be left to their defaults. 

You can get really creative with the title: 7.x port. Most issues will take more than a line to describe, 
but in the case of an upgrade, one sentence suffices: “This simple and useful module needs a Drupal 7 
port.” 

Why Not Custom Code? 
If a module does not exist for your version of Drupal, does not exist at all, or does not do precisely what 
you need, a custom, site-specific module is always a possibility. (For a site with highly customized 
functionality, this is often necessary. See Chapter 22 for more about writing modules like this, which are 
frequently called glue code.) In general, it’s easier to write code that works just for your site but not in 
other situations. If you know exactly what you need, you don’t need to make configuration through a 
user interface possible. Even in the case of upgrading an existing module, grabbing and modifying the 
essential lines of code might be easier than porting the whole module. 

Nevertheless, from a purely selfish perspective, there are two strong reasons to upgrade (or make or 
extend) a proper, publicly released module with a user interface. First, you (and the people you work 
with) can make changes without modifying code. For instance, if a new content type is added that 
should also have the Submit and make another option, this can be done with a simple checkbox through 
the administrative UI. Second, by sharing your code with the community as a drupal.org-hosted 
module, you get the benefit of other people’s eyes on the functionality and code; someone else may 
catch bugs or security holes before they bite you. Someone may even add features or upgrade the 
module to Drupal 8 when the time comes! It does happen, just as you are upgrading the Drupal 6 version 
of the Add another module to Drupal 7. 

Undertaking the Upgrade 
If you put Add another into a modules directory of a Drupal 7 site, you would see it listed on the modules 
page with its Drupal 6 version number (6.x-1.6) and description (“Presents users with an option to create 
another node of the same type after a node is added”). After that, though, Drupal adds the note “This 
version is not compatible with Drupal 7.x and should be replaced.” You can’t even try to enable it, as 
shown in Figure 21–3. 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

489

 

Figure 21–3. Drupal will display an error if a module was written for an earlier version. 

■  Tip  As soon as you start work, you can assign the issue you created to yourself. You should only do this when 
you actively start work; set it back to unassigned if you have to step away for more than a day. The issue queues 

have lots of issues assigned to people with no work done for months or years. 

That would have been fun if it had worked, but we will have to put some effort into making the Add 
another module work in Drupal 7. For the simplest modules, changing only the core version specified in 
the .info file might work, but blind attempts are not actually the best way to get a module working. 

Keeping Track of What You Need to Know 
As changes are made to Drupal to create the next major version, a comprehensive list of API changes is 
recorded. These changes can be found on drupal.org in the handbook under Developing for Drupal ➤ 
Module Developer's Guide ➤ Updating Your Modules. The Drupal 6 to Drupal 7 changes are in a page 
called “Converting 6.x modules to 7.x” at drupal.org/update/modules/6/7. 

Documenting the changes between major versions of Drupal and keeping this list up-to-date is a 
fantastic effort by the Drupal community. As worthy of honor as this effort is, do you really want to 
review the 200+ items on this list? For a learning exercise, this is an excellent and recommended use of a 
long afternoon … but for each module you upgrade? 

A few stalwarts have taken the effort to improve the Drupal developer experience (sometimes 
abbreviated DX) even further. 

Automating (Part of) the Module Upgrade 
Jim Berry, with help from Jon Duell and others, has graced us all with the Coder Upgrade module. You 
can get it as part of the Coder project package at drupal.org/project/coder. 

Coder Upgrade requires the Grammar Parser module to go through code and make changes and 
suggestions, so you must download drupal.org/project/grammar_parser also. See the “Command Line 
Steps” section in this chapter for the fastest way to do all of this. 

■  Tip  You can also use these tools as an online service at upgrade.boombatower.com. 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

490 

As with all development work, you do this on your computer or test server, not on the live site on a 
public server. You don’t even need to be working on a copy of your site (although you will be doing so in 
this example); a new Drupal 7 installation will suffice for upgrading a module. Because you are using a 
development sandbox, you should put Coder and Grammar Parser in sites/all/modules even though 
they are developer modules that you don’t intend to become part of the site project. 

On your local install of Drupal, visit Administer ➤ Modules (admin/modules). There you should 
enable Coder, Coder Upgrade, and Grammar Parser (which Coder Upgrade requires). 

Now you need to get the module you’re going to upgrade. Go to the module project page and look 
for the latest version code. Typically this is in a -dev branch called HEAD; you want to use this most 
recent, in-development version of the code when upgrading a project or adding a feature to a project. 
For the Add another module, visit its project page at http://drupal.org/project/addanother and you 
will find that the latest version available is a full official release. A look at the repository (available for you 
to browse via a link on the project page) shows that no work has been committed since then. Therefore, 
download the latest version, 6.x-1.4, to begin the port. Unzip and untar the module’s compressed tarball 
and put the resulting folder and files in the staging area that Coder Upgrade asks you to use; this is 
within your Drupal site’s files directory (typically sites/default/files) in a coder_upgrade subdirectory 
and an ‘old’ directory within that (coder_upgrade/old). In other words, it’s 
sites/default/files/coder_upgrade/old. Note that you can create parent directories as needed. 

Command Line Steps 
From the web root of a Drupal installation, which is drupal7 in this example, enter the following: 

drush dl coder grammar_parser 
drush en coder coder_upgrade grammar_parser 
mkdir -p sites/default/files/coder_upgrade/old 
cd ../ 
drush dl addanother --default-major=6 --select -- 
    destination=drupal7/sites/default/files/coder_upgrade/old 

■ Note  The -p flag for mkdir stands for --parents; it automatically creates, in this case, the coder_upgrade 

directory while creating the old directory.  

In the steps above, we have to step back from the Drupal 7 site to get Drush to download a Drupal 6 
module, which is what the cd (change directory) line does for us. 

■  Tip  The --select option for drush will show all currently available versions of a module and allow you to 

select the one you want. 

For installing modules and fetching the module you are upgrading, using the command line as 
above is highly recommended. The remaining upgrade steps, however, are performed through Coder 
Upgrade’s user interface. 

http://drupal.org/project/addanother


CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

491

■  Tip  Many modules have excellent help built in, see admin/help. You can read Coder Upgrade module’s 

particularly extensive in-module documentation on your own site at admin/help/coder_upgrade. 

To begin the automatic upgrade, go to Administer ➤ Configuration ➤ Development ➤ Coder ➤ 
Upgrade (admin/config/development/coder/upgrade), click on the Directories vertical tab, and find the 
module you want to upgrade. The modules are listed by system name and Add another’s system name is 
addanother. Coder Upgrade also gives the path—coder_upgrade/old/addanother—so you can be sure 
you have the module you just downloaded. Checkmark it, and click on the Convert files button at the 
bottom, as shown in Figure 21–4. 

 

Figure 21–4. Coder provides an admin interface to simplify module upgrades. 

You will receive these exciting system messages: 

• Module conversion code was run 

• Click to view the conversion log file 

• Patch files may be viewed by clicking on Name links in the Directories and 
Modules tabs below 

You can click the conversion log file link, but there isn’t much there of interest: just a list of the 
hooks the upgrade looked for. Looking at the patch file is much more interesting. The patch file shows 
you everything that was changed in the module by Coder Upgrade. 

As a rule, an automatically upgraded module is only partially upgraded, but it’s worth testing out. 
You can move the upgraded module from where Coder Upgrade placed it in sites/default/files/ 

coder_upgrade/new to your sites/all/modules or sites/default/modules directory, or you can upgrade 
the 6.x version of your module in place with the patch Coder Upgrade provides. You can choose the 
latter to avoid dealing with permissions. 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

492 

Command Line Steps 
mv sites/default/files/coder_upgrade/old/addanother sites/default/modules/ 
patch -p0 < sites/default/files/coder_upgrade/patches/addanother.patch 

■  Tip  Drupal has good documentation on how to apply patches at drupal.org/patch/apply. I consider this link 

the quickest and easiest-to-find refresher for which direction the angle bracket goes when using the patch 
command. (Another option: remember that the patch command “eats” the patch. Thus, the last line of the previous 

code could be read as “patch -p0 < aiee-the-alligator-is-going-to-get-me.patch.”) 

If nothing else, the key change the automatic upgrade must do is changing the core directive in the 
module’s .info file to 7.x. This line may appear twice because drupal.org adds a datestamp and some 
other automatic information to downloaded modules, as noted in the comment (note that comments in 
.info files start with a semicolon (;) character at the beginning of each comment line). These lines added 
by the packaging script can be safely deleted, even if coder_upgrade tried to update the core line.  Also, at 
the time of this writing the supported release of Coder Upgrade is incorrectly adding files[] directive 
lines for .install and .module files; this has been corrected in the development version of Coder 
Upgrade, but if you see these created, a relic of an earlier phase of Drupal 7’s development, you can 
delete them. 

name = Add another 
description = "Presents users with an option to create another node of the same type after a 
node is added." 
core = 7.x 
 
; Information added by drupal.org packaging script on 2010-04-19 
version = "6.x-1.6" 
core = 7.x 
project = "addanother" 
datestamp = "1271637006" 

■ Note  If you had checked out the module directly from drupal.org’s version control, you wouldn’t get this 
information added by the packaging script; Drupal only modifies .info files that are packaged into downloadable 

versions. 

Now you should enable the module and check for additional configuration options added by the 
module (again on your development site, not a production site of any kind). Most modules add 
something to the administrative user menus: new settings under Configuration, a new node type under 
Create content, or a new menu link or tab somewhere in the administrative UI. You won’t see anything 
for this module, though. It should have added an “Add another” link under Configuration, but nothing is 
there. 

That automatic port would have been really great if it had worked. 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

493

However, even if the automatic upgrade had fully worked, you would still want to review the code. 
Time to look into the module! 

Identifying What’s Wrong 
Having something specific that isn’t working is a pretty good place to be when programming. It means 
you have a very clearly defined task in front of you. In fact, test-driven development (see Chapter 23) 
takes the approach of writing an automated test of what ought to happen, knowing that the test will fail. 
Programmers then make the test pass and can refactor (improve) the code, secure in the knowledge that 
they’ll know right away if they break any part of it. In this case, it would mean testing for the presence of 
the Add another menu item under Configuration. 

Regardless of whether you use test-driven development or not, you need to look inside the module 
to fix the code. 

The module is right where you left it, in sites/default/modules. Open up the file 
addanother.module in the addanother directory. 

Command Line Steps 
From the web root, enter the following: 

cd sites/default/modules/addanother/ 
vi addanother.module 

Now you are in the module. Where do you start looking? 
Whenever you need to make a menu item in Drupal, you’ll need to deal with hook_menu in some 

form. In Drupal 7, the manner in which you specify paths for configuration pages changed slightly. With 
Drupal 6, you could specify a menu path to be admin/settings/YourModuleName; Coder Upgrade will 
actually reformat that as admin/config/YourModuleName. Sadly, this isn’t up to Drupal 7 standards for 
displaying items from the Configuration page, as you need to pass another element in the path to show 
the group of configuration pages where yours belongs, the most basic of these being system. This would 
make your link admin/config/system/YourModuleName. Let’s look at this change in practice. 

Coder Module Output 

/** 
 * Implements hook_menu(). 
 */ 
function addanother_menu() { 
  $items = array(); 
  $items['admin/config/addanother'] = array( 
    'title' => 'Add another', 
… 
} 

Corrected Code 

/** 
 * Implements hook_menu(). 
 */ 
function addanother_menu() { 
  $items = array(); 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

494 

  $items['admin/config/system/addanother'] = array( 
    'title' => 'Add another',
… 
} 

Whenever you make changes to the menu system in Drupal, you need to clear the menu cache for
the changes to appear. There are two ways to accomplish this. The first is to go to Configuration, then
Performance under Development and then click the Clear all caches button. The second method is to use
Drush to clear the caches; you can do the directly from the command line with the following command:  

drush cc 

However you choose to clear your page cache, the Add another menu item should now appear on
your site’s Configuration page. You can now access the Add another page and enable Add another for
the Article content type that comes with Drupal by default. You can also enable all three of the display
settings for the purposes of testing the rest of the module’s features: Display the Add another message
after node creation, Display the Add another tab on supported node types, and Also display the Add
another tab on supported node edit pages (as shown in Figure 21–5). 

Figure 21–5. The Add another configuration page is edging closer to the functionality you want. 

OK, so, you’re getting much closer to the functionality you want. However, if you try to create an
Article node type, you’ll see a couple errors appear instead of your desired message:  

Notice: Undefined index: access in _menu_translate() (line 776 of
C:\xampp\htdocs\d7\includes\menu.inc). 
Notice: Undefined index: access in menu_local_tasks() (line 1890 of
C:\xampp\htdocs\d7\includes\menu.inc). 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

495

This is due to yet another change in Drupal 7 that Coder doesn’t catch automatically. Since Add 
another’s Drupal 6 version contained a function called addanother_access, Coder assumes it was a node 
access function and renames it to addanother_node_access for Drupal 7. This is incorrect; you’ll need to 
rename the function back. So this code 

/** 
 * Check if we should display the Add another verbiage on a node. 
 */ 
function addanother_node_access($nid) { 
… 
} 

becomes 

/** 
 * Check if we should display the Add another verbiage on a node. 
 */ 
function addanother_access($nid) { 
… 
} 

Now if you create an article, you’re definitely getting somewhere! You can see the Add another tab 
working properly, but the Add another message still isn’t displaying. This is due to a change in 
processing order in Drupal 7 that you can actually take advantage of by moving your drupal_set_message 
call into the addanother_node_insert function. You can also perform some clean-up at the same time by 
removing legacy code to deal with the now-depreciated Submit Again module. The changes are as 
follows: 

Original 

/** 
 * Implements hook_node_insert(). 
 */ 
function addanother_node_insert($node) { 
  if ($node->op == t('Save and create another')) { 
    // This prevents Add another's message from clashing with Submit Again. 
    return; 
  } 
  $allowed_nodetypes = variable_get('addanother_nodetypes', array()); 
  if (user_access('use add another') && isset($allowed_nodetypes[$node->type]) && 
$allowed_nodetypes[$node->type]) { 
    global $_addanother_message; 
    $_addanother_message = t('Add another <a href="@typeurl">%type</a>.', array( 
          '@typeurl' => url('node/add/' . str_replace('_', '-', $node->type)), 
          '%type' => node_type_get_name($node) 
          )); 
  } 
} 
 
/** 
 * Implements hook_nodeapi(). 
 */ 
function addanother_nodeapi_OLD(&$node, $op, $a3 = NULL, $a4 = NULL) { } 
 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

496 

/** 
 * Implements hook_form_alter(). 
 */ 
function addanother_form_alter(&$form, &$form_state, $form_id) { 
  if (isset($form['#node']) && $form['#node']->type . '_node_form' == $form_id 
       && variable_get('addanother_message', TRUE)) { 
    $form['buttons']['submit']['#submit'][] = '_addanother_message'; 
  } 
} 
 
/** 
 * Display the Add another message if set by addanother_nodeapi(). 
 */ 
function _addanother_message($form, &$form_state) { 
  global $_addanother_message; 
  if (isset($_addanother_message)) { 
    drupal_set_message($_addanother_message, 'status', FALSE); 
  } 
} 

Updated 

/** 
 * Implement hook_node_insert(). 
 */ 
function addanother_node_insert($node) { 
  $allowed_nodetypes = variable_get('addanother_nodetypes', array()); 
  if (user_access('use add another') && isset($allowed_nodetypes[$node->type]) && 
$allowed_nodetypes[$node->type]) { 
    $_addanother_message = t('Add another <a href="@typeurl">%type</a>.', array( 
      '@typeurl' => url('node/add/' . str_replace('_', '-', $node->type)), 
      '%type' => node_type_get_name($node) 
      )); 
    drupal_set_message($_addanother_message, 'status', FALSE); 
  } 
} 

As you can see, you’ve been able to remove the empty hook_nodeapi function as well as remove the 
no longer needed _addanother_message function and the hook_form_alter that calls it. This is a 
wonderful example of how some of the changes introduced in Drupal 7 can make the module writing 
process easier. 

■  New in 7  Drupal coding standards call for functions that are implementations of hooks to be identified with the 
comment Implements hook_somethingorother(). (See drupal.org/coding-standards and in particular the 
“Module Documentation Guidelines” page at drupal.org/node/161085.) Beginning function descriptors with 

present-tense third-person (he/she/it) verbs such as "implements" is new to Drupal 7. 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

497

After saving the module and creating another article, as shown in Figure 21–6, savor the smell of 
sweet success! 

 

Figure 21–6. Add another message is finally working! 

Finding Models to Follow 
Looking at the Drupal core code is one of the best ways to learn to write Drupal code well. Although parts 
of core are not (ironically) up to the latest and greatest as far as doing things “the Drupal way,” core code 
usually has the most eyes on it and the most work put into it. You can feel certain that the code works 
well. 

■ Tip  Another great place to look for model code is the suite of modules in the Examples project at 

drupal.org/projects/examples. 

In the case of this module, you would have been able to compare the menu hooks with another 
module in core that produces system menus such as comment.module. You can also look at similar 
contrib modules on drupal.org that perform functions similar to your own to use as models. 



CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

498 

■ Note  Core and contributed modules also frequently have code in include files alongside the module or in 
subdirectories. In the case of Comment module (aside from several theme template files, CSS files, a JavaScript 

file, and the .install and .info files), it contains comment.admin.inc, comment.pages.inc, and comment.tokens.inc. 

This chapter focused on doing just what was needed to upgrade the module, but you can learn more 
about Drupal from any module you upgrade or work on simply by exploring its code. 

Contributing the Upgrade to Drupal.org 
You’re not done until you contribute a patch. 

Open source free software is fantastic. You’re building on someone else’s work (and looking at the 
core software’s code for guidance). Now you get to share the work you’ve done with the community, and 
you’ll have the benefit of at least one or two people reviewing and testing it. After your work is 
incorporated into the module on drupal.org, you will be able to use any fixes or improvements others 
make, rather than having a version separate from what other Drupalistas use and contribute to. 

Okay, you know all that. How exactly do you contribute your changes? The traditional Drupal way 
(which is common to many software projects) is for all code changes to come in the form of a patch file. 
Instructions for making a patch are on the “Creating Patches” page at drupal.org/patch/create (and in 
the “Contributing Code” section of “Getting Involved” in the handbook). 

In most parts of this book, command line text is presented as an option—the recommended option, 
but an option. For creating patches, it’s the only option described, although there are various GUI 
programs such as http://winmerge.org that you can try. To create a patch without using a version 
control system, you need a copy of your code. Any UNIX-like system (Linux, Mac OS X, or Cygwin on 
Windows) will provide you with the diff command to create a simple file showing the differences 
between your version and the original. 

Use of this command is simple. It takes some flags to create patches in the style the Drupal 
community expects: u and p for unified context (the three lines of non-changed code before and after 
every change) plus the function that the code is within, and r to recurse through directories (to be able to 
patch more than one file). Then it takes two arguments, or operands: the original code (file or directory) 
and your modified code (an equivalent file or directory). Finally, you can point the output of the 
command to a file with the > (right angle bracket) character and a filename. Filenames for patches 
posted on drupal.org should include the relevant project name, a very brief description of changes 
(usually taken from the issue title), the node ID of the issue, and the comment number to which the 
patch will be attached. 

That’s a lot to process, but note how it all fits together in a one line command. First, you must start 
in the module’s directory, because project patches should be able to be applied from within the project 
root. For the Add another project, it should apply from within the Add another folder. (Likewise, all 
Drupal core patches should apply from the drupal root.) 

Go back to drupal.org/project/issues/addanother and find the issue, 7.x port. You can get the 
issue’s node ID from its URL, http://drupal.org/node/554504, and look at what the number the next 
comment will be (simply add one to the last comment number on the issue). Now you’re ready to make 
the patch, the culmination of all your work, like so: 

cd sites/default/modules/addanother 
diff -urp ../../files/coder_upgrade/old/addanother/ . > addanother-7.x-port-554504-5.patch 

http://winmerge.org
http://drupal.org/node/554504


CHAPTER 21 ■ PORTING MODULES TO DRUPAL 7 

499

You can test that the patch applies to the Add another module (you should always check for the 
latest version) by using the patch command. Copy the patch over to a fresh directory, get a fresh copy of 
the Drupal 6 version of Add another, and try out the patch, like so: 

wget http://ftp.drupal.org/files/projects/addanother-6.x-1.4.tar.gz 
tar -xzf addanother-6.x-1.4.tar.gz 
cd addanother 
patch -p0 < ../addanother-7.x-port-554504-5.patch 

As long as no errors appear, the patch applied correctly. Now you simply need to post a comment to 
the issue and attach the .patch file. Don’t ever expect everything to work the first time, especially for 
everyone who then tries to apply your patch. Once in the issue queue, people will try to help. 

You’ll have the opportunity to tweak or further modify the module as other people check and review 
you code, but for the most part, you’re done. Congratulations on your first Drupal module upgrade! 

■ Tip  Check in at dgd7.org/upmodule for more tips on porting different kinds of modules and for current 

patching best practices with Drupal.org’s still-new move to Git version control. 

  

http://ftp.drupal.org/files/projects/addanother-6.x-1.4.tar.gz


C H A P T E R   22 
 

■ ■ ■ 

501

Writing Project-Specific Code 

by Florian Lorétan 

One of the great strengths of Drupal is the wide selection of available modules, providing everything 
from the integration of external media to complex access restrictions, with many modules expanding 
standard functionality to fit specific use cases.  

Combining existing modules can cover most of your needs, but every project is different and has 
unique details that are not covered by any module. This where glue code comes in—project-specific 
code that fills the gap between the functionality provided by existing modules and the exact 
requirements of your project. Glue code allows you to bring projects to 100% completion with full 
customer satisfaction. 

■ Note  Many modules provide configuration options to let users adapt the functionality to their needs. Make sure 

to look at these options before you start writing your own custom code. 

The following are terms you need to know: 

• Core module: a module that is included in the standard download of Drupal. 
These modules are maintained by the same people who maintain the core system. 

• Contributed (contrib) module: a module made available for download on 
drupal.org. Some of these modules are widely used, while others are only used by 
very specific people.  

• Custom module: a module written by you while working on a project. It only 
contains project-specific functionality such as customizations of core and contrib 
modules. 

Custom Modules 
Like any functionality in Drupal, glue code resides in modules. There is no technical difference between 
a custom glue code module and a contributed module from drupal.org, but it is important to separate 
your code from code maintained by other people. This separation makes it possible to apply updates to 
contributed modules and benefit from security updates and improved functionality without losing your 
customizations. 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

502 

The biggest mistake made by developers new to Drupal is making changes directly to existing modules 
or even to core Drupal files. I must admit to having done so in the early days of my Drupal career, and it 
cost me a lot more time than I would have spent reading this book, had it existed at the time. 

The right way to write glue code is to create a custom module, clearly separated from contributed 
modules. Each type of module has a different standard location, making it easy to tell them apart. 
Directories are indicated relative to the main Drupal directory, where the index.php file resides.  

• Core modules are stored in the modules directory. You shouldn’t ever modify the 
content of this directory. 

• Contributed modules are stored in the sites/all/modules/contrib directory. The 
content of this directory should only be modified when you are updating modules.  

• Custom modules are stored in the sites/all/modules/custom directory. These are 
the modules that you are writing, and you are free to modify them as needed. 

In addition to storing custom modules in sites/all/modules/custom, you also want to follow the 
following conventions: 

• To avoid potential conflicts with existing names, the names of custom modules 
should be prefixed with the project name, e.g., myproject_comment.module.  

• For small projects, everything can be in one module. If you need more than one 
module, make sure that the dependencies between your own modules are clear. 

• If a custom module extends the functionality provided by another module, make 
sure to include that module in the dependencies listed in the .info file.  

For example, a module customizing the comment form for a project called “MyProject” would have 
the following structure: 

sites/all/modules/custom/myproject_comment/myproject_comment.info 
 
name = "MyProject Comment Customizations" 
description = “Customize the comment form for MyProject.” 
core = 7.x 
package = "MyWebSite" 
 
; Add any modules that we rely on. 
dependencies[] = comment 
 
 
sites/all/modules/custom/myproject_comment/myproject_comment.module 
<?php 

For now, myproject_comment.module can be left empty. You can enable the module from the 
module administration page, but it doesn’t do anything yet. 

■ Note  Many of the examples given in this chapter could be solved using existing contributed modules; such 
solutions are referenced in the text. These modules generally take a similar approach to the presented custom 

code. The decision whether an existing module is more appropriate than a custom module is dependent on the 

project and is left to the reader. 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

503

Hooks 
As mentioned earlier, glue code modules do not provide functionality on their own, but they expand the 
functionality provided by existing modules. In Drupal, the standard mechanism to let modules interact 
with each other is the hook system.  

The hook system is a very flexible way to let one module give other modules the possibility to react 
to certain events. For example, the comment module defines a hook called hook_comment_presave(), 
which is executed before a comment is saved. Any module interested in modifying a comment before it 
is saved can define a function named by replacing “hook” with the name of the module. In your 
example, you have a “myproject_comment” module implementing hook_comment_presave, which results 
in the following function:  

function myproject_comment_comment_presave($comment) { 
  // Do something here. 
 
 
} 

The hook system makes it possible to have many modules building on top of each other at the same 
time. The flexibility it provides has been one of the success factors of Drupal as a development platform, 
but that flexibility also means that developers who are new to Drupal sometimes have a difficult time 
following the execution of the code. A standardized method for adding custom functionality to the 
existing module is very helpful to keep a good overview of the various interactions happening between 
modules. 

The Method 
Now that you have a place to put your code, let’s see what you can put in there. However, before I get 
into the details of the various APIs and how to use them, let’s have a look at the general method for 
achieving what you want using custom code. No matter if you are an experienced “Drupal Ninja” or if 
you are writing your first module, writing custom code is always a discovery process consisting of the 
following questions: 

What is it that I need to modify and why am I doing it? 

Where can I hook into? 

What is already there? 

How can I modify existing functionality for my own needs? 

What is it that I need to modify and why am I doing it? 
I am not going to spend much time discussing the reasons for wanting a specific functionality, but “Why 
am I doing this?” is always an important question to ask before starting to write code. 

Custom code, by nature, modifies the standard behavior of existing functionality. Before you start 
coding, make sure that the changes you want to bring into the system are meaningful. The standard 
functionality is often the standard for a reason, and it’s important to consider the implications that your 
changes will have.  



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

504 

Where can I hook into? 
Drupal has a very flexible architecture that makes interaction between different modules very easy, but it 
also means that there are many different ways to achieve similar results. The main concept used for 
module interaction is the hook. When a module provides certain functionality, a hook is a way to let 
other modules know about it and react accordingly. This makes it possible to have modules that build on 
top of others. In fact, you can look at Drupal as a sort of layered architecture, with the core systems at the 
very bottom, some basic modules building on top of that, and more modules extending that basic 
functionality. 

Each of these modules building on top of each other is using the hooks of the modules below it. 
Your custom module will come on top of existing modules, but knowing the best way to hook into them 
is important to build solid functionality. This question pretty much comes down to what hook you want 
to implement. 

There is no absolute rule, but a good starting point is to find out what kind of element or main 
component you will be dealing with. In most cases, it will be a node, a form, or a menu router item. A 
search on api.drupal.org should help you find the relevant hooks, but Table 22–1 shows some of the 
basic ones. 

Table 22–1. Basic Hooks 

Component type Alterable with 

Form hook_form_alter(&$form, &$form_state, $form_id) 

Node hook_node_presave(), hook_node_insert(), etc. 

Menu router item hook_menu_alter(&$items) 

What is already there? 
Once you have a place to hook into existing functionality, you need to know what’s there to play with. 
This is the point where some debugging tools, such as the debug() function, come in handy. Custom 
modules work mostly with structures defined by other modules and being able to visualize those 
structures is critical to interacting with them. 

■ Tip  The Devel module provides a set of tools that makes it easy to investigate the different structures involved 
in a Drupal site. This module does not provide any functionality to end users and should be disabled on production 

environments, but I absolutely recommend using it during the development of any project. 

How can I modify existing functionality for my own needs? 
This is the last step of the process, but it’s the one where you actually get things done. You know what 
you want, where you can hook into, and what data is available; now you just need to write the code that 
does it. If you ever find yourself at this point not knowing how to continue, going back to the previous 
steps should help. 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

505

An Example: Changing the Label of a Submit Button 
Here’s a simple example to illustrate this method:  

1. What is it that I need to modify and why am I doing it? 

You have a form provided by a contributed module, but the client for whom
you are building the web site wants to replace the standard submit button that
says “Save” with one that says “Store this information”.  

2. Where can I hook into? 

There are a few places where you could hook into to perform the change, but
since what you want to modify is a form element, you are going to implement
hook_form_alter(), which takes three arguments: $form, $form_state, and
$form_id: 

function mymodule_form_alter(&$form, &$form_state, $form_id) { 
   
} 

3. What is already there? 

Use the Devel module and its helper function dpm() to figure out the content of
the parameters, like so:  

function mymodule_form_alter(&$form, &$form_state, $form_id) { 
 dpm($form); 
 dpm($form_state); 
 dpm($form_id);
} 

It turns out that $form is a Form API structured array in which you can identify the submit button
that you want to modify (see Figure 22–1). The $form_state has additional information about the state of
the form, such as the submitted values. The $form_id parameter is there to identify this specific form;
you can use it to make sure that you don’t affect other forms. 

Note that hook_form_alter() has another variant, which is specific to a certain form, takes the form
hook_form_FORM_ID_alter(), and doesn't take the $form_id parameter. This variant has the advantage of
only affecting a specific form, thus slightly improving performance and reducing the likelihood of
unwanted side-effects.  



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

506 

 

Figure 22–1. The output of dpm() 

4. How can I modify existing functionality for my own needs? 

Now that you have targeted the key elements that you are going to use, you can 
write the code. We know the ID of the form, so we can also use the 
hook_form_FORM_ID_alter() variant to only affect this specific form. Supposing 
that the ID of the form in question is article_node_form, our hook 
implementation would look like this 

function mymodule_form_ article_node_form alter(&$form, &$form_state, $form_id) { 
  // Replace the #value attribute of the submit button. 
  $form['submit']['#value'] = t('Store this information'); 
} 

Specific Use Cases 
The possibilities provided by the different hooks in Drupal are endless. Documentation about how to 
use each of them is available at api.drupal.org, so listing them all here wouldn’t make much sense. 
Instead, I am going to show examples of common tasks and how to solve them. 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

507

Hiding Elements from the User Interface 
When I talk about customizing the functionality provided by an existing module, I am not necessarily 
going to expand it. In fact, one of the most common tasks of glue code is to hide elements from the user 
interface. The purpose can be either to streamline the user experience by removing superfluous 
elements, or it can be functional—to purposefully limit the options given to the end user in order to 
match your needs.  

When you need to hide elements from the user, the first idea that comes to mind is simply to 
completely remove the element. While this can work most of the time, there are cases where such an 
approach will have negative side effects. Other modules might be counting on those elements to be 
there, so rather than removing them, the best solution is to deny access to them, like so:  

/** 
 * Implements hook_form_alter(). 
 * Remove the comment settings from the article form. 
 */ 
function mymodule_form_alter(&$form, &$form_state, $form_id) { 
  $form['comment_settings']['#access'] = FALSE; 
} 

This code illustrates how to use hook_form_alter() to set the #access attribute of a form element to 
FALSE, which has the effect of hiding it from all users. The form element is not visible but is still present 
in the form structure and will be processed correctly. In this case, you hide the comment settings from 
the article creation form, but articles created with this form will still have the default comment settings 
applied to them. 

The next example uses the same principle with menu elements. Access callbacks are usually 
functions that define whether or not a user has access to a page, but by setting the access callback to 
TRUE or FALSE you can allow or deny access unconditionally to all users.  

/** 
 * Implements hook_menu_alter(). 
 * 
 * Make the http://example.com/node page unreachable. 
 */ 
function mymodule_menu_alter(&$items) { 
  $items['node']['access callback'] = FALSE; 
} 

This second example uses the same principle with menu elements. Access callbacks are usually 
functions that define whether or not a user has access to a page, but by setting the access callback to 
TRUE or FALSE we can allow or deny access unconditionally to all users. 

Sometimes instead of removing an element, you only want to change the way it looks or behaves. 
This can generally be done by changing its type. Basic form elements can easily be converted from one 
type to another. The next example turns a text field into a select field to let the user choose from 
predefined options instead of entering arbitrary input. Note that form elements can only be converted 
into elements types with compatible values. The value of a text field is a string, whereas the value of a 
group of checkboxes is an array; turning a text field into a group of checkboxes will have unpredictable 
results. 

/** 
 * Implements hook_form_FORM_NAME_alter(). 
 * 
 * Instead of using a text field for filtering a view by type, you limit the options  
 using a select element. 
 */ 

http://example.com/node


CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

508 

function mymodule_form_views_exposed_form_alter(&$form, &$form_state) { 
  // Change the type of the filter field to a select element. 
  $form['title']['#type'] = "select"; 
 
  // Set the options to only search for Drupal or Open Source. 
  $form['title']['#options'] = array( 
    '' => t('List everything'), 
    'Drupal' => t('List only articles whose title includes "Drupal"'), 
    'Open Source' => t('List only articles whose title includes "Open Source"'), 
  ); 
} 

This last example is a very common one. Tabs such as those found on node pages or on the user 
registration form are often undesired, although the pages they link to still need to be available. This 
effect can be easily obtained by changing the type of the corresponding menu definition from 
MENU_LOCAL_TASK to MENU_CALLBACK, like so: 

/** 
 * Implements hook_menu_alter(). 
 * 
 * Hide the tab to edit an article, you are going to create a link at the end of the  
 content instead. 
 */ 
function mymodule_menu_alter(&$items) { 
  // The default type is MENU_LOCAL_TASK, which displays a tab. 
  $items['node/%node/edit']['type'] = MENU_CALLBACK; 
} 
 
/** 
 * Implements hook_node_view(). 
 *  
 * Add our own link. 
 */ 
 
function mymodule_node_view($node, $view_mode) { 
  $node->content['links']['mymodule_link'] = l(t('Edit'), 'node/' . $node->nid . 
'/edit'); 
} 

Execution Order of Hooks 
Knowing the order in which hook implementations are executed is very important when adding glue 
code. It often happens that the module that you want to extend uses the same hook as your custom 
module, in which case you generally want your module’s implementation to be executed explicitly 
before or after the original module.  

By default, the order in which hooks are executed is determined by the corresponding module’s 
weight, which is stored in the system table and can be set using hook_install(). (For an example, look 
at the Devel module’s implementation of hook_install() in devel.install.) Modules having the same 
weight are sorted alphabetically based on the path, which means that core modules stored in the 
modules directory have their hooks executed before those of contrib modules, which are stored in 
sites/all/modules. 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

509

However, sometimes you need to control just one hook, not all of them. This can be done using 
hook_module_implements_alter(&$implementations, $hook). Suppose that you want to do some form 
alterations after all other modules have done theirs. This could be done with the following code: 

/** 
 * Implements hook_module_implements_alter().  
 */ 
function mymodule_module_implements_alter(&$implementations, $hook) { 
  if ($hook == 'form_alter') { 
    $my_hook_implementation = $implementations['mymodule']; 
    unset ($implementations['mymodule']); 
    $implementations['mymodule'] = $my_hook_implementation; 
  } 
} 

Working with Fields 
One of the most important new features of Drupal 7 is the inclusion of the Fields API into Drupal core.  

While the Field API was inspired by the widely used CCK module, some substantial changes 
occurred that made the Field API even more central to the functionality of a web site. Whereas fields 
used to be limited to nodes, they can now be attached to any entity. This means that users, comments, 
taxonomy terms, and any other defined entity can now have additional attributes. As a consequence, 
you are going to encounter structures from the Fields API very often when writing glue code for Drupal 7. 

The standard structure of a field is the following: 

$entity->field_name[language_code][delta]['attribute_name'] 

By looking at the field structure of an article defined in a standard installation with the Devel 
module, you will notice the following: 

• The field name often starts with the field_ prefix, but this is not always the case. 
The body of an article is a field, for example, but its field name is simply 'body'. 
Fields created through the user interface will always have the field_ prefix.  

• When the locale module is not enabled, the language code is always 'und', which 
is the value of the constant LANGUAGE_NONE. However, when the locale module 
is enabled, the language code corresponds to the language of the article in some 
cases, but some fields such as the field_tags are still language-independent. The 
field_language() function helps us determine the language code for a field, but 
we can also use the field_get_items() function, which handles the whole logic for 
us.  

/** 
 * Implements hook_node_presave(). 
 */ 
function mymodule_node_presave($node) { 
  // Use field_language() for a specific field. 
  $body_language_code = field_language('node', $node, 'body', $node->language); 
  $body_value = $node->body[$body_language_code][0]['value']; 
 
  // Alternatively, get the items directly. 
  $body = field_get_items('node', $node, 'body'); 
  $body_value = $body[0]['value']; 
} 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

510 

Note that when dealing with the form elements related to a field’s widget, the 
language code is accessible in the #language form API attribute and should be 
retrieved that way. 

/** 
 * Implements hook_form_alter(). 
 */ 
function mymodule_article_node_form_alter(&$form, &$form_state) { 
  // Right:  $body_language_code = $form['body']['#language']; 
  // Wrong:  $body_language_code = field_language('node', $node['#node'], 'body'); 
} 

• The delta is a numeric index used with multiple-valued fields to identify the each 
of the different values. However, the delta is part of the structure of any attached 
field to maintain consistency. For single-valued fields, the delta is always 0. 

  // You can iterate through the multiple values of a field. 
  foreach (field_get_items('node', $node, 'field_tags') as $delta => $item) { 
  // Do something with each value. 
} 

• Each field type can have many different attributes. Many field types, such as text 
and numbers, have one main attribute called 'value', but this is not always the 
case. Taxonomy term reference fields only have one ' tid' attribute with the 
identifier of a referenced taxonomy term. Image fields have much more 
information about the referenced file. When in doubt about what data is available, 
make use of the Devel module to check. If the data you need is not available, you 
can generally load it based on the existing attributes. 

■ Note  The Field API provides many more possibilities that can be very practical for custom modules. Writing 

custom widgets or custom formatters can be a very elegant way to take advantage of existing field structures 
while keeping your code generic and clean. More information about the Field API can be found at 

api.drupal.org/api/drupal/modules--field--field.module/group/field/7. 

Adding Dynamic Front-End Interaction 
The Web 2.0 movement has popularized the use of JavaScript and Ajax for user interface improvements 
to the point where they have become an integral part of the expected user experience. Fortunately, 
Drupal 7 includes many tools that greatly facilitate the creation of dynamic user interfaces. For more 
details about how to use these various APIs, have a look at Chapter 17. 

jQuery UI 
The jQuery UI library is a set of user interface tools built on top of jQuery, which is included in Drupal 7. 
It provides helper functions to facilitate the creation of behaviors such as resizable, draggable, or 
selectable components. It also provides JavaScript tabs, accordions, sliders, and other common user 
interface components. 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

511

Listing 22–1 is an example of using jQuery UI to turn the sidebar blocks into an accordion using 
hook_page_alter(). 

Listing 22–1. Using jQuery UI  

/** 
 * Implements hook_page_alter(). 
 * 
 * Turn the sidebar blocks into a an accordion. 
 */ 
function mymodule_page_alter(&$page) { 
  if (isset($page['sidebar_first'])) { 
    // Adapt the HTML structure of the sidebar using a custom theme function. 
    $page['sidebar_first']['#theme'] = 'mymodule_sidebar_accordion'; 
 
    // Add the accordion library from jQueryUI. 
    $page['sidebar_first']['#attached']['library'] = array( 
      array('system', 'ui.accordion'), 
    ); 
 
    // Add the code to transform the sidebar into an accordion. 
    $page['sidebar_first']['#attached']['js'][] = array( 
      'data' => '(function($) { 
                   Drupal.behaviors.sidebarAccordion = { 
                     attach: function(context, settings) { 
                       $("#sidebar-first").accordion();  
                     } 
                   }; 
                 })(jQuery);', 
      'type' => 'inline', 
    ); 
  } 
} 

#ajax and #states 
Interactivity is very often related to forms. The #ajax and #states attributes are recent additions to the 
Form API that greatly simplify the creation of Ajaxified components and the definition of dependencies 
between form elements. Such tasks once required custom jQuery code but can now be handled directly 
from PHP by altering form arrays inside an implementation of hook_form_alter(). See the Form API 
reference at api.drupal.org/api/drupal/developer--topics--forms_api_reference.html/7 for 
documentation and examples on how to use these attributes. 

Making Code Reusable 
Even though the glue code that you put into custom modules is mostly project-specific, it would be nice 
to be able to reuse the same functionality on a different project without having to start from scratch or 
spending hours adapting your custom code to the new project. The following sections contain 
guidelines that will help you keep your code generic and reusable. 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

512 

Make Functionality Configurable 
When you want to act on a specific component, the easiest way to specify it is to hardcode the 
component’s name into your module. The drawback is that from this point, your module will depend on 
a component with a specific name. Instead of hardcoding the component’s name, you can make your 
functionality configurable. 

For example, you want a small module that notifies users about potentially outdated content 
because your information is extremely time-sensitive. The hardcoded version would look like this: 

/** 
 * Implements hook_node_view(). 
 */ 
function mymodule_node_view($node, $view_mode, $langcode) { 
  $display_outdated = $node->type == 'article'; 
  $age = time() - $node->created 
  $is_outdated =  $age > 60*60*24*7; 
 
  if ($display_outdated && $is_outdated) { 
    drupal_set_message(t('This article was posted over 1 week ago and might be outdated.')); 
  } 
} 

If you use this code on a different project that needs the same functionality—but for a content type 
called “story” and with a threshold of one month instead of one week—you would need to change the 
code in four places. This creates a high risk of forgetting something and ending up with broken code. A 
better solution would be to make the code configurable, like so: 

/** 
 * Implements hook_node_view(). 
 */ 
function mymodule_node_view($node, $view_mode, $langcode) { 
  $delay = variable_get('mymodule_outdated_delay_' . $node->type, 0); 
  $age = time() - $node->created 
  $is_outdated = $age > $delay; 
  if ($delay && $is_outdated) { 
    $type = node_type_load($node->type); 
    drupal_set_message(t('This @type was posted over @delay ago and might be  
 outdated.', array('@type' =>  $type->name, '@delay' => format_interval($age, 1)); 
  } 
} 

This code is not dependent on the existence of a specific content type anymore. Instead, it defines 
variables that can be set for any content type. To make this configuration available to the end user, you 
can simply extend the node type configuration form, as shown in Listing 22–2. 

Listing 22–2. Extending the Node Type Configuration Form 

/** 
 * Implements hook_form_FORM_NAME_alter(). 
 */ 
function mymodule_form_node_type_form_alter(&$form, &$form_state) { 
$form['mymodule_outdated_delay'] = array( 
    '#title' => t('After how long do you want to warn users.'), 
    '#type' => 'select', 
    '#default_value' =>  variable_get('mymodule_outdated_delay_' .  $form['#node_type'],  



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

513

 60*60*24*7), 
    '#options' => array( 
      0 => t('Do not warn about outdated content'), 
      60*60 => t('1 hour'), 
      60*60*24 => t('1 day'), 
      60*60*24*7 => t('1 week'), 
    ), 
  ); 
} 

This code will let the user configure functionality along with other node settings. These settings are 
stored as variables that you can access from other parts of your code as you did in your implementation 
of hook_node_view(). Now that the configuration is independent from the functionality, you can reuse 
the same code on a different project with similar functionality but a different configuration. 

Tie Components Together 
Glue code is, in most cases, dependent on other structures such as content types, views, and other 
configuration components. In Listing 22–2, you made the code generic in order to be able to attach 
functionality to any content type, but there are cases where you need a specific structure to be present. 

For example, a custom blog module would not make much sense without a content type for blog 
articles and a view to list the blog posts. Rather than leaving it up to the person installing the module to 
create those components, you can have your custom module define them itself. You could use 
hook_node_info() to define a new node type and hook_views_default_view() to define a view for the blog 
listing. 

However, defining these structures by hand can be tedious and updating such structures is difficult. 
The Features module can greatly help with the task of exporting configuration components to code, but 
it adds an additional dependency to your module. Chapter 34 contains more details about how to use 
features. 

Document Your Code 
You’ve probably already heard this many times, so I won’t spend too long on this point, but just because 
you are writing project-specific code does not mean that you shouldn’t document your code. As a PHP 
developer on a Drupal project, custom code is where you will spend most of your time, so a lack of 
documentation can do a lot of damage and definitely reduces code reusability. 

Follow Drupal’s Coding Standards 
Like many projects, Drupal has coding standards that guarantee a clean and consistent coding style. 
Although you are free to do whatever you want when writing your own code, using the same coding style 
as other Drupal module developers will make it easier to keep all your projects consistent and will 
improve the readability. 

More information about the official Drupal coding standards is available at drupal.org/coding-
standards.  



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

514 

Release Your Work 
No matter what kind of custom functionality you need, it is likely that there are other people who have 
similar needs. If you have been good at keeping your code clean and generic, it’s an excellent idea to 
release your code on drupal.org. (This doesn’t have to be as a full, supported project, either— many 
people will be able to benefit from you sharing custom code as sandbox projects.) 

All Drupal modules are released under the GPL 2 license. If you are being paid for your development 
work (whether you an employee or a contractor), check with your contact person to make sure they have 
no problem with making the code you wrote for them public. 

In addition to garnering good karma for contributing to an open source project, there are many 
other reasons why releasing code publicly can be beneficial to everyone involved. Having more people 
use your module means that there will be more eyes on the code, and it is likely that your users will 
contribute bug reports and new features.  

Patching Existing Modules 
Modifying the code of existing modules is generally considered to be a bad practice. However, it makes 
sense when you’re working on improving the module itself—as long as the improvements are 
contributed back to the maintainer so that they can be included in future releases. Note that such 
changes should always be done on a development environment (not on a live server) and that you 
should use a version control system to make sure that you can revert your changes if necessary. 

In most cases, you will be fixing a bug or adding a new feature to the original module. Although the 
details might be different, here are the basic steps to follow: 

• Look at the module’s issue queue to see if anybody else has reported something 
similar and eventually solved it.  

• If a bug hasn’t been reported yet, write an issue describing the problem and how 
to reproduce it. 

• If a new feature hasn’t been requested yet, write an issue describing the new 
feature and why it’s needed. 

• If there are any suggested solutions, try them and report if they worked or not.  

• If there are no suggested solutions and or the suggested solutions don’t work, try 
to resolve the problem yourself. 

• Make sure to post an update of what you found. Even an unsuccessful attempt can 
result in useful information. 

• Once you have a solution that works, you can keep it in your code base. Make sure 
to have a reference to the issue and a copy of the patch saved in case it needs to be 
reapplied at a later date. 

Releasing a New Module 
Finally, there are cases where the new functionality you created does not belong to an existing module 
but deserves a module of its own. The steps to get a module maintainer account on drupal.org are 
beyond the scope of this chapter, but you can find more information about it at drupal.org/node/7765 
(and see Chapter 37 on maintaining a project on drupal.org using Git). 

Before you release your code, please make sure to check the following points: 



CHAPTER 22 ■ WRITING PROJECT-SPECIFIC CODE 

515

• The code is clean, well documented, and follows Drupal’s coding standards. 

• The functionality provided can be useful to other people. 

• There is no existing module that serves the same purpose. If there is, try to work
with that module’s maintainer. Duplicated modules cause confusion for end
users. 

• The code has no security holes that you are aware of. 

Summary 
With each new release, Drupal’s APIs have made it possible to do more without having to hack existing
modules. As of Drupal 7, hacking modules should never be necessary. Using the APIs correctly to write
your own glue code can not only save you from causing yourself problems, but it will also make you a
better Drupal developer.  

Keeping your code clean makes it easier to take advantage of the development community
surrounding Drupal, and contributing bug fixes and new features as you encounter them is probably the
easiest way to bring your own contribution and becoming an active member of the community yourself. 

■ Tip  Stick around dgd7.org/glue for the links from this chapter, more resources, and reader tips. 



C H A P T E R   23 
 

■ ■ ■ 

517

Introduction to Functional Testing 

with Simpletest  

by Albert Albala 

The release of Drupal 7 marks a turning point, specifically with regards to automated testing, as it allows 
core and contributed module developers to validate that their code works as intended. Because content 
management systems were originally designed for simpler web sites, the relative complexity of 
automated testing has traditionally made it a low priority. However, in recent releases, and especially 
with version 7, Drupal has become much more than a simple content management system. It is a 
platform, a complex application making use of modern concepts such as exception handling, object-
oriented programming, and, yes, automated testing. 

Two types of automated tests are now supported by Drupal:  

• Unit tests validate units of code (especially functions). For example, a unit test 
could feed the value 9 to a square_root() function and confirm that it returns 3. 

• Functional tests validate that particular use cases involving a real user produce a 
desired outcome. An actual example found in Drupal’s core node module test 
(modules/node/node.test) validates that a user with the “create page content” 
permission can go to Add content  Basic page and successfully create a page. 

This chapter will focus exclusively on functional tests, which are by far the most widely-used in 
Drupal and the most adapted to the way Drupal is written. The Drupal community has modeled its 
Simpletest testing framework on the PHP library of the same name, although that library is not required 
by Simpletest in Drupal (for Drupal 6, see drupal.org/simpletest). In fact, Simpletest is now so tightly 
integrated into the Drupal core development workflow that all new core code is practically required to 
be validated by a functional test. 

This chapter will show you how to leverage Simpletest for functional testing in your own modules 
and patches (see Chapter 18 for more on developing modules). Think of functional testing as validating 
that a module actually interacts as intended with a real user. For example, let’s say you wanted to 
develop a simple module to display the text “Over 25 active users!” if more than 25 users have posted at 
least one node in the last month.  

Without automated functional testing, you would write the module and then test it by creating 25 
users and a post for each. Only then could you be sure that the text “Over 25 active users!” actually 
appears when it should. Simpletest allows you to define these steps in a functional test so they can be 
repeatedly simulated any number of times, automatically, within a brand new temporary Drupal site 
one you can’t manipulate directly, but only through the code in your testing file (as you’ll see later on). 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

518 

In fact, you’ll create this exact module and functional test later in this chapter. But first, let’s start 
with a quick overview of some key Simpletest concepts. Then you’ll learn how to set up a Simpletest 
working environment in Drupal 7. (Don’t worry; it’s really not that complicated.) 

Advantages (and Caveats) of Using Simpletest 
Your first question is probably about whether incorporating Simpletest into your workflow adds to 
development time. If you consider development time over the life of your project (and you should!), in 
most cases you’ll find that using Simpletest actually saves you time. Yes, you’ll spend a lot more time 
defining your tests at the very beginning of a project. The real payoff comes later on in the lifecycle of 
your project. Here’s how: 

• Automated testing allows you to validate that your code is actually doing what it 
should by running particular use cases in a brand new, temporary Drupal 
installation. This allows you to catch problems early (hopefully before the users of 
your site) and do away with assumptions about your code. 

• Tests are a vital part of a module’s documentation. As you look at the sample test 
later in this chapter or the tests included with Drupal core (see 
modules/node/node.test), you’ll find that tests tell a story about what the module 
actually does—from a user’s perspective. This will save future programmers 
(including you) valuable time figuring out what a module was meant to do in the 
first place.  

• Automated testing helps avoid regressions. Once some functionality is validated by 
a test, it will be more difficult to break later on. If a bug fix you’re implementing 
introduces a regression (breaks functionality that worked fine before), the problem 
will be brought to your attention as soon as you run your tests on the new code. 
You’ll spend less time fixing mistakes and maintaining your code. 

Keep in mind, though, that tests, just like any other code, are prone to bugs and need to be 
maintained. Beware of logical errors in the tests you write, especially tests that succeed when they 
should fail. 

When to Use Simpletest 
Using Simpletest is time consuming at first. Although in a perfect world all code would be validated by a 
functional test, you’ll find Simpletest yields its highest dividends in the following scenarios: 

• On widely-used modules, where bugs are more likely to appear. 

• On modules you expect will be under active development for a long time. 

• On modules that are mission-critical to your web site. 

• On modules that require several steps to test a desired use case. 

For the most effective tests, don’t limit yourself to normal workflows. Make sure you also test what 
happens when a user tries something that should not be permitted (for example, a test could validate 
that an anonymous user can’t create content). Don’t forget: your tests are only as good as you make 
them. 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

519

What Is Test-Driven Development (TDD)? 
Test-driven development takes automated testing to its logical next step. On a TDD project, 

• The current version of your module should not contain any failing tests (and thus 
should not contain any half-baked functionality). 

• Tests should be defined in parallel with (or even before) your code. This allows you 
to focus on the task of satisfying your tests as you code. 

• In a pure TDD model, the current version of your module should not even contain 
any features that are not validated by tests. 

The more you apply these concepts to your code, the harder it will be for bugs to creep in. the 
following is the basic TDD workflow for a given task: 

• Add a test that fails, proving that your bug exists or your feature is not 
implemented. 

• Modify the module (including its test) until the test passes. 

• Once your test passes and you have validated that your modifications work, you’re 
done. 

Of course, satisfying your tests does not guarantee that your code is any good! Both your tests and 
your module code should still be written conscientiously. 

How Simpletest Works 
In Drupal, any module that defines the user interface can (and should!) define one or more functional 
tests. You can then run these on any Drupal site with Simpletest enabled (see the “Setup and Running a 
Test” section). But in most cases, tests will be run only on your development site; once your modules are 
stable, they will run on production sites and the tests will be ignored. 

Where are these tests defined? Drupal modules are folders with at a minimum two files: 
mymodule.info and mymodule.module. (For more about developing modules, see Chapter 18.) Tests are 
defined in another file, mymodule.test. For example, your test file could be at 
sites/all/modules/mymodule/mymodule.test.  

■ Note  In Drupal 7, files containing classes must be explicitly referenced in the .info file. So in addition to 

creating a .test file, you’ll add the line:  files[] = mymodule.test to your .info file. 

You’ll take a closer look at the specifics later in the “Anatomy of a .test File” section; you’ll also find 
all the code from this chapter at dgd7.org/167 and on the book’s page at www.apress.com. Basically, each 
test defines something specific that a module should do on a brand new Drupal installation, not on your 
current site. If a test depends on some content or users being present, these should be created within the 
test itself (you’ll see how this is done later in this chapter). 

http://www.apress.com


CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

520 

Once a test exists, you will be able to run it through the Simpletest module (see the “Setting up and 
Running a Test” section). Running even a basic test can take several minutes (you might even think your 
site is frozen; it’s not). This is because Simpletest creates a brand new temporary Drupal site for each 
test, then deletes it when the test is done. 

■ Note  It is important to understand that each test, as it is run, completely ignores whatever is in your site’s 

current database or what’s in other tests. This is to avoid tests becoming “contaminated” by outside data. 
Although work is being done to enable running tests on a clone of your site instead of a brand new installation (see 
drupal.org/node/666956 and drupal.org/project/simpletest_clone), such functionality is not currently 

ready for prime time. 

For each test, Simpletest creates a new site by installing all database tables; and at the end of each 
test, these tables are discarded. The database used by Simpletest is the same one used by your 
development Drupal site (on which you enabled the Simpletest module), with the same username and 
password; to avoid naming conflicts, each temporary table is created with a random unique prefix. 

■ Note  I don’t recommend using table prefixes when you install your development site (the one on which you 
enable Simpletest), but if you must, keep them short. Simpletest will add its own prefix to your prefix before each 
temporary table name, which will result in errors if the table names become too long. The maximum length of 

table names varies between systems, but I’ve had problems using prefixes of over six characters. Avoid prefixes 

altogether if you can. 

Setting up and Running a Test 
Before Drupal 7, one had to download and install the Simpletest module, then patch core before 
performing tests. With Drupal 7, Simpletest is now a bona fide member of Drupal core, so all you have 
to do is enable it on any Drupal 7 web site and you’re ready to start testing. There’s no fiddling with 
the server. 

Because you will be testing modules and not your web site, and because running tests is 
processor-intensive, you should not run tests on your production web site. It is best to set up a 
dedicated Drupal site (on your laptop, for example) specifically for developing and testing. This is 
where you’ll develop your modules, enable Simpletest, and run your tests. The temporary Drupal sites 
used for testing will be created on the same database as this development site. Do not enable 
Simpletest on your production site. 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

521

■ Note  Although the Simpletest module’s machine name is simpletest, its human-readable name is Testing. So 
if you enable the module through the web interface at admin/modules (see Figure 23–1), look for Testing, not 
Simpletest. If you’re enabling the module through Drush (see Chapter 26) on the command line, use drush en 

simpletest. 

 

Figure 23–1. Enabling the Testing module 

Let’s start by running a test that ships with Drupal core: the functional test included with the core 
blog module. Install a new Drupal 7 site, enable the Testing module, then go to Configuration  
Development  Testing. Here, you’ll see all modules (even if they’re not active) that have associated 
automated tests (see Figure 23–1). Click the blog checkbox, and then the Run tests button. 

Running the blog test takes a few minutes (your site is not frozen; be patient) because it’s installing a 
brand new Drupal web site in a virtual browser, creating some users and content, and making sure 
everything works as expected. This is all done in the background while you’re staring at a progress bar. 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

522 

If you expand the results section on the resulting page, you’ll see about 250 tests in green and a 
number of verbose messages. Clicking on any of the verbose messages shows you a snapshot of how the 
temporary test site looks at a particular stage of a test. This is not a screenshot but the actual HTML code 
of a given page exactly as the testing robot sees it at a given time. This is an invaluable tool when you 
have failing tests in your modules—you get to see exactly what went wrong and when. 

■ Note  On the Simpletest settings page at Configuration  Development  Testing  Settings 
(admin/config/development/testing/settings) the “Provide verbose information when running tests” option 
should be on by default in Drupal 7. If you are developing a test and running it repeatedly—and expecting 

differences in your HTML snapshots—your browser might display a cached version due to the way these verbose 

snapshots are stored. Just refresh your browser if you are seeing an out-of-date snapshot. 

Anatomy of a .test File 
Examining existing .test files (such as modules/node/node.test) can quickly become overwhelming—
they use functions and an object-oriented structure that might not be familiar to some Drupal 
developers and can seem very complex. To get a feel for the structure of a .test file, Listing 23–1 
provides its most basic skeleton. Testing code goes into a special file with the .test extension that is 
placed in your module’s directory, next to the .module and .info files. Then you add a line referencing 
your .test file in your .info file (see the “How Simpletest Works” section earlier in the chapter). 

Listing 23–1. Structure of a .test File 

<?php 
/** 
 * @file 
 * Describe your file here. 
 */ 
 
/** 
 * The following class is a test case. Test cases have a name and  
 * description and are what appears in the Simpletest user interface. They  
 * may include any number of tests that all share the same setup. 
 * When you run a test case through Simpletest, each test inside the test 
 * case will run by creating a new temporary Drupal site, running the 
 * common setup code, running the test itself, then destroying the  
 * temporary Drupal site. There can be more than one test case class 
 * in a .test file. 
 */ 

 
class MyModuleTestCase extends DrupalWebTestCase { 
 
  /** 
   * Info for this test case. 
   */ 
  public static function getInfo() { 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

523

    return array( 
      'name' => 'One-line description of your test case', 
      'description' => t('Longer description of your test case.'), 
      'group' => 'mymodule', 
    ); 
  } 
 
  /* 
    Common setup for all tests within a test case. 
  */ 
  public function setUp() { 
    // set up a new site with default core modules, mymodule, and 
    // dependencies. 
    parent::setUp('mymodule'); 
    // create a new user with some permissions you need; then log in. 
    $admin = $this->drupalCreateUser(array('permission one', 'permission two')); 
    $this->drupalLogin($admin); 
  } 
 
  /* 
    Tests—recognizable as such because the function name starts with 'test'. 
    For every test, Simpletest will create a completely new Drupal  
    installation, run the common setUp() function, and go through this code. 
  */ 
  public function testMainTest() { 
    // your testing code goes here. Note that at this point 
    // setUp() has already been run so if, in the setUp() function,      
    // you have logged in as a specific user, you are still logged in.  
  } 
} 

If you are familiar with object-oriented programming, you’ll notice that you just defined a new class 
that contains information about your test case. A test file can contain any number of test case classes, 
and each test case class can contain any number of tests. Each test function in a test case must begin 
with the lowercase “test”. This is what makes Simpletest recognize it as an actual test.  

For example, if your test file contains three test cases with three test functions each, nine new 
temporary Drupal sites will be created and then destroyed. If you’re running several test cases on several 
modules, you’ll have time to go for a jog before the results come in. 

Writing Your First Test 
Running an existing test is all fine and good, but the real fun begins with writing and running your own 
tests. 

You’ll first write a module that displays “Over 25 active users!” in a custom block. Then you’ll write a 
test to make sure it works. The block should render only if there are over 25 users who have authored at 
least one node in the previous month.  

Call your module mymodule if you want this code to work as is. (See Chapter 18 on writing custom 
modules.) First, in your Drupal 7 site, create the directory mymodule in sites/all/modules. Place the 
code in Listing 23–2 in a new file at sites/all/modules/mymodule/mymodule.module (note that you can 
find this code on the companion web site at dgd7.org/167 and on the book’s page at www.apress.com). 

http://www.apress.com


CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

524 

Listing 23–2. mymodule.module 

<?php 
/** 
 * @file 
 * This file defines a block which displays t('Over 25 active users!') 
 * if more than 25 users have created a post in the last 30 days. 
 */ 
 
/** 
 * Implements hook_block_info(). 
 */ 
function mymodule_block_info() { 
  $blocks[0]['info'] = t('Number of users'); 
  return $blocks; 
} 
 
/** 
 * Implements hook_block_view(). 
 */ 
function mymodule_block_view($delta = '') { 
  if ($delta == 0 && mymodule_active_users() >= 25) { 
    $block['subject'] = t('Number of users'); 
    $block['content'] = t('Over 25 active users!'); 
    return $block; 
  } 
} 
 
/** 
 * mymodule_active_users(). 
 * Returns the number of active users, defined as being users who posted a 
 * node in the last 30 days. 
 * @return 
 *   number of active users (see above). 
 */ 
function mymodule_active_users() { 

  return db_query('SELECT COUNT(DISTINCT uid) FROM {node} WHERE 
  :time - created < :threshold', array( 
    ':time' => REQUEST_TIME, 
    ':threshold' => variable_get('mymodule_threshold', 60*60*24*30), 
    )) 
    ->fetchField();} 

Basically, you are defining a block that displays “Over 25 active users!” only if the function 
mymodule_active_users() returns 25 or more. The mymodule_active_users() function counts how many 
users exist as authors of nodes created less than a month ago. 

To test this module without Simpletest, one would have to create 25 users and a post for each, which is 
quite unwieldy. This is also the perfect opportunity to write a functional test! Create the test file at 
sites/all/modules/mymodule/mymodule.test and populate it with the code in Listing 23–3, which is your test. 

Listing 23–3. mymodule.test 

<?php 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

525

/** 
 * @file 
 * This file contains tests of the functionality of mymodule, 
 * a test module designed to demo Simpletest. 
 */ 
 
/** 
 * This class corresponds to a family of tests (called a test case). 
 * Complex modules will have several of these. Inside the same 
 * test case, all tests will have the same setup. 
 */ 
 
class MyModuleTestCase extends DrupalWebTestCase { 
 
  /** 
   * Info for this test case. 
   */ 
  public static function getInfo() { 
    return array( 
      'name' => 'mymodule functionality', 
      'description' => t('Test the functionality of mymodule'), 
      'group' => 'mymodule', 
    ); 
  } 
 
  /* 
    Common setup for all tests within a test case. 
  */ 
  public function setUp() { 
    // set up a new site with default core modules, mymodule, and 
    // dependencies. 
    parent::setUp('mymodule'); 
    // create a new user with some permissions you need; then log in. 
    $admin = $this->drupalCreateUser(array('administer blocks', 'create blog  
      content', 'administer nodes')); 
    $this->drupalLogin($admin); 
 
    // go the block management page and set the region of your block 
    // to sidebar_first, making sure it will be visible to Simpletest when 
    // it is run. Because this involves filling in a form, drupalPost() 
    // is used. See the “Simpletests and Forms” section in Chapter 23 of 
    // the Definite Guide to Drupal 7 (dgd7.org) 
    $this->drupalPost('admin/structure/block', array('blocks[mymodule_0] 
      [region]' => 'sidebar_first'), t('Save blocks')); 
  } 
 
  /* 
    Test—recognizable as such because it starts with 'test'. For every    
    test, Simpletest will create a completely new Drupal installation, run the  
    common setUp() function, and go through this code. 
  */ 
  public function testMainTest() { 
    // note that at this point, the setUp() function has already executed. 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

526 

    $this->assertNoText(t('Over 25 active users!'), t('Make sure the block is  
      not yet visible, because no content has been created yet.')); 

    // create 25 users, and for each user create a blog post. 
    for ($i = 0; $i < 25; $i++) { 
      // each user has the permission to create a blog post. 
      $user = $this->drupalCreateUser(array('create blog content')); 

      // note that we are still logged in as the main (admin) user (see 
      // the setUp() section). We'll visit the blog creation page and set a  
      // random title, and make sure the author name is set to the name of  
      // the user we just created, then click Save. 
      $this->drupalPost('node/add/blog', array('title' =>  
        $this->randomName(32), 'name' => $user->name), t('Save')); 
    } 

    $this->assertText(t('Over 25 active users!'), t('Make sure the block 
      is now visible, because we just created 25 users and a blog post for 
      each.')); 
  }
} 

Finally, create the file sites/all/modules/mymodule/mymodule.info, as shown in Listing 23–4. 

Listing 23–4. mymodule.info 

name = My Module 
description = Displays t('over 25 active users') if 25 users or more have posted at least one
node in the last month. This module was created to demo simpletest as part of the book
definitivedrupal.org. 
dependencies[] = blog 
files[] = mymodule.test 

core = 7.x 

Running Your First Test 
Congratulations, you just built your first test! Go ahead and run it. On your Drupal 7 site, enable
Simpletest. You will see your module’s test case (if you don’t, clear your caches) in the list of tests at 
Configuration  Development  Testing (see Figure 23–2), and you can run your test! 

■ Note  If Simpletest is already enabled and you’re adding new tests, you might not see them in this list. In such

cases, you might have to clear your caches by visiting System  Performance and clicking Clear all caches. 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

527

 

Figure 23–2. List of available tests at  Configuration  Development  Testing 

On the test result page (see Figure 23–3), you will be able to click through the verbose messages that 
show you snapshot after snapshot stored by Simpletest as it created 25 users, a blog post for each, and 
confirmed (asserted) that the text “Over 25 active users!” actually appeared on the temporary Drupal site 
as a result. 

There’s a lot going on here. If you go back to the code in Listing 23–3, you’ll notice that your test 
contains a number of assertions such as assertText(), which makes sure some text appears on the 
current page (see “The Simpletest API and Further Reading” section) and actions such as drupalPost(), 
which fills forms (see the “Simpletest and Forms” section), but not 189 of them! So why are there 189 
checks here? For each function call you write, Simpletest runs a number of behind-the-scenes steps and 
checks; each is documented on the test result page. 

Now, to get a more realistic feel for Simpletest, try generating an error: replace all instances of 25 for 
50 in your .module file (but not your .test file) and run your test again. Notice how the results page now 
lets you pinpoint the failure. 

■ Exercise  Astute readers will have noticed that there is a small anomaly in the “Over 25 active users!” module: 
the block displays even if there are exactly 25 users. To fix this, change your test to assert that the text does not 
appear if there are 25 users, but does appear if there are 26. Then, fix the module code itself until your new test 

passes. This is test-driven development in action!  



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

528 

 

Figure 23–3. The verbose messages on the test result page of a test 

Simpletests and Forms 
The test in Listing 23–3 needed to fill in quite a few forms in order to validate the functionality of the 
module. For example, if you want Simpletest to “see” a block’s contents, you need to assign your block to 
a region in your test or setUp() function or it won’t be visible to Simpletest when the test is run.  

Assigning a block to a region in Simpletest involves mimicking what a human user would do. 
Remember, Simpletest knows nothing of your current site's configuration. Go to the block configuration 
page and fill in a form. Filling in forms in Simpletest is done with the drupalPost() function. In Listing 
23–3, you saw the following line:  

$this->drupalPost('admin/structure/block', array('blocks[mymodule_0] 
      [region]' => 'sidebar_first'), t('Save blocks')); 

This line simulates finding the block configuration page and setting the region of your module to the 
left sidebar, then submitting the form. Here’s how you would decide what to write in this function: 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

529

1. You first need to navigate to the form you want to include in your test. In this 
case, it’s http://example.com/#overlay=admin/structure/block (replace 
example.com with your actual domain name). Take note of the Drupal path in 
this URL; in this case, it is admin/structure/block. 

2. On the form, for each form field you want to modify, use a tool such as Firebug for 
Firefox to identify within the page’s HTML source code the value of the name 
attribute of the form input element. In the case of your module, the HTML you’re 
looking for is <select name="blocks[mymodule_0][region]" ...>, so the name of 
this field is blocks[mymodule_0][region], as shown in Figure 23–4. 

3. Then you need to find the desired value for that form element; in this case, it is 
sidebar_first (again, see Figure 23–4). 

4. Finally, you need to embed the name of the submit button into Drupal’s t() 
function; in this case, it is t('Save blocks'), as shown in Figure 23–4. 

 

Figure 23–4. Determining the name of a form field 

http://example.com/#overlay=admin/structure/block


CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

530 

With this information, you can build a function call that tells Simpletest to go to the block page and 
move your block to the sidebar_first region, like so: 

  $this->drupalPost('admin/structure/block', array('blocks[mymodule_0] 
    [region]' => 'sidebar_first'), t('Save blocks')); 

Similarly, to create a node within your test, you’ll mimic filling a node creation form. Here is another 
line from Listing 23–3: 

  $this->drupalPost('node/add/blog', array('title' =>  
    $this->randomName(32), 'name' => $user->name), t('Save')); 

It visits the blog node creation page, inserts a random name as the title, sets the name of the author 
to the specified user name, and then clicks Save. To better understand this line, on your Drupal site, 
make sure the blog module is enabled, go to Add content  Blog entry (node/add/blog), then use Firebug 
for Firefox to examine the form to see which fields are being manipulated by this code ('title' and 
'name'). 

The Simpletest API and Further Reading 
To get the most of Simpletest, it is useful (although not necessary) to brush up on your object-oriented 
PHP skills. You’ll also need to get familiar with Simpletest’s API, the functions you can use within your 
tests. You can see a few of Simpletest’s functions in Listing 23–3; feel free to use any code in this chapter 
as a basis for your own projects.  

Some oft-used functions are listed below. Because you are writing your tests in a class, don’t forget 
to add $this-> before each call (as in Listing 23–3). 

• drupalGet('path') points Simpletest to the path provided. 

• drupalPost('path', array('input1' => 'value1', 'input2' => 'value2', 
t('Button Name')) points Simpletest to the path provided, fills in the form with 
the provided values, then clicks on a given button (see the “Simpletests and 
Forms” section). 

• assertText('text') makes sure some text is present on the current page. 

• assertNoText('text') makes sure some text is not present on the current page. 

• assertRaw('html') makes sure some HTML is present in the source code of the 
current page. 

• assertNoRaw('html') makes sure some HTML is not present in the source code of 
the current page. 

• $user = drupalCreateUser(array('permission 1', 'permission 2')) creates a 
user object with the given permissions. 

• drupalLogin($user) logs in with a user object created with drupalCreateUser(). 

• randomName() generates a random string, which is useful for creating temporary 
nodes and users. 

• verbose($text) displays some text in your test output. Helpful for debugging your 
test. 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

531

Some more Simpletest resources: 

• The complete list of Simpletest functions can be found by heading to 
api.drupal.org/DrupalWebTestCase. 

• Look at existing tests for Drupal core modules to see how tests are written. In 
Drupal 7, most core modules contain test files, for example 
modules/contact/contact.test or modules/node/node.test. 

• Look at modules/simpletest/drupal_web_test_case.php for the source code of all 
Simpletest functions.  

• Look through the handbook on Simpletest at drupal.org/simpletest. 

• Install and examine drupal.org/project/examples, a module containing further 
commented sample code. 

Submitting a Patch to Drupal.org 
Every so often (sometimes several times a day!) you’ll come across a bug in Drupal core or in a 
contributed module, or you may think of a useful new feature you’d like to see. Because Drupal is open 
source software, you can (and should) contribute your thoughts to drupal.org via an issue (see Chapter 
38) where you can describe the problem and, if you have the technical skills, submit a patch. 

A patch is a great place to use Simpletest. Because your patch changes the way a module works, an 
automated test goes a long way in showcasing what your code actually does. As stated in the 
introduction to this chapter, if you’re patching core, including a functional test is all but a requirement. 

Rather than simply fixing the bug or adding the feature and submitting a patch to drupal.org, why 
not integrate test-driven development into your workflow? Here’s how:  

1. First, add a .test file to the module you are patching if one does not exist. 

2. Add a failing test. 

3. Modify the code (and the test) until the test passes. 

4. Create your patch. 

5. Submit it to the project’s issue queue at drupal.org. 

Summary 
By now you should have all the tools to go out and add tests to your modules and patches. Start using 
tests on hard-to-test use cases in mission-critical and widely-used modules. Some key points to 
remember: 

• By design, Drupal uses functional testing more than unit testing. This is due to 
the way Drupal is written, primarily as a content management system geared 
toward the end user experience.  

• Functional testing tests the user interface and the interaction of your site with a 
fictional human user. 



CHAPTER 23 ■ INTRODUCTION TO FUNCTIONAL TESTING WITH SIMPLETEST 

532 

• Tests are meant to validate a module, not a site. Everything on your site (and in 
other tests) is ignored while running each test, thus isolating tests from outside 
contamination. Need users, nodes, or anything else to make your test run? You 
must define them within the test itself. 

• Each functional test you write, enclosed in a test...() function, will create a 
brand new, isolated, temporary, fully-functional Drupal site in which to run; this 
temporary site will be destroyed as soon as the test is over. You’ll never have direct 
access to these temporary sites; all manipulation needs to be done by code in your 
test file. 

• Make sure “Provide verbose information when running tests” is checked on 
Simpletest’s settings page (admin/config/development/testing/settings) to allow 
you to pinpoint where things are going wrong (they will!). 

• Automated testing is now tightly integrated into the workflow of Drupal core 
development and currently being deployed for contributed modules. 

■ Tip  Check in at dgd7.org/test for more notes and resources. 

 



C H A P T E R   24 
 

■ ■ ■ 

533

Writing a Major Module 

by Benjamin Melançon 

“You need me and I need you / Without each other there ain’t nothing people can do.” 

—Aretha Franklin (Think) 

The dictionary definition of “module” is “one of multiple distinct but interrelated parts that can be used 
to construct a more complex structure.” That describes how complex web sites are built with Drupal: 
module by module. (And you didn’t think anything in Drupal was sensibly named.) 

A module, by definition, never exists on its own but rather in relation to other modules with which it 
forms a working whole. Drupal’s modularity makes it possible for separately written and maintained 
projects to extend what Drupal can do. 

■ Note  The fact that modules never exist on their own has legal implications by the interpretation given by legal 
advisors to the Drupal Associations. Drupal is Free Software licensed under the GNU General Public License (GPL). 
Because a Drupal module is by definition a derivative work, any module we make and distribute must be available 

for anyone else to see, copy, and modify (that is, modify their own copy!). Modules built for ourselves or a single 
client are not considered distributed, but it is worth noting that the ethos of sharing and collaboration—with its 

range of practical benefits—is backed by a legal framework. 

In the terms used in this chapter, a basic module is a module that extends Drupal and a major 
module is additionally meant to be extended itself. A major module is modular (ready to be modified or 
extended), a mirroring of Drupal’s modularity. By this definition, LoginToboggan 
(drupal.org/project/logintoboggan) is a basic module, as it changes the way Drupal works, and 
Advanced help (drupal.org/project/advanced_help) is a major module, as it exists for other modules to 
plug in to. The more common term for this latter type of module is API module, but that term is reserved 
in this chapter for a pure API module. 

A major module has an API for other modules to use. API, recall, stands for Application 
Programming Interface. It is how code talks to code (when being proper and going through official 
channels). The hook invocations and implementations (such as the ones described in Chapter 19), plus 
the utility functions available to our module, are Drupal’s API. 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

534 

The module we will begin to build in this chapter will enable other modules to extend it just as it 
extends Drupal 7. Called Form messages, its goal is to do immediate inline validation of form elements. 
(Originally named AJAX form messages, this module was re-named as during development it became 
clear that only doing AJAX calls was not the best approach.) It will modify forms to have inline notices 
and errors as provided by an API and accompanying UI. Other modules will be able to use the Form 
messages API to provide error messages and inline validation routines. This module, therefore, will have 
APIs coming and going: making use of Drupal’s APIs to build on Drupal (like every module must) and 
defining its own API so other modules can build on it. We won’t complete the module or even get close 
in this chapter (though the work and documentation will continue at dgd7.org/strategy). Instead, the 
groundwork will be laid for a major module. 

This chapter has two main goals: 

• To present a module development strategy (along with a bunch of tips) that will 
help set you up for building any kind of API-providing module. 

• To cover some concepts core to much of Drupal 7 development: entities and 
fields. 

How Not to Build a Module 
This section is not a worst-case scenario module-making disaster story (although negative examples are 
quite fun and informative—for a classic satire of four Drupal versions old and still applicable, see Nick 
Lewis’ Road to Drupal Hell, drupal.org/node/77487). No, the premise of this section is simpler than that: 
the best module is one you do not have to build. 

When setting out to build a module, you will want to do the due diligence of searching for a module 
to meet your need. You will want to be certain you are not duplicating someone else’s work. If after 
searching drupal.org and the World Wide Web you haven’t found an existing module doing what you 
want to do, go to groups.drupal.org (often abbreviated g.d.o by Drupalistas) and join the Contributed 
Module Ideas group, groups.drupal.org/contributed-module-ideas. Here you can post a discussion (at 
groups.drupal.org/node/add/story?gids[]=5445)—entirely beside the point, but you can see from this 
URL that the machine name for a g.d.o discussion is story and the node ID of the contributed module 
ideas group is 5,445. Remember to keep checking back at your post if you don’t have notifications set up! 
Ask IRC, including in #drupal-contribute, which modules exist in the problem space you are addressing. 

■ Tip  If you find a similar project already developed or in progress, join forces with other developers whenever 
possible. Module duplication not only wastes your time as a developer, but it makes it harder for users and 

contributors to choose what to use or where to put their effort. See drupal.org/node/23789 for more information. 

For the Form Messages module, a search for Drupal AJAX form messages, drupal AJAX form 
validation, and drupal inline form validation, among other variations, did not come up with a 
comparable module or effort. I posted the module’s goals in the Contributed Module Ideas group and 
cross-posted it to the Form API and Usability groups (see this post at groups.drupal.org/node/113564). 

Nothing came of asking the final attempt, #drupal-contribute: “What work (if any) has been done 
in Drupal toward giving immediate, inline feedback when filling out forms? (Ideally including for field 
combinations on node forms.)” You can craft a better question than that, assuredly, but remember the 
rule of thumb that any question that can be answered with yes or no is not the best one you can ask. (See 
Chapter 9 for more IRC tips and etiquette.) Any question asked on IRC is a shot in the dark—even if 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

535

someone knows the answer, they have to be online, see it, and be in a mental state of coherence 
sufficient to craft an answer. A question about a topic big enough to be a major module, yet that no one 
is working on already, is even more of a long shot. But that doesn’t mean it’s not worthwhile. 

The mere act of asking—the work of posing the question even if no one joins you in bouncing ideas 
around—helps you better understand what you are trying to do. You may even be able to begin to 
answer your own question. I was reminded while asking my questions that there is one place in Drupal 
core that provides instant feedback when you fill out a form: the password strength indicator. A core 
model to follow is a very good thing. 

Later, as you build your module, report your progress to people who expressed interest (or anyone 
who might be interested). Your project page and issue queue are good public places to state plans, track 
progress toward implementing targeted capabilities, and collaborate with others. On the latter point, 
never count on people participating until long after you’ve built something useful. See Chapter 37 for 
how to set up sandbox projects on drupal.org. 

Know the Tools Drupal Gives You 
On any project, you will get off to a better start (and, subsequently, a better finish) with a thorough 
knowledge of the tools you have to work with. Some commonly used APIs in Drupal were introduced in 
Chapter 21. There are many more. 

“You can blow a very long weekend trying to walk through [Drupal] with a—what’s 
the opposite of a bird’s-eye view?—worm’s-eye view.” 

—Jeff Eaton 

A piece of this worm’s-eye view is given in Chapter 34.You can continue the exploration by setting 
up a debugger and watching Drupal step through its code as it does different things. 

Knowing what Drupal provides can help in recognizing if you’re trying to make Drupal do 
something it’s not actually good at. That’s step one to any project: evaluating potential tools. Just as 
there are many ways to do something with Drupal, there are many ways to do something without 
Drupal. If it has anything to do with content, users, permissions, showing things on a web site, and much 
more, of course, you probably do want Drupal. 

Drupal at its literal core is a collection of APIs. Drupal architect Jeff Eaton highlights not Drupal’s 
hook-providing modules but first and foremost all the useful things that live in the includes directory. 
Drupal’s include files define functions to help with: 

• Menus (routing) 

• Database abstraction 

• Session handling 

• Caching 

• File storage and stream wrappers 

• Locale and language 

• Theming (Rendering) 

• Forms and form processing 

• Date handling 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

536 

• Image manipulation 

• Paging and table sorting 

• Batch processing 

• Tokens 

• E-mail 

• Entities 

• Module system 

• XMLRPC 

• AJAX 

• Unicode and other common utilities 

• Updates 

• … and more 

Nobody automatically remembers all these helper libraries (includes/graph.inc provides a function
to do a depth-first search on a directed acyclic graph, by the way), let alone knows how to use them all,
but they are our baseline, always-present toolbox before we even begin to enable or download modules.
Drupal’s core modules, of course, provide additional critical functionality, such as user handling and
input filtering. Contributed modules can provide their own utility functions and APIs, and some
modules are meant only to provide tools for other modules. CTools and VotingAPI are pure API modules. 

Should Your Module Provide an API? 
In general, any module you make should provide an API for modules that might want to work with your
module or build on it. Also, in general, an API is hard to do well; it will usually need to be revised or
expanded as other modules try to use it. 

If your module is simple and uses enough of Drupal’s APIs, it doesn’t need to create its own API. If
your module creates its own user interface for settings, though, it should always at the least have an
accompanying API for those settings. 

Keep API and UI Separate 
Anything that can be done in a module by submitting a form (the user interface) should also be doable
with a line of code. Indeed, the submit function that handles a form should always use an API function to
save the changes. 

If you make a database query directly in a submit function, you are doing it wrong. You should never
see db_insert(), db_update(), or db_delete(), nor db_ anything, nor drupal_write_record() in a form
submission function. This would mean that saving, changing, or deleting the information affected by the
form can only be done through the user interface—or by recreating these functions or faking a form
submission. This makes it harder and uglier for other modules to work with the services and information
your module provides. (Having any database changes in form validation is even worse.) Instead, the
form submitting function should be handing data from the form over to an API function that is cleanly
abstracted from form submission. (Unfortunately, Drupal core is not yet a consistent model in this
regard.) 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

537

The ultimate expression of keeping API and UI separate is having the user interface in a separate 
module in your project, which can be turned off. Drupal core’s Fields module is complemented by a 
Fields UI module, which can be diabled. Views module likewise has a Views UI module, which you can 
disable. 

Use APIs to Hide Complexity 
The benefit for another module to build on yours is that the author of that module does not have to think 
about all the things that your module is doing. This is especially true of modules whose entire point is to 
provide for common functionality, an API module. Jeff Eaton told the story of the VotingAPI module 
(drupal.org/project/votingapi) at DrupalCon DC. He was working on one of his first larger sites and 
needed voting functionality. He found a number of cool voting modules, but none of them worked with 
each other. “So I took the one with the nicest flash widget and shamelessly ripped out its guts,” he said. 

Thus was born VotingAPI, with two functions for getting and setting votes. And after asking other 
people maintaining voting modules, “Can you make my module a dependency for no good reason?” he 
had one person take him up on it. Immediately, he had to add three more functions to meet the more 
refined needs of that module. 

“We always get it wrong the first time,” Eaton said. And the second. And the third. The rule of thumb 
is that APIs need to be tested with at least three implementations—cases in which they are used to do 
something specific—before you can expect them to be of general utility. 

By the time your API can handle three different use cases, it’s likely hiding an awful lot of 
complexity. 

■ Tip  Mercenary module development—developing a module for hire—can be a lot of fun, especially with a 
good client, because the requirements are figured out and laid out for you. Even with the best requirements, a 
module, like a web site, will evolve as it is built and tested against real needs. When trying to develop a module 

that will be useful for many people, consider your client’s specification as only one of the use cases—and don’t 
expect all of your development hours to be paid. Making a generally useful module is always more work than a 

one-off, but you, your client, and the community can benefit in the long run. 

Making Your Module Modular 
Providing an API for its core functionality is the most important way to make your module extendable by 
other modules, but not the only way. 

There are many ways to make the Form Messages module modular, as there will be in any major 
module. The common thread for almost all ways is separating functionality into encapsulated pieces so 
that your module is working with its own APIs internally. When parts of your code go through channels 
to talk to other parts of your code, these same channels are available to the code in other modules. 

Unleashing the Power of Hooking Into Your Module 
Just as your module will use the hooks Drupal provides to change its behavior (such as hook_menu() to 
show a page or do something at a URL), and may very well use hooks that other contributed modules 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

538 

provide (such as hook_views_default() to provide a default view), your module can make hooks 
available for other modules to implement. 

The main API for Form Messages will be offering the ability of modules to define messages. This will 
probably take the form of defining to allow modules to provide default messages in the same way 
hook_default_views() allows modules to provide default views. This fundamental hook for Form 
Messages will be covered in this chapter’s online companion, dgd7.org/strategy. It’s important to note 
that when defining hooks, you should document an example implementation of each hook in a 
modulename.api.php file that you include with your module. 

There are lighter-weight ways to allow modules to hook into yours than defining your own complete 
hook. Whenever your module gathers an array of data, it can give other modules a chance to manipulate 
that data. The easiest way to do this is the delightful drupal_alter() function. Frequently, a module first 
defines its own hook to let other modules give it information. Then it uses drupal_alter() to create an 
alter hook that comes along and lets modules modify this after all the data has been gathered. 

■ Note  A one-line patch adding a drupal_alter() statement to an existing module is frequently the easiest way 
to get functionality you seek into someone else’s module. Adding a big feature that meets others’ needs and the 

module maintainers’ approval may be impossible, but convincing a maintainer to commit a change enabling you to 

build on features from your own module should be much more achievable. 

There are, of course, persuasive solidly selfish reasons for opening up our modules to the meddling 
of the masses. Well-placed hook invocations allow other people to do the hard work for us. The more our 
module is built this way, the more we can say, as Jeff Eaton did (pausing to straighten his imaginary tie), 
“Solving that isn’t my problem; I just maintain the API.” 

When building a pure API module, this focus on maintaining the API and making it possible to 
address many use cases—but not solving them in your module—is particularly important. Jeff Eaton 
ended his API module presentation urging us to “stay focused—do one thing really well. Drupal is 
moving toward things that work together; the key is making them work together really well.” This is the 
famous Unix philosophy. Doug McIlroy, the inventor of Unix pipes and one of the founders of this Unix 
tradition, summarized it this way: “Write programs that do one thing and do it well. Write programs to 
work together.” 

■ Tip  As early in the process as possible, start talking with other people who are doing work in the area in which 

you are working. 

Progressive Enhancement: Making Use of Other Modules If They 
Are Enabled 
If the point of your module is to extend another module or you are calling one of its functions, you have 
to list it as a dependency. Most of the time, though, your module can be enhanced by another module or 
your module can enhance another module by providing more choices or power. If your module stores 
data in any way, for instance, you probably want to expose that data to Views. (In many cases, you can 
get this for free by using Drupal’s Field API.) 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

539

Wherever possible, make these module dependencies optional. You don’t want to force people to 
use half a dozen modules in addition to yours. Instead, check if the specific function you want to use 
exists, and degrade gracefully if it doesn’t. In this context, degrading gracefully can mean your module 
loses some extra functionality but does not break, and it continues to provide its base features. Your goal 
should be to build your module to have conditional enhancements rather than dependencies. 

Many excellent modules are designed to pick up on what other modules offer. This is better thought 
of as progressive enhancement than graceful degradation because there is no workaround for missing 
functionality, simply the addition of functionality when modules making it possible are enabled. 

For example, Drupal’s core Menu module integrates with the Block module but doesn’t require it. In 
the implementation of hook_help(), which takes the path of the current page as an argument (variable 
piece of information) to act on, there is this code: 

  if ($path == 'admin/structure/menu' && module_exists('block')) { 
    return '<p>' . t('Each menu has a corresponding block that is managed on the <a 
href="@blocks">Blocks administration page</a>.', array('@blocks' => 
url('admin/structure/block'))) . '</p>'; 
  } 

The exciting bit is module_exists('block'). As long as Block module is enabled, Menu module offers 
each of its menus as blocks. As long as Help module is enabled, you are told about this at the top of the 
menu administration page. Both uses of other modules are examples of progressive enhancement. 

■ Note  Why would anyone not have Help module enabled? Why would anyone not have Block module enabled? It 
is not the job of a module author to judge the choices of a site builder. The Block module, for its part, is in fact not 
(yet) as powerful and flexible as some Drupal sites demand it to be. Some developers use Panels module instead 

(which includes code to call blocks itself). Others use Context module. Both Panels and Context modules exemplify 
the modularity of Drupal—to allow replacements of core functionality—and remind us to never make our module 

require another module if it doesn’t absolutely have to. 

The use of Drupal’s hook system is the easiest way for one module to react to something another 
module is doing. 

You can provide default views and expose your data to Views. You can provide tokens for use in 
PathAuto and dynamic text areas, and you can provide Drush commands. You can provide basic Drupal 
core help by implementing hook_help(), another hook provided by a module that no module has to 
implement. And you can provide pages of Advanced Help documentation by invoking that module’s 
hooks; they will only be used when Advanced Help is enabled. 

Getting Started with a Test Environment 
Starting a major module warrants setting up a fresh test environment for it. Grab a copy of Drupal, name 
the installation after the project you are working on, and install it from the command line. See Chapters 
2 and 26 for more on Drush, which is what makes this easy. Here are the command-line steps to create a 
test site using drush site-install (si), naming the site after the module we are developing. 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

540 

■ Note  A word on naming—one of the first things you have to do when starting to write a module. Module 
names, as far as your directory and code, must be only lowercase letters, numbers, and underscores, and must 
start with a letter. It is recommended that the name be descriptive rather than short, and that if a noun it take the 

singular form (so as to be compatible with recommended naming practices for classes and database tables). I 
have violated both recommendations in naming the module formmsgs, to my public disgrace. I don't apologize for 
avoiding underscores in module names, though; this is based on my paranoia about namespace conflicts (naming 

the module form_messages and implementing hook_help() would mean that a module named form 

implementing a potential hook_messages_help() would have a fatal error due to duplicate function names). 

cd ~/workspace 
cd formmsgs 
drush dl drupal --drupal-project-rename=formmsgs 
drush si --db-url=mysql://root:rootpass@localhost/formmsgs 

By default, drush site-install will use the standard installation profile and give the superuser (user 
ID 1) the username admin and password admin. 

■ Tip  You can automate these steps even more. For an example of automating the creation of the test site and its 

installation of Drupal, see dgd7.org/sh. 

Next, make a directory for the new module; within sites/default is fine for a test site. (If the modules 
directory doesn’t already exist in sites/default, the -p flag tells mkdir to make it before making the 
formmsgs directory.) Also, immediately start a Git repository for the module like so: 

mkdir -p sites/default/modules/formmsgs 
cd sites/default/modules/formmsgs 
git init 

As you add and edit files, have Git keep track of all of your changes by using the command git add . 
(used to add both new and changed files, the period signifies adding everything available) and git 
commit. 

Stealing Some Code to Start 
I start my .info file by stealing the one from the Unique fields module because I expect to be working 
closely with this module (or at the very least learning a lot from it), so I can study and borrow at the same 
time. 

drush dl unique_field 
cp ../../../all/modules/unique_field/unique_field.info formmsgs.info 
gvim formmsgs.info 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

541

Modify the contents. Info files are simple, and there won’t be much duplicated. But it’s nice to start 
from a template and, if that is also a module you’re interested in, that’s great. Copying an entire .module 
file is not such a good idea, but looking at an example and even copying out parts can work nicely. 

name = AJAX form messages 
description = "[formmsgs] Provides immediate, in-form validation." 
core = 7.x 

■ Note  Including the module machine names in the description is a convention (favored by me, if no one else) 

that helps people searching for the module on their module administration page to find it. 

Sharing Your Code in a Sandbox on Drupal.org 
All I have is a .info file, but it is great to get in the habit of committing and sharing early and often (see 
Listing 24–1). The commands for sharing a project are discussed in Chapter 38 and are given to you after 
you create a project via drupal.org/node/add/project-project. 

Listing 24–1. Start Sharing Your Code on Drupal.org 

git add . 
git commit -m "Initial commit for AJAX form messages module; the .info file." 
git remote add origin mlncn@git.drupal.org:sandbox/mlncn/910490.git 
git push origin master 
git checkout -b 7.x-1.x 
git push origin 7.x-1.x 

The steps in Listing 24–1, tailored to your project, are on your project’s Git instructions tab. This is 
drupal.org/node/910490/git-instructions for Form Messages, and the instructions for your full or 
sandbox project can be found at the same path (with the node ID of your project substituted in for 
910490). 

■ Tip  Sharing, fortunately, works both ways. For best practices in code, look to core and widely worked on and 
used modules such as Views, Token, Administration Menu, Date, Webform, Devel, Voting API, and others 

(including those covered in this book such as Commerce in Chapter 25 and Apache Solr in Chapter 31). Know, 
however, that you may have to go your own path and revise significantly as you learn more. On that note, also sign 

up for updates to the code and approaches taken by the Form Messages module at dgd7.org/strategy. 

Planning Your Approach 
I keep saying I’m going to provide an API, but what does that mean? It means a lot more—and in some 
cases, it means something different—than simply having the user interface in a different module. One 
way to look at being an API means your module doesn’t do anything. It just is. The API for Form 
Messages would handle interaction with the form, based solely on what it is told to do by other modules. 

mailto:mlncn@git.drupal.org:sandbox/mlncn/910490.git


CHAPTER 24 ■ WRITING A MAJOR MODULE 

542 

This means I must distill what’s needed to show a message as its essential parts. You can’t assume 
that your module has any way to know on its own when or how it’s supposed to do something. 

Here are some of the questions Form Messages module must ask, then, of modules that would work 
with it. Posing this question for your own module will tell you what data the API module must store and 
process, and how it interacts with these other modules—in short, just what kind of API it needs.  

• What on the form triggers evaluation for a message? 

• What determines if the message will be shown and what information does it need? 

• What does the message say? 

• Does the trigger also run when the form is submitted (normal validation) or only 
for inline AJAX validation? 

Outlining what your application must know is critical to defining what API functions it will need 
(and the data it must store, discussed in the section “Defining Your Data Model”). However, answering 
questions like these also helps you figure out what your application must do, and it can definitely be 
worth making something work before planning out every detail of the API. 

Outlining an API 
AJAX Form Messages, at its heart, wants to say: “I’m on a form. What do you want me to do when stuff 
happens to each element?” 

The centerpiece of the API must be a hook or other way for modules (including users through a UI 
module) to register all the information about a message. (For performance reasons, this should probably 
not be done when loading the form.) I’ll get into the details of what information must be registered, 
expanding on the questions introduced in the “Defining Your Data Model” section. 

Once storing and getting this information is taken care of, and a way for modules to alter this 
information has been created, the fundamental API is complete. Another module could even access the 
information and replace AJAX Form Messages’ implementation of interacting with the form. 

Other aspects of the API could include a way for modules to affect the output defaults (such as 
where messages are placed), but most other potential API functions will be ancillary to what information 
can be defined about messages and making this information alterable. 

Diving Into Doing 
If you feel your questions are getting into the realm of the theoretical, it’s time to dive into writing some 
code that produces some result even if you already know you’ll want to introduce an API for that. 
Abstracting out an API can be premature. As noted, however, first asking the kinds of questions the API 
needs to answer does help you write better code right away, even if you skip implementing some of the 
API in your first iteration. 

In the case of AJAX Form Messages, you’re going to want to aggregate and store all the information it 
needs in a central place, rather than poll all modules each time a form is displayed. But dealing with that 
is getting in the way of figuring out how the triggers and messages themselves will work. And the 
questions and answers brought to light by focusing on the API have given rise to lots of ideas and 
directions to try out. 

For instance, what must trigger the error or other message is a function akin to a validation function. 
Ideally, you’ll be able to reuse validation functions to evaluate if an error message should be shown. 
However, validation functions frequently take an entire form, and I’m talking about AJAX requests that 
can happen multiple times a form, and that needs to be fast. Efficiency is important. What information 
has to be sent to the evaluation function? 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

543

The whole form is definitely easiest, but maybe it can be made to either expect a form (which could 
include only the parts you care about, but still be processed by any normal, non-over-zealous validate 
function) or a single specific element. Upon investigation, it’s clear the date validation function 
date_validate()—see api.drupal.org/date_validate—is one that (despite its parameter name “$form”) 
clearly expects a form element, not an entire form. 

■ Note  By choosing to use FormAPI, we’ve already made sure we won’t be only limited to node (content) forms, 

at least not at the fundamental API level. 

Investigating Form Elements 
AJAX Form Messages is going to be listening in on form elements as people type and then sending 
messages back to form elements. It will provide a structure for storing a function that is used to check what 
people type and decide what message to send back. This means it needs a reliable way to identify these 
elements within and across forms—so you’re going to have to take a close look at the structure of forms 
and the form elements with which they are built. This approach has already been used in Chapter 19, 
implementing the form alter hook in order to see the structure of site forms. 

/** 
 * Implements hook_form_alter(). 
 */ 
function formmsgs_form_alter(&$form, &$form_state, $form_id) { 
  debug($form, $form_id, TRUE); 
} 

Giving the form ID as the second parameter for debug() is a neat trick to show exactly what form you 
are dealing with. The third parameter TRUE is a good habit to get into so that debug() uses a less pretty 
but more robust (less likely to die) function to print the output. 

■ Gotcha  If you have a debug() statement that isn’t printing anything at all, check your logging and errors 
settings at Administration  Configuration  Development  Logging and errors 
(admin/config/development/logging). Always show messages like this by adding $conf['error_level'] = 
2; to your local settings.php file. Show every error by adding four lines to settings.php as described earlier in 

this book and at dgd7.org/err. 

Listing 24–2. Excerpt from Printing the Form Variable on the node/add/article Page 

  'title' =>  
  array ( 
    '#type' => 'textfield', 
    '#title' => 'Title', 
    '#required' => true, 
    '#default_value' => NULL, 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

544 

    '#maxlength' => 255, 
    '#weight' => -5, 
  ), 

All form elements are defined by an array. The title element in Listing 24–2 was an immediate child 
of the $form array, but it could also have been nested within a group. Its name, 'title', is the key to the 
array shown. Its location (nesting) and name ('title'), together, are unique on this form but could be used 
for an entirely different element on another form. Therefore, you have an imprecise instrument with 
which to target form elements. 

Form element location is a bit messy. (Even the phrase “form element location” is awkward.) You 
have to decide to either try to find form items even if they’ve been moved inside a fieldset grouping or if 
you require implementations of form message hooks to say exactly where a form item is in the form 
array. The more helpful way to find the form element wherever it has moved is done by 
form_set_error() (api.drupal.org/form_set_error) as used by form_error() 
(api.drupal.org/form_error) is slower. To simplify things to start, at least, you’ll require the full location. 

But you’re getting ahead of yourself a little bit. Before you figure out how to store the identity of a 
form element, you should make sure you can do what you need to with a test-case form element. 

■ Note  Investigating the JavaScript that powers the password strength check on user edit pages, you’ll discover 
that it does not use AJAX at all but does the entire password strength check directly in JavaScript. This indicates 

another possible flexibility for your API: instead of handling the JavaScript yourself, you could allow modules to 
define custom JavaScript. They might, therefore, not provide a function to call via AJAX at all. (I found the user 
password JavaScript by looking at the form structure by implementing hook_form_alter() and, seeing that the 

'pass' form element was defined as #type 'password_confirm', searching for 'password_confirm'. The 
password_confirm form type is expanded with the function form_process_password_confirm() in 
includes/form.inc, which adds the classes 'password-field' and 'password-confirm' to the first and 

second password fields, respectively. Searching for either class brought me to the JavaScript file 

modules/user/user.js. There are probably more direct ways to find things, but never hesitate to explore! 

Proving a Concept 
Time to prove you can take a form element and, when a user types something in it, display a message 
based on a function in Drupal. But let’s raise the difficulty just a little bit; let’s experiment with running a 
validation function. 

The way Drupal can assign validation functions to particular form elements is described in the Form 
API documentation at api.drupal.org/api/drupal/developer--topics--
forms_api_reference.html/7#element_validate (that monstrous URL is linked from dgd7.org/strategy). 
This would be a perfect anchor for adding AJAX callbacks to an element via a general hook_form_alter() 
implementation. 

Searching Drupal core’s modules for 'element_validate' (as with grep -nHR 'element_validate' 
modules/ on the command line from the Drupal web root) brings an example worth trying. On line 77 of 
modules/image/image.admin.inc the element_validate property is set to use the function 
image_style_name_validate(). 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

545

Visiting the administration page for adding image styles (admin/config/media/image-styles/add) 
with the debug($form, $form_id); in your implementation of hook_form_alter(), you can see the 
structure of this element, this candidate for inline validation. 

  'name' =>  
  array ( 
    '#type' => 'textfield', 
    '#size' => '64', 
    '#title' => 'Style name', 
    '#default_value' => '', 
    '#description' => 'The name is used in URLs for generated images. Use only lowercase 
alphanumeric characters, underscores (_), and hyphens (-).', 
    '#element_validate' =>  
    array ( 
      0 => 'image_style_name_validate', 
    ), 
    '#required' => true, 
  ), 

You can’t write a module called AJAX Form Messages without a fair amount of asynchronous 
JavaScript, but this chapter is just covering the basics. See Chapter 17 on JQuery for more about 
JavaScript, and the online follow-up to this chapter at dgd7.org/strategy for what will surely be a steep 
learning curve for me. 

■ Tip  If for your module you write a set of JavaScript and/or CSS files that could be considered a package, 
provide it as a library to other modules by implementing hook_library(), and include it in your own pages by 

using either #attached['library'] or drupal_add_library(). See api.drupal.org/hook_library and 

drupal.org/node/756722 for more. 

Borrowing directly from the excellent AJAX module in the Examples for Developers project 
(drupal.org/project/examples), you can use hook_form_alter() to add an AJAX callback to the 'name' 
form element. None of the examples in Drupal’s Form API documentation for AJAX seem to refer to text 
entry in a form text field as a triggering event, but it does link to api.jquery.com/category/events where 
there are several options, including keyup(). 

/** 
 * Implements hook_form_alter(). 
 */ 
function formmsgs_form_alter(&$form, &$form_state, $form_id) { 
  if ($form_id == 'image_style_add_form') { 
    $form['name']['#ajax'] = array( 
      'callback' => 'formmsgs_image_style_name', 
      'event' => 'keyup', 
      'wrapper' => 'formmsgs-image-style-name', 
    ); 
    $form['name']['#suffix'] = '<div id="formmsgs-image-style-name">Default message.</div>'; 
  } 
} 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

546 

Remember, this is all proof of concept and hardcoded to a specific form and element, quite unlike
the API we plan to build. It allows you to test that your AJAX callback is in fact called, without having to
worry that the failure might be somewhere else. 

/** 
 * Test callback. 
 */ 
function formmsgs_image_style_name() { 
  return 'Change-o presto.';
} 

That works! The “Default message.” text under the form is changed to “Change-o presto.” when you
started to type anything in the name form field. 

■ Gotcha  When returning a straight string and using the default ‘replace’ method, the entire placeholder element
you are matching with the ‘wrapper’ directive is replaced. This includes, for instance, the div with the ID you
matched. This means that unless your return text includes the wrapper element and ID again, the AJAX will not be

able to find that it to replace or change anything again. The AJAX commands used next are modeled from the
Examples project (drupal.org/project/examples) and documented at

api.drupal.org/api/group/ajax_commands/7 allow much more. 

Independently, you can check what information you have to work with. Here is the same callback
function, but this time with both the variables that are passed to it, the form array and the form state
array: 

function formmsgs_image_style_name($form, $form_state) { 
  die(var_export($form,TRUE));
} 

From this, you get to see the variables that are passed to your callback via AJAX. See dgd7.org/273 for
the full output; the most important thing in there is that we have the current value—what you just
typed—of the name element. 

function formmsgs_image_style_name($form, $form_state) { 
  image_style_name_validate($form['name']); 
  $message = form_get_error($form['name']); 
  if (!$message) { 
    $message = "Default message."; 
  } 
  $commands = array(); 
  $commands[] = ajax_command_html('#formmsgs-image-style-name', $message); 
  return array('#type' => 'ajax', '#commands' => $commands);
} 

This replaces the text “Default message” with the text “Please only use lowercase alphanumeric
characters, underscores (_), and hyphens (-) for style names,” as shown in Figure 24–1. 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

547

 

Figure 24–1. The validation error message for image style names shown immediately on the form via AJAX. 

This looks impressive and fairly clean—run the validation function, fetch the error, and return it 
using the AJAX html command—but in fact it barely works. It has done its work, however, as a proof of 
concept inline validation function using a normal validation function. The Please only use lowercase 
alphanumeric… message, or nothing, is correctly returned each time. Unfortunately, it causes the text 
area to lose focus when a user is typing. Also, it passes the whole form and form_state variables, not 
restricting itself to the needed parts, which is too much overhead for per-keystroke validation. Indeed, 
it’s becoming evident that in-line validation for allowed characters like this (as opposed to preventing 
duplicate names, which would require checking the database) should be done with JQuery alone and no 
AJAX calls to Drupal. 

Remember, this is a proof of concept. Aside from letters lost in the lag while typing, an unwanted 
progress throbber, and other problems stemming from Drupal's convenient #ajax property (you can 
take more control using the #path property instead of the #callback property), you’re doing unholy 
things with Drupal's existing validation functions and form_get_error() that may not prove durable. But 
the concept is proven! You can continue establishing an API while working out performance and 
implementation details. 

Defining Your Data Model 
For Form messages to do inline validation, it needs to get the messages it should show, when it should 
show them, and a whole lot more information. This is part of the API and should be thought of as such, 
but you’re also thinking of it as the data you want to store. Regular form validation is done without a data 
model per se, but if you are going to be allowing people to both use a UI to define messages and 
modules, you need a data model where both meet. 

This is where you get into a lot of detail about exactly what information AJAX Form Messages needs 
to know, thinking through what it needs in full detail. Each message can apply to multiple forms— think 
node forms with the same field, or the search block form and the main search form. It seems legitimate 
for now for each form message to have a primary perspective from a single form element, even if there 
are multiple fields relevant to the validation. 

Thinking through issue after issue like this, you’ll come up with an initial list of data to store. Each 
message and evaluation rules combination needs to provide the following: 

• A form ID or multiple form IDs or a pattern for matching form IDs. 

• Optional further conditional logic on whether to apply the evaluation and 
message. (This will frequently be needed, as the form ID is not enough; all content 
types use the same node form, for instance.) 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

548 

• The trigger/receptor form element. This is the place the user is typing or clicking 
that triggers the message, and also the place that receives the message— where 
the message should be shown. Perhaps the trigger/receptor can also be 
multivalue, such as two phone number fields that should receive identical 
validation and messages. 

• Optional form elements of interest. This can allow the inline validation to take into 
account the value entered into other form fields, such as requiring a selection in 
one vocabulary to have a unique combination with a selection in another 
vocabulary. 

• One evaluation function to run. It receives at least one value: the value in the 
triggering receptor, and an array of the values in other form elements, if any are 
specified. A third parameter is also optional, a context array, such as to hold the 
user ID. If context is provided, it would be an array of callback functions, which 
are used to create an array of keyed values. 

• A static message to show when the evaluation function returns a hit (anything 
other than strictly equal to false, “=== FALSE”). 

• A message callback function—an optional replacement to using the message set in 
the field above, so you can do whatever message you want, but the AJAX Form 
Messages API doesn't have to care. This callback function would receive the result 
of the evaluation function and whatever data the evaluation function was given. 

• Is this a warning that allows the form to submit, or an error that will be added to 
the form's validation routine? (Or an error that is already applied to the form 
validation routine, which is a much better way of doing things than counting on a 
module named “Form Messages” to do your form validation for you.) 

• An optional message to show at the default state. 

• An optional message to provide for a successful selection or entry. 

And Form Messages module will take care of the rest. Well, once it is coded. 
The message will always be shown at the form element that triggers the error. Unless touchpad 

forms of entry allow some unholy three-finger action, there is only one form element that is truly in play 
at any time: the one value is being entered or selected in. Call it a rationalization to keep the code 
simpler, but the user interface should only be showing changes where you are entering text or selecting 
something, not elsewhere on the form. 

How to Store the Data and How to Edit It in the UI 

“In theory, theory and practice are the same. In practice, they are not.” 

—Yogi Berra 

Storing the data and editing it in the UI should be separate questions. They really should. Define the data 
model. Define its storage. Make things work without a user interface. Build a user interface on top of 
that. 

But the practical matter of re-using the tools Drupal provides changes the approach. It can make 
sense to think of a complex configuration object, like the one outlined in the previous section, as an 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

549

entity with fields. This is controversial in Drupal. I personally really like the idea of finally having an 
administrative interface that tracks who did what, when— and this would be easily possible with 
revisions on a form message entity. 

When it comes to having a user interface that works flawlessly with the same information captured 
in code, you’re asking for the configuration to be exportable, which, if using an entity, means making an 
entity exportable, CTools style. On the one hand, this is big and scary. On the other hand, it’s a natural 
progression of where Drupal is that some other crazy person must be working on doing the same thing. 
It's not easy to find, but the indefatigable Wolfgang Ziegler (fago) has documented using his Entity API 
module to create exportable entities for the very purpose of using them to store configuration. This 
documentation is at drupal.org/node/1021526. (Unfortunately, that approach to exporting entities is 
separate from the CTools approach, and the two have not yet developed an integrated method.) 

Again, using entities to store configuration is controversial. The upcoming section also serves as an 
introduction to entities no matter what you use them for! Note that the export I am talking about is not 
to export entity type definitions (which are in code anyway), but rather to export the content held in 
entities' fields. This is why this approach is controversial; many feel that data in fields should always be 
data and never configuration. Is there anything you can do to use a code-based definition of a form 
message before creating an exportable entity? Maybe, but it seems it would involve coding a storage 
mechanism when Drupal can provide one. 

Ideally, it would be a JSON export because JSON allows safe copy-pasting to import. Allowing 
people to paste in PHP can’t be made safe, and CTools is planning to switch to JSON. Based on playing 
around with Profile2 and Message modules, which use Entity API, it does indeed export to JSON. 

Also ideally, that export would live only in code if the UI were never needed. On this point, 
unfortunately, Entity API always automatically imports to the database, rather than reading from code at 
runtime. But on balance, exportable entities using the Entity API module fits your preferences quite well. 

Plus, you’ll get to use entityFieldQuery(), which all the first-adopter Drupal 7 devs are raging 
about. EntityFieldQuery (api.drupal.org/EntityFieldQuery) or Views is what to use for displaying 
entities— avoid creating your own query and display system. See dgd7.org/entities to find examples. 

■ Tip  Make your module exportable. Closely related to good APIs is making your module’s configuration 

exportable. There are two major approaches to aiding the export of configuration in Drupal at the moment: for 
entities, Entity API, and for anything that you can put in a database table, CTools. The first rule of exportability is 
not relying on numeric keys, which both these solutions address. CTools is more common and better tested, and it 

is documented by example in modules such as Views and Panels. 

Providing a New Entity Type 
With all the caveats that exportable entities are not universally endorsed by Drupal developers, let's go 
ahead and make one, because it seems to fit our use case well. 

While entities are new to Drupal 7, creating them is hardly uncharted territory. The entire node 
system is now based on entities, as are comments, terms, vocabularies, files, and users. Contributed 
modules can and do define their own entity types, and so can your module. 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

550 

When to Create an Entity Type 
The most common reason for creating an entity type is to have your own fieldable entities. Always seek 
to extend existing entities with fields before creating new entities. However, don’t use nodes for anything 
that isn’t content—that’s the most common time to create your own entities. Commerce module (see 
Chapter 25) uses entities for products, among other things, because products have distinct needs from 
content. In the case of products, they in particular have a need for many subtypes that would be, at best, 
an abuse of content types. 

How to Create an Entity Type 
Entity types are declared by implementations of hook_entity_info(). See, as usual, the excellent 
Examples project at drupal.org/project/examples; api.drupal.org/hook_entity_info; and, for an 
updated list of tutorials and examples online, dgd7.org/entities. 

AJAX Form Messages chose to use entities for storing configuration (have I mentioned that is 
controversial?) in part for the export capability of Entity API (drupal.org/project/entity), a contributed 
module that adds a lot of capabilities to core entities. This means your entity definition will differ slightly 
from an implementation based only on core, especially when you take advantage of the capabilities 
Entity API offers. You can follow the contributed Entity API’s online documentation for making an 
exportable entity at drupal.org/node/1021526. 

The first step to using Entity API, as for relying on any module, is to declare it as a dependency—it’s 
easy to forget to do this later, and your users will not thank you when your module breaks their site when 
they try to enable it. 

name = AJAX form messages API 
description = "[formmsgs] Provides immediate, in-form notice of validation requirements." 
package = AJAX Form Messages 
core = 7.x 
dependencies[] = entity 

There are a few other things to note in this .info file. Because the main module is meant to be an API 
module and have a UI and several optional supporting modules packaged with it (and possibly more 
contributed separately), you include API in the name and give it a package directive, which will have all 
modules given the package “AJAX Form Messages” grouped together on the modules administration 
page (admin/modules). 

When defining an entity, the next step can take place in your .install file. Every entity requires a 
database table to hold basic information about it. This includes a serial integer ID column (or field, as 
they are called in the schema definition in Listing 24–3) required for any entity and machine-readable 
name column, which is critical for the entity being exportable. 

Listing 24–3. Implementation of hook_schema() in Form Messages Module’s formmsgs.install File 

<?php 
 
/** 
 * @file 
 * DB schema, install, and uninstall functions for AJAX Form Messages. 
 * 
 * The entity base table is defined here. 
 */ 
 
/** 
 * Implements hook_schema(). 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

551

 */ 
function formmsgs_schema() { 
  $schema = array(); 
  $schema['formmsgs'] = array( 
    'description' => 'Stores information about all formmsgs entities.', 
    'fields' => array( 
      'fmid' => array( 
        'type' => 'serial', 
        'not null' => TRUE, 
        'description' => 'Primary Key: Unique form message ID.', 
      ), 
      'name' => array( 
        'description' => 'The machine-readable name of the form message.', 
        'type' => 'varchar', 
        'length' => 32, 
        'not null' => TRUE, 
      ), 
      'label' => array( 
        'description' => 'The human-readable name of this form message.', 
        'type' => 'varchar', 
        'length' => 128, 
        'not null' => TRUE, 
        'default' => '', 
      ), 
      'status' => array( 
        'description' => 'Boolean indicating whether the form message is active.', 
        'type' => 'int', 
        'size' => 'tiny', 
        'not null' => TRUE, 
        'default' => 1, 
      ), 
    ) + entity_exportable_schema_fields(), 
    'primary key' => array('fmid'), 
    'unique keys' => array( 
      'name' => array('name'), 
    ), 
  ); 
  return $schema; 
} 

One neat trick to note is + entity_exportable_schema_fields(), which uses a handy function 
provided by the Entity API module to add a couple more columns to the entity's table. These columns 
(or fields) are for the exportable status and the name of the providing module, and Entity API needs 
them for its export capability but saves you the trouble of defining them yourself. 

The next step for making a new kind of entity is to implement hook_entity_info() in your module. 
This is pretty formulaic. A key element is identifyng the base table defined in the implementation of 
hook_schema() (which we just did in the .install file). A good model for any content-like entity is 
node_entity_info() in modules/node/node.module, so borrow a little from that and from Entity API’s 
documentation at drupal.org/node/878804. Parts unique to Entity API are the controller class, discussed 
later, and the ability to set an 'exportable' property to TRUE. See Listing 24–4. 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

552 

Listing 24–4. Definition of a New Form Message Entity in formmsgs.module 

<?php 
 
/** 
 * @file 
 * Provides immediate, in-form validation requirements. 
 */ 
 
/** 
 * Implements hook_entity_info(). 
 */ 
function formmsgs_entity_info() { 
  $return = array( 
    'formmsgs' => array( 
      'label' => t('Form message'), 
      'controller class' => 'EntityAPIController', 
      'entity class' => 'Formmsgs', 
      'base table' => 'formmsgs', 
      'fieldable' => TRUE, 
      'exportable' => TRUE, 
      'entity keys' => array( 
        'id' => 'fmid', 
        'name' => 'name', 
        'label' => 'label', 
      ), 
      'access callback' => 'formmsgs_entity_access', 
      'module' => 'formmsgs', 
      'admin ui' => array( 
        'path' => 'admin/structure/formmsgs', 
        'file' => 'formmsgs.admin.inc', 
      ), 
      'bundle keys' => array( 
        'bundle' => 'name', 
      ), 
      'bundles' => array( 
        'formmsgs' => array( 
          'label' => t('Message'), 
        ), 
      ), 
      'view modes' => array( 
        'full' => array( 
          'label' => t('On form'), 
          'custom settings' => FALSE, 
        ), 
      ), 
    ), 
  ); 
  return $return; 
}  



CHAPTER 24 ■ WRITING A MAJOR MODULE 

553

The 'controller class' is EntityAPIController, which is what makes your entity take advantage of 
Entity API's capabilities. Defining an 'entity class' requires it. In the previous code, the entity class is 
Formmsgs. This class has to be defined and will be in the next section. 

As you want to be able to use Field API to gather and store data for form messages, you set 'fieldable' 
to TRUE. This is core entity functionality, as opposed to the 'exportable' property that came from Entity 
API. 

The 'base table' needs to be the name of a table defined in hook_schema(). While the entity type 
property 'label' is simply 'Form message' (what to call this type of entity), within the 'entity keys' 
property, 'label' is the column in your base table that holds labels for individual Form messages (also 
called label). The ID (fmid) and the name (name) columns are likewise matched here in the 'entity keys' 
property. 

The entity key 'name' is another feature provided by Entity API; it will allow form messages to be 
exported with a machine name. Importing and exporting does not work well across deployments or 
separate sites when trying to use a sequential numeric ID. 

All bundle-related properties could be left off because the formmsgs entity will have only one bundle, 
which in the absence of being told otherwise, Drupal automatically names after itself. The chance to 
define a single bundle and its label is available and, as with all the code here, follows examples in core, 
contributed modules, and drupal.org documentation. The links in this chapter (and more) can also be 
found at dgd7.org/entities. 

■ Note  When creating an entity type without the aid of Entity API, you will likely want to define your own 
controller class, such as FormmsgsController and extend a Drupal-provided class such as 
DrupalDefaultEntityController. In it could go a create method and extensions to inherited methods. Classes 
that aren't used all the time (such as classes used when creating an entity) should live in an outside file identified 

in .info with the files[] directive. This helps performance on sites not using an opcode cache. In this example, 
Entity API module is taking care of that for us. Drupal will only load its includes/entity.controller.inc file 
when it needs to use the EntityAPIController class. EntityAPIController extends 

DrupalDefaultEntityController and does a whole lot, but should you need more, you can make your own class 

that extends EntityAPIController. 

Setting the property 'entity class' to Formmsgs means you must define this class. If it were more 
than these few lines it would make sense to put it in an include file referenced from formmsgs.info with 
the files[] directive. 

/** 
 * The class used for form message entities. 
 */ 
class Formmsgs extends Entity { 
 
  public $label; 
  public $status; 
 
  public function __construct($values = array()) { 
    parent::__construct($values, 'formmsgs'); 
  } 
} 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

554 

This is a very lightweight extension of Entity API's Entity class; chiefly, it calls the constructor 
function from the Entity class. It also declares the label and status variables, making them available 
without errors, even as empty variables when a form message is created. 

Defining an Entity Access Callback Function 
Entity API requires an access callback function. In the 'access callback' property for the previous 
implementation of hook_entity_info(), you named the function formmsgs_entity_access(). When 
listing the names of callback functions, the parenthesis () are left off. This access callback function is 
adapted from entity_metadata_comment_access() in entity/modules/callbacks.inc. 

/** 
 * Access callback for Entity API-provided formmsgs administration section. 
 * 
 * @TODO Patch Entity API to accept hook_menu style 'access arguments' to 
 * make this function unnecessary for the straight user_access() case. 
 */ 
function formmsgs_entity_access($op, $entity = NULL, $account = NULL) { 
  return user_access('administer formmsgs'); 
} 

Entity API requires an access callback in return for it providing an entity management and editing 
user interface. As noted in the @TODO, it seems when all you want to do is determine access based on a 
simple user permission, you should be able to provide the permission string as an argument and not 
create your own access callback to wrap user_access(). Either way, for the access callback to work and 
have permissions specific to the entity, you need to define a permission or two for the new entity. 

Defining a Permission 
Chapter 21 advised to avoid defining a new permission if not necessary, but you should define a new 
permission if your module makes something new possible that site administrators should be able to 
allow or deny depending on users’ roles. Listing 24–5 shows permissions being defined. 

Listing 24–5. Excerpt from System Module’s Implementation of hook_permission() 

/** 
 * Implements hook_permission(). 
 */ 
function system_permission() { 
  return array( 
    'administer modules' => array( 
      'title' => t('Administer modules'), 
    ), 
    'administer site configuration' => array( 
      'title' => t('Administer site configuration'), 
      'restrict access' => TRUE, 
    ), 
// ... 
  ); 
} 

The 'restrict access' => TRUE directive instructs Drupal to print a notice under the permission 
name (after the description, if any) on the Permissions administration page: Warning: Give to trusted 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

555

roles only; this permission has security implications. It has no other purpose; it is a convenience for 
module builders that provides a consistent way to alert administrators to permissions that should not be 
tossed around freely. 

If you want to give a more precise warning to an administrator about giving a permission, you can 
put the message directly in the description. The core Filter module does this for the Filtered and Full 
HTML formats (and any format that is not configured to be the fallback format). Filter module is also 
dynamically generating a permission for each text format, which is cool, but the custom warning in the 
description is the present topic and is emphasized in bold here: 

  // Generate permissions for each text format. Warn the administrator that any 
  // of them are potentially unsafe. 
  foreach (filter_formats() as $format) { 
    $permission = filter_permission_name($format); 
    if (!empty($permission)) { 
      // Only link to the text format configuration page if the user who is 
      // viewing this will have access to that page. 
      $format_name_replacement = user_access('administer filters') ? l($format->name, 
'admin/config/content/formats/' . $format->format) : drupal_placeholder($format->name); 
      $perms[$permission] = array( 
        'title' => t("Use the !text_format text format", array('!text_format' => 
$format_name_replacement,)), 
        'description' => drupal_placeholder(t('Warning: This permission may have security 
implications depending on how the text format is configured.')), 
      ); 
    } 
  } 
  return $perms; 

■ Note  One more thing from the excerpt from Filter module’s implementation of hook_permission() that’s too 
cool not to remark upon: The title of each text format links to the configuration page if the administering user has 

access to configure text formats. It is using a permissions, check with the user_access() function to enhance the 

usability of its permission definitions! 

Form messages’ implementation of hook_permissions() is not nearly as exciting. It does have a 
bypass permission, modeled on Unique Field module. 

/** 
 * Implements hook_permission(). 
 */ 
function formmsgs_permission() { 
  return array( 
    'administer formmsgs' => array( 
      'title' => t('Administer AJAX form messages'), 
      'description' => t('Allows administrators to configure errors and warning messages.'), 
    ), 
    'bypass formmsgs' => array( 
      'title' => t('Bypass form message errors'), 
      'description' => t('Allows users to ignore errors set through form messages.'), 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

556 

    ), 
  );
} 

Giving Your Entities an Administrative Interface 
Entity API puts a fair amount of work into providing an administrative UI for managing entities based on
it, but there’s still some routine setup you have to do yourself. Previously, in Listing 24–4, the definition
of the Form messages entity via hook_entity_info(), you defined an administrative user interface path
and a separate admin file with the lines: 

       'admin ui' => array( 
'path' => 'admin/structure/formmsgs',
'file' => 'formmsgs.admin.inc', 
), 

You make good on this promise with a couple functions in a formmsgs.admin.inc file (see Listing 24–6).
Entity API picks up the main administrative form automatically when the function has the name of the
entity followed by '_form'. (If you had a module that both defined an Entity API enhanced entity with
the same name as the module and an old-style, module-owned node type, this callback would conflict
with the node form callback— but that’s unlikely.) 

Listing 24–6. An Administration UI for Form Messages Entities as Defined in formmsgs.admin.inc 

<?php
/** 
 * @file 
 * Forms and functions only needed on administration pages. 
 */ 

/** 
 * Generates the form message entity add/edit form. 
 * 
 * This form is automatically picked up by the administrative UI provided by 
 * Entity API module. 
 */ 
function formmsgs_form($form, &$form_state, $formmsg, $op = 'edit') { 

  if ($op == 'clone') { 
    $formmsg->label .= ' (cloned)'; 
    $formmsg->name .= '_clone'; 
  } 

  $form['label'] = array( 
    '#title' => t('Label'), 
    '#type' => 'textfield', 
    '#default_value' => $formmsg->label, 
  ); 
  // Machine-readable form message name. 
  $form['name'] = array( 
    '#type' => 'machine_name', 
    '#default_value' => isset($formmsg->name) ? $formmsg->name : '', 
    '#disabled' => ($op === 'edit') ? TRUE : FALSE, 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

557

    '#machine_name' => array( 
      'exists' => 'formmsgs_load_by_name', 
      'source' => array('label'), 
    ), 
    '#description' => t('A unique machine-readable name for this form message. It can only 
contain lowercase letters, numbers, and underscores.'), 
  ); 
  $form['status'] = array( 
    '#type' => 'checkbox', 
    '#title' => t('Active'), 
    '#default_value' => $formmsg->status, 
  ); 
 
  field_attach_form('formmsgs', $formmsg, $form, $form_state); 
   
  $form['actions'] = array('#type' => 'actions'); 
  $form['actions']['submit'] = array( 
    '#type' => 'submit', 
    '#value' => t('Save form message'), 
    '#weight' => 50, 
  ); 
  return $form; 
} 
 
/** 
 * Form API submit callback for the formmsgs entity add/edit form. 
 */ 
function formmsgs_form_submit(&$form, &$form_state) { 
  $formmsg = entity_ui_form_submit_build_entity($form, $form_state); 
  // Save and go back. 
  $formmsg->save(); 
  $form_state['redirect'] = 'admin/structure/formmsgs'; 
} 

There is a very key line in formmsgs_form() that you are not using yet: the field_attach_form() 
function. It will allow fields defined for the Form message entity to be filled out along with the label and 
machine name. You will programmatically define fields in the next section. 

The next function, formmsgs_form_submit(), is a simple implementation of a submit function for the 
form. With a helper function from Entity API, calling the ->save() method on the form message object is 
all you need. 

The form, though, even with Entity API’s help, is not enough for you to be able to list and edit Form 
messages in the administrative UI yet. You need to define a few loading functions that Entity API draws 
on first. The code in Listing 24–7 goes in formmsgs.module because it has more general utility, but its 
immediate need is to support the administrative operations. 

These load functions are modeled on Profile2 module (also by fago, the creator of Entity API). The 
odd one out, formmsgs_load_by_name(), is modeled on profile2_get_types(). It fills a special need of the 
Entity API provided administrative UI. 

The other two functions are directly analogous to node_load() and node_load_multiple(). You will 
see that, like the node loading functions, formmsgs_load() works by calling formmsgs_load_multiple(). 
This respects Garfield Law: One is a special case of many. For Larry Garfield (crell)’s current eight 
aphorisms of API design, see my notes on his presentation (data.agaric.com/aphorisms-api-design) or 
the DrupalCon Chicago recording the notes are based on (or catch him revisiting this topic at a future 
DrupalCon or Drupal camp). 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

558 

Listing 24–7. Entity Load Functions Required for Entity API’s Administrative UI to Work as Defined in 

formmsgs.module 

/** 
 * Fetches an array of all form messages, keyed by the formmsg machine name. 
 * 
 * Also used to check if machine name is used for an existing form message. 
 * 
 * @param $name 
 *   If set, the form message with the given name is returned. 
 * @return $formmsgs 
 *   An array of form messages or, if $name is set, a single one. 
 */ 
function formmsgs_load_by_name($name = NULL) { 
  $formmsgs = entity_load('formmsgs', isset($name) ? array($name) : FALSE); 
  return isset($name) ? reset($formmsgs) : $formmsgs; 
} 
 
/** 
 * Fetch a form message object. 
 * 
 * @param $fmid 
 *   Integer specifying the form message id. 
 * @param $reset 
 *   A boolean indicating that the internal cache should be reset. 
 * @return 
 *   A fully-loaded $formmsg object or FALSE if it cannot be loaded. 
 * 
 * @see formmsgs_load_multiple() 
 */ 
function formmsgs_load($fmid, $reset = FALSE) { 
  $formmsg = formmsgs_load_multiple(array($fmid), array(), $reset); 
  return reset($formmsg); 
} 
 
/** 
 * Load multiple profiles based on certain conditions. 
 * 
 * @param $fmids 
 *   An array of form message IDs. 
 * @param $conditions 
 *   An array of conditions to match against the {formmsgs} table. 
 * @param $reset 
 *   A boolean indicating that the internal cache should be reset. 
 * @return 
 *   An array of form message objects, indexed by fmid. 
 * 
 * @see entity_load() 
 * @see formmsgs_load() 
 */ 
function formmsgs_load_multiple($fmids = array(), $conditions = array(), $reset = FALSE) { 
  return entity_load('formmsgs', $fmids, $conditions, $reset); 
} 

6



CHAPTER 24 ■ WRITING A MAJOR MODULE 

559

All of these load functions ultimately rely on Drupal core’s entity_load() function (see 
api.drupal.org/entity_load), for which EntityAPIController provides its own implementation. 

You can now create, list, edit, and delete Form message entities, but each one is only a label, a 
machine name, and a status. To get the full power and flexibility you were seeking when going the entity 
route, your module needs to define Drupal 7 fields. 

Programmatically Creating and Attaching Fields 
Fields can be created and attached to entity bundles (such as content types) through the User Interface. 
This is indeed a key reason and purpose for fields, but they can also be defined in code. In the unusual 
case of using fields to store configuration information (a use case which is controversial, it should be 
noted again), AJAX Form Messages doesn't even want the fields configurable in the user interface. To 
provide users of Form messages with all the fields to match the data model brainstormed earlier, you 
most certainly need to create and attach the fields in code. 

Finding a Model 
Several places in core programmatically attach fields to content types, which is analogous to attaching 
fields to your own entity and bundle. Node module has a function that encapsulates adding the body 
field to content types, node_add_body_field(), which you can see in modules/node/node.module or at 
api.drupal.org/node_add_body_field. The Standard installation profile also attaches a Taxonomy field, 
which can be seen around line 283 in profiles/standard/standard.profile. 

For the message, you want a text field. To see precisely what text fields are available for you to use, 
look directly at Drupal core’s Text module, a submodule of the Field module found at 
modules/field/modules/text.module. 

function text_field_info() { 
  return array( 
    'text' => array( 
      'label' => t('Text'), 
      'description' => t('This field stores varchar text in the database.'), 
      'settings' => array('max_length' => 255), 
      'instance_settings' => array('text_processing' => 0), 
      'default_widget' => 'text_textfield', 
      'default_formatter' => 'text_default', 
    ), 
    'text_long' => array( 
      'label' => t('Long text'), 
      'description' => t('This field stores long text in the database.'), 
      'instance_settings' => array('text_processing' => 0), 
      'default_widget' => 'text_textarea', 
      'default_formatter' => 'text_default', 
    ), 
// ... 
  ); 
} 

The maximum length (max_length) of the text field may appear to be 255 characters, so it would 
behoove you to choose the text_long format. However, that 255 characters is a setting; it can be set to 
something different, and much higher, when the field is created. (The longest safe value is about 50,000 
bytes, see drupal.org/node/1052248.) 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

560 

Putting this together, to add a field you return to your .install file. It is a two-step process of 
defining (creating the field) and attaching to an entity (creating an instance of the field), and both steps 
can go together in an implementation of hook_install(). 

/** 
 * Implements hook_install(). 
 */ 
function formmsgs_install() { 
  // Define a field. 
  $field = array( 
    'field_name' => 'field_message', 
    'type' => 'text_long', 
    'entity_types' => array('formmsgs'), 
    'translatable' => TRUE, 
  ); 
  $field = field_create_field($field); 
 
  // Attach a field. 
  $instance = array( 
    'field_name' => 'field_message', 
    'entity_type' => 'formmsgs', 
    'label' => t('Message'), 
    'bundle' => 'formmsgs', 
    'description' => t('Message to show on error.'), 
    'widget' => array( 
      'type' => 'text_textarea', 
      'weight' => -5, 
    ), 
  ); 
  field_create_instance($instance); 
} 

The process of defining a field is a simple matter of creating an array of information about the field 
and calling field_create_field() on that array. Attaching a field works analogously. It does not need to 
be handed the field you created; instead it uses the same field name as the field you just created and also 
provides the name of the entity type you are attaching to. It then optionally takes instance-level settings. 
The real trick is looking through core and contrib .install files for examples of different fields. You can 
also, if necessary, define your own field types. The creation of custom field types for AJAX Form 
Messages will be documented at dgd7.org/strategy. 

■ Note  Remember that once you have released a beta version of your module (at which point users expect to be 
able to upgrade safely), you need to define and attach any new fields in implementations of hook_update_N() in 

addition to hook_install(). 



CHAPTER 24 ■ WRITING A MAJOR MODULE 

561

Define Done 

“Walking on water and developing software from a specification are easy if both are 
frozen.” 

—Edward V. Berard 

This section on defining “done” should have come at the beginning, of course. (There’s a reason I didn’t 
write Chapter 10 on project planning and management.) But don’t let that scare you off some good 
advice: clearly define goals first. 

Almost any project can be almost infinitely extended; the more you work on it, the more cool things 
you will think about doing. Defining early the minimum criteria needed to ship helps maintain focus. 
Use your own issue queue to post feature requests, but don’t let them get in the way of getting to done. 
Ship it to meet a first use case, and try to budget time to revisit it later. 

■ Tip  What you do not want to cut corners on is leaving yourself the flexibility to do things differently later. You 
want to encapsulate functionality and define boundaries and interfaces between parts of your code whenever a 
decision about how best to do something is best left until later. This also means abiding by your own API and not 
special-casing the needs of your code; your module should not privilege itself over others. Code as if you will not 

be able to edit your own code. If you need more flexibility, make that flexibility available to other modules also. 

Of course, in open source, anyone can then decide it is not done enough and put some work in 
themselves. One of the great strengths of the Drupal community is the frequency with which new people 
coming to a project have made significant contributions, including by taking over maintainership for 
established modules. 

For this module, in its purpose as a case study, done is defined as this book needs to be published. 
Follow the continuing adventure of the Form message module at dgd7.org/strategy and 
drupal.org/project/formmsgs. 
  



P A R T   VI 
 

■ ■ ■ 

 

Advanced Site-Building 
Topics 

Chapter 25 covers building an online store and brings you inside the decisionmaking of the ground-up 
rearchitecture of Ubercart–the number one e-commerce suite for Drupal 6–for Drupal 7 as Drupal 
Commerce.  This chapter is valuable to any person building a commerce site, but it also invites you into 
the Commerce developer community. 
 
Chapter 26 provides insight into advanced Drush usage to revolutionize your site developing experience 
as much as using Drush, Drupal's command-line shell, did when you started using it in the first place. It 
includes examples to get you started writing your own Drush scripts and commands. 
 
Chapter 27 goes over the concepts and practice of using Drupal's pluggable caching and storage 
mechanisms to scale to millions of site users—not simply visitors, which is relatively simple to scale, but 
people interacting heavily with your site. See also Appendix B. 
 
Chapter 28 gives the theory and practice of bringing the power of the Semantic Web to Drupal, and vice 
versa—making data on your web site linked to precise meanings that computers can understand and 
connect to data elsewhere on the Internet. (SEO hint: Computers include search engines.) 
 
Chapter 29 tours the Drupal's routing system, providing critical background for module developers and 
site builders alike. 
 
Chapter 30 takes you on a tour of what goes on inside Drupal during a page request, a perfect follow-up 
to Chapter 29 and a great approach to truly understanding Drupal. 
 
Chapter 31 explains using and extending the Solr module for much more powerful search capabilities. 
In this latter capacity it provides an example of integrating Drupal with a web service and making use of 
object-oriented code. 
 
Chapter 32 gives an in-depth look at user experience improvements in Drupal 7 and the decisions 
behind them and how you can use new best practices and consistent interface design decisions in your 
own development. 

 
Chapter 33 takes on advanced configuration and lots of glue code–indeed, whatever it takes–for 
completing the DefinitiveDrupal.org site built out in Chapters 1 and 8. 
 
Chapter 34 covers some popular Drupal distributions–packaged collections of Drupal and modules to 
serve specific purposes, which are spreading Drupal like never before–and shows you how to make your 
own distributions with Drupal's installation profile capability. 



C H A P T E R   25 
 

■ ■ ■ 

565

Drupal Commerce 

by Ryan Szrama  

E-commerce with Drupal is more powerful than ever before thanks to the development of Drupal 
Commerce for Drupal 7. The Drupal Commerce project is comprised of a core set of Commerce modules 
and an implementation strategy that leverages the many new Drupal 7 features and API improvements. 
This chapter begins with a broad overview of Drupal Commerce, highlighting its key features before 
moving on to a closer examination of the core systems, their implementation, and how they should be 
used together. It also includes words of wisdom for site builders and developers seeking to implement 
Drupal Commerce on their own sites. The chapter ends with a discussion of the project’s development 
history, design philosophy, and utilization of key Drupal 7 features. 

Drupal Commerce Overview 
In many ways Drupal is the ideal platform for e-commerce web sites. Its core modules and systems 
define APIs for deeply integrating contributed modules into the behavior of the site and for 
communicating with external web services. It includes a plethora of features for content management 
and community building, enabling you to build a community around your products and services or 
promote your brand through your customers’ existing social network relationships. 

All of the major e-commerce modules dating back to Drupal 4.5 have built on Drupal’s base feature 
set as a foundation for e-commerce instead of integrating with external applications, and Drupal 
Commerce is no exception. As Drupal has matured, this base of core features and major contributed 
systems like Views has also grown, giving modules building on them even greater flexibility and power. 
For this reason, Drupal Commerce was started from scratch with a fresh architecture designed around 
the latest features in Drupal 7 and greatest developments among Drupal’s contributed modules such as 
Rules and Views. 

The end result is an e-commerce solution that can be built from the ground up to address your 
business needs, no matter how great or small. Drupal Commerce sites benefit from Drupal’s security, its 
ability to scale, and the interoperability of its vast selection of contributed modules. With the content 
management and social commerce tools baked into the core itself, Drupal is a very robust platform for 
today’s online businesses without requiring integration with external e-commerce applications. 

Key Features 
The scope of the core feature set is intentionally limited, as the goal of Drupal Commerce has been to 
provide the building blocks of e-commerce as tools for site builders and developers to create customized 
e-commerce solutions. However, the Commerce module still encompasses the basic set of features 
expected of an e-commerce application. These features are mostly enabled by the user interface (UI) 



CHAPTER 25 ■ DRUPAL COMMERCE 

566 

modules of some of the core module pairs, such as Product and Product UI, and by strictly UI modules 
that focus on the customer experience, like Cart and Checkout. 

A basic summary of the core features includes: 

• Products with any number configurable product image and data fields. 

• Dynamic product pricing allowing for UI-based discounts and tax-inclusive price 
display. 

• Flexible product display based on Drupal 7’s Fields system, enforcing a separation 
of the product definition from the point of display. 

• “Smart” Add to Cart form that displays differently based on the number and types 
of products represented on it 

• Shopping cart system that includes a cart block and cart update form, with carts 
implemented as special case order objects. 

• Orders consisting of line item and customer profile references and other 
metadata. 

• Line items of various types used for describing items on an order like products, 
taxes, shipping fees, etc. 

• Customer profiles of various user configurable types allowing the collection of 
data necessary to fulfill or complete an order. 

• Flexible checkout form builder with a drag-and-drop user interface supporting 
single and multi-page checkout. 

• Payment system integrating onsite and offsite payment solutions into the normal 
checkout workflow and allowing for tracking and manual entry by administrators. 

• Complete order, customer profile, and payment transaction logging. 

• Support for multicurrency and multilingual stores. 

Digging Into Drupal Commerce 
You can find out more about the origins, philosophy, and core Drupal innovations behind Drupal 
Commerce later in this chapter and through the project’s homepage at drupalcommerce.org. Digging into 
the Commerce modules themselves first will provide you with the appropriate context for the more 
advanced topics. Accordingly, this section covers downloading and installing the Commerce modules 
with a thorough examination of the various entities and fields that make up the project’s core systems 
organized as a walkthrough of a simple store configuration. 

The project’s source code is hosted in two locations: a development Git repository on GitHub that is 
mirrored to a repository on drupal.org. To get started quickly, you can simply download the latest 
release from the project page at drupal.org/project/commerce and extract it to your site’s modules 
directory. If you plan on contributing code back to the project or want to develop against the freshest 
code, you can clone the Git repository and pull from the most active development repositories by 
following the instructions in the Code Workflow handbook available at 
drupalcommerce.org/development/workflow. 



CHAPTER 25 ■ DRUPAL COMMERCE 

567

■ Tip  Ryan Szrama, the Drupal Commerce project lead, maintains the most active development repository where 
most of the code that gets committed to the main project repository originates. To find his and other developers’ 
active repositories, you can refer to the developer documentation at 

drupalcommerce.org/development/workflow/repositories. 

Before you can enable the Commerce modules, you also need to download and extract the latest 
Drupal 7 version of the following dependencies to your site’s modules directory: 

• Address Field (drupal.org/project/addressfield) 

• Chaos tools suite (drupal.org/project/ctools) 

• Entity API (drupal.org/project/entity) 

• Rules (drupal.org/project/rules) 

• Views (drupal.org/project/views) 

With these modules in place, you are ready to start enabling the modules that you will use to build 
your store. If you are starting from a Standard installation of Drupal 7, you should already have the 
optional core Drupal modules that the Commerce modules depend upon enabled: Contextual links and 
Field UI. If these are not enabled, you should enable them when you enable the following dependency 
modules from the projects you have downloaded: 

• Address Field 

• Entity CRUD API 

• Entity Tokens 

• Rules 

• Rules UI 

• Views 

• Views UI 

• Modules in the Chaos tools suite listed as dependencies of the Views module 

■ Tip While not a dependency, the Administration Menu module is highly recommended for navigating the 
Commerce UI in conjunction with the core Overlay module. You can download the latest Drupal 7 version from its 

project page at drupal.org/project/admin_menu. 

You are now prepared to enable the Commerce modules. While the Commerce fieldset on the 
module installation page lists modules in alphabetical order, they are listed here in order of dependency: 



CHAPTER 25 ■ DRUPAL COMMERCE 

568 

• Commerce/Commerce UI defines features and API functions common to the
Commerce modules, like currency handling and Field API helper functions. 

• Price defines a dynamic Price field with multiple display formatters 

• Product/Product UI defines the product entity and user interface for creating and
managing product types and products. 

• Physical Product defines fields for offering physical products for sale. 

• Line Item/Line Item UI defines the line item entity, API for modules to define line
item types, and the line item reference field used to add line items to orders. 

• Product Reference defines the product reference field used to display products on
other entities and a product line item type. 

• Product Pricing/Product Pricing UI enables Rules based product sell price
calculation for dynamic product pricing. 

• Tax/Tax UI defines tax types with an API and user interface for defining tax rates
and managing tax inclusive price displays. 

• Customer/Customer UI defines the customer profile entity, user interface for
creating and managing customer profile types and profiles, and a customer profile
reference field used to add customer information to orders. 

• Order/Order UI defines the order entity and user interface for creating and
managing the default order type and orders. 

• Payment/Payment UI defines the payment transaction entity and user interface for
accepting and managing payments via the checkout form and administration
form. 

• Checkout defines a flexible checkout form with a drag-and-drop checkout form
builder supporting single and multi-page checkout. 

• Cart defines the special shopping cart order status and user interface components
like the cart block, update form, and checkout integration. 

Upon installation, some of these modules will perform automatic field creation to configure some
entities for use. For example, when Product Reference is enabled, the Line Item module defines a new
line item type with a default price field based on Product Reference’s implementation of
hook_commerce_line_item_info(). The rest of this section examines the systems and features defined by
each module, highlighting aspects requiring further configuration. These configuration tasks include: 

• Enabling supported currencies and setting the default store currency. 

• Creating product types and adding products. 

• Creating a product display node type. 

• Enabling payment methods. 

• Customizing the checkout form. 

• Reviewing the default Rules. 



CHAPTER 25 ■ DRUPAL COMMERCE 

569

■ Tip Due to the number of modules involved in running Drupal Commerce, you can use the Commerce Kickstart 
installation profile that automatically installs the necessary modules during the normal Drupal installation. To 
locate and download installation profiles and find resources for creating your own, refer to the documentation at 

drupalcommerce.org/development/installation-profiles. 

Commerce 
The Commerce module defines a variety of API functions used by the other modules to simplify 
commonly used features of Views and the Forms API. While this library of functions and general store 
settings will surely grow as Drupal Commerce matures, the main feature it is responsible for at present is 
currency definition and formatting. Every possible currency is defined in the Commerce module 
according to ISO 4217, while the module allows the name and formatting data to be altered via 
hook_commerce_currency_info_alter(). 

The Commerce UI module defines a top level Management menu item called Store under which all 
the other UI modules place their menu items and a Configuration beneath Store to hold Commerce 
module settings forms. It also adds a Currency settings item in the Configuration menu, as shown in 
Figure 25–1. Before adding products to your site, you should select the default currency for the store and 
enable any other currencies that you intend to use in product pricing. Default price fields added by 
Commerce modules to bundles of entities like products and line items use the default store currency on 
currency selection widgets, because the default values for these “locked” fields cannot otherwise be 
adjusted via the Field UI. 

 

Figure 25–1. The currency settings form lets you specify a default store currency and enable any other 

currencies. 

Price 
The Price module primarily defines the price field that can be attached to entities allowing the entry of 
currency specific pricing. The price field stores an amount and an ISO 4217 currency code for every price 
value, and it comes with two display formatters that display price values as raw numbers or as numbers 
formatted for the specified currency. Entering prices is possible via one of two default widgets shown in 



CHAPTER 25 ■ DRUPAL COMMERCE 

570 

Figure 25–2, a Price textfield widget that allows price entry for a specific currency and a Price with 
currency widget that lets you choose a currency from the list of enabled currencies on data entry. 

 

Figure 25–2. The Price module defines these two standard widgets used for entering price values. 

While the Price module does not create any price fields on its own, it does provide an API function 
called commerce_price_create_instance() that other modules in Drupal Commerce use to add required, 
locked price fields to their entity bundles. The Product module uses this function to add default price 
fields to product types to ensure every product you create has a price value, like so: 

/** 
  * Ensures a base price field is present on a product type bundle. 
  */ 
function commerce_product_configure_product_type($type) { 
  commerce_price_create_instance('purchase_price', 'commerce_product', $type, t('Price')); 
} 

If multiple calls to commerce_price_create_instance() use the same first argument representing the 
field’s name, the same field will be used for each instance. In the case of products, this allows Views and 
other functions to assume they can find price data in the same field across every product type. Without 
this ability, it would be nearly impossible to build reliable product catalogs and multipurpose Add to 
Cart forms. 

Additionally, price fields created with this function are “locked,” meaning instances of these fields 
cannot be deleted or altered via the Field UI. For this reason, they all default to the Price with currency 
widget for data entry, as it uses the default store currency and alters its form elements based on the 
number of available currencies. While the widget will also accommodate currencies that are disabled 
after prices have already been entered using those currencies, you should consider it a best practice to 
plan for and enable the currencies your site will use prior to entering your product data. 

Dynamic Pricing 
Price fields have the ability to enable other modules to dynamically alter a price’s amount and currency 
on display. Altering prices for various types of discounts and adjusting price displays for things like tax-
inclusive pricing and multicurrency support is a major consideration of many e-commerce web sites. 
The Price module accommodates these needs via integration with Rules in the Product Pricing module, 
allowing you to configure price adjustments via the Rules UI. 

Altering prices based on the point of display or some set of discount parameters on its own is not a 
difficult task, but because using Rules for dynamic pricing requires Drupal to load and execute code, this 
data is not readily available in the database for the purpose of sorting or filtering query results. In other 
words, a View that orders products from lowest to highest price would have incorrect ordering if the 
most expensive product is discounted when the page is generated to be the cheapest in the list. To avoid 
this problem, the Price module has the ability to pre-calculate and cache prices derived from 
independent Rules that use a consistent set of parameters to produce predictable and reproducible price 
alterations. 



CHAPTER 25 ■ DRUPAL COMMERCE 

571

Product 
After your initial store and currency configuration, your next step will be to implement your site’s 
product strategy. You should have a clear understanding of what types of products you will be selling 
and how your customers will be paying for them as you begin to interact with the product system. The 
Product module uses Drupal 7’s entity system to define a new fieldable product entity that can have any 
number of bundles referred to as product types. The entity also defines several view modes that allow 
you to control how the fields on each product type are displayed in various locations. 

Any module can define new entities in the same manner using hook_entity_info(). As you 
contribute modules to Drupal 7 or write your own modules to extend Drupal Commerce, you should 
consider using the entity system any time your code depends on a displayable data object with bundles 
that should be configurable via a user interface. See the development discussions later in this chapter for 
a code example discussing the definition of an entity type. 

Creating a Product Type 
In addition to defining product types in code, you can use the default interface provided by the Product 
UI module to add and configure product types. This interface is located under the Products menu item 
in the Store menu. The main Products page is a view listing all products on the site in a table with a 
Product Types tab that lists all currently available product types with some administrative links for 
managing the types and their fields (see Figure 25–3). 

 

Figure 25–3. The Product Types tab allows you to add and configure product types on your site. 

While the Product UI module creates a basic product type on install, most sites will need to define 
additional product types or at least customize the basic product type. You should add a separate product 
type for each group of products you sell that share a common set of attributes or features, like the size of 
a shirt or type of cover on a book. These attributes are represented as fields on the various product types 
and are added via the manage fields link for the product type. As discussed later in the Cart section, the 
Add to Cart form adjusts its display to allow product selection based on any required, single-value fields 
with a definite set of options that each of the products on the form contain. 

Follow these instructions to build a t-shirt product type that might be used in an apparel store: 

1. Click the Add product type link pictured above and enter t-shirt as the product 
type name. Notice that a valid “machine name” is automatically created for the 
product type that will be used throughout the code to refer to this type. 

2. Submit the form using the Save and add fields button to create the new 
product type and redirect to its Manage Fields tab. 



CHAPTER 25 ■ DRUPAL COMMERCE 

572 

3. Drag the Add new field row in the field table to a position between the Title 
and Price rows. Enter Size in the new field’s label textfield and size in its name 
textfield. Select List (text) as the type of data to store, leave the widget at Select 
list, and click the Save button to create the new field and redirect to its settings 
form. 

4. Leave the Allowed values for the field settings blank, as these allowed values 
apply to any instance of your Size field and cannot be updated later if you 
decide you need additional options. Submit the form using the Save field 
settings button. 

5. You are now viewing a form with settings specific to the Size field on the t-shirt 
product type and other general field settings. In the t-shirt settings fieldset, 
check the Required box beneath the Label textfield to require every t-shirt 
product to have a size value. In the Size field settings fieldset, ensure the 
Number of values is set to 1 and enter a few size options in the Allowed values 
textarea one per line. 

6. Submit the form using the Save settings button to be returned to the Manage 
Fields tab, which should now resemble Figure 25–4. You can add any 
additional fields you need using the same process, including fields of other 
types like images. 

 

Figure 25–4. The Manage Fields tab of a product type shows the default fields added by modules and any 

additional fields you add via the Field UI. 

Adding Products 
Once you have configured the product type, you are ready to start adding products to the site. Returning 
to the Store  Products page, you can use the Add a product link to choose the product type and start 
creating products. When you list products of types that have single-value fields like the t-shirt product 
type, you must add a separate product for each variation you intend to sell. 

The keen observer will realize how many products this will result in for stores that have product 
types with multiple attribute fields and many options. In Drupal Commerce you can end up creating 
several to dozens of products that differ from one another in only one field value. This is due in large part 
to the project’s prioritization of normalizing the product data model and is an extension of its emphasis 
on separating the API from the UI as discussed later. 



CHAPTER 25 ■ DRUPAL COMMERCE 

573

Drupal Commerce began with discussions on how to better define products in response to the poor 
developer experience in the Ubercart Product API, resulting from the inconsistency of attribute data, 
unreliability of SKU adjustments, and opacity of critical data stored as serialized arrays. The main 
corrective measure architected into the Commerce product system was to enforce a full definition of 
every possible variation of a product, including a unique product ID and SKU. This approach combined 
with the storage of attribute data in fields makes the product data much easier to work with and 
simplifies the product creation API. 

■ Note  SKU stands for Stock Keeping Unit and refers to the merchant-defined unique identifier of each variation 
of a product or billable entity. SKUs often contain meaningful abbreviated product information but can just as well 

be simple numeric values, especially for stores that don’t depend on the data or are in markets where other 

methods of tracking sold items are dominant. 

This move to focus on the API and data model at the expense of a simpler core UI was intentional. A 
critical part of the product strategy involves introducing usability layers on top of the product system to 
simplify repetitive tasks. One of Drupal’s Google Summer of Code 2010 projects focused on this 
problem, resulting in Commerce Bulk Product Creation available from 
drupal.org/project/commerce_bpc. If you need to create multiple variations of the same product at once, 
this module allows you to create them through a form that lets you choose the attribute field options to 
create products for and specify a token-based pattern to use for their SKUs. 

At this point, you still don’t have any way to display the products you are creating to your customers 
for purchase. The product definition exists solely on the back end and will be displayed on the front end 
through a product display node type utilizing a product reference field, as discussed in the Product 
Reference section. As mentioned, this separation of a product’s definition from its point of display is an 
extension of Drupal Commerce’s emphasis on separating APIs from the default UI. This separation 
allows the same product to be referenced in multiple places, like on language specific nodes or across 
multiple domains, without requiring manual data synchronization to ensure that product SKUs, prices, 
and other information is uniform across all displays. While it may take more work to set up an initial 
product display, the greater flexibility is well worth the cost. 

Finally, using Drupal’s entity system to define products enables modules to use special fields to add 
functionality to different product types. The Physical Product module does just that, defining fields that 
you can use to describe a product’s dimensions, weight, and packaging information. This data is then 
available on the checkout form where it can be aggregated and used to calculate shipping costs and 
collect additional information from the user necessary to fulfill orders of physical products. 

Line Item 
Drupal Commerce line items are used to represent anything on an order that contributes to calculating 
the order’s total or fulfilling the order. The line item entity defined by the module is fieldable and can be 
configured in any number of module-defined bundles called line item types. Changes to line items are 
tracked via line item revisions, much like nodes. Every line item contains the following default properties 
and fields in addition to line item type-specific fields added by the module defining the type: 

• Label 

• Title 



CHAPTER 25 ■ DRUPAL COMMERCE 

574 

• Display options 

• Quantity 

• Unit price 

• Total price 

Any module needing to represent other information on the order, like a discount from a coupon 
code, can define a new line item type in the same manner using hook_commerce_line_item_info(). An 
example implementation may be seen in the Product Reference module, which defines the product line 
item type and uses a default product reference field to relate the line item to the actual product in your 
database. For current documentation of the line item type data structure, refer to the Line Item page of 
the “Info hooks” section in the Drupal Commerce Specification handbook at 
www.drupalcommerce.org/specification. 

■ Tip  Bookmark the Specification handbook (drupalcommerce.org/specification) and refer to it often for the 

most current system overviews, hook explanations, and API utilization strategies.  

The line item reference field defined by the Line Item module can relate any number of line items to 
another entity using their line_item_id values. The field itself doesn’t store any data other than IDs, but 
it comes with a very robust Line item manager widget that lets you add, edit, and delete line items via a 
dynamic form powered by the new #ajax support in the Forms API (see Figure 25–5). Modules like Cart 
that want to add line items to orders via the API are responsible for both creating the line items and 
associating them to the orders by adjusting the values of the order’s line item reference field. Refer to 
commerce_cart_product_add() in commerce_cart.module for an example implementation of this process. 

 

Figure 25–5. The Line item manager widget can be used to add, edit, and delete line items on an order. 

Line items can be displayed using Views via a line item relationship or argument, as in the shopping 
cart block and Line item View display formatter, and by using the API to build a content array based on 
the line item type’s field display configuration. You can access a list of line item types and manage their 
field display settings through the Line items item in the Store  Configuration menu. Note that line item 
types can’t be added or edited via the user interface because they depend on module-specific code to 
operate effectively. If you must alter another module’s line item types, you can do so using 
hook_commerce_line_item_info_alter().  

In addition to Product Reference and Cart, Tax is the other core module that heavily interacts with 
the line item system. The Tax module allows modules to define tax rates via hook_commerce_tax_info() 
that may apply to line items on an order. Storing tax collected in line items allows you to easily create tax 

http://www.drupalcommerce.org/specification


CHAPTER 25 ■ DRUPAL COMMERCE 

575

reports using Views and access tax rate information via a field referencing the particular rate used to 
calculate the line item’s price. 

Product Reference 
The Product Reference module defines both a product reference field and the product line item type, 
which uses the field to reference product data from the line item. The product reference field is the 
primary tool you will use to build product displays and Add to Cart forms. When the field is placed on a 
node type, Product Reference pulls the referenced product’s fields into the node for display, using both 
the product and node types’ field display settings to format and order the product’s fields along with the 
node’s fields. Product reference fields may reference single or multiple products, and using the Add to 
Cart form display formatter provided by the Cart module may be displayed as Add to Cart forms in the 
node display. The field also integrates with Views to provide a relationship from the display node to the 
referenced product’s data for use in product catalog Views and other types of displays. 

As you can see, this field is quite versatile and is a key part of Drupal Commerce’s product strategy. 
By pulling product fields into node displays, image and price information can be defined and 
maintained on the single product entity and then referenced from any number of places throughout the 
site. Any updates to the product will automatically appear wherever it is displayed using a product 
reference relationship. 

Building a Product Display Node Type 
Follow these instructions to build a basic Product display node type for your site: 

1. Browse to Structure  Content types in the Administration menu and click the 
Add content type link. Enter Product display as the content type name and 
adjust the settings in the vertical tabs to your liking. 

2. Submit the form using the Save and add fields button to create the new 
content type and redirect to its Manage Fields tab. 

3. In the Add new field row in the field table, enter Product as the new field’s label 
and product in its name textfield. Select Product reference, leave the widget at 
Autocomplete text field, and click the Save button to create the new field and 
redirect to its settings form. 

4. Leave the “Product types that can be referenced” checkboxes unchecked, 
allowing the field to reference products of any type. Submit the form using the 
Save field settings button. 

5. You are now viewing a form with settings specific to the Product field on the 
Product display content type and other general field settings. In the Product 
display settings fieldset, check the Required box beneath the Label textfield to 
require every Product display node to reference a product. In the Product field 
settings fieldset, leave the Number of values set to 1 and submit the form using 
the Save settings button to be returned to the Manage Fields tab. 



CHAPTER 25 ■ DRUPAL COMMERCE 

576 

6. Click the Manage Display tab to see how the content type fields (Body and 
Product) and referenced product fields (Product: Size and Product: Price) will 
be ordered and displayed. Only T-shirt products will have the size field, and 
you don’t need to display the field itself via the product display node. You will 
also want the node’s product field to be displayed as an Add to Cart form, 
requiring you to select that display formatter in the field’s Format select box. 
Update your default field display settings to resemble Figure 25–6 and repeat 
the process for any other display modes. 

 

Figure 25–6. The pictured field display configuration hides unnecessary fields and orders the price field 

from the referenced product to be displayed right above the product reference field rendered as an Add to 

Cart form. 

7. Finally, you should review the display settings for the product fields that will 
be displayed in the node context. These settings are configured via the manage 
display forms for each product types listed at Administration  Store  
Products  Product types. Product fields can be displayed differently on each 
node view mode, so you may need to configure the field display settings for 
multiple product view modes. 

Following those steps will give you a node type you can now use to list products for sale on your site. 
The Autocomplete text field widget adds a text field to the Node Edit form where you can enter products 
by SKU to reference from the node, and it autocompletes on the product SKU or Title during data entry. 
Nodes of this type will display a simple Add to Cart form that adds the referenced product to the 
customer’s shopping cart. 

While this simple product display is good for selling a single product at a time, it will not be 
sufficient for selling sets of products from the same node. For example, you might want to create four t-
shirt products that all have the same style or design but are different sizes. Drupal Commerce’s product 
data model demands each size to be listed as a separate product, but the customer only needs to see a 
single product display where he or she can choose the appropriate size. To accomplish this, you use a 
content type with a product reference field whose Number of values setting is greater than one or set to 
unlimited. The autocomplete text field will function just the same but support a comma separate list of 
SKUs, and the Add to Cart form will automatically adjust to allow the customer to choose the proper 
product he or she wants to add to the cart. 

The inclusion of product fields on display nodes is a critical feature for this whole system, but it is 
not without its difficulties. For single value product reference fields, it is easy enough to pull the 
referenced product’s fields into the node for display, and it is clear to see that any display data for the 



CHAPTER 25 ■ DRUPAL COMMERCE 

577

product is best stored in fields on the product type. The most common example would be to add an 
image field to the product type and upload your images to the products themselves so they can be 
displayed easily on product display nodes or on other custom displays and Views. However, for multiple 
value product reference fields, it is more difficult to know which product’s fields should be displayed by 
default and whether or not some data should be stored on the products despite the potential for 
duplication, like the case of images for t-shirts listed only as separate products to accommodate various 
size options. As Drupal Commerce matures, your approach is likely to change, but at this point the best 
strategy is to keep as much raw data about your products, including any related images, stored in fields 
on the products themselves. 

Customer 
The Customer module defines a customer profile entity and the related customer profile reference field 
that works much like the line item reference field to associate customer profile data with orders. The 
customer profile entity supports any number of module-defined fieldable bundles known as customer 
profile types. Changes to customer profiles are logged via revisions, and special attention is given to 
ensure that customer profiles are duplicated instead of merely updated to preserve customer data for 
profiles referenced by previous orders. Each customer profile type can have its own set of fields to collect 
data pertinent to the profile type, allowing you to collect different information for billing and shipping 
profiles if necessary. Customer profile types like the default Billing information type use the postal 
address field defined by the Address Field module to collect name and address information in 
conformance with international standards. 

Customer profiles are intended to serve as the primary method for collecting the information you 
need from customers in order to fulfill your orders. This information is maintained separate from the 
normal user account system to provide several key points of flexibility. First, this model lets users 
maintain multiple profiles of each type, much like the address book functionality common to most 
major e-commerce web sites. Second, allowing repeat customers to refer to previously used profiles, 
creating new profiles only when some information has changed, reduces data duplication. Third, stores 
that allow group purchasing can grant multiple users access to the same customer profile information, 
entrusting the ability to create new profiles to the managers of each group. Fourth, customer profile data 
can be collected and stored in relation to an order for anonymous users such that a store does not need 
to create user accounts at all if it does not desire. This level of anonymous checkout would not be 
possible if customer data were tied directly to user accounts. 

Customer profile types are defined via modules via hook_commerce_customer_profile_info(). As 
with line item types, modules can perform configuration steps on these profile types when they are first 
enabled to ensure the presence of default fields. The Customer module provides checkout form 
integration for each customer profile type to give customers a place to supply their information, and it 
adds customer profile reference fields to the order object to give administrators a place to add and edit 
the profiles. Unlike the line item manager widget, the customer profile manager widget only supports 
referencing a single profile at a time. Finally, the module adds a Customer profiles item to the Store 
menu that allows you to create, view, update, and delete customer profiles with a separate tab allowing 
you to view a list of all the customer profile types and manage their fields. Any fields you add to the 
profile type will appear on the checkout and order edit forms and in customer profile displays. 

Order 
The order system consists of the order entity, order state, and status information plus an API designed to 
assist you in working with order data and updating orders. The order entity defines a single fieldable 
bundle that supports revisions for any change in the order’s data. Tracking changes to orders through 
their entire workflow is very important from both a marketing and security perspective, allowing 
administrators to track a customer’s interactions with the site leading up to checkout and to track the 



CHAPTER 25 ■ DRUPAL COMMERCE 

578 

updates other administrators make to the order afterward. Therefore, special attention is paid to ensure
orders and the line items and customer profiles associated with them are also revised as necessary. 

In addition to the line item and customer profile data mentioned previously, orders contain
metadata that tracks the order’s status, creation and update timestamps, and owner information. The
order status is its current step in the life-cycle of the order that provides administrators with information
on what has occurred to the order and what the next step in processing the order will be. Order statuses
range from shopping-cart-related and checkout-related statuses to various post-checkout statuses
ending in a completed status. They are organized into containers called order states that represent the
larger phases an order goes through. The owner information includes both the ID of the user who
created the order, whether it was through a shopping cart or administrative form, and a contact e-mail
address that defaults to the user’s e-mail if he or she is logged but may be different or supplied by
anonymous users on the checkout form. 

The default user interface for order administration is a View listing all orders with an order creation
link at the Orders item in the Store menu and a settings area in the Store  Configuration menu that
includes field management tabs. The default order View shows the most recent orders first and displays
the order number, which can be any alphanumeric value even though it defaults to the order ID, along
with other metadata including the order’s total and current status. 

While the default order View is fairly basic, it is here that the decision to standardize Drupal
Commerce’s default UI on Views really pays off. Many stores require tailor-made order administration
interfaces that accommodate their unique order workflows and fulfillment needs. Site builders can use
the familiar Views interface and theme system to customize the existing interface, add additional sorting
and filtering options, and extend it with a variety of contributed Views modules like Views Bulk
Operations for batch updating. 

Payment 
The Payment module defines a payment transaction entity that logs payment attempts for any module-
defined payment method, relating these transactions to orders through the checkout process or an
order’s payment form. Payment methods are defined by contributed modules for each possible method
of payment provided by any given payment service. As mentioned, no real payment methods are
included in the core project to allow payment service integration code to mature independent of the
core development cycle. The Payment module does offer reusable code for common types of payment
methods that you should reuse in your integration modules, such as a standardized credit card data
entry form. 

Payment transactions are created any time a payment is attempted, logging the time and details of
the attempt, the data returned by the payment service, and the result or current status of the payment.
The payment transaction entity defines bundles for each of the enabled payment methods, but it does
not allow fields to be attached to these bundles. Updates to a payment transaction are logged via
revisions, with the exception of payload data received from the payment service. This data is maintained
in a serialized array with a new value for each message pertaining to the transaction, and it is only visible
to payment administrators for debugging purposes. 

As payment transactions are created for orders, they are visible in a payment tab on the orders’
Payment tab pages. This tab contains a View listing all transactions for the order sorted chronologically
with a footer containing the remaining balance to be paid and a form to enter payments manually.
During development and testing, you may take advantage of the Payment Method Example module to
test the receipt and logging of payments, resulting in fully paid orders as shown in Figure 25–7. 



CHAPTER 25 ■ DRUPAL COMMERCE 

579

 

Figure 25–7. Payments are listed in chronological order on the Payment tab, where you will also find links 

to perform any necessary operations on the payments and a form to manually add new payments to the 

order.  

Enabling Payment Methods 
The Payment Method Example module is also useful as a model for developing your own payment 
method modules. Defining new payment methods is not a terribly complicated process, involving the 
implementation of hook_commerce_payment_info() and the definition of callbacks governing the 
collection and communication of information from the customer to the payment service. There are 
additional accommodations for payment methods that require redirection to a third party web site for 
the submission of payment details, ensuring these payment methods fit properly into the normal 
checkout workflow. As with the line item type documentation, refer to the Payment page of the “Info 
hooks” section in the Drupal Commerce Specification handbook for up to date information on 
integrating with the payment system properly. 

The Payment module defines two checkout panes that handle payment from customers on the 
checkout form. The basic Payment pane displays any available payment methods to the customer for 
selection on the Review checkout page and will automatically update itself to include any additional 
form elements needed to collect process payments of the selected method. If an off-site payment 
method is selected, the customer will be redirected from the Payment checkout page via the Off-site 
payment redirect checkout pane that also handles customers returned from the off-site payment service. 
This page is skipped for payment methods that can be processed directly from your web site. 

The list of available payment methods is determined via integration with the Rules module. Each 
payment method will receive a default rule configuration that you must enable for the payment method 
to appear on the checkout form. Each payment method will also likely have additional settings that must 
be configured in the form of the action on the rule configuration that enables it. Additionally, if 
necessary, you can add any conditions in the rule configuration that must be met for the customer to 
pay using this method. 



CHAPTER 25 ■ DRUPAL COMMERCE 

580 

 

Figure 25–8. Payment methods are enabled by rule configurations like the one pictured here for the 

Example payment method. 

Follow these instructions to enable the Example payment method for use by users with the 
Administrator user role, resulting in the rule configuration pictured in Figure 25–8: 

1. Browse to the Payment settings page in the Store  Configuration menu. 

2. Click the Enable operation link for the Example payment rule configuration in 
the Disabled payment rules table and confirm the action on the following 
form. 

3. Click the Edit operation link for the rule configuration to view an overview 
form listing the event that executes this rule, “Select available payment 
methods for an order,” the conditions that will be checked on execution, and 
the actions to perform upon successful evaluation. The only action will be the 
“Enable payment method: Example payment” action. View its configuration 
form via the Edit operation link to see where you would normally enter 
payment method settings. 

4. Return to the overview form for the rule configuration and click the Add 
condition link in the footer of the Conditions table. Select the “User has 
role(s)” condition and submit the form via the Continue button. 



CHAPTER 25 ■ DRUPAL COMMERCE 

581

5. You now need to tell Rules what user it should check for which role. In the User 
fieldset, select or specify site:current-user in the Data selector text field. This 
Token tells Rules to evaluate this condition using the currently logged in user. 
In the Roles fieldset, specify Administrator as the Value and submit the form 
via the Save button. 

6. Your overview form should now resemble Figure 25–8 and will result in users 
with the Administrator role having access to the Example payment method on 
the checkout form. 

You will need to repeat this process for any other payment methods you want to enable on your 
checkout form. The administrative payment form does not depend on Rules, however, displaying any 
available payment method that can be processed by an administrator. Redirected payment methods will 
typically not work, as they are often dependent on checkout-specific information or a customer’s 
username and password. 

■ Tip  Most major payment services will have modules integrating them into Drupal Commerce, so search the e-

commerce modules on drupal.org before developing your own integration. 

Checkout 
The checkout system consists of a pluggable checkout form and an administrative checkout form 
builder that lets you order and configure the components of the checkout form using a drag-and-drop 
interface. The checkout form is comprised of checkout pages containing a set of module-defined 
checkout panes, which are fieldsets used to display order details and collect customer and payment 
information. 

While the form defaults to using a two-step process with review and payment on a standalone page, 
it can be configured with a few clicks of the mouse to use a single-step configuration that processes the 
order upon form submission and redirects to the completion page immediately upon success. Whether 
or not such a configuration works for your store will depend on the payment methods you are using and 
any business rules your store has that might require additional checkout steps. 

■ Tip  The two-step process is the default so customers can review the full details of their orders prior to 

submitting payment information. For security reasons, some payments must be processed immediately upon form 
submission, meaning payment should occur at the final step before checkout completion. Understand the 

limitations of your payment methods before making the decision to implement to a single-step checkout form. 

The purpose of the checkout form is to collect any information needed for the order to be properly 
fulfilled, including processing payments as discussed in the “Payment” section. As an order progresses 
through the checkout form, its status is adjusted to reflect the page it is currently on, allowing you to 
retain information on where an order was when abandoned during checkout. The data on the order may 
be critical for recovering those sales and streamlining the checkout process to improve your conversion 
rate. 



CHAPTER 25 ■ DRUPAL COMMERCE 

582 

The default checkout pages defined by the Checkout and Payment modules include: 

• Checkout displays the cart contents and collects customer profile information. 

• Review order displays a summary of data entered and collects payment details. 

• Payment is the point of redirection for off-site payment methods; skipped if not 
needed. 

• Checkout complete is the final landing page showing an order summary, pertinent 
order links, and order fulfillment information. 

The checkout panes appearing on each page are fully customizable, with any page without panes 
getting skipped in the checkout workflow. You can expose additional checkout pages and panes to the 
checkout form builder pictured in Figure 25–9 using the hooks described on the Checkout page of the 
“Info hooks” section in the Drupal Commerce Specification handbook referred to earlier. 

 

Figure 25–9. The checkout form can be easily reconfigured using the drag-and-drop checkout form 

builder. 



CHAPTER 25 ■ DRUPAL COMMERCE 

583

The Checkout module actually does not have a dependency on the Cart module, meaning you can 
enable the checkout form but devise some other method to create orders based on customer action or 
give customers checkout links to Administrator-created orders. The basic checkout URL is actually 
defined by the Cart module as a router to an order specific checkout URL – checkout/#. The checkout 
form does not use Drupal’s multi-step form capabilities to progress through the form on a single URL, so 
the current checkout page will actually be reflected in the URL as the customer progresses through the 
form. 

You are mostly left to your own devices to configure Drupal to provide an optimal checkout 
experience. There are many web sites and articles discussing best practices for e-commerce web sites 
with an eye toward increasing conversions, and the flexibility of Drupal will serve you well to optimize 
your checkout pages. At the very least, you should disable unnecessary blocks and menus on the 
checkout pages and use theming to highlight the buttons your customers should use to access the 
checkout form and progress through it. 

Cart 
The Cart module enables a fairly standard shopping cart system, allowing customers to add products to 
shopping cart orders that can then be purchased via the checkout form. As soon as an item is added to a 
customer’s cart, a new order is created that will exist until it is completed via checkout. There is a default 
Shopping cart order state and status, but additional statuses can also tell the Cart module they are 
shopping cart statuses, as with the statuses representing the default Checkout and Review steps in the 
checkout form. This allows customers to update the contents of the shopping cart until they actually 
submit payment. 

The shopping cart is represented by a Drupal block shown in Figure 25–10 that consists of a View 
listing the line items on the cart order with a footer summarizing the items on the order and linking to 
the cart page and checkout form. The block is quite dynamic and can be easily customized via the Views 
user interface and themed to match your site. The cart page provides a form also built through Views 
that lets users update the contents of the shopping cart and proceed to checkout. 

 

Figure 25–10. The default shopping cart block is entirely configurable via the Views user interface. 

The Cart API includes functions for loading and updating shopping cart orders along with a versatile 
Add to Cart form function. The Add to Cart form display formatter for Product reference fields passes the 
referenced product IDs to this form, which examines the values passed in to determine how to display 
the form. Single product forms simply display an Add to Cart button for the product signified in a hidden 
form value while multiple product forms will vary in appearance; they might either appear as a single 
select list, radio buttons group, or check boxes group allowing the customer to select products to add 
based on the products’ titles or as a set of dynamically generated widgets representing the common 
attribute fields on the referenced products. As the customer updates the product or attributes selected, 
the form uses the #ajax property of the Forms API to update elements on the page accordingly prior to 
adding the product to the cart. 



CHAPTER 25 ■ DRUPAL COMMERCE 

584 

Summarizing the Main Components 
Much more can be written about how the various systems are architected, but this quick examination of 
the core modules should give you a functional understanding of how the major pieces of Drupal 
Commerce work together. The key thing you should take away is that even though the core modules do 
not provide you with a complete e-commerce application out of the box, the necessary systems are in 
place to be extended by other modules and fleshed out in the site-building process to provide the e-
commerce experience your site requires. 

Tables 25–1, 25–2, and 25–3 summarize the main Commerce components, specifically all the 
entities and fields mentioned in the previous module discussions. 

Table 25–1. Core Drupal Commerce Entities 

Name Base Table ID Bundles Revisions 

Customer 
profile 

commerce_customer_profile profile_id Yes; module-
defined 
customer 
profile types 

Yes 

Line item commerce_line_item line_item_id Yes; module-
defined line 
item types 

Yes 

Order commerce_order order_id API level 
support for 
multiple, UI 
for one 

Yes 

Payment 
transaction 

commerce_payment_transaction transaction_id Yes; one per 
payment 
method 

Yes 

Product commerce_product product_id Yes; module- 
and UI-
defined 
product types 

No 

Table 25–2. Core Drupal Commerce Fields 

Name Widget(s) Display formatter(s) 

Customer profile reference Customer profile manager Customer profile display 

Line item reference Line item manager Line item View 

Price Price text field  

Price with currency Raw amount  

Formatted amount   



CHAPTER 25 ■ DRUPAL COMMERCE 

585

Name Widget(s) Display formatter(s) 

Product reference Autocomplete text field  

Select list   

Check boxes/radio buttons Add to Cart form  

SKU   

Title   

Table 25–3. Default Order States and Statuses 

Order state Order status(es) 

Canceled Canceled 

Shopping cart Shopping cart 

Checkout Checkout: Checkout (functions as cart) 

Checkout: Review (functions as cart)  

Checkout: Payment  

Checkout: Complete  

Pending Pending (allows completion page access) 

Processing (allows completion page access)  

Completed Completed (allows completion page access) 

Implementing Drupal Commerce 
Having read through the discussion introducing the various systems, entities, and fields, you should be 
able to see the power and flexibility this approach to designing an e-commerce system provides. 
However, as you also likely surmised, the loosely coupled components that make up Drupal Commerce 
will require an extra dose of intentionality and expertise on your part to ensure they are successfully 
configured. 

The old adage proves true: with great power comes great responsibility. It is now up to you to ensure 
that you are using the tools as intended while providing an e-commerce experience customized to your 
site’s needs and client’s expectations. Setting up Drupal Commerce sites will require extra planning 
effort in advance, so this final section of the chapter provides a few tips to help you get started and to 
mitigate some of the repetitive tasks you will encounter developing multiple sites. 

Because e-commerce is just one part of your Drupal site, you should ensure that you are following 
Drupal site-building best practices. Plan your content types, Views, roles, and permissions in advance to 



CHAPTER 25 ■ DRUPAL COMMERCE 

586 

ensure the foundation of the web site is strong and secure. Configuring the Commerce components is 
then just an extension of your normal process, requiring you to plan product types in addition to content 
types and add roles specifically for store administration. 

Additionally, you should take extra precaution to ensure your Drupal site is secure. Plan on regular 
maintenance to keep Drupal and your contributed modules current; fully test your payment system and 
checkout workflow to ensure payment data is not exposed and orders are not fulfilled before payment Is 
complete. When dealing with on-site credit card payments, ensure your checkout configuration allows 
the payment method module to process payment when the checkout page containing the payment 
checkout pane is submitted. You should also take advantage of other contributed modules to beef up 
your security, like using Secure Pages to add SSL protection to your site. 

Finally, it has been the project’s goal from the beginning to enable site builders and developers to 
create reusable Drupal Commerce distributions and Features modules targeting specific e-commerce 
use cases. The amount of work involved in setting up a Drupal Commerce installation is not something 
you will want to repeat afresh with each new site, and it requires a level of proficiency with Drupal that 
will be beyond the grasp of most new users. As targeted distributions of Drupal are becoming more 
popular, aided by the automatic installation profile packaging features of drupal.org itself, the vision for 
Drupal Commerce is to see many of these geared toward e-commerce sites such as: 

• Clothing and apparel stores with ready-made product types and displays. 

• Premium content and membership sites selling user roles, node access, and other 
types of permissions with flat fees and recurring payments. 

• Outreach and donation collection sites for non-profit organizations. 

• Community-based event registration and support sites. 

With this strategy and vision in mind, the Commerce components were also designed to be usable 
by Features and other modules enabling exportable site configurations. Additionally, the use of Views for 
the default user interfaces and Rules for order workflow automation allows you to export your setup 
along with your Commerce configuration. The standardization on entities and fields for all the 
Commerce objects provides a consistent data model for importing and exporting your e-commerce data. 
Using all these pieces to develop reusable sites and custom distributions requires intentional planning 
on your part, but the payoff in your own site building workflow and in community usage is well worth 
the effort. 

Development History 
Parts of Drupal Commerce are best understood in light of its development out of the Drupal based e-
commerce projects that have gone before it. The Drupal Commerce feature set and usability goals have 
their roots in Ubercart, and its development philosophy was influenced by both the community 
experience of developing for Ubercart and the radical changes enacted in the latest version of the e-
Commerce module. However, the code and user interface for the Commerce modules look and act 
almost nothing like the former projects, as the new modules were written specifically for Drupal 7 in 
conformity with a strict set of development standards outlined later in this chapter. 

The principle goals of Commerce in its original departure from Ubercart included desires to: 

• Establish a better-documented, easier-to-use API for contributed module 
developers. 

• Separate plug-in modules from the core systems to allow each group of modules 
to mature independently of the concerns of the other. 



CHAPTER 25 ■ DRUPAL COMMERCE 

587

• Establish a data object model based on Drupal 7’s Entity and Field systems, 
depending on the UI to reduce any repetitive data entry that might ensue. 

• Provide full test coverage for the core modules using Drupal’s Testing framework. 

• Take advantage of installation profiles and modules like Features to provide 
default configurations instead of focusing on a complete user experience in the 
modules alone. 

• Provide a migration path from Ubercart to Drupal Commerce. Without a one-to-
one feature correlation, a direct module update from one to the other is 
impossible. 

Development has been accomplished in rounds since the project’s inception, with systems being 
proposed and discussed in the project forums, IRC, and physical code sprints before being developed. 
To learn more about the project’s history and stay on top of development proposals and roadmaps, refer 
to the forums and documentation at drupalcommerce.org. 

Design Philosophy 
When you first look at the list of Commerce modules, two things are likely to stand out that require a bit 
of explanation. The first is the raw number of modules available, including the separation of some 
modules into pairs of API and UI modules. While some users are turned off by the amount of setup 
required to install and configure the various modules, this division was made intentionally so the same 
set of modules can be adapted to a wider variety of e-commerce web sites. As your experience grows, 
you can enable only the modules you need for a particular site, while installation profiles and other 
modules can provide default configurations for common use cases. 

For example, by separating the default UI from the modules that actually define the data objects and 
core APIs, site builders are freed to provide full drop-in replacements for parts of the UI that do not suit 
their sites. Additionally, by separating some systems into their component parts, like keeping Cart and 
Checkout separated, the same core set of Commerce modules may be used for traditional shopping-
cart–based stores, sites with no checkout process that use shopping carts to deliver quotes, and 
invoicing sites where administrators create orders and send customers checkout links to provide 
payment. 

■ Note  This practice should be familiar to most users of Drupal 6, as Views and Rules have separated their 

default user interfaces to separate modules since then. Drupal 7 continues this practice with its division of the 

Field system into the Field and Field UI modules. 

The second thing that stands out is the lack of modules adding common e-commerce features like 
product promotion tools, discounts and coupons, and integration with third party payment and 
fulfillment services. In the earliest planning stages of Drupal Commerce, the project’s goal was to 
include in the core project only the systems and data objects without which it would not be a coherent 
project and which are necessary to build and support all necessary non-core features. This does not 
mean features not included in the core modules are not essential or deserving of special attention and 
maintenance. This is instead an architectural decision designed to improve the development process 
overall by freeing the core systems to iterate to new versions without first requiring every plug-in module 
to be updated. 



CHAPTER 25 ■ DRUPAL COMMERCE 

588 

A great example is the presence of the Payment module in the core project without any modules
that actually integrate with the major payment services. It might be inconvenient to include modules
integrating with the common payment services in the core project, but decoupling the development of
the integration modules from the core project allows the various projects to mature and incorporate new
features on their own timelines. The core Payment module can be improved and released without first
requiring a collection of payment modules to be tested and updated on the new system, while at the
same time the integration modules are free to respond to API and feature changes at the integrated
service without having to wait on a new release of Drupal Commerce. 

A final major point of the project’s design philosophy is a dependence on installation profiles and
modules like Features to simplify the process of starting a new Drupal Commerce site for a variety of
targeted use cases. The core modules do not make any assumptions about the use case or business
needs of sites that will implement them. Instead they focus on being flexible and extensible, supporting
exportable configurations, and developing forms to be embedded anywhere instead of limiting them to
the default UI implementation. The goal for the project is to see distributions provide an out of the box
experience for niche markets, like apparel stores, event registration sites, and non-profit organization
donation sites. 

Development Standards 
In addition to adopting a design philosophy that focuses on modularity and reproducible
configurations, Drupal Commerce has adopted and enforced a strict set of development standards to
ease development and maintenance. The main objective was to provide a well-documented, consistent
API for developers to integrate with in their contributed modules and installation profiles. No patches
are accepted that do not conform to the development standards listed at
drupalcommerce.org/development/standards. 

While the standards do occasionally change in response to core Drupal updates and issues that
require the adoption of new standards, the current list of standards addresses the following topics: 

• Code syntax and documentation based on Drupal’s own coding standards. 

• Module file and directory structures.  

• Module .info file package naming. 

• Function and hook naming to avoid common PHP inconsistencies and provide
pattern-based namespacing for hooks. 

• Proper utilization of Drupal’s Testing framework. 

• Using core and contributed module APIs. 

• Embracing fine-grained permissions and extensible access control. 

• Localization and user interface string storage. 

• Template files and theme functions. 

• Appropriately separating core APIs from the default UI. 

• Performance considerations covering database and memory usage. 

• Normalized data storage via entity and field data tables. 



CHAPTER 25 ■ DRUPAL COMMERCE 

589

Building on Drupal 7 
The Commerce modules were written to take advantage of many improvements in Drupal 7, most 
notably its fieldable entity system. They also owe much of their flexibility to Views, the query builder 
providing displays including the shopping cart and product lists, and Rules, the contributed system for 
performing conditional actions in response to events like checkout completion and order updates. The 
rest of this book was written to cover the many improvements in Drupal 7, but a few are highlighted here 
as holding special significance for Drupal Commerce. 

Core Entities and Fields 
The hallmark new feature of Drupal 7 is its system of fieldable entities. No longer must everything be a 
node to benefit from modules like Drupal 6’s Content Construction Kit, resulting in a rethinking of major 
systems like user groups and e-commerce. Contributed modules can standardize on the entity system to 
define new data objects that can be bundled with any number of module-defined or user-configurable 
fields. 

The Product Entity 
Drupal Commerce has fully embraced the new system, defining all of its custom data objects as fieldable 
entities with varying use of bundles and revisioning based on the entity type. For example, whereas 
previous e-commerce projects for Drupal relied on the node system to implement products, Drupal 
Commerce defines a specific product entity. This entity has multiple bundles, each constituting a 
different product type that may contain fields to describe the product and choose from among a group 
of products on an Add to Cart form. 

To define the product entity, the Product module uses the code in Listing 25–1. 

Listing 25–1. Defining the Product Entity 

/** 
  * Implements hook_entity_info(). 
  */ 
function commerce_product_entity_info() { 
  $return = array( 
    'commerce_product' => array( 
    'label' => t('Product'), 
    'controller class' => 'CommerceProductEntityController', 
    'base table' => 'commerce_product', 
    'fieldable' => TRUE, 
    'entity keys' => array( 
      'id' => 'product_id', 
      'bundle' => 'type', 
    ), 
    'bundle keys' => array( 
      'bundle' => 'type', 
    ), 
    'bundles' => array(), 
    'load hook' => 'commerce_product_load', 
    'view modes' => array( 
      … 
    ), 



CHAPTER 25 ■ DRUPAL COMMERCE 

590 

    … 
  ); 
 
  foreach (commerce_product_type_get_name() as $type => $name) { 
    $return['commerce_product']['bundles'][$type] = array( 
      'label' => $name, 
    ); 
  } 
 
  return $return; 
}  

Notice that the structure of the entity array includes keys related to product storage in the database 
and the controller class, CommerceProductEntityController, used to perform CRUD operations on 
products via save, load, and delete functions. Any of these values may be altered using 
hook_entity_info_alter() to change the nature of product data storage, though you should be cautious 
when making such a decision as you may interrupt the ability of other modules like Views to take 
advantage of the data. 

The omitted portions of the previous code snippet handle the definition of the various display 
modes available for products and the definition of various callbacks that Rules uses to work with the 
product entity. The foreach loop populates the product entity’s bundles array with data from 
commerce_product_type_get_name(), an API function that invokes hook_commerce_product_info() to 
gather information from enabled modules on available product types. 

The Order Entity 
Again, the order object is defined as an entity, allowing administrators to easily add fields to the default 
order bundle based on the site’s business needs. These orders then take advantage of entity revisioning 
to track all the changes made to the data on an order. 

When an entity is not defined to support multiple bundles, it defaults to a single bundle with the 
same machine name as the entity itself. In the case of orders, a single bundle is explicitly defined, 
making this unnecessary, a shown in Listing 25–2. 

Listing 25–2. Explicitly Defining a Single Bundle 

/** 
 * Implements hook_entity_info(). 
 */ 
function commerce_order_entity_info() { 
  $return = array( 
    'commerce_order' => array( 
      'label' => t('Order'), 
      'controller class' => 'CommerceOrderEntityController', 
      'base table' => 'commerce_order', 
      'revision table' => 'commerce_order_revision', 
      'fieldable' => TRUE, 
      'entity keys' => array( 
        'id' => 'order_id', 
        'bundle' => ‘type’, 
        'revision' => 'revision_id', 
      ), 
      'bundle keys' => array( 
        'bundle' => ‘type’, 



CHAPTER 25 ■ DRUPAL COMMERCE 

591

      ), 
      'bundles' => array( 
        'commerce_order' => array( 
          'label' => t('Order'), 
        ), 
      ), 
      'load hook' => 'commerce_order_load', 
      'view modes' => array( 
        … 
      ), 
      … 
    ), 
  ); 
 
  return $return; 
}  

Notice that the bundles array contains only a single bundle. Should you need to enable multiple 
order bundles for some reason, you would have to alter this array with hook_entity_info_alter(). The 
initial version of the Order module defaults to a single bundle with database and API level support for 
multiple bundles. 

If you encounter a situation where you need to define your own revisable entity, you can use the 
order entity as a model. Notice that you must specify both the revision table and the revision key that 
links an order to its currently revision. Your controller class must add its own support for saving 
revisions, but you can depend on Drupal’s default entity controller to properly load revision information 
into the object. In your controller class’s save method, the revision should be saved prior to using the 
Field Attach API to add or update field data to the object to ensure it gets saved with the proper revision. 

A full list of entities and their properties is included later in the chapter. You may also want to 
bookmark drupalcommerce.org/specification/entities as a reference during your development. 

Various Commerce modules also take advantage of the field API to link data objects together, add 
data to entities that would benefit from user configurable display options, and embed Add to Cart forms 
on any entity in the site. These fields operate in much the same way that CCK fields did in Drupal 6 and 
will be listed below alongside the core entities. You may also want to bookmark 
drupalcommerce.org/specification/fields as a reference during your site building. 

Forms API Improvements 
There are a couple of improvements to the Forms API, both of which are covered in this section. 

Dynamic Forms via the #ajax Property 
One of the most visible new features of the Forms API that the Commerce modules leverage is the new 
#ajax property for form elements. With the #ajax property, it is possible without writing a single line of 
JavaScript to create forms whose elements automatically validate and update on changes and other user 
interactions. 

In the Commerce modules, this functionality is utilized in a few places. On the order edit form, the 
line items table uses the #ajax property to allow you to add and update line items without a page refresh. 
The Customer module integrates with the Address Field module that uses it to provide name and 
address elements that automatically update to reflect the format and vocabulary of the selected country. 

The following code shows just how easy it is to implement a dynamic form using #ajax. It is taken 
from the Payment module form element that updates the checkout form when a customer selects a 
payment method option. The full implementation is found in commerce_payment.checkout_pane.inc. 



CHAPTER 25 ■ DRUPAL COMMERCE 

592 

// Add a radio select widget to specify the payment method. 
$pane_form['payment_method'] = array( 
  '#type' => 'radios', 
  '#options' => $options, 
  '#ajax' => array( 
    'callback' => 'commerce_payment_pane_checkout_form_details_refresh', 
    'wrapper' => 'payment-details', 
  ), 
); 

The callback function the element specifies simply has to return the portion of the form array that 
should be rendered into the area of the DOM targeted by the wrapper value which corresponds to an 
HTML ID. Forms using this functionality are tested without JavaScript enabled to ensure graceful 
degradation, relying on the ability of form submit handlers to request the form be rebuilt based on the 
button used to submit the form. 

Automatic File Inclusion 
Another innovation in the Forms API that the Commerce modules rely on heavily is the ability to specify 
in a form array the files Drupal should include when rebuilding the form. This allows modules to put 
forms in include files that can be automatically loaded when the form is processed on submission 
instead of depending solely on active menu item file handlers. All of the Commerce entity forms use this 
feature so they can be instantiated at URLs specific to the default UI module or by other contributed 
modules wherever necessary. The code to allow this is quite simple, as shown in this example from 
commerce_product.forms.inc: 

function commerce_product_product_form($form, &$form_state, $product) { 
  // Ensure this include file is loaded when the form is rebuilt from the cache. 
  $form_state['build_info']['files']['form'] = drupal_get_path('module', 'commerce_product') 
    . '/includes/commerce_product.forms.inc'; 
  … 
} 

Both of these new features in the Drupal 7 Forms API are very important for Drupal Commerce. The 
first enables the project to have dynamic forms that greatly improve the user experience for customers 
and administrators. For example, the checkout form can be configured to operate on a single page that 
will gracefully degrade for users on devices that do not support JavaScript. Second, the ability to define 
forms by Commerce modules that can be embedded anywhere perfectly supports the project’s 
philosophy of a strict separation of the API from the UI. 

Contributed Module Dependencies 
As part of the strategy to start Drupal Commerce from scratch on Drupal 7, the project determined to 
make the best possible use of other major contributed modules to avoid duplicating code and effort. 
This involved introducing dependencies on the ubiquitous Views module, the Rules module, and their 
dependencies. 

Views 3 powers almost the entire default user interface provided by the various Commerce UI 
modules. This means every listing page, the shopping cart block, and some table displays embedded on 
other forms are configurable via the Views UI. The Commerce modules rely heavily on Views 3’s new 
pluggable area handler feature to create more powerful displays entirely through Views, like the 
shopping cart block and Payment tab on orders. Both of these displays use custom area handlers in their 
footers to add links and forms onto Views. 



CHAPTER 25 ■ DRUPAL COMMERCE 

593

The dependency on Rules is just as important. The Entity API module, itself a Rules 2 dependency, 
makes it easy to expose custom entity and field data to Rules. The Commerce modules integrate with 
Rules to allow administrators to configure dynamic pricing, parts of the checkout form, and the order 
workflow via a single user interface. This latest version of Rules also makes it easy to embed parts of the 
UI at various locations, so the Commerce modules can place filtered configuration lists at appropriate 
places in the default UI. 

Address Field, a dependency of the Customer module, is also maintained as a separate contributed 
module. This project defines a field that lets users enter name and address information via a dynamic set 
of form elements that update based on the country selected. It was started with the goal of implementing 
a subset of the xNAL standard for names and postal addresses and remains separate to allow it to mature 
independently of the core Commerce modules and to enable other projects and sites to use it. 

Summary 
The Drupal Commerce project is still maturing, and innovations in the core code and contributed 
module ecosystem are likely to change rapidly in ensuing releases. Be sure to follow along at the 
project’s home page (drupalcommerce.org) and in the issue tracker 
(drupal.org/project/issues/commerce) to see how the systems outlined here mature and to find places 
where you can contribute documentation, testing, code, and more. You can also generally find 
assistance in the #drupalcommerce IRC channel on irc.freenode.net when dealing with issues or 
guidance when developing contributed modules that extend the functionality of Drupal Commerce. 
  



C H A P T E R   26 
 

■ ■ ■ 

595

Drush 

by Greg Anderson 

Drush is the Drupal shell—a program that allows you to examine and modify your Drupal site by 
entering instructions from the command line. It’s also a toolbox full of useful utilities and a scripting 
environment to help you quickly divide, conquer, and control your Drupal sites. 

Drupal itself provides a sophisticated graphical interface that exposes a wide array of configuration 
options through the web browser. Being able to visually navigate through these settings is very useful, 
especially when first learning the features available in core, or some new modules that you just installed. 
However, once you are familiar with an operation, and you need to be able to do it over and over again, 
shell scripting provides a degree of reproducibility and efficiency that cannot be matched by GUI work. 
The more that you do with Drupal (and in particular, the more sites you build with Drupal), the more 
compelled you will be to script common operations so that you will have more time for more important 
things. 

Many people do, in fact, utilize shell scripts to speed up their Drupal site configuration, 
management, and development; a quick Google search will show that some of them use Drush and 
some of them don't. Using Drush has a lot of very serious advantages over rolling your own scripts, one 
of the biggest being that Drush brings the power of the Drupal community to the shell. There are 
currently six Drush maintainers, and many contributors from the larger community have also 
collaborated to provide patches and features that make Drush both comprehensive and reliable. It is 
very likely that Drush already does many of the things that you would like it to—and more—already 
written and tested. Going beyond that, Drush also provides a sophisticated framework for bootstrapping 
the Drupal environment, which allows scripts to be written in PHP and utilize Drupal APIs directly. 
Drush has its own set of APIs and functions that provide abstractions for the different databases and 
different versions of Drupal, which means that your scripts are more likely to continue to work as the 
Drupal environment evolves. 

Drush is also highly configurable; it allows you to provide named aliases for all of your Drupal sites, 
and you can control how Drush will interact with each site in very flexible ways. If these configuration 
files are shared among members of a development team, for example, by checking them in to a version-
control system, then every team member’s interaction with the sites they are working on can be 
standardized. In this way, Drush can help define and disseminate a team’s development process. 

In this chapter, I will go beyond the basics and give you a walk-through on how to get the most out 
of Drush. If you have been following along with the examples in this book, then you’ve probably already 
installed and used Drush at least a few times, but if you have not, visit the Drush project page at 
http://drupal.org/project/drush, download the latest stable release, and consult the README.txt file to 
get it installed and running. After that, you will be ready to go on my guided tour through Drush’s 
capabilities. I will show you how to: 

http://drupal.org/project/drush


CHAPTER 26 ■ DRUSH 

596 

• Get up and running quickly with Drush by setting up some basic configuration 
options and defining an alias or two for the Drupal sites you’re working on.  

• Speed up your Drupal site maintenance at the command line with Drush shell 
enhancements.  

• Apply code updates to Drupal core and your installed modules.  

• Install Drush extensions to add even more power to Drush. 

• Go more in-depth with Drush configuration to further streamline your 
environment. 

• Deploy a site with Drush, and then safely copy back user-contributed content 
from the live site for further testing and development offline.  

• Write shell scripts with Drush. 

• Extend Drush by writing your own Drush commands.  

Becoming proficient in all of these different aspects of Drush will turbo-charge the maintenance of 
your Drupal sites. Let’s get started. 

Getting Started with Drush 
Drush works on Drupal version 5 through 7, and on MySQL, Postgres, and SQLite databases. It can work 
on multiple Drupal sites on the same system, or on Drupal sites on remote servers. It supports both the 
Drupal multisite configuration, where multiple sites share a common set of Drupal core files, and single-
site configurations, where each site contains its own copy of Drupal core. Additionally, Drush can be 
extended with new commands that are packaged either with a Drupal module or theme, or bundled 
separately. In order to support all of these different configurations in all of the different ways that they 
may appear on a system, Drush provides a wide array of settings and configuration options to make 
things easier for you. 

■ Tip  If you would like to make a temporary Drupal site to test Drush commands on, you can quickly do so using 
the Drush site-install command. Just enter the following lines:  

$ mkdir dgd7 
$ cd dgd7 
$ drush dl drupal --drupal-project-rename=web -y 
Project drupal (7.0) downloaded to dgd7/web. 
Project drupal contains:       
 - 3 profiles: minimal, standard, testing 
 - 4 themes: seven, bartik, garland, stark 
 - 47 modules: node, trigger, system, statistics, simpletest, php, poll, contextual, shortcut, 
field_ui, tracker, contact, path, profile, help, overlay, aggregator, toolbar, image, update, 
locale, translation, menu, blog, file, comment, dashboard, syslog, user, book, filter, dblog, 
taxonomy, search, block, rdf, forum, color, number, options, text, list, field_sql_storage, 
field, openid, drupal_system_listing_incompatible_test, drupal_system_listing_compatible_test 
$ cd web 
$ cp sites/default/default.settings.php sites/default/settings.php 
$ chmod -R o+w sites/default 



CHAPTER 26 ■ DRUSH 

597

$ drush site-install --db-url= pgsql://www-data:yoursqlpw@localhost/dgd7db --account-
name=admin --account-pass=secretsecret -y 

To view your temporary Drupal site in a web browser, you would also need to make a virtual host configuration file 

for it; however, it’s not necessary to do that just to run Drush commands on it.  

Drupal Site Selection in Drush Commands 
The first step in learning how to effectively configure Drush is to understand how Drush selects the 
Drupal site to operate on when you run a command. The drush status command provides a summary 
of Drush’s current environment. If you run it after Drush has just been installed, you will see output that 
looks something like that in Listing 26–1. 

Listing 26–1. Using core-status Command to Check Your Drush Environment 

$ drush core-status 
 PHP configuration     :  /etc/php5/cli/php.ini             
 Drush version         :  4.1                           
 Drush configuration   :   
 Drush alias files     :                                    

This shows you that you have installed Drush version 4.1, and have not yet provided any Drush 
configuration files. The path to php.ini is also displayed as a convenience. You now know that Drush is 
installed and working, but you have no information about your Drupal site. Drush needs to be provided 
with the location of your site before it can do anything with it. There are a number of different ways that 
this can be done. Perhaps the most straightforward way is to change the current working directory to the 
sites folder for the Drupal site you are working on. This is the folder that contains the settings.php file 
(see Listing 26–2). 

Listing 26–2. Running core-status from the Sites Directory at dgd7.org 

$ cd dgd7/web/sites/default/ 
$ drush core-status 
 Drupal version                :  7.0                                  
 Site URI                      :  http://default                       
 Database driver               :  pgsql                                
 Database hostname             :  localhost                            
 Database username             :  www-data                             
 Database name                 :  dgd7devdb                            
 Database                      :  Connected                            
 Drupal bootstrap              :  Successful                           
 Drupal user                   :  Anonymous                            
 Default theme                 :  bartik                               
 Administration theme          :  seven                                
 PHP configuration             :  /etc/php5/cli/php.ini                
 Drush version                 :  4.1                              
 Drush configuration           :                                       
 Drush alias files             :                                       
 Drupal root                   :  /srv/www/dgd7/web  
 Site path                     :  sites/default                        
 File directory path           :  sites/default/files 



CHAPTER 26 ■ DRUSH 

598 

Now the output of the status command shows additional information about your site. If you were to 
run other Drush commands from this directory, they would operate on the site indicated by drush 
status. 

■ Note  Every time Drush runs a command, it runs through a process called bootstrapping where the Drupal 
environment is initialized. I will examine the bootstrapping process later in this chapter, but for now it is sufficient 

to understand that drush status displays information that Drush gathers during the bootstrap, so it is therefore a 

good way to diagnose your Drush configuration and insure that everything is working correctly.  

From here, it is possible to get Drush to operate on the site you just selected. For example, as 
Listing 26–3 shows, you could clear the Drupal caches with the cache-clear command. 

Listing 26–3. Using the cache-clear Command on the Selected Drupal Site 

$ drush cache-clear 
Enter a number to choose which cache to clear. 
[0] : Cancel 
[1] : all 
[2] : theme 
[3] : menu 
[4] : css+js 
1 
'all' cache was cleared 

When you have Drush at your fingertips, it’s no longer necessary to navigate through the web admin 
interface if you make a configuration change that requires a cache flush; you can fire it off quickly from 
the command line. drush cache-clear all works just like the previous example but does not display the 
interactive menu. 

Drush can do much more than clear the Drupal cache, though; it comes with over fifty commands 
that covers such diverse topics as examining your Drupal configuration, copying files, manipulating the 
database, running cron, rebuilding the search cache, installing Drupal, updating Drupal modules and 
core files, running unit tests, adding and editing fields and users, and more. Drush can even be used to 
update itself! A complete list of commands is always available via the drush help command, which is 
shown in Figure 26–1. You will see that many of the commands have shortened forms, called command 
aliases; these appear in parenthesis after the command name in the help page. For clarity, the long form 
of Drush command names will always be used; however, you will probably find yourself quickly learning 
and using the shorter aliases as you become more comfortable with Drush. 



CHAPTER 26 ■ DRUSH 

599

Figure 26–1. Drush command summary 



CHAPTER 26 ■ DRUSH 

600 

Using the available Drush commands as building blocks, it is easy to create simple aliases and shell 
scripts to do common operations. In a scripting environment, though, it is desirable to be able to select 
the target Drupal site without changing the current working directory. Happily, Drush provides other 
ways for specifying the site. One way is to use the --root and --uri options to provide the location of the 
Drupal root, and the URI of the Drupal site in the sites folder that you wish to target, like so:  

$ drush --root=/srv/www/dgd7.org/web --uri=dgd7.org core-status "Site URI" 
 Site URI : dgd7.org 

The URI used on the command line should be the same as when the site is being accessed from a 
web browser. It is also possible to use the name of the folder that contains the settings.php file for the 
URI (e.g. --uri=default). This works, and is, in fact, equivalent to Listing 26–2 in terms of the site URI 
that Drush will use when calling in to Drupal; you can confirm this by comparing the output of the “Site 
URI” line in Listing 26–2 with this output. Having a correct site URI is not always required, but some 
modules might need it if, for example, they are generating absolute URLs or making HTTP requests back 
to the same host; it’s therefore advisable to set a correct URI whenever possible. 

It’s also possible to combine the information from the --root and --uri options into a single 
command line argument to Drush. In this form, the Drupal root and the site URI are concatenated 
together, separated by the '#' character, as shown:  

$ drush /srv/www/dgd7.org/web#dgd7.org core-status "Site URI" 
 Site URI : dgd7.org 

This is a little more compact than the previous option, but it is still a bit lengthy to type. In the next 
section, I will discuss different ways to keep things brief by customizing the Drush configuration files to 
match your installation. There are two kinds of configuration files for Drush: Drush resource files 
(drushrc.php) that contain configuration options, and alias files (aliases.drushrc.php) that contain 
information about the various local and remote Drupal sites that you are working on. I will discuss both 
of these in the sections that follow. 

Drush Alias Files (aliases.drushrc.php) 
You can greatly increase the convenience of working with multiple Drupal sites by defining shorthand 
names for each site using Drush aliases. Aliases are not defined in drushrc.php; rather, they are stored in 
a separate file, named aliases.drushrc.php, that may be stored in the same locations as the standard 
drushrc.php configuration files. As you will see later, Drush also allows more flexibility in how aliases 
may be grouped and organized; you can place aliases that you share with team members in one alias file, 
and keep your personal and temporary aliases elsewhere. For now, you will consider only 
aliases.drushrc.php. There is an example alias file in the examples directory; let’s start by copying it to 
your Drush configuration folder, like so:  

$ cp examples/example.aliases.drushrc.php $HOME/.drush/aliases.drushrc.php 

If you open up example.aliases.drushrc.php and take a look inside, you will see that it begins with 
the following introduction: 

Aliases are commonly used to define short names for local or remote Drupal installations; 
however, an alias is really nothing more than a collection of options. A canonical alias named 
"dev" that points to a local Drupal site named "dev.mydrupalsite.com" looks like this:  
  $aliases['dev'] = array( 
    'root' => '/path/to/drupal', 
    'uri' => 'dev.mydrupalsite.com', 
   ); 



CHAPTER 26 ■ DRUSH 

601

If you copy this definition into your aliases.drushrc.php file, and change the root item to point to the 
Drupal root and the uri item to your site’s uri, then you will be able to use shorthand notation to select 
your development site. Rather than using --root and --uri, you can use your new alias, as shown in 
Listing 26–4. 

Listing 26–4. Using a Site Alias to Specify a Site 

$ drush @dev core-status 
 Drupal version                :  7.0                                                         
 Site URI                      :  http://dgd7.org                                             
 Database driver               :  pgsql                                                       
 Database hostname             :  localhost                                                   
 Database username             :  www-data                                                    
 Database name                 :  dgd7devdb                                                   
 Database                      :  Connected                                                   
 Drupal bootstrap              :  Successful                                                  
 Drupal user                   :  Anonymous                                                   
 Default theme                 :  bartik                                                      
 Administration theme          :  seven                                                       
 PHP configuration             :  /etc/php5/cli/php.ini                                       
 Drush version                 :  4.1                                                     
 Drush configuration           :  /home/user/.drush/drushrc.php          
 Drush alias files             :  /home/user/.drush/aliases.drushrc.php  
 Drupal root                   :  /srv/www/dgd7/install/dgd7/web                         
 Site path                     :  sites/default                                               
 File directory path           :  sites/default/files                                         

■ Note  The alias, @dev, comes before the command name.  This differentiates it from the arguments to the 

command.  

Once you have defined aliases for each of the Drupal sites that you’re working on, you can more 
easily manipulate them individually merely by employing the appropriate symbolic name in front of the 
Drupal command. In the next section, you’ll see how you can make site selection even easier with the 
Drush interactive shell. 

Using the Drush Shell 
Drush isn’t called the Drupal Shell for nothing; it even comes with its own interactive shell, which can be 
entered via the command drush core-cli. The Drush interactive shell is actually just a bash subprocess; 
that just means that Drush runs another copy of bash whenever core-cli is used. When the core-cli 
command is entered, Drush will dynamically generate a bash configuration file that is optimized for use 
with Drush. Then, the bash shell is executed again, this time with Drush’s custom configuration. To 
return to your regular shell, just type exit or CONTROL-D. The Drush shell is designed to reduce the 
amount of typing that you need to do when using Drush. One important way that it does this is by 
creating bash aliases for every Drush command, so it is not necessary to type drush before the command 
name. Combine this with a few custom commands exclusively optimized for this shell with the power of 
bash, and what you get is a very powerful environment for Drupal site maintenance from the shell. Let’s 
examine some of the things that this shell can do. 

http://dgd7.org


CHAPTER 26 ■ DRUSH 

602 

For starters, when you enter core-cli, Drush will remember which site you selected and apply every 
subsequent command to that site. Consider the example in Table 26–1 of adding some modules to a 
couple of Drupal sites; in the left column are the commands you need to type when using core-cli with 
Drush’s command aliases, and on the right are the equivalent command in longhand form, as entered 
from the bash shell. 

Table 26–1. Adding a Few Modules to Some Drupal Sites 

Drush core-cli Bash 

$ drush @site1 core-cli 
@site1> dl og 
@site1> en og 
@site1> cd @site2 
@site2> dl devel coder 
@site2> en devel coder 
@site2> cd %devel 
@site2> use 
$ 

 
$ drush @site1 pm-download og 
$ drush @site1 pm-enable og 
$ cd `drush drupal-directory @site2` 
$ drush @site2 pm-download devel coder 
$ drush @site2 pm-enable devel coder 
$ cd `drush drupal-directory @site2:%devel` 

The shorthand command aliases shown on the left are available when using Drush from an ordinary 
bash shell, but the convenience of cd and use really makes the Drush shell shine. The cd command will 
behave just like the built-in cd when moving between directories; use cd with a Drupal site alias, and you 
will select that site and change the working directory to the site’s Drupal root. There are also a number of 
path aliases that Drush recognizes; if you use %modulename as the argument to cd, then you will change 
directories to the location where the module with the specified name has been installed. The Drush use 
command is similar to the cd command, but for two differences. First, it does not change your working 
directory; it only selects a new site to serve as the target for future Drush commands. Second, it also 
works on remote site aliases; if you select a remote site with use @remotealias, then every subsequent 
Drush command will operate on that remote site via ssh. This requires that a public/private ssh key pair 
be set up between the sites, as discussed in the upcoming section on deploying remote sites with Drush. 

If you use core-cli frequently, you might want to convert your login shell into a Drush shell. To do 
this, run drush core-cli --pipe; this will dump the bash configuration file that Drush generates, and 
exit. If this configuration file is placed where bash reads configuration files from, then this will have the 
effect of permanently applying the capabilities of the core-cli command to the bash shell that you use 
every day. The location and names of the files that bash reads can vary from platform to platform; 
.bashrc and .profile in your $HOME directory are two locations that are commonly supported. If you 
are using a Debian-based Linux distribution such as Ubuntu, the file .bash_aliases (also in your 
$HOME directory) starts off empty, but will be read if it exists. This makes it a particularly good place to 
put your Drush configuration. 

$ drush core-cli --pipe > $HOME/.bash_aliases 
$ source $HOME/.bash_aliases 

■ Tip  The source command will read a bash configuration file and execute all of the configuration directives 

found inside, exactly the way it happens when you log in to your account. When reading bash scripts, you will find 

that the source command is used frequently, although it is often used in its shorthand form, “.” (a single dot).  



CHAPTER 26 ■ DRUSH 

603

After you do this, your shell will not immediately appear to behave any differently than it did before; 
Drush tries to “stay out of the way” until it is needed. However, the power of Drush is now always at your 
fingertips. Type the command help. You will see the output of the drush help command rather than the 
usual bash help! You can still access bash help by typing builtin help. Next, try typing status. This 
time, you will see an error message; the regular Linux status command takes precedence over the Drush 
command in this case. If you enter use @alias, then Drush will change your prompt to @alias>, 
signaling that any subsequent Drush command will target the site indicated by that alias. Now if you 
enter the status command, you will see the output from Drush status. To go back to your regular bash 
prompt, enter use without an argument; you will see your prompt return to normal. 

This facility, where Drush will select the Drush command when appropriate or call through to the 
standard command as needed, is called contextual commands. This is a very powerful capability; it allows 
Drush commands to be available in just a few keystrokes—without changing the default behavior of the 
shell that you are accustomed to. I have all of my bash shells configured like this; it really speeds things up. 

Applying Code Updates with Drush 
One of the good things about Drupal is that there are frequent bugfix and security releases that help to 
keep your site stable and secure. One of the bad things about frequent releases is that it can make 
maintenance a real time sink. Even with the advances in the update_status module, it still takes a lot of 
clicks in the online GUI to find the modules to be upgraded, optionally review their release notes, and 
apply the change. Drush makes it much easier. Before you get started, though, it is important to 
remember that code updates should always be made on a copy of your production site, and not on the 
live site itself. Upgrades take some time to process and test, and it’s not desirable to leave the production 
site offline the whole time this process is going on. The most important reason for using a scratch site, 
though, is that upgrades do not always go as planned; sometimes, you might apply an upgrade to a 
module you are using, only to discover that some new bug or incompatibility has crept in. Sometimes, 
you simply might not like the way some new features work. If you always test your upgrades on a 
development site first, if anything does go wrong, it’s very easy to just throw away the upgrade-in-
progress and start over. I will cover how to copy sites in a later section; if you do not yet have a 
development copy of your site, you can always create an empty test site to use as you follow along. 

Let’s run through the steps of applying code updates to a development site. First of all, if you are to 
try out the update process on a scratch site that you just installed, it is important that you have 
something to update. Use the --select flag of pm-download and pick an old release of the 
logintoboggan module; you add in the --all flag so that Drush will not filter out “uninteresting” releases 
(see Listing 26–5). 

Listing 26–5. Picking an Old Release of a Module to Install 

$ drush @dev pm-download logintoboggan --select --all 
Choose one of the available releases: 
 [0]  :  Cancel                                                     
 [1]  :  7.x-1.x-dev     -  2011-Jan-06  -  Development             
 [2]  :  7.x-1.0         -  2011-Jan-06  -  Supported, Recommended  
 [3]  :  7.x-1.0-alpha3  -  2010-Aug-10  -                          
 [4]  :  7.x-1.0-alpha2  -  2009-Oct-25  -                          
 [5]  :  7.x-1.0-alpha1  -  2009-Oct-21  -                          
4 
Project logintoboggan (7.x-1.0-alpha2) downloaded to 
/srv/www/dgd7/web/sites/all/modules/logintoboggan.                                                 
$ drush @dev pm-enable logintoboggan 
The following extensions will be enabled: logintoboggan 
Do you really want to continue? (y/n): y 
logintoboggan was enabled successfully. 



CHAPTER 26 ■ DRUSH 

604 

Choose the “alpha2” release; now you know that if you run pm-updatecode, there will be something 
to update (see Listing 26–6). 

Listing 26–6. Running pm-updatecode to Update the Modules on a Drupal Site 

$ drush @dev pm-updatecode 
Refreshing update status information ... 
Done. 
Update information last refreshed: Sat, 01/15/2011 - 19:57 
 
Update status information on all installed and enabled Drupal projects: 
 Name           Installed version  Proposed version  Status                                    
 Drupal core    7.0                7.0               Up to date                                
 LoginToboggan  7.x-1.0-alpha2     7.x-1.0           Update available                          
 
 
Code updates will be made to the following projects: LoginToboggan [logintoboggan-7.x-1.0] 
 
Note: A backup of your project will be stored to backups directory if it is not managed by a 
supported version control system. 
Note: If you have made any modifications to any file that belongs to one of these projects, 
you will have to migrate those modifications after updating. 
Do you really want to continue with the update process? (y/n): y 
Project logintoboggan was updated successfully. Installed version is now 7.x-1.0. 
Backups were saved into the directory                                [ok] 
/home/user/drush-backups/20110101170457/modules/logintoboggan. 
'all' cache was cleared                                              [success] 
You have pending database updates. Please run `drush updatedb` or    [warning] 
visit update.php in your browser. 

Note that pm-updatecode proposes that the 1.0-alpha2 release be updated to the 1.0 release, even 
though there is a newer development release available. It does so because the 1.0 release is marked as 
the recommended release. In general, pm-updatecode will always update to the recommended release; 
the only exceptions to this is if you explicitly give pm-updatecode the version of the project you would like 
to update to, or if the recommended release is older than the release that you currently have installed. If 
you would like to update from a stable release of a module to the development release, you can 
download it again using drush pm-download modulename --dev. 

Returning to Listing 26–6, if you add the --notes option when running pm-updatecode, Drush will 
show you the release notes for any module that has an available update. You can also show the release 
notes directly, without running pm-updatecode, if desired, via the pm-releasenotes command, as shown in 
Listing 26–7. 

Listing 26–7. Showing the Release Notes for a Drupal Module 

$ drush @dev pm-releasenotes logintoboggan 
------------------------------------------------------------------------------ 
 > RELEASE NOTES FOR 'LOGINTOBOGGAN' PROJECT, VERSION 7.x-1.0-alpha2:  
 > Last updated: December 24, 2010 - 23:18 .  
 > Installed 
------------------------------------------------------------------------------ 
  
 Changes since DRUPAL-7--1-0-ALPHA1:  
 * arguments -> variables per change to hook_theme.  



CHAPTER 26 ■ DRUSH 

605 

The actual output from the pm-releasenotes command will contain all of the release notes from the 
installed version through the recommended version, inclusive; Listing 26–7 shows truncated output 
from the point in time when logintoboggan-7.x-1.0-alpha2 was installed. 

If you do not want to spend time upgrading and testing a site unless there are security updates, then 
the --security-only flag can be used. The code in Listing 26–8 will filter out the bugfix/feature releases 
and show only those projects that have security updates.  

Listing 26–8. Running pm-updatecode to Update the Modules on a Drupal Site 

$ drush @dev pm-updatecode --security-only 
Refreshing update status information ... 
Done. 
Update information last refreshed: Sat, 01/15/2011 - 19:57 
 
Update status information on all installed and enabled Drupal projects: 
 Name           Installed version  Proposed version  Status                                    
 Drupal core    7.0                7.0               Up to date                                
 LoginToboggan  7.x-1.0-alpha2     7.x-1.0           Update available                          
 
No security updates available.                                                                                  

In Listing 26–8, none of the releases of logintoboggan after 7.x-1.0-alpha2 through the current 
recommended release were marked as security updates, so Drush reports that there is nothing to update 
in this instance. 

After you update your code, you must update the database (update.php). You can do this with Drush 
as well, as shown in Listing 26–9.  

Listing 26–9. Running updatedb from Drush 

$ drush @dev updatedb 
The following updates are pending: 
 
logintoboggan module :  
  7000 -   Remove hardcoded numeric deltas from blocks.  
 
Do you wish to run all pending updates? (y/n): y 
Finished performing updates. 

Since this is such a common operation, Drush provides a single command, pm-update, that will call 
pm-updatecode followed by updatedb. 

Just as Drush makes it easy to update code, it also makes it easy to not update code. There are a 
number of reasons why you might not want to update some module on your site; a module will change 
in a way that you don’t like, for example. You can prevent Drush from updating the module by using the 
--lock option shown in Listing 26–10.  

Listing 26–10. Locking a Module via Drush 

$ drush @dev pm-updatecode --lock=logintoboggan 
Refreshing update status information ... 
Done. 
Locking logintoboggan                                                                                     
Update information last refreshed: Sat, 01/15/2011 - 19:57 
 
Update status information on all installed and enabled Drupal projects: 
 Name           Installed version  Proposed version  Status                                    



CHAPTER 26 ■ DRUSH 

606 

 Drupal core    7.0                7.0               Up to date                                
 LoginToboggan  7.x-1.0-alpha2     7.x-1.0           Locked via drush. (Update available)      
 
No code updates available.                                                                                      

The lock is persistent; you will not be able to update the locked module unless you unlock it with --
unlock=module_name or --unlock=all. 

RAM and CPU time on a live site are valuable. Why use the CPU that is handling your user requests 
to check for code updates? You can turn off update status on your live site and test for code updates via 
Drush. If your dev site has a copy of the code that is deployed on the live site, then use the following 
code: 

$ drush @dev pm-updatecode --pipe 
logintoboggan 7.x-1.0-alpha2 7.x-1.0 Update-available 

The --pipe option is supported in many Drush commands. It causes Drush to convert the output 
from its usual human-readable form into something that is designed to be processed by a script. With 
pm-updatecode, it also causes Drush to print only the current status of the installed code. If there are no 
updates available, there will be no output. Call the previous command in cron, and if there are updates 
available, it would be pretty easy to have your script copy the site and perform an update on it—and 
maybe even run some unit tests. Scripting provides a lot of options; automating frequent tasks will 
quickly pay off. 

■ Note  The module update_advanced also allows you to select modules that you do not want to have updated. If 
you do this, Drush will also support this setting. Update_advanced is not yet available for Drupal 7, but it probably 

will be shortly. 

Installing Drush Extensions 
In addition to all of the commands I have already discussed, Drush also allows for extensions that define 
new commands for you to use. Some examples of projects that provide additional Drush commands 
include drush_extras, drush_make, drubuntu, and devel. It is also possible for regular Drupal modules to 
provide Drush commands; devel and features are two examples of modules that do. The capability for 
any Drupal module to also add Drush command files is a very powerful facility, because it allows module 
developers to provide command line interfaces to the functionality provided by the module. A large 
number of Drupal modules take advantage of this capability; there is a link to a list of modules that 
provide Drush integration on the Drush project page (http://drupal.org/project/drush). 

Drush extensions by convention must place the Drush commands that they define in PHP source 
files called Drush command files. The file name of a Drush command file always ends in “.drush.inc”. 
Drush will search for these files during the bootstrap process, and any command file that is found will be 
added to an internal list that is used to find and dispatch commands. Drush will look for command files 
in the following locations: 

• The folder named commands inside of Drush’s installation location 
(/path/to/drush/commands) 

• Folders listed in the include option, which can be set either on the command line (--
include=/path/to/my/drush/commands) or in a drushrc.php file ($options['include'] 
= /path/to/my/drush/commands). 

http://drupal.org/project/drush


CHAPTER 26 ■ DRUSH 

607 

• The system-wide Drush commands folder, e.g. /usr/share/drush/commands 

• The .drush folder in the user’s $HOME folder. 

• All enabled modules in the current Drupal installation 

The Drush pm-download command is smart enough to put Drush extensions into a location where 
they can be easily found for future use. For example, were you to pm-download drush_extras, Drush 
would place it in $HOME/.drush/drush_extras. This location is only suitable for projects that consist only 
of Drush commands. For projects that contain both Drupal modules and Drush command files, such as 
the devel module, it is necessary that Drush place these inside a Drupal site, usually in 
sites/all/modules. This must be done because the module can’t work outside of a Drupal site, and the 
project can’t be split up and installed in different locations. This limitation is important to understand, 
because it means that Drush commands that are bundled with modules will not be visible unless that 
module is enabled, and the site that it is installed in has been selected (bootstrapped) when Drush was 
executed. Listing 26–11 shows how to install the devel module on your @dev site to see it in action. 

Listing 26–11. Downloading and Showing Help for the devel Module 

$ drush @dev pm-download devel 
Project devel (7.x-1.0) downloaded to /srv/www/dgd7/web/sites/all/modules/devel. 
Project devel contains 4 modules: devel_generate, performance, devel_node_access, devel. 
$ drush @dev pm-enable devel 
The following extensions will be enabled: devel 
Do you really want to continue? (y/n): y 
devel was enabled successfully. 
FirePHP has been checked out via svn to /srv/www/dgd7/web/sites/all/modules/devel/FirePHPCore.              
$ drush @dev help --filter=devel 
All commands in devel: (devel) 
 devel-download        Downloads the FirePHP library from http://firephp.org/.   
 devel-reinstall       Disable, Uninstall, and Install a list of projects.       
 (dre)                                                                        
 devel-token (token)   List available tokens                                
 fn-hook (fnh, hook)   List implementations of a given hook and explore source of  
                       specified one.  
 fn-view (fnv)         Show the source of specified function or method.       

In Listing 26–11, you run drush @dev help to tell Drush to include command files from the @dev 
Drupal site in the help text. The --filter=devel flag instructs Drush to only show those commands that 
come from the command file named devel. If you left off the --filter flag, then the output of Drush help 
would be much longer; if you left off the @dev alias, though, the devel Drush commands would not 
appear anywhere in the output. 

You may also notice that the devel module automatically downloads its dependency, FirePHP, when 
it is enabled. This is a bit of Drush magic that is easy to replicate; I explain how in the section on altering 
Drush command behavior. 

Going In-Depth with Drush Configuration Options and Aliases 
Now that you’ve seen a little of what Drush can do, let’s return to the topic of configuration files. You 
have already seen how to configure site aliases in an aliases.drushrc.php file, but I skipped over the 
more basic Drush configuration file, drushrc.php. Drush will search for configuration files in multiple 
locations, the primary places being $HOME/.drush/drushrc.php for per-user configuration. Other options 
will be discussed shortly, but first, let’s take a look at some simple configuration options. Inside the 

http://firephp.org/


CHAPTER 26 ■ DRUSH 

608 

drush folder, there is a directory called examples that includes a number of sample files to help us get 
started on various activities. One of these is example.drushrc.php. Let’s start out by copying this file to 
$HOME/.drush/drushrc.php, like so: 

$ mkdir $HOME/.drush 
$ cp examples/example.drushrc.php $HOME/.drush/drushrc.php 

All of the configuration options in the default file are commented out at first, so you will need to edit 
your new configuration file before it will do anything for you. Here’s how to specify your default site: 

// Specify a particular multisite. 
# $options['uri'] = 'http://d7dg.org'; 
// Specify your Drupal core base directory (useful if you use symlinks). 
# $options['root'] = '/srv/www/d7dg.org/drupal'; 

Now, if you execute the drush core-status command, you will see that your sample site was 
selected, even without specifying --root or --uri on the command line. Note also that specifying these 
options in your configuration file will take precedence over the Drush feature that selects a particular 
Drupal site based on the current working directory. If there are multiple Drupal sites on the local 
machine, it is usually preferable to not specify the root and URI in your configuration file so that you can 
continue to use cd to select your Drupal site. This configuration option is a big time-saver on systems 
with more than a single Drupal instance on them, however. 

Drush Contexts 
Specifying options in a configuration file rather than on the command line is even more flexible than it 
first appears. As previously mentioned, Drush will search for configuration files in multiple locations, 
some of which may be loaded conditionally depending on the context that Drush is invoked. Each 
configuration file is loaded into a separate context; the Drush contexts are labeled by type and ordered 
by priority. Configuration options that are loaded into a higher-priority context will mask options of the 
same name that were loaded into a lower-priority context. Some of the more important contexts are as 
follows: 

• CLI: The command line options that the user entered are loaded into the cli 
context. 

• Specific: Command-specific options become active when the specified command 
is executed. 

• Site: Holds options from a drushrc.php file loaded from the Drupal site directory 
(the directory where settings.php is found). 

• Drupal: Holds options from a drush.php file loaded from the Drupal root directory 
(the directory where Drupal’s index.php is found). 

• Alias: Options that are defined in a site alias are copied into the alias context when 
the alias is referenced. 

• Home: Holds options from a drush.php file loaded from the users $HOME/.drush 
directory 

By defining options in these different contexts, it is possible to change Drush’s behavior on a per-
site or per-alias or per-command basis. The priority of the context are as shown previously, with the 
options context being one of the highest priority in the list; this insures that any option the user explicitly 
enters on the command line will override options in configuration files. Similarly, options defined in an 

http://d7dg.org


CHAPTER 26 ■ DRUSH 

609

alias will override options in a global configuration file, and options that are specific to a Drupal site will
take precedence over alias options. 

Command-Specific Options 
In addition to the global options previously shown, Drush also allows command-specific options to

be defined in a configuration file. Command-specific options give you a great deal of control over the
way Drush behaves. For example, both the pm-download and pm-updatecode commands will show release
notes if the --notes option is specified. If you would like pm-updatecode to always display release notes,
but leave the behavior of pm-download unchanged, you can define a command-specific option for pm-
updatecode like this: 

$command_specific['pm-updatecode'] = array('notes' => TRUE); 

It is also possible to put command-specific options into an alias record (see Listing 26–12). The
syntax should not be surprising in the least. 

Listing 26–12. Command-Specific Option in an Alias Record 

$aliases['dev'] = array( 
  'root' => '/srv/www/dgd7.org', 
  'uri' => 'http://dev.dgd7.org', 
  ‘command-specific’ => array( 
    ‘status’ => array(‘show-passwords’ => TRUE), 
  ),
); 

In Listing 26–12, the option --show-passwords will be set any time the command drush @dev core-
status is executed. This might be useful if you wanted to be able to easily see your temporary passwords
in the status display for your scratch sites, but do not want to display passwords for production systems. 

Site Lists 
In addition to simple single-site aliases, Drush also supports alias lists that represent a number of sites.
There are two ways to create such a list. The first is to define the list explicitly, and name every alias that
should appear in the list, like so: 

$aliases['all-scratch'] = array( 
  'site-list' => array('@dev', '@stage'),
); 

When you have a site list like this, you may use it to execute Drush commands on multiple Drupal
sites sequentially, like so: 

$ drush @all-scratch core-status "Drupal Version" 
You are about to execute 'core-status Drupal Version' on all of the following targets: 
  @dev 
  @stage 
Continue?  (y/n): y 
@dev   >>  Drupal version   :  7.0-dev  

@stage >>  Drupal version   :  7.0 

http://dev.dgd7.org


CHAPTER 26 ■ DRUSH 

610 

The other way to make a site list is implicitly through a group alias file. A group alias file is just like a 
regular alias file, except that its filename begins with the name of the group. For example, to create a 
group of aliases to represent the live site, the staging site, and the development site for dgd7.org, you 
could create a file named dgd7.aliases.drushrc.php and populate it with aliases to your three sites. It 
might look something like the code in Listing 26–13. 

Listing 26–13. A Group Alias File dgd7.aliases.drushrc.php 

$aliases['dev'] = array( 
  'root' => '/srv/www/dgd7.org', 
  'uri' => 'http://dev.dgd7.org', 
); 
$aliases['stage'] = array( 
  'root' => '/srv/www/stage.dgd7.org, 
  'uri' => 'http://stage.dgd7.org', 
); 
$aliases['live'] = array( 
  'remote-host' => 'host.isp.com', 
  'remote-user' => 'wwwadmin', 
  'root' => '/srv/www/dgd7.org', 
  'uri' => 'http://dgd7.org', 
); 

Drush will do a couple of special things for every group alias file that it encounters. First, it will make 
additional names for each of the defined aliases with the group name prepended, so the @dev alias could 
also be addressed as @dgd7.dev. (If multiple alias group files define aliases named @dev, then the 
simplified name will become ambiguous, and the longer name with the group name must be used.) 
Second, an implicit site list is named after the alias group; in Listing 26–13, that would be equivalent to 
the following alias definition: 

$aliases['dgd7'] = array( 
  'site-list' => array('@dgd7.dev', '@dgd7.stage', '@dgd7.live'), 
); 

The definition for your @dgd7.live site in Listing 26–13 includes items called remote-host and 
remote-user. When these keys are set in an alias record, it indicates that the Drupal site in question 
resides on a remote machine. If you use one of these aliases as the target to a Drush command, you will 
find that Drush allows for the remote execution of commands using remote site aliases. In order for that 
to work, however, you must first do some preliminary configuration. This process is discussed in the 
next section.  

Using Remote Commands to Deploy Sites with Drush 
When you have an alias like @live that describes a Drupal site that resides on a remote server, it is 
possible to run remote commands on that site as easily as running a local command. Drush makes this 
possible by using ssh to invoke a remote instance of Drush. In this section, I will show how this facility 
can greatly ease the work involved in managing multiple Drupal sites running on multiple remote 
servers—or perhaps just make a single local copy of your only Drupal site for development and testing 
purposes. 

http://dev.dgd7.org
http://stage.dgd7.org
http://dgd7.org


CHAPTER 26 ■ DRUSH 

611

Setting Up an SSH Key Pair 
In order for remote Drush command execution to work, you first need to set up an ssh key pair allowing 
the local machine to connect to the remote machine. This isn’t too hard to do if you know how, and it’s 
even easier to do if you use Drush to do it. There is a command called pushkey that is available in the 
drush_extras module that will do all of the work for you. To use drush_extras, you must first download it. 
Drush_extras is not a Drupal module; it contains only Drush commands. When you download a project 
like this, Drush will automatically place it in a location where its commands can be found by Drush. 
Therefore, pushkey is available for use as soon as drush_extras is downloaded (see Listing 26–14). 

Listing 26–14. Downloading drush_extras and Using pushkey to Set Up a Public/Private Key Pair 

$ drush pm-download drush_extras 
Project drush_extras (7.x-4.0) downloaded to                        [success] 
/home/user/.drush/drush_extras. 
$ drush pushkey @live 
Enter passphrase (empty for no passphrase):  
Enter same passphrase again:  
Generating public/private rsa key pair. 
Your identification has been saved in /home/user/.ssh/id_rsa. 
Your public key has been saved in /home/user/.ssh/id_rsa.pub. 
The key fingerprint is: 
d1:72:ed:7c:05:c4:cb:75:75:dc:3b:c4:ba:95:0d:1e user@localhost 
The key's randomart image is: 
+--[ RSA 2048]----+ 
|             o+.=| 
|         . .  E+*| 
|        o o .oo=*| 
|         + o .+*.| 
|        S   o + .| 
|             o   | 
|                 | 
|                 | 
|                 | 
+-----------------+ 
wwwadmin@host.isp.com's password:  
$ drush @live core-status 
 Drupal version                :  7.0                                   
 Site URI                      :  http://live.dgd7.org                      
 Database driver               :  pgsql                                     
 Database hostname             :  localhost                                 
 Database username             :  www-data                                  
 Database name                 :  dgd7livedb                                
 Database                      :  Connected                                 
 Drupal bootstrap              :  Successful                                
 Drupal user                   :  Anonymous                                 
 Default theme                 :  bartik                                    
 Administration theme          :  seven                                     
 PHP configuration             :  /etc/php5/cli/php.ini                     
 Drush version                 :  4.0-dev                                   
 Drush configuration           :  /home/user/.drush/drushrc.php               
 Drush alias files             :  /home/user/.drush/live.aliases.drushrc.php  
                                  /home/user/.drush/dev.aliases.drushrc.php   

mailto:wwwadmin@host.isp.com's
http://live.dgd7.org


CHAPTER 26 ■ DRUSH 

612 

 Drupal root                   :  /srv/www/dgd7-live/web  
 Site path                     :  sites/default                             
 File directory path           :  sites/default/files                       

In order for the core-status command to work, you must have Drush installed on the remote 
machine. Once Drush is installed remotely, you can quickly and easily run remote commands to affect 
your Drupal sites on other machines without having to explicitly log in. Drush will do an implicit remote 
login via ssh for every command; if your public key is password-protected (as is advisable), you may 
need to enter your password for the first command and after periods of inactivity, but beyond that, 
remote administration of multiple sites running on different servers is much more convenient using 
remote aliases. If there is some reason why you cannot install Drush on your remote servers, it is still 
possible to use the drush core-rsync and drush sql-sync commands described later without a remote 
copy of Drush. If you need to do that, skip ahead to the end of this section; for now, though, I will 
presume that you have Drush installed on both machines, and the remote core-status command shown 
in Listing 26–14 is working. 

Making a Local Copy of a Remote Drupal Site 
Once you have remote execution set up, the Drush core-rsync and sql-sync commands can be used to 
quickly copy a Drupal site from one location to another. The basic operation is the same regardless of 
whether one site is remote or both are local. If you would like to do a dry run once to see what Drush 
parameters Drush will pass to core-rsync for any particular set of sites, then you may run the command 
with the --simulate option first, as shown in Listing 26–15. 

Listing 26–15. Copying all Drupal Files from a Remote Server to the Local System with drush rsync 

$ drush core-rsync @live @dev --include-conf --simulate 
Calling system(rsync -e 'ssh ' -az --exclude=".bzr" --exclude=".bzrignore" --
exclude=".bzrtags" --exclude=".svn" wwwadmin@host.isp.com:/srv/www/dgd7-live/web/ 
/srv/www/dgd7/web/); 
$ drush core-rsync @live @dev --include-conf 
You will destroy data from /srv/www/dgd7/web/ and replace with data from 
wwwadmin@host.isp.com:/srv/www/dgd7-live/web/ 
Do you really want to continue? (y/n): y 

The option --include-conf tells Drush to also copy the settings.php file. Settings files often have 
some variable sections between the live and dev sites, so Drush skips it by default when copying sites. 
Use --include-conf the first time you copy a site over, but leave it off thereafter, and Drush will not 
overwrite your settings.php file. Speaking of which, if you need to change your database settings for 
your development site, now is a good time to open up the copy of settings.php you just made and adjust 
it to suit. If both sites are running on the same machine, then you will, at a minimum, need to change 
the database name; when the Drupal sites are running on different machines, though, it is possible that 
they may be able to use the same settings.php file without any changes. 

Once the files have been copied over, you can pull the database across. Note that you don’t need to 
create the database in advance; you can tell Drush to do that for you (see Listing 26–16). 

Listing 26–16. Copying the Drupal Database from a Remote Server with drush sql-sync 

$ drush sql-sync @live @dev --create-db 
WARNING:  Using temporary files to store and transfer sql-dump.  It is recommended that you 
specify --source-dump and --target-dump options on the command line, or set '%dump' or '%dump-
dir' in the path-aliases section of your site alias records. This facilitates fast file 
transfer via rsync. 

mailto:wwwadmin@host.isp.com:/srv/www/dgd7-live/web/
mailto:wwwadmin@host.isp.com:/srv/www/dgd7-live/web/


CHAPTER 26 ■ DRUSH 

613

 
You will destroy data from dgd7devdb and replace with data from host.isp.com/dgd7livedb. 
 
You might want to make a backup first, using the sql-dump command. 
 
Do you really want to continue? (y/n): y 
DROP DATABASE 
CREATE DATABASE 

If the sql-sync command results in an error, "Access denied for user 'www-data'@'localhost'", then 
you can specify the username and password of a more privileged user with --db-su and --db-su-pw. 

That's pretty much it; if you have configured your web server to serve content at the dev site, then 
you’ll be able to pull it up in your web browser and view your local copy. There may be some need to fix 
up file permissions; for example, the files folder must be writable by the web server. You can enhance 
your experience by setting some options, though. For example, Drupal caches a lot of information in a 
site’s SQL database. You can save time by excluding these tables from the sync operation, like so: 

$ drush sql-sync @live @dev --structure-tables-key=common 

The structure tables list is defined in your drushrc.php file. Here is the list of tables that appears in 
example.drushrc.php: 

$options['structure-tables'] = array( 
 'common' => array('cache', 'cache_filter', 'cache_menu', 'cache_page', 'history', 'sessions', 
'watchdog'), 
); 

You may need to add some more tables to this list. A good place to start would be to consider the list 
of tables that contain “cache” in their name via drush sql-query 'show tables;'  | grep cache. 
Remove from this list tables such as imagecache_action and so on, and add the remainder to your 
structure tables list. 

After you do an sql-sync with skipped tables, you will need to clear the cache on the target site to 
make sure that things work right. drush cache-clear all will do the trick. 

Drush will also help you fix up your sql database when syncing a site. The --sanitize option selects 
this operation (see Listing 26–17). 

Listing 26–17. Sanitizing a Database Sync to a Scratch Site for Testing 

$ drush sql-sync @dev @test --sanitize 
 
You will destroy data from testdb and replace with data from devdb. 
 
The following post-sync operations will be done on the destination: 
 
  * Reset passwords and email addresses in user table 
 
You might want to make a backup first, using the sql-dump command. 
 
Do you really want to continue? (y/n): 

It is possible to extend Drush with your own sanitization operations; you can find an example of 
how to do this in the file docs/drush.api.php. The default operations will replace all of the user 
passwords with a default password (like “password”). This makes it easy to log in as any user for testing 
and also means that sanitized copies of the database can’t be used to perform dictionary attacks to get 
actual user passwords. The other thing the default sanitization operation does is set every user’s e-mail 
address to a specified test address. This is useful both for privacy and for testing. For example, you can 



CHAPTER 26 ■ DRUSH 

614 

test e-mail notification code on a sanitized copy of your database without actually sending test e-mails 
to all of your users. 

■ Note  Drush makes it very easy to make copies of your site; however, if you have a lot of sites, you might want 
to look into Aegir, which includes the provision and hostmaster projects. To get started with Aegir, visit the Aegir 

community site at http://community.aegirproject.org/, where you will find instructions on how to install it 

either with the provided installation script or by using Drush. 

Managing Dump Files 
By default, sql-sync will dump the source SQL database into a temporary file that is deleted after being 
imported into the destination database. This is fine for syncing sites that are hosted on the same 
machine, but for syncing sites across the network, there are often benefits to using persistent dump files. 
Drush does an sql-sync in three steps. First, the source SQL database is exported from the source 
machine via mysqldump or pg_dump, as applicable. Next, the database dump is copied to the target 
machine using core-rsync. In the final stage, the target dump file is imported into the target SQL 
database. If your sql database is fairly large, and the changes are comparatively small, then the core-
rsync operation that Drush uses to transfer the dump file will complete a lot faster if the target file is 
similar in content to the source. Drush has a number of facilities for managing dump files so that you 
can benefit from this intrinsic characteristic of core -rsync. 

The simplest way to utilize dump files is to set $options['dump-dir'] in your Drush configuration 
file. With this setting, Drush will generate the name of the dump file automatically, and store it in the 
directory specified by this option. While this is simple to set up, it is not very flexible, as the same 
location will be used for both the source and destination database dumps. This has the obvious 
implication that the same filesystem directory structure must exist on both machine; if this is not the 
case, then the dump file must be individually specified on a site-by-site basis. 

There are two ways to specify the location of the dump files that allows individual control over 
where each dump file is stored. The most straightforward way is to use the --source-dump and --target-
dump command line options. These should be set to the full path to the exact file that the database should 
be stored in. This is perfectly functional, but might be a little tedious to type out every time you need to 
synchronize your databases. To ease this burden, Drush also allows you to record your dump file paths 
in the site alias record for your source and target sites. This is done by setting a value in the path-aliases 
section of the alias record, like so: 

$aliases['dev'] = array( 
  'root' => '/srv/www/dgd7.org', 
  'uri' => 'http://dev.dgd7.org', 
  'path-aliases' => array( 
    '%dump' => '/path/to/dumpfile.sql', 
); 

When this configuration is used, the --source-dump option will be set to the value of the %dump item 
when the alias is the source argument of the sync, and it will set the --target-dump option when it is used 
as the target argument. 

When using dump files, it is also important to be aware of Drush’s automatic caching behavior. The 
sql-sync command has a --cache option that specifies the maximum time, in hours, that a cached 
persistent dump file will stick around. If not specified, the cache setting defaults to twenty-four hours; if 
you try to sql-sync using the same database more frequently than this, then you will end up re-using the 

http://community.aegirproject.org/
http://dev.dgd7.org


CHAPTER 26 ■ DRUSH 

615

last dump file instead of getting a fresh dump. To override this behavior, set $options['cache'] = 0; in 
your configuration file to disable caching. You should in particular be careful to disable the cache 
whenever you change the settings for the structure-tables or skip-tables options, or you may be 
surprised by the results. 

Using sql-sync Without Installing Drush on the Remote System 
The previous code snippet shows that with just a couple of simple site aliases and a properly-configured 
ssh public / private key pair, Drush can easily copy databases from one system to another. Doing this 
manually takes quite a few steps, and requires knowledge of the database parameters for both the source 
and the target system. Using Drush saves you the trouble of having to look up these settings every time 
you need to migrate a database. All of this convenience is wonderful, but you might be left wondering 
just how it is that Drush knows what the database settings are for the remote machine. 

You may recall that in the previous section, I mentioned that it is necessary to install Drush on the 
remote machine before running the sql-sync example. This is required because Drush will use the 
remote copy of Drush via an ssh call to request the database settings for the remote system if it cannot 
determine that they should be using information available locally. Drush uses the sql-conf command to 
look up the information. It is possible to watch Drush do this if you run the sql-sync command with the 
--debug flag, like so: 

$ drush sql-sync @live @dev --debug 
[ some debug information removed for brevity ] 
Running: ssh -o PasswordAuthentication=no 'wwwadmin'@'remoteserver.com'      [command] 
'drush  --all --uri='\''http://dev.dgd7.org'\'' --root='\''/srv/www/drupal'\'' 
sql-conf --backend' [0.05 sec, 3.7 MB] 

From this, you can see that Drush is using ssh to call the Drush command sql-conf with the --all 
flag. Sql-conf is a hidden command that does not show up in drush help; however, you can still run this 
same command ourselves and see its output directly (see Listing 26–18). 

Listing 26–18. Using sql-conf to Inspect Remote Database Credentials 

$ drush @live sql-conf --all --show-passwords 
Array 
( 
    [default] => Array 
        ( 
            [default] => Array 
                ( 
                    [driver] => pgsql 
                    [username] => www-data 
                    [password] => secretsecret 
                    [port] =>  
                    [host] => localhost 
                    [database] => dgd7db 
                ) 
 
        ) 
 
) 

The --all flag instructs Drush to include information on all available databases rather than just the 
active database. --show-passwords overrides Drush’s default privacy modes, which attempts to avoid 
printing sensitive information in the console output. The sql-conf command shows only information on 

http://dev.dgd7.org'\


CHAPTER 26 ■ DRUSH 

616 

the database connection; a similar command, site-alias, will show information about a site in the same 
format that is used in a Drush aliases.drushrc.php file (see Listing 26–19). 

Listing 26–19. Using site-alias to Show a Site Alias with a Database Record for a Remote Drupal Site 

$ drush site-alias @live --with-db --show-passwords 
$aliases['live'] = array ( 
  'remote-host' => 'host.isp.com', 
  'remote-user' => 'wwwadmin', 
  'uri' => 'http://live.dgd7.org', 
  'root' => '/srv/www/dgd7', 
  'databases' =>  
  array ( 
    'default' =>  
    array ( 
      'default' =>  
      array ( 
        'driver' => 'pgsql', 
        'username' => 'www-data', 
        'password' => 'secretsecret', 
        'port' => '', 
        'host' => 'localhost', 
        'database' => 'dgd7db', 
      ), 
    ), 
  ), 
); 

The output of this command is suitable to use directly in your aliases.drushrc.php files; just copy it 
into place. Once you do that, the sql-sync command will no longer need to make an extra remote call to 
fetch the database information. The disadvantage to storing the database information in the alias record, 
though, is that there is some potential that the information could become stale if the database 
information in the settings.php of the remote Drupal site is changed. Whether you prefer to use 
manually-cached database settings, or dynamically fetch them on every call to sql-sync is largely a 
matter of preference and requirements. Drush gives you the flexibility to choose the method that works 
best for you. 

Using the Drush Site Context to Control sql-sync Options 
You now know enough to construct a more advanced example. Imagine that you have a certain set of 
configuration options that you always want to apply to sql-sync. For example, perhaps you wish to 
insure that you never overwrite the users or user_roles tables when using sql-sync with your live site. As 
you have seen, it is possible to remove tables from an sql-sync operation via command-line options, 
and you also know that you can define command-specific options in a configuration file or an alias. 
Beyond this, Drush will also allow alias files to define command-specific options for sql-sync and core-
rsync that are only applied when the alias is used as the source of an operation, and other options can be 
applied when the alias is used as the destination site (see Listing 26–20). 

Listing 26–20. Specifying SQL Tables to Skip when an Alias Is the Target of an sql-sync Command 

$aliases['live'] = array( 
  ‘remote-host’ => ‘host.isp.com’, 
  ‘remote-user’ => ‘wwwadmin’, 

http://live.dgd7.org


CHAPTER 26 ■ DRUSH 

617

  'root' => '/srv/www/dgd7.org’, 
  'uri' => 'http://dgd7.org', 
  'target-command-specific' = array( 
    'sql-sync' => array('structure-tables' => 'users,user_roles'), 
  ), 
); 

If this alias definition is used, then the command drush sql-sync @dev @live will include the option 
--target-structure-tables='users,user_roles', but no such option will be set when the sites are 
reversed (i.e. drush sql-sync @live @dev). If this alias record is shared by different users, then it would 
be more convenient to avoid overwriting the users and user_roles table when writing to the site @live, 
but a full copy of all tables would still be done when syncing from @live. 

In the previous section, I showed that Drush will fetch the database records for the source and 
destination sites of an sql-sync command. It turns out that Drush will also pick up special configuration 
options for the sites at the same time. In order for this trick to work, two preconditions must be met. 
First, the alias record must not define the database record for the site. If the database record is defined, 
then Drush will not make a remote (or local) call to fetch it, and therefore there will be no opportunity to 
fetch configuration options either. The other requirement is that the configuration options to be shared 
must be defined in the site context for the alias record. As was previously explained, the site context is 
loaded from a drushrc.php file located in the same folder as the settings.php file for a Drupal site. 
Therefore, the same effect from Listing 26–20 can be achieved by defining the options in the sites folder 
of the @live site, like so: 

$options['target-command-specific']['sql-sync'] => array('structure-tables' => 
'users,user_roles'); 

The effect here is the same; the users and user_roles tables will be skipped when @live is the target, 
but not when it is the source of a sql-sync operation. The difference is that these options do not need to 
be stored in the alias file; when they are defined in the site context, any change made to that one 
drushrc.php file will affect any target that selects that Drupal site. 

■ Caution  Do not confuse the purpose of pre-defined configuration options. Command-line options specified by 
the user will always take precedence over options defined in any configuration file or alias record. Default options, 
therefore, are nothing more than a convenience. They cannot be counted on to protect your data from careless 

mistakes. 

Scripting with Drush 
If you are at all familiar with Linux and the bash shell (or similar variants), you have probably 
encountered the venerable shell script. Listings 26–21 and 26–22 show other ways to write Hello World. 

Listing 26–21. “Hello World” Script in bash 

helloworld.sh: 
#!/bin/bash 
echo "Hello world!  This machine's name is:" `uname -n` 

http://dgd7.org


CHAPTER 26 ■ DRUSH 

618 

Listing 26–22. Running helloworld.sh 

$ chmod +x helloworld.sh 
$ helloworld.sh 
Hello world!  This machine's name is: genkan 

Well, it turns out that you can do the very same thing with Drush; see Listings 26–23 and 26–24.  

Listing 26–23. “Hello World” Script in Drush 

helloworld.drush: 
#!/usr/bin/env drush 
drush_print(dt("Hello world!  This site's name is: @name", array("@name" => 
variable_get('site_name', 'unknown')))); 

Listing 26–24. Running helloworld.drush 

$ chmod +x helloworld.drush 
$ cd /srv/www/dgd7.org 
$ /path/to/drush/examples/helloworld.drush 
Hello world!  This site's name is: The Definitive Guide To Drupal 7 

■ Note  If it bothers you to see a php script without the "<?php" start-marker, you may include it, but it is not 
necessary. Neither is it necessary to make your Drush shell scripts end in .drush, nor do your bash scripts need to 
end in .sh, for that matter. Scripts may be named anything and located anywhere, provided that they are in your 
PATH. It is usually considered best practice to not put the filename extension on your scripts; that way, if you ever 

re-implement a command in another language, the name of the command does not need to change. 

In the Drush examples folder, there is an example script called drush/examples/helloworld.script; 
it is more comprehensive than the helloworld.drush example shown in Listing 26–23. 

When you run your Drush shell script, Drush will first bootstrap your site before running your code. 
This means that Drupal APIs such as variable_get are available, and they will operate on your site's 
database. It really is that easy—you just call the function and leave it up to Drush to prepare the Drupal 
site and insure that the code has been included. This makes Drush shell scripts a very quick and 
convenient way to save little snippets of PHP code that you may need to occasionally run on your sites. 
One way to get started with Drush scripts is to write scripts that run sequences of Drush commands. Of 
course, you can do this with a bash script, but Drush lets you do the same thing in PHP.  

Processing Script Command Line Arguments and Options 
Drush makes it easy to get the command line arguments and options that were passed to your script. As 
mentioned, there is a more comprehensive hello world example in drush/examples/helloworld.script; 
it includes such useful tidbits as how to iterate over the script command line arguments, like so: 

while ($arg = drush_shift()) { 
  drush_print('  ' . $arg); 
} 



CHAPTER 26 ■ DRUSH 

619

// Fetch the value of the --target option; return "@self" if --target was unspecified
$target_value = drush_get_option('target', '@self'); 

Running External Commands 
There are quite a few convenience functions that help you run shell and Drush commands from within
your Drush scripts. The sections below describe some of the more important commands available for
use; the http://api.drush.ws site contains a comprehensive API reference that contains even more
information. 

drush_shell_exec and drush_op_system 

The commands drush_shell_exec and drush_op_system allow you to easily call a shell command from
your Drush script. Of these two functions, drush_op_system is the easier one to call, but it is also much
more limited; it always discards the output of the shell command and expects the caller to correctly
escape any arguments passed to the command. If you need to record the output of the shell command,
use drush_shell_exec instead. It will escape parameters for you, and returns the shell output. The
following is an example call to drush_shell_exec: 

drush_shell_exec("tar -tf %s", $tarpath); 
$output = drush_shell_exec_output(); 
$project_dir = rtrim($output[0], DIRECTORY_SEPARATOR); 

Be careful when switching between these two functions; drush_op_system returns 0 on success,
whereas drush_shell_exec returns TRUE on success. 

drush_invoke 

The function drush_invoke will call a Drush command using the current bootstrapped state and the
current command line options. Here’s a simple script that will clear all of the Drupal caches and enable
the devel and hacked modules. You might want to run this after sequence after syncing your live site to
your dev site. 

#!/bin/env drush
drush_invoke('cache-clear', 'all');
drush_invoke('pm-enable', 'devel', 'hacked'); 

drush_dispatch 

The function drush_dispatch is very similar to drush_invoke, but it executes a command based upon a
full command record. This is occasionally useful if you wish to participate in the command dispatching
process for some reason; for example, the Drush command core-topic looks up the list of commands
that are topic commands, allows the user to select one, and then executes it via drush_dispatch. 

$commands = drush_get_commands(); 
$command_name = function_to_select_one_command($commands);
return drush_dispatch($commands[$command_name]); 

http://api.drush.ws


CHAPTER 26 ■ DRUSH 

620 

drush_invoke_process and drush_invoke_sitealias 

The functions drush_invoke_process and drush_invoke_sitealias are both very similar to drush_invoke; 
the main difference is that the process and sitealias APIs execute the desired commands in a new 
process with a new environment. In the case of drush_invoke_sitealias, a site alias record is also 
provided to target a different Drupal site; the target may be either local or remote. The most convenient 
way to get a site alias record is to look one up from the available Drush alias files using the function 
drush_sitealias_get_record. 

// Run the core-status command on the site named @dev, and pass it "Drupal version" 
// as its argument.  This is the same as: drush @dev core-status "Drupal version" 
$site_record = drush_sitealias_get_record('@dev'); 
$result_record = drush_invoke_sitealias($site_record, 'core-status', "Drupal version"); 
drush_print($result_record['output']); 

When drush_invoke_sitealias is called, it runs a new Drush command in a new process, 
bootstrapping the specified Drupal site and executing the specified command. This process works 
equally well regardless of whether the site alias represents a local or remote Drupal site. The command 
results appear in the output item of the returned object; this is explained in more detail later in the 
chapter. 

drush_invoke_process_args and drush_invoke_sitealias_args 

To pass command options on to the invoked commands, use one of the variant APIs, 
drush_invoke_process_args or drush_invoke_sitealias_args. These functions work just like their non-
arg counterparts, except for the fact that the former allows the command line arguments and command 
line options to be passed in using array variables. 

// Call sql-conf with --all to determine the configuration settings for 
// all databases associated with the provided alias record. 
$result_record = drush_invoke_sitealias_args($alias_record, "sql-conf", array(), array('all' 
=> TRUE)); 
$database_records = $result_record['object']; 

This example is the technique that sql-sync uses to look up the database configuration when the 
alias record does not include them inline. It passes no arguments, and the only option passed is --all to 
instruct sql-conf to return all databases, not just the primary one. If you would like to invoke another 
command on either the bootstrapped site (drush_invoke_process_args) or on some other site 
(drush_invoke_sitealias_args) using the same options the user passed in to the current command, you 
can use the function drush_redispatch_get_options, which will look them up for you. 

Processing Invoke Process Results 
As shown in the previous section, the functions drush_invoke_process, drush_invoke_sitealias, and the 
_args variants of these functions return an associative array that contains the results of the executed 
command. You may have noticed that one example took the results from output, and the other looked at 
a different item called object. These fields and the other contents of the invoke process results are 
explained here: 

• output: This item contains the textual output of the command that was executed. 
This is the text that you would see if you ran the same Drush command from the 
shell. 



CHAPTER 26 ■ DRUSH 

621

• object: The object item is not provided for every Drush command. When it is 
available, it will contain the PHP object representation of the result of the 
command. This will usually be an associative array; for example, the sql-conf 
command returns an array that contains the database configuration information. 

• self: The self object contains the alias record that was used to select the 
bootstrapped site when the command was executed. All of the options from the 
site context are merged into this record before it is returned; this is how the sql-
sync command obtains the shared options from the site context of remote (or 
local) sites. 

• error_status: This item returns the error status for the command. Zero means “no 
error.” 

• log: The log item contains an array of log messages from the command execution 
ordered chronologically. Each log entry is an associative array. A log entry 
contains following items: 

• type: The type of log entry, such as “notice” or “warning.” 

• message: The log message. 

• timestamp: The time that the message was logged. 

• memory: Available memory at the time that the message was logged. 

• error: The error code associated with the log message (only for log entries 
whose type is “error”). 

More information about the meaning of type and error appears in the section on logging and error 
reporting. 

• error_log: The error_log item contains another representation of entries from the 
log. Only log entries whose error item is set will appear in the error log. The error 
log is an associative array whose key is the error code, and whose value is an array 
of messages—one message for every log entry with the same error code. 

• context: The context item contains a representation of all option values that 
affected the operation of the command, including both the command line 
options, options set in a drushrc.php configuration files, and options set from the 
alias record used with the command. This item is initialized with the result of the 
function drush_get_merged_options, which simply merges together all options 
from all Drush contexts. 

Output and Logging 
When writing scripts or commands for Drush, it is important to follow the established conventions for 
output and logging. Using the provided functions described in this section will insure that your Drush 
scripts will return the correct result code and that output will be available for inspection by other scripts 
as well as to the end user. Drush commands can be executed remotely and non-interactively; a well-
behaved Drush command can be used as a building block by a larger script that will then be able to 
separate out the output from the error log and respond as warranted by the situation. This makes it 
easier to integrate Drush commands into other scripts that may wish to parse and act on the command’s 
output. Conversely, ignoring the available Drush utility routines will make it harder for others to re-use 
your scripts. 



CHAPTER 26 ■ DRUSH 

622 

Use drush_print and dt for Simple Output 

Drush provides functions drush_print, drush_print_r, and dt that should be used in place of print, 
print_r, and t, respectively. Drush provides automatic character encoding conversion in the 
drush_print function, which is important for correct interoperability with systems that can’t process 
UTF-8 output directly. See the output_charset option in examples/examples.drushrc.php for information 
on how to configure this feature. 

Similarly, the dt function should be used to wrap all output before it is sent to drush_print or other 
output functions. This serves the same purpose as the Drupal function t: it allows user-visible text to be 
identified for translation. A Drush script can’t simply use the existing Drupal t function, because t is 
only available when a Drupal site has been bootstrapped. Sometimes Drush will produce output before 
Drupal has been bootsrapped, and some Drush commands do not bootstrap a Drupal site at all. The 
pattern for the dt function is the same as for t, and should be familiar to you. 

drush_print(dt("The command !command said !exclamation", array('!command' => $command, 
'!exclamation' => $exclamation))); 

Before using drush_print, you should first consider whether it might be more appropriate to use 
one of the available Drush logging functions, as is explained in the following sections. 

Use drush_print_pipe to Output Data for Use by Shell Scripts 

Drush provides a facility that allows scripts to produce an alternate representation of their output for 
easier processing by scripts. For example, the command pm-list will by default display information 
about the available Drush extensions in a human-readable table. When called with the --pipe flag, pm-
list will instead output just the name of the extensions and nothing else. 

To achieve this result, a Drush script need only call drush_print_pipe with the output to include in 
the alternate representation. There is no need to check for pipe mode; the pipe output is only displayed 
when requested. The ordinary output of the script is also suppressed, so a script may simply produce 
both kinds of output and leave it up to Drush to determine what to do with it. 

Formatting Tabular Results with drush_print_table 

The function drush_print_table will take a representation of tabular information with text in every cell 
and format it so that the column widths of the output are balanced and the text in each cell is wrapped 
to fit within the established boundaries. It is actually a wrapper around the Pear Consol Table library by 
Richard Heyes and Jan Schneider; it is available in source form from its primary source, 
http://pear.php.net/package/Console_Table. The Console Table code is not actually distributed with 
Drush; rather, Drush will download and install it if possible the first time Drush runs. 

To use this function, simply build an array of table rows, each of which is itself an array of table cells. 
Each cell should contain a string (see Listing 26–25). 

Listing 26–25. Building an Array of Arrays for drush_print_table 

$header = array(dt('Id'), dt('Date'), dt('Severity'), dt('Type'), dt('Message')); 
while ($result = drush_db_fetch_object($rsc)) { 
  $row = core_watchdog_format_result($result); 
  $table[] = array($row->wid, $row->date, $row->severity, $row->type, $row->message); 
} 
if ($tail) { 
  $table = array_reverse($table); 
} 
array_unshift($table, $header); 
drush_print_table($table, TRUE); 

http://pear.php.net/package/Console_Table


CHAPTER 26 ■ DRUSH 

623

The code in Listing 26–25 is a simplified version of the Drush command watchdog-show that prints 
out entries from the Drupal watchdog table to the console. This command has a tail mode that 
continuously prints the results from the log as they are added; when doing this, the results are reversed 
so that the newer entries are on the bottom. The header is added on at the end; the parameter TRUE 
indicates that the first row of the table contains the header. For example, let’s watch the watchdog-show 
command in action. If the output of watchdog-show is  

$ drush watchdog-show 
 Id  Date          Severity  Type     Message                                         
 61  15/Jan 09:01  notice    user     Session opened for admin.                       
 60  15/Jan 08:47  notice    cron     Cron run completed.                             

then the watchdog-show function will build an array of arrays that looks like  

array( 
  array ( 'Id', 'Date', 'Severity', 'Type', 'Message',   ), 
  array ( '61', '15/Jan 09:01', 'notice', 'user', 'Session opened for admin.', ), 
  array ( '60', '15/Jan 08:47', 'notice', 'cron', 'Cron run completed.',   ), 
); 

If you do not need to manipulate the contents of the table before display, then it is, of course, 
possible to just put the header row directly into the table and append the data after it. There is also a 
third optional parameter to drush_print_table, not shown here, that allows you to specify the exact 
width to use for some or all of the columns. If you want to build a simple table with a column of labels 
and a column of values, just like drush core-status does, then you can use the convenience function 
drush_key_value_to_array_table to do the conversion, like so: 

$status_table['Drush version'] = DRUSH_VERSION; 
$status_table['Drush configuration'] = implode(' ', $configuration_list); 
drush_print_table(drush_key_value_to_array_table($status_table)); 

The actual implementation of drush core-status is slightly different (and more extensive) than this, 
of course, but this is the general idea. As you can see, these functions will allow you to very quickly write 
code that produces formatted tabular output. 

Rendering HTML Output for Textual Display with drush_html_to_text 

Drupal contains a function drupal_html_to_text that is very useful in a command line scripts. As 
previously mentioned, though, Drush commands are not always running in an environment that has a 
bootstrapped Drupal site available; therefore, Drush provides the drush_html_to_text function that 
serves as a simpler replacement for this function. 

This function is not intended to be a replacement for a textual web browser, but it is often useful for 
displaying information on HTML pages that are known to have a simple enough structure to be 
compatible and appropriate for textual output. For example, the Drush command pm-releasenotes uses 
drush_html_to_text to convert the requested release notes HTML page into a format that can be 
displayed in the terminal. If you need to parse HTML in a Drush command that always bootstraps a 
Drupal site, though, you might as well use the drupal_html_to_text function and utilize its enhanced 
capacity to convert HTML into plain text. 

Prompting the User 
Drush also has helper functions to process user input in different ways. Using the provided wrappers 
where possible will help keep the behavior of scripts consistent. The three functions available are as 
follows:  



CHAPTER 26 ■ DRUSH 

624 

• drush_confirm will prompt the user for a yes/no response. 

• drush_prompt will prompt the user to enter a string. The caller can also provide a 
default value that the user can select by typing ENTER without providing any 
input. 

• drush_choice will present the user with a number of options that can be selected 
by numeric label. The available selections are passed to drush_choice in an 
associative array, where the keys are the identifiers that are returned if the user 
selects that item, and the values are the human-readable strings that are displayed 
to the user. The display of drush_choice is formatted via drush_print_table; if the 
caller provides a data table where the values are arrays of strings, then these arrays 
will be included in each row array, so the values of the array will be formatted into 
aligned columns. Drush uses this facility internally in the pm-download command 
when the --select option is used, so the version numbers and release dates of the 
available releases are aligned. 

Here is an example of drush_choice use from the Drush pm-download command. The associative 
array $releases is pre-populated with items keyed by version; each release item contains a date string 
and a release_status array. Drush loops over this structure and builds an associative array of options 
that it passes to drush_choice. 

foreach($releases as $version => $release) { 
  $options[$version] = array($version, '-', gmdate('Y-M-d', $release['date']), '-', implode(', 
', $release['release_status'])); 
} 
$choice = drush_choice($options, dt('Choose one of the available releases:')); 

This will display each line from drush_choice in columns, with the version in the first column, the 
date of the release in the second column, and the release status values, which include terms such as 
“Supported” and “Recommended,” in the last. You will also notice two extra columns containing only “-
“ characters are also included to provide some separation between the columns. You have already seen 
what the output from this function looks like; it was shown in Listing 26–5 in the section “Applying Code 
Updates with Drush.” 

The user can instruct Drush to autoconfirm all prompts with either an affirmative or negative 
response by using the --yes and --no options, respectively. When Drush runs another chained 
command either on the local machine or on a remote machine, it automatically sets the --yes option to 
prevent the command running in the background from getting hung up on user input. When in 
autoconfirm mode, drush_prompt will also always return the default value without waiting for the user. 

If a user cancels out of a command, either by responding “no” to drush_confirm, or selecting the first 
option from drush_choice, which is always “cancel,” the best thing to do is to exit the current function 
via return drush_user_abort();. This will insure that Drush will exit from the function cleanly. See the 
section on Drush Command Hooks for more information. 

Logging and Error Reporting 
Drush has specific rules on how errors should be reported and how log functions should be used. 
Understanding when to use drush_print, and when to instead to use drush_log or drush_set_error is key 
to producing scripts that are convenient and behave appropriately when used in different contexts. This 
section describes what you need to know to do this correctly. 



CHAPTER 26 ■ DRUSH 

625

Use drush_log to Display Significant Events 

It is better to use drush_log in place of drush_print when the message indicates that something 
noteworthy has happened during execution, or, alternatively, when auxiliary information is being 
provided. Drush provides two additional levels of output control, --verbose and --debug. Some log 
messages are only displayed in these modes, whereas others are by default always displayed. However, 
Drush also provides facilities for other scripts to call Drush commands and retrieve the results, and 
drush_log is useful in these contexts as it provides the type of message as well as the message text to the 
caller, which can be helpful to the caller in determining how to format and display the results. The 
default drush_log output will also format the results, putting the message type description on the right-
hand side of the first line of the message, appropriately colored to match the status level of the message. 
This makes it really easy to notice errors that may slip into the output of your command as they will be 
rendered in red text so as to stand out from the rest of the information displayed. Finally, Drush will also 
send the output of all log messages to the standard error stream rather than to standard out, which helps 
give the caller control over separation of log and ordinary output. As you can see, there are many reasons 
why the Drush logging functions increase the user’s control over and comprehension of output 
messages. Moreover, a call to drush_log looks very much like a call to drush_print: 

drush_log(dt('!extension was enabled successfully.', array('!extension' => $extension->name)), 
'ok'); 

The different log levels supported are as follows: 

• ‘ok’ or ‘success’: These log levels indicate that some operation completed 
successfully. Drush is a little bit inconsistent in its use of ‘ok’ vs. ‘success’, but a 
good guideline to use would be to use ‘ok’ when a sub-operation works and 
execution is (or may be) continuing, and to use ‘success’ for the final message 
once a command or script has concluded execution satisfactorily. One example of 
an ‘ok’ log message is in the pm-enable function, shown previously, where 
drush_log ‘ok’ is used to inform the user that one of the modules specified is 
already enabled. 

• ‘warning’: This log level indicates that a situation that the user must be aware of 
has come up, but execution of the current script or command can still continue. 
For example, the command pm-updatecode will use drush_log ‘warning’ to notify 
the user that one of the modules that was updated required database updates and 
updatedb must be run at some point. 

• ‘notice’: The notice log level informs the user of progress or situations that might 
be interesting, but that do not warrant any specific action or response. Notices are 
not displayed unless the --verbose flag was specified. One example of a Drush 
command that uses a notice is pm-releasenotes, which notifies the user after the 
HTTP request to fetch the release notes text completes. 

• ‘debug’: These debug log level includes additional information that the user might 
need if investigating the root cause of some failure. These messages are not 
displayed unless the --debug option was specified. One example of a debug log 
message can be found in the php-script command, which displays the list of 
filesystem paths it uses when searching for the script to run. 

• ‘error’: An error log is used to indicate that some condition prevented the 
command from doing what it was intended to do. Usually, this log level should not 
be used as it is better to instead call the drush_set_error function, which is 
described below. Drush uses drush_log 'error' internally to report that a Drush 
command or script returned an error condition and can’t continue. 



CHAPTER 26 ■ DRUSH 

626 

Using the drush_log function can make your scripts much more transparent and friendly to the 
user, but take care to not log gratuitously. If a log message of any type does not provide any additional 
information to the user, leave it out. Sometimes just the progress information that a log message 
provides is enough to make it useful; it often comes down to a judgment call as there is not always one 
right answer to fit all situations. The best way to fine-tune logging is to analyze the output of your script 
at different log levels and under differing conditions (e.g. success and failure), and adjust the log 
messages to optimize the amount of useful information that is displayed, so that the user can determine 
what happened, and what else might need to be done without needing to page through a lot of text that 
is not relevant to the situation. 

Use drush_set_error to When Unrecoverable Errors Occur 

The function drush_set_error should be called whenever something completely unrecoverable 
happens. It is a convention that any time a Drush command calls drush_set_error, it should also return 
FALSE as its function result. To make this easier, Drush has also established the convention that the 
return result of drush_set_error is always FALSE, so a function can be concisely aborted, as shown: 

return drush_set_error('DRUSH_CRON_FAILED', dt('Cron run failed.')); 

The first parameter to drush_set_error is a string constant that another script may test for when 
examining the cause for a particular failure condition. To see a list of all of the defined Drush error 
codes, run the command drush topic docs-errorcodes. This will display a list of error codes with their 
corresponding error message; the list is sorted by error code. The second parameter, the error message, 
is optional. If missing, Drush will attempt to look up the error message by concatenating “error:” with 
the Drush error code (e.g. “error:DRUSH_CRON_FAILED”). The Drush command help hook is used to 
do the lookup; this hook is described later. 

Writing Drush Extensions 
Drush shell scripts are a fine way to get started, and they are a particularly appropriate way to build tools 
that are tailored expressly for use on one particular Drupal site. If you want to write a general-purpose 
tool that is intended to work on any Drupal site, it’s preferable to write a Drush command. The good 
news is that all of the techniques described in the previous section are also usable and relevant to Drush 
commands, so if you develop a useful Drush script that you would like to make more general and turn 
into a Drush command, it’s possible to do so simply by naming the file appropriately and implementing 
the required Drush command hook files. This section will explain how to do all of that. 

Drush includes a sample command file, drush/examples/sandwich.drush.inc that shows how 
commands are defined. The key difference between Drush commands and Drush scripts is that Drush 
commands contain a command hook that returns an array of items that describe the command, 
including its arguments, options, and help text. Additionally, Drush commands are managed by Drush; 
they are stored in a PHP file called a Drush command file, and they must appear somewhere that Drush 
will search for them. 

Drush command files must be named following a particular pattern. The filename begins with the 
name of the command file, and ends with .drush.inc. The name of the command file is extremely 
important, as it is used to compose the function names that Drush will call at various points to give the 
command file an opportunity to define commands and other Drush hooks. In this way, Drush is very 
similar to Drupal. This section will describe the different responsibilities of a Drush command file that 
you will need in order to create your own Drush commands. 



CHAPTER 26 ■ DRUSH 

627

The Drush Command Hook 
The primary entry point for a Drush command file is hook_drush_command. So, if the command file's 
name is sandwich, then it must have a function called sandwich_drush_command that declares all of the 
commands it provides. The drush_command hook is very similar to the menu hook in Drupal; it is expected 
to return an associative array of items that describe its commands. The drush_command hook for the 
example sandwich command file is in Listing 26–26; it defines a single command called “make-me-a-
sandwich”. 

Listing 26–26. Implementation of hook_drush_command for the Sandwich Command File 

/** 
 * Implementation of hook_drush_command(). 
 * 
 * In this hook, you specify which commands your 
 * drush module makes available, what it does, and 
 * description. 
 * 
 * Notice how this structure closely resembles how 
 * you define menu hooks. 
 * 
 * @See drush_parse_command() for a list of recognized keys. 
 * 
 * @return 
 *   An associative array describing your command(s). 
 */ 
function sandwich_drush_command() { 
  $items = array(); 
 
  $items['make-me-a-sandwich'] = array( 
    'description' => "Makes a delicious sandwich.", 
    'arguments' => array( 
      'filling' => 'The type of the sandwich (turkey, cheese, etc.)', 
    ), 
    'options' => array( 
      '--spreads' => 'Comma delimited list of spreads (e.g. mayonnaise, mustard)', 
    ), 
    'examples' => array( 
      'drush mmas turkey --spreads=ketchup,mustard' => 'Make a terrible-tasting sandwich that 
is lacking in pickles.', 
    ), 
    'aliases' => array('mmas'), 
    'bootstrap' => DRUSH_BOOTSTRAP_DRUSH, // No bootstrap at all. 
  ); 
  return $items; 
} 

The items description, arguments, options, and examples are used only to display the help text for 
the command and have no affect on actual operation. However, it is important to always include these 
items so that new users can discover how to use your command. Also, it is possible that a future version 
of Drush may parse the options item and reject command line options that are not defined in the 
command or global options list, so be sure to be complete in your command definitions. Commands 
that take no arguments or options may omit these items from their definition, though. 



CHAPTER 26 ■ DRUSH 

628 

The aliases item provides alternate, shorter forms for the command name. The example command 
in Listing 26–26 can be executed either via drush make-me-a-sandwich, or via drush mmas. Multiple aliases 
can be included by placing multiple items in the array. 

The bootstrap item regulates how this Drush command will interact with the specified Drupal site, 
if one is available. DRUSH_BOOTSTRAP_DRUSH means that Drush should initialize itself and go no further. In 
this mode, the Drush command can’t call any code from Drupal, because the Drupal site will not be 
bootstrapped, and no Drupal code will be loaded. Conversely, DRUSH_BOOTSTRAP_DRUPAL_LOGIN means 
that Drush should fully bootstrap the selected Drupal site and log in the default user. 
DRUSH_BOOTSTRAP_DRUPAL_LOGIN is the default bootstrap level for commands that do not explicitly specify 
a desired bootstrap level. There are other bootstrap options as well; for example, it is possible to 
bootstrap to the Drupal root but not select any specific site. Any of these bootstrap levels that attempt to 
initialize Drupal will abort with an error if the initialization fails. The special exception is 
DRUSH_BOOTSTRAP_MAX, which will attempt to bootstrap the current site to the farthest level possible, but 
will stop bootstrapping and continue execution of the Drush command if any problem is encountered. 
This allows Drush commands to run quickly without a Drupal site or provide additional information or 
functionality when a Drupal site is present. For example, the pm-releases command will tell you which 
version of a module is installed if a Drupal site is selected, or it will show the available releases without 
this information if not. 

There are other items in a command record besides the ones shown here; they are explained later. 
Additionally, the command drush docs-commands contains a table that lists all of the available items with 
a summary of its function. 

Providing the Command Implementation Function 
By default, Drush will compose the name of the function to call from its command name and the name 
of the command file. The default command implementation is composed by concatenating drush, the 
name of the command file, and the full name of the command. Each item is separated by an underscore 
(“_”); any dashes in the command name are also replaced with underscores. Since it is common for 
Drush commands to be prefixed with the name of the command file that they appear in, the default 
implementation name is simplified by replacing adjacent occurrences of the command file name with a 
single instance. For example, the Drush command record for the command sql-sync is defined in the 
command file named sql (the full filename is sql.drush.inc). The default implementation function 
name is composed by concatenating “drush”, “sql”, and “sql-sync” to form drush_sql_sql_sync, which is 
then simplified to drush_sql_sync. Drush will call the specified function, converting all command line 
arguments into function parameters. Ergo, the function that implements sql-sync will look something 
like this: 

Functoin drush_sql_sync($source = NULL, $destination = NULL) { 
  $source_settings = drush_sitealias_get_record($source); 
  $destination_settings = drush_sitealias_get_record($destination); 
  // Implementation of sql-sync continues… 
} 

As you can see, when it comes right down to it, Drush commands are just regular PHP functions. 
This makes it pretty easy to convert a Drush script into a Drush command; just wrap a function 
definition around the code and define the Drush command hook. Drush provides a lot more control 
than this, but that’s the basics of it. I’ll continue to explore more of the capabilities of Drush commands 
in the remainder of this section. 



CHAPTER 26 ■ DRUSH 

629

Return an Array to Pass Structured Data to Other Drush Scripts 
In some instances, a Drush command or script may use a complex data structure such as an associative
array to render its output. These data structures are not always easy to represent in a form that would be
useful to output with drush_print_pipe, or, even if they were, it would take a lot of effort for a PHP script
that is calling a Drush command to parse the textual output and reconstruct the original data structure.
Drush makes it easy to pass these structures unaltered to the caller. If the primary hook function for a
command returns a result, then the object returned will be placed in the ‘object’ item of the result
structure returned by drush_backend_invoke. Drush makes use of this facility internally in a couple of
places; for example, the Drush function sql-conf returns the associative array with the database
connection information; as previously mentioned, the sql-sync command uses this mechanism to fetch
the database information for remote Drupal sites. 

Manually Specify the Command Function with a Callback Item 
It is also possible to provide a callback item in the command structure; the callback will be used in place
of the default implementation if it appears. It is recommended that you use the default implementation
function name whenever possible, and only provide your own callback function name when the
command can be implemented by an existing function. For example, the various Drush topic functions
are for the most part implemented by using drush_print_file to display an existing file to the user. The
command record for the topic command docs-readme can be found in Listing 26–27. 

Listing 26–27. Using a Callback Item to Implement a Drush Command with an Existing Function 

$items['docs-readme'] = array( 
  'description' => dt('README.txt'), 
  'hidden' => TRUE, 
  'topic' => TRUE, 
  'bootstrap' => DRUSH_BOOTSTRAP_DRUSH, 
  'callback' => 'drush_print_file', 
  'callback arguments' => array(DRUSH_BASE_PATH . '/README.txt'),
); 

The items hidden and topic are particular to Drush topic commands. Hidden means that the
command will not show up in the Drush help listing, although it is available for execution, either via the
command line, or programmatically via drush_dispatch. The topic item will cause the command to
show up in the topic list when the user runs the drush topic command. 

The item callback was previously mentioned; it instructs Drush to call the function
drush_print_file instead of the function name that would normally be used, which is to say
drush_docs_readme. The item callback arguments will be added onto the front of whichever arguments
the user specified on the command line. Since the function drush_print_file takes but a single
argument, this means that the command docs-readme will always result in a call to drush_print_file
(DRUSH_BASE_PATH . '/README.txt'), which will display the README.txt file. 

Placing the Command Implementation in a Separate File 
If the implementation for a Drush command is particularly large, it can be placed in a separate file.
Before drush_invoke calls a command hook, it will first check to see if there is a separate .inc file for the
command. The filename is composed by splitting the command name on the dashes in the name,
reversing them, and adding “.inc” onto the end. For example, the command sql-sync is implemented in
a file named sync.sql.inc. 



CHAPTER 26 ■ DRUSH 

630 

The Drush Help Hook 
The Drush help hook is optional and does not need to be implemented. It is a place where longer 
command descriptions may be placed, if desired. If the shorter description in the description item of the 
command record is adequate, though, then there is no need to provide the longer form. When 
implemented, the Drush help hook looks the code in Listing 26–28. 

Listing 26–28. The Drush Help Hook 

function sandwich_drush_help($section) { 
  switch ($section) { 
    case 'drush:make-me-a-sandwich': 
      return dt("This command will make you a delicious sandwich, just how you like it."); 
    case 'meta:sandwich:title': 
      return dt("Sandwich commands"); 
    case 'meta:sandwich:summary': 
      return dt("Automates your sandwich-making business workflows.");  } 
} 

In addition to providing longer command descriptions, the help hook can also specify metadata 
values that are used to format the output of Drush help. The available metadata items are 
meta:COMMANDFILE:title and meta:COMMANDFILE:summary. These items are used to describe all of 
the commands defined in the command file as a group. One place where you will see them is when you 
run drush help --filter, which allows the user to display the help for just one section of commands 
(see Listing 26–29). 

Listing 26–29. Show Help Just for the Sandwich Command File 

$ drush help --filter --include=examples 
Select a help category: 
 [0]  :  Cancel                                                                                   
 [1]  :  Core drush commands                                                                      
 [2]  :  Field commands: Manipulate Drupal 7+ fields.                                             
 [3]  :  Project manager commands: Download, enable, examine, and update your modules and 
themes.  
 [4]  :  SQL commands: Examine and modify your Drupal database.                                   
 [5]  :  Sandwich commands: Automates your sandwich-making business workflows.                    
 [6]  :  User commands: Add, modify, and delete users.                                             
5 
Sandwich commands: (sandwich) 
 make-me-a-sandwich  Makes a delicious sandwich.  
 (mmas)  
$ drush help make-me-a-sandwich --include=examples 
This command will make you a delicious sandwich, just how you like it. 
 
Examples: 
 drush mmas turkey              Make a terrible-tasting sandwich that is lacking in pickles.  
 --spreads=ketchup,mustard                                                                
 
Arguments: 
 filling                        The type of the sandwich (turkey, cheese, etc.)  
 
Options: 
 --spreads                      Comma-delimited list of spreads (e.g. mayonnaise, mustard)  
 
Aliases: mmas            



CHAPTER 26 ■ DRUSH 

631

The Drush help hook also has a secondary purpose that was mentioned previously. The function 
drush_set_error will use the Drush help hook to look up error messages if a message string was not 
provided as the second argument of the call. These help messages begin with “error:” rather than 
“drush:” but otherwise they work the same. 

Altering Drush Command Behavior 
When Drush executes a command, it actually goes through a series of stages before its main 
implementation function is executed and continues with one more stage after the command is finished. 
If there is an error anywhere along the way, Drush also provides a rollback hook which some commands 
use to put things back the way they were if something goes wrong. Table 26–2 summarizes how the 
hooks work. 

Table 26–2. Descriptions of Rollback Hooks 

Hook Name Function Name Description 

Init drush_HOOK_init The init function is called before any other 
stage begins. The init stage is allowed to 
load additional command files, if desired, 
usually via a call to drush_bootstrap_max. 
The utility for doing this is discussed in the 
section on altering other commands. 

Validate drush_COMMANDFILE_HOOK_validate The validate function is called to confirm 
that a command can run. It may do 
initialization, but should not alter the state 
of any persistent object. 

Pre-command drush_COMMANDFILE_pre_HOOK Called before the main command hook. 

Command drush_COMMANDFILE_HOOK The main command hook that should 
provide the main implementation for the 
command. 

Post-command drush_COMMANDFILE_post_HOOK Called after the main command hook. 

Rollback [*]_rollback If any function in the Drush command 
dispatch sequence calls drush_set_error, 
then any command that had previously 
completed without causing an error may 
participate in the rollback stage. A rollback 
function is created by adding “_rollback” 
to the end of the function that it reverts. 
For example, if the function 
drush_pm_updatecode fails, then the 
function drush_pm_updatecode_rollback 
will be called. 

 



CHAPTER 26 ■ DRUSH 

632 

In all cases, the string HOOK in the function name is replaced by the name of the command being 
executed, and COMMANDFILE is replaced by the name of the command file where the command hook 
is defined; this is exactly as explained previously. Note, however, that it is not only the command file that 
defines a command that participates in the command dispatch process; every command file is given the 
opportunity to hook in to any command that the user runs. For example, the devel module has a Drush 
command file called devel.drush.inc. The devel command file patches into the Drush pm-enable 
command with the following hook:  

function drush_devel_post_pm_enable() { 
  $modules = func_get_args(); 
  if (in_array('devel', $modules)) { 
    drush_devel_download(); 
  } 
} 

This code is called every time the Drush pm-enable command finishes execution without calling 
drush_set_error. The devel module then checks to see if it was one of the modules that was just enabled; 
if it is, then it calls drush_devel_download, which downloads the external libraries that the devel module 
needs to run. This is a useful pattern to follow for other modules that have external dependencies. If the 
external code is needed in order to successfully enable the module, then you might try patching in to the 
pre_pm_enable hook. 

As you can see, Drush commands are easy to patch into, and there are a number of situations where 
doing so is useful. Sometimes, though, the hook function name composition algorithm may seem a little 
mysterious. To view a complete list of all of the hook function names, run the command that you want to 
hook into with the --debug --show-invoke options. This will cause Drush to print out a list of all of the 
function names that could participate in the command dispatch process. Functions that have already 
been defined are marked with a “[*]”. This mechanism is a good way to get a quick list of function names 
available for your command file; just combine it with grep. For example, if you would like to create a 
command file named mycommand, and you would like to hook the Drush status command, do the 
following: 

$ touch $HOME/.drush/mycommand.drush.inc 
$ drush status --debug --show-invoke 2>&1 | grep --color=auto mycommand 
drush_mycommand_core_status_validate 
drush_mycommand_pre_core_status 
drush_mycommand_core_status 
drush_mycommand_post_core_status 

The modifier “2>&1” may not be familiar to you. The “2>” tells the shell to redirect the standard 
error output from the command, and “&1” means that it should be redirected to the standard output. By 
default, Drush sends all notices, including the --show-invoke output, to standard error; you need to 
redirect it to standard out in order to filter it with grep. --color=auto tells grep to highlight matches in 
red, so they stand out; this is the default setting on many Linux distributions. From this output, you can 
see the names of the functions you would need to implement in order to hook into the validate, pre, 
post, or main hook for the status command. 

In addition to the command hooks described previously, there are other hooks that Drush defines 
that any Drush command file can hook into. Drush uses the functions drush_command_invoke_all and 
drush_command_invoke_all_ref to enable this capability; both of these functions behave the same way, 
save for the fact that the later passes its first argument by reference, allowing the hook function to 
modify it as desired. As you might imagine, the later is more useful and more often will be the variant 
used to define a hook. For example, the Drush function drush_print_help, which displays the help text 
for a single Drush command, invokes the drush_help_alter hook as follows 

drush_command_invoke_all_ref('drush_help_alter', $command); 



CHAPTER 26 ■ DRUSH 

633

This gives all Drush command files the opportunity to change the $command record to add 
additional text, options, or examples. In this way, command files that change the behavior of a Drush 
command with a pre or post hook can also alter the help text for that command to document the 
adjustment. Drush also uses the help alter hook for its own purposes; topic_drush_help_alter will 
modify commands that declare that they have topics, and copy the topic description into the command 
help so that this information does not have to be duplicated in every command that cross-references to 
one or more topics. The implementation of topic_drush_help_alter is shown in Listing 26–30. 

Listing 26–30. topic_drush_help_alter 

function topic_drush_help_alter($command) { 
  $implemented = drush_get_commands(); 
  foreach ($command['topics'] as $topic_name) { 
    // We have a related topic. Inject into the $command so the topic displays. 
    $command['sections']['topic_section'] = dt('Topics'); 
    $command['topic_section'][$topic_name] = dt($implemented[$topic_name]['description']); 
  } 
} 

Your Drush commandfiles can use similar techniques to hook into this and other Drush APIs. To see 
the complete list of available hooks, view the Drush API documentation using the command drush 
topic docs-api. 

Summary 
In this chapter, you used Drush to streamline and automate many common Drupal site maintenance 
task, including downloading and enabling modules, applying code updates, copying sites between 
remote systems, checking site status, and clearing the Drupal caches. You also breezed through Drush 
scripting and Drush command creation, and examined some of the more useful Drush APIs and utility 
functions to help you get a quick start on writing your own code tailored specifically to your sites needs.  

There many more Drush commands and options than the ones covered here; fortunately, there is 
plenty of excellent documentation on Drush, and most of the functions of Drush are very easy to use. 
The following sources of information are very helpful places to find out more about Drush: 

• The README.txt file in the drush folder covers basic installation and configuration. 

• The command drush help will list all of the available Drush commands. 

• The command drush topic will show documentation on different Drush-related 
topics. 

• The Drush home page, http://drush.ws, contains all of the information on Drush-
related topics, plus the Drush FAQ, the API reference, and a list of important 
Drush resources. 

• The Drush issue queue, http://drupal.org/project/issues/drush, contains the 
most current information on the current Drush release in process. 

With this knowledge, you will find yourself spending less time stepping through GUI administrative 
pages and more time just getting things done. Once you start using Drush regularly, you’ll wonder how 
you ever got along without it. The power of Drush is now in your hands; go forth and script. 
  

http://drush.ws
http://drupal.org/project/issues/drush


C H A P T E R   27 
 

■ ■ ■ 

635

Scaling Drupal 

by Károly Négyesi 

To define scaling, let’s look at a little café. When it opens up, because it's little, the owner does 
everything: she takes the order, prepares the drink, and takes the payment in exchange for the coffee. 
Some time passes and the café becomes popular so the owner hires a barista and a waiter. Now the 
waiter takes the order and gets the money. The barista gets a slip with the order, prepares the drink, and 
gives it to the customer. What you should notice here is that when one person did everything, the 
exchange of the money and the drink happened at the same time. But now the customer hands over the 
money first and only eventually gets a drink. Is there a risk involved with handing over money before 
getting the coffee? If a fire broke out suddenly, the customer would have paid his money but received 
nothing in exchange. However, no one is really bothered by this possibility; they would rather take this 
extremely small risk in order to get their coffee a lot faster. By separating the “taking of money” and the 
“serving coffee” actions, the shop can serve a lot more customers a lot faster. It can hire any number of 
baristas and any number of cashiers to better accommodate the traffic. This is scaling: to accommodate 
the traffic in such a way that more customers do not slow down the process.  

But note that adding baristas does not make the time between paying and receiving any shorter. The 
shop owner makes sure there is always a free barista, but you still need to wait for him to prepare your 
drink. If, however, the shop employs crafty red robots that make coffee much faster, this will help shrink 
this waiting time. This is performance: the time that a web application takes between receiving a request 
and finishing serving it. 

Performance is important because people tend to abandon slow web sites; scaling enables a web 
site to perform when there is a lot of traffic but scaling in itself won’t make a web site fast. It is 
performance that makes it fast. However, if you have enough visitors, even the fastest web site will end 
up having to make some visitors wait before it begins serving their requests. 

Now that I have defined scaling and performance, I'll spend the next part of the chapter telling you 
why you should care about them. Then I’ll discuss some of the available scaling options for Drupal 7. 
That discussion will focus mainly on databases, because databases are integral to scaling Drupal. Drupal 
isn't always as scalable as one wants it to be, but the changes I’ll discuss can make Drupal scale much 
more effectively. 

Do You Need to Care About Scaling? 
When you start out building a web site, handling more traffic is not usually your focus. Getting any traffic 
at all is usually what concerns most people. After all, only people with big, successful web sites need to 
worry about traffic. No web site started with millions of users. However, in time, you might just achieve 
that number or more. If you are aggressively marketing your site, that’s all the more reason to plan for 
growth. Even if you just get a fixed percentage of all Internet traffic, you might be in for a surprise; new 
devices, even new kinds of devices, allow more and more people to spend more and more time 
browsing. What are you going to do when success strikes? Will your site be able to adapt? 



CHAPTER 27 ■ SCALING DRUPAL 

636 

If your site is not able to adapt to an increase in visitors, you are in for a lot of suffering: what should 
be success is instead frustrated users, both the new arrivals and the long-time fans, waiting for pages to 
load and perhaps receiving no response from the site at all. To make this worse, very often the web site is 
coded in such a way that adding additional hardware doesn’t help much; in that case, the site needs to 
be rebuilt, often from the ground up. This can’t happen overnight, of course, and it typically happens at 
a time when the business is busy with other things: growing. Simply put, more traffic very likely means 
more potential business, so at the same time the company is trying to cope with the necessary growth to 
deal with new demand, it suddenly needs to deal with a significant refactoring of the web site. While that 
happens, the web site might crash daily. The company or organization struggles to keep the lights on, in 
effect, instead of realizing the success that seems to be tantalizingly close. This is a scenario to avoid. 

But there is another pitfall: becoming obsessed with scalability in the beginning of the life cycle of 
the site to the point where this takes away precious resources from developing functionality. Drupal’s 
modularity has always provided a solution to these issues, and Drupal 7 rises to new heights in this 
regard. 

Cache 
Caching means to temporarily store some processed data. It can be structured data or a string of HTML-
formatted text. While serving cached data is faster than retrieving and processing it from multiple 
database tables, the data is not really editable, so processing it into another format is not possible. 
Because of this, the raw data needs to stay in the database. So now you have more than one copy of the 
data, and the original data and the cache can become out of sync. In this case, the cache data is “stale.” 
Sometimes that's fine; if you produce a few articles a day, it probably doesn’t matter if fresh content is 
not visible to anonymous users for a few minutes after the original publication date. This is another 
important lesson in scalability: the practical trumps the theoretical. Scalability is always a matter of 
making compromises; it's just a question of which compromises are acceptable for a given web site. 

■ Tip  Take careful note of that phrase "for a given web site." There is no silver bullet, no single solution to all 

scaling challenges. Scalability is always web-site–specific, although some practices apply to many similar sites. 

Drupal can utilize caching to store the whole page, the HTML as it is, for anonymous visitors. 
Enabling this is very simple at admin/config/development/performance and it works even on the simplest 
shared hosting. Note that it only works for anonymous users but more often than not, a significant 
portion of the traffic is anonymous. By default, submitting new content deletes this cache, but a 
minimum lifetime can be set up. As mentioned, it’s very site-specific.  

■ Tip  Another option that works with shared hosts and is even faster than the built-in page caching is the Boost 
module (drupal.org/project/boost). This module can serve pages to your anonymous visitors, completely 

bypassing PHP. 

Let's look at how developers can utilize caching to store the results of a slow query. Suppose you 
have a very slow function called very_slow_find(). This is how to utilize caching: 



CHAPTER 27 ■ SCALING DRUPAL 

637

 $cache = cache_get('very_slow'); 
 if ($cache) { 
   $very_slow_result = $cache->data; 
 } 
 else { 
   // Run the very slow query. 
   $very_slow_result = very_slow_find(); 
   cache_set('very_slow', $very_slow_result); 
 } 

First you try to retrieve the cache. If yes, the stored data is used; if there is a cache miss, you run your 
query and store its results. This way the very slow query rarely needs to happen, but see the previous 
caveats about stale caching. In this example, very_slow is the cache ID (cid) or cache key and 
$very_slow_result is the data you store. 

Cache is used very widely and it’s stored in various bins. While it’s certainly possible to store 
everything in one big pile, there are two advantages of separating them into what Drupal calls bins: the 
contents of a bin can be trashed separately from the other bins as necessary to avoid stale data, and 
different storage mechanisms can be set per bin to store data. (I will describe some examples of available 
storage mechanisms later in the chapter). While using cache_get and cache_set and the other functions 
that the Drupal caching API provides, you don’t need to worry about which storage mechanism is in 
place. That’s why pluggable subsystems are so useful: you can pick a different storage mechanism and 
you don’t need to change any code. 

Drupal, by default, uses the database to store cached data—not because it’s the best way, but 
because Drupal knows it’s there. Fortunately, there are alternatives. First, you’ll see an example that has 
more to do with helping development and shows how to configure pluggable subsystems; then you’ll see 
some performance and scalability solutions. 

Disabling Caching During Development 
For development purposes, I recommend the simplest cache implementation: nothing. There is a cache 
implementation that is the equivalent of a black hole: cache writes and clears don’t do anything, reads 
always fail. Drupal uses this fake cache during installation because there is no information yet available 
about where it could store its data. This fake cache is quite useful while developing, too. One caveat is 
that multistep (and consequently AJAX) forms require a working cache, and so will not work when all 
caches are black-holed in this way. To short-circuit Drupal’s caching using its own fake cache, add the 
three lines below to settings.php, which will be in the /sites folder for your site; typically it will be 
(relative to the root directory of your Drupal install) at /sites/default/settings.php. 

$conf['cache_backends'][] = 'includes/cache-install.inc'; 
$conf['cache_class_cache_form'] = 'DrupalDatabaseCache'; 
$conf['cache_default_class'] = 'DrupalFakeCache'; 

By doing this, complex data structures like the theme registry will be rebuilt on every page load 
(adding classes and menu items still require an explicit cache flush on the 
admin/config/development/performance page). This slows down the site significantly but simplifies the 
life of the developer because changes to code are reflected immediately in Drupal’s behavior. 

The $conf array in settings.php is the central place to specify Drupal configuration. While some 
configuration options have a UI and store their state in the database, there are too many options to 
provide a UI for each, and most of these UI-less options are not necessary for the typical user. Another 
reason to use $conf instead of a UI is that some configuration is necessary before the database is 
available. Cache is an example of both: it's not something a user needs to set from the UI—most will 
never need to—and it can be used before the database is loaded. Most people are fine with the default 
cache implementation but also the cache can be used before the database is available. However, 



CHAPTER 27 ■ SCALING DRUPAL 

638 

because the database is not available yet, settings for the cache is a bit more complicated than usual; you 
need to specify the file (in $conf['cache_backends']) not just a class to be used (as in 
$conf['cache_default_class']). For other settings, most of the time just specifying the class is enough 
because Drupal can read the location of the file containing the class from the database. 

memcached 
The solutions from now on will not work on shared hosts. You need to be able to control your 
environment to be able to perform and scale well. 

memcached is a separate program that stores cached data in memory and allows access to it across 
the network. Being a separate program isn’t so unusual; the database Drupal uses (like MySQL) is also 
such an application. The distinguishing feature of memcached is that it stores data solely in memory, 
which makes it very, very fast. Using this program instead of a database for caching can help Drupal 
performance quite a lot. And not just Drupal—this solution is very mature and used practically on every 
large web site. 

Note that memcached is not just a performance solution but also one that scales very well and very 
easily: you just need to start as many instances of it on as many servers as necessary and configure 
Drupal to use them. There is nothing to set up in memcached because the separate memcached 
instances don’t need to know about each other. It’s Drupal that talks to every one of them. This is very 
different from, say, MySQL, where master-slave configuration needs to be configured explicitly. 

There are three parts to the memcached puzzle: the application itself, a PHP extension, and a 
Drupal module. memcached is available at memcached.org. The installation and configuration are 
detailed on the web site. As mentioned, you need to add a PHP extension to allow PHP to communicate 
with memcached. There are two, confusingly named “memcache” and “memcached.” Even experts have 
different opinions on which one is better. I cautiously recommend the newer “memcached” one. PHP 
extensions can be installed with 

pecl install memcached  

You can install them in operating system-specific ways, too, such as the following on Debian or 
Ubuntu: 

apt-get install php5-memcached  

Third and finally, you make Drupal use memcached by installing the Memcache module, 
drupal.org/project/memcache. The project page has extensive documentation that I won’t repeat here. 

Varnish 
Another important part of the scalability toolset is Varnish. Varnish is an external program for storing 
and serving full pages. Normal page caching requires a request to reach your web server, which in turn 
bootstraps Drupal, loads the page, and then Drupal sends the request. Boost module provides a faster 
solution because now the request only needs to reach your web server but Drupal is not started. Varnish 
is even faster because it handles the request itself. It’s a really, really fast, and massively scalable solution 
to serve anonymous pages. Its motto is “Varnish makes web sites fly” and it lives up to that. The 
application is at www.varnish-cache.org/ and the Drupal integration lives at 
drupal.org/project/varnish.  

http://www.varnish-cache.org/


CHAPTER 27 ■ SCALING DRUPAL 

639

On Databases 
So far you’ve seen how some pluggable subsystems are configured and you’ve briefly reviewed various 
solutions to serve anonymous pages quickly. By only employing the solutions listed so far, you can make 
your site perform well (thanks to memcached) and scale well for anonymous visitors (thanks to Varnish). 
However, social web sites are all the rage today and they require serving logged in users. It gets harder; 
while memcached does buy you some performance, there are many problems to overcome. You need to 
step back and get an overview of how web sites operate, store, and retrieve data; the problems 
encountered; and a fairly new solution that solves many somewhat unrelated problems. 

On a high level, most web sites do the same basic actions: collect data (either a user/administrator 
entering it via a form in the browser or aggregating it from another web site), store that in a database, 
and later show the data to users. The operations to show and modify data are commonly referred to as 
Create, Read, Update, and Delete (CRUD for short). A typical web site would use some sort of SQL 
database to execute these operations on. 

As you will soon see, SQL and especially the currently widespread SQL implementations (including 
MySQL/MariaDB/Drizzle, PostgreSQL, Oracle, and Microsoft's SQL Server) are not always the best fit for 
many problems that a web site faces. But if SQL isn’t optimal, why is it so widespread? Similarly, if it is 
widespread and working, is going another route really a good idea? In short, people have always used 
these SQL databases, so what's the fuss? 

Good questions. Let's look at just how long that "always" is. Most databases that are in use today 
have their roots in the late seventies. True, a given database program such as MySQL or PostgreSQL 
might have no code remains from say, UNIREG (the ancestor of MySQL) and Postgres or even INGRES 
(the ancestors of PostgreSQL). Like the folklore of the axe used by Abraham Lincoln, proudly kept as a 
piece of history by a family that honored it with use, the handle was replaced five times and the head 
three times over the centuries. The mindset when SQL databases were designed and the resulting 
limitations, alas, do not go away as easily as the code is replaced. Abraham Lincoln's axe is still an axe. 

In the years since these databases were constructed, factors like CPU speed, available memory, and 
available disk space have grown a millionfold. Note that disk speed did not keep up. And although the 
tasks have grown as well, few tasks have grown a millionfold. And finally, operating systems have grown 
more sophisticated.  

All this means that some new, previously unthinkable design decisions are necessary and now make 
a lot of sense. Because disk space is abundant and disk speed is now the throttling factor, you can focus 
on making databases faster rather than smaller. Sacrificing disk space to benefit performance looks like a 
terrific investment when there is such an abundance of cheap storage. One can presume the whole 
database fits in memory; if not, the operating system will handle the problem. These design decisions 
affect more than databases: Varnish, for example, employs these modern programming paradigms and 
that’s one of the reasons it’s so fast. 

MEMORIES OF MEMORY 

The first personal computer hard drive, the Shugart Technologies ST-506 in 1980, had a 5MB capacity, 
was as big as a DVD drive today, and cost $1,500. Thus, 1GB cost $300,000 in 1980 dollars; in current 
dollars, that would be fairly close a million. Today the fastest hard disk can store 300GB, costs less than 
$300 (thus a gigabyte is less than a dollar), and is as small as the hard drive in a typical laptop. Slower 
hard disks are available up to 3000GB (3TB) and the lowest per gigabyte cost for a hard disk at this 
moment is around 0.04 cent with some 2TB disks available for $80.  

However, not everything changed so much: the ST-506 had a seek time of 170ms and the ST-412 in 1981 
had a seek time of 85ms, but today the average disk has a 8-10ms seek time and the absolute fastest disk 
has a 3ms seek time—not even a hundredfold growth. (The seek time is the time it takes the drive to get 



CHAPTER 27 ■ SCALING DRUPAL 

640 

to where the data is stored.) Once there, the ST-506 would read about half a megabyte per second
whereas a typical disk today might be able to read a bit more than 100 megabytes per second—a mere
200 times speedup.  

Flash memory drives help this situation somewhat by eliminating the seek time and about doubling the raw
reading speed. There’s still a long road ahead for these new devices: their reliability can’t match a hard
disk yet and they are about a hundred times slower than main memory still. 

In 1980, 64 kilobytes of memory was the max for a personal computer and cost about $400, making the
per-megabyte cost $6,200 (in 1980 dollars). Today, 64 gigabytes (one million times as many) of server
memory costs less than $2000, making the per-megabyte cost about 3 cents. That’s about half a million
times cheaper. 

The fastest 1980 microprocessors ran 1-2 million instructions per second (Intel iAPX 432, Motorola
68000). Today, the speed record is above a teraflops (IBM POWER7)—a million times that. Commodity
processors were introduced at $200-350 and they still are in that range. 

Aside from design decisions made before disk space and memory became cheap and plentiful, the
fundamentals of SQL also mandate a critical look. SQL is based on tables that have columns. For
example, you might have a profile table that contains a column for first name and a column for last
name. This means that every single profile will have a first name and a last name—exactly one of each.
Even staying within the Western culture, it’s easy to find examples where such a rigid structure
crumples. For example, what happens when Hillary Diane Rodham Clinton wants to register? Or people
who take their online nickname as a legal name and consequently have only one name? For better
storage you would also need a profile names table that has a profile ID and a name column, making it
possible to store as many names as you want. You will see shortly the drawback of this approach. In
Drupal 7, you can easily make a “name” multiple-value text field, but despite Drupal hiding the ugliness
from us, it doesn’t mean it's not there. 

While names are known to be problematic like that, it's not too hard to find a problem with almost
every kind of data. For example, if you are describing cars, then you have a table called car and a column
called horsepower that stores a number, a column called transmission steps that again stores a number,
and a column called color that stores a string. After all, a car has an engine with a fixed horsepower,
right? (Well, not exactly; there are cars with both a gas and an electric motor, which of course have
different horsepower ratings and remember, you can only enter a single number.) As for transmission
steps, continuously variable transmission can’t be stored as nicely as a number. As for color, the list is
endless: there are widely successful two-colored small cars as well as thermochromic paints that make
your car a chameleon. This problem could be resolved by storing more complex data structures than a
single string or number. 

The point of all this is that you can't store all the data in a single table with SQL. Why is this such a
big deal? Let’s look at how the database finds data to answer this question. 

Indexes 
How do you find a recipe in a cookbook? You look in the index, of course. While alphabetic ordering of
the recipes help, will you remember the name of the excellent salad with chorizo and avocado? Even if
you do, cookbooks are often ordered by some other topic like seasons or occasion, so even the exact
recipe name won't be of much help. So let’s build an index on ingredients that contains the page
numbers where the ingredient appears, like so: 



CHAPTER 27 ■ SCALING DRUPAL 

641

avocado 
 40, 60, 233 
chorizo 
 50, 60, 155 

This is somewhat helpful but to find anything you would need to go over every recipe listed because 
there is absolute no information of what’s on those pages. Let's create an alphabetical index per 
ingredient and then per name, like so: 

avocado 
 Guacamole 
   40 
 Tortilla Soup 
   233 
 Warm Chorizo Salad Cesar style 
   60 
chorizo 
 Black Bean Chorizo Burritos 
   50 
 Scrambled Eggs Mexican style 
   155 
 Warm Chorizo Salad Cesar style 
   60 

While this index is useful, it is only useful if you are searching for ingredients or ingredients and 
names. It is also useful if you want to list recipes containing an ingredient, ordered by recipe name. 
However, if you want to search for a name, it becomes completely useless. For example, if you want to 
find the Scrambled Eggs Mexican style, you need to go over to the avocado recipes first, then the bacon 
recipes, then the chorizo—not much better than just paging through the whole book itself.  

Remember that you started browsing your cookbook looking for a recipe containing both avocado 
and chorizo. How would you create an index that makes this search simple and fast? If you start your 
index with recipe names, then you need to go through every single recipe to find them, so that's not a 
good idea. If you do something like your first index, you can easily find all the recipes containing 
avocado and also all the recipes containing chorizo. Say you had 1000 avocado and 1000 chorizo recipes 
but only one that has both. You would need to compare 2000 numbers to find the single one. To make 
this operation fast you actually need an index like the following: 

avocado 
 bacon 
   30, 37, 48 
 chorizo 
   60 
bacon 
 avocado 
   30, 37, 48 
 chorizo 
   70 

That’s plain horrible. It's not just that the storage requirements would be quite high but more 
importantly, in real life where data changes, maintaining something like this would become untenable 
very quickly. Say the average recipe had a mere eight ingredients; you can make 8*7 = 56 pairs so every 
change would require updating 56 index entries! (Even if you don’t store both avocado-bacon and 
bacon-avocado, merely halving this does not solve anything and in fact raises several problems when 
querying, as an ingredient-name index could not be used backwards.) This is the very same way SQL 
stores and indexes data and this is the very problem with scaling with SQL: you can’t use indexes on 



CHAPTER 27 ■ SCALING DRUPAL 

642 

most queries spanning multiple tables—and you are forced to use multiple tables due to the rigidity of 
SQL. Let’s see a Drupal example! 

In Drupal, nodes have comments on them. Nodes are stored in one table (Node) and because there 
can be multiple comments on a single node, comments are stored in a separate table (Comment). If you 
want to show the ten ‘page’ nodes most recently commented on then you are facing a similar problem: 
you can have a list of comments ordered by creation date and the nodes belonging to them if you have 
an index on creation date, and you can have a list of ‘page’ nodes if you have an index on node type, but 
if, say, the last 200,000 comments are all on ‘story’ nodes and you have 50,000 pages, then you can either 
go over 200,000 comments first to find that none of them are pages or you need to go over all 50,000 
pages to find the latest comment on each. That's certainly not fast.  

This example can easily be fixed by storing the node type in the comment table because node type 
does not change. But if you wanted to do something with the node change information and comment 
together then you would be forced to store node change information in the comment table and a node 
edit would trigger an update of hundreds of lines in the comment table. Such a practice is called 
denormalization and it is used widely. However, it should raise red flags: what sort of system are you 
working with that can only be made to perform by throwing out its very fundamental theory 
(normalization)? I will show one very good solution to this problem later but let’s continue with listing 
the problems with SQL. 

NULL in SQL 
NULL is a wonderful construct that defies conventional logic; its usage is contradictory and it’s not even 
consistent across databases. NULL is used to signal that some data is missing or invalid and is never 
equal to anything else but then again it’s neither less or greater than either. Whatever you do with it, the 
operation will result in a NULL. You need a special IS NULL operator to detect NULLs, like so: 

mysql> SELECT 0 > NULL, 0 = NULL, 0 < NULL, 0 IS NULL, NULL IS NULL; 

+----------+----------+----------+-----------+--------------+ 

| 0 > NULL | 0 = NULL | 0 < NULL | 0 IS NULL | NULL IS NULL | 

+----------+----------+----------+-----------+--------------+ 

|     NULL |     NULL |     NULL |         0 |            1 | 

+----------+----------+----------+-----------+--------------+ 
This is called a three-valued logic. Instead of a statement being true or false, it can be NULL. This 

leads to many weird problems with NULL columns. Drupal (not by any conscious decision, mind you) 
doesn’t have many NULL columns which just by sheer luck avoids most of this madness. Alas, this is not 
consistent and sometimes you are forced to enter the NULL pit. 

There is even more to NULL than just the common-sense–defying three-valued logic, such as: 

CREATE TABLE test1 (a int, b int); 
CREATE TABLE test2 (a int, b int); 
INSERT INTO test1 (a, b) VALUES (1, 0); 
INSERT INTO test2 (a, b) VALUES (NULL, 1); 
SELECT test1.a test1_a, test1.b test1_b, test2.a test2_a, test2.b test2_b 
FROM test1  
LEFT JOIN test2 ON test1.a=test2.a 
WHERE test2.a IS NULL; 



CHAPTER 27 ■ SCALING DRUPAL 

643

+---------+---------+---------+---------+ 

| test1_a | test1_b | test2_a | test2_b | 
+---------+---------+---------+---------+ 

|       1 |       0 |    NULL |    NULL | 

+---------+---------+---------+---------+ 
There is, of course, no such (NULL, NULL) row in test2. But, LEFT JOIN uses this to display the 

result for so called anti-joins. These are used to SELECT rows from the first table where no matches are 
found in the second table. 

Now, if 1 = NULL is true, it would have found the single row you inserted into test2. It didn’t do that. 
1 = NULL, remember, is neither true nor false; it’s just NULL. But just from looking at the results this is 
absolutely not evident; after all, the results contain a test2_a being NULL and didn't the JOIN prescribe 
test1.a=test2.a? Yes, it did but in this particular case the JOIN part does not need to be true. The result 
has missing data that is indicated by a NULL and it has nothing to do with the JOIN. If you find this 
confusing, it is. Not only do you need to live with a three-valued logic but you need to make exemptions 
for LEFT JOINs. 

There’s one more database architecture detail to cover before I can show what the answers to these 
problems. The current SQL implementations are focused on transactions (the term comes from financial 
transactions but it can mean any unit of work the database executes). You will quickly see that the effects 
of this focus fly against the expectations of the user of web sites— as the expectations of a user of a web 
site are different from the expectations of a user of a bank. 

A CAP Between ACID and BASE 
The typical example of a transaction is sending money to someone else. This is a very complex process, 
but at the end of the day you expect that your balance is decreased by the amount you sent and the 
receiver’s balance is increased by that amount (minus fees). You also expect that once the bank has said 
“you sent money,” it is actually sent, no matter how long the actual sending takes (it’s completely 
ridiculous how long a so long called SWIFT transfer can take). Another expectation is that if the money 
disappears from your account, it will appear in the account of the other party, no matter what happens 
to the computer system of the bank. You certainly don’t expect your money to disappear without a trace 
if a computer crashes. A set of properties on the database is necessary to make transactions work 
according to these expectations—these are commonly abbreviated as ACID: 

• Atomic: Either the complete transaction succeeds or none of it. 

• Consistency: The database is in a consistent state between transactions. For 
example, if a record refers to another record and such a reference is invalid by the 
end of a transaction, then the whole transaction must be rolled back. 

• Isolation: Transactions do not see data changed by other transactions before those 
are finished. 

• Durability: Once the database system notified the user about the success of a 
transaction the data is never lost. 

On the other hand, most web applications want a whole different set of properties, aptly named 
BASE: 



CHAPTER 27 ■ SCALING DRUPAL 

644 

• Basically Available: Users have the silly expectation that when they point the 
browser to a web page, some kind of information appears. You expect this to 
happen even if some parts of the system you are reaching are down. This is not as 
trivial as it sounds; there are many systems where if one server goes down, the 
whole system goes down.  

• Scalable: Adding more servers makes it possible to serve more clients. Adding 
more servers instead of trying to create a single huge monster server is much more 
future-proof and usually cheaper, too. Once again, this is a user expectation: 
information not just appears but it appears fast. (Note that this user expectation 
also requires performance not just scalability.) 

• Eventually Consistent: It’s enough if data eventually becomes available in all the 
places to which it is copied (you can have many copies, as described in the 
previous bullet point). The expectation is that the information appearing fast is 
somewhat current. When you post an ad to Craigslist, it does not immediately 
appear in lists and searches, which is not really a problem. It would be a problem 
if it took days for an ad to appear; no-one would use the site. 

On this last point, if you have a consistent system as described in the ACID property list, it is also 
“eventually consistent” because it follows a stronger requirement: data immediately become available 
for all copies. (I’ll get back to this one in detail just a little bit later.) 

It would be awesome if there were a database system that could be both ACID and BASE, but alas 
that's not actually possible. Remember that BASE was basically about having a system consisting of a big 
number of servers. If you mandate that all writes are strongly consistent, then every write needs to go out 
to every server and you need to wait until all of them finish and communicate back this fact. Now, if you 
have servers scattered in datacenters around the globe, then network problems can be expected. Let’s 
say a transatlantic link goes down—this is called a network partition. If you want consistency, then the 
system must go down together with the transatlantic link—even if all other servers are still up—because 
writes in Europe can't get to USA and vice versa so the parts will have inconsistent data. You need to give 
up something: either the Availability from BASE (system goes down to achieve consistency) or 
Consistency from ACID (you stay up but the system is inconsistent). In other words, out of Consistency, 
Availability, and Partition Tolerance (CAP), you can pick two but not three. So far, I have only defined 
consistency for databases, so it's time to be more generic about it: at any point in time it doesn’t matter 
which server responds to a request, all of them will provide the same answer. Availability, as described 
above, means that even when some servers go down, the whole system doesn't. Finally, partition 
tolerance means that some communication between two servers can be lost and yet the system will 
work. Note how "soft" these two criteria are, and yet they pose a hard problem when you want them 
together with consistency.  

I have just shown that the three parts of CAP don’t work together and I can show that any two can 
live together easily. If you made sure parts of the network never fail, then providing Consistency and 
Availability is not a problem. However unlikely this sounds, Google's BigTable, used by more than 60 
Google projects, is actually such a system. If you throw out Availability then the other two requirements 
are easily met: just don't switch on the servers, the data will stay consistent even if parts of the network 
fail. Finally, if you don’t care about Consistency then you can simply not replicate writes from one server 
to the next—this system will certainly not care about network partitions (because it doesn’t use the 
network at all) and if you reach a working server, it will answer something. While the latter two examples 
are extreme and don’t describe a useful system, the point is, once again, that while Consistency, 
Availability, and Partition Tolerance can't all live together, any two of them can. 

Once again, remember the tale of the coffee shop: in order to be able to employ more baristas (to 
scale) you need to accept that for a short time the customer is without money and without coffee 
(eventually and not immediately consistent). And people accept that even with a web application. If your 
comment takes a short time (even a few minutes) to appear to everyone in the world, that's fine. Of 
course, you expect it to appear to the poster of the comment immediately or at least as soon as the data 



CHAPTER 27 ■ SCALING DRUPAL 

645

is sent to the server and a reply has arrived. But for others, it takes some time to load a web page over the 
Internet anyway and so whether the server shows that new comment to those who have started loading 
the page just before or just after the Send button has been pressed matters little. It’s more important that 
the web page is always responsive (available) no matter how many are browsing at the same time 
(scalability). 

So while the SQL databases are mainly ACID compliant, databases that are BASE-focused fit a lot 
better with web applications. On top of that, the following databases take the vastly changed hardware 
and operating system possibilities into account to become an even better fit for these purposes. One of 
the first databases built along these principles is CouchDB which was first released in 2005. Cassandra 
was released to the public in 2008, and MongoDB was first released in 2009.  

It was also in 2009 that these new, non-relational database systems got the somewhat catchy 
“NoSQL” moniker. This is, of course, just a buzzword, as it would be possible to drive a non-ACID 
compliant database with SQL (in fact MySQL was using SQL for more than a decade without being ACID 
compliant) but the feature set of these database is so different from what SQL is geared to work with that 
it would be pointless to try. For example, none of these databases offer the ability to JOIN tables. 

As MongoDB is the best fit for many Drupal tasks, I will discuss it now in detail. 

MongoDB 
Getting started with MongoDB is super easy: just point a browser to try.mongodb.org. It provides a 
tutorial and lets you play with the database without downloading anything. If you want to use it on your 
own computer, you can download from mongodb.org/downloads and get up and running in no time; there 
is no complicated configuration file to write. The Drupal integration project is at 
drupal.org/project/mongodb. 

MongoDB fits Drupal 7 surprisingly well despite the fact that much of Drupal 7 development 
predated MongoDB. It's a database designed for the Web so it's no wonder it matches so well the world's 
best software for making web sites—Drupal. 

Basically, MongoDB stores JSON encoded documents (the actual difference is minor). A document 
is the rough equivalent of an SQL record. Any number of documents constitutes a collection, which is 
the rough equivalent of an SQL table. Finally, databases contain collections, much like MySQL databases 
contain tables. 

While a MySQL table can only have fixed records, a single MongoDB collection can store any kind of 
documents, like so: 

{ title: 'first document', length: 255 }, 
{ name: 'John Doe', weight: 20 } 

And so on. Anything goes. There is no CREATE TABLE command because one document can wildly 
differ from the next. 

Remember the problems with storing names in SQL? Not a problem here! 

 db.people.insert({ name: ['Juan', 'Carlos', 'Alfonso', 'Víctor', 'María', 'de', 'Borbón', 
'y', 'Borbón-Dos', 'Sicilias'], title: 'King of Spain'}) 

If you wanted to get a list of the documents of people named Carlos, you could run 
db.people.find({name: 'Carlos'}). It will find the king of Spain, regardless of where Carlos is in the list 
of names. 

Also, properties can be a lot more than just numbers or strings. 

   db.test.insert({ 
     'title': 'This is an example', 
     'body': 'This can be a very long string. The whole document is limited to a number of 
megabytes.', 
     'votes': 56,. 



CHAPTER 27 ■ SCALING DRUPAL 

646 

     'options': 
       { 
          'sticky': true, 
          'promoted': false, 
       }, 
     'comments': [ 
       { 
          'title': 'first comment', 
          'author': 'joe', 
          'published': true, 
 
       }, 
       { 
          'title': 'first comment', 
          'author': 'harry', 
          'homepage': 'http://example.com', 
          'published': false, 
       } 
      ] 
   }); 

So a document has properties (title, body, etc. in the previous example) and the properties can have 
all sorts of values, such as strings (title), numbers (votes), Booleans (options.sticky), arrays (comments) 
and more objects (also called sub-documents, an example is options). There is no limitation of how 
complex the document can be. There is, however, a limit on document size (it was 4MB for quite some 
time; it’s currently 16MB but plans call for 32MB); for most web pages this limit doesn’t pose a real 
problem. Sticking with this example, just how many comments will any post have? There’s space for 
several thousands. If that’s not enough, the actual body (which is never queried) can be stored 
separately. 

So compared to an SQL table, the major advantages are no need to specify schema ahead of the 
time, no fixed schema actually, and the values can be complex structures. 

Here are a few more interesting find commands against the document shown previously: 

db.test.find({title: /^This/}); 
db.test.find({'options.sticky': true}); 
db.test.find({comments.author': 'joe'}); 

As you can see the, the find command uses the same JSON documents as insert. The first find 
command shown uses a regular expression to find posts where the title starts with "This". The second 
shows how easy it is to search inside objects. The third shows that arrays of objects are equally easy. It's 
also possible to make all three of these queries indexed.  

If you look at a Drupal 7 entity with fields, it’s actually an object containing arrays. You can store 
and index those as a whole into MongoDB. And that’s what matters most: in SQL, while you could store 
entities that have the same structure (for example, nodes of the same type) in a single table, if you need 
to query across these (for example, to show all the recent content favorited by a user, regardless whether 
they are articles or photos), then you can’t index that query. Remember, to make such a query fast, you 
need to denormalize; in other words, keep copies of the data you need to query together in a single table. 
This is hard to maintain and slow to upgrade because every piece of data has so many copies. In 
MongoDB, you can easily do this cross-content–type query because all nodes can sit in a single table and 
you can just create an index on ‘favorite’ and ‘created’ and you’re all set. 

In summary, SQL is not able to store complex structures. While MongoDB is not the only solution to 
this problem, it is much simpler to implement and maintain than SQL's approach of using multiple 
tables and denormalization. This problem existed in Drupal 6 with CCK but became central in Drupal 7 
with entities and field API. 

http://example.com


CHAPTER 27 ■ SCALING DRUPAL 

647

To use MongoDB as the default field storage engine, add  

$conf['field_storage_default'] = 'mongodb_field_storage'; 

to settings.php (in sites/default or the relevant sites directory). If you are creating fields from 
code, then setting the 'storage' key of the field array also works. The UI doesn’t offer this choice so if you 
are solely using the UI, you can't pick the storage per field. 

There is even more to MongoDB than being a very nice field storage engine, although that’s 
probably the best thing about it. But it solves other problems, too. Once again, it’s not the only solution 
but it’s a very nice one. 

First, let’s look at some more features relating to writes. Let's increment the votes in our test 
document, like so:  

   o = db.test.findOne({nid: 12345678}); 
   o.votes++; 
   db.test.save(o); 

While this code works, it's ugly and prone to a race condition. Race conditions are the bane of 
developers as they are extremely hard to reproduce but can produce mysterious failures. Let’s look at an 
example. Here is what can happen in the listed order when two users try to vote: 

User A runs o = db.test.findOne({nid: 12345678}); -- votes are at 56. 

User A runs o.votes++ 

User B runs o = db.test.findOne({nid: 12345678}); -- votes are at 56. 

User A runs db.test.save(o); setting votes to 57. 

User B runs o.votes++ 

User B runs db.test.save(o); setting votes to 57. 

In MongoDB, you can do instead: 

   db.test.update({nid: 12345678}, {$inc : { votes : 1 }}); 

• User A runs this command, votes are incremented by 1 to 57 

• User B runs this command, votes are incremented by 1 to 58 

This is an atomic operation. There is no possibility for errors caused by a race condition. Note that 
update also operates with JSON documents; there are special update operators like $inc shown but it’s 
still the same syntax. 

You can also specify a multiple document update  

db.test.update({nid: {'$in': [123, 456]}, {$inc : { votes : 1 }}, {multiple:1}); 

and while single documents will be incremented atomically (without a race condition0, a multiple 
update is not atomic. When I listed transaction properties previously, I mentioned that in the context of 
a transaction, atomicity means that either all documents update or none. This is not the case here, as 
there are no transactions in MongoDB: it’s possible that the update of one document fails but has no 
consequence on the other documents, which update successfully. MongoDB also lacks another 
capability for transactions, namely isolation: while one document already is updated for every client, the 
others can still have their old values.  

Atomic per-document increments make MongoDB ideal to store various statistics. For example, you 
might want to store and display the number of times a node is viewed. First, add a numeric field to the 
node called ‘views.’ Next, you will see a little script that takes a node ID as an argument and increments 



CHAPTER 27 ■ SCALING DRUPAL 

648 

the value of the views field by one. Note that it emits the same headers Drupal does to stop browsers and 
proxies from caching it and finally, prints a 1x1 transparent GIF. 

<?php 
if (!empty($_GET['nid']) && $_GET['nid'] == (int) $_GET['nid']) { 
 define('DRUPAL_ROOT', getcwd()); 
 require_once DRUPAL_ROOT . '/includes/bootstrap.inc'; 
 drupal_bootstrap(DRUPAL_BOOTSTRAP_CONFIGURATION); 
 
 require_once DRUPAL_ROOT . '/sites/all/modules/mongodb/mongodb.module'; 
 $find = array('_id' => (int) $_GET['nid']); 
 $update = array('$inc' => array('views.value' => 1)); 
 mongodb_collection('fields_current', 'node')->update($find, $update); 
} 
 
header('Content-type: image/gif'); 
header('Content-length: 43'); 
header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT"); 
header("Expires: Sun, 19 Nov 1978 05:00:00 GMT"); 
header("Cache-Control: must-revalidate"); 
printf('%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c
', 71, 73, 70, 56, 57, 97, 1, 0, 1, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 33, 249, 4, 1, 0, 0, 0, 0, 
44, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 2, 68, 1, 0, 59); 

Now all you need to do is to save this as stats.php in your Drupal root, add an <img src="<?php 
print base_path() . 'stats.php?nid=' . $node->nid; ?>"/> in your node.tpl.php. By counting node 
views this way, even if the page is served from cache or Varnish, the view will be counted. 

Is this going to kill the site’s performance? That depends. It does cause a PHP hit every time 
someone loads a page, which may or may not be acceptable. For most sites, it’s OK. If the site works with 
that, MongoDB won’t cause a problem. Given that MongoDB works with the database in memory and 
occasionally writes back to the disk, writes are a lot faster as they need to happen only into memory. 
Also, it works hard to update values in place so that indexes don’t need to be updated needlessly. 

New in 2011 is the ability to not lose any writes even when using a single server. One of the biggest 
complaints about MongoDB was that because it was only writing back occasionally, data might get lost if 
the server crashed. Previously this was mitigated by making the application wait for the write to be 
replicated to another server, hoping that two servers won't crash at the same time. But now, if mongod is 
started with the –dur option, writes don’t get lost. 

Watchdog, Session, and Queue 
Drupal has other areas that write a lot: watchdog and session. The session subsystem keeps the user 
logged in; therefore it needs to write on every single page load. The fast writes of MongoDB make this a 
non-issue. Once you have mongod running and the Drupal module installed, just add 
$conf['session_inc'] = DRUPAL_ROOT 
.  '/sites/all/modules/mongodb/mongodb_session/mongodb_session.inc'; 
to settings.php (in sites/default or the relevant sites directory) and MongoDB takes over the sessions, 
speeding up the site again. 

Watchdog is problematic because if for some reason there are a lot of error messages (like a massive 
worm outbreak that tries to retrieve nonexistent URLs), a SQL table might grow into such sizes that the 
only viable option is to trash it completely (TRUNCATE). Deleting older rows might not be able to catch 
with the torrent of writes, plus writes are a bit slow. The traditional solution is to use syslog, which is just 
a text file so it’s not the simplest to query it. With MongoDB, you can specify that a collection should 



CHAPTER 27 ■ SCALING DRUPAL 

649

only keep the last N documents and then automatically start over, overriding the oldest messages, so 
there never will be more than the specified number of messages, making it easy and convenient to 
query. Also, the Drupal implementation of watchdog puts different messages into different collections so 
there won't be more than the specified number of messages recorded for each message. For example, 
“comment created” messages won't be crowded out by php error messages. To use this facility, enable 
mongodb_watchdog and disable dblog modules. 

Finally, Drupal 7 has a message queue, which can also be implemented with MongoDB. There are 
many queues but if you have already deployed MongoDB for field storage, watchdog, and session, then 
just the write speed of MongoDB is handy enough here to use it instead of SQL. Just add 
$conf['queue_default_class'] = 'MongoDBQueue'; 
to settings.php and you’re done. You have seen how to utilize MongoDB as a field storage engine, to 
store session data, to log watchdog messages, and as a queue mechanism. It's also possible to use it as a 
cache but for that purpose memcache is simply better (because of the trivial scalability of it). 

Null Values in MongoDB 
So far you have seen how MongoDB solves some of the SQL problems. Let’s see if it ameliorates SQL's 
previously-discussed weirdness with NULLs (and while you do that, you’ll learn more about MongoDB 
and see more examples on MongoDB queries). 

The way MongoDB handles NULL is a little bit saner than SQL but it surely has its own NULL quirks. 
The following find is completely valid and shows that NULL values need no special operator: 

db.test.find({something:null}) ; 

This will find the documents where something has a NULL value. Very easy. NULL is a type in itself 
and comparing different types are always false because MongoDB is strictly typed and never casts values 
for you. So comparing a number to NULL is always false but the same is true to comparing a number to a 
string. This is not really a problem—just something you need to be aware of. An example will be shown 
soon. At least MongoDB does not employ three-valued logic; comparisons can only be true or false, 
never NULL. 

However, there is a caveat to NULLs: nonexistent values are treated as NULLs. 

> db.test.drop()  
> db.test.insert({a:1}); 
> db.test.insert({something:null}); 
> db.test.insert({something:1});    
> db.test.find({something:null}); 
{ "a" : 1 } 
{ "something" : null }# 

To actually find what you wanted, do this: 

> db.test.find({something:{$in: [null], $exists:true}}); 
{ "something" : null } 

The new operators are $in and $exists. And here is the example for comparing NULL to 1: 

> db.test.find({something: {$gte: null }}); 
{ "a" : 1 } 
{ "something" : null } 

Once again, the first document doesn’t contain a something property so when comparing, it 
matches. The second document contains a something: NULL pair and the operation is “greater than 



CHAPTER 27 ■ SCALING DRUPAL 

650 

equal” ($gte) so it matches again. You have a document where something is 1 but that won’t match—
NULL is not zero. 

Summary 
As you’ve seen, thinking about scaling in the early stages of a site is not always a high priority. However,
it always pays to think about it early before your headaches really start. This chapter went over why you
should care about scaling early and what techniques are available in Drupal 7 to sort out scaling. 

The main focus was on databases, because they are absolutely integral to scaling in Drupal. Caching
and the like are of course useful, too, so you looked into that as well. All in all, this chapter's changes will
take your Drupal site some way towards scaling effectively. 

■  Tip  Stay up to speed with occasional updates, discussion, and resources at dgd7.org/scale. 



C H A P T E R   28 
 

■ ■ ■ 

651

Spice Your Content Up 

With Tasty Semantics 

by Stéphane Corlosquet 

It used to be that search engines had to guess which parts of a page to show to make your site look 
relevant and attractive in their search results. Now Drupal gives you the tools to clearly express what 
meaning your content carries, thus helping other applications on the Web to truly understand your site 
and reuse your content in potentially useful and attractive ways (see Figure 28–1). 

 

Figure 28–1. Drupal offers the tools to clearly express your content. 

Thanks to the semantic markup used on this recipe page, it shows up in a Google search for Thai 
mango salad with a picture and the rating users on the site gave it. When your web site’s pages provide 
information in ways that machines can understand, Google can give selected pieces of information 
(such as the picture and the rating) a privileged place in its presentation of the search engine results 
page (SERP). 

With Drupal 7, you can easily add semantic markup to your pages. The ways to do this through your 
site’s user interface will be covered in the RDF UI section. The challenge and promise of the growing 
Semantic Web are much greater, however, and Drupal 7 is set to play an important role helping you both 
navigate and build this information-rich future. 

Information Overload 
The Web contains more than 20 billion publicly available pages, to which one can add 900 billion deep 
pages1 (password-protected pages or dynamic pages generated after a search). If you combine all the 
personal computers, data servers, and other devices connected to the Web, the online storage capacity is 

                                                

1 LLRX, “Deep Web Research 2007,” www.llrx.com/features/deepweb2007.htm, 2006. 

http://www.llrx.com/features/deepweb2007.htm


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

652 

estimated to be above 600 exabytes (that’s 600 billion gigabytes). Together with the fact that memory is 
cheap and an ever growing number of users are joining the Web, the amount of information we, as 
humans, process on a daily basis is skyrocketing. It’s crucial to understand that without the help of the 
machines, we won’t be able to digest this information overload.  

But aren’t we already using machines today to surf the Web? Yes, we are, but we’re not using them 
to the best of their ability; you still need a human reader in order to understand the structure and 
content of most web pages. Search engines like Google, Yahoo!, and Bing are constantly harvesting pages 
on the Web and mirroring them into their server farms in order to achieve very fast search results for end 
users. But there’s something broken here. All the search engines have access to are HTML pages or plain 
text in PDF files. RSS feeds provide more structured information in the form of XML, but it is limited to 
title, date, and content; it can’t express the type of item (news, blog post, user profile, item for sale, 
event), nor can it express the amount of reviews, the image, or the price.  

It is fairly trivial for the human brain to identify the various bits of information on a page and guess 
what type of information it is reading: text, date, or image. The same goes for the relationship between 
the elements of the page and what they refer to. (Is this the name of the author who wrote the page or 
the topic of the page?) These exercises are much more challenging for machines as they lack the ability 
to infer this sort of knowledge from contextual clues that we, as humans, use throughout our day-to-day 
lives.  

In other words, a machine visiting a web site will mostly see plain text that links to other pages or 
images. Experts have to run many complex algorithms to attempt to reverse engineer the process used to 
put the page together. A very simple, resource-intensive example is to find dates in a page using regular 
expressions by searching for slash-separated digits. With a date like 08/07/10, how could a machine 
guess whether the date is July 8th or August 7th when even an English reader and an American reader 
would read this date differently? Machines need a clear, non-ambiguous way to interpret this 
information.  

The same thing goes for words. What would a machine infer when coming across the word “apple?” 
Many terms in the English language have several meanings and nuances. The Semantic Web is a set of 
tools and standards designed to tackle these issues by adding a layer of semantics on top of the Web that 
we know today. It’s important to understand that the Semantic Web is not trying to replace the existing 
Web, but rather enhance its content with clues for machines to understand context, as if a Web chef was 
adding spices to blend content in order to make it more tasty and meaningful for machines. 

The Semantic Web has had increasing real world impact over the years and was recently adopted by 
the big players on the Web. Among all the Semantic Web standards, RDFa (RDF in attributes) is the one 
that has seen the largest adoption. In 2008, Yahoo! Search Monkey initiated the trend by supporting RDFa-
enabled pages. Google followed with its Rich Snippets a year later. In April 2010, Facebook announced they 
were using RDFa as part of the Open Graph protocol, which has since been deployed on millions of web 
pages. You have probably come across RDFa-enhanced web sites without even knowing it: the White 
House, O’Reilly, Best Buy, The New York Times. And you can also add most Drupal 7 sites to that list. 

THE RESOURCE DESCRIPTION FRAMEWORK 

The Resource Description Framework (RDF) is a set of W3C specifications for modeling information. In 
RDF, each piece of information or statement contains a subject, verb, and object, much like basic 
sentences in natural language. When combined together, these statements can model knowledge about 
many things. Let’s take the example of a recipe for an apple pie. It takes 30 minutes to prepare and has 25 
reviews. In RDF, each statement follows the same structure of subject-verb-object, so here’s how the 
previous sentence would be expressed: 

[recipe] - [name] – "Apple pie" 
[recipe] - [preparation_time] – "30 min" 
[recipe] - [number_reviews] – "25" 



CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

653

This subject-verb-object pattern used to assert basic elements of information is sometimes called a triple 
in RDF jargon. The verb is often referred to as a predicate or a property. To ensure interoperability on the 
Web, it is crucial to reuse the same verbs so that when someone else reads this recipe, they understand 
what the number 25 represents. In natural language this is achieved by agreeing on a common meaning 
for the words we use. For machines, and in RDF, this is done via the use of URIs. Linked Data2 best 
practices encourage the use of HTTP URIs because they provide a means for machine and humans alike to 
look up the meaning of a verb. If you are unsure about what a verb means, you can just paste it in your 
browser to find out more about it. This process, known as “following your nose,” can also be used by 
machines to discover the meaning behind a URI. It’s similar to looking up a word in a dictionary.  

These dictionaries in RDF are called ontologies, vocabularies, or schemas. They contain a set of definitions 
for the URIs specific to a given topic. One popular example is the Friend of a Friend (FOAF)3 vocabulary that 
includes terms to describe people and their friends. This enables exciting possibilities for machines to 
learn and infer new knowledge, such as if two verbs from different vocabularies are in fact synonyms, or if 
a particular verb brings a set of extra statements. For instance, using foaf:img in an RDF statement implies 
that the subject is a person and that the object is an image. 

Note the shorthand notation of foaf:img to refer to the img verb of the FOAF vocabulary. This notation is the 
CURIE syntax4 (for Compact URI) and is useful to avoid using full URIs, which tend to be verbose and error-
prone. CURIEs are always used within a context where the prefix used before the semi-colon is bound to 
the namespace of the vocabularies. In the case of foaf:img, the foaf prefix is bound to the FOAF 
namespace http://xmlns.com/foaf/0.1/ as defined in the FOAF vocabulary specification. The full URI 
for foaf:img (the one that refers to the img term) is the concatenation of the namespace and the term: 
http://xmlns.com/foaf/0.1/img. 

Let’s look at another example where RDF can be useful: web page metadata. The following describes the 
title, creation date and one of the topics of a webpage: 

<http://example.org/home.html>    dc:title      "Joe's homepage" 
<http://example.org/home.html>    dc:created    "Dec 1, 2005" 
<http://example.org/home.html>    dc:subject    "London" 

Note the new prefix here: dc, which in the context of the example refers to Dublin Core, a vocabulary used 
to describe physical resources (e.g. books) as well as digital items like video, text files, or web documents. 
The dc prefix is generally bound to the namespace http://purl.org/dc/terms/. 

The object of the last statement is a string. Another feature of RDF is that it allows the object to be a URI, 
so the last statement could be 

<http://example.org/home.html>    dc:subject    <http://dbpedia.org/resource/  
London,_Ontario> 

The advantage of using a URI instead of a string is to avoid any ambiguity that a plain text string would 
have. Secondly, the URI can also provide the coordinate of the city and country where it’s located, some 
pictures, various statistics, and much more information than what a string alone can express. 

                                                

2 W3C, “Linked Data,” www.w3.org/DesignIssues/LinkedData, 2006. 

3 XMLNS, “FOAF Vocabulary Specification 0.98”, http://xmlns.com/foaf/spec/, 2010 

4 W3C, “CURIE Syntax 1.0: A syntax for expressing Compact URIs,” www.w3.org/TR/curie/, 2010. 

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/img
http://example.org/home.html
http://example.org/home.html
http://example.org/home.html
http://purl.org/dc/terms/
http://example.org/home.html
http://dbpedia.org/resource/%ED%AF%80%ED%B0%81London,_Ontario
http://dbpedia.org/resource/%ED%AF%80%ED%B0%81London,_Ontario
http://www.w3.org/DesignIssues/LinkedData
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/curie/


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

654 

Note that knowledge representation in RDF is very generic and not bound to any particular syntax. This 
means you can embed RDF in a variety of languages such as HTML, JSON, XML, RSS, and Atom.  

Continuing with the analogy of natural language, the same information can be expressed in many different 
ways: ideas and concepts can be expressed as words (in English, French, etc.) or diagrams (whiteboard 
style or the ancient hieroglyphs).  Similarly, a photo can be saved as a jpg file, a png file, or printed on a 
piece of paper; all these mediums carry essentially the same information contained in the photo. Typically, 
you would choose the medium or language that works best for you and the recipient with whom you want 
to communicate: if you’re chatting with your Spanish friend, you might speak Spanish, or if both parties 
are comfortable with English, you might choose English. Similarly, RDF offers various formats to express or 
serialize the same information. In the context of web pages, RDFa (RDF in attributes) is the most 
appropriate syntax because it offers to embed RDF directly in HTML via the addition of a thin layer of 
attributes. 

How Did We Get There? 
Any source of data tends to be made available on the Internet so that it can be shared, reused in 
accordance with the license of the site, and mashed up with other data. Content management systems 
like Drupal help people to produce content online. Whether it’s via self-hosted web sites, software as a 
service (SaaS), or free platforms (such as Facebook, Twitter, MySpace, or Gmail), ordinary users of the 
Web have many ways to produce content online.  

From the 140 character update on Twitter to the four paragraph blog post to the one hundred page 
PDF documentation, all these pieces of information land on the Web in one form or another. Some are 
public; others are behind firewalls or password-protected. Much of this content ends up being visible as 
HTML, although other formats exist, like text files, PDF documents, and images. Some of this data 
results directly from the content the user has put on the Web (content, ideas, thoughts) but there is also 
a lot of metadata surrounding this user input, like the date it was entered, the number of page visits, or 
the number of comments the page has received.  

Navigating the Web and contributing to it has become very easy with the wide adoption of the 
browsers like Mozilla Firefox and Google Chrome; these browsers are now available on a variety of 
platforms such as desktop computers, laptops, tablets, and mobile devices. E-mail clients are another 
means to publish content on the Web; mailing lists are a good example. 

Decentralized Dataspaces 
When Sir Tim Berners-Lee created the World Wide Web in 1990, he envisioned a globally distributed 
information space in which everyone was free to say anything about anything without having to deal 
with heavy bureaucratic procedures, corporate policies, or any form of centralized control authority. 
Most importantly, this information space was to remain free and open for every single person: you may 
have to pay your local Internet Service Provider (ISP) for the service to get access to this information 
space, but once you’re connected to it, you’re free to do what you want. Each user can own her 
dataspace and can claim what she thinks is true, share her ideas with the rest of the world, and link to 
other people’s dataspaces in agreement or disagreement.  

Web applications such as Drupal empower Internet users to build their own dataspace, create 
content, and link it to other dataspaces. The collection of all these dataspaces is what is commonly called 
the Web, built on top of the Internet infrastructure that has been developing since the 1960s.  



CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

655

Linking Data at the Global Web Scale 
Before you dive into the details of Drupal and RDF, it’s important to understand another aspect of the 
Semantic Web and how it allows you to address information beyond the boundaries of your web site. 
Most applications store their data using the concept of foreign keys, which allows them to address each 
data item in their database and find the data relating to each data item easily across tables. This works 
well on a closed system where it is easy to enforce constraints on these foreign keys, such as making each 
identifier unique. This does not work on a global scale because each site on the Web does not rely on a 
centralized authority for assigning identifiers.  

While my user ID on my personal site is 1, it does not mean I have the same user ID on all sites on 
the Web. On drupal.org, my user ID is 52142 and on groups.drupal.org it’s 3258. Likewise, my username 
on identi.ca is “scor” but on twitter this username was already taken so I had to choose the username 
“scorlosquet” instead. The bottom line is that talking about plain IDs or usernames does not mean 
anything in a totally distributed system such as the World Wide Web and is ambiguous at best!  

To work around this, RDF uses URIs (Uniform Resource Identifiers) as a means to name and 
address resources on the Internet. URIs look much like URLs, starting with http:// or https://. So instead 
of referring to a user as an integer, RDF will use strings of the form “http://drupal.org/user/52142”. 
With that, we can claim things like http://drupal.org/user/52142 and 
http://groups.drupal.org/user/3258 are two user profile pages of the same person. With URIs, each 
web site can own its dedicated namespace and create as many resources as needed without having to 
consult with anyone else. Drupal typically will assign an ID to each user and build their URI as 
http://sitename/user/{userid}; ditto for nodes, taxonomy terms, etc. This path can be customized using 
URL aliases; Drupal will ensure that each URL alias points to a unique resource on your site and thus 
avoid any ambiguity. 

Now that you’ve seen the importance of URIs, you can move along and see in what context they are 
useful. You’ve learned that a username is meaningless on the Web without some kind of namespace, 
such as the web site to which it belongs. Beyond this use case, think of the problem of ambiguity when 
talking about concepts, such as tagging a blog post with “apple.” You’re back to using a string for 
identifying a potentially ambiguous concept, and like the username case, this is something RDF can help 
you with. You could host your concepts yourself on your namespace, but for common concepts like 
“name” or all the countries in the world, it makes more sense to use a somewhat agreed upon 
centralized repository. 

Wikipedia5 contains a huge amount of information about objects, concepts, famous people, cities, 
countries, organizations, etc. Each entry has a URI on Wikipedia that displays some information about 
the topic at hand. Talking about “apple” can mean either the fruit or the company. If you were instead 
using URIs, you could easily get rid of any ambiguity; http://en.wikipedia.org/wiki/Apple is about the 
fruit and http://en.wikipedia.org/wiki/Apple_Inc describes the company. Making this distinction 
might not be necessary for humans who understand from the context which meaning was intended, but 
it’s crucial for machines. The more sites that use the same identifiers, the easier it is for machines to 
make cross references to infer whether a set of posts is talking about the same topic or not. 

                                                

5 Wikipedia (http://en.wikipedia.org/) is an online multilingual encyclopedia composed of more than 17 millions 
articles. Dbpedia (http://dbpedia.org/) is a separate project aiming at extracting structured information from 
Wikipedia and making it available online as RDF. With DBpedia it becomes possible to run complex queries against 
Wikipedia content and to reuse this data more easily within RDF applications. 

http://drupal.org/user/52142%E2%80%9D
http://drupal.org/user/52142
http://groups.drupal.org/user/3258
http://en.wikipedia.org/wiki/Apple
http://en.wikipedia.org/wiki/Apple_Inc
http://en.wikipedia.org/
http://dbpedia.org/


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

656 

Do You See What I Mean? 
Drupal offers a user-friendly interface to produce HTML. When submitting data, Drupal will typically 
store it in the database and then process it to build the HTML output. Drupal knows exactly from which 
tables and columns the data should be pulled; when building the page, it knows what corresponds to the 
title of the page, the date it was created, and its main content. It knows the current version of the node 
and can pull it from the right database record. However, once it has put together the page as HTML, all 
this structure is lost; the actual data is laid out on the page properly and formatted for the human eye, 
but the semantics have been lost.  

The first versions of HTML were not designed to make this structure explicit to machines, but 
imagine if HTML tags offered a way to specify what type of data the tag contains and how it related to 
other pieces of information on the page or on other pages of the Web? This is what a recent World Wide 
Web consortium working group addressed in the “RDFa in XHTML” W3C Recommendation,6 released in 
October 2008. 

RDFa, or How HTML Can Be Augmented with Semantics 
From a web developer perspective, RDFa is no more than a few XHTML attributes that can be added to 
web pages in order to explicitly state the semantics of the data contained in the HTML tags (see Figure 
28–2). The RDFa markup does not change the way the page is rendered in a web browser; it looks just the 
same to the user. However, the difference is visible to any RDFa-capable software reading the page 
because it can understand the semantic markup.  

Web browsers can then enhance the user experience depending on the type of data the page 
contains: some browser extensions can, for example, provide additional functionalities based on the 
RDFa markup contained in the page. Search engines typically also make great use of this data, as it 
allows them to better understand the information at hand and display it accordingly in search results; 
it’s easy to extract the title, the date, and an image for the page, which can drastically improve the 
visibility in search results and aid the search engine optimization (SEO) of a given site. The price, ratings, 
and the number of reviews are also relevant elements that can drive more traffic to an e-commerce site. 
Yahoo! has reported up to 15 percent increase in click-through rate due to RDFa 
(www.slideshare.net/NickCox/ses-chicago-2009-searchmonkey). 

                                                

6 W3C, “RDFa in XHTML: Syntax and Processing,” www.w3.org/TR/rdfa-syntax/, 2008. 

http://www.slideshare.net/NickCox/ses-chicago-2009-searchmonkey
http://www.w3.org/TR/rdfa-syntax/


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

657

    

Figure 28–2. By adding a few simple XHTML attributes to existing HTML tags, RDFa enriches the content 

of a webpage with machine-readable hints. 

The RDFa processing model relies on a DOM traversal technique where each DOM element is 
visited, starting from the document object and making its way to each child element in a recursive 
manner. RDFa is best explained with some basic examples. Remember that RDFa is all about adding 
attributes to existing XHTML markup. First of all, some adjustments need to be made to the top of the 
XHTML template so that they are compliant with the RDFa specification. 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" 
  "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" version="XHTML+RDFa 1.0" dir="ltr"> 
<head profile="http://www.w3.org/1999/xhtml/vocab"> 

Secondly, let’s set some prefixes so you can use the CURIE syntax discussed in the section on RDF. 
This is done in the HTML tag using the syntax xmlns:prefix="http://somenamespace.org/". For FOAF, it 
would be 

xmlns:foaf=http://xmlns.com/foaf/0.1/ 

Drupal 7 takes care of all of the above and includes a set of commonly used namespaces. Modules 
can declare additional prefixes and namespaces. 

You are now all set to start using RDFa markup in your HTML document. To denote the attributes in 
HTML, we’ll prefix them with an at sign (@). The RDFa attributes are @about, @content, @datatype, @href, 
@property, @rel, @rev, @resource, @src, and @typeof. Each RDFa attribute will have an effect on how RDF 
statements are built from the structure and the content of the HTML document. You might recognize 
some of these attributes (rel, href, or src), and you will soon see what role they play in RDFa and how 
RDFa can reuse existing attribute values. 

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml/vocab
http://somenamespace.org/
http://xmlns.com/foaf/0.1/


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

658 

The attributes @property, @rel, and @rev specify the verb of an RDF statement. To understand how 
they work, it’s best to look at the following examples: 

<h1 property="dc:title">Joe's homepage</h1> 
<div rel="sioc:has_creator"><a href="/user/9">John Smith</a></div> 

dc:title and sioc:has_creator are two different RDF verbs that specify the title and the author of a 
page. In the first example, the @property forces the object of the RDF statement to be a string. In the 
second example, the @rel is used instead of @property in order to force the object of the statement to be 
a URI pointing to the author page; in other words, it’s a resource as opposed to a simple string. Doing so 
allows the markup to include much more information about the author than if it was just a string. The 
author resource can include not only his name, but his bio and links to his other articles, allowing for 
content discovery.  

An exhaustive description of RDFa is beyond the scope of this chapter, so please consult the RDFa 
primer at www.w3.org/TR/xhtml-rdfa-primer/ for a more detailed understanding of how RDFa markup is 
processed. See also these excellent articles on RDFa published in the A List Apart Magazine:  

www.alistapart.com/articles/introduction-to-rdfa/  
www.alistapart.com/articles/introduction-to-rdfa-ii/ 

RDFa, Microformats and Microdata 
RDFa is not the only syntax for adding semantics to HTML. Microformats (microformats.org) were the 
first syntax to see a wide adoption by the web developer community. However, Microformats were never 
standardized and due to its design, the development of its vocabularies (hCard, vCard, etc.) was 
centralized and limited to one organization. RDFa, on the other hand, can be freely extended due to the 
nature of RDF: external vocabularies can be combined and custom domain-specific vocabularies can be 
built when needed. RDFa also benefits from all the work that has been put into the Semantic Web stack 
in the last decade. Many tools are available for parsing, storing, and querying RDF data. Most notably 
SPARQL en.wikipedia.org/wiki/SPARQL, the RDF querying language similar to SQL for relational 
databases, allows running queries over data federated from any RDF source.  

RDFa has been a W3C standard since 2008 and has been adopted by many prominent companies on 
the Web such as Google, Facebook, BBC, and Best Buy. Recent research from Yahoo! shows that RDFa 
saw an explosive growth in 2010 and is the fastest growing data markup format 
(http://tripletalk.wordpress.com/2011/01/25/rdfa-deployment-across-the-web). Microdata 
(www.whatwg.org/specs/web-apps/current-work/multipage/links.html#microdata)  is a new syntax part 
of the HTML5 specification, which is still under development at the time of this writing. Microdata 
shares more in common with RDFa than microformats, such as the use of URIs to allow for extensibility. 
Microdata and HTML5 were still too new during the development phase of Drupal 7, and the more 
established RDFa standard was more promising and a better fit to Drupal’s native XHTML output. While 
version 1.0 of RDFa is only valid with XHTML markup, the upcoming RDFa 1.1 will allow RDFa in both 
XHTML5 and HTML5. See the HTML+RDFa 1.1 draft document at http://dev.w3.org/html5/rdfa/. 
RDFa 1.1 also includes feedback from the microformats and the microdata communities, allowing for a 
simpler syntax and more use cases. Given that RDFa 1.1 is backward compatible with Drupal 7 RDFa 1.0 
markup, expect to see RDFa-enabled HTML5 pages soon on Drupal 7. Join the conversation on HTML5 
in Drupal at http://groups.drupal.org/html5. 
 

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.alistapart.com/articles/introduction-to-rdfa/
http://www.alistapart.com/articles/introduction-to-rdfa-ii/
http://tripletalk.wordpress.com/2011/01/25/rdfa-deployment-across-the-web
http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html#microdata
http://dev.w3.org/html5/rdfa/
http://groups.drupal.org/html5


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

659

Drupal 7 and the Semantic Web 
You might have already noticed an rdf folder while browsing Drupal 7’s modules directory or seen it on 
the Modules page in the administration interface. If you have installed the standard profile, this module 
will be already enabled (see Figure 28–3). 

 

Figure 28–3. Make sure the RDF module is enabled by visiting the Modules page in the administration 

section of your site. 

All the work of the RDF module happens behind the scene. In fact, it does not include any user 
interface and only provides an API for other modules to use (much like the Field module). Many 
modules in core leverage the RDF module, including Node, Comment, User, Taxonomy, Forum, Blog, 
and Tracker. 

The RDF module does essentially two things: it describes the data structure of a Drupal site in terms 
of RDF mappings (which relates a Drupal field to one or more RDF terms) and then takes these 
mappings and inserts them into the HTML output in the form of RDFa attributes. The RDF module takes 
advantage of the new concepts of entities, bundles, and fields introduced in Drupal 7. Let’s have a closer 
look at the lifecycle of these RDF mappings. 

Starting at the higher level, entity types such as node have a set of attributes like title or date that can 
be mapped to an RDF property. Whenever this value is output in HTML, this RDF property can be added 
to the HTML, so that agents looking at this HTML from an outside point of view can still understand a 
piece of data’s origin and significance. A very simple example of a node whose title is “My trip to 
Belgium” would then be output to HTML as 

<h2 property="dc:title">My trip to Belgium</h2> 

Note the extra property attribute that is added to the wrapping h2 tag, indicating clearly the title of 
the node. Aside from the attributes of an entity type, a special kind of mapping exists for the actual type 
of an entity. This might sound redundant from a Drupal standpoint, but remember that the RDF 
mappings are there to help external applications that do not know anything about the internal structure 
of your web site.  

The entity type is yet another element of information that gets lost and does not appear clearly in 
the HTML, but the RDF module offers a chance to solve this with the rdftype key of the RDF mapping 
structure (see Listing 28–1). This RDF-type mapping will appear accordingly in the page in the form of 
RDFa. 

Listing 28–1. RDF Mapping Structure for the User Entity Type as Defined in user.module 

/** 
* Implements hook_rdf_mapping(). 
*/ 
function user_rdf_mapping() { 
 return array( 
   array( 
     'type' => 'user', 
     'bundle' => RDF_DEFAULT_BUNDLE, 
     'mapping' => array( 
       'rdftype' => array('sioc:UserAccount'), 



CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

660 

       'name' => array( 
         'predicates' => array('foaf:name'), 
       ), 
       'homepage' => array( 
         'predicates' => array('foaf:page'), 
         'type' => 'rel', 
       ), 
     ), 
   ), 
 );
} 

The second level of the RDF mapping lifecycle happens with the content types and other bundles
(see Chapter 18). Entity types never get instantiated as such; they first go through a level of specialization
to become bundles, where they can get other optional features such as revisions, comments, taxonomy,
and most importantly, fields. An entity type with a small set of attributes can suddenly be extended with
a customizable set of fields depending on the needs of the site administrator. Fields can be attached to
bundles via the Field user interface that is part of Drupal 7 core. 

The same can be done programmatically, such as in the Drupal 7 standard profile. Nodes are the
ideal use case for understanding the concept of a bundle: when installing Drupal 7 with the standard
profile, you will find two predefined content types: Article and Basic Page, which are simply two bundles
of the node entity type. While these two content types share some attributes such as title and date, they
have a different set of fields. For example, Basic Page has a title and a body, while Article comes with
some additional fields: tags and image. Each bundle will inherit the RDF mapping structure of its parent
entity type.  

This is very convenient in the case of nodes where some attributes are common to all bundles and
are unlikely to change (such as the title and date). Similarly to the way the RDF mappings are defined for
each entity, they can be defined for each bundle when necessary. Most of the time, because each bundle
inherits the entity type RDF mapping structure, it is only necessary to specify the RDF mappings for the
fields specific to a bundle, as shown in Listing 28–2. Note how only the RDF mappings for the specific
fields need to be specified. 

Listing 28–2. RDF Mapping Structure for the Article Bundle as Specified in the Standard Installation 

Profile  

   array( 
     'type' => 'node', 
     'bundle' => 'article', 
     'mapping' => array( 
       'field_image' => array( 
         'predicates' => array('og:image', 'rdfs:seeAlso'), 
         'type' => 'rel', 
       ), 
       'field_tags' => array( 
         'predicates' => array('dc:subject'), 
         'type' => 'rel', 
       ), 
     ), 
   ), 

Note that the RDF mapping structure for the bundle and entity type are similar, the only difference
being that an RDF mapping structure affecting an entity type must specify RDF_DEFAULT_BUNDLE as
the value for the bundle key. By contrast, an RDF mapping structure for a bundle should explicitly state
what bundle the mapping is for. 



CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

661

Understanding the Structure of RDF Mappings 
An RDF mapping is a nested associative array defining a relation between Drupal’s internal attributes 
and meaningful RDF predicates, which are designed to be understood by and interoperate with external 
applications. A mapping structure contains three required keys. The type and bundle keys refer 
respectively to the entity type and the bundle to which the RDF mappings pertain. The third key, 
mapping, lists the Drupal attributes that should be mapped to RDF.  

Besides the special rdftype key that was described earlier, the other keys refer to either Drupal 
custom attributes (title, date, author) or to fields defined by the core Field module. Each item contains 
an array listing the RDF predicates of this attribute in the predicates key. This is sufficient when dealing 
with a string value (such as the title of a node or the name of a user in Listing 28–1). But when dealing 
with attributes that refer to some other resource with a URI (link, image, or another entity), the 
developer should specify a type for a mapping element. This type indicates the direction of the relation 
between the two resources with regards to the RDF predicate used.  

In most cases, type => rel is what’s required; the rel relationship indicates that the parent HTML 
element is the subject. For instance,  

<div>Lora is interested in <a rel="foaf:interest" href="http://drupal.org">Drupal</a></div>  

states that the user Lora is interested in Drupal. 
The rev value can be used when a reverse relation is needed, like so:  

<div about="http://drupal.org">Drupal is interesting to <a rev="foaf:interest"  
 href="user/5">Lora</a></div> 

This nuance in direction is inherited from the RDF model, which is based on directed graphs. It is 
generally easier to use the rel type; few developers will need to use the reverse type. Thus, the rel type for 
any non-string linkage is all you need to bear in mind. 

Going back to Listing 28–2, the Drupal 7 standard installation profile maps the field_image of the 
article bundle to the og:image RDF predicate. In other words, it links each article node to its image via 
the og:image directed relation. This relation is automatically reflected in the form of RDFa inside the 
HTML output of the page, clearly helping any application such as a search engine understand what 
image is associated with an article. The same thing goes for the field_tags field mapping element, which 
makes an explicit semantic relation between an article and the subjects it covers via the dc:subject 
predicate. Once these relations have been established in the RDF mapping structure, the RDF module 
will take care of adding them where they need to be in the HTML markup; the developer does not need 
to worry about placing the RDFa elements. 

Working with RDF Mapping Structures 
Drupal developers have basically two options for working with RDF mappings. Module developers who 
create their own entity types and bundles are encouraged to use hook_rdf_mapping() in order to 
associate RDF predicates with their attributes. Drupal core modules should be used for reference 
(namely Node, User, Comment, and Taxonomy). 

Secondly, in keeping with Drupal’s traditions of extensibility and flexibility, the RDF module also 
provides API functions to alter the RDF mappings defined by the modules. This is what the standard 
installation profile uses in order to add RDF mappings to the image and tag fields upon installation, right 
after creating these fields and attaching them to the article bundle via the Field API. All RDF mappings 
defined with these CRUD functions are stored in the database. The CRUD functions 
rdf_mapping_load(), rdf_mapping_save(), and rdf_mapping_delete() can be used to specify the RDF 
mappings of new bundles and fields, as well as alter existing RDF mappings that have been saved to the 
database on module installation and are not alterable without the CRUD API. Listing 28–3 is an example 

http://drupal.org
http://drupal.org


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

662 

of altering some of the mappings of the article content type. Note that only the RDF mappings of the 
fields to change need to be specified. 

Listing 28–3. PHP Code Example to Alter Some RDF Mappings  

$article_rdf_mappings = array( 
  'type' => 'node', 
  'bundle' => 'article', 
  'mapping' => array( 
    'field_image' => array( 
      'predicates' => array('og:image', 'rdfs:seeAlso'), 
      'type' => 'rel', 
    ), 
    'field_tags' => array( 
      'predicates' => array('dc:subject'), 
      'type' => 'rel', 
    ), 
  ), 
); 
rdf_mapping_save($article_rdf_mappings); 

RDF Vocabularies in Drupal 7 
As you saw earlier, many schemas already exist on the Web, and some of them are quite well understood 
by applications like search engines. The major vocabularies that Drupal 7 uses are as follows: 

• Dublin Core caters to online media such as generic documents, news articles, or 
date of publications. See the Dublin Core specification at 
http://dublincore.org/documents/dcmi-terms/. 

• Friend of a Friend (FOAF) describes the relationships between people, as well as 
their name, address, picture, location, and their social web attributes like e-mail, 
home page, OpenID, or interests. FOAF also contains some broader terms to 
define documents, organizations, groups and their members, and projects. See 
the FOAF specification at http://xmlns.com/foaf/spec/. 

• Semantically-Interlinked Online Communities (SIOC) is used to model the 
connections between the content created online and the users who create this 
content. It can describe several channels of discussion such as forums, blogs, 
polls, and news in general. See the SIOC specification at 
http://rdfs.org/sioc/spec/. 

• Simple Knowledge Organization System (SKOS) tailors the representation and 
sharing of knowledge organization systems like thesauri, taxonomies, subject 
heading systems, and classification schemes. It is a good match to Drupal 
taxonomies for both controlled vocabularies and free tags. See the SKOS 
specification at www.w3.org/TR/skos-reference/. 

Figure 28–4 depicts how these vocabularies are used natively in Drupal 7. 

http://dublincore.org/documents/dcmi-terms/
http://xmlns.com/foaf/spec/
http://rdfs.org/sioc/spec/
http://www.w3.org/TR/skos-reference/


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

663

 

Figure 28–4. Default RDF mappings as defined in Drupal 7 

Modules can add new namespaces and their associated prefix by implementing 
hook_rdf_namespaces(). The snippet in Listing 28-4 adds the WGS84 Geo Positioning namespace to 
Drupal, which will be serialized along with the other namespaces defined by the other modules in the 
HTMl output. The prefix “geo” can then be used when defining the RDF mappings using the WGS84 Geo 
Positioning vocabulary. 

Listing 28–4. RDF Mapping Structure for the User Entity Type as Defined in user.module  

function mymodule_rdf_namespaces() { 
  return array( 
    'geo'  => 'http://www.w3.org/2003/01/geo/wgs84_pos#', 
  ); 
} 

http://www.w3.org/2003/01/geo/wgs84_pos#


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

664 

Using RDF Beyond Drupal Core with the Contributed Modules 
The previous sections only addressed what Drupal 7 core APIs enable, but there are more functionalities 
that the contributed modules space offers. The following are a few contributed projects that extend 
Drupal 7’s RDF capabilities. These projects are evolving fast, so please check their description on their 
project page to get up to date information on what they do. 

The RDF Extensions project downloadable at http://drupal.org/project/rdfx offers a set of 
useful modules to directly interact with the Drupal 7 core RDF module. Site administrators who prefer 
a user interface to writing code will use the RDF UI module to alter the RDF mappings, as illustrated 
on Figure 28–5. This package also offers more RDF serialization formats such as RDF/XML, N-Triples, 
and Turtle. 

 

Figure 28–5. The RDF Extensions user interface allows site administrators to edit the RDF mappings 

without writing code. 

The SPARQL project can turn your Drupal site into a SPARQL endpoint by indexing all its RDF data. 
Site administrators can also register external endpoints that other modules can use to get their data 
from. The SPARQL package also exposes an API for other modules to run SPARQL queries on the fly 
without having to worry about setting up a SPARQL endpoint locally. Download SPARQL at 
http://drupal.org/project/sparql. 

SPARQL Views is a query plug-in for Views 3 allowing you to bring data from SPARQL endpoints into 
Views. Download SPARQL Views at http://drupal.org/project/sparql_views. 

The Examples project includes a module showing some examples of RDF mappings. Download 
Examples at http://drupal.org/project/examples. 

http://drupal.org/project/rdfx
http://drupal.org/project/sparql
http://drupal.org/project/sparql_views
http://drupal.org/project/examples


CHAPTER 28 ■ SPICE YOUR CONTENT UP WITH TASTY SEMANTICS 

665

Summary 
In this chapter, you learned about the Resource Description Framework, an abstract data model used to 
describe information and make statements about Web resources in the form of subject-verb-object 
expressions. You’ve also seen how RDF can be embedded directly into XHTML and HTML5 in order to 
annotate the bits of information it contains, making it easier for machines to understand the content at 
hand, which in turn helps Internet users to find the information they need. 

You’ve seen how Drupal 7 makes use of RDF in its internal data modeling via the RDF mappings and 
how this structured information is surfaced during the rendering of HTML. Many of the RDF mappings 
are set by default for generic content types; for example, blogs and articles include the author, the tags, 
and the comments. More complex or domain-specific sites can make use of Drupal’s RDF mapping API 
to add new vocabularies and choose the appropriate mappings for their data. 

■ Tip  Semantic web technology is hot. Set your machine to read dgd7.org/semantic for the Drupal 

community’s take on new developments. 

  



C H A P T E R   29 
 

■ ■ ■ 

667

The Menu System  

and the Path Into Drupal 

by Robert Douglass 

A versatile and easily understood architecture sets the stage for wide community involvement, as 
exemplified by Drupal’s menu system—responsible for associating paths on a Drupal site with just what 
the site returns to the visitor. 

Open by design, Drupal’s simple and extensible architecture on the inside equates to high levels of 
participation on the community side. 

This chapter looks at one of the features that leads to Drupal’s openness and flexibility. It is a 
dispatcher that takes the incoming Drupal path and maps it to a callback function. Along the way it 
resolves any access considerations and loads the data objects that are needed. Drupal calls this the 
menu system since the paths can also be used to build the visible navigation structures (i.e., menus) of 
the web site.1  

Every web application solves the problems of dispatching URLs and resolving access in one way or 
another, so the mere existence of the menu system is not groundbreaking. What makes the menu system 
beautiful is its low barrier to entry and its power to reach into every corner of the code base to modify, 
extend, or replace what is already there. 

Drupal’s Menu System by Example 
A typical first task for a developer starting out with Drupal would be to integrate some existing code and 
have its output displayed within the context of a Drupal site. The requirements of this task include that 
the Drupal application gets fully loaded (including user authentication and making the database 
connection), that the page containing the output has its own Drupal path, and that this page be available 
in the visible navigation of the Drupal site. 

Listing 29–1 shows the code needed to display an outrageous message within the context of a 
XHTML page. It lives within a hypothetical module called the outrageous module, and it fills the three 
requirements. 

                                                

1 The current menu system, first added in Drupal 6, was conceived of and implemented by Károly Négyesi with help 
from Peter Wolanin. Numerous others have contributed along the way. 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

668 

Listing 29–1. An Outrageous Message 

<?php 
 
function outrageous_menu() { 
  $items['outrageous'] = array( 
    'title' => 'Outrageous message', 
    'access callback' => TRUE, 
    'page callback' => 'outrageous_message', 
  ); 
 
  return $items; 
} 
 
function outrageous_message() { 
  // Create an outrageous message. Based on a quote by Gill Davies. 
  // t() is a wrapper that allows text to be localized. 
  $message = t('A teddy bear is a cuddle with four paws on the end.'); 
 
  // Get a formatted date. 
  $time = date('M d, Y'); 
 
  $page = array( 
    '#markup' => "$time: $message", 
  ); 
 
  return $page; 
} 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

669

 

Figure 29–1. The code from Listing 29–1 defined a path, “outrageous,” which displays an outrageous 

message within a fully bootstrapped Drupal application. A link in the main navigational menu was 

created to access the “outrageous” page. 

In Listing 29–1 the first function, outrageous_menu(), defines the path to the page, the title of the 
page, the access conditions, and the callback function that will generate the content of the page. This is 
all in the form of a simple PHP array. The second function, outrageous_message(), generates the output 
that is displayed in the content area as shown in Figure 29–1. 

This code would live in a module that is a file named outrageous.module. The outrageous_menu() 
function is an implementation of a core Drupal hook called hook_menu().2 The naming convention states 
that if your module’s name is outrageous and the hook is generically called hook_menu, the function 
outrageous_menu() is the name of the function that will get called. Implementations of hook_menu() will 
get called whenever Drupal builds the menu router table in the database that is used when dispatching 
Drupal paths to callback functions. The pattern of calling functions based on the naming convention 
“module name” plus “hook name” is used extensively throughout Drupal. 

                                                

2 For more information on Drupal’s hooks, see api.drupal.org/api/group/hooks. For more information on 
hook_menu in particular, see api.drupal.org/api/function/hook_menu/6. 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

670 

DRUPAL’S HOOKS 

Listing 29–1 introduces the concept of a hook. Hooks are the very basis of how Drupal operates, and the 
menu hook is but one of many hooks available to developers writing Drupal modules.  

In essence, a hook is a contract between Drupal and its modules that certain functions will be called with 
specific arguments at certain points in the page execution. The name of these functions follows a naming 
convention that uses the module name and the hook name to dynamically come up with the name of a 
PHP function to call. The module in Listing 29–1 is defined in the file outrageous.module, thus Drupal 
knows its module name to be outrageous. When page execution comes to a point where a hook needs to 
be invoked, Drupal takes outrageous, along with all of the other modules that are enabled, and for each 
one calls outrageous_hookname(). Thus when it comes time to compile the menu router table, Drupal 
invokes hook_menu, and outrageous_menu() is one of the functions that will be called.  

This whole mechanism is facilitated by PHP’s awareness of the functions it has available at runtime. The 
PHP function function_exists($function_name) makes it possible for Drupal to check in the middle of a 
page execution whether a certain function exists before actually trying to call it. 

All incoming Drupal requests are directed at a single point of entry, which is the index.php file that 
lives in the base Drupal directory. This isn’t apparent in the example or on many Drupal sites, however, 
because behind the scene the web server is always rewriting the incoming URLs to point to index.php. 
Thus a URL of http://example.com will get rewritten to http://example.com/index.php. The rest of the 
URL is what is referred to as the Drupal path. It gets rewritten, too, so that 
http://example.com/outrageous will be represented internally as 
http://example.com/index.php?q=outrageous. Drupal refers to the q parameter as the path, and the path 
in this case is outrageous. 

Given the code in Listing 29–1, a URL of http://example.com/outrageous will map to an internal 
path of outrageous, and this will match the menu item defined in the outrageous_menu() function based 
on the key of the array, $items['outrageous']. Once the dispatcher has matched the incoming path to 
the appropriate entry in the menu’s router table, a callback function will be sought. In this case it is 
defined in the $items array with the key 'page callback', and the outrageous_message() function will be 
called.  

The $items array also defines a title that will be displayed on the page. Here the title is a hardcoded 
string, but a later example shows how this can be dynamically generated via a callback.  

Access to this menu router item is set with the 'access callback' key. The value of this key can 
either be a Boolean (TRUE in this case means that everybody has access) or the name of a callback 
function, which must return a Boolean value. 

You can see in Figure 29–1 that a visible navigation item appears in the navigation menu on the site. 
Although not covered here, this and the other navigation items can be configured, renamed, hidden, or 
moved around using Drupal’s administrative interface. The site administrator, not the coder, has final 
say in the matter.  

http://example.com
http://example.com/index.php
http://example.com/outrageous
http://example.com/index.php?q=outrageous
http://example.com/outrageous


CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

671

Here are all the steps, from URL to Drupal page, laid out in order: 

1. http://example.com/outrageous gets rewritten to
http://example.com/index.php?q=outrageous. 

2. The q parameter, outrageous, gets recognized as the Drupal path. 

3. Based on the path, the menu router item originally defined by
$items['outrageous'] from the example code, now loaded from the database
at runtime, is chosen to handle this page callback. 

4. An access check is done based on the 'access callback' item of the menu
router. The value is TRUE, so access is allowed. 

5. The page title is set based on the 'title' item of the menu router. The title is
now “Outrageous message.” 

6. The function named in the page callback parameter, outrageous_message, is
invoked. This defines what appears in the content area of this particular page. 

7. Drupal builds the rest of the page using the presentation layer and the
application’s configurations. This is where the logo, the navigation menu, and
the shaded regions seen in Figure 29–1 come from. 

http://example.com/outrageous
http://example.com/index.php?q=outrageous


CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

672 

 

Figure 29–2. Handling a request from URL to page output 

A web developer who is new to Drupal will usually grasp the essence of this example right away and 
experience satisfaction that he can freely write code that gets included and executed within Drupal at 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

673

the right time. All that is needed is a simple PHP array and some code to generate the output. The first 
barrier to entry has been overcome and Drupal has been extended. 

MENU ROUTER ITEMS 

One of the tables in the Drupal database is the menu_router table. In Listing 29–1 you saw how menu 
router items consist of paths and the metadata that describes the paths’ behavior. All of the menu router 
item definitions from all of the installed and enabled modules get stored in the menu_router database 
table. 

The Never-ending Path 
In Listing 29–1, the Drupal path was outrageous. A practical feature of the menu system is that this path 
is open ended. The same callback definition will also match and handle the path outrageous/dog/friend. 
The path gets broken into segments based on the slash, and each segment beyond outrageous will be 
available to the callback function as arguments. In Listing 29–2, the callback function has been rewritten 
to accept and use two arguments. If there are no arguments, it works the way it did in Figure 29–1. 

Listing 29–2. The Outrageous Message with Two Arguments from the Drupal Path: 

http://localhost/outrageous/dog/friend 

/** 
 * Now with arguments that default to the original version of the message. 
 */ 
function outrageous_message($animal = 'teddy bear', $noun = 'cuddle') { 
  // Create an outrageous message template. Based on a quote by Gill Davies. 
  $message = 'A %animal is a %noun with four paws on the end.'; 
   
  // Replace the %animal and %noun placeholders with the $animal and $noun 
  // arguments. 
  // The t() wrapper not only allows localization, it performs the  
  // placeholder replacement.  
  // t() also guarantees that $animal and $noun are plain text, thus  
  // protecting against XSS attacks. 
  $message = t($message, array('%animal' => $animal, '%noun' => $noun));   
   
  // Get a formatted date. 
  $time = date('M d, Y'); 
 
  $page = array( 
    '#markup' => "$time: $message", 
  ); 
 
  return $page; 
} 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

674 

 

Figure 29–3. The message is composed from the path segments in the Drupal path. 

Structure of a Path 
Being able to accept arbitrary arguments into the callback function is fine for some cases, but usually a 
more nuanced and exact approach is needed. A typical pattern in Drupal is to refer to data objects 
(called entities in Drupal-speak) using their primary key identifiers. The main object type for content in 
Drupal is called a node, which is just a generic term for content such as an article, blog post, image, or 
calendar event. Nodes have integer primary key identifiers. The paths in Table 29–1 all do various things 
with the node number 42. 

Table 29–1. Various Node Paths and Their Actions 

Path Action 

node/42 Load and display node #42 

node/42/edit Load and display the editing form for node #42 

node/42/revisions Show the revision history for node #42 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

675

A pattern is emerging: 

node + id + action  

In each of the cases just shown the second segment of the path signifies the primary key id and the 
third segment specifies the action (with an implicit “view” action on node/42). One might be tempted to 
handle this pattern in a single callback function as shown in Listing 29–3. 

Listing 29–3. Not Recommended: How Not to Handle the Node Paths 

/** 
 * $arg1 corresponds to the integer id. 
 * $arg2 corresponds to the action. 
 */ 
function node_callback($arg1, $arg2) { 
  // If $arg1 is an integer, use it to load the node. 
  if (is_numeric($arg1)) { 
    $node = node_load($arg1); 
  } 
 
  // If we have a node, go about our business. 
  if ($node) { 
    if ($arg2 == 'edit') ... 
 
    if ($arg2 == 'revisions') ... 
  } 
} 

This approach has a lot of drawbacks: 

• It is hard to extend. What if you later want to write a module that handles 
node/42/send? If all node/integer/action type paths are handled by one function 
you’d either have to hack that function or replace it altogether. 

• All of the if {…} statements clutter up the code.  

• The whole picture gets more difficult when you consider this path, which Drupal 
also handles: node/add 

This path displays a page with links to add new content. Now the second segment isn’t an integer at 
all, so clearly we need a way to differentiate between all of the different possibilities in paths. 

The menu system handles this wide range of dynamic paths quite elegantly. The use of a wildcard 
notation simplifies not only the handling of dynamic paths but also the task of loading common objects. 
Consider the hook_menu implementation in Listing 29–4. 

Listing 29–4. Recommended: How Drupal Handles the Node Paths 

/** 
 * Implementation of hook_menu(). 
 */ 
function node_menu() { 
  $items['node/add'] = array( 
    'title' => 'Add content', 
    'page callback' => 'node_add_page', 
    'access callback' => '_node_add_access', 
  ); 
 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

676 

  $items['node/%node'] = array( 
    'title callback' => 'node_page_title', 
    'title arguments' => array(1), 
    'page callback' => 'node_page_view', 
    'page arguments' => array(1), 
    'access callback' => 'node_access', 
    'access arguments' => array('view', 1), 
  ); 
 
  $items['node/%node/edit'] = array( 
    'title' => 'Edit', 
    'page callback' => 'node_page_edit', 
    'page arguments' => array(1), 
  ); 
 
  return $items; 
} 

This is a slightly simplified version of the actual Drupal implementation for handling the node paths 
discussed previously. The original code can be found in Drupal’s node.module, and by the naming 
convention, the node_menu()3 function gets called whenever Drupal needs to build the menu router table. 

Callback Functions 
There are several things to observe here. The first item maps to the path 'node/add', and it uses the 
node_add_page() callback to generate a page that displays links to add various content to the system. To 
access this page at all, however, the user has to have the right access permissions. Whether the user has 
the right access permissions is decided by the function _node_add_access(), as specified by the 'access 
callback' key. In Listing 29–1 this bit was 'access callback' => TRUE, which is simply shorthand for 
saying that everyone has access. Now, in Listing 29–4 there is an example of access control being handed 
off to a dedicated callback function. 

■ New in 7  Drupal 7 has some new elements to modify the behavior of your menu items. The “delivery callback” 

can be defined to let a custom function handle rendering; you will usually be fine with the default, 
drupal_deliver_html_page. When replacing a default function with your own, you need to ensure that the 
replacement handles all the cases that the original function takes care of. The delivery callback function handles 

the cases of access denied, not found, site offline, and rendering the content. Another new element, context, can 
allow a menu item to be used as a contextual link (see Chapter 24 for an example). The rarely used “theme 
callback” and “theme arguments” elements allow you to provide a function to specify a different theme to be used 

when that menu item’s page loads. Read the API introduction for a complete list with brief explanations.4 

                                                

3 Drupal’s node_menu() function: api.drupal.org/api/drupal/modules--node--
node.module/function/node_menu/7 

4 api.drupal.org/api/drupal/modules--system--system.api.php/function/hook_menu/7 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

677

 

Figure 29–4. The path node/add leads to a page with a list of the various content types that can be created. 

The content on this page is generated from the function node_add_page(). 

The menu router item 'node/%node' has a wildcard segment in it, %node, which will match anything 
found in that segment. This item will match paths node/42, node/foo, and so forth. Although it would 
normally match node/add as well, it won’t in this example because there is a menu router item that 
defines node/add exactly, and the exact match takes precedence over wildcard matches. 

Loader Functions 
Whenever the menu system matches an incoming Drupal path to a wildcard segment with a notation 
like %node, it attempts to call a special loader function to automatically load an object for later use by any 
callback functions. The specific loader function is determined by a naming convention; when the 
percent sign is followed by a string (e.g., %foo), the system will look for a loader function, foo_load(). 
The loader function for %node is node_load(). Thus the path node/42 will invoke the function 
node_load(42), sending in the matched integer as an argument. The result is a fully loaded and built 
$node object with the primary id of 42. This object, in turn, becomes available for use as an argument to 
the various callback functions. In Listing 29–4 it is being passed on to the page callback that is 
responsible for generating the content output for this request. In Listing 29–5, look at the page callback 
keys for the 'node/%node' item. 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

678 

Listing 29–5. Detail of the node/%node Menu Router Item 

$items['node/%node'] = array( 
... 
  'page callback' => 'node_page_view', 
  'page arguments' => array(1), 
... 
); 

These keys tell the menu system to use node_page_view() as the main page callback and to pass in a 
single argument. The argument is addressed with the 'page arguments' key, and the array contains the 
segment from the path that should be used as the argument. This is array(1) in the example, so path 
segment 1 should be used. Path segment numbering starts with zero, so array(1) refers to the %node part 
of the path. As was just shown, this is a fully loaded and built $node object, and it is this object that will be 
passed into the callback function. The code that executes for path node/42 is functionally equivalent to 
this snippet: 

// Invoke the _load function for node with the argument 42. 
$node = node_load(42); 
// Invoke the page callback function with the built $node object. 
return node_page_view($node); 

Let’s look again at the full definition for the 'node/%node' menu router, which is shown in Listing 
29–6. 

Listing 29–6. node/%node Menu Router Item 

$items['node/%node'] = array( 
  'title callback' => 'node_page_title', 
  'title arguments' => array(1), 
  'page callback' => 'node_page_view', 
  'page arguments' => array(1), 
  'access callback' => 'node_access', 
  'access arguments' => array('view', 1), 
); 

In Listing 29–1 our menu router item had a key, 'title', in which the title was set directly. The 
'node/%node' menu router item has 'title callback' and 'title arguments' keys instead. These allow 
for the title of the page to be dynamically set. The callback function responsible for setting the title is 
node_page_title(), and it receives the same loaded $node object as node_page_view(), as specified by 
'title arguments' => array(1). In this way the title of this page can be formed using dynamic 
information from the $node object. 

In the same fashion, this menu router item’s access callback function takes some parameters, one of 
which is the dynamically loaded $node object. Based on the 'access callback' and 'access arguments' 
keys, code similar to the following snippet will be executed to determine whether the user issuing the 
request can access the 'node/4711' path: 

// Segment 1 gets passed into the loader function for %node. 
$node = node_load(4711); 
// The loaded $node object gets passed to the access callback function. 
return node_access('view', $node); 

The 'node/%node' menu router item is a great example of how much functionality can be wired 
together with a relatively simple array of metadata to specify callback functions and their parameters. 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

679

The menu system handles the loading of data objects and the invocation of callbacks to set the page title, 
checks if the current user is allowed to access this path, and generates the page content. 

The developer uses the menu router item definitions to describe to the system what is supposed 
to happen, but how it all actually ends up happening is handled behind the scenes. The advantage of 
doing things this way—using data arrays to describe desired behavior—as opposed to simply writing 
the few lines of code to load and display the node directly, will be seen later when hook_menu_alter is 
discussed. The ability for developers to rewire menu router items, even those described in Drupal’s 
core, is fundamental to allowing contributed modules the chance to change anything and everything, 
if desired. Remember, “Do it in contrib” has to be a viable option, even for the most far-fetched ideas 
that come along. 

Fitness 
What happens when a path comes in that can be matched by more than one menu router item? How is the 
one true item chosen? Which item is the most fit to handle any given request? Consider the path 
node/12345/edit. This path can be matched by both of the following menu router items from Listing 29–4: 

$items['node/%node'] 
$items['node/%node/edit'] 

The node/%node item is considered to be an ancestor of node/%node/edit because they have all but 
the last segment, edit, in common. When searching for a menu router item to handle a path, Drupal 
starts by calculating all of the possible ancestors of the path. Here is the complete theoretical ancestry of 
node/12345/edit: 

node/12345/edit 
node/12345/% 
node/%/edit 
node/%/% 
node/12345 
node/% 
Node 

Wildcard segments are simplified and represented by the % placeholder. There is not any guarantee 
that any of these menu router items are actually defined, but by generating the list of ancestors Drupal at 
least knows which router items to look for. This translates roughly into SQL like this: 

SELECT * FROM menu_router  
  WHERE path IN  
  ('node/12345/edit', 
  'node/12345/%', 
  'node/%/edit', 
  'node/12345', 
 'node/%', 
 'node') 

This will find all of the possible menu router items that can handle a request, but which one is the 
best one to handle node/12345/edit? Here is where the concept of fitness comes in. Any menu router 
item path is broken down by segment and converted into a series of 1s or 0s. Discreet segments (such as 
node or edit) become 1s and wildcards become 0s. The resultant string of 1s and 0s is then interpreted as 
a binary integer to calculate that menu router item’s fitness. Applying these rules to the ancestors of path 
node/12345/edit produces the list in Table 29–2. 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

680 

Table 29–2. Drupal Path Ancestry and Fitness. From drupal.org/node/109134 

Path Fitness Base 10 Fitness Binary 

node/12345/edit 7 111 

node/12345/% 6 110 

node/%/edit 5 101 

node/%/% 4 100 

node/12345 3 11 

node/% 2 10 

Node 1 1 

The base ten fitness value is always saved along with any path in the menu router database table. 
Fitness is used for ordering the paths as shown in the following SQL query. Out of any set of menu router 
items, the one with the highest fitness will be used to handle a given request. The actual SQL generated 
by node/12345/edit thus becomes: 

SELECT * FROM menu_router  
  WHERE path IN  
    ('node/12345/edit', 
    'node/12345/%', 
    'node/%/edit', 
    'node/12345', 
    'node/%', 
    'node')  
  ORDER BY fit DESC  
  LIMIT 0, 1 

Exactly one item from the ancestry of the actual path will be selected—the one with the highest 
fitness. If querying the menu_router table produces no results, a 404 Not Found page is generated. 
Understanding how fitness is calculated is usually not necessary for Drupal module developers, but it is 
one of the aspects of the menu system that makes it a beautiful architecture. 

Hopefully this exercise of deconstructing Drupal’s menu router paths has illustrated some of the 
tools available to developers for extending a Drupal application. The ability to define new paths, wire 
them to callbacks, preload objects, and manage access, all within the Drupal application, gives one 
enough power to add virtually any new feature. In the next section, I’ll show you how existing features 
can be modified using hook_menu_alter. 

Modifying Existing Router Items 
The examples so far have been focused on extending Drupal. What does one do to modify or replace 
existing functionality? How does a developer alter core Drupal behavior without resorting to changing 
the core Drupal code itself? Drupal lays bare its entire menu router to any module to be able to change. 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

681

The mechanism for doing this is called hook_menu_alter. Modules may implement their own
hook_menu_alter function and simply change any of the defined menu router items.  

Let’s go back to the first example in this chapter, the outrageous message. If someone comes up
with a custom implementation for developing outrageous messages, but doesn’t want to or isn’t able to
convince the maintainer of the outrageous module that the new implementation is better, he can
implement their own module that alters the way outrageous messages get created (see Listing 29–7). 

Listing 29–7. Review of the Outrageous Module 

<?php 

function outrageous_menu() { 
  $items['outrageous'] = array( 
    'title' => 'Outrageous message', 
    'access callback' => TRUE, 
    'page callback' => 'outrageous_message', 
  ); 
   
  return $items;
} 

function outrageous_message() { 
  // Create an outrageous message. Based on a quote by Gill Davies. 
  // t() is a wrapper that allows text to be localized. 
  $message = t('A teddy bear is a cuddle with four paws on the end.'); 

  // Get a formatted date. 
  $time = date('M d, Y'); 

  $page = array( 
    '#markup' => "$time: $message", 
  ); 

  return $page;
} 

The moreoutrageous_menu_alter() function in Listing 29–8 implements hook_menu_alter by
following the naming convention of modulename + hook name, and it receives the entire menu router
item table in the form of an $items array. 

Listing 29–8. The Moreoutrageous Module 

<?php 
function moreoutrageous_menu_alter(&$items) { 
  // Change the callback function for the path 'outrageous'. 
  $items['outrageous']['page callback'] = 'moreoutrageous_message';
} 

function moreoutrageous_message() { 
  // Juicy (mis)quote by Károly Négyesi. 
  $message = t('I am a machine for turning orange juice into Drupal patches.'); 

  // Get a formatted date. 
  $time = date('M d, Y'); 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

682 

  $page = array( 
    '#markup' => "$time: $message", 
  ); 
 
  return $page; 
} 

The $items array is the sum total of all menu router items returned by all of the hook_menu 
implementations from all enabled modules. Since the array is passed in by reference any alterations 
made to it will persist beyond the scope of the function. The code changes the 'page callback' value 
that was designated in the outrageous_menu() function in the outrageous module and specifies that it 
should instead be handled by the moreoutrageous_message() function in the moreoutrageous module. 

 

Figure 29–5. A more outrageous message, thanks to hook_menu_alter 

Building the menu router table is a relatively expensive operation. First hook_menu is invoked, which 
results in all modules being checked for implementing functions. Once the menu router items from all of 
the modules are collected and concatenated into a large array, hook_menu_alter is invoked, affording 
each module the chance to alter that array. Fortunately this is not done on every page request. The menu 
router table is rebuilt whenever something about the fundamental state of the Drupal application 
changes. Examples include installing new modules, defining new content types, or creating new views of 
content. Once the final array of all menu router items is built it is persisted in the menu_router database 
table. Subsequent page requests are able to query this table to find callbacks and router items until the 
next occasion that necessitates a total rebuild occurs. 



CHAPTER 29 ■ THE MENU SYSTEM AND THE PATH INTO DRUPAL 

683

Summary 
The menu system is a tool that offers a great deal of control and opportunity. It is easy to grasp and 
developers with a wide range of skills and abilities are able to use it effectively. It isn’t the only tool 
available for extending or altering Drupal. Other tools exist if your goal is to alter a form or extend the 
definition or behavior of nodes or content types. Used together, these tools allow for the enhancement 
and alteration of Drupal’s core functionality and behavior while avoiding the need to hack the core code. 
By embracing this need for an architecture that is open and accessible, Drupal supports a very 
significant amount of community participation, has become the choice of platforms for hundreds of 
thousands of people and organizations, and has enabled thousands of developers to become open 
source contributors. 
  



C H A P T E R   30 
 

■ ■ ■ 

685

Under the Hood: Inside Drupal 

When It Displays a Page 

by Stefan Freudenberg 

The moment a web browser requests a page, Drupal begins running a complex series of steps that result 
in a fully rendered page being returned to the browser. With every page request, Drupal has to do those 
same calculations, so understanding them is key to making the best development decisions for your 
modules or sites.  

In this chapter you will learn what happens when a Drupal URL is requested, for instance, 
http://definitivedrupal.org/node/84. Chapter 29 covered how the URL is sorted out by the web server 
to become index.php?q=node/84. In this chapter, I’ll start with what happens when the web server hands 
the path node/84 to Drupal’s index.php. 

The web server’s PHP interpreter parses index.php and executes the code. Drupal’s developers have 
organized the process of creating a Drupal page into two sequences: bootstrap and execution of the page 
callback associated with the current path. This division allows the use of a working Drupal environment 
for applications other than generating web pages. A good example is Drupal’s own cronjob which 
executes hook_cron() after bootstrapping and performing some basic checks. 

/** 
 * Root directory of Drupal installation. 
 */ 
define('DRUPAL_ROOT', getcwd()); 
 
 
require_once DRUPAL_ROOT . '/includes/bootstrap.inc'; 
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL); 
menu_execute_active_handler(); 

Bootstrap always runs the same for a full page load. The execution of the page callback depends on 
the path handed in, node/84 in this example. 

Bootstrap 
The task of the bootstrap is to set the stage for business logic and theming to take place by including all 
necessary libraries, preparing a database connection, and reading the configuration. It is accomplished 
in separate phases, and each phase must be executed only once and in a particular order. This is 
enforced by the drupal_bootstrap() function and by having a constant integer assigned to the phases 

http://definitivedrupal.org/node/84


CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

686 

that represent their processing order (see Table 30–1). drupal_bootstrap() is called with the bootstrap 
phase that should be reached as a parameter.  

Table 30–1. Drupal Bootstrap Phases 

# Phase Purpose 

0 DRUPAL_BOOTSTRAP_CONFIGURATION Initialize configuration 

1 DRUPAL_BOOTSTRAP_PAGE_CACHE Try to serve a cached page 

2 DRUPAL_BOOTSTRAP_DATABASE Initialize database layer 

3 DRUPAL_BOOTSTRAP_VARIABLES Initialize the variable system 

4 DRUPAL_BOOTSTRAP_SESSION Initialize session handling 

5 DRUPAL_BOOTSTRAP_PAGE_HEADER Set up the page header 

6 DRUPAL_BOOTSTRAP_LANGUAGE Find out the language of the page 

7 DRUPAL_BOOTSTRAP_FULL Load modules and initialize theme 

First Bootstrap Phase: Initialize Configuration 
In phase one, settings.php is read from the sites/default folder and the most important global variables 
are set, either directly from settings.php like $databases or by computing their value based on the server 
environment. Here are three you will need in your daily site developer’s life: 

• $base_url: The base URL all your Drupal pages share. Each path is appended to it. 
It must be a valid URL without a trailing slash. This only needs to be set if Drupal 
does not determine it correctly. 

$base_url = 'http://www.example.com/drupal'; // NO trailing slash!1 

• $base_path: The base URL’s path component (either ‘/’ or anything following the 
domain part) with a trailing slash appended. It is derived from $base_url and can 
be handy on its own. 

$base_path = '/drupal/'; 

• $base_root: Contains the protocol and domain parts of the URL. It is either the 
base URL or derived from it by removing the base path if there is any. 

$base_root = 'http://www.example.com'; 

                                                

1 Jeff Eaton tried to get in a patch documenting this requirement in a more dramatic way. See 
drupal.org/files/issues/settings.php_1.patch 

http://www.example.com/drupal
http://www.example.com


CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

687

Second Bootstrap Phase: Try to Serve a Cached Page 
During the second bootstrap phase Drupal tries to deliver the whole page from its cache in case page 
caching is enabled in the Performance section of the configuration interface and the visitor is not logged 
in. If a cached version of the page can be found and is not expired, it is sent between invoking 
hook_boot() and hook_exit().  

If the cache back end requires a database connection (determined by 
$conf['page_cache_without_database'] in settings.php), the third and fourth bootstrap phases are 
executed before fetching the cached page. 

Debugging page caching is eased by an additional HTTP header the Drupal developers have 
introduced for this purpose: if the page is actually served from cache, the X-Drupal-Cache HTTP header 
is set to HIT (see Figure 30–1); otherwise, its value is set to MISS (see Figure 30–2).  

 

Figure 30–1. The X-Drupal-Cache HTTP header is set to HIT. You need the Firebug plug-in to view HTTP 

headers in Firefox. 



CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

688 

 

Figure 30–2. The X-Drupal-Cache HTTP header is set to MISS. 

■ Tip  The cache back end is pluggable. By default, Drupal uses database tables for caching pages, blocks, etc. 
Alternative back ends can be registered in settings.php by adding a filename to $conf['cache_backends']. The 

file must include a class implementing DrupalCacheInterface. Drupal ships with a database cache implementation 
and a mock implementation that is needed during installation. A popular alternative cache implementation is provided 
by the memcache module (drupal.org/project/memcache) that uses memcached as a back end (see Chapter 27 for 

details). To support page caching by a reverse proxy caching agent such as Varnish (www.varnish-cache.org/), 
replacing Drupal’s built-in page cache for anonymous visitors, hook_boot() and hook_exit() must be deliberately 
disabled. This is necessary to ensure consistent behavior for requests hitting the origin server and for requests hitting 

the cache-serving intermediary server. Add the following lines to your settings.php2: 

                                                

2 See http://drupal.org/node/797346 

http://www.varnish-cache.org/
http://drupal.org/node/797346


CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

689

 
$conf['page_cache_invoke_hooks'] = FALSE; 

if (!class_exists('DrupalFakeCache')) { 

 

 $conf['cache_backends'][] = 'includes/cache-install.inc'; 

} 

// Rely on the external cache for page caching. 

$conf['cache_class_cache_page'] = 'DrupalFakeCache'; 

Third Bootstrap Phase: Initialize the Database Layer 
The database abstraction layer is set up in this phase. Because there’s no need to open a connection yet, 
only the base classes and utility functions (db_query, et al) are included. In addition, callbacks for 
autoloading classes and interfaces are registered with the Standard PHP Library (SPL) autoload stack3. 
The files containing classes and interfaces are declared by modules’ .info files or live in the main include 
folder, and Drupal maintains a registry to track them. The first time a class or interface is needed during 
execution, the callbacks use this registry to include the necessary file. 

■ Note  The database abstraction layer in Drupal 7 has undergone one of the most drastic changes from Drupal 6. 

Instead of the functions we used to love (and hate)—such as db_query()—there’s now a modern database layer 
based on PHP 5’s PDO: query builders, a fluent interface, result sets providing iterator interfaces, named 
placeholders, and consistent transaction and master/slave replication support. (If you liked db_query(), there’s 

good news: it’s still there as a wrapper for non-dynamic queries.) 

Fourth Bootstrap Phase: Initialize the Variable System 
In the fourth bootstrap phase, Drupal fetches all values from the variable database table (which includes 
both configuration settings and persistent variables) and merges them with those defined in 
settings.php in the global variable $conf. Values set in the file via $conf['variable_name'] take 
precedence over those stored in the database; in other words, you can prevent variables from being 
overridden through the UI by defining them in the settings.php file.  

The $conf variable takes the form of a giant associative array. Its values can be obtained by calling 
variable_get('key_name', 'a default value'). Variables can be persisted by calling 
variable_set('key_name', 'value') in your code. 

In addition to the variables, all modules required during bootstrap are loaded, implementing hooks 
called during bootstrap, hook_boot(), hook_exit(), hook_language_init(), and hook_watchdog(). The 
pluggable locking system is also included. Pluggable means you can provide an alternative 

                                                

3 http://php.net/manual/en/function.spl-autoload-register.php 

http://php.net/manual/en/function.spl-autoload-register.php


CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

690 

implementation and make Drupal use it by defining $conf['lock_inc'] = 'path/to/your/lock.inc'. 
You have already encountered this pattern earlier in this chapter.  

■ Tip  Drupal’s excellent in-code documentation explains how locking works: “Drupal implements a cooperative, 

advisory lock system. Any long-running operation that could potentially be attempted in parallel by multiple 
requests should try to acquire a lock before proceeding. By obtaining a lock, one request notifies any other 
requests that a specific operation is in progress that must not be executed in parallel.” 

An example of this can be seen in the variable initialization code. Fetching all data from the variable table has 
proven to be a performance issue, so in Drupal 7, the result of this query will be cached. A problem arises when 
more than one process attempts to populate the variables cache when it is not yet primed. This is solved by means 

of the locking system. Before variables data is fetched from the database, a lock must be acquired. If another 
process already has the same lock, code execution pauses for a second; afterwards, another attempt is made to 
get the variables data. This happens as long as the lock is not released by the process that has originally acquired 

the lock. As such, it is guaranteed that only the first process claiming the lock fetches the variables from the 
database and stores them in cache for subsequent requests. See more at 

http://api.Drupal.org/api/Drupal/includes--lock.inc/group/lock/7 

Fifth Bootstrap Phase: Initialize Session Handling 
Things covered so far: database, settings, variables, some common Drupal functions and constants, 
global variables, and bootstrap modules.  

In this phase, Drupal registers its session handler and a session is associated for already 
authenticated users. Usually, anonymous users won’t get a session at all unless something needs to be 
stored in $_SESSION; for this case, a session ID is pregenerated. This allows HTTP proxy caching for 
anonymous visitors. If Drupal can’t detect a logged in user, a dummy user object is created during this 
phase that represents the anonymous visitor with a user ID 0 in Drupal’s database. 

If you need fancier session handling than Drupal’s own database solution, you can include an 
alternative by pointing $['conf']['session_inc'] in settings.php to a file containing the functions that 
need to be implemented. Sites with many authenticated visitors can benefit from a more efficient 
session storage. The Mongodb module explained in Chapter 27 provides such an alternative. 

Sixth Bootstrap Phase: Set up the Page Header 
After all that nice setup, the first output is generated to be sent to the site’s visitor: the HTTP headers. 
The default headers Drupal sends to the client only affect caching. To be precise: No byte is sent on its 
way to the visitor because Drupal operates in output buffering mode. In other words, nothing leaves the 
server until the buffer is flushed, which happens at the final stage of the cycle. Wait! Something happens 
before: hook_boot() is invoked, giving modules a first opportunity to intervene in the page creation cycle. 
Note that this hook must be disabled to support external caching mechanisms (see the Tip in phase 3). 

http://api.Drupal.org/api/Drupal/includes--lock.inc/group/lock/7


CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

691

Seventh Bootstrap Phase: Find out the Language of the Page 
The next-to-last step in the bootstrap process deals with language selection for the current visitor if the 
site is multilingual. Once the language is determined, implementations of hook_language_init() can 
react, for instance by setting language dependent variables. 

Language Negotiation Algorithms 
Negotiation algorithms that determine which language to use can be provided by 
hook_language_negotiation_info() and existing ones can be modified by 
hook_language_negotiation_info_alter(). The providers will have a chance to determine a language in 
the order they are set by the site admin at the language configuration page 
(admin/config/regional/language/configure). Each defined negotiation algorithm must provide a 
callback to determine the language. Language selection stops as soon as a provider returns a valid 
language. 

Here is an example of a language provider: 

$providers[LOCALE_LANGUAGE_NEGOTIATION_URL] = array( 
 'types' => array(LANGUAGE_TYPE_CONTENT, LANGUAGE_TYPE_INTERFACE, LANGUAGE_TYPE_URL), 
   'callbacks' => array( 
     'language' => 'locale_language_from_url', 
     'switcher' => 'locale_language_switcher_url', 
     'url_rewrite' => 'locale_language_url_rewrite_url', 
   ), 
   'file' => $file, 
   'weight' => -8, 
   'name' => t('URL'), 
   'description' => t('Determine the language from the URL (Path prefix or domain).'), 
   'config' => 'admin/config/regional/language/configure/url', 
 ); 

Final Bootstrap Phase: Load Modules and Initialize Theme 
Finally drupal_bootstrap_full() is executed. All files containing the Drupal utility functions are 
included. Enabled modules are loaded (in other words, the .module files are included). Modules get a 
chance to register stream wrappers4 by means of hook_stream_wrappers() and modify existing ones with 
hook_stream_wrapper_alter(). (By now you know that all hooks registering things also have an alter 
hook). The path in $_GET['q'] is normalized and the theme is initialized. 

■ Note  You can replace all or some of the original functions of Drupal’s menu system and path handling functions 

by providing an alternative menu.inc or path.inc in settings.php. You might want to do this to improve the 
performance of your Drupal site...if you have lots of guts and nerves of steel. Be careful; you might accidentally 

change core Drupal behavior. 

                                                

4 http://api.drupal.org/api/drupal/modules--system--
system.api.php/function/hook_url_inbound_alter/7 

http://api.drupal.org/api/drupal/modules--system--system.api.php/function/hook_url_inbound_alter/7
http://api.drupal.org/api/drupal/modules--system--system.api.php/function/hook_url_inbound_alter/7


CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

692 

Path normalization is the task of drupal_get_normal_path(). It checks if the path stored in
$_GET['q'] is a path alias or a custom URL that needs to be mapped onto an internal Drupal entity URL
(node/84, user/123). If ordinary stored aliases are not enough for you, implementations of
hook_url_inbound_alter() can add some magic. This hook is called after aliases from the URL alias table
have been mapped to system paths. See the API documentation for a usage example. 

Initializing the theme layer involves looking up the active theme, which can either be the theme set
as the default theme in the UI, a user’s personally preferred theme, one returned by an implementation
of hook_custom_theme(), or a theme explicitly set for the active path via the menu system. All CSS and
JavaScript declared in the theme’s .info file is added to the page and the theme’s hook_init()
implementation is called if it exists. 

At the very end of this phase when Drupal is fully set up, hook_init() is invoked. On using
hook_init(), the API documentation states: “It is typically used to set up global parameters that are
needed later in the request.” Drupal core’s Locale module implements hook_init() to initialize date
formats based on the user’s current language. 

■ Note  In Drupal 6, hook_init() was commonly used for adding CSS or JavaScript files intended for every page
load. While you can still do it in this fashion, these assets can now also be listed in the module’s .info file, like
scripts[] = example.js or stylesheets[all][] = example.css. The system module’s implementation of 

hook_init(), system_init(), then takes care of adding those files. 

Execution of the Page Callback 
After completing the bootstrap phase, Drupal is ready to build, render, and deliver content. Because
every request is routed to index.php by the rewrite rules in .htaccess, Drupal needs an internal
mechanism to dispatch a given request URL to something that handles the request. In Drupal, that
something is the active menu item’s page callback. A menu item is a collection of information about how
to respond to a client’s request to a given path. You learned how the menu system works in Chapter 29.
The most important part is the page callback—a function returning a renderable data structure.
Rendering is explained in Appendix C. 

Drupal has a few cases to consider: 

• The site is in offline mode.  

• No menu item for the requested path is found in the menu_router table. 

• The visitor does not have permission to view the resource associated with the
menu item. 

• Everything works as expected and the page callback is executed. 

The result of this algorithm is either an integer equaling the corresponding HTTP status code or a
render array in the format expected by drupal_render(). It is handed over to drupal_deliver_page(),
which lets the delivery callback produce the output. By default, this is drupal_deliver_html_page(). It
makes use of drupal_render() to merge the render array returned by the page callback with likewise
structured region data and turn the whole page into HTML. Figure 30–3 illustrates the whole page load
cycle indicating when Drupal's hooks get called. 



CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

693

 

Figure 30–3. Page load cycle detailing the bootstrap 



CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

694 

A Typical Example 
Let’s come back to the example URL from the beginning of this chapter: node/84. Drupal’s menu system 
takes care of loading the node identified by the node ID 84 by calling node_load(84). Under the hood, 
DrupalDefaultEntityController and its subclass NodeController take care of fetching the matching 
record from the database and invoking hook_load(), hook_entity_load(), and hook_node_load(), 
thereby giving modules opportunities to manipulate the node object or trigger other actions. Associated 
fields are loaded via field_attach_load(). Modules implementing hook_field_storage_pre_load() or 
hook_field_attach_load() have the opportunity to add and alter field data on the fly for each field. Node 
84 is a node of type book, provided by the book core module. Figure 30–4 shows a debugger's view of the 
node object after loading is completed. Properties and fields added by various modules are indicated.  

In the following example code you see book_node_load(), the book module's implementation of 
hook_node_load(). Like all its implementations, it takes two arguments, an array of nodes, and an array 
of their types. If the node loaded is part of a book, additional data is attached to the node to extend its 
behavior: the node becomes aware of being part of a book. Types are ignored here but might be 
important for other modules. For you as a developer, it’s important to understand that the complex 
loading process actually takes a lot of the burden away from you. You only need to implement the 
appropriate hooks. 

/** 
 * Implements hook_node_load(). 
 */ 
function book_node_load($nodes, $types) { 
  $result = db_query("SELECT * FROM {book} b INNER JOIN {menu_links} ml ON \    
b.mlid = ml.mlid WHERE b.nid IN (:nids)", array(':nids' => \           array_keys($nodes)), 
array('fetch' => PDO::FETCH_ASSOC)); 
  foreach ($result as $record) { 
    $nodes[$record['nid']]->book = $record; 
    $nodes[$record['nid']]->book['href'] = $record['link_path']; 
    $nodes[$record['nid']]->book['title'] = $record['link_title']; 
    $nodes[$record['nid']]->book['options'] = unserialize($record['options']); 
  } 
} 

After loading the node object, it is passed to the page callback for the given path, node_page_view(). 
It sets the node’s title as the page title and adds a canonical and a short link5 to the HTML head elements 
(not rendered yet) and the HTTP headers. Building the render array is the responsibility of node_show(), 
which delegates it to node_view_multiple(). In this function, each node's render array is built by 
node_view(). Fields are prepared for rendering and modules get an opportunity to act on the content to 
be displayed via hook_entity_prepare_view(). That hook is especially important; developers 
implementing a new entity should make sure it is invoked in an ENTITY_build_content() or 
ENTITY_view_multiple() function by calling entity_prepare_view(), like node_view_multiple() does. 
Read the API documentation of entity_prepare_view()6 for further details.  

                                                

5 Canonical links are very useful to avoid being punished by search engines for advertising more than one URL for the 
same content. A very common case is the short URL, which is quite popular with SMS services.  

6 api.drupal.org/api/drupal/includes--common.inc/function/entity_prepare_view/7 



CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

695

 

Figure 30–4. Netbeans debugger view of a completely loaded node object 

Each individual node (there's only one for this page) is rendered by node_view(), delegating the 
bulk of the work to node_build_content(). Fields and links are turned into render arrays and modules 
are given the possibility to further add to the render array by means of hook_entity_view() and 
hook_node_view(). The book module implements the latter using it to add the book navigation element, 
as shown in Figure 30–5. How it looks on the finished page is shown in Figure 30–6. Before leaving the 
page callback context, hook_entity_view_alter() and hook_node_view_alter() are invoked as a last 
chance to modify what other modules have done before. 



CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

696 

 

Figure 30–5. Debugger view of node 84 after book_node_view() added the book navigation to the render 

array 



CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

697

 

Figure 30–6. The final outcome 

When the render array is finally returned by the page callback, it is passed to 
drupal_deliver_page(), which leaves rendering to the delivery callback drupal_deliver_html_page(). It 
makes sure other modules have a last chance to alter the outcome by invoking hook_page_build() and 
hook_page_alter() before drupal_render() traverses the render array to generate the markup. 
hook_page_build() is used by the block module to add content to the regions defined in the theme. 
book_page_alter() takes advantage of the powerful new hook_page_alter() to add the book menu to the 
active menus. 

/** 
 * Implements hook_page_alter(). 
 * 
 * Add the book menu to the list of menus used to build the active trail when 
 * viewing a book page. 
 */ 
function book_page_alter(&$page) { 
  if (($node = menu_get_object()) && !empty($node->book['bid'])) { 
    $active_menus = menu_get_active_menu_names(); 
    $active_menus[] = $node->book['menu_name']; 
    menu_set_active_menu_names($active_menus); 
  } 
} 

To conclude this example of a typical page load cycle, the details of rendering can be found in 
Appendix C. Once the markup is ready, the page in all its beauty is sent to the browser of the visitor. 
Figure 30–7 illustrates the most important hooks covered in the second part of this chapter. 



CHAPTER 30 ■ UNDER THE HOOD: INSIDE DRUPAL WHEN IT DISPLAYS A PAGE 

698 

 

Figure 30–7. Page load cycle of a node detailing the execution of the page callback 

After digging through a full load cycle of a Drupal page, it's a good idea to review it from a bird’s eye 
perspective. The bootstrap has set the stage for modules to deliver content to the visitor. It's the same 
procedure for all the pages of your website. A number of hooks are invoked at the various phases, 
presenting opportunities to influence your site’s behavior at a global level. When contributing to Drupal 
modules or creating your own, think carefully about when a certain piece of code needs to be executed 
and pick the most fitting hook. It doesn’t make sense to figure out the language selection at a later stage 
of the page load; everything that's needed for the task is available during the bootstrap and all pages can 
benefit from a resolution at that point.  

Summary 
Drupal 7 has introduced several new concepts, most prominent among them entities and fields. 
Numerous hooks are at your disposal to affect the behavior and presentation of your content. These 
hooks make it easy to create big effects with lean code and little effort. Examine some of the core 
modules to see how they leverage the entity and field API.  

Don’t hesitate to take a tour through a page load yourself. Start debugging with the tool of your 
choice—there’s nothing more enlightening than seeing the path routed to the matching item and the 
render array grow with each invoked hook. It’s worth the effort if you are earning a living as a Drupal 
developer. A summary of tools for looking under Drupal’s hood—including your suggestions—will be 
kept up-to-date at dgd7.org/inside. 



C H A P T E R   31 
 

■ ■ ■ 

699

Search and Apache Solr Integration 

by Peter Wolanin 

This chapter will discuss the Apache Solr Search Integration module in terms of how it implements the 
Drupal core Search module hooks, as an example of how to make a custom search, and in terms of its 
functionality. This chapter also highlights some of the additional hooks that allow the module’s behavior 
to be customized and extended. This module can be seen as an example of integrating Drupal with a 
web service, and it makes use of some object-oriented code. 

The Search module in Drupal core provides a framework and API for modules to provide search 
functionality. The Search module itself does very little except provide a search form and some 
administrative configuration options. In order to have the search form show up, one or more modules 
must implement the Search module hooks. Within Drupal core, both the Node module and User module 
implement the search hooks. 

The Node module provides the ability to do keyword searches of content. Since it is part of Drupal 
core, it uses the SQL database as the storage and searching mechanism. While the Node module’s search 
implementation provides very good keyword matching, its use of the database can cause significant 
performance issues for larger sites. In addition, while it can handle some filtering (for example, by user 
or taxonomy term via the advanced search form), this is rather limited.  

The Apache Solr Search Integration module (found at drupal.org/project/apachesolr) provides an 
alternative and replacement for the Node module’s search for indexing and searching content. A wider 
range of content indexing and filtering functionality is available, and Solr server can be accessed from 
many Drupal sites. A number of the enhancements and changes to the Search module API in Drupal 7 
were driven by the limitations encountered when creating Apache Solr Search Integration with the 
Drupal 6 Search module. There are several key features that distinguish it from the Node module search: 

• Faceted search using Facet API module. 

• Multiple user-selectable sorts for results. 

• Highly customizable boosting that allows you to tune the relevancy score for 
search results to control what is listed first. 

• Fast searches for large amounts of content (e.g., > 10,000 nodes). 

• The potential to do multi-site searches or federated searches, such as showing 
user and content searches in the same result set. 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

700 

■ Note  The term “facet” refers to an attribute of the documents in the search results (or the whole search index), 
such as a taxonomy term. “Faceted search” refers to an interface for filtering search results based on facets, 

which is a technique for helping the user find the desired result and avoid dead-end searches. 

Apache Solr is its own open-source project. Actually, it’s a part of the Lucene Java project: Lucene is 
the actual search library that Solr is built upon. Apache Solr provides the HTTP interface and hence can 
be integrated with Drupal (or almost any other application) while residing on the same server or a totally 
separate server. The fact that Solr can be run on a separate server is one reason for its popularity in the 
Drupal community: it allows a site administrator to reduce the load on the database server and get fast 
search results even for sites with hundreds of thousands of nodes. Solr also has built-in support for 
master-slave replication, so it can easily provide high availability for search requests; it can also scale 
horizontally in the event that search traffic exceeds the capacity of one server. The Drupal module is 
primarily intended to work with the stable Solr 1.4.x release series, though most or all functionality 
should work with the forthcoming Solr releases. 

If you want to run Solr, you have the following options: 

• Run it yourself. Generally this option is suited for those with at least one dedicated 
server or VPS. It requires, at the least, the ability to deploy Solr in a Java servlet 
container (like Jetty or Tomcat) and control access to it via firewall rules, HTTP 
authentication, or other authentication. 

• Pay for a hosted Solr index. Acquia provides a Solr index for every customer with a 
Drupal support subscription. Other companies provide more generic services. 

• Pool resources via a non-profit or cooperative such as May First People Link. 

The Apache Solr project comes with a simple-to-run Jetty deployment that almost anyone 
interested in trying the module can get running in a few minutes on a local machine. The steps are 
outlined in the README.txt that comes with the Apache Solr Search Integration module. However, this 
simple kind of deployment does not include any authentication mechanism, so access to Solr needs to 
be protected by a firewall, at minimum, when used for a production site on a public server. 

Search Module Administrative Options 
The administrative interface for the Search module provides some key configuration options in Drupal 7 
that were not available in Drupal 6. Both the Search module and Apache Solr Search Integration settings 
are found in the Search and metadata section at the admin/config path, as shown in Figure 31–1.  



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

701

 

Figure 31–1. The Search settings in the Admin Configuration screen 

Of particular note for the Search module, shown in Figure 31–2, the form at 
admin/config/search/settings allows you to selectively enable any or all of the modules that implement 
the search hooks. You can also choose any one of them to be the default search (the search that is run 
from the search block form and the default tab). If you want to use Apache Solr Search Integration as the 
main search, you should make it the default and likely disable the Node module search. 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

702 

Figure 31–2. Search module configuration options 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

703

Search Results and Facet Blocks 
Further configuration will be discussed later in the chapter, but what you get when appropriate filters 
are enabled and blocks are configured is a default search that allows you to see the current keywords and 
filters so that you can narrow your search or make it broader by removing one of the current filters. The 
enabled filters that are relevant for the current search results will show up in a facet block. Each link in 
this block will apply one additional filter to narrow the result set. The default settings show the facets 
with a checkbox (this is added via JavaScript). Once a facet filter is applied to the search results, you can 
also check the Retain current filters checkbox, which essentially gives you the option to search again 
with different keywords and the current filters (see Figure 31–3). 

 

Figure 31–3. Search results with current search block, facet blocks, and the checkbox to retain filters when 

using new keywords 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

704 

Search Module API 
The Search module in Drupal core provides a framework that other modules can use. In particular, they 
can take advantage of the search interface and standard result formatting from the Search module.  

Much more detail on these hooks can be found in the search.api.php file that comes with the 
Drupal 7 Search module; the same documentation can be accessed online at api.drupal.org. This 
section will focus on the hooks implemented by the Apache Solr Search Integration module, which are 
basically the minimal set of hooks any module would need to implement to create a custom search 
implementation. 

Hooks Implementations Required to Create a Search 
The following hooks are essential to define a new search that shows up as a search tab. It’s a conscious 
limitation that a single module can only define one search—this helps keep the API simpler. 

hook_search_info()  
hook_search_execute() 

With just these two hooks, your new search functionality can appear. hook_search_info() lets the 
Search module know about your search implementation, what title to give the search tab, what path you 
want to use to run searches, and (optionally) the name of a callback function that adds other conditions 
like filters to the search in addition to keywords. The other essential hook, hook_search_execute(), is 
called when a user visits the search path and finds either keywords or conditions present. Note that 
while the search form submits via a POST request, the search module actually takes all the search 
parameters from the URL. So you can, for example, bookmark and search and visit the URL to run it 
again to find new results. The return value from hook_search_execute() is an array of results, each of 
which is an array with certain key/value pairs expected by the theme function. 

■ Note  The fact that all the search parameters are passed in via the URL with a GET request has benefits beyond 
allowing you to bookmark searches. For example, since Drupal uses the page URL as a cache key, you can benefit 
from Drupal page caching for search pages for any commonly run searches on your site, such as providing users 

with links to particular search URLs. 

Additional Search Module Hooks 
The following hooks are optional but they allow your module more control over the search process and 
the indexing process (if using the search module’s indexing facilities), or they allow you to add to the 
Search module administrative interface: 

hook_search_access() 
hook_search_reset() 
hook_search_status() 
hook_search_admin() 
hook_search_page() 
hook_search_preprocess() 
hook_update_index() 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

705

If you implement hook_search_page(), you can take total control over the processing and display of 
search results, in which case the return format from hook_search_execute() can be altered for your 
convenience rather than conforming to the format expected by the Search module. The implementation 
shown in Listing 31–1 mirrors closely what’s in the core search module but adds an additional possible 
output to browse all facets’ blocks.  

The apachesolr_search Integration module implements five of these hooks plus the callback that is 
optionally specified in hook_search_info(). This last callback is important because it allows the code to 
pull additional filter parameters out of the query string and to use these to run a search even when there 
are no keywords. It was added to the core Search module based on this need for Apache Solr Search 
Integration. You’ll notice also that the info returned for hook_search_info() is actually the content of a 
variable, though this variable is not (currently) exposed for configuration in the user interface. This will 
allow developers to change the name and path for the search tab without needing to use 
hook_menu_alter(). 

Listing 31–1. Basic Search Module with Additional Possible Output  

/** 
 * Implementation of hook_search_info() 
 */ 
function apachesolr_search_search_info() { 
  return variable_get('apachesolr_search_search_info', array( 
    'title' => 'Site', 
    'path' => 'site', 
    'conditions_callback' => 'apachesolr_search_conditions', 
  )); 
} 
 
/** 
 * Implementation of hook_search_execute() 
 */ 
function apachesolr_search_search_execute($keys = NULL, $conditions = NULL) { 
  $filters = isset($conditions['filters']) ? $conditions['filters'] : ''; 
  $solrsort = isset($_GET['solrsort']) ? $_GET['solrsort'] : ''; 
 
  try { 
    return apachesolr_search_run($keys, $filters, $solrsort, 'search/' . arg(1), 
pager_find_page()); 
  } 
  catch (Exception $e) { 
    watchdog('Apache Solr', nl2br(check_plain($e->getMessage())), NULL, WATCHDOG_ERROR); 
    apachesolr_failure(t('Solr search'), $keys); 
  } 
} 
 
/** 
 * Implementation of a search_view() conditions callback 
 */ 
function apachesolr_search_conditions() { 
  $conditions = array(); 
 
  if (isset($_GET['filters']) && trim($_GET['filters'])) { 
    $conditions['filters'] = trim($_GET['filters']); 
  } 
  if (variable_get('apachesolr_search_browse', 'browse') == 'results') { 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

706 

    // Set a condition so the search is triggered. 
    $conditions['apachesolr_search_browse'] = 'results'; 
  } 
  return $conditions; 
} 
 
/** 
 * Implementation of hook_search_reset() 
 */ 
function apachesolr_search_search_reset(){ 
  apachesolr_clear_last_index('apachesolr_search'); 
} 
 
/** 
 * Implementation of hook_search_status(). 
 */ 
function apachesolr_search_search_status(){ 
  return apachesolr_index_status('apachesolr_search'); 
} 
 
/** 
 * Implements hook_search_page() 
 */ 
function apachesolr_search_search_page($results) { 
  if (!empty($results['apachesolr_search_browse'])) { 
    // Show facet browsing blocks. 
    $output = apachesolr_search_page_browse($results['apachesolr_search_browse']); 
  } 
  elseif ($results) { 
    $output = array( 
      '#theme' => 'search_results', 
      '#results' => $results, 
      '#module' => 'apachesolr_search', 
    ); 
  } 
  else { 
    // Give the user some custom help text 
    $output = array('#markup' => theme('apachesolr_search_noresults')); 
  } 
  return $output; 
} 

Obviously the code here mostly wraps calls to other internal module functions; the status and reset 
hooks are implemented simply to allow status and reset operations to work with the Search module 
administrative page as well as within the Apache Solr Search Integration administrative pages. Note that 
hook_search_page() is implemented so that it can provide either facet block browsing or customized 
help text when there are no search results.  The code to format normal search results is the same as the 
default implementation in Search module. 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

707

Apache Solr Search Configuration 
The administrative interface for the Apache Solr Search Integration provides a number of configuration 
options that will meet the needs for most initial customization. In particular, by configuring the boost 
setting and doing some basic tests of end user satisfaction with the ordering of results, you can help 
make the search results become more relevant.  

Enabled Filters 
In order to let end users navigate via a particular facet, you need to follow a two step process. First, you 
have to enable the filter via the Apache Solr Search Integration settings, and then you need to enable the 
corresponding block via the normal Block module interface. The act of enabling a filter means that extra 
processing is performed by the Solr server and additional data is returned. Thus, you should only enable 
those filters where you will use the block or will use the data for some other purpose. For example, in order 
to make a facet block available for the Tags field, the last filter needs to be enabled (see Figure 31–4) and 
then the block is configured. 

 

Figure 31–4. Enabling a filter makes an additional facet available in the search results. 

Type Biasing and Exclusion 
A common need for sites is that content of a certain type should receive a boost in search results or a 
certain content type should not be added to the search index at all. For example, you may wish to steer 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

708 

users toward blog posts. Alternately, you may want them to first find documentation represented by 
book nodes. Initially, all content types are treated equally. By setting a value to something other than 
“Ignore” you indicate that a certain node type within your site content has greater importance and 
should receive a higher score in search results. In contrast, there may be some content that should not 
be indexed at all. This may be true for nodes of a type that is automatically generated or represents data 
rather than actual site content. 

The administrative interface lets you configure boosting and exclusion per content type (see Figure 
31–5). The module will attempt to immediately delete from the search index all relevant nodes if you add 
a type to the excluded list, so do not make this change casually. 

 

Figure 31–5. Setting the search result bias and exclusion settings for specific content types 

Apache Solr Search Customization 
The Apache Solr Search Integration module is only a starting point if you want an interface that is fully 
optimized for your Drupal site. In addition, the filtering and sorting capabilities of Solr make it attractive 
to use as a data source for certain kinds of listing pages such as ecommerce sites, library sites, or on 
drupal.org itself for the page that lists all modules. There are a wide number of hooks documented in 
apachesolr.api.php, but only a few of them are necessary for most typical customizations. 

Hooks for Getting Data into Solr 
When indexing a node, Apache Solr Search Integration will add certain fields to the document by 
default. If you want to do custom filtering, boosting, etc., you will want to add additional fields to the 
document in the index. To do so, you can implement hook_apachesolr_update_index($document, 
$entity, $namespace). This hook is used to add more data to a document before it’s sent to Solr; it can 
also be used to alter or replace data added to the document by Apache Solr or another module. It works 
like an alter hook, although there’s no need to pass the variable by reference because the document is an 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

709

object. When adding data to the Solr index, it’s helpful to look at the schema.xml file to see the names of 
types of the dynamic fields. You can control how the data is indexed simply by naming a property on the 
document with the right prefix. For example, you could add a single-value like so: 

function MYMODULE_apachesolr_update_index($document, $node, $namespace){ 
 if ($node->type == 'site_product' && $document->entity_type == 'node') { 
    // Add an additional custom node field to the index. 
    $document->fs_price = $node->price; 
  } 
} 

There are several ways to get searchable data into the index. The simplest way is to simply add more 
content to the node to be rendered at index time. Another approach is to implement 
hook_node_view($node, $view_mode, $langcode), and look for a  $view_mode  of ‘search_index’. Yet 
another option is to add content via hook_node_update_index($node). Any content returned from that 
hook is appended to the content sent to the search index. However, in the latter two cases, this content 
will simply be found as part of a keyword search and can’t be used to create facets or sorts. 

A big feature of the Drupal 7 core release is the Fields API. The Apache Solr Search Integration 
module has built-in support for indexing the fields on nodes or (potentially) other entity types, based on 
either the field type or even on a per-field basis. This feature was created based on the support for 
Content Construction Kit (CCK) fields in the 6.x-2.x version of the module; for 7.x, it has been extended 
to include handling the taxonomy term reference fields. By default, only taxonomy and all the list-type 
fields (e.g. list_text) will be indexed as separate fields in the Solr document. If you need to add to or 
change this indexing, you can implement hook_apachesolr_field_mappings_alter(&$mappings). See 
apachesolr.api.php for more details. 

A last thing to consider is actually keeping data out of the search index. Previously, you saw the 
administrative interface for excluding all nodes of a certain type, but you might need to exclude content 
on a more selective basis. In that case, you can implement hook_apachesolr_node_exclude($node, 
$namespace). If any module returns TRUE, the node is not sent to the index. 

Hooks for Altering Queries and Results 
The first and most common reason to alter the query sent to Solr is to retrieve an additional field from 
the document in the search result. This is the complement to adding an extra field to the document via 
hook_apachesolr_update_index($document, $node, $namespace). Usually when you modify a query, you 
don’t want the modification to be visible to the end user in the facet links, etc. In this case, you should 
use hook_apachesolr_modify_query($query, $caller) and append your field name to the ‘fl’ parameter 
sent to Solr, like so: 

function MYMODULE_apachesolr_query_alter($query){ 
  // Also return any price data from the index in the results. 
  $query->addParam('fl', 'fs_price'); 
} 

hook_apachesolr_modify_query() can also be used to add filters to a search that are not visible to the 
end user. This is important, for example, in the implementation of the Apache Solr node access module. 
This module adds filters to search queries based on the node access system using node_access_grants(). 
It also uses hook_apachesolr_update_index() as described previously to index as additional fields the 
node access information with each Solr document derived from a node. 

A very similar hook is hook_apachesolr_ query_prepare ($query). Any changes made using this 
hook may end up being visible to the user on the search results page, so its use is much more limited 
than hook_apachesolr_query_alter(). 

There are also several hooks (and theme hooks) that can be used to modify or enrich the search 
results before they are displayed to the user. The most common one is 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

710 

hook_apachesolr_search_result_alter($doc, $extra), which allows each document in the result set to 
be individually altered.  

Integrating with the Apache Solr Server 
To understand a little bit about how and why the Search module hook implementations in Apache Solr 
Search Integration are written as they are, it’s useful to have a broad conceptual understanding of how 
the Apache Solr server works. Drupal interacts with Solr via an HTTP request, which for Drupal means 
using the drupal_http_request function (though it could also be done other ways in PHP including via 
the curl functions or file_get_contents(), depending on the PHP install). Solr has a RESTful API 
interface, but, at least in version 1.4.x, it doesn’t support the full range of HTTP methods as verbs so it’s 
not a true REST interface for this reason. Instead, different URL paths are used (and can be configured 
per search index); POST requests are used for data changing operations and GET requests are used for 
querying. 

A PHP library was adapted to provide some of the low-level logic of getting data into and out of Solr. 
That library can be found at code.google.com/p/solr-php-client. The Apache Solr Search Integration 
module provides a class adapted from the main library class, which alters its behavior. The most 
important alteration is to use Drupal_http_request() instead of file_get_contents() so that all Drupal 
sites can work with the module. This is class DrupalApacheSolrService, which extends 
Apache_Solr_Service. The document class is used from the library with minimal modification. 

Managing Data in the Solr Index 
Data is added to the Solr index as XML documents sent via POST request to the /update path on the Solr 
server. Solr stores data as documents, and each document must have a unique string ID value. Solr does 
not have any native concept of relationships between document nor any ability to JOIN documents 
together. In this sense, it’s like document-based NoSQL databases, such as MongoDB, so you have to 
store together all attributes of the node or other entity that you wish to be able to search on or retrieve in 
the search result. Documents are deleted with a POST request of an XML document that either specifies 
the document ID or by a query that deletes all matched documents. 

Searching and Analysis 
Normal searches are run based just on the URL path and query string. Depending on your configuration, 
different paths may be used for different searches, such as a keyword search versus a “more like this” 
search. If something is not working as expected, having Solr running locally is very helpful since you can 
type your query directly into the URL or use other features of the Solr administrative interface. In 
particular, the analysis feature is useful to help understand how indexed content or search keywords are 
transformed by the analyzers and filters configured in the Solr schema.xml. If running Solr locally using 
the example Jetty deployment, you’ll be able to get to the interface at 
http://localhost:8983/solr/admin/. Figure 31–6 shows the admin interface: in parentheses at the top is 
the name of the schema in use, then the link to the analysis interface and the text box where you can 
initiate a search. 



CHAPTER 31 ■ SEARCH AND APACHE SOLR INTEGRATION 

711

  

Figure 31–6. The Apache Solr admin page, including the link to the analysis interface 

Summary 
By using Apache Solr Search Integration, you can enhance the quality of the search results and the 
search interface on your site, which will help keep users on your site and help them find what they are 
looking for.  

The Drupal 7 version of Apache Solr Search Integration will be enhanced as indexing for additional 
entities like users and files is available and as the Drupal 7 version of Views is released. 

■ Tip  Find updates at dgd7.org/solr. 

  



C H A P T E R   32 

■ ■ ■ 

713

User Experience 

by Bojhan Somers and Roy Scholten 

Learning how Drupal works takes a lot of time—and that’s just core. As modules get added, the
complexity grows. As a Drupal developer, you don’t want this complexity to get in the way of users and
site administrators getting the full benefit of your work. This creates some challenges in terms of design.
How does this module fit together with all the other modules? How do we design Drupal administration
to fit endless possibilities? 

This is when the practice of design—and most importantly, interaction design, which focuses on the
behavior of the user—comes in. For example, the single biggest change in Drupal 7’s design was the
introduction of the admin theme named Seven. 

Not having a default admin theme caused confusion from the very first second people started using
Drupal 6 because it doesn’t map to how they think a CMS would work. It confused people that the
administrative interface was visually within their site, instead of there being a separate admin interface.  

Modularity 
The ability to plug in functionality without hacking the application is at the core of Drupal. However,
once you start to use the modules in combination with each other, workflow issues begin to occur. Can
you imagine needing to use several plug-ins within Firefox or the iPhone to achieve one goal?  

Human API  
We like to think that humans are reasonable, rational beings that take conscious action based on careful
thinking. The truth is that many, if not most, of our decisions are made unconsciously, driven by
emotion and automatic triggers coming from parts of the brain we don’t have conscious access to. 

This subconscious part of the brain is a pretty darn fast and smart processor of inputs—as it should
be—because our five senses capture about 11 million pieces of information every second. Only 40 of
those are processed consciously. Good thing we have the unconscious to handle all the others or we’d be
overloaded in seconds. 

Memory  
Have you ever walked into a room and can’t remember what you were going to do there? You’ve just run
into the restrictions of your short term memory and also experienced your ability to get distracted easily.
In the interface world, we have to account for this, as users are easily disrupted from their task flow by
many events throughout the day, such as a colleague walking in or e-mail popping up.  



CHAPTER 32 ■ USER EXPERIENCE 

714 

Short term memory, which goes from a couple seconds to about 30 seconds, has limited storage. 
George A. Miller, a psychology professor, wrote in a famous paper “The Magical Number Seven, Plus or 
Minus Two” (1956) that a person can remember about 7 (±2) items. As research progressed on this topic, 
it was discovered that humans are likely to remember even less (about 4 (±1) items), and that we tend to 
remember information in chunks, such as telephone numbers. This is why in game shows it is easier for 
participants to remember a larger group of similar or related names than a small number of unrelated 
ones. 

As we design interfaces, we need to take into account how users are easily disrupted in the task flow 
and that they struggle to remember larger bits of information from one screen to the next, especially if it 
contains unfamiliar information. Repeating important collections of information in logical chunks 
across screens will help users work through the task at hand. 

Long Term Memory 
Do you remember studying for an upcoming school test? You may have tried all the tricks from spaced 
repetition (gradually increasing the interval between repetitions of learned material) to the advice of 
your mom that you need sleep to process and properly organize those memories. When users approach 
interfaces, a lot of long-term memory kicks in by recognizing familiar elements—how these work, what 
the next step would be, etc.  

Semantic memory is about the memory of concepts and meanings. It’s not the story of when you 
first learned how to use the checkbox form element, but rather a specific piece of knowledge on how it 
works and how it is distinctive from other form elements.  

Procedural memory is our memory of the steps involved in the execution of tasks. This allows us to 
tie our shoe and allows seasoned Drupalistas to set up a module without much thinking. It’s often when 
we break with these learned processes that user confusion occurs. 

By creating a deeper understanding of the users’ long-term memory (the concepts, previous 
experience, and existing processes), we can provide a better interface. We can match their expectations 
of how things work and possibly even exceed their expectations by guiding them towards more 
possibilities. 

How Drupal modules work is part of an eco-system from the Web to content management systems 
to Drupal specifically. All these systems introduce concepts and processes that are leveraged by the user 
when using your module. By adhering to standards, you are more likely to avoid obvious mismatches 
with concepts and processes. However, as Drupal modules get more and more complex, it’s likely you 
will have to do additional research to understand how users perceive the concepts involved in your 
module and which existing knowledge can be applied to make it easier.  

Mental Model 
Before users get to Drupal, they already have a mental model of how it might work, not just from 
previous experience with content management systems but from computer experience in general. When 
thinking about mental models, we differentiate between the way the system works (system model) and 
the way users think about achieving their goals with the system (interaction model). 

The interface of a system tries to close the gap between these two models and is called the 
representational model—the way we as developers or designers choose to display functionality. A poor 
understanding of the interaction model that a user has before actually using the functionality often leads 
developers and designers to model the interface after the system model instead. This usually results in 
hard-to-use interfaces. For example, Drupal 7 has the Fields UI; its interface is modeled after the system 
requiring the user to shift his focus from the interaction model of creating forms and boxes of content to 
making a database column.  



CHAPTER 32 ■ USER EXPERIENCE 

715

Taking a step back and thinking about how the user thinks about achieving their goals with your 
module (before they ever see it) is key to creating a usable interface. It’s also a step that is often forgotten 
in the process of building an interface.  

Figure 32–1 shows a simplified version of the user's interaction model against that of the system 
model. What do I want a list of? Where do I want to show it? How do I want to present it, using which 
format for each item?  

 

Figure 32–1. A concept model of the Views module  

Perception 
Understanding why humans see certain things as foreground and others as background is fundamental 
to designing a good interface. As our surroundings give stimuli to our sense organs, we start talking 
about perception—the interpretation of these stimuli.  

“Perception is not determined simply by stimulus patterns; rather it is a dynamic 
searching for the best interpretation of the available data.”  

—Richard L. Gregory 



CHAPTER 32 ■ USER EXPERIENCE 

716 

Top-down perception explains the perception processing as something that is built constructively 
from our knowledge, expectations, and thoughts. Bottom-up perception processing is described as 
primarily driven by physical elements. 

A famous video from one of the usability tests on Drupal 6 showed a participant struggling to find 
the “Create content” link that was placed in the left menu and always visible. Still, it took the user over 5 
minutes to find it on the screen, after going through various places in the administration screen. It was a 
clear example of how expectations and prior knowledge drove where the user looked and that Drupal 
failed to prominently display the most important link in a Content Management System.  

When designing, we have to remember how to work with what is perceived outside of the center of 
the gaze—what is referred to as the peripheral vision. As people move through a page, they identify 
many objects in their peripheral vision. Designing with this principle in mind means visually grouping 
related elements and demoting the visual importance of less critical functionality.  

Perception is one of the oldest fields in psychology and has a lot of theories and applicable 
understanding to designing your modules interface. We will cover only two: that of Gestalt (the form and 
harmony between elements on your page) and some general color usage tips. When we think of form 
and color, the following qualities drive the meaning: 

• Form 

• Line orientation 

• Line length 

• Line width 

• Size 

• Spatial grouping 

• Color 

• Hue 

• Chromaticity  

• Saturation 

• Luminance 

A lot of what goes into understanding perception is about designing for grouping information more 
logically to manage the complexity of your interface. For modules like Views and Rules, these challenges 
are immense and have a deep impact on the usefulness, efficiency, effectiveness, learn ability, and 
overall satisfaction of the module. 

Gestalt Psychology 
When looking at the interface, we do not consider the different stimuli of different pieces on the page as 
individual elements, but rather we see it as a larger whole. Gestalt psychology focuses on understanding 
how humans perceive certain elements as foreground and others as background, how we differentiate 
between forms, and how we find similarity between forms.  

Research by Kurt Koffka, Wolfgang Köhler, and Max Werheimer from 1920-1940 introduced this idea 
of considering the perception of object or environment as a whole form where one would have 
foreground parts and background parts. Gestalt perception is introduced as the law of prägnanz, where 
the following laws are part of and applicable to the Drupal context:  

• Law of similarity 



CHAPTER 32 ■ USER EXPERIENCE 

717

• Law of proximity 

We will briefly cover each law and its application in Drupal. These laws often help in exploring and 
evaluating your module forms.  

Law of Similarity 
We group together items that have similar characteristics, such as color, shape, orientation, size, space, 
etc. When we see the elements shown in Figure 32–2, such as a row of circles in a field of blocks, we 
perceive this as a row or line rather than separate circles.  

 

Figure 32–2. Bigger screenshots for active themes, smaller thumbnails for inactive ones 

This pattern is often applied in Drupal to differentiate items among many others, as shown in the 
right of Figure 32–2 where size is used to group similar items. It’s a pattern also used for grandeur in 
architecture—and in the retail store by repeating similar parts to look grand. 

Law of Proximity 
As shown in Figure 32–3, a common pattern is to put visual elements close to each other. 
Psychologically, when we see two people standing close to each other, we assume they know each other. 
This pattern is used all over the Internet. A notable example is Flickr, which uses this pattern for almost 
everything on the page and only occasionally uses lines for closure. Drupal also uses it, as shown in 
Figure 32–3. 



CHAPTER 32 ■ USER EXPERIENCE 

718 

 

Figure 32–3. White space is used to define the relationships between form labels and form elements.  

We apply this principle all over Drupal to layout all kinds of listing pages but also on the detailed 
level, using white space to define relationships between the elements of a form. The key to applying this 
principle is to look at the page as a whole and group page elements in a way that helps guide the eye. 

This very basic law is often misapplied by using either too much or too little white space. A trick for 
applying this pattern correctly is taking a step back. By blurring the page a bit, can you still see the 
groups on your page? If not, you might have to make the groups more explicit or reduce the number of 
groups. 

Color 
Beyond making things look beautiful, color is used to give structure, attention, and meaning to elements 
on the page. The “Perception” section covered a few cases where color could be used to enhance the 
composition of elements on the page and help convey meaning. Describing color itself is both technical 
and confusing as we put different meanings to words like “dimmed” or “bright,” especially in a black-
and-white book like this. In technical terms, color is described by its hue, chromaticity, saturation, and 
luminance.  

• Hue is when we try to identify the primary color. Red, green, blue, and yellow are 
referred to as the unique hues.  

• Chromaticity is the purity of a color—the absence of other colors. For example, a 
shiny dark blue would have a high chroma where as purple would have a medium 
chroma.  

• Saturation is how a color changes as it gets darker or lighter; more importantly, 
it’s about the intensity of a given color—how one color can appear pale while 
another looks strong. 

• Luminance is a measure for the brightness of a color. 

Drupal’s administrative interface (Seven) uses color sparingly. This is primarily a branding and 
usability decision. We tried to add as little visual distractions to the actual form interactions on the page 
as possible. Another consideration is accessibility, because a good part of our society has a form of color 
vision deficiency. Seven makes use of the neutral colors described in Table 32–1. 



CHAPTER 32 ■ USER EXPERIENCE 

719

Table 32–1. Seven’s Colors 

Seven’s Colors Usage 

#a6a7a2 (light gray) Tabs, selected table column header 

#e1e2dc (light gray) Table header backgrounds 

#0074bd (blue) All links 

#008800 (green) Success messages, enabled modules 

#b14400 (orange) Warnings 

#8c2e0b (dark red) Errors 

#b4d7f0 (light blue) Demonstrate blocks back background 

As shown in Table 32–1, there is a whole range of colors you can use out of the box, and the large 
majority of modules will be fine leveraging any one of these. For modules that need to step beyond these 
supplied colors, there are several principles that apply. 

Color Harmony 
In Drupal we use light gray because it doesn’t draw attention, unlike shades of blue, red, and green. 
When you choose color, there are many different types of color combinations to be made from 
analogous color (combinations of colors that are close to each other on the color wheel) to 
complementary colors (combinations of colors that are on opposing ends of the color wheel) to different 
types of hues and chromaticity of colors. 

It’s important to understand what type of meaning and attention you want to draw to the element 
you are coloring. Nonetheless, try to limit the usage of new colors because it’s likely that colors will 
conflict, harmony will collapse, and the eye will be left wondering what the colors are trying to 
communicate.  

Color theory is an extensive field and we have only skimmed the basics here. For more information, 
we suggest these books: The Art of Color: The Subjective Experience and Objective Rationale of Color by 
Johannes Itten (John Wiley & Sons, 1997) and Color: A Natural History of the Palette) by Victoria Finlay 
(Random House Trade Paperbacks, 2003). But most importantly it’s a field of experimentation—finding 
harmony and meaning through carefully chosen colors. 



CHAPTER 32 ■ USER EXPERIENCE 

720 

Practice 

“In theory, theory and practice are the same. In practice, they’re not.” 

—Yogi Berra 

So with all this theory, how do you bring the principles into practice? It’s all about having a process that 
considers design as an activity during the creation of your module, rather than something done at the 
last moment. 

This is an important aspect of building a good UI: the willingness to take the necessary steps by 
doing sketches, wireframes, and mockups, and then running them by a few users. The process described 
in this section is applicable to most digital projects, but we specifically target it on Drupal.  

We believe strongly that the role that design takes in the current module design process has to 
change if we want to make a more compelling Drupal where the user experience of its contributed 
modules fits in seamlessly in with Drupal core and each other. 

The Process 
Most Drupal modules serve a very specific need which is often only a part of the larger goals in building 
the web site. The act of designing focuses on two major parts: understanding what people want to 
accomplish with your module, and how they can do this the best through your UI.  

The design process is about a very simple idea: in order to get to good design, you need to explore 
possibilities and iterate on these with feedback from users. It’s important to realize that your module is 
often part of a larger workflow; therefore, not breaking with existing interaction patterns and not 
breaking that flow is key.  

We will describe the following process: 

• Concept: Define what you are making. 

• Design: Sketch your module’s screens and relations. 

• Build: Build your user interface, checking against core interaction patterns. 

• Optimize: Test with users and optimize on findings. 

• Release: Prepare your project files for sharing on drupal.org. 

This process can be applied fully or partially, depending on what stage in the cycle you are; 
nonetheless, each step will be revisited from time to time as you are making iterations. As we walk 
through the process, it will become clear which activities you can use to step out of the role of 
programmer and into that of the designer; it should also create an understanding why design based on 
just the implementation model tends to not account for user needs. 

The design activity is about seeing the larger picture for where and how your part fits in. How is your 
module used with other modules? To what task flow are you adding a feature? At what point in this flow 
might people want to use it? How do you do it in a way that blends in and enhances the user experience? 

In the practice section, you will apply this process to the administrative interface of the Rules 
module. The interface for this module had grown organically over the years but for Drupal 7 got a bigger 
overhaul to better fit the needs of the people using it in their sites. As is the case with many others of the 
more technical modules, its domain can be incredibly complex. Thus, the user interface has to account 



CHAPTER 32 ■ USER EXPERIENCE 

721

for large amounts of data and configuration to actually become useful and enable users to get their 
things done—not an easy task. 

The Challenges 
Designing a good UX is hard. Once you’ve got your version 1.0 out of the door, your module enters a new 
phase: it will actually get used by others. It may take some time, but eventually issues will pop up in your 
issue queue. Gasp! Bugs are found. Or worse: feature requests! 

Designing a piece of a modular, extensible, and flexible framework like Drupal is a tough job. Let’s 
look at some of the main challenges you may encounter when designing your application within the 
Drupal ecosystem. 

Keep the Focus on the Essentials (Say No!) 
As your module progresses, it’s likely that new features will be added. Over time, the original simplicity 
and focus of the module might get lost. This is a threat to any software project, but especially in modules 
where there is little feedback on the actual use of functionality—its common module functionality is 
really only used by the module maintainer himself.  

As we have experienced in Drupal core, the issue queue is not the best place for receiving feedback 
on your UI. The people in this queue are often far more experienced Drupal users (expert users, in fact) 
and take the time to actually write up an issue. These users often do not reflect common user needs or 
problems with the UI, so just keep this in the back of your mind as you approach these issues. 

For example, if we went solely by the feedback we received in the issues queue, Drupal 7’s biggest 
problem would have been the permission page and the second biggest problem the module page. 
However, from testing, we saw that most of the problems were in finding how to create content and 
where to actually find functionality. Therefore, Drupal 7 added an add content link in the administration 
section, reorganized this section, and introduced contextual links for editing and configuring; while the 
modules and permissions pages await Drupal 8 for their overhaul. 

Be bold and say no to a feature request if it diverges from your original vision for your module. Some 
modules do this by providing additional modules for specific feature requests or by providing the option 
in the code but not the UI. Keeping the focus means you are able to deliver the core value of the module 
easily and your interface will stay clean of distracting settings.  

How to Make Informed Design Decisions 
It’s rare that an issue starts with “While observing and talking to a user…” because it's not exciting 
information to share. Fundamentally, however, this is what informs your decision best: how it affects 
users. How do you know who your target audience is and what intermediate users want to achieve? How 
do you build a solid understanding of your users so you can make informed design decisions? 

The quickest and best way to do this is by talking to them and observing them as they use your 
module. This might seem like a big step, but often you can find people in your close surroundings who 
can give you this kind of feedback. 

Throughout the Drupal 7 design process, we often spoke with users in the issue queue, visitors of 
local camps and technology conferences, and those who update their local scouting web site. From all 
these stories, we were able to make more informed design decisions on how it affects the user, the code, 
and the work they do together.  



CHAPTER 32 ■ USER EXPERIENCE 

722 

Design with Limited Resources 
It’s common in software development environments for the amount of developers to far outnumber that 
of designers; in open source projects, this is even more drastic. However, for your design to work, you 
often need feedback from designers to make sure that visual affordances such as alignment, color usage, 
and the relationships between elements on the page are in balance. 

Concept: What Exactly Are You Building? 
This is primarily about taking a step back and looking at the larger picture. To help you set the scope of 
the project and map the different audiences that will be using it, the two primary questions are: 

• What are you building? 

• Who will use it (excluding yourself)? 

Both questions can be defined quickly and expanded on when needed. Actually, documenting both 
answers sets a good stage for discussing further development and helps communication towards the 
community. So what goes into answering the question: “What are you building?” 

This answer is not primarily expressed in the functions and features of the tool but on a somewhat 
more abstract level concerning the user goals this module wants to support. The opportunity here is to 
tie the technological abilities of your module to real user needs.  

The question of “Who will use it” is primarily about understanding who your users are in a way that 
goes beyond putting them into beginner, intermediate, and advanced groups. Research the different 
needs people have and consider how your module will be used in the larger workflow. 

Let’s take a look at these two questions for the example project, the Rules module 
(drupal.org/project/rules). The Rules module lets site administrators define conditionally executed 
actions that can be triggered by events that occur in the site or application. You could create a rule to 
send the site manager an e-mail when new people register on the site. E-commerce sites have many uses 
for rules, too: calculating shipping costs or applying promo-codes for lower prices, for example. 

Let’s try to answer these two questions that help define the concept for this tool. 

Rules: What Are You Building? 
Rules wants to provide users with a complete set of tools for defining the business logic in a Drupal 
application. The intended scope is large: Rules aims to be the primary, extensible platform for defining 
and handling events on your site. 

The concept model in Figure 32–4 explains the general problem that Rules wants to tackle. 



CHAPTER 32 ■ USER EXPERIENCE 

723

Figure 32–4. The concept model of Rules 

Rules: Who Will Use It? 
The main audience for the Rules module can be grouped into three roles or people: developers, site
builders, and business developers.  

They all share the main reason to use for Rules: to define the business logic of the site or application.
Developers use the Rules API to customize system workflows. Site builders use the Rules interface to
define how different interactions on the site make other things happen. Business-minded people have
order processing and marketing campaigns to implement and improve. 

Design 
Now, how do you translate these ideas about your project and its audience to actual screens for your
software? You explore multiple ideas with sketches, refine the best options in wireframes, and create a
mockup of the one selected solution. 

Don't fear the bad ideas. Explore freely. 



CHAPTER 32 ■ USER EXPERIENCE 

724 

Getting Ideas: Sketching 
“The best way towards a good idea is to have many ideas” is how the saying goes. Getting towards a good 
design is very much about exploring multiple ideas first. 

It’s an almost universal problem in software design that very little time and energy are spent on 
exploring multiple possible solutions. Often it is simply the first, and therefore un-optimized, design that 
is chosen. 

On the abstract level, the practice of design consists of switching back and forth between two 
opposing mental states: divergent thinking and convergent thinking, as shown in Figure 32–5. With 
divergent thinking, you look for multiple ideas and opportunities. Convergent thinking is about 
evaluating those ideas and making choices on which to throw away and which to elaborate on. 

 

Figure 32–5. Showing the design deliverables in the process from divergent thinking to convergent 

thinking 

Sketching can be done in any kind of medium: pen and paper, wireframe software, graphic 
software, and even code. When exploring designs, you can grab a pencil and make a quick drawing of 
how things could look. It’s all about the activity of putting technical boundaries aside for a bit and just 
brainstorm about how it might work in a perfect world. Explore, explore, and explore some more. Get 
those (crappy) ideas out of your system, make a quick note of them, and move on to the next idea. 

In the book Sketching User Experiences: Getting the Design Right and the Right Design by Bill Buxton 
(Morgan Kaufmann, 2007), sketches are defined by the following attributes: 

• Quick: It doesn't take much time to make one. 

• Timely: It can be provided when needed. 

• Inexpensive: Costs should not restrict possibilities to explore. 

• Disposable: The investment is in the concept, not in the execution. 

• Plentiful: Sketches work best in series or collections. 

• Clear vocabulary: There's a specific style to them that identifies them as sketches. 

• Distinct gesture: It’s not tight and precise, but open and fluid. 



CHAPTER 32 ■ USER EXPERIENCE 

725

• Minimal detail: It includes only what is needed to communicate the concept. 

• Appropriate degree of refinement: The level of precision matches level of 
refinement of the actual project itself. 

• Suggest and explore rather than confirm: Don’t dictate solutions, but suggest 
ways towards answers.  

• Ambiguity: Leave room for multiple interpretations. 

You might have noticed that nowhere in this list does it say that you have to be able to draw well. It’s 
not about that. Nor is it about having to use pen and paper. Sketches can be done in code as well. Just 
focus on generating multiple ideas. Work only as long as needed to get the gist of the idea across. Take a 
screenshot or document it in another way, and move on to the next idea. We’re using pen and paper in 
our examples here because that’s what we’re comfortable with. Pick the tool that you are comfortable 
with and that lets you work quickly. 

The feedback loop starts here. Show it to others with the intention of getting more ideas first, not 
necessarily for separating the good from the bad ones. If you get suggestions for other ideas, sketch those 
out quickly. 

If you choose to narrow down your selection yourself, make sure you review your ideas with 
relatively fresh eyes. Put some time between sketching and selecting. Look at them upside down and 
from a distance.  

Sketching the Rules User Interface 
Let's look at an example from the Rules module. If you explore the Rules interface, you’ll see many of the 
basic core UI ingredients like tabs, tables, and fieldsets at work. But what stands out even more is that 
there are a few deliberate deviations from core patterns. There are a couple of pages that present 
multiple tables on one page. There’s the Rules listing page that groups active and inactive rules each in 
their own table. And there’s the Rules edit page, where there are no less than three tables shown below 
each other. Let's retroactively explore some ideas for both of these cases and find out why those design 
decisions were taken. 



CHAPTER 32 ■ USER EXPERIENCE 

726 

The Rules Listing Page 

 

Figure 32–6. A screenshot of the Rules listing page. Note how active and inactive rules are each presented 

in their own table 

As you can see in Figure 32–6, all rules in the system are grouped into two tables: one table with all 
active rules and another table with inactive rules underneath it. Is this the best way to separate the two? 
Let’s see if we can come up with some ideas for doing this differently, shown in Figures 32–7a through 
32–7g. 



CHAPTER 32 ■ USER EXPERIENCE 

727

 

Figure 32–7a. The current situation: a table for 

active rules and another for inactive ones 

 

Figure 32–7b. One table with an inactive part at the 

bottom. You make rules active or inactive by 

dragging-and-dropping them to the desired section 

of the table. This is a variation on a pattern used in 

the Fields UI where this interaction is used to show 

or hide individual fields on an entity. 

 

Figure 32–7c. What if all rules were in a single table 

that can be filtered to show only active or inactive 

rules? 

 

Figure 32–7d. What if all inactive rules are put into 

a collapsible fieldset below the active ones? 



CHAPTER 32 ■ USER EXPERIENCE 

728 

 

 

 

Figure 32–7e. Would spreading them out across 

separate tabs be a workable solution? 

 

Figure 32–7f. Do you even have to group rules bases 

on active or inactive? Can the inactive ones just be 

styled differently (greyed out)? 

 

Figure 32–7g. What if all rules were in a single table 

that can be filtered to show only active or inactive 

rules? 

 



CHAPTER 32 ■ USER EXPERIENCE 

729

As you can see, a few ideas can easily be discarded (32–7e and 32–7f), but the filter (32–7g) and 
fieldset ideas (32–7d) seem promising. The filter could work because there’s already a fieldset with filter 
options present. Further explorations would investigate if that could be designed to accommodate this 
active/inactive filter. 

The other option with all inactive rules (in a table) inside a collapsible fieldset seems nice, too, 
because it makes them less prominent in the interface. You can safely assume that when people are on 
this page, they come much more often to work on an active rule. Having the inactive rules take up less 
screen space would support that. The two groupings are clearly different from each other, which makes 
it easier to tell them apart. 

Get feedback on page concept from real people. Ask them how it aligns with their mental model, 
show sketches, ask what they see.  

For really complex problems, you might need ten or more idea-sketches to get the feeling that you 
have sufficiently explored the problem space. For less complex scenarios, three sketches can easily be 
enough. But even then, you’ll have material to choose from, which still puts you ahead because now you 
can make an informed decision on which route you are going to take and explore further.  

How? you ask.  

Wireframes 
Wireframes can serve many purposes: prioritizing content, initial design briefings, validating 
requirements, evaluating copy writing in context, or as paper prototypes that can be usability tested. 
This versatility brings the risk of trying to communicate too much to multiple audiences. When making a 
wireframe, know its purpose and stick to it. Keeping that focus will make it most effective. 

Wireframes can be made with many tools: pen and paper, dedicated diagramming software, 
drawing software, and even office productivity tools have some basic capability for drawing labelled 
boxes onto the screen. As with sketches, the medium isn’t important. A digitally created wireframe might 
be easier to share online since you’ll need to scan or photograph pen-and-paper drawings first.  

Say you want to wireframe a Drupal admin screen. From your sketches you have picked two or three 
ideas that seemed to point towards a solution. You narrowed down your options. Now it’s time to look at 
those ideas and explore each in more detail.  

It’s entirely possible that by now it is already perfectly clear what you need to do because your 
project scope is small.  

• Wireframing is about collecting and arranging the bits and pieces needed, where 
the bits are form elements and the pieces are interaction patterns (more on these 
later). 

• Use the Seven theme. It imposes interesting restrictions like a one-column layout 
and provides a beautiful baseline that can be extended. The visual language is one 
of restraint. That leaves a lot of room to experiment. And you definitely should. 
There are many complex interfaces in contrib for which core does not have a 
ready answer. But to make the Drupal admin UI shine is to make it disappear. You 
should also honour that restraint and be picky about what is added to the visual 
language. 

Get Feedback on Your Wireframes 
As pointed out earlier, it’s important to know the purpose of your wireframe and stick to it. This is 
especially important when asking other people for feedback who don’t have the background 
information (meaning your process up till now). Present the wireframe in a way that best serves its 
purpose.  Whatever the tool you use, make sure to include the following elements for an effective 
visualisation: 



CHAPTER 32 ■ USER EXPERIENCE 

730 

1. Title and a description. Yes, that’s obvious but also easily forgotten. Without 
knowing what they’re looking at, it will be hard for people to give meaningful 
feedback. It’s best to add the title to the graphic itself. Doing it this way ensures 
that the wireframe is not dependant on surrounding text for this basic 
clarification. 

2. Main page areas. For a web page, outline the header, footer, content area, and 
sidebar(s). For a Drupal admin screen, put in a box for the toolbar and 
shortcuts. Add one underneath for the breadcrumbs, page title, and tabs. It’s 
unlikely that your module changes things in these areas but put them in to 
provide context. 

3. Highlight and annotate the specifics that are part of your design. Put a 
number close to the part you want to highlight. Repeat that number in a 
column next to the wireframe and write a short description of what’s going on 
in that particular spot. 

Once again, it’s time to get some input from others on your designs. 

Reality Check 
Stress-test your design with the four basic screen states: normal, empty, flooded, and error. All of these 
screen states will eventually happen and you should design each of them.  

Normal 

 

Figure 32–8. Normal state 



CHAPTER 32 ■ USER EXPERIENCE 

731

Figure 32–8 shows a manageable list of content, a handful of tags, menus with a moderate amount 
of links. This is probably the state your wireframe already depicts. Everything is about average—no 
extreme cases. 

Empty 

 

Figure 32–9. Empty state 

If your module generates listings of objects, you’ll want to use a table for that list. But what if no 
items are available yet? On the one hand, this case is very much an exception. On the other hand, most 
listings start out empty. So while this state (Figure 32–9) doesn’t happen often, you can be sure it does 
happen at the very important first-time use scenario. Drupal 7 introduces a standard empty pattern for 
tables that you’ll want to implement as well. 



CHAPTER 32 ■ USER EXPERIENCE 

732 

Flooded 

 

Figure 32–10. Flooded selectlist state 

“I have so many active modules that the Site Configuration drop-down menu extends beyond the 
height of my screen.” What happens when you have 68,000 content items? Or 1429 taxonomy terms, 5 
million comments, or a content type with 63 fields? If this is a likely scenario for your module (such as in 
Figure 32–10), what kind of tools will the user interface expose to help people manage that amount of 
data? Search, sorts, filters? 



CHAPTER 32 ■ USER EXPERIENCE 

733

Error 

Figure 32–11. Error state 

Figure 32–11 is the screen you don’t want to show. And of course the best error message is no error
message at all. Still, you will want to handle this situation constructively. Drupal provides basic patterns
for how and where system status messages are shown. What wording will you use for your error message
and how do you guide people towards fixing the problem?  

This review will help you find parts of the UI that you might not have thought about yet. Rework your
wireframe where needed. Sketch multiple options if necessary; take care to not simply bolt on some fixes.  

Mockups for Detailed Design 
While wireframing or reviewing your design, you might have run into a few specific parts of the interface
that are particularly tricky. Maybe you noticed people had a hard time finding a particular bit of info or
functionality when you were testing. 

Then it's time to take the fidelity of your designs one last level further and create some mockups.
You’ve sketched ideas to come up with general ideas. Then you made wireframes to work through
individual screens. When you find that a particular element in a screen needs even more detailed design
exploration, that’s when you want to create mockups. Mockups look exactly like the interface. You can
make them with Photoshop or other image editing software. If you already have functional code, then
tweaking the design with the Firebug plug-in or directly in the module code itself is perfectly fine as well
and probably even more efficient. 

Create mockups to sweat the details and get the design exactly right. It’s possible that using default
patterns and styling gets the interface working at about 80 percent. It’s very much worth it to dive deeper
and get that last 20 percent in order. 

Build: Build an Alpha and Verify with Users 
You’ve defined the scope and intended audience for your project. You have explored different options
for the layout of your screens and chosen a direction. It’s time to start actually building your project. 



CHAPTER 32 ■ USER EXPERIENCE 

734 

Make it your goal to get a working prototype as quickly as possible, meaning to focus on building 
only the main functionality you want to achieve. If your project consists of multiple screens, then get the 
main flow through those screens/states up and running. Work on the big picture; filling in the details 
comes later. 

Why such a strong focus on a working prototype? Because a working proof of concept can be tested 
by others. All the nice little extras you might want to add are useless if people cannot achieve the main 
goal your project wants to support. Verify it with *other people*. Simply because you already know too 
much about how things (should) work, you are *not* the best person to verify if the functionality 
matches user goals. Because you know, it has become impossible for you to imagine how things are 
perceived when you *don’t* know. It’s called the Curse of Knowledge and it’s a barrier towards 
simplicity. You might feel that you are dumbing things down and over-simplifying. Seeing other people 
use your application will, in most cases, correct that and tell you that you need to clarify. 

So, get the essentials up and running and observe other people using it. There is more about getting 
the best results from simple usability testing a bit later in this chapter. 

But let’s say you are at a stage where most things seem to be working as planned. People 
successfully use the interface to get things done. Then it is time to do a check you *can* do yourself, and 
that is verifying if your interface elements follow core conventions, which can be found at 
drupal.org/ui-standards. 

It’s important to realize that when you are building a module, your UI will be seen in context of core 
and multiple other contributed modules. That’s why the consistency mantra is so important: you will 
almost never know the exact context in which your UI will show up. The best strategy then is to not try to 
be different but to do your very best to blend in. 

Optimize: Observations and New Versions  
Once your module is built and designed, you should have a good idea what the user wants and whether 
your module achieves this. The final stage is to optimize your module for reality. As your module goes 
into alpha, it’s likely you will get feedback from users. 

This alpha stage is also the best moment to do a more thorough usability test. The primary goal of 
any usability test is to inform design decisions. 

• Does the module serve its purpose? Is it useful? 

• Does it help people achieve their larger goals? 

• Is it effective, efficient, and perhaps even a pleasure to use? 

This chapter will go into some of the basics of running a qualitative usability test, which is quick to 
run and applicable to module development. We follow a fairly basic process for running a usability test: 

• Development of test plan. 

• Recruitment of participants. 

• Set up of module, recording, and logging. 

• Running the usability test. 

• Analysis of results. 

• Reporting of issues. 

• Develop a test plan. 



CHAPTER 32 ■ USER EXPERIENCE 

735

The test plan is your blueprint for the usability test, making sure that you prepare your test 
sufficiently and can run each individual session consistently. But it also serves as the tool to convince 
others that you didn’t just run it by users but performed a well thought-out plan.  

Test Plan Outline  
• Why are you testing? 

• What kind of user are you testing? 

• How are you testing? 

• Method 

• Scenario 

• Task 

• Environment 

• Analysis method 

• Reporting method 

This is a very basic test plan, which leaves out a lot of detail work you would otherwise do for a large 
site. The idea here is that you can repeat this test plan more often, and others can help by performing it 
on participants around. So let’s use this test plan outline to set up a usability test of Rules. 

Why Are You Testing the Rules Module? 
You are testing to find out whether users can set up a rule using the Rules 2 interface. Specifically, you 
want to know:  

• How closely does the module workflow match the user’s expectations? 

• Are the basic Event, Condition, and Action relationships clear? 

• How confident are users that their rule will be triggered? 

You are also testing to provide material to the community that will help people make better design 
decisions for the user interface of this module in the future. 

What Kind of User Are You Testing? 
In the concept phase, you identified three audiences for this module. Now you  have to make the 
evaluation of which users and how many you should test in this phase. 

• Developer: The developer can provide valuable insights to whether the flow they 
see in the interface matches their expectations, especially since they are looking at 
this from an implementation model.  

• Site builder: Can the site builder set up a rule and is he confident enough that this 
rule will be executed successfully? What are the triggers that help the user 
understand the required steps in the interface? 



CHAPTER 32 ■ USER EXPERIENCE 

736 

• Business developer (sales, content strategist, shop owner): Is the rules interface 
leading enough to understand which steps they need to take? How does it match 
their mental model?  

Both Site builder and Developer audiences should be easy to recruit from the people around you, 
but the last group will be considerably harder, given that they are also a small portion of your target 
audience. For the test, refer to the spread shown in Table 32–2. 

Table 32–2. The Test Spread 

Participant Type Number of Participants 

Developer 2 

Site builder 2 

Business developer 1 

Total Number of Participants 5 

Let’s avoid recruiting participants who are familiar with the Rules 2 UI or Rules 2 implementation.  
These participants will be recruited through the Drupal.org forums, IRC, and from the people 

around you.  

How Are You Testing? 
This usability test will be an explorative one, where each user is asked to create two rules using the Rules 
2 UI. The test will be recorded and shared with the community.  

Method 

You will do five individual sessions that will last for about 20 minutes each. During this session, the 
participant will be asked to perform two tasks. Ideally, the scenario and tasks for each session will be 
adapted to the context of the participant.  

The test moderator will introduce the tasks and ask questions whenever appropriate as well as take 
notes and assure the video is running.  

Scenario 

You are building a web shop for a small store that sells shoes online, and you are using Rules to send 
notifications to shop management when you are running over 20 orders of a specific shoe (to check the 
store’s stock) and to have a scheduled discount on shoes during the summer sale.  

Tasks 

1. Send a promotion e-mail to a user when that user hasn’t visited the web site for 
more than three months. 



CHAPTER 32 ■ USER EXPERIENCE 

737

2. Offer a 20 percent discount on all shoes from June 1 till August 31.  

Environment 

You need to have a web shop with at least a Carlos shoe. This web shop system needs to leverage Rules; 
this can be set up using an e-commerce system like Drupal Commerce or Ubercart, or Drupal core using 
a price field on a shoe content type. 

Since you will be recording each session, you will require a video recording tool. If you are testing 
remotely, you need a screen sharing tool as well (remoteusability.com/tools/ for remote testing tools). 

Choosing an Analysis Method 
For this test, let’s use a qualitative usability test that is explorative on the actual UI. This method was 
chosen because of Rules 2 release cycle and ability to change significant parts. 

Having an idea of how you will perform analysis helps you determine exactly what data you want to 
collect. A typical way of analyzing results is writing down each problem you find during the test from 
going through your notes and video to answer the research questions formulated in the “Why are you 
testing?” section. 

Reporting test results is all about sharing your information so that others can act upon it, too. It can 
not only help make your module more usable, but also those modules in the same domain and even 
Drupal core; for example, your findings can help Drupal core optimize its actions module because in 
some parts they are similar. 

Recruitment of Participants 
In the test plan you identified which participants you wish to recruit; now you need to actually find these 
participants. In order to verify whether they meet the requirements you set, you have to do a quick 
interview or questionnaire.  

Where Do You Find Participants? 
Finding participants requires a bit of creativity. Since this is open source, it’s likely you are on a 
shoestring budget for everything so using a recruitment form or offering compensation is probably a bit 
too much to ask. Here are some places we have looked for finding participants. 

• Forums and IRC: If you are trying to recruit developers, it is relatively easy to find 
them on IRC and in the Forums. For recruiting participants from the Forums, it’s 
important to inform them that you want them to be “fresh” to avoid that they will 
try out the module before you do a test with them.  

• Module Page Signup: If you want to recruit people who are about to use your 
module, or already are using your module, include a link to sign up for testing on 
your module’s page. This is an effective way to recruit participants. The signup 
form could include a few questions and ask for some indicators when they are 
available. Make it as easy as possible to select the right participants for you and 
the participants themselves.  



CHAPTER 32 ■ USER EXPERIENCE 

738 

• Drupalcamps, User Groups and Contribution Sprints: There are many local 
events that give you the possibility to do quick 15-20 minute usability tests. We 
have tested at Drupalcamps before; with some coordination with the organizers, 
it’s usually possible to do tests before the camp starts, during lunch breaks, or 
possibly during sessions. It all depends on the willingness of the participant to 
miss other sessions. A request for test participants can be done up front, on the 
website/blogpost about the event, or during the event (for example, in the 
opening presentation). 

• Colleagues, friends, and family: You might be working at a web development 
company, have friends that build web sites, or have a really excited cousin that is 
into building web sites. It’s likely that they meet the requirements you set for the 
usability test, so recruiting them should be possible. A risk here is that the 
relationship you have to the person influences the test (not feeling free to criticize) 
so keep this in mind.  

Schedule Participants 
Scheduling participants is relatively easy. We often schedule sessions in the evening or during lunch. 
Keep them in close contact and confirm once or possibly even twice before the session to assure it’s in 
their agenda. Always try to schedule participants, even when people come from IRC. This way you can 
assure they have dedicated a block of time for just your test, rather than something adhoc where they 
can be disturbed by work or other stuff.  

Inform Them of Privacy Considerations 
It is important to inform the participant on what test involvement means in terms of information that 
will be released. If you are recording and sharing this with the community, you have to get permission 
from the participant. Be clear on how the data of the test will be used, including any material, and that 
this will be anonymized. 

If you share any information with the community, make sure that there are no names on recordings 
or in notes. An easy way to make sure this happens is to use participant numbers rather than names 
during the test and analysis.  

For sharing video, you also have to make sure it’s clear that videos can be shared—without showing 
their face or anything—purely for sharing insights.   

Setup of Module, Recording, and Logging 
Running a smooth usability test means taking away any worries about the technical environment and 
recording. The following are a few tips for the setup process: 

• Have backup installs ready. 

• Run a dry test (test it yourself). 

• Evaluate whether the timing set for tasks is realistic. 

• Is all the information you give correct? 

• Test the microphone and video quality. 

• Disable core update notifications. 



CHAPTER 32 ■ USER EXPERIENCE 

739

Running the Usability Test 
Now, onto actually running a usability test! Much of this is common sense. It’s primarily the techniques 
you use to get the most out of your participants in terms of insights that are important. For a traditional 
test we use the following setup:  

• Introduction (Purpose, setup, duration) 

• Expectations (What the user should do, such as speak loudly) 

• Comfort (You are not being tested, ask any questions, you can skip stuff if needed) 

• Introduce scenario 

• Introduce task 

• “Thinking aloud” technique 

• Post-test questions 

• Closing (evaluation) 

It’s very difficult to understand what people are thinking and which small considerations they make 
each second as they browse through the interface. You are testing because you want to rise above your 
own assumptions. Interpreting silence from participants brings you back to assuming. Use the “thinking 
aloud” technique, in which you ask the participant to say what they think as they use the interface. It is 
extremely effective in learning about all of the small problems they run into and how decisions affect 
their ability to use the interface; it gives valuable hints towards their mental model. It also keeps 
participants in the flow of talking about what they are doing. The participant has to be open to this 
technique; to some it will feel unnatural or they will forget to do it because they are moving through the 
interface fast. It’s okay to ask the participant during the session to keep thinking aloud.  

Questioning the Participant 
The participant will do a lot of things where you want to more deeply understand the thinking behind 
them. Feel free to ask the participants how they feel about it, what is expected, or their thoughts about 
what happened. 

By asking questions, as if you where the student trying to learn from the participant, the participant 
should feel more at ease.  

Don’t Turn the Participant Into the Designer 
You are looking for problems. Don’t ask for solutions. It’s okay if the participant suggests solutions. Dig a 
bit deeper if they do, but don’t suggest improvements yourself (“Do you think it would work better if that 
button would be below instead of to the right of the object?”) or ask which color might communicate a 
message better.  

These suggestions can often cloud your judgment in later processes when you are looking for 
recommendations.  



CHAPTER 32 ■ USER EXPERIENCE 

740 

Wait an Extra 20 Seconds Before Offering Assistance  
It’s quite often that the participant will run into problems that are either hard to solve or are still 
undoable in the prototype. It’s human nature to want to be friendly and help. But it’s best to wait a bit. 
It’s through the struggle of a participant you get a deeper understanding.  

So whenever the participant feels lost and truly can’t complete the task, give it a bit more time and 
see if you can ask questions regarding the mental model and how, for example, the error messages give 
information. 

We Are Testing the Software, Not You 
This is a sentence that makes the participant more at ease. During a test you want to make sure the 
participant doesn’t shy from giving a critique and even being very negative when necessary. 

Analysis of Results 
Now that you have collected all this data, you can start doing analysis. For qualitative tests, this is a fairly 
chaotic process of looking through your notes and writing down the trends you see on each task and the 
larger trends you see in the interface. 

It’s key in analysis to create direct connections between the trends you see and the material. This 
helps you verify your understanding and makes it easier to describe the trend in reporting.  

A common method for analysis is building an affinity diagram (KJ Analysis), which is often done by 
doing the following: 

• Writing down individual issues on a Post-it. 

• Counting how often it was found. 

• Grouping similar issues. 

• Removing duplicate issues. 

• Grouping issues on trends. 

While doing this, it’s often easy to spot the trends. Some issues might occur often or one issue is 
leading in a lot of other issues. 

During this rather chaotic process it’s important to keep in mind that you are mapping the 
problems; you are not yet finding solutions. As a developer, it’s easy to jump into the activity of coming 
up with solution, but that’s not the activity here—and it will cloud your ability to do a thorough analysis. 

Reporting of Issues 
How do you want to report your findings with the community? It’s not always easy to communicate 
usability test results. We have applied the following method in previous tests: 

• Single report page (important findings, list of problems) 

• Project issues (describing a specific problem) 

• Video 



CHAPTER 32 ■ USER EXPERIENCE 

741

The most important part here is that you are always reporting the problem, not the possible 
solution. This is to create greater separation between the two mental activities and to avoid 
communicating the solution as something that will definitely be usable.  

The single report page is an overall view of what was learned, but it’s also a centralized place from 
which you can go to the individual issues and the videos. There are many ways to communicate specific 
problems; for example, in a Drupal 6 core test, we described the problem shown in Table 32–3. 

Table 32–3. Drupal 6 Core Test Problem 

Object Observation Importance 

Administrative overlay Users were confused that the administrative 
interface was overlaying the web site. Their 
mental model of CMS software is an 
administrative interface and a separate 
interface to view the site. 

Major 

Using a simple table, we could communicate about 30 identified problems, which were turned into 
issues.  

Essentially, reporting is all about isolating problems into workable chunks that you and contributors 
on your module can work on. Since a usability test is likely to expose a large number of issues, the 
activity of reporting helps you finalize which major issues you want to work on, what strategy you want 
to adopt, and how you hope to potentially attract other developers to work on the low-hanging fruit. 

Feedback from Issue Queues 
When your module is in beta or even alpha, it’s likely others are already trying it out and giving feedback 
through the issue queue. This feedback is vital for improving your module and often allows for a more 
direct conversation than through other methods such as testing. Additionally, this feedback will be 
continuous in any phase your module is in. 

However, it’s always important to remember these reports come from the very small percentile that 
has the skills and desire to actually let you know about it by posting an issue in the first place. Although 
this is an important audience, it’s likely that this audience is more advanced and doesn’t necessary 
reflect the issues the majority of your users face.  

Understanding when certain feedback is describing an obscure edge case or when it’s actually 
dealing with a common case is helpful. There is danger in jumping in to changing the UI; quite often 
these edge cases introduce edge case interface elements, which can potentially make it confusing for the 
common case. 

Release: Project Page and Documentation  
When you have released your module, there is one step that remains: creating a useful project page and 
documentation for your audiences. With the many modules out there now, finding the right module is a 
difficult task—even more so for those who don’t understand all the points involved in evaluating a 
module. Usability starts by helping your potential users find and evaluate your module. 



CHAPTER 32 ■ USER EXPERIENCE 

742 

What Does Your Module Do? 
The primary question people ask is “What does your module do?” Let’s look at how Rules describes itself. 

• The Rules modules allows site administrators to define conditionally executed 
actions based on occurring events (known as reactive or ECA rules). It's a 
replacement with more features for the trigger module in core and the successor 
of the Drupal 5 Workflow-ng module. 

• Example use cases 
• Build flexible content publishing workflows changes 
• Send customized mails to notify your users about important updates 
• Create custom redirections, system messages, breadcrumbs, and many more 

It’s a fairly compact description that entails what it does (touching upon some specifics known to 
experienced Drupal users) and gives examples. It’s most likely the examples are most interesting aspect 
as they give people an idea what they can do with the module. 

Having a clear description at the top of your project description explaining what your module does 
is obvious but an often missed step.  

Another example is Pathauto. 

The Pathauto module automatically generates path aliases for various kinds of 
content (nodes, categories, users) without requiring the user to manually 
specify the path alias. This allows you to get aliases like /category/my-node-
title.html instead of /node/123. The aliases are based upon a "pattern" system 
which the administrator can control. 

Again, compact and clearly showing what you can do using an example. So what can you do to 
improve page sections like these? Let’s take the last example of Pathauto. A user scanning over this 
whole page might miss the most important information: the example that clearly shows what it does. 
Rewriting this piece could look like the following: 

The Pathauto module automatically generates path aliases for various kinds of 
content (nodes, categories, users) without requiring the user to manually specify 
the path alias. 

Example: 

Turn www.example.com/node/123 into www.example.com/category/my-page-
title.html 

The aliases are based upon a "pattern" system which the administrator can 
control. 

Ideally your project page is as short as possible, sending people to additional handbooks when you 
want to explain specific errors or frequently asked questions.  

A common structure for project pages is the following: 

• Overview 

• Features 

• Requirements 

• Known problems 

http://www.example.com/node/123
http://www.example.com/category/my-page-title.html
http://www.example.com/category/my-page-title.html
http://www.example.com/category/my-page-title.html


CHAPTER 32 ■ USER EXPERIENCE 

743

• Tutorials 

• Pledges 

• Credits 

• Recommended modules 

For a more in depth description on how to make a usable project page, please see an article by Lisa
Rex at growingventuresolutions.com/blog/module-owners-how-make-your-module-description-useful. 

Copywriting  
The quickest and most effective way towards a more usable interface is through good copywriting. In
most cases, the text is the interface. In Drupal 6, we saw the impact of badly written descriptions; they
were often superfluous and not targeted at the task at hand. It was a serious issue that could be found in
a majority of Drupal interfaces, so in Drupal 7 almost all descriptions and labels got a major overhaul,
optimizing them for the task at hand and knowledge of the user. 

An example of this was found during a usability test of Drupal 6. A smart and web-savvy participant
was tasked with categorizing some of her content. She actually quickly found the taxonomy page but
then wasn’t sure if she was in the right place. She started reading the very long help text at the top of the
page. This text confused her so much, she left the page. 
At least three things stand out here. 

• The help text somehow didn’t provide enough clues for the participant to inform
her she was at the right place. 

• Even a multi-paragraph help text gets ignored at first. 

• The more help text, the further the actionable part of the page is pushed into
peripheral vision. 

The reason that many descriptions in Drupal are wrong is because they are trying to provide too
much information—from the concept, the place where it will be used, to the interactions on the page.
With all that information, often the most important part—the concept—gets lost. For example, look at
the Taxonomy page description in Drupal 6. 

“The taxonomy module allows you to categorize your content using both tags and
administrator defined terms. It is a flexible tool for classifying content with many
advanced features. To begin, create a ‘Vocabulary’ to hold one set of terms or tags. You
can create one free-tagging vocabulary for everything, or separate controlled
vocabularies to define the various properties of your content, for example ‘Countries’
or ‘Colors’. 

Use the list below to configure and review the vocabularies defined on your site, or to
list and manage the terms (tags) they contain. A vocabulary may (optionally) be tied
to specific content types as shown in the Type column and, if so, will be displayed
when creating or editing posts of that type. Multiple vocabularies tied to the same
content type will be displayed in the order shown below. To change the order of a
vocabulary, grab a drag-and-drop handle under the Name column and drag it to a
new location in the list. (Grab a handle by clicking and holding the mouse while 



CHAPTER 32 ■ USER EXPERIENCE 

744 

hovering over a handle icon.) Remember that your changes will not be saved until you 
click the Save button at the bottom of the page.” 

The top paragraph explains the concept and the second paragraph explains what this page is about, 
what vocabularies can be tied to it, and how to use the interactions on this page. As we went through the 
process of changing this description, we established the following principles: 

• We need to explain the concept of terms and vocabularies; this concept is often 
unknown to the user who thinks in terms of categorizing content. 

• We should avoid explaining how to use the interactions on this page and what 
effect it will have in other places; this should be obvious from the interactions 
themselves.  

• We should bring forward familiar concepts in terms of categorizing content. 

With all that in mind, we rewrote the description to the following:  

“Taxonomy is for categorizing content. Terms are grouped into vocabularies. For 
example, a vocabulary called “Fruit” would contain the terms “Apple” and “Banana.”  

As you can see, this is far more to the point. It starts by validating that Taxonomy is indeed about 
categorizing your content and goes on with one example that clearly explains how a vocabulary is used 
to contain terms.  

The next step is validation with users. Does the new description cause confusion or does it help 
users? We did a number of usability tests of which this page was a step. The large majority of users that 
did read this text understood what taxonomy is about and how vocabulary and terms are related. 

Causes of Unhelpful Copy 
Taking a step back, what causes all this unhelpful copy in Drupal and its contributed modules? 

• Not focused on the task at hand: Users are relentlessly task-focused. In order to 
achieve their goal, they know the page is only a step; thus reading descriptions will 
only be done if really necessary. 

• The wrong attitude towards the user: We rarely see the kind of writing that sounds 
relaxed and confident in the user. Instead a lot of text is trying to lecture and 
assumes the user doesn’t care. You can see this in the amount of places where we 
say “please note,” “warning,” etc. Lecturing users is never a good thing. 

• Developer documentation bubbling up into the UI: Often descriptions are trying 
to explain technical concepts from the usage of the word “node” in the interface to 
explaining the effects of certain performance options.  

• Explaining a broken UI: We often see descriptions that are trying to make up for a 
hard-to-use interface. When you find yourself having to write a description 
explaining parts of the page, you’re creating an interaction that doesn’t work. 

• Not understanding where your users are: Your interface is rarely the first one they 
see in Drupal, so consider where they are coming from and where they want to go. 
This will set boundaries to what you need to explain.  



CHAPTER 32 ■ USER EXPERIENCE 

745

• No clarity in choice of words: The copy in your interface should be as clean as 
possible. It should be active and stripped of any unnecessary words or long words 
that could be short. Using “now” over “currently” and other quick wins will help 
bring clarity to your writing.  

Users often blame themselves when they missed the meaning of a description; they go back read it 
again or just go on and ignore it. As an interface developer, you are stepping into the shoes of a writer, 
composing sentences with great clarity and meaning. Revise your writing until it’s totally clear what you 
are trying to say. 

Just like good design, good writing is no accident. It often comes from a thorough process of 
rewriting. 

Principles 
The principles outlined below are the ones we use for Drupal 7 core. Obviously, more principles apply to 
writing like good spelling, grammar, and tone of voice. 

• Use active voice: Active voice is about the subject doing an action; passive voice is 
about having done it. For example, the user creates content (active), the content 
was created by the user (passive). This principle applies to most text in Drupal 
where we try to direct towards a certain action.  

• Focus on the task at hand: The description or label should only be about the task 
at hand, not about any preceding or follow-up tasks.  

• Clarity over precision: It’s in the programmer’s nature to be as precise as possible; 
in copywriting, this usually means long, dense, and very complex sentences. 
Always consider clarity over precision. It’s likely your precision will not be 
understood by the user and your most important point is overlooked. It is often 
better to refer to documentation when you are getting to the point where you need 
to explain how it affects different use cases.  

You will encounter this problem more often in modules that are more technical, 
such as Drupal 7’s field interface, which is basically an interface for setting up 
database tables; the copywriting is precise enough for those who are familiar with 
database concepts to use it effectively. However, this means anyone who is not 
completely familiar with database concepts will not get the information they need 
in an easy-to-digest manner.  

• Cut 50 percent; cut another 50 percent: As you’re writing, especially when you’re 
incorporating other people’s feedback, it’s easy to grow your text into a long 
paragraph. A trick applied by many writers is constantly cutting big parts of the 
text; this forces you to let go of those carefully crafted sentences when they don’t 
convey the meaning. It’s about constantly reevaluating whether each word in your 
text has a function. You’ll be surprised how much you can improve your interface 
only by going through and cutting text. The earlier mentioned Taxonomy page has 
seen many revisions; during the Drupal 7 lifecycle, it changed several times from a 
lot to too little (not conveying the meaning) to just right. It’s likely you will have to 
rewrite a sentence three, four, maybe even ten times before you get it right; getting 
it right will save many module users many hours of time. 

• Only add descriptions when needed: This might sound obvious, but in Drupal 6 
we had a really tough time removing all the places where the description was 
either repeating the label above or adding little to no additional meaning. 



CHAPTER 32 ■ USER EXPERIENCE 

746 

Whenever you can add two or three extra words in the label to make the 
description superfluous, it’s best to do so. We definitely recommend that module 
maintainers avoid having any descriptions in their forms; it’s a good practice 
because it means your labels are descriptive enough.  

• Be consistent with core terminology: There are many existing text patterns 
applied all over Drupal 7 from the way we label our menu items, buttons, and 
links to proper usage of plural and singular. When writing interface text, compare 
your work with similar interfaces in Drupal core. This helps you maintain 
consistency in both terminology and tone-of-voice. 

In Drupal core we also have a number of words we avoid using, which are displayed in Table 32–4. 

Table 32–4. Words We Avoid Using in Drupal Core 

Don’t use Use Why 

Drupal Site This complicates distributions. 

Please - It sounds pushy; it’s often possible to leave this word 
out. 

We The user, the admin,  name 
the person 

“We” is often not descriptive as to which user it applies, 
so specifically name whom this is affecting. 

Node Content, piece of content “Node” is an unknown concept to users. 

Post Piece of content “Post” can be used as verb; “post” can be confused with 
other concepts. 

Input format Text format The word “text” is a better trigger to the user’s mental 
model. 

Plug-in, Extension Module These words can have other meanings.  

We hope you feel prepared to design for the user experience and help make Drupal great! 

■  Tip  Visit dgd7.org/ux for links to resources mentioned in this chapter (and more) and to track continuing 

developments in Drupal UX. 



C H A P T E R   33 
 

■ ■ ■ 

747

Completing a Site: The Other 90% 

by Benjamin Melançon 

Hofstadter’s Law: “It always takes longer than you expect, even when you take into 
account Hofstadter’s Law.” 

You’ve built out content types and views and blocks and menus (and if you haven’t, get back to Chapter 1). 
You’ve done some more of this and a bunch of other configuration, too (see Chapter 8). You’ve made a 
custom theme (see Chapters 15 and 16). The site is indisputably 90% built. It’s just that the final 10% can 
easily take as much time as you’ve already put in. Getting a site to done usually means a lot of messing 
and obsessing until everything works and looks just right. 

If the site is high visibility and has to look great and work easily, keep going until, as the song goes, 
“you’ve” done did everything that needs done.” 

This chapter will touch on advanced configuration, but mostly you will use glue code to polish off 
DefinitiveDrupal.org with custom rims and modded cupholders. (Glue code is theming functions or 
modules written to meet site-specific needs; see Part V, Back-End Development, particularly Chapter 22 
for full coverage of this approach.) You’ll even see a spin-off module built for the site but made general 
enough to contribute to drupal.org. 

This chapter does not cover theming. For this essential part of completing a site, see Chapters 15 
and 16 and also the DefinitiveDrupal.org theme itself. Jacine Luisi is contributing the theme to the 
community as its own project, and the as-is production version is also in the site’s source code. See 
dgd7.org/theme and dgd7.org/code. 

■ Note  The online resources and discussion related to this chapter are at dgd7.org/other90. 

Creating a View Mode 
View modes, called build modes in Drupal 6, were mentioned in Chapter 8, and they have not become 
any less fantastic for changing the display of content or other site entities depending on context. On 
DefinitiveDrupal.org, author profiles use the Full Content view mode (which inherits the Default view 
mode’s display settings) for the standalone pages and the Teaser view mode for one of the author list 
views. When author profiles are shown on chapter content, however, it would be best to have another, 
still-smaller display of author profile content. 

This is when you turn to the magic of view modes. The code in Listing 33–1  



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

748 

goes in a module file called dgd7glue.module; it is adapted from a presentation Benjamin Doherty  made 
at DrupalCamp Florida and published afterward to his GitHub account at 
github.com/bangpound/fldrupalcamp-demo. The first function defines a view mode; it’s not intuitive that 
this would require implementing hook_entity_info_alter(), but it’s not difficult once you know how. 

Listing 33–1. Defining a New Build Mode, Compact, for Nodes  

<?php 
/** 
 * Implements hook_entity_info_alter(). 
 * 
 * Reveals new view mode for node entities. If you don't see your view mode 
 * in the Field UI's "manage display" screen, you may need to clear cache 
 * or rebuild menus more than once until you do. 
 */ 
function dgd7glue_entity_info_alter(&$entity_info) { 
  $entity_info['node']['view modes']['compact'] = array( 
    'label' => t('Compact'), 
    'custom settings' => FALSE, 
  ); 
} 
 
/** 
 * Implements hook_preprocess_node(). 
 * 
 * Adds classes and theme hook suggestions specifically for view modes. 
 */ 
function dgd7glue_preprocess_node(&$vars) { 
  $view_mode = $vars['view_mode']; 
  $vars['classes_array'][] = 'node-' . $view_mode; 
  $type = $vars['type']; 
  $vars['theme_hook_suggestions'][] = 'node__' . $type . '__' . $view_mode; 
} 

This second function, an implementation of hook_preprocess_node(), is not necessary to have and 
use view modes, but it is a tremendous theming aid. For example, the addition to 'classes_array' allows 
CSS to target content displayed with the Compact view mode by looking for the class node-compact. The 
addition to the 'theme_hook_suggestions' array allows a themer to copy node.tpl.php to node--
profile--compact.tpl.php or node--article--teaser.tpl.php, for example, and make modifications 
that only affect profile content shown in Compact mode or article content in Teaser mode. Using the 
theme hook suggestion to create a custom template for a view mode is covered later. 

■ Note  As hook_preprocess_node() can also be implemented by themes in template.php, this ability to use 

theme hook suggestions for view modes may already have been added there. 

When writing or modifying a preprocess function (as in so many places in Drupal), you can use a 
debugger or use debug functions to print output to your screen. The set of variables available to 
hook_preprocess_node() tends to be too large for debug() to handle gracefully, so installing Devel 
module and using a Krumo-enhanced debug output function, such as kpr(), is recommended. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

749

A kpr($vars); in an implementation of hook_preprocess_node() will run for every node you display, 
so looking at a list of nodes while your variable printing code is in your module is not recommended. 
Also remember that you need Devel module present and enabled to use kpr(). There is a lot you can do 
with preprocess functions. Anything you change or add in a preprocess function, as a rule, becomes 
available for use in the corresponding theme function or template. Something added to the variables 
array in hook_preprocess_node(), such as $vars['current_time'] = date('Y M d H:m:s', time());, will 
be available in node.tpl.php (and all its variations including node--article.tpl.php and the now-
available node--article--teaser.tpl.php) as $current_time, to be used with print $current_time; or 
for render array variables print render($complex);. You will see more usage of preprocess functions 
later in this chapter. 

■ Note  The code in Listing 33–1 needs to go in a file called dgd7glue.module which should go in a folder called 

dgd7glue which could be put in your site at sites/all/modules/custom/. Then your custom module needs a 
.info file also, dgd7glue.info (see Listing 33–2), which goes in the dgd7glue folder with dgd7glue.module. 
(Making modules is covered exhaustively in Chapters 18 to 20 and for the same purpose as here, making a site-

specific module, in Chapter 22.) 

Listing 33–2. dgd7glue.info 

name = DGD7 Glue Code 
description = [dgd7glue] Site-specific custom code for DefinitiveDrupal.org. 
package = Custom 
version = 7.x-1.0 
core = 7.x 

■ Note  The version directive is only included because this site-specific code will not be hosted on drupal.org; 

for contributed code, the d.o packaging script adds that line itself. 

Now—after enabling the DGD7glue module or, if it is already enabled, clearing caches, very likely 
more than once—you can visit the manage display tab of a content type, such as Administration ➤ 
Structure ➤ Content types ➤ Author profile ➤ Manage display (admin/structure/types/manage/ 
profile/display) and see that in the collapsed formset Custom display settings, there is a new view 
mode: Compact (see Figure 33–1). 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

750 

 

Figure 33–1. Checkbox to enable custom display settings for view modes, now with the option for Compact 

■ Tip  If you want custom settings for your new view mode to be enabled automatically for all content types (the 
way Teaser is), you can change the custom settings line to 'custom settings' => TRUE, for your 
$entity_info['node']['view modes']['viewmodename'] array in the hook_entity_info_alter() 

implementation. It may start out with no fields displayed using this approach. 

 

Figure 33–2. New view mode, Compact, visible at the Manage display tab 

Go to the Compact sub-tab, shown in Figure 33–2, and configure the fields that should show when 
using the Compact view mode. You can make it show the author’s picture, as a thumbnail linked to its 
content; the drupal.org User ID, as the account link; and the biography text, trimmed to just 300 
characters. Hide all the other fields. 

Next, go to the Chapter content type and manage the display of its fields. You can give it custom 
settings for the Compact display mode too, but the present goal is to tell its node reference Author 
field to use the Compact view mode for displaying author profiles. For the Author field, the Format 
options will probably be a drop-down containing Title (link), Title (no link), Rendered node, and 
<Hidden>. Choose Rendered node, and then click the gear icon to the right of the drop-down to 
configure settings for the Author field rendered node. This is where you can select Compact as the 
View mode (see Figure 33–3). 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

751

 

Figure 33–3. Using the Author profile in the Compact view mode when it is displayed on Chapter content. 

This is set via Chapter content type’s Manage display page for its Default view mode. 

The next section describes how to theme your view mode. 

Creating a Custom Theming Template 
The process of creating a custom template file for a theme hook suggestion you define yourself is exactly 
the same as when creating a custom template file for a template suggestion provided by core. Many 
suggestions, such as those based on content type, are built in. To use your own template files for all 
author profiles, you would create a node--profile.tpl.php file in your theme (where profile is the 
machine name for the Author profile content type). Below, you’re going to do the same for the theme 
hook suggestion you created that is aware of both content type and view mode. 

1. Make sure you have a node.tpl.php file in your custom theme’s folder (or within a 
templates subdirectory in your theme’s folder). Drupal won’t recognize your 
variation of a template unless you have a version of the base template in your 
theme. 

2. Copy this node.tpl.php file to match the pattern of the template suggestion you 
want to use a custom template for. In the case of the theme hook suggestion 
defined previously, that pattern is node__content_type__view_mode. Underscores 
are replaced with dashes in template files, so it would look like node--content-
type--view-mode.tpl.php. For the Author profile with the Compact view mode, 
this is node--profile--compact.tpl.php. 

3. Modify this file to match your theming needs. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

752 

■ Note  In Drupal 7, you need two dashes (or underscores for functions) separating each part of a suggestion. In Drupal 
6, you only needed one— as you might guess from the node--content-type--view-mode.tpl.php example. Having two 

dashes prevents confusion when working with a content type that has an underscore in its machine name. 

Listing 33–3 is a look at the modified node template file (you can view the original in your source 
code, the node.tpl.php that you copy, and at api.drupal.org/api/modules--node--node.tpl.php). The 
file is node--profile--compact.tpl.php as noted previously. In your theme, it goes in the templates 
folder. The first three lines are how to learn about the variables available; they should be deleted before 
use on a live site. 

■ Caution  The code in Listing 33–3 uses a function provided by the Devel module— you’ll need to download and 
enable it if you haven’t already, or substitute a core Drupal function such as debug() or a PHP function such as 
print_r(). Devel’s dpm() and core’s debug() both send their output to Drupal’s messages area; Devel’s kpr() and 

PHP’s print_r() both print out right where they are (by default), which works in template files and preprocess 

functions. 

Listing 33–3. Custom Node Template for Author Profiles Shown with the Compact View Mode 

<?php 
  kpr($content); 
?> 
<div id="node-<?php print $node->nid; ?>" class="<?php print $classes; ?> clearfix"<?php  

 print $attributes; ?>> 
  <?php print render($content['field_image']); ?> 
  <div class="author-info"> 
    <h3<?php print $title_attributes; ?>><a href="<?php print $node_url; ?>"><?php  

 print $title; ?></a></h3> 
 
    <?php 
      // We hide the comments and links.  Shouldn't be any. 
      hide($content['comments']); 
      hide($content['links']); 
      print render($content); 
    ?> 
  </div> 
</div> 

This template removes and rearranges some markup and adds a div, but the most significant thing it 
is doing is using the line print render($content['field_image']); to print out the author picture before 
the node title (the author’s name). Note that when the rest of the content is printed with render(), the 
image is not re-printed. This is all explained in Chapters 15 and 16. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

753

The HTML produced by the template in Listing 33–3 works with the accompanying CSS shown in
Listing 33–4, developed mostly by experimenting in Firebug (see getfirebug.com). 

Listing 33–4. Addition to style.css in the Theme’s Directory Making Use of the New View Mode and the 

Custom Template to Theme the Compact Author Profiles 

/** 
 * Compact author profiles. 
 */ 
.node-compact .field { 
  padding: 0;
} 

.node-compact .field-name-field-image { 
  position: absolute;
} 

.node-compact .author-info { 
  margin-left: 130px;
} 

The absolute positioning works because the .node div is already defined as position: relative.
Altogether this makes the page look pretty good, as you can see in Figure 33–4. 

Figure 33–4. Two author profiles, as attached to a chapter, with the compact view mode and CSS styling 

■ Tip  Making a template file should never be your first choice; they are hardest to maintain as things change.
Other approaches, such as styling with CSS, configuring through the Drupal user interface, and manipulating

variables in preprocess functions can often give you all the flexibility you need. 

Remember you may be able to get pretty far with CSS (especially with the view mode added to the
node body classes), and then even farther with preprocess functions, and not need to create a node
template, which can be a lot of work to maintain when changes to a content type are made. As noted in
Chapters 15 and 16, while you can implement theme_node__suggestion() or node--suggestion.tpl.php, 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

754 

there is no “hook_preprocess_node__suggestion” equivalent to these. Instead, you can use the many 
variables available in a hook_preprocess_node() implementation to check the value of one or two 
variables, such as the content type (in $vars['type']) or the view mode (in $vars['view_mode']), to 
decide if you want to mess with any of the other variables. (Note that $vars can be $variables or 
whatever you put in the parenthesis when implementing hook_preprocess_node(), and note further that 
this all applies the same to hook_preprocess_page(), hook_preprocess_comment(), etc. These hooks can 
be used in either a module or a theme and are covered in Chapters 15 and 16.) 

■ Note  The template in Listing 33–3 looks clean, and it worked for your purposes, but when Drupal prints it out, 
there’s a div each for field, field-items, and field-item. This is great for consistency: the same CSS will apply if it is 
a single-value field or one with fifty items. If it offends your sensibilities or gets in the way of your design, you can 
change the output that surrounds fields. In an approach directly analogous to providing theme hook suggestions in 

hook_preprocess_node(), you can provide theme hook suggestions for fields by implementing 

hook_preprocess_field(). See dgd7.org/222. 

Modifying the Chapter Number Field’s Display 
As noted, you can also use preprocess functions to modify fields before they are output. The Chapter 
number/Appendix letter field was set up to take only two characters. Drupal does not currently allow a 
textfield to be re-sized (though a module can override this, perhaps even safely; see dgd7.org/226), so 
you have to provide a code solution where it might have been better to let people type out “Chapter 1” 
and so forth. The good news, of course, is that an elegant code solution is possible. 

As usual, you can begin your investigation by looking up relevant API functions (such as 
template_preprocess_field()) and, most usefully, printing out the variables available to your 
hook_preprocess_HOOK() implementation, in this case dgd7glue_preprocess_field(), while continuing to 
use the same custom module. 

■ Note  The various preprocess hooks are considered special cases of hook_process_HOOK() (see 

api.drupal.org/hook_process_HOOK) and do not have API documentation of their own at this time. 

You can also implement preprocess hooks in your theme’s template.php; prefix it with your theme’s 
name instead of your module’s name (see Listing 33–5). 

Listing 33–5. Using Krumo to Display All Data Available to the hook_preprocess_field() Implementation 

function dgd7glue_preprocess_field(&$vars) { 
  kpr($vars); 
} 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

755

■ Tip  Functions for debugging that use Drupal’s message system, including debug() and Devel module’s dpm(), 
can be inconsistent in their functioning from within preprocess functions. It is late enough in the page building, 
rendering, and theming cycle that printing output directly from these functions does work, so print_r() for small 

arrays and krumo() (with Devel module enabled) for larger arrays and objects works well. The function kpr() 

shown in Listing 33–5 will use krumo for arrays and will print scalar variables. 

With krumo—via Devel module’s kpr()—you can see that the variables available for a given field in 
a highly readable structure. It starts out with all sub-arrays and sub-objects collapsed; you click to open 
the ones you are interested in. In Figure 33–5, the element variable is expanded; you can see it provides 
very useful information such as the field name in #field_name, the view mode in #view_mode, and the 
content type in #bundle. The element variable is meant for the Render API layer (see Appendix C) and is 
just information at the theming layer where preprocess acts, but it is very useful information. 

The rest of the variables are the ones you can change in the preprocess function; in particular items, 
shown fully expanded, is where you can change the value output by the field, which is currently 29. The 
several-deep array nesting for items translates to $vars['items'][0]['#markup'] in code. 

 

Figure 33–5. Krumo output, the result of calling kpr($vars); for an implementation of 

hook_preprocess_field() when viewing a page with a node that includes the 'number' field. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

756 

I’ll mention this again, because it will save you a lot of time wondering why your changes are not 
taking effect. Information you can read to decide when and how to take action is in the element variable; 
the data you can change to affect the display of the field is in the items and other variables. 

■ Gotcha  None of the values in the element array have any effect. Only $vars['items'][0]['#markup'] 
changes what the field outputs for its value (for the first value for the field; the second value would be in the 1 
position instead of 0). I don’t know how you would know this without having read it here. A couple hours of 

wondering why manipulating such things as $vars['element']['#items'][0]['safe_value'] had no effect 

was my approach. See dgd7.org/225 for some excerpts from that fun journey. 

Putting this information together, you can write code for the preprocess function that checks if it is 
the field and content type (bundle) you care about, prints Chapter for numbers, Appendix for letters, and 
further checks the view mode to print shorter text for the Compact view mode. 

The end result of the code in Listing 33–6 is to print Chapter 33 instead of 33 when viewing the node 
for this chapter (at dgd7.org/other90), Appendix C instead of C (for dgd7.org/render), and Ch 33 and 
App C for these when shown on a compact list such as dgd7.org/chapters. 

Listing 33–6. Implementation of hook_preprocess_field() that Converts the Number or Letter to the Text 

Chapter [number] or Appendix [letter], Respectively, Using a Short Form for the Compact View Mode 

/** 
 * Implements hook_preprocess_field(). 
 */ 
function dgd7glue_preprocess_field(&$vars) { 
  if ($vars['element']['#field_name'] == 'field_number' 
      && $vars['element']['#bundle'] == 'book') { 
    $v = $vars['items'][0]['#markup']; 
    if (is_numeric($v)) { 
      if ($vars['element']['#view_mode'] == 'compact') { 
        $v = t('Ch !n', array('!n' => $v), 
          array('context' => 'Abbreviation for Chapter')); 
      } 
      else { 
        $v = t('Chapter !n', array('!n' => $v)); 
      } 
    } 
    else { 
      // It's not a number, so it is an Appendix. 
      if ($vars['element']['#view_mode'] == 'compact') { 
        $v = t('App !n', array('!n' => $v), 
          array('context' => 'Abbreviation for Appendix')); 
      } 
      else { 
        $v = t('Appendix !n', array('!n' => $v)); 
      } 
    } 
    $vars['items'][0]['#markup'] = $v; 
  } 
} 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

757

As a coder, you have full control of field output with preprocess functions. It’s also possible to give 
site administrators ways to change field display by coding field formatters, covered next. 

Linking to Drupal.org and Twitter Accounts with Field 
Formatters 
As constructed in Chapter 8, Author profiles include fields for very specific connections to other web 
sites: a drupal.org ID, a groups.drupal.org ID, and a Twitter username. The two IDs were made integer 
fields and the username was made a plain text field. The task of turning this data into human-readable 
(and clickable) links was punted to here. Fortunately, making field formatters is fun. 

You’ve seen formatters in action, for instance, when choosing whether a text field should be 
displayed as Default, Plain text, and Trimmed. To make your own formatters, you can get started by 
looking at Drupal’s own code directly or finding an answer on api.drupal.org. Taking the latter route 
this time, going to api.drupal.org and clicking Topics takes you to api.drupal.org/api/drupal/groups/7 
which is a long list of things that have been grouped together—two pages worth—but Field API is on the 
first page. In fact, Field API in some form is listed eight times (see Figure 33–6). 

 

Figure 33–6. Field API topics listed on api.drupal.org 

The first listing, “Field API”, links to all the other Field API topics (after providing a lot of background 
information on fields). But it’s the last listing, Field Types API, that’s exactly what you’re looking for: 
“Define field types, widget types, display formatter types, storage types” (emphasis added). Click through 
to api.drupal.org/api/group/field_types (that’s the shortest URL that works; you’ll be taken to the long 
version) and at the bottom of a list of hooks, two are specially documented: 

The Field Types API also defines two kinds of pluggable handlers: widgets and 
formatters, which specify how the field appears in edit forms [widgets] and in 
displayed entities [formatters]. Widgets and formatters can be implemented by a field-
type module for its own field types, or by a third-party module to extend the behavior 
of existing field types. 

You can extend the behavior of existing field types with a module. The referenced hook is 
hook_field_formatter_info(), defined at api.drupal.org/hook_field_formatter_info, and it has 
example code! You can change the module name part of the function name, and a few other details, and 
add it to the glue module (see Listing 33–7). 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

758 

Listing 33–7. Basic Implementation of hook_field_formatter_info() for dgd7glue.module 

/** 
 * Implements hook_field_formatter_info(). 
 */ 
function dgd7glue_field_formatter_info() { 
  return array( 
    'dgd7glue_number_account_link' => array( 
      'label' => t('Account link'), 
      'field types' => array('number_integer'), 
    ), 
    'dgd7glue_text_account_link' => array( 
      'label' => t('Account link'), 
      'field types' => array('text'), 
    ), 
  ); 
} 

Clear caches and visit an administration page for fields display that includes text or integer fields, 
such as the Manage Display page for the Author profile content type at Administration ➤ Structure ➤ 
Content types ➤ Author profile ➤ Manage display (admin/structure/types/manage/profile/display) 
and you will see that you have an Account link option for the formatter of text and integer fields. It won’t 
do anything, but it shows up! See Figure 33–7. 

 

Figure 33–7. Account link formatter option for an integer field 

If the two formatters you are defining need to be configurable, they will need some settings. You can 
get an example of formatter settings from both the text and integer fields provided by Drupal core. The 
integer field type is defined in the number module, which is inside the field module; the Number 
module’s main file is located at modules/field/modules/number/number.module. The text module is also 
inside the field module. Both define much more than formatters, but you are only interested in the 
various formatter functions: hook_field_formatter_*() implementations— info, settings_form, 
settings_summary, and view. 

■ Note  You could add settings to the existing text and integer field formatters with 
hook_field_formatter_info_alter(), but adding a link around the field data will require its own formatter view, 

and so needs a new formatter. 

To add settings forms and settings summaries to the field display form, you need to first add settings 
defaults to your implementation of hook_field_formatter_info(); see Listing 33–8. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

759

Listing 33–8. Adding Settings Defaults for the Custom Account Link Formatters for Integer and Text Fields 

/** 
 * Implements hook_field_formatter_info(). 
 */ 
function dgd7glue_field_formatter_info() { 
  return array( 
    'dgd7glue_number_account_link' => array( 
      'label' => t('Account link'), 
      'field types' => array('number_integer'), 
      'settings' => array('web_site' => 'drupal_org'), 
    ), 
    'dgd7glue_text_account_link' => array( 
      'label' => t('Account link'), 
      'field types' => array('text'), 
      'settings' => array('web_site' => 'twitter_com'), 
    ), 
  ); 
} 

This provides defaults but administrators don’t yet have a way to change these defaults. You need a 
settings form with a select list—a form element with pre-defined options. The Number module’s field 
formatter settings form hook implementation has a select list element from which you can borrow 
(api.drupal.org/number_field_formatter_settings_form). The options in this select list will be 
drupal.org and groups.drupal.org in the case of the number account field and twitter.com and 
identi.ca in the case of the text account field. The code in Listing 33–9 borrows from the number form 
structure and select list and adds an if statement to provide different options depending on if it is the 
formatter for number fields or the formatter for text fields. The select options themselves are moved to 
helper functions. 

Listing 33–9. Settings Form for the Account Link Formatters for Text and Integer Fields 

/** 
 * Implements hook_field_formatter_settings_form(). 
 */ 
function dgd7glue_field_formatter_settings_form($field, $instance, $view_mode, $form,  

 &$form_state) { 
  $element = array(); 
 
  $display = $instance['display'][$view_mode]; 
  $settings = $display['settings']; 
 
  if ($display['type'] == 'dgd7glue_number_account_link') { 
    $options = _dgd7glue_number_account_link_options(); 
  } 
  else { 
    // Field type is dgd7glue_text_account_link. 
    $options = _dgd7glue_text_account_link_options(); 
  } 
 
  $element['web_site'] = array( 
    '#title' => t('Web site or service'), 
    '#type' => 'select', 
    '#options' => $options, 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

760 

    '#default_value' => $settings['web_site'], 
    '#required' => TRUE, 
  ); 
 
  return $element; 
} 
 
/** 
 * Provides Account link formatter options for integer fields. 
 */ 
function _dgd7glue_number_account_link_options() { 
  return array( 
    'drupal_org' => t('Drupal.org'), 
    'groups_drupal_org' => t('Groups.Drupal.org'), 
  ); 
} 
 
/** 
 * Provides Account link formatter options for text fields. 
 */ 
function _dgd7glue_text_account_link_options() { 
  return array( 
    'twitter_com' => t('Twitter.com'), 
    'identi_ca' => t('Identi.ca'), 
  ); 
} 

Drupal’s Field API requires you to provide a summary of the settings selected. Rather than again 
drawing from the number field for an example, the need to state which option has been selected maps 
closely to the simpler one-line summary of text.module 
(api.drupal.org/text_field_formatter_settings_summary); see Listing 33–10. 

Listing 33–10. A Summary of the Settings Selected 

/** 
 * Implements hook_field_formatter_settings_summary(). 
 */ 
function dgd7glue_field_formatter_settings_summary($field, $instance, $view_mode) { 
  $summary = ''; 
 
  $display = $instance['display'][$view_mode]; 
  $settings = $display['settings']; 
 
  if ($display['type'] == 'dgd7glue_number_account_link') { 
    $options = _dgd7glue_number_account_link_options(); 
  } 
  else { 
    // Field type is dgd7glue_text_account_link. 
    $options = _dgd7glue_text_account_link_options(); 
  } 
 
  $summary .= t('Web site') . ': ' . $options[$settings['web_site']]; 
 
  return $summary; 
} 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

761

Test that this worked by going back to the Author profile manage fields display page, selecting 
Account link for the Drupal ID field and see that the options drupal.org and Groups.Drupal.org appear. 

■ Caution  The settings form link (gear icon) will not be displayed if the settings summary hook is not also defined. 

A first draft of Listings 33–9 and 33–10 did not have helper functions for the formatter options. 
Realizing that both dgd7glue_field_formatter_settings_form() and 
dgd7glue_field_formatter_settings_summary() should have the display-friendly version of the option 
(for instance 'Drupal.org' for 'drupal_org'), they were refactored to put the options in their own 
functions. This way, the settings form function and the settings summary function can both call them. 
(Repeating information in two places in the code would have been a bad thing; when something needs 
to be changed, you or the next developer would be likely to miss one of the places.) In retrospect, it 
might be even cleaner to have one options-gathering helper function (instead of two) and do an if or 
switch statement on the field formatter type within it. However, the point of custom code is to do 
something effective and specific on your web site in a maintainable way, not to be endlessly refactored 
for elegance. 

The next step is to implement hook_field_formatter_view(). While developing, you will likely want 
to look in a debugger or throw a debug($items) into dgd7glue_field_formatter_view() to see exactly 
what it gets for items, as shown in Listing 33–11. 

Listing 33–11. Implementation of hook_field_formatter_view() to Investigate What It Is Handed  

/** 
 * Implements hook_field_formatter_view(). 
 */ 
function dgd7glue_field_formatter_view($entity_type, $entity, $field, $instance, $langcode,  

 $items, $display) { 
  foreach ($items as $delta => $item) { 
    debug($item); 
  } 
} 

Viewing an author profile page that has values for a drupal.org ID and a Twitter account now result 
in messages printed to the screen, for the former, a numeric field: 

array ( 
  'value' => '64383', 
) 

and for the latter, a text field item 

array ( 
  'value' => 'mlncn', 
  'format' => NULL, 
  'safe_value' => 'mlncn', 
) 

Knowing the structure of the items handed in to dgd7_field_formatter_view() and knowing the 
structure of the display settings form you just defined, you can write a function that combines the two. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

762 

■ Note  If you need to examine the structure of the variable $display you can look at in a debugger (see 

dgd7.org/ide) or output with debug() as done with $item above. 

The function in Listing 33–12 has a switch statement to assign the base URL according to the web 
site setting (such as http://drupal.org/ for a drupal.org-designated field) and another switch statement 
to set the key for accessing the field’s value correctly. As seen above, 'value' is the only property available 
for the integer field. This is because a validated integer field is inherently safe. Drupal provides the 
'safe_value' property for the text field because a sanitized version is needed for you to print it safely. A 
user-input string could contain malicious JavaScript code. 

Listing 33–12. Implementation of hook_field_formatter_view() to Show Account IDs as Links 

/** 
 * Implements hook_field_formatter_view(). 
 */ 
function dgd7glue_field_formatter_view($entity_type, $entity, $field, $instance, $langcode,  

 $items, $display) { 
  $element = array(); 
 
  // Allow a definition of a function to get the account link title. 
  $title_callback = NULL; 
  $item_key = 'safe_value'; 
 
  // Ordinarily, view formatters switch on the display type, but for the 
  // account link formatters dgd7glue defines, the web site is what matters. 
  switch ($display['settings']['web_site']) { 
    case 'drupal_org': 
      $href = 'http://drupal.org/user/'; 
      $title_callback = 'dgd7glue_drupal_page_title'; 
      break; 
    case 'groups_drupal_org': 
      $href = 'http://groups.drupal.org/user/'; 
      $title_callback = 'dgd7glue_drupal_page_title'; 
      break; 
    case 'twitter_com': 
      $href = 'http://twitter.com/'; 
      break; 
    case 'identi_ca': 
      $href = 'http://identi.ca/'; 
      break; 
  } 
 
  switch ($display['type']) { 
    case 'dgd7glue_number_account_link': 
      $item_key = 'value'; 
      break; 
    default: 
      $item_key = 'safe_value'; 
  } 
 

http://drupal.org/
http://drupal.org/user/
http://groups.drupal.org/user/
http://twitter.com/
http://identi.ca/


CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

763

  foreach ($items as $delta => $item) { 
    if ($title_callback) { 
      $title = $title_callback($item[$item_key], $href); 
    } 
    else { 
      $title = $item[$item_key]; 
    } 
    $href = $href .= $item[$item_key]; 
    $element[$delta] = array( 
       '#type' => 'link', 
       '#title' => $title, 
       '#href' => $href, 
     ); 
  } 

  return $element;
} 

/** 
 * Get the title of a page on a Drupal site. 
 * 
 * Callback for account link titles in dgd7glue_field_formatter_view(). 
 */ 
function dgd7glue_drupal_page_title($account_id, $href) { 
  return $account_id;
} 

The first switch statement, above, provides the base for the URL depending on which web site is set
in the field’s display settings, and optionally a title callback to generate the text part of the link. That last
function, dgd7glue_drupal_page_title(), provides that callback. As shown, however, it’s only a
placeholder: it doesn’t do what you really want it to do. In the next section, you’ll change it to fetch the
author’s username from drupal.org and groups.drupal.org profile pages. 

The main function ends with a foreach() statement (which would handle the case if the field were
to allow multiple values) that builds the element to return as a renderable array. By setting the '#type' to
'link', Drupal knows to create a link. (As described in Appendix C, returning a render array instead of an
HTML string gives other Drupal modules and the theme a chance to make changes, such as adding a
class or a target attribute.) 

Fetching the Username 
The dgd7glue_drupal_page_title() function used previously needs to do what it says and fetch users’
names from their profile pages on drupal.org and groups.drupal.org. 

Even for the craziest ideas, someone may have blazed the trail for you in Drupal. In this case, that
someone is Kevin Hemenway, better known as Morbus Iff. His Bot module powers Druplicon in #drupal
and other IRC channels (see Chapter 9). It can be configured to magically fetch the title of a node when
given the URL on a Drupal, such as http://example.com/node/523. (For issues on drupal.org, it can also
get the project, status, and other information. But the interesting thing for your present use case is that it
somehow grabs the title of sites with which it has no special integration.) 

Knowing this, why not drush dl bot, even though you don’t plan to use it—just look at it (see 
Listing 33–13). 

http://example.com/node/523


CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

764 

Listing 33–13. Excerpt from bot_project.module 

/** 
 * Listen for URLs or a numerical ID and respond with information about it. 
 * 
 * @param $data 
 *   The regular $data object prepared by the IRC library. 
 * @param $from_query 
 *   Boolean; whether this was a queried request. 
 */ 
function bot_project_irc_msg_channel($data, $from_query = FALSE) { 
// [Code not of interest for present purposes not shown...] 
      $result = drupal_http_request($url); 
      if ($result->code != 200) { continue; } 
 
      // we'll always display a title, so grab that first for db storage. 
      preg_match('/<title>(.*?) \|.*?<\/title>/', $result->data, $title_match); 
      $title = $title_match[1] ? $title_match[1] : '<' . t('unable to determine title') . '>'; 
// ... 

The code is littered with caveats from Morbus, the module’s author, about how it’s not the best way 
to do it—but it works. You can adopt it directly, as shown in Listing 33–14. 

Listing 33–14. Function to Scrape User Names from Drupal.org User Page Titles (or Any Drupal.org Page 

Title) 

/** 
 * Get the title of a page on a Drupal site. 
 * 
 * Callback for account link titles in dgd7glue_field_formatter_view(). 
 */ 
function dgd7glue_drupal_page_title($account_id, $href) { 
  $result = drupal_http_request($url); 
  // Use $account_id as title if cannot get one. 
  if ($result->code != 200) { 
    return $account_id; 
  } 
  // Extract the first part of the title from the page's HTML source. 
  preg_match('/<title>(.*?) \|.*?<\/title>/', $result->data, $title_match); 
  $title = $title_match[1] ? $title_match[1] : $account_id; 
  return $title; 
} 

This code works and is pretty awesome, replacing a number with a name. There’s still a problem 
with it, though: it causes drupal.org to be contacted twice every time someone views an author’s profile, 
downloading an entire profile web page each from drupal.org or groups.drupal.org. One way or 
another, the name needs to be cached locally instead. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

765

■ Tip  Before you implement caching, make sure you need it. You can test if the code you are planning to cache is 
called with a debugger, a query logger (as provided by Devel module, drupal.org/project/devel), or by 
including a watchdog() logging command (api.drupal.org/watchdog),  which you could use temporarily even 

on a live site. See Appendix B for ways to find performance problems on your site that need optimization. 

Caching Simple Data Using Drupal’s Default Cache Table 
To be nice to drupal.org, to say nothing of your own site’s performance, don’t grab an entire page each 
time you want to look up a username. 

Doing this work at the formatter level means it is too late for Field API’s built-in caching. Defining a 
new cache_* table or adding a row or rows to the generic cache table are both possibilities. To implement 
some basic caching, you can look in the cache table and work your way backwards. Searching for keys 
from the cache table in the site code quickly shows that cache_set() and cache_get() are the functions 
Drupal uses to put and take data from cache. Searching for 'cache_set' or 'cache_get' (as with grep -nHR 
'cache_get' modules from the root of Drupal’s code) finds plenty of examples. 

■ Note  Drupal’s caching functions take care of static caching for you, which is nice. It’s probably not necessary 
in this case, but static caching means that when the data is fetched from the cache with a database query, it 

doesn’t repeat this query during a page request. (See api.drupal.org/_cache_get_object which is called by 

cache_get().) 

Taking as an example the caching for language metadata in locale.module, you can incorporate 
caching into the page title fetching function. The caching-related additions are shown in Listing 33–15 in 
bold. 

Listing 33–15. Caching Added to the Function for Fetching Page Titles from Standard Drupal Sites 

/** 
 * Get the title of a page on a Drupal site. 
 * 
 * Callback for account link titles in dgd7glue_field_formatter_view(). 
 */ 
function dgd7glue_drupal_page_title($account_id, $href) { 
  $url = $href . $account_id; 
  if ($cache = cache_get('dgd7glue:' . $url, 'cache')) { 
    $title = $cache->data; 
  } 
  else { 
    $result = drupal_http_request($url); 
    // Use $account_id as title if cannot get one, but do not cache it. 
    if ($result->code != 200) { 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

766 

      return $account_id; 
    } 
    // Extract the first part of the title from the page's HTML source. 
    preg_match('/<title>(.*?) \|.*?<\/title>/', $result->data, $title_match); 
    $title = $title_match[1] ? $title_match[1] : $account_id; 
    cache_set('dgd7glue:' . $url, $title); 
  } 
  return $title; 
} 

The request to load a page is now made only once, and is thereafter retrieved from the cache until 
caches are cleared—which can be weeks on a production site (not in development). 

Streamlining an Awkward Form Element with CSS 
The Suggestion content type has the Book element vocabulary attached to it. This vocabulary has a dozen 
terms, of which only one can be selected, presented as radio buttons listed vertically by default. This 
significantly increases the amount of scrolling a person needs to do when posting a suggestion. 

To fix this, there is (of course) a module for that, one with a most impressive name: Multi-column 
checkboxes radios (drupal.org/project/multicolumncheckboxesradios). However, at the time of writing, 
it was still buggy for Drupal 7. Also, the Book element vocabulary doesn’t have so many terms that it 
needs columns; it would look fine horizontal instead of vertically, and you can do that with CSS. 

■ Note  Drupal 7 improves the classes added to divs surrounding form items. In Drupal 6, it was hardcoded to 

‘form-item’. Now the form element name and the type of form element are added as form-item-name and form-
item-type. You can see how Drupal does this (and also see the theme function you would override to change it) at 

api.drupal.org/theme_form_element. 

Unfortunately, you can’t easily add custom classes to forms that you define or alter. However, 
between classes based on the type and the name, you can generally target form items with CSS or 
JavaScript as you need to. In general, you will be able to style your form without adding another div or 
other wrapping element and without overriding the theme_form_element() function; see Listing 33–16. 

Listing 33–16. CSS Added to the Theme to Make the Book Element Vocabulary’s Radio Buttons Span Side-

to-Side 

/* Make the Book element radio buttons flow horizontally. */ 
.form-item-field-element-und { 
  display: inline-block; 
  padding-right: 7px; 
} 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

767

Contextual “Add New” Links for Content Types 
When a user is looking at the list of suggestions or an individual suggestion, she should also be invited to 
submit her own, if she has permission to create a new suggestion. 

Drupal 7 provides for a similar action primarily found on Administration pages, for example the + 
Add content link above the content listing (admin/content). 

■ Note  Action links are a new interaction pattern for Drupal 7 (see Chapter 32). They are Drupal’s way of saying 
things like “If you’re on the content overview page, there’s a good chance you want to add new content.” While 
other local tasks in Drupal take you to settings or listing pages, action links perform actions, usually adding 

something. Rather than being rendered as tabs like other tasks are by default, they are rendered as links directly 

below the help region through an $action_links variable in the page template. 

Personally, these action links (such as the + Add content type at the top of admin/structure/content-
types) might as well be invisible to me—whether it’s the slight indent or, more likely, being used to 
Drupal 6 which only ever had help text in that area, this new Drupal 7 convention hasn’t become natural 
to me yet. However, the benefits of adopting a standard (which probably will be natural to native Drupal 
7 users in any case) trumps personal taste. The fundamental concept of treating a certain type of links a 
certain way is sound. 

■ Note  The first approach described next turns out not to be the best way to add existing pages as action links, 
so if you’re looking for a straight answer, you can skip down to the second solution. I’m showing this one here 

because it’s a viable solution (and the proper way to add new pages as action links) and, more importantly, 

demonstrates the process of investigation. 

Finding and Following a Model 
As discussed in Chapter 18, it’s always good to look to Drupal core for examples, but a contrib 
implementation of a core convention is a good place to look, too—especially when the contributed 
modules is Views. On the Administer ➤ Structure ➤ Views page (admin/structure/views), atop the listing 
of existing views, is the signature plus sign with text + Add new view. You can search for the text in the 
Views code to learn how it gets there; see Listing 33–17. 

Listing 33–17. Using Grep to Search for “Add new view” within the Views Project, with Result Shown 

cd ~/workspace/dgd7 
grep -nHR "Add new view" sites/all/modules/views/ 
sites/all/modules/views/views_ui.module:38:    'title' => 'Add new view', 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

768 

The search output in Listing 33–18 tells you that in the Views UI module, on line 38, the text you 
searched for (“Add new view”) is present. Go there and you can see that it is within an implementation of 
hook_menu(); see Listing 33–18. 

Listing 33–18. Code that Defines the “Add New View” Link in views_ui.module 

  $items['admin/structure/views/add'] = $base + array( 
    'title' => 'Add new view', 
    'page callback' => 'views_ui_add_page', 
    'type' => MENU_LOCAL_ACTION, 
  ); 

This is quite instructive. The menu item definition indicates that the page it is appearing on is at the 
path admin/structure/views, as you know it is. Its title is the text you see, “Add new view”. The special 
part seems to be the menu item type of MENU_LOCAL_ACTION. 

Do a quick search of Drupal code for MENU_LOCAL_ACTION and you can find other examples; see 
Listing 33–19. 

Listing 33–19. Menu Item Defined in node.module Gives Link on admin/structure/types 

  $items['admin/structure/types/add'] = array( 
    'title' => 'Add content type', 
    'page callback' => 'drupal_get_form', 
    'page arguments' => array('node_type_form'), 
    'access arguments' => array('administer content types'), 
    'type' => MENU_LOCAL_ACTION, 
    'file' => 'content_types.inc', 
  ); 

That’s not the link that needs to be added to the top of the listing of suggestions, though. The link 
you want to include as an action link is 'node/add/suggestion'. Searching for node/add in node.module 
(skipping past the menu item that defines the listing page of all content types that users can create) 
brings you to a set of menu items defined in a foreach loop—one menu item for each content type; see 
Listing 33–20. 

Listing 33–20. Code in node.module’s Implementation of hook_menu() that Creates a 

node/add/CONTENT_TYPE Page for Each Content Type 

  foreach (node_type_get_types() as $type) { 
    $type_url_str = str_replace('_', '-', $type->type); 
    $items['node/add/' . $type_url_str] = array( 
      'title' => $type->name, 
      'title callback' => 'check_plain', 
      'page callback' => 'node_add', 
      'page arguments' => array($type->type), 
      'access callback' => 'node_access', 
      'access arguments' => array('create', $type->type), 
      'description' => $type->description, 
      'file' => 'node.pages.inc', 
    ); 

Is there any way to make this show up outside its location? It might seem there is no easy way, but 
actually you can create a second menu item at a different path that calls the same page callback and 
page arguments as the node add form you want. (As you’ll see later, this is not the best approach here.) 
In this case, that’s the suggestions path defined by your view and the suggestion content type. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

769

The most important thing to note is the page callback, which is the node_add() function, and the 
page arguments, which is just one argument, the node type machine name. 

■ Tip  The X-ray module created in Chapters 18 through 20 and available at drupal.org/project/xray provides 

the page callback and page arguments passed to it for every page you visit, and could give this information for 

node/add/suggestion without the need to look at hook_menu() implementations directly. 

Enough looking at existing code. Time to write some code! The code in Listing 33–21 is a menu item 
definition that combines the definition of a node/add menu item with the MENU_LOCAL_ACTION type. 

Listing 33–21. Defining a Local Action Menu Item in Your Custom Code  

/** 
 * Implements hook_menu(). 
 */ 
function dgd7glue_menu() { 
  $items = array(); 
  $items['suggestions/add'] = array( 
    'title' => "Add a suggestion", 
    'page callback' => 'node_add', 
    'page arguments' => array('suggestion'), 
    'access callback' => 'node_access', 
    'access arguments' => array('create', 'suggestion'), 
    'file' => 'node.pages.inc', 
    'file path' => drupal_get_path('module', 'node'),  
    'type' => MENU_LOCAL_ACTION, 
  ); 
  return $items; 
} 

■ Gotcha  Menu item definitions do not use underscores in their keys (‘page arguments’, ‘page callback’, and 

‘access callback’, etc.). 

Clear caches (and make sure the module is enabled) and presto! It’s there, your own action link. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

770 

PROBLEMS BETWEEN KEYBOARD AND CHAIR (PEBKAC) 

When your author first did this, the action link did not show up. I cleared caches, added it below an admin/ 
path (rather than the Views-created path suggestions), and of course cleared caches again, and it still did 
not show. I looked in the menu table, and the entry was there. It wasn't until I decided to directly 
manipulate the example I was following (the Add content type link) that I noticed that I had left off the most 
critical part of the example: 'type' => MENU_LOCAL_ACTION! 

Let it be said again, if I can make modules, you can make modules. 

Another mistake made I made was attempting to put the full path to the node module in 'file'. That did 
not work, and my mistake was quickly corrected by a visit to http://api.drupal.org/hook_menu. The 
path to the module that contains code I am borrowing must be listed separately in the 'file path' 
directive. (The path to the node module was obtained from the drupal_get_path() function, which your 
author found by searching for 'path' on api.drupal.org.) 

Some things are just difficult, and a typo can take serious time to debug. Often, when things are difficult, 
it’s a sign that Drupal may provide a better way. This is true this case, so read on. 

Noticing and Adopting a Better Way 
This method of defining a new menu item for the action link works, but is there a better way? Repeating 
the use of the page callback function in a new menu item means that the page to add a suggestion now 
exists at two paths on the site: node/add/suggestion, as expected, and the new suggestions/add. This will 
confuse Shortcut module (allowing the same page to be added to the shortcut bar twice) and also might 
confuse people using the site, reducing their feelings of comfort and understanding. 

While looking at node.module’s implementation of hook_menu(), you might have noticed that the + 
Add content action link at the top of admin/content is not defined as a MENU_LOCAL_ACTION. Searching all 
the files of node.module for “Add content” only brings up the node/add page itself. How does it get added 
to admin/content? Searching for admin/content brings the answer almost immediately: the function 
node_menu_local_tasks_alter(). Check it out in node.module or at 
api.drupal.org/node_menu_local_tasks_alter because you can take and modify the code very directly 
and make it your own, as done in Listing 33–22. 

Listing 33–22. Adding an Action Link by Implementing hook_menu_local_tasks_alter() 

/** 
 * Implements hook_menu_local_tasks_alter(). 
 */ 
function dgd7glue_menu_local_tasks_alter(&$data, $router_item, $root_path) { 
  // Add action link to 'node/add/suggestion' on 'suggestions' page. 
  if ($root_path == 'suggestions') { 
    $item = menu_get_item('node/add/suggestion'); 
    if ($item['access']) { 
      $data['actions']['output'][] = array( 
        '#theme' => 'menu_local_action', 
        '#link' => $item, 
      ); 
    } 

http://api.drupal.org/hook_menu


CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

771

  } 
} 

Excellent! This replaces the menu item defined previously with a much more elegant solution (thank 
Drupal that “there’s a hook for that”). Now you have added a custom action link to an existing page the 
correct way. It’s easy when you know how. But if there’s any moral to be learned from your author’s 
stumbling around, it’s that not knowing but trying anyway is one way to end up knowing how. 

Views-created listings featuring one or two content types are very common in Drupal. It is a great 
boost to usability to place atop them links for creating the same content. Now you know how to do that 
with a snippet of a dozen lines. 

Making a Custom Text Filter 
Drupal’s text format filters are a fairly simple and powerful way to change how your content is displayed. 
(Previous versions of Drupal called these input filters, which was misleading because Drupal, ever-
respectful of user-submitted data, filters content on output.) In this section, you will once again see how 
easy, non-scary, and useful making a module can be, even for someone as prone to false starts as your 
author in this chapter. 

The Definitive Guide to Drupal 7, as well as other Apress books, emphasize tips, notes, and other 
types of commentary by setting it apart—between two lines and in a different font. 

■ Tip  At the start of any project, you won’t know exactly how to do it, but knowing it can be done somehow is the 

crucial first step in figuring it out and doing it. 

For the DefinitiveDrupal.org web site, you can produce a similar effect using HTML and CSS. The 
HTML with a div and spans for the CSS to change might look like this: 

<div class="featured-element tip"><span class="featured-element-type">  

<span class="leading-square">T</span>ip</span> Hand-entering HTML code that involves  

 divs or spans and classes or IDs is a strong sign we're doing it wrong.</div> 

However, you don’t want the authors to have to type in HTML code each time they want a 
highlighted tip. Apart from the tedium, it would increase the chances of making a minor mistake that 
makes display inconsistent. Instead of typing the previous HTML, let’s let the authors use pseudo-
markup that can be replaced with the previous HTML, such as: 

[tip] Hand-entering HTML code that involves divs or spans and classes or IDs is a strong sign 
we're doing it wrong.[/tip] 

That is much harder to mess up. You know what you want to do. You have the simplified markup 
you want to use, and the HTML you want to produce from it. Now where do you start? 

Looking for a Module that Does What You Need 
The best module is one you don’t have to write yourself. Look around for a module that does that has to 
do with creating HTML tags from other markup. Searching online for such keywords as “drupal text 
format transform tags,” “drupal replace markup,” “drupal input filter tags,” “drupal 7 text filters 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

772 

exportable” and searching drupal.org modules specifically for similar keywords (minus the “Drupal”) 
did turn up some prior art. 

■ Tip  When searching Drupal.org for a module, apply the module filter. The URL might look like: 

drupal.org/search/apachesolr_multisitesearch/replace%20tags?filters=ss_meta_type%3Amodule 

Similar to what DefinitiveDrupal.org needs, Markdown Filter (drupal.org/project/markdown), and 
Textile (drupal.org/project/textile) modules (in the sense that they process text) are the BBCode 
(drupal.org/project/bbcode). These, however, are for known markup systems, not for meeting custom 
needs. They and others, like the Typogrify module (drupal.org/project/typogrify), can serve as 
examples for how to create filters. 

Another module turned up in search: SimpleHTMLDOM (drupal.org/project/simplehtmldom), a 
wrapper for the namesake library available from simplehtmldom.sourceforge.net, could be useful as a 
tool, but your need to manipulate text is not that complex. 

There is a Drupal 6 version of a module doing tag replacing, including some that looks like it does 
the before and after tags that you need: Rep[lacement] tags (drupal.org/project/reptag). However, it 
doesn’t use filters and the text format system, instead relying on NodeAPI. Furthermore, the Drupal 6 
version never hit a stable release. This should ease your conscience a bit about making a duplicate 
module, rather than porting and extending. 

It’s also very possible that these markup replacement needs could be done or should be done with 
configuration or as a sort of submodule of Flexifilter module (drupal.org/project/flexifilter), which 
is intended to make creating custom filters easier. A project in the same vein, Custom filter 
(drupal.org/project/customfilter) has been around even longer and is more actively maintained. 
Neither had D7 branches as of this writing, nor felt compelling enough to adopt the approach of porting 
and then building a submodule. 

Given a short timeline, specific goals, and coding abilities, this is a justifiable time to make your own 
module. (It may not be the smartest or best decision, but it is not, on the face of it, a terrible idea.) 

Choosing an Approach 
Deciding to make a module is, of course, only the first step. How to make it is also pretty important. 

Having learned about hooks and nodes in the part of the book on module development, you might 
be tempted to intercept nodes when they are saved using hook_node_insert() or hook_node_update() 
and make your changes there. You should resist this temptation. One of Drupal’s distinguishing 
characteristics is that it does not lay a finger on content. What you see before you save is exactly what 
you see when you edit it again. This means your data is never corrupted. Accepting that as the Very Good 
Thing it is, you may then think you should replace the placeholder markup with your cool styling using a 
manipulation in hook_node_view(). But that means Drupal might have to do that work of processing the 
text every time it displayed a node. Before building a mechanism for manipulating the existing text and 
adding a new caching layer, it’s time to take a step back and look outside the node system. (Or, if really 
stumped, ask on IRC, as discussed in Chapter 9.) 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

773

■ Note  For the full cornucopia of node-related hooks in Drupal 7, see api.drupal.org/node.api.php  or open

modules/node/node.api.php in any copy of Drupal 7. 

Changing the way user-inputted text looks is a common problem in Drupal. In fact, this is a problem
that has long been solved by Drupal core itself. A method of managing modifications to content when it
is displayed has lived in its own module, Filter module, since Drupal 5. 

In Drupal 7, Filter module shows up in the administration interface at Administration ➤
Configuration ➤ Content Authoring ➤ Text formats (admin/config/content/formats). Looking at this
core module from the code side (in the directory modules/filter) shows ten files (filter.admin.inc,
filter.css, filter.js, filter.test, filter.admin.js, filter.info, filter.module, filter.api.php,
filter.install, and filter.pages.inc), which seems a little intimidating. Let’s take a look at it, but it
would be nice to find a module that implemented just the provision of a filter, not the entire text format
system. 

Finding an Example (Hint: the Examples Project) 
Where can you find a good example? 

A project initiated by Randy Fay (rfay) while Drupal 7 was still in development provides the excellent
(and now obvious) answer: the Examples suite of modules. You can download it just like any other
project at drupal.org/project/examples. Sure enough, it has a filter_example module demonstrating
how to define an input filter. 

■ Tip  Whenever you need to implement a core API (a hook defined by Drupal core) look for examples in the

Examples project (drupal.org/project/examples). 

Giving a Module an Interim Name 
Now that you know your approach and have an example to follow, it’s time to start coding. Which leads
to question zero: what to name the module? (You could start adding functions to your glue code module,
but when starting major new functionality, it’s cleaner to start in a separate module—especially when
there’s a chance of contributing the code to the Drupal community.) If inspiration for the name does not
strike right away, to avoid expending energy coming up with the perfect name before the module even
exists, you can use a temporary name. 

There are a few guidelines in choosing an interim name, however. If you named the module “tip”
and later decided to contribute it to drupal.org, you would want to rename it so as not to claim the
common word “tip” when that is not a particularly apt description of what the module does. The
problem is that running a find-and-replace on those common three letters would not be pretty. 

Even for a module you plan to contribute, for its temporary name, follow the same practice as for
custom modules and namespace it with the name of your site project. Your project name plus any
distinctive word you choose should make it easy to fix all function names with find-and-replace. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

774 

■ Tip  This module will use an underscore in its provisional name, but certain aspects (such as where CSS 
classes and IDs, which historically use dashes instead of underscores) would be easier with both the provisional 

and the ultimately chosen name avoiding any underscore. 

So let’s have at it! Make a directory named whatever you choose to name the module (in this case 
dgd7_tip) and start making the necessary module files, also named after the module, starting with 
dgd7_tip.info (see Listings 33–23 and 33–24). 

Listing 33–23. Command-Line Steps to Create the Module Directory and a .info File with Vim 

cd sites/all/modules/custom 
mkdir dgd7_tip 
cd dgd7_tip/ 
vi dgd7_tip.info 

Listing 33–24. Initial Working Content for dgd7_tip.info 

name = Tip formatter 
description = [dgd7_tip] Text format filter for tips, notes, hints and other emphasized  

 paragraphs of text. 
core = 7.x 

■ Note  This author considers it a basic matter of usability for administrators and developers to be able to see 
module’s system (or machine) names on the admin/modules page and will continue to put the system name in the 

description until this basic functionality is accepted into core. This style is not accepted practice so only follow it if 

you also feel strongly. 

Now create a .module file and give it its first hook, an implementation of hook_filter_info() (see 
api.drupal.org/hook_filter_info) adapted from the Filter example module, as shown in Listing 33–25. 

Listing 33–25. Initial Contents of dgd7_tip.module 

/** 
 * Implements hook_filter_info(). 
 */ 
function dgd7_tip_filter_info() { 
  $filters = array(); 
  $filters['dgd7_tip'] = array( 
    'title' => t('Tip formatter'), 
    'description' => t('Allows simple notation to indicate paragraphs of text to be  

 emphasized as tips, notes, hints, or other specially featured interjections.'), 
    'process callback' => '_dgd7_tip_process', 
    'tips callback' => '_dgd7_tip_tips', 
  ); 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

775

  return $filters; 
} 
 
/** 
 * Implements filter process callback. 
 */ 
function _dgd7_tip_process($text, $filter) { 
  return $text; 
} 
 
/** 
 * Implements filter tips callback. 
 */ 
function _dgd7_tip_tips($filter, $format, $long = FALSE) { 
  $tips = ''; 
  return $tips; 
} 

There! That looks neat and tidy. Your module won’t even have any undefined function errors if you 
enable it—though the filter callback functions are mere stub functions so they won’t do anything, either. 
(The 'prepare callback' in the hook_filter_info() definition and in filter_example.module proved 
unnecessary for a simple filter; it is useful for complex filtering that requires making changes to content 
before other filters do their work. Your author initially made a stub function for it but removed it from 
the example. Warning: An empty prepare or process callback, or one that for whatever reason does not 
return a value, will result in empty content anywhere that input format is applied!) 

■ Note  This module only  provides one filter, but it could provide more by repeating the $filters['dgd7_tip'] array 
with different key and values. If you do intend to provide more than one input filter, the key should not be your 

module name, 'dgd7_tip', but rather the module name plus something descriptive of that particular filter. The 
same convention applies for callback names. This module is not intended to provide other input filters, so the 
precaution of explicit function names is premature. (The process and tips callbacks are internal functions, meant 

only for use in your module, as indicated by the underscore in front of them. For any API function—a function that 

may be called by other modules—you may want to take the precaution of choosing future-proof names.) 

Start a Repository for Your Module 
Because this module may be destined for an independent existence from the rest of the web site project, 
you can initiate a separate version control repository for it. With Git (see Chapter 2 and Chapter 37 for 
more information and resources), this is a few words typed on the command line, as shown in Listing 
33–26. Do this from within the dgd7_tip directory you made. 

Listing 33–26. Command-Line Steps for Starting a Repository and Making the Initial Commit of the 

Provisionally-Named dgd7_tip Module 

git init 
git add . 
git commit -m ".info and .module file with stub filter API functions." 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

776 

You can now commit constantly (as advocated in Chapter 14) without commit messages or with 
them when you have something particular to note. The git add commands and commit messages will 
not be marked with the code in this chapter, but you can be sure that after every significant change and 
many insignificant ones, there was a commit. 

■ Note  The module created in this section is linked from the online chapter notes at dgd7.org/other90, and you 

can see every commit made to it. 

Making the Tags and Replacement Markup Form 
For a completely custom module, you could skip the settings form and just hardcode the processing you 
want to apply to content. No need to make a user interface for administrators to use, no need to make an 
API for modules to use. Because there is no Drupal 7 solution for the wrapping tag replacement called 
for by DefinitiveDrupal.org’s needs, and because you may want administrators to be able to make 
changes to the filter without requiring modifying a module, you can try to make a module with both a UI 
and an API. 

Normally you would start with the API. In this case, Drupal provides an API for filter settings forms 
but not for filter settings data, so you can implement the form first and work backwards to understand 
what Drupal is doing with the data. 

Each tag and replacement markup set needs to contain three pieces of data: the tag being replaced, 
the markup that will replace the opening version of this tag, and the markup that will replace the closing 
version of the tag. By adopting the HTML convention of closing tags including a slash, you can ask for 
only the closing tag and derive the opening tag by removing the slash. So for instance, the form could 
accept {{/pony}} as the tag and in the content {{pony}} would be replaced with the opening markup 
entered into the form and {{/pony}} would be replaced with the closing markup. 

Defining a Settings Callback 
For your filter to save settings, the first thing you need to do is add another callback to the filter 
definition in your implementation of hook_filter_info(). A settings callback allows you to define form 
elements that accept values from administrators. Drupal will then have those values available in the 
process callback (and the prepare callback, if defined). 

You need to add a line giving your filter a settings callback function. Add the following to the 
$filters['dgd7_tip'] array you created in dgd7_tip_filter_info(). I’ll show this filter-defining 
function again after a bit more work. 

    'settings callback' => '_dgd7_tip_settings', 

Then, of course, you need to define the _dgd7_tip_settings() function. This function should return 
form elements that Drupal will stick into the filter-specific options on the text format edit pages. There is 
an example, naturally, in filter_example.module, and you will define a filter settings callback to suit your 
needs later. 

Building a Form that Accepts Multiple Elements 
Each tag and replacement markup set needs its own place on the form, which means the form needs to 
take a variable number of these sets of form elements. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

777

Know When to Fold ’Em 

The slickest way to add additional sets of form elements as they are needed is with AJAX, which can pull 
HTML into your page on demand. Drupal’s fields provide an example of this. 

■ Note  For readers who can’t tell from the section title alone: you won’t get any development done in this section. 

Unfortunately, the “Add another item” link that is used by unlimited value fields is specific to the 
Field module. The code for the AJAX callback field_add_more_js() and related functionality in 
modules/field/field.form.inc may be instructive, but there’s nothing in Drupal 7’s FormsAPI to 
automate it for you. 

So what do you do at this point in building a module? Punt. Make it as simple as possible. It’s not 
worth getting bogged down in complex user interface enhancements at this point. (In fact, it’s best to 
make your module with no user interface at all in the first pass. That rule is only broken here because the 
usual method of saving filter information is unfortunately not API-friendly; a text format is saved as a 
whole.) 

■ Note  As of 7, every instance of a filter has its own settings. That is, every filter on each text format is 
configured independently: If you change the settings of the image resize filter on the Filtered HTML text format, the 
settings for image resize filter on the Full HTML text format won’t change. This greatly increases flexibility, but 

makes it a little more work to keep settings of shared filters consistent. 

Making a Filter Settings Form that Always Accepts Two Additional Rows 

The settings form will instead adopt a much simpler pattern: when first presented and whenever it’s 
saved, it will always provide at least two sets of blank form elements. 

All form elements returned by the settings callback function are saved with the filter object and 
available at $filter->settings. The filter object, including its settings array, is available in all the filter 
callbacks (process, prepare, tips, and settings itself). You can put any settings you want in this array in 
their own nested array, such as $filter->settings['rm'] for the replacement markup information you 
need to store now. (Your author considered saving each tag and replacement markup pair directly to the 
settings array, but that way lies madness when it comes to generating the form.) The form elements for 
gathering the replacement markup information from administrators should also nest inside an 'rm' 
array. 

Given that you need a set of form elements for each saved value, and then two more blank ones, this 
is a natural time for a foreach loop. However, it’s not possible to add two blank tag arrays to the 
replacement markup settings array because each has an empty string ('') as its key and so are combined 
into one. Rather than repeating the code to create the form elements in two separate loops, you can 
factor out the creation of the form elements into its own function so you can call it as many times as you 
want without code duplication. The three things each set of form elements need are the (closing) tag, the 
opening markup that will replace its opening variation, and the closing markup (see Listing 33–27). 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

778 

Listing 33–27. Defining a Set of Form Elements for the Tag and Replacement Markup in a Function that 

Can Be Called Repeatedly 

/** 
 * Add a set of form fields for adding a new tag and replacement markup pair. 
 */ 
function _dgd7_tip_add_rm_formset(&$settings, $i, $tag = '', $replace =  

 array('before' => '', 'after' => '')) { 
  $settings['rm'][$i]['tag'] = array( 
    '#type' => 'textfield', 
    '#title' => t('Tag'), 
    '#maxlength' => 64, 
    '#default_value' => $tag, 
  ); 
  $settings['rm'][$i]['before'] = array( 
    '#type' => 'textfield', 
    '#title' => t('Before'), 
    '#maxlength' => 1024, 
    '#default_value' => $replace['before'], 
  ); 
  $settings['rm'][$i]['after'] = array( 
    '#type' => 'textfield', 
    '#title' => t('After'), 
    '#maxlength' => 1024, 
    '#default_value' => $replace['after'], 
  ); 
} 

This function is doing a couple interesting things. Mostly, it’s plainly defining three form elements 
of type textfield. It also accepts an iterator ($i) so that it can add itself to the $settings['rm'] array as 
many times as needed with a different integer each time. The $settings array itself is passed in by 
reference (as indicated by the ampersand in front of it in the function definition) so the function doesn’t 
need to return any value; it’s making changes to the $settings variable directly. Finally, it takes default 
values for the tag and the replacement markup, and the function definition itself sets these to empty if 
none are provided to make adding blank form fields easier. That is what the $tag = '', $replace = 
array('before' => '', 'after' => '') part of the _dgd7_tip_add_rm_formset() function definition line 
does. 

Listing 33–28 shows the function that provides a form with rows of elements (to edit each tag and 
replacement markup set that is saved) and two rows of blank form elements to allow administrators to 
add additional tag and replacement markup sets 

Listing 33–28. Settings Callback Function  

/** 
 * Settings callback for tag filter. 
 */ 
function _dgd7_tip_settings($form, $form_state, $filter, $format, $defaults) { 
  // Declare the array that will hold our settings form elements. 
  $settings = array(); 
 
  // Get the default settings. 
  $filter->settings += $defaults;  
  // "rm" is short for replacement markup. 
  $rm = $filter->settings['rm']; 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

779

 
  $i = 0; 
  foreach ($rm as $tag => $replace) { 
    _dgd7_tip_add_rm_formset($settings, $i, $tag, $replace); 
    // Increment our number of filters by one. 
    $i++;  
  } 
  // Always add two empty sets of form fields to be filled in. 
  $total = $i+2; 
  for ($i; $i < $total; $i++) { 
    _dgd7_tip_add_rm_formset($settings, $i); 
  } 
  return $settings; 
} 

The _dgd7_tip_add_rm_formset() function is called in two different loops. One iterates through any 
existing or default tag and replacement markup sets (I’ll get to the concept of default settings in a little 
bit) and the second adds two more blank sets of fields to however many are already there. The $i 
variable keeps count so each set of fields has its own unique key. However, this integer key only makes 
sense when gathering the data with the form; it would be nice to get rid of it when saving the data. 

Manipulating Values Before Saving with a Validate Function 
Indeed, the code in Listing 33–28 doesn’t quite work: the form will be saving data by its $i iteration 
integer, which is necessary for allowing multiple sets to be saved at once, but this arbitrary value means 
nothing when it comes time to get the data. The attempt at retrieving assumes that $rm array will have 
the tag as the key, not a number. 

The following two things let you work around this in the context of filter settings on the text format 
form (see Listing 33–29): 

• A validation function can be added to any form element by setting the 
#element_validate property. 

• Validation functions can do more than validate. They can change the data that will 
be saved with form_set_value(). 

Listing 33–29. Additions to the Settings Callback Function to Set a Validation Function to the Element 

Containing the Tag and Replacement Markup Sets of Form Elements 

function _dgd7_tip_settings($form, $form_state, $filter, $format, $defaults) { 
  // Declare the array that will hold your settings form elements. 
  $settings = array(); 
  $settings['rm'] = array(  
    '#element_validate' => array('dgd7_tip_rm_form_keys_validate'), 
  ); 
  // [Other previously shown code not shown to save space...] 
  return $settings; 
} 

After a good bit of experimentation, it seems the test array structure in Listing 33–30 saves into 
settings in a way that comes back out fine. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

780 

Listing 33–30. Experimental Function to Discover Data Structure that Drupal’s Filter API Saves the Right 

Way 

function dgd7_tip_rm_form_keys_validate($element, &$form_state) { 
  $rm = array(); 
  $rm['{/testtag}'] = array( 
      'before' => 'value for before markup', 
      'after' => 'value for after markup', 
  ); 
  form_set_value($element, $rm, $form_state); 
} 

The process for experimenting was saving the form and seeing if these hardcoded values showed up 
as expected (with {/testtag} as the tag and value for before markup and value for after markup in 
the replacement markup fields). One would never use a validation function to hardcode values, but it 
provided a convenient way to test the structure to use for saving the data. All the other parts of the form 
can be dispensed with, apparently, so you shall do so (see Listing 33–31). 

Listing 33–31. Validation Function that Reorganizes Data to Save with Tag as the Key, Dropping the 

Integer Series Key 

/** 
 * Rearrange form elements to be keyed by tag before filter_format_save() runs. 
 */ 
function dgd7_tip_rm_form_keys_validate($element, &$form_state) { 
  $rm = array(); 
  // Create a tag-keyed version of each element. 
  foreach ($element as $i => $value) { 
    // Skip non-value form elements (the ones we care about have numbers). 
    if (!is_numeric($i))  continue; 
    $key = $value['tag']['#value']; 
    // Do not save empty keys. 
    if (!$key) continue; 
    $rm[$key] = array( 
      'before' => $value['before']['#value'], 
      'after' => $value['after']['#value'], 
    ); 
  } 
 
  form_set_value($element, $rm, $form_state); 
} 

That may not win any prizes for elegance, but it gives sane data storage which helps an upcoming 
task, a task more tied to the immediate use case for this module, which is providing defaults in code. But 
first, let’s look at a more normal use of validation. 

Validating the Filter Settings 
For the tag replacement to work, the module needs to make sure that the tag provided is a closing tag, 
with a / (forward slash) included. Surprisingly, there is no built-in validation of text filter settings, which 
means no obvious model to follow. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

781

You could implement hook_form_alter() and add a form-wide validation function, just as you could 
if you were defining the whole form yourself. The easier, gentler approach is to use the 
#element_validate form property on a specific form element. 

■ Tip  Read more about the element_validate form property at 
api.drupal.org/forms_api_reference.html#element_validate. As always, you can also look for examples in 

core, as with the command-line on Unix-like systems: grep -nHR 'element_validate' modules/ 

As with most hooks and functions, the most important thing about functions for validating elements 
is their function signature: $element, &$form_state, $whole_form. The ampersand, again, indicates that 
even though $form_state is an array, it is passed to your validating function by reference, and changes 
made within the function apply to the original. 

The precise information you need to validate the tag to replace is verifying the existence of a slash. 
Searching the web for “php count number characters in a string” (and some clicking around) brought the 
author to php.net/substr_count (see Listing 33–32). (If you think you can guess the function name or 
even get close, going directly to php.net/bestguess is the fastest way to find a function, as it will 
automatically provide a range of possible matches.) 

Listing 33–32. Validate the Tag to Be a Closing Tag That can Be Interpreted  

/** 
 * Validate each tag to include one and only one slash. 
 */ 
function dgd7_tip_rm_form_tag_validate($element, &$form_state, $whole_form) { 
  if (strlen($element['#value']) && substr_count($element['#value'], '/') !== 1) { 
    // We describe where the error is because after submission it is likely 
    // to be in a non-visible vertical tab. 
    form_error($element, t('In the Replacement markup Filter settings, each tag must be in  

 the form of a closing tag with exactly one slash ("/").  The opening tag is calculated by  

 removing the slash.')); 
  } 
} 

Your data-munging validation function already throws out replacement markup form data with 
nothing in the tag textfield, so this validation function first checks if there’s anything in the form element 
with strlen($element['#value']). If not, it does nothing (doesn’t throw an error). The second half of the 
if statement uses the substr_count() function; if there’s not exactly one slash, then it throws the error. 

Providing Instructions on the Filter Setting Form  
This module should provide instruction on filling in the fields for the tag and the before and after 
markup. The usual Drupal way of providing a #description in your form element array is not a good fit 
because you want to describe all fields together (not one field or even field set at a time) and you want it 
before the form elements it describes (not after as #description does by default). You only want some 
text that’s above the form. 

The Image Resize Filter module (drupal.org/project/image_resize_filter), which the site is 
already using, happens to have this same sort of disembodied help text. So it is conveniently available to 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

782 

steal how its author, Nathan Haug (quicksketch), did it. Taking a look in image_resize_filter.module; 
you can see he pasted it right into a theme function, theme_image_resize_filter_form(). 

Well, you can build on that idea and make it a little more elegant—still using a form theme function, 
but using it to rearrange a description that is properly defined in the form array. Step 1 is to implement 
hook_theme() so you can define a theme function. Step 2 is to add two properties to a form element 
containing the form elements you want to describe: description text and an instruction to use the theme 
function. Step 3 is to define that theme function and have it print the description before the rest of the 
form. Listing 33–33 shows this theme function; note that most of the settings callback function 
_dgd7_tips_settings() is not shown.  

Listing 33–33. Implementing a Theme Function to Put a Description at the Top of a Form Element Instead 

of the Bottom  

/** 
 * Implements hook_theme(). 
 */ 
function dgd7_tip_theme() { 
  return array( 
    'dgd7_tip_settings' => array( 
      'render element' => 'form', 
    ), 
  ); 
} 
 
function _dgd7_tip_settings($form, $form_state, $filter, $format, $defaults) { 
// ... 
  $settings['rm'] = array( 
    '#description' => t('To set tags and replacement markup, enter only the closing tag  

 (such as &lt;/tip&gt;); the opening tag will be calculated automatically by removing the  

 slash (&lt;tip&gt; in this example). Then enter the before and after markup which will  

 replace the opening and closing tag, respectively.'), 
    '#theme' => 'dgd7_tip_settings', 
    '#element_validate' => array('dgd7_tip_rm_form_keys_validate'), 
  ); 
// ... 
} 
 
/** 
 * Theme callback to print description with settings form. 
 */ 
function theme_dgd7_tip_settings($vars) { 
  $form = $vars['form']; 
  return '<p>' . render($form['#description']) . '</p>' 
         . drupal_render_children($form); 
} 

See Chapter 9 for more about defining and using theme functions. And as described in Chapters 14 
and 15, Appendix C, and elsewhere in the book, using render() to show an element will mean that 
element is not shown again (unless you render just it or expose it again with show()). When displaying 
the rest of the form, the function drupal_render_children() is needed instead of render() to avoid an 
infinite loop. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

783

Making Your Own Hook 
Now for the fun part. When developing Drupal, you implement other modules’ hooks all the time. It’s
something of a rare treat to create your own hook! It’s your module’s chance to give back, and ask if any
other modules want to join its party. The occasion is adding the tag and replacement markup sets when
the filter is newly added to a format. 

Creating a hook is a little metaphysical: if a hook is defined and nobody implements it, does it exist?
(You can implement the hook yourself later if that question keeps you up at night.) Hooks come into
being by the act of offering other code the opportunity to heed their call. The most common way of
putting out this call, and so creating a Drupal hook, is to use the function module_invoke_all(), as shown
in Listing 33–34. 

Listing 33–34. Invoking a Hook to Give Other Modules a Chance to Provide Default Settings for a Filter 

/** 
 * Implements hook_filter_info(). 
 */ 
function dgd7_tip_filter_info() { 
  $filters['dgd7_tip'] = array( 
    'title' => t('Replacement markup'), 
    'description' => t('Allows simple notation to indicate paragraphs of text to be wrapped  

 in custom markup, for instance to emphasize tips, notes, or other featured interjections.'), 
    'process callback' => '_dgd7_tip_process', 
    // Allow other modules to declare default tags and replacement markup. 
    'default settings' => array( 
      'rm' => module_invoke_all('dgd7_tip_defaults'), 
    ), 
    'settings callback' => '_dgd7_tip_settings', 
    'tips callback' => '_dgd7_tip_tips', 
  ); 
  return $filters;
} 

The module_invoke_all() function is built to take data from multiple sources and put it together. It
uses the PHP function array_merge_recursive() to do this, so anything that has a new key gets added to
the array it returns and anything that has the an identical key overwrites the previously existing data. For
the replacement markup, if there happen to be two modules implementing this hook and providing
markup for the same short tag, the last-called module will win. This is common to the way hooks work
and not something you need to worry about. 

Ordinarily you would pass some contextual information along when invoking your hook, even if you
can’t think of a reason to use it. In this case, there isn’t any meaningful context that can be passed, but
be attentive to your issue queue if maintaining a public module: always figure on someone else doing
something stranger with your API than you could ever imagine. 

Note that this solution combines code-provided defaults and administrator-set overridden or new
settings, but it doesn’t do so as flexibly as a true exportable configurations such as made possible with
CTools. Implementing that, should this module gain respectable usage, is left as a later exercise for the
author—or you. 

Filtering the Content 
Weren’t you doing all this for a reason? Oh yes! To take the content people input and format it differently
when it’s displayed. To convert tags into their replacement markup, you need to implement your filter’s
process callback, as shown in Listing 33–35. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

784 

Listing 33–35. Process Callback for the Replacement Markup Text Filter 

/** 
 * Process callback for tag filter. 
 */ 
function _dgd7_tip_process($text, $filter) { 
  if (!isset($filter->settings['rm']) || !is_array($filter->settings['rm'])) { 
    return $text; 
  } 
  foreach ($filter->settings['rm'] as $ctag => $replace) { 
    dgd7_tip_replace_tags($text, $ctag, $replace['before'], $replace['after']); 
  } 
  return $text; 
} 

The first part of this function checks that there is any replacement markup to apply at all; if not, it 
bails early, returning the text unaltered. (Perhaps it should not be possible for there to be unset settings, 
but it doesn’t cost much to be a little forgiving here). 

■ Caution  Remember, if the process callback doesn’t return any value, the text, far from displaying unchanged, 

will be gone entirely. 

The Regular Expression 
Looking at a regular expression—and looking at the code surrounding this regular expression—can be 
an experience of seeming to face the incomprehensible. Maybe a lot of other code you’ve looked at has 
already felt this way to you. It’s not the ideal approach—to use something without understanding it—but 
you can’t become an expert in everything right away. To succeed in practice as a developer, you will have 
to push the boundaries of your knowledge. With use comes familiarity. With familiarity may come 
understanding, and if not, the recognition that something you are using more than once is something 
you should put further effort into researching and understanding. This section takes the use-first 
approach, but first give yourself the ability to experiment freely. 

MAKE YOUR OWN TEST.PHP FILE 

Make your own test script to rapidly test code within a Drupal environment. Make a file called test.php or 
anything you like and keep that in the same folder as index.php. Use the first three code lines of 
index.php, and you have a fully bootstrapped Drupal that you can use to test all sorts of code much more 
quickly than setting up a page through the menu system. 

Here is an example that prints out all the configuration information available to Drupal: 

<?php 
define('DRUPAL_ROOT', getcwd()); 
require_once DRUPAL_ROOT . '/includes/bootstrap.inc'; 
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL); 
 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

785

drupal_test(); 
function drupal_test() { 
  global $conf; 
  print '<pre>'; 
  var_export($conf); 
  print '</pre>'; 
} 

■ Note  The contents of the global $conf variable are available to you throughout Drupal with the 

variable_get() function (api.drupal.org/api/function/variable_get/7). 

You can test out any function here (not hook implementations, however) without needing to create and 
enable a module. 

This section was adapted from a presentation by Chad Phillips (hunmonk) who in turn credited Karoly 
Negyesi (chx). It’s sharing skills the open source way, and now I pass them on to you. A few more tips: 

 

Testing the Regular Expression 
Using a test PHP file, you can try the basics of a regular expression. (This file, using PHP functions and 
not Drupal ones, would not even need to bootstrap Drupal.) Because the intended use of the module is 
replacing pairs of opening and closing tags, you want a regular expression that matches both at once, 
not one alone. This makes it all a bit trickier; see Listing 33–36. 

■ Tip  See dgd7.org/regex for links to regular expression resources. 

• As soon as you get in trouble, start looking at your variables. 

• Use exit($var); to end code execution at the part you care about (and optionally 
dump a variable available at the time). 

• Find an example in core. Search an install of Drupal core or ask for an example of 
how core does X in channel #drupal (or #drupal-contribute if you are contributing 
back the module you are working on). 

• Clear your cache. 

• Document your work. Otherwise, when you come back in a week or a year, you 
won't have any idea what you thought you were doing. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

786 

Listing 33–36. A Test Regular Expression 

<?php 
$text = "This is text surrounding a note. 
 
[note] This is a note. [/note]. 
 
More text. 
 
[note]This is another note, 
a multi-line note.[/note]"; 
$otag = "[note]"; 
$ctag = "[/note]"; 
$before = "BEFORE"; 
$after = "AFTER"; 
 
$text = preg_replace('@' . preg_quote($otag) . '(.+?)' . preg_quote($ctag) . '@s', 
  "$before $1 $after", 
  $text); 
 
print $text; 

The resulting output is:  

This is text surrounding a note. BEFORE This is a note. AFTER. More text. BEFORE This is 
another note, a multi-line note. AFTER 

The regular expression syntax used inside the preg_replace() function is successfully matching the 
text between [note] and [/note]. The preg_replace() function provides the value of this inner portion of 
the match, the part within parenthesis, in the variable $1, which is available to the second parameter, the 
replacement text. (The third parameter is the original text.) 

The first line builds the regular expression string; that is all it is, a string, and each dot connects one 
part of the string to the next. Things go crazily to hell if you don’t use preg_quote() on the strings you 
want to match because they are likely to contain characters that have special meanings to the regular 
expression. (The author found this function courtesy of searches for “regular expression do not interpret 
string” and “php escape regex special characters.”) 

The @ symbol in this string delineates where the regular expression begins and ends. This can be any 
character, but it can’t, of course, be one that is appearing in that regular expression otherwise. Often a / 
is used for this but the closing tag will always have a slash, so in testing @ was used. The chosen delimiter 
can be escaped specifically, however, so a more robust approach for the function you are building could 
check for the presence of delineator characters in the opening and closing tags. In fact, because you have 
already validated the closing tag to contain exactly one slash, you can escape that slash and be certain 
that there will be no conflicts between the characters in the tag strings that get searched for and the 
delineators of the expression. That will be the approach you will take next. 

Finally, the s modifier that follows the delineator of the end of the regular expression allows the 
wildcard to match a newline character, so that a line break can be within a note, as in the test. Listing 33–
37 puts this together in a function or two for the module. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

787

Listing 33–37. Function for Replacing Opening and Closing Tags with Defined Markup 

/** 
 * Replace with tags with markup given a closing tag (containing a /). 
 * 
 * @param $text 
 *   String to be modified to use markup in place of tags, passed by reference. 
 * @param $ctag 
 *   A closing tag, identical to the opening tag except it includes a /. 
 * @param $before 
 *   Markup to replace the opening tag. 
 * @param $after 
 *   Markup to replace the closing tag. 
 * @return NULL  
 */ 
function dgd7_tip_replace_tags(&$text, $ctag, $before = '', $after = '') { 
  $otag = preg_quote(dgd7_tip_otag($ctag)); 
  $ctag = str_replace('/', '\/', preg_quote($ctag)); 
  $text = preg_replace( 
    '/' . $otag . '(.+?)' . $ctag . '/s', 
    "$before$1$after", 
    $text 
  ); 
} 
 
/** 
 * Take a closing tag and strip the slash to present the opening tag. 
 */ 
function dgd7_tip_otag($ctag) { 
  return str_replace('/', '', $ctag); 
} 

The creation of the opening tag by removing the slash from the closing tag is in a separate function, 
though it could easily fit in the one line in the replace tags function and could just as well have gone 
there; it simply felt like something likely to be used again. The work of quoting special characters in the 
search strings ($otag and $ctag) is handled along with this manipulation before putting them in the 
preg_replace() function, which makes that look a little cleaner. Note that replacing the slash with an 
escaped slash (/ with \/) in the closing tag is done after special characters are escaped. Finally, 
"$before$1$after" looks messy and mashed together, but PHP treats each variable separately and 
strings them together without spaces, which is perfect for creating the replacement text. 

To test, you’ll have to configure a text format (under admin/config/content/formats), enable 
Replacement markup filter for it, and put in a few test tags and markup.  

The order of input filters is very important for achieving expected results, whether it’s a filter you’ve 
created or one from modules contributed by others. The Replacement markup filter has to follow the 
“Limit allowed HTML tags” filter (if present); otherwise the latter may strip out tags added by the former. 
Then you can go to any node, edit it using a text format that has Replacement markup filter configured, 
and stick in the opening and closing tag pair to see how the replacement turns out. 

You will run into errors when developing your own code. I did, frequently. Putting every error 
encountered during development would make this description impossible to follow, but expect to have 
to fix errors. An error printed to the screen is nice; it usually tells you exactly where something is wrong. 
An error where nothing happens can take longer to track down, but pulling out parts of code into a 
test.php file to try independently can help. Finally, it’s worth noting that the author did this without any 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

788 

deep understanding of the filter form saving system nor the preg_replace() function when he started— 
or necessarily when he finished. But it worked. 

Renaming Your Module 
You’ve put a lot of work into this module. You should share it, but “dgd7_tip” is not a good name at all. 

After an embarrassing amount of time spent considering possible names Tagfilter? It sort of 
indicates that it is a filter module. Tagreplace? Reptags? Replacemarkup? Repmark? Remark! It’s 
tempting to take the 'remark' project namespace, but let’s leave it for something awesome having to do 
with the English word remark, rather than “replacing markup.” This module will be named Remarkup. 

Some IDEs provide tools for replacing text in multiple files, and some provide tools for renaming 
files, but you can handle this with the command line, too. 

With a little help from searches that lead to the Drupal handbook page “sed - replace text in single or 
multiple files” (data.agaric.com/raw/sed-replace-text-multiple-files) and the post “Easily renaming 
multiple files” on the shockingly non-Drupal site Debian Administration (debian-
administration.org/articles/150), you can rename your module with four lines typed into your 
terminal, as shown in Listing 33–38. The last two commands are for moving outside the module folder 
and renaming the folder. The commands start from the directory that holds your module. 

Listing 33–38. Command-Line Steps to Replace All Occurrences of a String in Multiple Files and Rename 

the Files 

cd sites/all/modules/custom 
sed -i 's/dgd7_tip/remarkup/g' * 
rename 's/dgd7_tip/remarkup/' * 
cd ../ 
mv dgd7_tip remarkup 

This changes every function name and your API hook name, which incorporates your module name, 
per best practice to avoid namespace conflicts. Your module name is guaranteed to be unique (if the 
same as your project hosted on drupal.org), so prefacing your hook name with your module name helps 
ensure that no one else is using the hook for some other purpose. This means that once you are hosted 
on drupal.org, renaming a module is something you do not want to do. 

■ Note  In a sign of the strength of the Drupal community, the first hit for this author’s search for “replace text in 
multiple files” on Google (not logged in, so theoretically not customized search results) was drupal.org. When he 

started out, many times a post on a Mambo (now Joomla) forum would come up for general web-related tasks; 

now it is increasingly Drupal sites. 

Conditionally Including a Stylesheet for an Administration Page 
The Settings page needs some cleanup. A function for adding CSS to a page (as opposed to all pages, 
which can be done via a module or theme’s .info file) is drupal_add_css(). Yet, there is an even better, 
more Drupal 7 way to conditionally include CSS when it relates to any element that is rendered, which 
includes forms. That way is the #attached property. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

789

■ Note  There is no hard line between what you should just know and what is just as well looked up when you 
need it. Clearly, the more you do, the more you just know. This author needs pretty much everything noted and 

looked up each time, but most people doing Drupal show a higher capacity to learn. 

The drupal_add_css() function (which is used internally for the #attached property) should be used 
only when there is no renderable array with which to use the #attached property. Implementation of 
hook_help() is an example of a place where you can’t use #attached. There are numerous examples of 
both methods in Drupal core. You can see examples of the function at api.drupal.org/drupal_add_css 
because the api.drupal.org site links to usages of functions. Skip some examples from themes using it 
and take a look at how block module uses it: api.drupal.org/block_admin_display_form. This is almost 
exactly as you would want to use it, in the function for displaying an administrative form! Right at the top 
of the form is 

  drupal_add_css(drupal_get_path('module', 'block') . '/block.css'); 

But Block module should use the #attached property on the form returned rather than calling 
drupal_add_css() directly. I filed an issue for core (drupal.org/node/1122584); Listing 33–39 shows how 
to do it right. 

Listing 33–39. Using #attached Property to Include a CSS File when Pages with a Renderable Element Are 

Viewed 

/** 
 * Settings callback for tag filter. 
 */: 
function _remarkup_settings($form, $form_state, $filter, $format, $defaults) { 
  // Declare the array that will hold our settings form elements. 
  $settings = array(); 
  // [Additional already-seen code not shown...] 
  $settings['rm'] = array( 
    // [Additional already-seen code not shown...] 
    // Add CSS to make _remarkup_add_rm_formset() form elements look good. 
    '#attached' => array( 
      'css' => array(drupal_get_path('module', 'remarkup') . '/remarkup.css'), 
    ), 
  ); 
  // [Additional already-seen code not shown...] 
} 

The CSS file attached in this way does not have to be large, as you can see by Listing 33–40. 

Listing 33–40. remarkup.css Styles the Settings Form for Remarkup Text Filter 

.remarkup-formset .form-item { 
  display: inline-block; 
  padding: 0; 
  margin-bottom: 5px; 
} 
 
.remarkup-formset { 
  margin-bottom: 10px; 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

790 

This CSS file is attached when someone views the text format settings page, even though you did not 
define that page yourself. There is one important thing still missing, though: the HTML container with 
classes for this CSS to apply to! 

Adding a Container Form Element with a Specified Class 
Originally the div and class for the CSS to act on was added with a #prefix property on the tag with a line 
like: 

  $settings['rm'][$i]['tag'] = array( 
    '#prefix' => '<div class="remarkup-formset">', 
    '#type' => 'textfield', 

It then had a corresponding #suffix on the final markup form element. This worked, but it feels 
ugly. A little investigation into the Drupal API’s page on form generation 
(api.drupal.org/api/group/form_api) uncovered, in a long line of theme_ functions meant for forms, 
theme_container() (api.drupal.org/theme_container). It could be set directly with the #theme_wrappers 
property on a form element that holds the three textfield form elements, as shown here: 

  $settings['rm'][$i] = array( 
    '#theme_wrappers' => array('container'), 
    '#attributes' => array('class' => array('remarkup-formset')), 
  ); 

But investigating how to use the container theme wrapper found a particularly relevant example: 
the form element type container. You can use the container form element for slightly cleaner code and 
the identical effect as the above. Listing 33–41 shows it all together in the function defining the set of 
form fields for the tag and replacement markup in a function that can be called repeatedly, now 
wrapped in a containing div and with sizes set for presentation. Note that this is the same function that 
was called _dgd7_tip_add_rm_formset() previously. 

Listing 33–41. Defining a Set of Form Elements for the Tag and Replacement Markup, Now Wrapped in a 

Containing Div and with Sizes Set for Presentation  

/** 
 * Add a set of form fields for adding a new tag and replacement markup pair. 
 */ 
function _remarkup_add_rm_formset(&$settings, $i, $tag = '', $replace = array('before' => '', 
'after' => '')) { 
  $settings['rm'][$i] = array( 
    '#type' => 'container', 
    '#attributes' => array('class' => array('remarkup-formset')), 
  ); 
  $settings['rm'][$i]['tag'] = array( 
    '#type' => 'textfield', 
    '#title' => t('Tag'), 
    '#maxlength' => 64, 
    '#size' => 10, 
    '#default_value' => $tag, 
    '#element_validate' => array('remarkup_rm_form_tag_validate'), 
  ); 
  $settings['rm'][$i]['before'] = array( 
    '#type' => 'textfield', 
    '#title' => t('Before'), 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

791

    '#maxlength' => 1024, 
    '#size' => 45, 
    '#default_value' => $replace['before'], 
  ); 
  $settings['rm'][$i]['after'] = array( 
    '#type' => 'textfield', 
    '#title' => t('After'), 
    '#maxlength' => 1024, 
    '#size' => 45, 
    '#default_value' => $replace['after'], 
  ); 
} 

With the CSS file, its attachment, and the additions to the function that add sets of form elements, 
the settings for Remarkup looks pretty good. Figure 33–8 shows it with one set of tag plus markup pair 
filled in and one set blank. 

 

Figure 33–8. Settings form with three form elements in a row per set using CSS and wrapped HTML 

elements 

Sharing Your Module on Drupal.org 
Like sharing on Gitorious.org or GitHub.com, drupal.org lets every user create sandboxes that require no 
more of an application process than accepting the guidelines. In the case of drupal.org, this primarily 
means agreeing to post only GPL code. (If you don’t yet have the ability to create full name-spaced 
projects on drupal.org, posting code to your sandbox is still the first step. And if you have been granted 
permission to promote a sandbox to a full project, a sandbox project is still the best place to start sharing 
your work early— it even comes with an issue queue. There’s still nothing like putting the code on 
drupal.org as a properly released project, though, to get the attention of users and reviewers alike.) 

After accepting the Drupal Git policies and adding your public key to your drupal.org account, you 
can create a sandbox project and push the repository for your module there (see Listings 33–42 and 33–43). 

■ Tip  The public key for a user on a UNIX-like computer or virtual machine can usually be found in a file located 
in the user’s .ssh folder in a file named id_rsa.pub (less ~/.ssh/id_rsa.pub) or by creating a public-private 

key pair if necessary (ssh-keygen). See drupal.org/node/1027094. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

792 

Listing 33–42. Command-Line Steps for Sharing Code to git.drupal.org as a Full Project 

git checkout master 
git remote add origin mlncn@git.drupal.org:project/remarkup.git 
git push origin master 
git branch 7.x-1.x 
git push origin master:7.x-1.x 
git checkout 7.x-1.x 

Listing 33–43. Sharing New Modifications with add, commit, and push 

git add . 
git commit -m "Include form CSS with #attached instead of drupal_add_css()." 
git push 

See Chapter 37 for more about sharing your projects on drupal.org, including using Git sandboxes. 

Coda on a Contributed Module 
You made plenty of compromises in making this module, but you got some essential things correct: 

• It has an API. 

• It has a UI. 

By going beyond your immediate needs—and by providing an API that allows your module to be 
extended without patching it—you make it much more likely that people will use your module and a 
little more likely someone else will pick up where you left off. 

Even if you skip building a UI for site administrators and an API for module builders, it would be a 
good idea to share your module: git.drupal.org sandboxes are provided for you to share code that you 
do not necessarily intend to support. 

■ Note The source code of the module developed in this section is available at drupal.org/project/remarkup. 

Making a Site-Specific Module that Uses Your API 
Wait, didn’t you have some goal of your own, quite apart from making a module that other people might 
find useful? 

It’s time to write site-specific code that makes use of the module you made. The cool thing, with all the 
work you’ve already done, is that your glue code module can be quite small, as shown in Listing 33–44. 

Listing 33–44. An Inefficient, Error-Prone Approach to Defining a Custom Implementation of the 

Remarkup Hook 

/** 
 * Implements hook_remarkup_defaults(). 
 */ 
function dgd7_remarkup_defaults() { 
  return array( 

mailto:mlncn@git.drupal.org:project/remarkup.git


CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

793

    '[/tip]' => array( 
      'before' => '<div class="dgd7-featured dgd7-tip"><span class="featured-name"><span  

 class="leading-square">T</span>ip</span>', 
      'after' => '</div>', 
    ), 
    '[/reality]' => array( 
      'before' => '<div class="dgd7-featured dgd7-tip"><strong class="dgd7-name">
Reality</strong>', 
      'after' => '</div>', 
    ), 
  );
} 

But this can introduce inconsistencies due to the duplicate HTML code. Even when doing the very
simple, supply-data step, you can still automate stuff, as shown in Listing 33–45. 

Listing 33–45. Implementation of the Hook to Provide Default Remarkup that Abstracts Out the Repetitive 

Code 

/** 
 * Implements hook_remarkup_defaults(). 
 */ 
function dgd7glue_remarkup_defaults() { 
  $rm = array(); 
  // Define the simple tips-style replacements, machine and human-readable. 
  $tips = array( 
    'tip' => t('Tip'), 
    'note' => t('Note'), 
    'hint' => t('Hint'), 
    'reality' => t('Reality'), 
    'caution' => t('Caution'), 
    'gotcha' => t('Gotcha'), 
    'new' => t('New in 7'), 
  ); 
  foreach ($tips as $type => $name) { 
    $rm['[/' . $type . ']'] = array( 
      'before' => '<div class="dgd7-featured dgd7-' . $type . '">
<strong class="dgd7-name">' . $name . '</strong>', 
      'after' => '</div>', 
    ); 
  } 
  return $rm;
} 

That, if not easier, ensures consistency in the HTML code used for the tips, notes, hints, etc. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

794 

■ Gotcha  Don’t forget the return statement; unless implementing a hook that receives its data by reference, it’s 
rather important. The hook system is generally robust and is not going to complain about getting no response. So 
when your hook implementation seems to have no effect, the first place to look is at the bottom for a return 

$data statement! 

You can now provide CSS in your module for this default-provided markup. Put the CSS in a file, 
such as dgd7.css, saved in the dgd7glue module directory. I won’t take up space with the CSS here; it’s in 
the project code available at dgd7.org/other90 and you can also see it, as on any web site, by viewing the 
CSS through your browser’s view source option or with a tool such as Firebug. 

Don’t forget to keep your custom module’s .info file current, as shown in Listing 33–46. 

Listing 33–46. Adding a Dependency and Styles File to dgd7glue.info 

name = DGD7 Glue Code 
description = [dgd7glue] Site-specific custom code for DefinitiveDrupal.org. 
package = Custom 
version = 7.x-1.0 
core = 7.x 
dependencies[] = remarkup 
styles[] = dgd7.css 

The Payoff 
Enable both modules. Now you have to edit the text formats you want to use, such as Filtered HTML at 
admin/config/content/formats/filtered_html and Full HTML at 
admin/config/content/formats/full_html. 

■ Gotcha  New tags and markup pairs provided by implementations of the replacement markup defaults hook will 

not have any effect until you edit a text format so that your default settings are imported, and save it. 

The way Remarkup currently implements its defaults hook, it is true defaults—the moment you save 
a text format form, the values you provided are saved to the database. New default tags you add will be 
noticed, but updates to defaults that already have been saved once will not be seen. CTools-style 
exportables could be implemented to make in-code updates easy, but that’s not an issue to cover in this 
chapter. Indeed, if it’s something you want, you can file an issue in the Remarkup queue 
(drupal.org/project/issues/remarkup) and perhaps provide a patch! (A patch, as described in Chapter 
38 and elsewhere, is a contribution of code in the form of an easily-applied file of changes from the 
existing code.) 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

795

Adding Custom Markup for Output 
With the framework in place, you can add new tag and replacement markup definitions as you need 
them, as shown in Listing 33–47. 

Listing 33–47. Additional Remarkup Definitions for Text Files, PHP Code, and Command-Line Steps 

function dgd7glue_remarkup_defaults() { 
  $rm = array(); 
// Removed code, see above for context. 
  // A few rules are unique. 
  $rm['[/file-txt]'] = array( 
      'before' => '<code>', 
      'after' => '</code>', 
  ); 
  // Requires codefilter module, with its filter set to run after remarkup. 
  $rm['[/file-php]'] = array( 
      'before' => '<?php', 
      'after' => '?>', 
  ); 
  $rm['[/cli]'] = array( 
    'before' => '<h4>Command-line steps</h4> 
    <tt>', 
    'after' => '</tt>', 
  ); 
  return $rm; 
} 

Making Next and Previous Links That Mimic Book Navigation 
When viewing any individual posts that can be seen as part of a series (blog posts, news articles, featured 
profiles), it’s good usability and just plain nice to give readers a way to get to the next one or the previous 
one directly, without having to go back to a listing page. For reading through all the suggestions 
submitted to the dgd7.org site one-by-one to review them, next and previous link buttons were all but an 
absolute requirement. 

This could be done in a theme, but being able to move to the next item is a matter of functionality 
more than presentation, which calls for a module. Also, in a module it’s possible to make a more re-
usable solution. 

A search for “Drupal 7 next previous links” and related keywords turned up several projects, all in 
Drupal 6. Your author hadn’t used custom_pagers in Drupal 6 and could not grok exactly what it was 
doing from its in-progress Drupal 7 port (on GitHub at the time of writing). It allowed PHP and Views in 
the administration of pagers, yet seemed to be calling SQL from a custom table to run the query—that is, 
storing SQL in SQL. It definitely seemed a heavy solution to port for the simple use case of being able to 
see the previous and next suggestions. Writing custom code seemed a reasonable choice. 

Pulling the Information 
You can look at api.drupal.org/node.api.php and decide hook_node_view() is how you want to add 
previous and next links to chosen nodes. The next step is to know how to get the links. Putting Devel 
module’s dpm() function in an implementation of hook_node_view()—for the site-specific module used 
throughout this chapter, that function name would be dgd7glue_node_view()—will show you the data 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

796 

you have available. Consulting the database layer handbook gives static queries, with methods such as -
>fetchAssoc() for returning results as an array, in examples on drupal.org/node/310072. 

■ Note  If not using Devel’s dpm(), be aware that because Drupal is a bit silly, calling debug($node) in an 
implementation of hook_node_view() does not work. In multiple places, such as where it loads taxonomy term 
entities, Drupalrecursion blows up the var_export() function used by debug() by default. You can instead call 
debug() with its optional third parameter (the second parameter is the label) set to TRUE, which makes it use the 

harder-to-kill print_r() function, for instance debug($node, 'Node when viewed', TRUE);. 

Based on the information gathered, you can create a quick proof of concept. Note that while the 
code in Listing 33–48 tests two different things, it tests them independently. It does not try to query the 
database and use the result to add text to the node, because if that didn’t work, you wouldn’t know 
immediately where the problem lies. Doing both at once can wait until you are certain that both work 
separately. For now, use a debug function to show the result of the query and add straight markup. 

Listing 33–48. Proof-of-Concept Code (with LIMIT Function that Is Not Cross-Database Compatible) for 

Querying the Database and Adding Text to Display on a Node 

/** 
 * Implements hook_node_view(). 
 */ 
function dgd7glue_node_view($node, $view_mode, $langcode) { 
  // Print prev/next links on Suggestion node pages. 
  if ($node->type == 'suggestion' && $view_mode == 'full') { 
    $markup = 'i can print something'; 
    $next = db_query('SELECT title, nid FROM {node} WHERE nid > :nid AND status =  

 1 LIMIT 1', array(':nid' => $node->nid))->fetchAssoc(); 
    debug($next, 'next'); // the query works 
    $node->content['dgd7glue_prevnext'] = array( 
      '#markup' => $markup, 
      '#weight' => 100, 
    ); 
  } 
} 

The code in Listing 33–48 prints out a node ID and title from the query and the static text assigned to 
#markup. It shows you that the query runs and that you can add things to the display of the node. It still 
needs to be updated to run a query that filters to show only suggestions, and the output needs to be 
based on this result, but the concept is proven. 

While making it work correctly, the query should also be made cross-browser compatible. You may 
vaguely remember that LIMIT is not a part of SQL that works in a standard way across all types of 
databases, and that Drupal provides some assistance for getting around this. A grep for 'LIMIT' in 
Drupal core’s modules directory shows that it is not used in an SQL query except for one commented out 
query in a testing file. Conclusion: Using LIMIT in SQL is not best practice. A grep for 'limit' (in lower 
case) to see where the code comments or anything are just talking about limits brings up a lot of results 
including this query in modules/user/user.install, shown in Listing 33–49. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

797

Listing 33–49. Query in user.install Containing the Text Limit  

$result = db_query_range('SELECT f.*, u.uid as user_uid FROM {users} u INNER JOIN  

 {file_managed} f ON u.picture = f.fid WHERE u.picture <> 0 AND u.uid > :uid ORDER BY  

 u.uid', 0, $limit, array(':uid' => $sandbox['last_uid_processed']))->fetchAllAssoc('fid',  

 PDO::FETCH_ASSOC); 

That gives you the function you want, db_query_range(), and pretty much shows you how to use it, 
too. You can look up more information about it at api.drupal.org/db_query_range. It also uses the -
>fetchAllAsoc() method to return all the rows of the result at once as a nested associative array. 

Moving from the proof of concept to working custom code takes a number of significant but not 
overwhelming changes. This code is still not generalized, but it is not meant to be a contributed module 
this time; it is site-specific code. The dgd7glue_nextprev_suggestion() function, defined second in the 
code in Listing 33–50, runs the query and returns an array with the node ID and the title. To this array, in 
the next line, is added a 'text' key with 'Next >' or '< Prev' values. 

Listing 33–50. Create and Display Previous and Next Links on Suggestion Node Pages 

/** 
 * Implements hook_node_view(). 
 */ 
function dgd7glue_node_view($node, $view_mode, $langcode) { 
  // Print prev/next links on Suggestion node pages. 
  if ($node->type == 'suggestion' && $view_mode == 'full') { 
    $markup = ''; 
    $next = dgd7glue_nextprev_suggestion($node->nid);  
    $next['text'] = t('Next >'); 
    $prev = dgd7glue_nextprev_suggestion($node->nid, TRUE);  
    $prev['text'] = t('< Prev'); 
    $markup .= '<div class="nextprev">'; 
    $markup .= dgd7glue_format_link($prev); 
    $markup .= ' | '; 
    $markup .= dgd7glue_format_link($next); 
    $markup .= '</div>'; 
    $node->content['dgd7glue_prevnext'] = array( 
      '#markup' => $markup, 
      '#weight' => 100, 
    ); 
  } 
} 
 
/** 
 * Get the next or previous suggestion node nid and title. 
 */ 
function dgd7glue_nextprev_suggestion($nid, $previous = FALSE) { 
  // Set the ORDER BY direction and the comparison operator ($co). 
  if ($previous) { 
    $direction = 'DESC'; 
    $co = '<'; 
  } 
  else { 
    $direction = 'ASC'; 
    $co = '>'; 
  } 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

798 

  return db_query_range("SELECT title, nid FROM {node} WHERE nid $co :nid AND type =  

 :type AND status = :status ORDER BY nid $direction", 0, 1, array(':nid' => $nid, ':type' =>  

 'suggestion', 'status' => 1))->fetchAssoc(); 
} 
 
/** 
 * Format a next/prev link. 
 */ 
function dgd7glue_format_link($link) { 
  return l($link['text'], 'node/' . $link['nid'], array('attributes' => array('title' =>  

 $link['title']))); 
} 

The method used to get an array from the query is ->fetchAssoc() as the query will always return 
only one record: there is no need to fetch all at once (nor iterate). A drush cc all on the live site or a visit 
to admin/config/development/performance for the Clear all caches button is necessary to make the 
prev/next links show up after adding your code to dgd7glue.module. Drupal is pretty aggressive with 
caching! 

This works for most suggestion posts, but it doesn’t account for the very first and last nodes in the 
series. Let’s see what the array returned by the query looks like empty. (Again, the query is wrapped in 
the dgd7glue_nextprev_suggestion() function, but inside there it is the db_query_range() function with a 
->fetchAssoc() method returning directly.) Immediately below it, you can add a debug($prev); 
statement. 

If you go to node 90, the first suggestion that was made (pulled in from the live database, or you 
could make your own example), is at http://dgd7.localhost/node/90. 

Viewing this page, the output in the message area is: 

Debug: 
false 

That makes your test very easy. If any value is returned, print the link. If not, do not. This may be 
best fixed in the display, and it’s time to take a second look at the theming. It is currently simple, but not 
consistent with anything else on the site. 

Reusing Book Module Templates to Display Non-Book Navigation 
The site is already using the Book module for the outline of chapters, so it would be good to borrow that 
navigation. 

■ Caution This is one of those ideas that might sound like a good idea but isn’t— yet it can still prove workable. 

Take a look inside modules/book. There is a template file called book-navigation.tpl.php. (There is 
no double-hyphen because this is not a suggestion for the book content type but its own template for 
navigation that is incorporated into the display of outline-enabled nodes.) The line in book.module that 
uses the book navigation template book-navigation.tpl.php is in an implementation of 
hook_node_view(), book_node_view(), shown in Listing 33–51 

http://dgd7.localhost/node/90


CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

799

Listing 33–51. Calling the book-navigation.tpl.php file and Handing It the $node->book Array 

      $node->content['book_navigation'] = array( 
        '#markup' => theme('book_navigation', array('book_link' => $node->book)), 
        '#weight' => 100, 
      ); 

The key line is the #markup line. You aren’t going to have $node->book for a non-book page, but you 
can make something that works the same. You can see in book-navigation.tpl.php what variables you’ll 
have to provide to match the $node->book array. 

■ Note  In the interest of ending this chapter, I won’t show the many wrong and otherwise incorrect paths that 

eventually led to the solution shown. To see some of them, visit dgd7.org/230. 

The function template_preprocess_book_navigation() (see 
api.drupal.org/template_preprocess_book_navigation) is what prepares the variables for the book-
navigation.tpl.php template, and it is what you will have to replace. It is possible to implement 
hook_theme_registry_alter() to tell Drupal to make such a substitution. The result is the ability to take 
the basic next and previous data and hand it the Book module’s theme templates padded out with all the 
variables necessary to display; see Listing 33–52. 

Listing 33–52. The Revised hook_node_view Implementation, Registry Alter, and the 

template_preprocess_book_navigation.tpl.php It Lets You Replace 

/** 
 * Implements hook_node_view(). 
 */ 
function dgd7glue_node_view($node, $view_mode, $langcode) { 
  // Print prev/next links on Suggestion node pages. 
  if ($node->type == 'suggestion' && $view_mode == 'full') { 
    $next = dgd7glue_nextprev_suggestion($node->nid);  
    $prev = dgd7glue_nextprev_suggestion($node->nid, TRUE); 
    // Make a fake book link array. 
    $link = array(); 
    $link['dgd7glue'] = TRUE; 
    $link['prev'] = $prev; 
    $link['next'] = $next; 
    $node->content['dgd7glue_prevnext'] = array( 
      '#markup' => theme('book_navigation', array('book_link' => $link)), 
      '#weight' => 100, 
    ); 
  } 
} 
 
/** 
 * Implements hook_theme_registry_alter(). 
 */ 
function dgd7glue_theme_registry_alter(&$theme_registry) { 
  // Replace the default preprocess function with our own. 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

800 

  foreach ($theme_registry['book_navigation']['preprocess functions'] as $key => $value) { 
    if ($value == 'template_preprocess_book_navigation') { 
      $theme_registry['book_navigation']['preprocess functions'][$key] =  

 'dgd7glue_template_preprocess_book_navigation'; 
      // Once it's found it we're done. 
      break; 
    } 
  } 
} 
 
/** 
 * Replaces template_preprocess_book_navigation() when using tpl for non-books. 
 
 */ 
function dgd7glue_template_preprocess_book_navigation(&$variables) { 
  if (!isset($variables['book_link']['dgd7glue'])) { 
    // This is a normal book, just use the usual function. 
    template_preprocess_book_navigation($variables); 
    return; 
  } 
  // Use our fake book_link variable to provide all the same variables. 
  $link = $variables['book_link']; 
  $variables['book_id'] = 'dgd7glue-nextprev'; 
  $variables['book_title'] = t('Suggestions'); 
  $variables['book_url'] = url('suggestions'); 
  $variables['current_depth'] = 0; 
  $variables['tree'] = ''; 
  $variables['has_links'] = TRUE; 
  $variables['prev_url'] = NULL;  
  $variables['next_url'] = NULL;  
  if ($link['prev']) { 
    $prev_href = url('node/' . $link['prev']['nid']); 
    drupal_add_html_head_link(array('rel' => 'prev', 'href' => $prev_href)); 
    $variables['prev_url'] = $prev_href; 
    $variables['prev_title'] = check_plain($link['prev']['title']); 
  } 
 
  $parent_href = $variables['book_url']; 
  drupal_add_html_head_link(array('rel' => 'up', 'href' => $parent_href)); 
  $variables['parent_url'] = $parent_href; 
  $variables['parent_title'] = $variables['book_title']; 
 
  if ($link['next']) { 
    $next_href = url('node/' . $link['next']['nid']); 
    drupal_add_html_head_link(array('rel' => 'next', 'href' => $next_href)); 
    $variables['next_url'] = $next_href; 
    $variables['next_title'] = check_plain($link['next']['title']); 
  } 
} 

The dgd7glue_nextprev_suggestion() function is the same as it was when presented previously—
most everything else is new or changed! 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

801

■ Note  Relying on functions provided by Book module means you should include Book module as a requirement 
to your .info file, with the line 

dependencies[] = book 

added to your dgd7glue.info file. 

Configuration Clean-Up 
Although you are not using a view to get next and previous links, you need to make a view to show the 
suggestions (built off-camera). To this view, you add a sort by node ID criteria. Its configuration page 
looks like that in Figure 33–9. 

 

Figure 33–9. Suggestion view with sort by Node ID, descending 

Creating a View to Make User Pages Have Hackable URLs 
In the interest of hackable URLs (the ability to navigate a site by taking off everything after a / in the 
URL), you can use Pathauto module (drupal.org/project/pathauto) to give all user paths a sensible 
prefix and then provide a view of all users at that prefix. Pathauto settings, recall, are hidden under 
Administration ➤ Configuration ➤ Search and metadata ➤ URL aliases on a tab called Patterns 
(admin/config/search/path/patterns). The pattern for paths to user account pages is well down the 
page. 

In the spirit of extreme optimism, figure that anyone who registers on the site is reading the book so 
make the prefix for user paths readers, followed by a slash separator and the token for the user’s name: 
readers/[user:name]. Thus, a user account with the name Dries Buytaert would have the path 



CHAPTER 33 ■ COMPLETING A SITE: THE OTHER 90% 

802 

readers/dries-buytaert. To have this work retroactively for users who are already on the site, go to the 
Bulk update tab of the path configuration (admin/config/search/path/update_bulk), checkmark User 
paths, and Update. 

That path alias does nothing to make the path readers exist. If you go to readers, you will get Page 
not found. To improve user experience and assuage your own sense of feng shui as a web developer, you 
will need to put something sensible at this path, such as a list of all users. 

Create a new view at admin/structure/views/add and, for a change, tell the wizard to Show Users. 

■ Tip Before creating a user (or any) view, check to see if Views has provided a default view to do generally or 
precisely what you want. There is no default User-based view, but there are views to take over Drupal core 

functionality such as a Comment-based view and a Node-based view that takes taxonomy term IDs. 

Give your Page display a Path of readers and a Display format of perhaps HTML List (this or 
Unformatted will need to be themed; Grid may look good without theming). Give it a big number such as 
50 for Items per page. After you Continue and Edit, you can leave the filter set to User: Active Yes and 
add Fields for User: Picture in addition to User: Name. Uncheck the Create a label option so it won’t 
display labels. 

Whether or not you want to make a menu item for the view of users or not, if someone hacks the 
URL of a user from readers/john-smith to readers, just as if they hack the URL of a suggestion path 
aliased at suggestions/installing-drubuntu to suggestions, they will come to a sensible list and not 
page not found. It’s a small detail to make it seem right to call the site complete. 

In Conclusion 
Calling this chapter “Completing a Site” was a little misleading. As long as you have a Drupal site, you 
will not be done. Drupal sites are about living communities, breathing with the information that content 
administrators and users contribute. They will surely want new features sooner or later. If truly no one is 
using your site, if visitors are only viewing it, export it to static HTML. See Chapter 7 for the bare 
minimum to keep contributed code up to date, see Chapter 13 for deploying new features, and subscribe 
to dgd7.org/signup to learn how any new features are added to the DefinitiveDrupal.org web site! 

■  Tip  Discussion and updates pertaining directly to this chapter will be at dgd7.org/other90. 

 
 

 



C H A P T E R   34 

■ ■ ■ 

803

Drupal Distributions and

Installation Profiles 

by Florian Lorétan  

Installation profiles are lists of Drupal modules and themes coupled with automatic configuration to
allow you to quickly and easily create a full-featured site or development testbed. They are packaged
within distributions, which guide you through the installation and provide the site code. For example,
the default Drupal distribution ships with two profiles, standard and minimal. Standard enables a set of
modules and configuration that will be useful for most sites; it also includes some placeholder content
and examples that can be helpful for a new user exploring Drupal’s capabilities. Minimal installs just the
barest set of modules and configuration needed for Drupal to run; it’s recommended for someone who
knows just what modules the new site will need.  

Profiles are also great learning resources. If you want to build a site but aren’t sure how to proceed, a
profile can lay much of the groundwork for you, thus allowing you to focus on your new features. Profiles
also use a wide range of modules and configuration options; if you find a profile that provides a function
you like, it’s a good idea to study how it implements that function. You can discover more profiles at
http://drupal.org/project/installation+profiles or from their individual providers’ web sites. 

Site Templates 
When you need to create many very similar sites, say for business or academic departments, profiles can
provide standard features and themes to each so that new sites can be launched with very little effort. 

Drupal Gardens (http://drupalgardens.com) is a hosted service for quickly building and styling web
sites and microsites. It has both free and paid subscriptions, a powerful Theme Builder, and an
increasing number of features. 

You have the option of exporting your Drupal Gardens site as a fully-packaged and configured
Drupal installation. The service also lets you clone a site, copying over theme, configuration, and
selected content. This allows you to rapidly prototype or template many kinds of sites. You can also
investigate how to accomplish things on your own site by building a Gardens site to do what you want,
exporting it, and studying the configuration. 

For example, Drupal Gardens provides a template that allows you to set up a blog with a few clicks.
If you’re familiar with how the core Drupal blog module works, you may notice some different behavior
navigating a Drupal Gardens blog. For instance, the links at the bottom of each blog node may link back
to a site-wide blog instead of the individual author’s blog, which is nice for a blog with only one author.
How is this accomplished? 

http://drupal.org/project/installation+profiles
http://drupalgardens.com


CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

804 

Under the Configuration menu, there is a Blog settings option that controls this at 
/admin/config/content/blog. To see how Gardens manages these changes, export the site from 
/admin/config/system/site-export, get a site archive, and inspect the code. 

A good way to find how something works is to search the code base for a text string you’ve seen 
associated with it in the UI. The help text or labels on forms often work well, as does the menu path of a 
configuration screen. One caveat to this method is that strings in code may be using placeholders, so if 
you’re searching for text that looks dynamic—say, something that contains a user name—it’s best to 
search for the surrounding text or something on the same page that looks static. 

In this case, to search for the menu path, run this code from within the docroot directory of the 
export: 

> grep -ri 'admin/config/content/blog' * 

It should return one result: 

sites\all\modules\flexible_blogs\flexible_blogs.module.  

So that’s the module that causes these changes, but how does it work? This module provides good 
examples of several hooks, and the different link behaviors are handled in an implementation of 
hook_node_view_alter(). As you work on creating your own sites and profiles, inspecting how others 
have accomplished goals similar to yours is often useful as a starting point. Perhaps you will find the 
code you need has already been written. 

Full-Featured Services 
A profile can allow you to easily offer a service that would normally take a long time to install and 
configure. The Drune music player (discussed later in this chapter) is an example of a service provided 
by a distribution. 

Drupal Commons (acquia.com/products-services/drupal-commons) is social business software 
powered by a Drupal distribution. It is designed to allow companies and organizations to quickly create 
targeted social networks or communication platforms. Drupal Commons was created by Acquia 
specifically to compete with commercial closed source social business providers as an open source 
alternative. 

Some features of Drupal Commons you can use and study are the personalized dashboard provided 
by the Homebox module and the real-time member activity stream provided by the Heartbeat module. 
Commons also provides integration between the User Relationships and Rules modules, which is a nice 
example of how to use both of those modules’ APIs. Drupal Commons, like Open Atrium, uses Organic 
Groups and Features; comparing their configurations can give you ideas of different ways to manage and 
configure these modules within your own sites or profiles. 

Development Profiles 
If you’re developing your own modules or features, you can create a profile that will allow you to easily 
create a suitable test site in moments. Include scripts to download the required contributed modules 
and external libraries, and set up some sensible default fields and configuration. 

The Media module (drupal.org/project/media) provides tools for inserting images into a rich text or 
WYSIWYG editor, mass-uploading files, pulling in external video, and many other media management 
tasks. The developer profile for Media (http://drupal.org/project/media_dev) sets up a Drupal 
installation for a developer interested in contributing to the Media project. Since Media is a complex and 
abstract project, this distribution creates some sample images and audio files, which gives other 
developers concrete examples to work with.  

http://drupal.org/project/media_dev


CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

805

The Feeds module (drupal.org/project/feeds) lets you import or aggregate data into your site. It 
also has a developer profile (drupal.org/project/feeds_test) focused on tests. With this, contributors to 
the project can easily run their changes through the Simpletest testing suite, which is covered in more 
detail in Chapter 23. 

If you have a module or other project you’d like to ask the community for help with, consider 
creating a development install profile. The easier you can make it for people to contribute, the more 
contributions you’ll see. Plus, if you ever want to try out a branch of your project, or need to work on a 
computer other than your own, you’ll be able to set up a proper environment easily. An example 
development profile is discussed later in this chapter. 

An Example Distribution: Drune 
Rather than using generic examples, you are going to have one example distribution which will guide 
you through the different sections of this chapter: Drune. Drune is a web-based music player built on 
top of Drupal that lets users listen to their music from their browser (see Figure 34–1). More information 
about Drune can be found at drune.org. 

 

Figure 34–1. The Drune web-based music player 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

806 

Creating Installation Profiles 
The very first page a user sees when installing Drupal 7 is the choice between a standard and a minimal 
installation (see Figure 34–2). As mentioned previously, the standard installation creates a web site with 
a common configuration so that users can get started quickly. The minimal installation contains the 
minimum necessary setup and is meant for advanced users who know exactly what they want. These 
two options are the installation profiles that are included in Drupal core. 

 

Figure 34–2. The installation profile selection form 

In addition to the built-in installation profiles, you can create your own. This installation profile will 
be responsible for setting up the initial configuration for your distribution. It will also be responsible for 
guiding the user through the installation procedure and gathering input from the user as needed.  

Structure of an Installation Profile 
An installation profile has a structure similar to that of a module. You need to create a new folder inside 
of the profiles folder that contains at least the following two files: 

• profilename.info contains metadata such as name, description, and 
dependencies. 

• profilename.profile is a PHP file that contains the code of the installation profile 
itself. 

Note that “profilename” is replaced with the name of the installation profile. In your case, you’ll 
have two files called drune.info and drune.profile. 

■ Tip  Developing an installation profile is an iterative process, so you will need to run the installation procedure 
multiple times until you get everything absolutely right. In order to save time when re-running the installer, use the 

drush site-install command; it lets you run the whole procedure from the command line. 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

807

drune.info 
The profilename.info file contains essential metadata about our installation profile. Your drune.info file 
has the following content: 

core = 7.x 
name = Drune 
description = A web-based music player built on top of Drupal. 
files[] = drune.profile 
dependencies[] = dblog 
dependencies[] = features 
dependencies[] = drune_track 
dependencies[] = drune_player 

The core attribute on the first line indicates the version of Drupal core with which your installation 
profile will be compatible (Drupal 7). The name and description attributes define the text to be displayed 
to the user on the installer profile selection form. The files attribute defines the list of PHP files to be 
included. The dependencies attribute defines the modules that need to be available in order for the 
installation to begin. Without these modules, an error message will be displayed to the user. They will be 
enabled automatically at the beginning of the installation procedure, right after the required system 
modules have been enabled. 

The drune_track and drune_player are features, which are a specific kind of module. I will cover 
these later in this chapter. 

drune.profile 
The profilename.profile file is a PHP file. This file can contain hooks just like modules, but they will 
only be active during the installation procedure. 

The installation procedure consists of a sequence of steps. The basic steps, such as the check for a 
settings.php file or the activation of module dependencies, are defined by Drupal itself. Installation 
profiles can add their own steps by implementing hook_install_tasks(). Listing 34–1 contains your 
implementation for Drune. 

Listing 34–1. Your Implementation for Drune 

/** 
 * Implements hook_install_tasks(). 
 */ 
function drune_install_tasks() { 
  $tasks = array( 
    // Display a welcome text. 
    'drune_welcome' => array( 
      'display_name' => st('Welcome'), 
      'type' => 'normal', 
    ), 
    // Set up the basic configuration. 
    'drune_setup' => array( 
    ), 
    // Let users enter information about the location of their music library. 
    'drune_config_form' => array( 
      'display_name' => st('Drune Configuration'), 
      'type' => 'form', 
    ), 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

808 

    // Import files from their music library. 
    'drune_import' => array( 
      'display_name' => st('Import audio files'), 
      'type' => 'batch', 
    ), 
  ); 
 
  return $tasks; 
} 

Your implementation of hook_install_tasks() returns a structured array defining four tasks: 
display a welcome text, set up the basic configuration, prompt the user for information, and use that 
information to import content. The key of each task is the name of a function callback. The kind of 
return value expected from the callback is defined by the type attribute of the task. Let's take a look at 
each of the callbacks. 

function drune_welcome() { 
  drupal_set_message(st('Welcome to Drune')); 
 
  return st('We are going to walk you through the remaining steps required to set up Drune on 
your server.'); 
} 

This task has a type of normal, which is the default. Text returned by the callback is simply displayed 
on the page.  

■ Note  During the installation process, the standard Drupal configuration is not fully in place. This means that 
some subsystems like translation are not available. For that reason, you need to use the st() function instead of 

the standard t() function when outputting localized strings. 

function drune_setup() { 
  variable_set('site_frontpage', 'library'); 
} 

The second task is also of type normal, but it doesn't have a return value. The code is executed and 
the installer automatically continues to the next task. Note that such a step could be replaced by 
implementing hook_install() in a profilename.install file. 

Form Tasks 

Form tasks let you gather input from the user. In your case, you ask the user to enter the location on the 
server where audio files are stored so that they can be imported (see Listing 34–2). 

Listing 34–2. Importing Audio Files Form Task  

function drune_config_form($form_state) { 
  drupal_set_title(st('Drune configuration')); 
  $form = array(); 
 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

809

  $form['drune_import_source_dir'] = array( 
    '#type' => 'textfield', 
    '#title' => st('Where are your files located?'), 
    '#description' => st('Enter the absolute path to the directory where your music files are 
currently stored.'), 
    '#default_value' => variable_get('drune_import_source_dir', NULL), 
  ); 
 
  $form[] = array( 
    '#type' => 'submit', 
    '#value' => st('Save and continue'), 
  ); 
 
  return $form; 
} 
 
function drune_config_form_validate($form, &$form_state) { 
  $source_dir = $form_state['values']['drune_import_source_dir']; 
  if (!empty($source_dir) != '' && !is_dir($source_dir)) { 
    $error_text = st('%dir is not a directory.', array('%dir' => 
$form_state['values']['drune_import_source_dir'])); 
    form_set_error('drune_import_source_dir', $error_text); 
  } 
} 
 
function drune_config_form_submit($form, &$form_state) { 
  if ($form_state['values']['drune_import_audio_files']) { 
    variable_set('drune_import_source_dir', $form_state['values']['drune_import_source_dir']); 
  } 
} 

Tasks of type form need to return a Form API structured array. The usual rules for validation and 
submission handler names apply. Once the form has been submitted successfully, the installer 
continues onto the next task.  

Batch Tasks 

Some tasks in the installation procedure can take a long time, potentially more than the timeout defined 
in the PHP configuration. For these cases, you can use a task of type batch and return a structured array 
from your callback using the format used by batch_set(). 

In your case, you gather all the mp3 files located inside the directory specified by the user and use a 
batch process to create a node for each file. Note that you are creating nodes of type track, a content type 
defined by the drune_track feature that has been marked as a dependency (see Listing 34–3). 

Listing 34–3. Batch Task  

function drune_import() { 
  $batch = array( 
    'title' => st('Importing audio files'), 
    'error_message' => st('The audio file import has encountered an error.'), 
    'finished' => '_drune_import_finished', 
  ); 
  $files = file_scan_directory(variable_get('drune_import_source_dir', NULL), "/.*\.mp3/"); 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

810 

  foreach ($files as $file) { 
    $batch['operations'][] = array('_drune_import', array($file)); 
  } 
   
  return $batch; 
} 
 
function _drune_import($file, &$context) { 
  global $user; 
 
  $node = (object) array( 
    'uid' => $user->uid,  
    'type' => 'track', 
    'title' => $file->filename, 
  ); 
  $file = file_copy($file, 'public://music/' . $file->filename); 
  $node->field_audio_file[LANGUAGE_NONE][] = (array)$file + array('display' => TRUE); 
  node_save($node); 
  $context['message'] = st('Importing: @filename', array('@filename' => $file->filename)); 
} 
 
function _drune_import_finished($success, $results, $operations) { 
  drupal_set_message(st('Audio file import completed')); 
} 

Dealing with Configuration: Features 
While installation profiles give you a good starting point to let users get started with a predefined 
configuration, they don't really cover everything you need. Some of the issues are: 

• The configuration is set using direct calls to API functions. This method works for 
simple configurations where you only need a few variables but it is not 
appropriate for creating the node types, views, permissions, and other 
components needed by a full-blown distribution. 

• The installation profile only controls the original setup of a project. There is no 
update mechanism that would allow maintenance updates.  

• The original configuration is stored in the database along with the eventual 
modifications done by users after the installation. It is then impossible to separate 
the standard configuration from the modifications.  

All solutions to these issues involve exporting the configuration away from the database and into 
files that can be released with the installation profile. The Features module has become the standard 
way of doing this by providing a unified mechanism to export different kinds of configuration 
components. All functionalities related to the Features are available from the administrative interface 
and from the command-line using Drush commands. More details about using Drush can be found in 
Chapter 26. 

Many modules use a standard mechanism for letting other modules define default structures. The 
most common example of this is probably the Views module, which lets other modules create default 
views. Such default structures are originally defined in a module's code using a specific hook, but the 
user is then free to override that structure with a new version which is then stored in the database. 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

811

Structures that behave in such a way are called exportables. The Features module works as a wrapper for 
exportables and makes it easy to turn a set of structures into a custom module defining these structures. 

There are other kinds of structures that do not have an API that lets modules define default 
structures. Field configurations, block placement, and user permissions fall into this category and are 
generally referred to as faux-exportables. Fortunately, the Features module provides a mechanism to 
deal with those almost in the same way as you deal with exportables.  

For your Drune example, you are going to create a feature defining the track content type and all the 
associated fields that store the audio file, artist, album, cover thumbnail, etc.  

Once these components have been created and the Features module has been activated, you can go 
to admin/structure/features/create to create a new feature (see Figure 34–3). The version and URL of 
update XML fields can be left blank for now.  

 

Figure 34–3. The user interface for creating new features 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

812 

■ Note  There are no strict rules on how to separate components into different features, but grouping them into 

logical entities will make your work much easier in the long term. 

The features interface creates an archive containing a custom module that you can simply copy to 
your modules directory, but it’s worth taking a quick look at the content of the generated code shown in 
Listing 34–4.  

Listing 34–4. drune_track.info 

core = "7.x" 
dependencies[] = "features" 
dependencies[] = "file" 
dependencies[] = "jplayer" 
dependencies[] = "text" 
description = "Provide a track content type with the associated structure and functionality. " 
features[field][] = "node-track-field_album" 
features[field][] = "node-track-field_artist" 
features[field][] = "node-track-field_audio_file" 
features[node][] = "track" 
features[user_permission][] = "create track content" 
features[user_permission][] = "delete any track content" 
features[user_permission][] = "delete own track content" 
features[user_permission][] = "edit any track content" 
features[user_permission][] = "edit own track content" 
name = "Drune Track" 
package = "Features" 

Besides the fact that attributes are sorted alphabetically, notice the presence of the features 
attribute. Components are grouped by component type and each has a unique identifier. 

drune_track.*.inc  

The Features module generates different include files containing the actual definition of the 
components listed in the drune_track.info file. Components are grouped by type; for example, all 
default views would be in a .default_views.inc file and all field definitions would be in a 
.features.content.inc file (the presence of “features” in the filename indicates components that are not 
exportable and whose export to code is managed by the Features module).  

drune_track.module 

The .module file generated by the Features module contains a single line of code that takes care of 
including the various include files that define the individual components (see Listing 34–5). However, 
you are free to add any code in here that would be allowed in a module. This can typically be used to add 
glue code (see Chapter 22 related to the components defined in the feature). 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

813

Listing 34–5. Drune_track.module 

 <?php 

include_once('drune_track.features.inc'); 

Overrides 
Once a feature is activated, it’s still possible to change the configuration provided by the feature. The
Features module automatically detects when the configuration of a feature has been modified and
displays its status as “overridden” in the features administrative interface. A detailed list of which
component types are overridden is also available. 

When a feature is overridden, it’s possible to go back to the configuration stored in the code by
reverting the feature. This can be done in the features administrative interface by selecting the
individual components to revert, but it can also be done from the command-line using the drush
features-revert command.  

Updates 
One of the advantages of using the Features module is that it doesn’t only provide a mechanism to
export configuration to code, it also makes it possible to update that configuration over time. As a
developer, you simply need to override the feature to match the desired state, and then update the
feature. This can be done either by re-exporting the feature from the user interface and replacing the old
version of the feature with the new one, or simply by using the drush features-update command to
update the feature from the command-line. 

When the Features module recognizes that the code has a new version of the configuration, it will
either load it directly or indicate its status as “Needs review,” in which case reverting the feature is
necessary. 

Table 34–1. A Comparison of the Behavior of Exportables and Faux-Exportables in Different Situations 

 Exportable Faux-Exportables 

Example components Views, image presets Content types, permissions, fields 

Default status Configuration only in code Configuration in database matches
the configuration in code 

Overridden Configuration both in the database
and in the code. The version from the
database takes precedence over the
one in the code. 

Configuration in database is different
from configuration in the code 

New changes are in
the code 

The new version is loaded
automatically, but clearing the Drupal
cache is necessary in most cases. 

Reverting the feature is necessary in
order to synchronize the database
with the code. 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

814 

■ Note  Besides making it easier to build distributions, the Features module also solves many issues related to 

deployment and team collaboration. Many developers use it as a standard tool in all of their Drupal projects. 

Exceptions 
Unfortunately, not everything in a Drupal project’s configuration can be exported with features. The 
features API makes it easy to add support for the configuration of additional modules, but even then not 
everything can be exported.  

The problem comes mainly from the use of sequential numbers as the primary identifier for 
components. Because these sequential numbers are automatically generated from the database by 
picking the next available integer, you have no guarantee that identifiers are consistent across different 
environments. Some faux-exportables, like menu links, circumvent this problem by using a different 
identifier (the menu link path) instead of the internal numeric identifier. 

In order to support the creation of configuration that isn't managed by features in an installation 
profile, you need to write your own code to manage it. For example, you can use this method to create 
default nodes or user accounts. The code can be located in one of the following places: 

• hook_install() in the installation profile .install file, if the configuration is related 
to the whole installation profile. 

• An installation task in the installation profile. This is particularly useful if the 
configuration is based on information entered by the user in a previous task. 

• hook_install() in a custom module's .install file, if the configuration is related to 
that specific module. 

• hook_update_N() in a custom module’s .install file, if the configuration is related to 
that specific module and should also affect existing instances that need to be 
updated. 

Choosing the right location depends on the context to which your configuration is related, but the 
same syntax can be used in all locations. Listing 34–6 contains an example creating an about page and a 
default non-admin user for your Drune installation profile in drune.install. 

Listing 34–6. Creating an About Page 

/** 
 * Implements hook_install(). 
 */ 
function drune_install() { 
  // Create the about page. 
  $node = new StdClass; 
  $node->type = 'page'; 
  $node->title = t('About'); 
   
  // … Set additional node attributes 
 
  node_save($node); 
 
  // Create a default non-admin user. 
  $default_user = new StdClass; 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

815

  $default_user->name = 'drune'; 
  $default_user->pass = 'drune'; 
  user_save($default_user); 
} 

See Chapter 22 for more details about writing custom code. 

Using Installation Profiles and Features as a Development Tool 
The combination of installation profiles with the Features module allows you to define the whole 
configuration of a project and to go from a codebase without any database to a functional Drupal site in 
just one step. This functionality is great for creating distributions, but it can also be incredibly powerful 
in the development of any Drupal project.  

Imagine, for example, the development of a complex web site. Each functional section is exported to 
a feature that contains the required components and the related custom code. The installation profile 
can be a simple listing of module dependencies (including features) and an empty profilename.profile 
PHP file. The content of the profilename.info file would look like that in Listing 34–7. 

Listing 34–7. Contents of profilename.info 

name = “Complex Web site” 
description = “Custom installation profile for Complex Web site.” 
core = 7.x 
 
; List of our exported features. 
dependencies[] = complex_web site_registration 
dependencies[] = complex_web site_forums 
dependencies[] = complex_web site_forums 
 
; List of additional modules which are not required by any feature 
dependencies[] = dblog 
dependencies[] = toolbar 
 
; Development modules, these will be deactivated on the live site. 
dependencies[] = devel 
dependencies[] = simpletest 
dependencies[] = views_ui 
 
files[] = profilename.profile 

As mentioned, the profilename.profile file can be left as an empty PHP file. Using this installation 
profile would enable all the features with their dependencies, as well as any other specified modules. 
The result is a new instance of the project with all the configuration in place, ready for people to add 
content. 

Content can be created programmatically by adding a task in the profilename.profile file, but this 
approach is only practical when the content can be imported in bulk from an external source. Creating 
editorial content programmatically can be tedious, so this method does not apply well for projects based 
mostly around editorial content. 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

816 

Packaging Your Code 
You now have all the required components for someone to recreate your installation profile: an installer 
profile, a list of dependencies, a few custom modules and features, eventually a theme, and some 
additional external libraries. The problem is that a user would need to get code from many different 
sources. Sometimes you also need a very specific revision of a module that can only be obtained directly 
from the version control system. What you need is a way to formally define how to build the code 
required to run your distribution.  

Makefiles are a well-known tool in software development, generally used in combination with the 
make command to automate the compilation of executable files. While building a Drupal project is very 
different from compiling a C++ application, some of the same general concepts still apply. The Drupal 
equivalent of the make command is drush make, an extension to drush that turns a makefile into a 
Drupal project ready to be installed. 

Drush Makefiles 
The makefile syntax used by drush make is similar to the syntax of *.info files that you have already 
encountered multiple times. Listing 34–8 shows what this would look like for your Drune distribution. 

Listing 34–8. profilename.make for the Drune Distribution 

; Specify the drush make API version 
api = 2 
 
; Specify the compatible core Drupal version. 
core = 7.x 
 
; List of packages to be downloaded from Drupal.org. 
projects[] = ctools 
projects[] = features 
projects[] = views 
 
; Modules can be downloaded directly from version control.  
projects[jplayer][type] = module 
projects[jplayer][download][type] = "git" 
projects[jplayer][download][url] = "git://git.drupal.org/project/jplayer" 
projects[jplayer][download][tag] = "6.x-1.0-beta2" 
 
; Patches can also be applied automatically. In this case the port of the jPlayer module to 
Drupal 7. 
projects[jplayer][patch][] = "http://drupal.org/files/issues/jplayer_d7_1.patch" 
 
; Also specify external libraries. 
libraries[jplayer][download][type] = "get" 
libraries[jplayer][download][url] = 
"http://www.happyworm.com/jquery/jplayer/latest/jQuery.jPlayer.1.2.0.zip" 

This file is called profilename.make and is located directly in the root of the installation profile (in 
your case, it would be profile/drune/drune.make). 

Note that this makefile does not include Drupal core in the list of projects. Because it is located 
inside the profile folder, it’s expected to be taking place inside of an existing Drupal project. You can 

http://drupal.org/files/issues/jplayer_d7_1.patch
http://www.happyworm.com/jquery/jplayer/latest/jQuery.jPlayer.1.2.0.zip


CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

817

create a simple makefile that would get Drupal core and your installation profile, and drush make will 
parse the makefiles recursively, like so: 

api = 2 
core = 7.x 
projects[] = drupal 
projects[] = drune 

Hosting on drupal.org 
Installation profiles hosted on drupal.org can also make use of a special makefile named drupal-
org.make. This file is automatically parsed by the drupal.org packaging script and will create an archive 
containing the Drupal project and your installation profile ready to be installed by users.  
Due to the hosting policy of drupal.org, the inclusion of external libraries is not allowed. The drush 
verify-makefile command can be used to check that all the requirements for hosting on drupal.org are 
met. If a makefile does not meet the requirements, it can be converted into a compliant makefile using 
the drush convert-makefile command.  

Packaging  
Even if your installation profile is hosted on drupal.org, you probably want to give users of your 
distribution the possibility to download an archive containing everything needed for the installation 
right from your web site. Among the many options provided by drush make, the --tar option does 
exactly that, like so: 

drush make --tar drune.make  

For a complete documentation of all the possibilities offered by drush make, have a look at the 
README.txt file included inside the drush make download. 

The Future of Distributions 
Distributions are vitally important to the future of Drupal. They make it competitive against single-task, 
difficult-to-extend systems. Drupal Commons, for example, was developed to compete with other 
closed-source social business services. By lowering the barrier to site creation and creating unique 
feature sets, distributions also bring Drupal into niche markets. 

Since providers of distributions depend on Drupal to offer their products, it’s in their interest to 
contribute to the Drupal project. And since Drupal is strengthened by having distributions, this feedback 
cycle creates a better product for everyone. 

If you worked with profiles in Drupal 6, you’ll be happy to hear they’ve received significant attention 
in Drupal 7 as part of the effort to recognize this future. They are built essentially like a module with .info 
and .install files; no more need to learn an additional (somewhat esoteric) API. If you can write a module, 
you can write an install profile. In addition, they’ve received much more prominent treatment on 
drupal.org and are now placed on par with modules and themes. Making distributions even easier to 
create and maintain will be the next challenge the community faces. 

The Drune music player used as an example in this chapter was thrown into existence when the 
author's desktop music player stopped interacting with his music library due to a change in the 
proprietary protocol being used. The examples in this chapter are somewhat simplified versions of the 
actual code. The current development status of the project is available at drune.org. 



CHAPTER 34 ■ DRUPAL DISTRIBUTIONS AND INSTALLATION PROFILES 

818 

Summary 
In this chapter, you have learned that profiles and distributions allow you to create a pre-configured site 
quickly and easily. Distributions and profiles are an important part of the Drupal ecosystem, and you 
should consider creating a profile to support development of your Drupal project. Writing your own 
profile is similar to writing your own module, and you can learn a lot by inspecting how existing profiles 
are built and using them as a template. You can quickly and easily pull together the resources your 
profile needs from multiple locations by using drush makefiles. You can also package logically-grouped 
parts of your site configuration together as exportable, reusable features. Most things features can't 
export can be stored in code in hook_install() and hook_update_N(). 



P A R T   VII 
 

■ ■ ■ 

 

Drupal Community 

Chapter 35 gives the story of Drupal’s beginnings as an open source project and some key events to its 
development into the thriving community it is today. 
 
Chapter 36 tackles what it takes to make a living with Drupal, including taking a hard look at problems 
with Drupal software—and suggests ways you can mutually sustain your success and Drupal’s success. 
 
Chapter 37 goes over maintaining a project shared with the world on Drupal.org and making use of the 
Git revision control system. 
 
Chapter 38 caps off the book with a discussion of effective ways to contribute back to Drupal to make 
the software you work with, and the community you work in, better. And, perhaps, help make the world 
better. 
  



C H A P T E R  35 
 

■ ■ ■ 

 

821

Drupal’s Story: A Chain of Many 

Unexpected Events 

by Kasey Qynn Dolin 

“For me the history of Drupal is a chain of interesting surprises.” 

—Dries Buytaert, Drupal Founder and Project Lead 

I considered titling this chapter “History,” but decided that that would be misleading. Even though the 
Drupal project is only ten years old at the time of this printing, a complete history of Drupal would fill 
hundreds of pages and document the experiences of literally hundreds of thousands of people.  

And in the interest of full disclosure, if you are looking for an exhaustive biography of key 
contributors, you will have better luck checking out their profile pages. While many key contributors are 
fascinating, intelligent characters whose decisions, actions, and beliefs undoubtedly left their mark on 
the community that so many people worldwide have come to know and love, this history is not a story 
about the People-with-a-capital-P who shaped Drupal.  

It is instead a story about the events that shaped Drupal, and how the community as a whole 
responded to those events. Speaking of the community... 

As an outside observer, I have come to feel that the truly amazing thing about Drupal is its appeal to 
a bizarrely wide range of users. Drupal users run the gamut from hobby hackers to entrepreneurs, 
radical grassroots organizers to national governments, FOSS evangelists to corporate strategists—and 
the community includes a multitude of entities and individuals who combine traits from all of the above. 

It is completely just to say that the quality and flexibility of Drupal’s code explains its wide appeal, 
and that it should come as no surprise that an elegant, adaptable, and useful technology will have an 
impressive range of applications...  

...but it is equally just to point out that Drupal is a collaboratively-produced enterprise. Members of 
every group described above from every inhabited continent must communicate, work together, and 
rely on one another in order to get the most of what they want from the software—and in so doing, push 
the project forward as a whole. What has made this implementation of open source values on a huge 
scale possible? What is it about the Drupal project that inspires this type of devotion, which has in turn 
resulted in its phenomenal success?  



CHAPTER 35 ■ DRUPAL’S STORY: A CHAIN OF MANY UNEXPECTED EVENTS 

822 

The answer: the aforementioned chain of many unexpected events,1 and the community’s response. 
This chapter will provide snapshots of a few events that shaped how and why the community 

survived and grew, and in so doing, will hopefully capture a little of the flavor that defines Drupal 
(though I will leave it up to the reader to define for themselves exactly what that flavor is). After a brief 
reccounting of Drupal’s origins, the first section describes events that resulted in Drupal attracting the 
critical mass of developers it needed to thrive. The next two sections outline the events that determined 
the shape of Drupal’s infrastructure, and how that infrastructure balances the open source values that 
give Drupal its strength with the ability to support a wide range of commercially-viable applications. 

The Original Accident 
The experiment that we now know as the Drupal project began in 1998, when Dries Buytaert, a Belgian 
undergraduate student seeking his Licentiate in Computer Science at the University of Antwerp, began 
construction on a local area network to connect his dorm-mates (and avoid the high cost of Internet 
access at the university). The message boards that Dries created allowed his fellow computer science 
students to discuss the latest in internet technology and to just plain keep in touch.  

The latter is important because it was this sense of community that inspired Dries, upon his 
graduation and move from the dorms, to keep the discussions going by moving the internal web site to 
the Internet. On April 28, 2000, drop.org was born.  

■ Note Just in case there are any readers out there who have somehow managed to escape familiarity with the 
origins of Drupal’s name, here’s the condensed version: In the beginning, there was a typo. And Dries looked upon 

his typo, and he saw that it was good...so he went with it. When registering his new site’s domain, Dries meant to 
type an abbreviation of the Dutch word dorpje (meaning village), but misspelled it as the English word drop. Later, 
when naming the software, he back-translated drop into Dutch (druppel), which he then spelled phonetically (in 

English) as drupal. 

In a move that would define the character of the Drupal community forever after, Dries, rather than 
trying to implement the deluge of suggestions, complaints, and advice himself, chose to make the 
software available to anyone, for free, under the GNU General Public License. This meant that anyone 
who was willing to put their time and effort into trying out their ideas was able to experiment with the 
code that would become Drupal at will—providing they agreed to make the results of their experiments 
just as freely available to others. On January 15, 2001, the Free and Open Source Software (FOSS) 
movement gained a new member with the official release of Drupal 1.0. 

While it was originally intended that the content of the discussions on drop.org be about Internet 
technologies in general, the commentary quickly began to trend toward the very specific—as in, the 
software powering drop.org web site itself.  

Shortly after Drupal 2.0 was released on March 15, 2001, Dries decided to provide a place for all of 
the specifically Drupal-related activity that had been overwhelming the drop.org site, and so drupal.org 
was born.  

                                                

1 Dries Buytaert uses the phrase “a chain of many unexpected events” to describe Drupal in an interview with Noel 
Hidalgo, 26 July 2007, “episode 13–dries on drupal,” http://luckofseven.com/vlog/episode13. 

http://luckofseven.com/vlog/episode13


CHAPTER 35 ■  A CHAIN OF MANY UNEXPECTED EVENTS 

823 

Drupal Gains a Foothold   
Drupal continued to evolve in relative obscurity until early 2002, when Dries initiated a relationship with 
Jeremy Andrews, owner and operator of kerneltrap.org. A news site reporting on issues relating to Linux 
Kernel and the FOSS world at large, kerneltrap.org would periodically go down under an onslaught of 
traffic due to a mention on the popular technology-related news site slashdot.org/. Dries contacted 
Jeremy and suggested Drupal as an alternative to PHP-Nuke, and Jeremy, after converting 
kerneltrap.org to Drupal 3.0.2 on February 14, 2002, developed the throttle module (which was 
eventually included in Drupal 4.1 core). 

While the throttle module “is little more than a Band-Aid, attempting to work around a problem 
rather than solving it,”2 and was removed from Drupal 7 core, the impact of that early relationship was 
significant. Jeremy would go on to be an active member of the Drupal community for many years, with 
over 4400 commits to his credit. But more relevant to the purposes of this chapter, he reported on his 
early conversion to and work with Drupal on kerneltrap.org itself. The publicity generated by this most 
sincere form of endorsement has been identified by Dries as something that “opened the eyes of many 
other people in the technical world”3 to Drupal’s unique capabilities. 

If the 2002 mention on kerneltrap.org represents Drupal’s “coming out” to the world of techies, 
July of 2003 represents the beginning of Drupal’s “coming out” to the world at large. While the Drupal 
community was hacking its way through versions 4.2, 4.3, and 4.4, a group of politically active young 
people were using the still relatively obscure content management system in an attempt to get a 
relatively obscure candidate elected president of the United States.  

While candidate Howard Dean did not get elected, he did make it on to the national scene in a big 
way—thanks in part to the organizing capacity of the Drupal software and the dedication of the 
activist/developers who constructed the web sites that drove the campaign. While the organizers used 
Drupal software to create DeanSpace, a site used to connect and organize Dean volunteers around the 
United States and therefore expand exponentially the number of people the campaign reached, the 
campaign’s expansion caused the Drupal software to undergo its own exponential growth. 

As more and more Drupal-run Dean sites popped up, the number of developers constructing 
modules to meet the needs of these sites grew as well. David Cohn, in writing about this period of 
Drupal’s history, uses the figure of a 300% increase in created content on drupal.org. This reciprocal 
push of development continued even after Dean’s campaign collapsed; in fact, the end of the campaign 
ushered in a period of rapid expansion of Drupal into a variety of grassroots and not-for-profit 
applications, much of it driven by former Dean-volunteer Drupal developer talent. On July 23, 2004, it 
was officially announced that the DeanSpace was dead, and CivicSpace, “the first company with full 
time employees that was developing and distributing Drupal technology”4 had begun. Advomatic, 
Chapter Three, and Echo Ditto are examples of other Drupal-based companies founded by Dean 
volunteers that continue to contribute significantly to the Drupal community. 

                                                

2 Tag1 Consulting, Inc., “Section 3: The Throttle Module,”  
http://books.tag1consulting.com/scalability/drupal/performance/throttle 

3 Dries Buytaert, 26 July 2007, interview with Noel Hidalgo, “episode 13 – dries on drupal,” 
http://luckofseven.com/vlog/episode13. 

4 DigiDave, Drupal Nation: Software to Power the Left, http://blog.digidave.org/2008/12/drupal-nation-software-
to-power-the-left 

http://books.tag1consulting.com/scalability/drupal/performance/throttle
http://luckofseven.com/vlog/episode13
http://blog.digidave.org/2008/12/drupal-nation-software-to-power-the-left
http://blog.digidave.org/2008/12/drupal-nation-software-to-power-the-left
http://blog.digidave.org/2008/12/drupal-nation-software-to-power-the-left


CHAPTER 35 ■ DRUPAL’S STORY: A CHAIN OF MANY UNEXPECTED EVENTS 

824 

Figure 35–1. 2004 New Year’s Eve prediction by Neil Drumm, future co-founder of CivicSpace and Drupal 

core developer  

Oh, That’s How You Say Your Name! 
Seven months after all of this very visible and large-scale activity was taking place on the North
American continent, on the other side of the Atlantic Drupal was experiencing the advent of a tradition
that has become definitive to the character of the culture itself, as ultimately significant as the events of
2004 (though on a far more intimate scale).  

■ Tip  It involved lots of beer and power strips. 

On February 26, 2005, a major milestone occurred: what is widely recognized as the first Drupal
Conference (though technically, the first stand-alone DrupalCon would not occur for another seven
months). FOSDEM, or the Free and Open Source Developers’ European Meeting, is a conference that is
still being held annually in Brussels, Belgium, “organized by volunteers to promote the widespread use
of Free and Open Source software” and to “provide developers with a place to meet.”5 FOSDEM 2005
was attended by between 3,000 and 3,500 people from all over the world. In addition to scheduled
speakers and short project presentations in the form of lightning talks, FOSDEM 2005 hosted eighteen
developers’ rooms, including Drupal’s.6 

DrupalCons, however, are not the tradition to which the hint above refers. The really significant
event occurred during the two days prior to FOSDEM. 

On February 24 and 25, 2005, four months after the release of Drupal 4.5, Drupalistas gathered in
Antwerp, Belgium for the first official Drupal developer sprint. Twenty-six Drupal developers from
eleven countries met up to work collaboratively (and face to face) on issues that sprint organizers had
identified as needing concentrated attention prior to the meet-up. Roughly 80% of these developers
traveled from outside of Western Europe for the event, with twelve of the twenty-six coming from
different continents entirely.  

The tradition of flying out in order to meet up was born. 

                                                

5 FOSDEM, About page, www.fosdem.org/2010/about/fosdem 

6 FOSDEM, Archive of 2005, http://archive.fosdem.org/2005/ 

http://www.fosdem.org/2010/about/fosdem
http://archive.fosdem.org/2005/


CHAPTER 35 ■  A CHAIN OF MANY UNEXPECTED EVENTS 

825 

The Extended Weekend from Hell 
Drupal 4.6 was released April 15, 2005. By any measure or definition, the Drupal community was 
continuing its trend of rapid expansion: by July 2005, there were 26,772 users and 455 service providers 
registered to drupal.org.7 In practical terms, this meant that a massive number of people were affected 
by the events of July 7-11, 2005—what Steven Wittens dubbed “the Extended Weekend from Hell.”8 On 
July 10, users attempting to log on to drupal.org were greeted with the following message: 
“http://drupal.org temporarily offline. We can’t get the server back online without help from our 
hosting company, and after 48 hours they still have not responded to our support requests.”9  

Steven provided a (less terse/stressed/desperate sounding) blow-by-blow description of events in 
his July 12 News and Announcements drupal.org post on the subject: “Thursday evening, this server was 
hacked. One of the other sites on our server provided the hole through which the hackers entered; it 
appears someone wanted to turn us into a warez FTP, but completely messed it up instead. We 
discovered the intrusion quickly and were able to regain control of the server soon afterward. However, 
the entire incident occurred only a few hours before a scheduled power outage at our current ISP; 
problems with remote administration and the lack of install media meant we were unable to fix the 
server remotely. Over the weekend we called to try and rectify the situation, but due to 
miscommunication with our ISP we had to wait until Monday morning before we could reinstall the OS 
and get the server purring again.”10 

While the server crash may have hit drupal users like a slap to the face, the community was by no 
means unaware that problems with infrastructure could prove to be an issue, as illustrated in Figure 35–2. 

 

Figure 35–2. The Drupal community was aware that problems with infrastructure could be an issue. 

Dries had already prepared for publication prior to the server crash a message that Charlie Lowe 
posted to the main page of drupal.org on July 10, addressing the need to get a new server. At the time of 
the crash, drupal.org was running on a Pentium Xeon 3Ghz server with 1GB of RAM that it shared with 
approximately 20 other sites; Drupal veteran Kjartan Mannes (http://drupal.org/user/2) both 
maintained the server and footed the bill.  

                                                

7 Groups.Drupal, Growth Charts, http://groups.drupal.org/node/1980 

8 Drupal, “Restoring Drupal.org and Murphy’s Law,” http://drupal.org/node/26545 

9 Internet Archive WayBack Machine, http://web.archive.org/web/web.php, http://www.drupal.org/ 

10 Drupal, “Restoring Drupal.org and Murphy’s Law,” http://drupal.org/node/26545  

http://drupal.org
http://drupal.org/user/2
http://groups.drupal.org/node/1980
http://drupal.org/node/26545
http://web.archive.org/web/web.php
http://www.drupal.org/
http://drupal.org/node/26545


CHAPTER 35 ■ DRUPAL’S STORY: A CHAIN OF MANY UNEXPECTED EVENTS 

826 

In the month of June alone, according to Dries’ post “Help Drupal.org Buy a Dedicated Server,” 
drupal.org generated 100GB of traffic, serving over 3 million pages; in his words, “our current server 
doesn’t cut it anymore.” The message to the Drupal community begins “Quite a few people have pointed 
out that drupal.org has been slow lately. We know it’s been slow, and have been working on optimizing 
drupal.org...The fact remains that as the result of Drupal’s growing popularity, the server is saturated 
pretty much all day. This explains drupal.org’s poor performance.”11 

The post goes on to outline a plan for moving drupal.org to a new server hosted by Oregon State 
University’s Open Source Lab (OSUOSL, OSL). The Open Source Lab was officially created in January of 
2004 with the stated mission of “help[ing to] accelerate the adoption of open source software across the 
globe and aid[ing] the community that develops and uses it.”12 These fairy godmothers of FOSS had 
come to the aid of Drupal veteran Jeremy Andrews two months prior to the drupal.org server meltdown; 
when Jeremy found himself looking for a new host for http://kerneltrap.org, OSL was the first 
organization that he contacted.  

As Associate Director of OSL, Scott Kveton explained to Jeremy, “The goal of the Open Source Lab is 
to bring FOSS communities together and so by doing promote cross-pollination of ideas and people to help 
create an atmosphere of innovation around open source.” Particularly well-positioned to meet this goal, 
by mid-2005 OSL was already hosting projects such as Arklinux, Debian GNU/Linux, Freenode.net, 
Gentoo Linux, the Mozilla Foundation, the PowerPC Kernel Archives, and SPI.  

OSL gathered this impressive list of participants mostly by keeping their ears to the FOSS grapevine 
and offering their assistance when and where it was needed; as Scott explained to Jeremy, the OSL team 
would hear that “such-and-such project had a machine that died and needs help or so-and-so is reaching 
the limits of their existing infrastructure and needs help.”  

This pretty neatly describes where Drupal was in June of 2005. Drupal also passed the selection 
criteria that the OSL staff used to evaluate prospective hostees: it was community-focused; it had 
“committed, energetic, and most importantly, realistic leadership;” its community would interact well 
with those of the projects already hosted at OSL; it would use the services provided by OSL to help its 
community grow; and the OSL’s resources and services would enable the community to focus on rapid 
innovation (rather than simply keeping the lights on). 

Let’s face it, open source is gaining traction everywhere. With its success comes 
additional drains on already strapped resources. We want to be an option for these 
open source projects that don’t want to be indentured servants of the big companies 
that want to provide help. We’re not anti-company or anti-people-making-money-
from-open-source; we just know that projects want to ensure the future of their 
communities and so are very careful about who they partner with. We know this will 
take time and as with everything in open source; it’s all about the relationships we 
develop.  

—Scott Kveton, 200513 

Only a few weeks prior to Drupal’s server meltdown, the conditions of the deal had already been 
worked out: OSL would provide free hosting—rack space, bandwidth, power, domain name service, 

                                                

11 Internet Archive WayBack Machine, http://web.archive.org/web/web.php, www.drupal.org/  

12 KernelTrap, “KernelTrap: New Home At The Open Source Lab,” http://kerneltrap.org/node/5083 

13 KernelTrap, “KernelTrap: New Home At The Open Source Lab,” http://kerneltrap.org/node/5083 

http://kerneltrap.org
http://web.archive.org/web/web.php
http://www.drupal.org/
http://kerneltrap.org/node/5083
http://kerneltrap.org/node/5083


CHAPTER 35 ■  A CHAIN OF MANY UNEXPECTED EVENTS 

827 

database, back-ups, and mail relay. All the Drupal community would have to do was provide the 
hardware.14 The price tag on the desired equipment was US$3,000. 

The call for donations was posted on the temporary main page of drupal.org (the only one 
accessible at the time) on July 10, 2005. Shortly after that, a piece explaining Drupal’s plight was posted 
to slashdot.org/.15 Sixteen hours after the initial drupal.org posting, the US$3,000 target had been 
reached and exceeded. By July 12, the Drupal community had donated more than US$10,000 and Drupal 
organizers had more than enough money to meet their needs, literally. Without a foundation or any 
other formal not-for-profit status, Drupal’s bounty was potentially taxable—and sitting in the PayPal 
account of a private individual. This situation emphasized another long-recognized but long-postponed 
need of the community, and the formation of an Association became an acknowledged priority.  

The generosity that the FOSS community exhibited toward Drupal during the Extended Weekend 
from Hell did not end with the contributions of OSL and private donors. Tim Bray, who Dries describes 
as “Sun Microsystems employee, W3C member, co-inventor of XML, and Drupal fan”16 came across the 
slashdot.org/ piece describing Drupal’s situation (which had been posted at 3:39 p.m. on Sunday, July 
10). Sympathetic, Tim passed the story up the chain of command at Sun, along with the request that 
something be done to help.17 It was still Sunday when Dries received the e-mail from Hal Stern, Software 
CTO of Sun, informing him that Drupal was the proud new owner of a free Sun Fire V20z server. 
Paperwork was signed on Monday, and by Tuesday, the server arrived at its new home at OSL.18  

Amusing side note: Dries Buytaert of Drupal wrote wondering “under what terms we’d 
get such machinery from Sun” and Hal wrote back saying a mention on the site would 
be nice, “and no offense, but the legal cost of any more ‘terms’ than above exceeds our 
cost of the hardware.” 

—Tim Brays19 

By July 19, all of the donations had been transferred to OSL (and out of Dries’ PayPal account), and 
implementation of the infrastructure proposal developed by the team at OSL and FireBright (CEO 
Jonathan Lambert) could begin with the purchase of three Dell PowerEdge 1850 1Us. By August 25, the 
team including Kjartan Mannes, Corey Shields (OSL Infrastructure Manager, a.k.a. cshields), Mike 
Marineau (System Administrator at OSL), Matt Rae (Community Systems Administrator and drupal.org 
infrastructure manager at OSU, aka raema) had successfully moved  
the drupal.org database to the new server20, which made many people very happy. 

                                                

14 Internet Archive WayBack Machine, web.archive.org/web/web.php, www.drupal.org  
15 Slashdot, “Drupal Needs a New Home,” 
developers.slashdot.org/article.pl?sid=05/07/10/1924256&tid=169&tid=8  

16 Drupal, “The future Drupal server infrastructure,” drupal.org/node/26707  
17 Tim Bray, “Iron for Drupal,” www.tbray.org/ongoing/When/200x/2005/07/14/Drupal-Server  
18 Drupal, “The future Drupal server infrastructure,” drupal.org/node/26707  

19 Tim Bray, “Iron for Drupal,” www.tbray.org/ongoing/When/200x/2005/07/14/Drupal-Server  

20 Various. kveton.com/blog/2005/08/26/drupalorg-before-and-after/, drupal.org/node/29670  

http://www.drupal.org
http://www.tbray.org/ongoing/When/200x/2005/07/14/Drupal-Server
http://www.tbray.org/ongoing/When/200x/2005/07/14/Drupal-Server


CHAPTER 35 ■ DRUPAL’S STORY: A CHAIN OF MANY UNEXPECTED EVENTS 

828 

 

Figure 35–3. Drupal.org user expresses joy about new server speed 

If You Have a Problem, Please Search Before Posting a 
Question 
By 2006, Drupal was positioned to step into the role of major player in the world of Free and Open Source 
Software and the world of web site development at large. But physical infrastructure of the sort provided by 
OSL is not the only type of infrastructure necessary to make sure that an entity like Drupal is scalable 
enough to survive into adulthood, so to speak; the infrastructure of the community itself is just as crucial.  

The next section will outline the formation of an important piece of that community infrastructure: 
the Drupal Association. The process was long, and plenty of other exciting activity was taking place in 
the Drupal community while the research and debate on what form the Association should take 
continued; however, a detailed look at how the Association came to be is informative on many levels. 
Not only does the framework established within the statutes and internal regulations of the Association 
charter define how Drupal is allowed to grow (and who is allowed to influence that growth), but peeking 
at the process that the community used to craft it can be revealing. 

Just as the Drupal community had been discussing the need for new infrastructure months before 
the server crash made obtaining it an inescapable and immediate priority, discussion concerning the 
formation of some sort of not-for-profit entity capable of handling Drupal’s financial affairs had been 
bouncing around for a while.  

 

Figure 35–4. (Facetious?) New Year’s Eve prediction for 2004, posted by then maintainer of drupal.org’s 

server, Kjartan Mannes  

Speaking seriously, it was well understood that any structure that was established would have far-
reaching consequences (economic, legal, and cultural) for the Drupal community and potentially for the 
software itself. As Steven Peck explained to an individual concerned by Drupal’s lack of an intensive 



CHAPTER 35 ■  A CHAIN OF MANY UNEXPECTED EVENTS 

829 

fundraising initiative in a June 29, 2005 drupal.org forum reply, “Discussions are occurring. Stuff just 
takes time to do right.”21  

Days after the server crash, Dries’ July 14, 2005 drupal.org announcement of the plan to disburse 
the entirety of the fundraising windfall to OSL galvanized another round of public debate on the 
foundation issue. Folks expressing their concerns that none of the US$10,000 had been used to set up 
some sort of a foundation were assured (with varying degrees of politeness) that: 

1. Money had indeed been located for the purpose of creating some sort of not-for-profit-
entity, in the form of promised matching funds (to be delivered when needed).  

2. It was a deemed wise to hand all of the server donations over to a third party (which 
incidentally did, unlike Dries, hold not-for-profit status) that would spend the 
money on servers and hosting because that was what donors expected their money 
to be spent on, and issues of fiscal responsibility can become hazy when solicited 
donations are sitting in a private individual’s account, no matter how trustworthy 
and dedicated that private individual may be. 

3. Members of the Drupal community with very personal stakes in the matter had 
already been working on this complex issue, doing careful and extensive research, 
and would continue to work on it until a satisfactory solution could be reached.  

In other words, funds were not the main issue. The undisclosed amounts promised by Advomatic, 
CivicSpaceLabs, Google, and Packt Publishing would be sufficient to cover costs; the main issue was the 
scope of the task. To proceed, the Drupal community had to come to some sort of internal consensus as 
to what it needed and wanted—and perhaps more importantly, did not need or want—from a 
foundation. As Chris Messina (factoryjoe) pointed out in his July 14, 2005 drupal.org comment 
“Regarding the Drupal Foundation,” in addition to “scoping out various legal service providers,” another 
priority was “looking into the vast open source community for ideas, opinions, and other helpful insights 
into how to do this right—there’s no sense in reinventing the wheel if we don’t have to!”22 

DrupalCon Portland 2005 (a free conference from August 1-5 held alongside the O’Reilly Open 
Source Convention in Portland, Oregon) provided the venue for a roundtable discussion about needs, 
wants, and concerns regarding a Drupal Foundation. OSCON itself provided a venue for picking the 
brains of those involved in the formation of other FOSS Foundations. Boris Mann’s drupal.org News 
and Announcements post “DrupalCon Portland 2005: Drupal Foundation meeting” summarizes the 
takeaways from the meeting as follows: 

“Some examples of needs include: 

• Ability to accept and give out funds 

• Hold assets (e.g., servers and other hardware) 

• Bookkeeping to track funds and how they are spent 

A selection of the group’s thoughts on goals for the Drupal foundation: 

• Attract more users and developers 

• Provide server infrastructure for related projects 

                                                

21 Drupal, Comments on “Why does drupal.org choke so much?”, drupal.org/node/25982#comment-45105  
22 Drupal, Comments on “Why does drupal.org choke so much?”, drupal.org/node/25982#comment-45105  



CHAPTER 35 ■ DRUPAL’S STORY: A CHAIN OF MANY UNEXPECTED EVENTS 

830 

• Manage Intellectual Property (trademarks, copyrights, licensing, etc.) 

• Fund developer meet-ups”23 

Later in the post, Boris mentions that Dries identified an additional goal—the creation of a funded 
position to lift the substantial burden of maintaining the drupal.org web site off the shoulders of the 
volunteers (Dries, Steven Wittens, etc.) who spent approximately eight hours a week on such 
housekeeping tasks. Incidentally, the same post also details the input from a community member who 
felt that the formation of a foundation was not a necessary step: 

“Kieran...had a more pragmatic view. The Drupal community has figured out how to 
get money, we’ve got a great ecosystem that can come up with solutions on the fly. 
With free hosting from OSL and a great set of server infrastructure, we’re fine as we are 
now. 24 

- Boris Mann 

■ Note Boris is referring to Kieran Lal, a.k.a. Amazon (drupal.org/user/18703), the then Development Manager 
for CivicSpace who would go on to serve on the Drupal Association’s Board of Directors every year from its 

inception to the current day, first as Fundraiser and then as Director of Business Development.  

Now we skip ahead almost a full year to June 25-30, 2006. While it may seem like a long time to let an 
issue sit, keep in mind that Drupal does not and has never stood still; the same people who were 
discussing options for a foundation also had day jobs to work, code to write, bugs to fix, and Cons to 
organize and attend (and, in Dries’ case at least, a fiancée to marry)25. 

About a month and a half after the official release of Drupal 4.7, Dries announced on his blog 
buytaert.net his intent to continue his research into questions of community infrastructure by picking 
the brains of “some of the smartest people in the FOSS and Internet community.” The itinerary for Dries’ 
“Drupal road trip to San Francisco” included personal meetings with Tim O’Reilly (Founder and CEO of 
O’Reilly & Associates), Chris DiBona (Open Source Programs Manager at Google), Mitch Kapor (Co-
Founder of Lotus-1-2-3, Founder of the Open Source Applications Foundation, Co-Founder of the 
Electronic Frontier Foundation, and Chair of the Mozilla Foundation), Jeffrey Veen (Co-Founder of 
Adaptive Path, Project Lead of Measure Map, and User Experience Leader at Google), Chanel Wheeler 
a.k.a. chanel (drupal.org/user/4733, Software Applications Developer at Yahoo!), Bradley Greenwood 
(Lead Software Engineer/Open Source Software Evangelist at Yahoo!), Janice Fraser (CEO of Adaptive 
Path), Guido van Rossum (Founder of the Python project and Google employee), Larry M. Augustin 
(Founder and CEO of VA Linux), Anders Tjernlund (Vice President of Support Services at SpikeSource), 
and Brian Behlendorf (Co-Founder of the Apache Foundation)26. 

                                                

23 Drupal, “DrupalCon Portland 2005: Drupal Foundation meeting,” drupal.org/node/28338  
24 Drupal, “DrupalCon Portland 2005: Drupal Foundation meeting,” drupal.org/node/28338 

25 Drupal, “Dries and Karlijn married,” drupal.org/node/55814  

26 Various. http://buytaert.net/drupal-road-trip-san-francisco, www.adaptivepath.com/about, 
www.linkedin.com/in/jeffreyveen/, www.linkedin.com/in/chanelwheeler, 
younoodle.com/people/bradley_greenwood 

http://buytaert.net/drupal-road-trip-san-francisco
http://www.adaptivepath.com/about
http://www.linkedin.com/in/jeffreyveen/
http://www.linkedin.com/in/chanelwheeler


CHAPTER 35 ■  A CHAIN OF MANY UNEXPECTED EVENTS 

831 

These discussions provided the starting point for months of intensive research by Dries Buytaert, 
Dries Knapen, and Steven Wittens. None of these individuals had any previous expertise in the field of 
international tax law, but (in classic open source fashion) they spent hours soliciting input from those 
who did. By September 2006, they had produced a draft of the statutes and by-laws of what would 
become the Drupal Association. 

But wait, aren’t we talking about a foundation? What’s this association? 
As a result of their research, one of the decisions that Dries Buytaert, Dries Knapen, and Steven 

Wittens made was to incorporate the Association in Belgium, rather than in the United States. Belgian 
law differentiates between an Association and a Foundation, and according to the Drupal Association 
FAQ, the most significant differences between the two are: 

• An Association is incorporated by several individuals, who agreed upon the goals 
of the Association after voting and discussion, whereas a Foundation can be 
incorporated by one person (or a small number of people)  

• When incorporated, the founders must bring in initial assets (funds) in a 
Foundation. This is not the case for an Association  

• An Association has members. A Foundation can’t have members, only a Board of 
Directors...In other words, an Association allows for a far more democratic 
operating mode than a Foundation....[and] therefore reflects the way a real (or 
online) community of people works to a much higher extent than a Foundation.27 

After some review and revisions of the draft by members of a mailing list created for this purpose, 
Dries used the venue of DrupalCon Brussels 2006 to publicly announce what had been accomplished.28 
Attendees of the session provided feedback, and the Association mailing list grew. In November, Dries 
Buytaert, Dries Knapen, and Steven Wittens selected the first round of Permanent Members from the 
individuals who had submitted their candidacies through this mailing list, which was the first step in 
establishing the membership of the Association.29 On December 7, 2006, The Drupal Association’s 
statutes were legally recognized by the Belgian courts,30 and on February 26, 2007, the formal 
announcement of the Association was posted on drupal.org and association.drupal.org.31 

So what did those statutes contain? After years of discussion, months of research, weeks of intensive 
work, and a constant flow of input from the community, what did three tech-geeks with little to no 
experience writing legal documents manage to come up with? 

In short, they managed to come up with a structure that ensured that control of Drupal would 
always be in the hands of those who work to create it, and that those same individuals would not have 
their time and energies diverted from improving the project to carrying the burden of administrative 
duties.  

As the Association is very careful to make clear, “The Drupal Association has no say in either the 
planning or development of the Drupal open source project itself. The Drupal Association could, 
however, do any of the following: 

                                                

27 Drupal, FAQ, association.drupal.org/about/faq  

28 Google video, DrupalCon, 2006. video.google.com/videoplay?docid=7038940559530825104  

29 Drupal, FAQ, association.drupal.org/about/faq  

30 Drupal, “Announcing: The Drupal Association,” association.drupal.org/node/71 

31 Drupal, various announcements, drupal.org/node/122835, association.drupal.org/node/71, 
association.drupal.org/node/87  



CHAPTER 35 ■ DRUPAL’S STORY: A CHAIN OF MANY UNEXPECTED EVENTS 

832 

• Accept donations and grants.  

• Organize and/or sponsor Drupal events, and represent the Drupal project at 
events.  

• Engage in partnerships with other organizations.  

• Acquire and manage infrastructure in support of the Drupal project.  

• Support development by awarding grants or paying wages.  

• Write and publish press releases and promotional materials.”32 

The body of members who vote on these issues (Permanent Members, who together make up the 
General Assembly) are differentiated from the body of members who pay dues in support of the 
Association (Admitted Members), ensuring that an inability to afford membership dues does not make 
one ineligible to take part in the decision-making process.  

The statutes and bylaws also clearly define and restrict the role that corporations, companies, and 
other “legal persons” are allowed to play in the Association. While corporations and companies may 
purchase memberships and so become Admitted Members, they are explicitly barred from having voting 
rights in the Association’s decision-making body, the General Assembly. If, however, they have the 
recommendation of a member of the General Assembly, a corporation or other legal person can become 
an Advisory Member. While Advisory Members aren’t allowed to vote, they are allowed to attend 
meetings of the General Assembly and...well...advise.33 

This setup allows business entities in the community to stay informed of the issues being discussed 
by the Association, and for the voting members of General Assembly to receive informed input from 
those business entities, without the possibility of a commercial interest controlling the award of 
Association contracts, grants, or wages. Additionally, the Board of Directors is given the right to deny 
admission to any entity applying for Admitted Membership “if in the judgment of the Board of Directors 
there is evidence that the actions, ideas/views/beliefs, and/or motivation of the new member applicant 
are adverse to the Association’s interests,”34 and at any time, “an Admitted Member can have his/her 
membership terminated by simple resolution of the Board of Directors.”35 

For Permanent Members, the process of admission (and termination) is more democratically 
arranged. To become a Permanent Member, an individual must be recommended by someone who is 
already a Permanent Member. Once the individual has their recommendation, they then send an 
application to the President of the Board. The General Assembly votes on whether or not to admit the 
applicant; if two-thirds of the Assembly agree, the individual is accepted as a Permanent Member. As the 
name suggests, there are no terms for Permanent Members (“Permanent membership has an unlimited 
duration.”) but Permanent membership can be revoked by a two-thirds majority vote of the General 
Assembly.36 

                                                

32 Drupal, About page, association.drupal.org/about/introduction  

33 Drupal Association Statutes, 1.3.1 Article 10, association.drupal.org/system/files/statutes-en.pdf  
34 Drupal Association Internal regulations 1.2.3 Article 4, association.drupal.org/system/files/internal-
regulations-en.pdf  

35 Drupal Association Statutes 1.2.4 Article 8, Section 3, association.drupal.org/system/files/statutes-en.pdf  

36 Drupal Association Statutes 1.2.3, Article 7, Section 3 & Section 2 association.drupal.org/system/files/statutes-
en.pdf  



CHAPTER 35 ■  A CHAIN OF MANY UNEXPECTED EVENTS 

833 

 

Figure 35–5. Drupal Association Internal Regulations ➤ Membership ➤ Admission and Duties 

The General Assembly also votes (by open ballot) on which of their number gets elected to the 
Board of Directors. Any Permanent Member seeking a position on the Board must submit an application 
to the President listing their motivations and proposed contributions. If the candidate receives approval 
in a two-thirds majority vote of the General Assembly, they are then officially a Director, though it is the 
rest of the Board—not the General Assembly—that votes to determine which Director fills which office. 
In other words, the Assembly cannot vote a President into office, but only someone that the Assembly 
has approved has a chance of becoming President of the Association.37 

The Story Continues  
As stated at the beginning, the history of Drupal is much more than covered here. Among other things it 
includes the commercial growth of Drupal, the evolution of Drupal as enterprise-level software, and the 
development of Drupal 7 implicit in this book. Drupal is an absurdly chaotic system that produces 
bizarrely functional results...just like nature. Yet it is not completely random; the events recounted in 
this chapter suggest that key actions affecting Drupal's ecosystem have helped the success the Drupal 
community has enjoyed. Moreover, it is evident that this growing software project remains open to 
having the course and breadth of its history altered—perhaps by another typo or server crash, perhaps 
by you. 

Note Discussion, updates, and related material for this chapter can be found at dgd7.org/history.  

 

   

                                                

37 Drupal Association Statutes 1.4.2 Article 18 & 1.4.3 Article 19, association.drupal.org/system/files/statutes-
en.pdf 



C H A P T E R   36 

■ ■ ■ 

835

Now You’re in Business: 

Making a Living with Drupal 

by Allie Micka 

You’re ready to strike out on your own and become the next Drupal rockstar! There’s plenty of work out
there for experienced Drupal developers, and this book has armed you with the technical foundation
you need to get started. To make a living, you just need to find people who are willing to pay you to do
some work. Then you do that work and you get paid. It really is that simple! 

Yet many new Drupal developers find themselves struggling with miscalculations and feel
unprepared when things get complicated. For the first few projects, many Drupal developers feel that
they are barely earning enough to hang on, while their clients or managers are increasingly disappointed
that the promise of a Drupal web site just isn’t panning out. 

We want to prevent this, which means we want to plan carefully, involve everyone who should be
part of the process, and work together to make each project the next Drupal success story. As you work
with Drupal’s strengths and leverage the community, you might even find yourself working as a
contributing member of Drupal itself. 

Building a Drupal Site: New Rules for New Technologies 
Drupal introduces a lot of functionality right out of the box and allows an experienced administrator to
accomplish a lot with minimal effort. This power and flexibility are often misinterpreted as “Drupal will
do everything I need without any effort at all.” Perhaps it sounds silly to put it that way, but we’re all
capable of falling into the trap of assuming too much. And when inflated expectations collide with a
developer’s inexperience, the results can be disastrous. 

By contrast, a successful Drupal project is a collaboration between clients and developers that lets
everyone focus on their strengths. By recognizing this collaboration and planning to work together on
common goals, an experienced Drupal developer really can do a lot with a little and build a solution that
works well for many years to come. 

“I Hate Drupal:” Things That Can Go Wrong 
It takes a lot of character to figure out what you need to learn and apply yourself to figuring it out. My
day job involves helping developers and site owners become self-sufficient Drupal users. Many of our
clients are just getting started and want to start on the right foot, while others are ramping up their skills
for challenging new tasks. Unfortunately, we also encounter many Drupalers who open the conversation
with, “I hate Drupal.” 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

836 

We hear this sentiment from both developers and site owners who feel they have a Drupal mess on 
their hands. It’s an over-budget, overdue, overwrought enigma that just doesn’t do what it’s told. There 
are common themes to this disappointment, such as: 

• Drupal is complicated 

• A Drupal site is expensive to upgrade and maintain 

• I can’t find out where to get support 

• Drupal developers are expensive 

• My developer vanished! 

The frustrating situations that developers and clients encounter stem from applying old 
assumptions to a new technology. They find themselves working against Drupal rather than leveraging 
its strengths. Sometimes it’s just too much and an under-experienced developer, confronted with a 
client whose expectations are set high, switches into an avoidance mode and bugs out. 

Let’s try and avoid that! 

Understanding Drupal 
It’s easier to harness Drupal’s power when you approach a Drupal project with a clear understanding of 
what it provides out of the box and what’s required to build upon it. The first step to sidestepping a 
problem project is developing this understanding so that you can see the warning signs when a client is 
making some dangerous assumptions. 

Drupal and “Done” 
If you were to build a fence around your yard, your first step would include taking measurements and 
selecting the material. You can figure out how long the installation will take based on the first few 
sections or, better yet, a professional fence installer can provide a more accurate estimate based on how 
long it takes take to dig the required number of posts and complete the project. The more experience 
your professional has, the more deftly they can avoid obstacles such as rocky patches of ground or gas 
lines. The end result will probably match what you pictured in your head before you began. 

Historically, software and web development could be predicted by similar mechanisms. Starting 
with an empty field, a list of requirements presents a series of sections to complete. You select your 
materials—or programming language—and begin the process of writing function after function, file after 
file, and page after page until the functionality matches the requirements. It’s certainly predictable to 
work this way, but it can also be much more costly and repetitive, and the end product will not change as 
new technologies become available. 

Over the years, developers have created programming libraries, methodologies, and frameworks 
that aim to reduce repetition. Drupal can be considered a framework, and one of its goals is to reduce 
coding repetition to zero. Extend the fencing analogy to a Drupal project, and it might look like 
something out of a futuristic show like the Jetsons (let’s pretend they had yards to fence in!). With the 
push of a button, a magical robotic fence unfolds before your very eyes, and in just a few seconds you’re 
done! Or are you? 

What Does “Done” Mean? 

Drupal lets you point-and-click your way to new functionality. And because so many people use and 
support Drupal, there’s a good chance that it’s community-tested and will work well for your needs. 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

837

However, the functionality that exists may not match the specific image that a client pictures in his head. 
For example, when the client says, “I would like a forum on my web site,” he has a picture in his head of 
a forum he has used on a forum-centric web site. He is imagining e-mail notifications, quality ratings on 
each comment, and little animated smiley faces that automatically appear when you type “:)”.  

His developer hears, “I would like a forum on my web site,” and she remembers that Drupal 
includes a forum module right in its core distribution. Since there’s no need to research or download any 
modules, she estimates that adding a forum to the web site will take just one hour. But the client is 
deeply disappointed when he sees the result of this effort. “Where are my smilies?” he cries!   

While it’s still possible to deliver something that matches the client’s expectations, it will take much 
longer than the budgeted hour and will require many more modules, configuration changes, or custom 
theming. Someone must pay for this time. Perhaps the developer will end up working for minimum 
wage on a fixed bid, or maybe the client will cover the changes and his budget expectations are 
shattered. The process of making things right is founded on disillusionment, and everyone begins 
thinking that Drupal isn’t all that it’s cracked up to be. 

What Does “Done” Look Like? 

Imagine what might happen if you carried a photograph of your favorite dish into a well-regarded 
restaurant, insisting that the chef prepare something that looks exactly like the picture. By rejecting the 
chef’s culinary expertise you’re adding unnecessary complexity and you’ll probably end up with an 
inferior meal. This is what happens when design expectations are set by a graphic artist or business 
analyst who is not experienced with Drupal. The client may fall in love with mockups that present a 
specific aspect of a design, layout, or workflow that is different from what Drupal provides out of the box. 
The result of this is can be a costly customization project. 

Does this mean that Drupal is generic, boring, or inflexible? Not at all! It’s always possible to season to 
taste by re-theming or restructuring the out-of-the-box functionality to meet your goals. However, you can 
sink a lot of time and money into chasing a specific mental picture when your goals might be addressed 
just as well—if not better—by leveraging what’s already available and then building on top of it. 

Drupal will never be as predictable as building something from scratch, but that’s a good thing. You 
can leverage the experience and track record of thousands of people who are working on goals that are 
in common with yours, and you can profit from ideas you would never have thought of on your own.  

Content Needs Managing 
It was easy to draw a line between “webmaster” and “client” when a web site could be approached as a 
compartmentalized work effort. We could collect the content in various documents and files, put it up 
on the site, design some appealing graphics, and get the go-ahead from the client when it’s ready to 
launch. A client’s role was relegated to providing documents and confirming that they look right. 

Drupal’s biggest strength is that it allows the client to become a contributing editor, content 
manager, or even a site administrator, limited only by his time and inclination to become acquainted 
with the details. With these new job titles come new skills and responsibilities that kick in well before the 
site goes live. If these roles are important after launch, then the people filling these roles are important 
during the development cycle. That’s a pretty big change from the old way of doing things. 

Control over a site is a good thing, because it means current content and the autonomy to make 
changes without hiring a developer. And while Drupal gets easier and easier with each new release, you 
can’t expect to have total control without learning at least a little bit. Unfortunately, developers often 
forget to acknowledge the learning curve of their clients. They don’t always account for the time it takes 
to develop a foundation of knowledge and don’t include the post-launch support necessary to keep 
things running smoothly. This can leave a client feeling left in the dark, resenting Drupal rather than 
embracing their newfound powers. 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

838 

“Now I’m Hiring Rock Stars?” 
We often hear that Drupal takes a “building block” approach to site building. An experienced Drupal 
developer can point and click her way to victory, developing complex business applications without 
opening a text editor. This has obvious benefits: nearly anyone can advance to this skill level, including 
people who have an intimate understanding of a particular field or business process. 

The big secret is knowing where to point and what to click on. Which modules should be 
downloaded? When should you open a text editor? You can’t just turn on a module that works as 
advertised; you’re often tasked with weaving together a whole bundle of modules just to perform one 
simple task. This idea is foreign and intimidating to new users, including new developers who make a lot 
of rookie mistakes and create some expensive Drupal messes. 

Experienced Drupalers can get expensive, but that’s usually because they’re offsetting a lot of time 
spent sharing best practices and improving Drupal itself. I have seen countless projects where a single 
well-trained Drupal developer was able to develop an application in a matter of weeks, replacing an 
existing solution that cost millions of dollars to build. 

This applies to small and large projects alike. Consulting with a trusty Drupal guide, if only for a few 
hours, can prevent a lot of drama while helping you see possibilities you couldn’t have imagined. 
Fortunately, it’s getting easier to prosper from sage advice. With more books, more training materials, 
and a variety of “prepackaged knowledge” in the form of distributions, it’s even easier to find your way. 

Drupal Does Things You Don’t Care About 
When you’re under deadline it’s incredibly easy to lose sight of the fact that in most cases, you’re going 
to be responsible for the care and feeding of the project for a long time. After adding up the perceptions 
that Drupal is difficult to grok, expensive to customize, and requires special training to operate, many 
developers and site managers run for their do-it-yourself frameworks and custom solutions. 

With that in mind, the fact that the Drupal community is working to add more bizarre-sounding 
technologies to the mix, perhaps it sounds like more of a liability than a boon. But all technologies were 
bizarre-sounding before they became important. By the time RSS became an important means of 
sharing content, Drupal sites had been providing RSS feeds for years. And with well-structured content 
and nice-looking URLs, Drupal was SEO before SEO was cool. Clear separation between form and 
content has made it easy and affordable for many Drupal sites to work on phone technologies. When the 
next important web technology comes to the forefront, do you want to be using it or playing catch-up? 

Building on Drupal 
Most Drupal mishaps are based on the fact that some of Drupal’s biggest strengths are actually 
weaknesses. As developers, we’re responsible for the attitude that our clients develop, so it’s important 
to nurture a positive and forward-thinking attitude. Throughout each project, it helps to set expectations 
correctly by focusing on the short-term goals, long-term results, and accounting for the needs of 
everyone involved along the way. 

Start with Goals 
The biggest mistake any developer or client can make is in making assumptions about what’s possible 
without enough advance planning or research. Behind every “Drupal mess” is a project where the costs, 
features, and timeline was established without a clear recognition of the actual steps involved. Avoiding 
this is a matter of deferring your discussion on technologies, timelines, and tactics until you have taken 
the opportunity to sit down and have a goal-setting session. 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

839

The primary purpose of a goal-setting discussion is to determine what constitutes success. Try to 
stay away from descriptions of functionality, feature lists, or comparisons with existing sites. Instead, 
stick to the goals of the stakeholders for the site. 

Goals are: 

• Clear and descriptive phrases like extend our readership, increases sales, lower 
our production costs, or even launch in time for the holiday season 

• Not functional descriptions such as has a forum 

• Measurable through use of statistics, sales numbers, or by other trackable 
mechanisms 

• In priority order. Costs, timelines, and features can be goals, but you should 
identify the priorities of each, and recognize that you can’t always have everything 

Before deciding on the time, scope, and cost trifecta, a developer takes the client’s stated goals and 
the available resources to produce a doable plan. It’s important to include the developer at the goal-
setting phase, not after all of the tactical decisions are made. Because Drupal brings a lot of tools to the 
table, an experienced Drupal guide can match technology choices with the stated goals. This is much 
more cost effective than trying to force-fit a requirement into a Drupal site. Best of all, the developer can 
suggest solutions that sound difficult and expensive but are actually quite simple for Drupal. 

Acknowledge and Support Different Participants 
Adding a blog to a site is a small technical feat, but generating regular and insightful blog posts can be a 
full-time job. If your bloggers encounter barriers or feel that they don’t have adequate training and 
support, they may not feel confident to post new content. If fostering community was the goal you 
identified during your planning phase, a good Drupal execution may fail to satisfy that goal. 

By contrast, the more an author or site owner understands Drupal, the more he can contribute ideas 
or articulate his needs in a way that works well for Drupal. Functioning is a liaison between people and 
technology; it’s your job to help people who can contribute content understand where they fit in. 
Wherever possible, these people should be part of the planning, development, and post-launch strategy: 

• Provide some functional demonstrations with real-world projects similar to your 
client’s site, allowing participants to see how their needs might be translated to 
Drupal concepts. 

• As part of the goal-setting process, consider the input of everyone who may 
interact with the end result. 

• Create a plan that reflects the time and willingness of all participants to work on 
the project. 

• Avoid bottlenecks by ensuring that everyone who needs to contribute can set 
aside the time and resources required for ongoing participation. 

• If appropriate, consider including participants during the implementation 
process. For example, have a content manager help create new sections as part of 
an import process, or have content authors practice editing posts before launch. 

What if this is overkill? The key to success is not making people take a class they don’t want to be in, 
it’s understanding what human resources are available and how those resources can be applied to 
project goals. It’s just as valuable to know that there’s limited time or willingness to participate in 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

840 

discussions, training, and ongoing content management, and there’s nothing wrong with scaling back 
their involvement as long as that’s not in conflict with stated goals. 

Make Sustainable Choices 
Along the way we’ve learned that hacking core is bad and that supporting modules with patches and 
feedback is good. Why spend the extra time? Because sticking to common best practices ensures that the 
site will work without surprises and that it can be supported by the developer, or any other qualified 
Drupal developer, for a long time to come. 

Custom code and workarounds, while often necessary for quick delivery, add to costs and ultimately 
draw attention to the fact that the original developer just didn’t know how to complete the project 
without compromising ongoing maintenance. This is partly why people blame Drupal for being 
inflexible and expensive to maintain. 

Assuming that you are approaching this from a goal-oriented perspective, how do your technology 
choices affect the stated goals of the project? Perhaps a quick hack can help you launch in time for the 
holiday season but stymies a Drupal 8 upgrade or raises the cost of maintaining the site in the long run. 
It’s not always the wrong choice to implement that hack! But by asking your client whether it’s OK to 
trade short-term work for long-term return on investment, you’re allowing them to help decide which is 
the most important. 

However, before trading ongoing sustainability for short-term results, the first step is to make sure 
that there really is no better way. Before engaging in hackery, ask via IRC, post a forum question on 
drupal.org, research what you can by searching for blog posts, or consult with someone who may have 
more experience in the situation. 

There is no reason not to avail ourselves of the abundant resources offered by the Drupal 
community. Learning how others do things and sharing what we learn along the way is something that 
helps us all do our jobs better. But bad judgment based on lack of research is useful to nobody. 

Understand the Economy of Community 
When a feature is missing from a module or Drupal itself, it’s possible for anyone to support the addition 
of that feature. This often means paying the module maintainer to add it, which is great for Drupal and 
helps to guarantee that it’s done on your timeline. If that’s not possible, you can also make a lot of 
progress by providing clear documentation of your request on drupal.org, answering questions in the 
issue queue and testing patches to free up the maintainer’s time, or contributing code of your own. 

This is what makes Drupal amazing, as each small contribution affects an increasingly large group 
of users. If a module has 100 users, then each fix, feature, or piece of documentation can immediately 
impact 100 people, and, perhaps, make the module useful to 100 more. The next round of improvements 
is now exposed to 200 people, further expanding the pool of potential contributors. Drupal is free to 
download yet extremely powerful because each small effort is expanded exponentially. 

Forgetting that these possibilities exist makes it seem that certain things are just broken or missing 
without any recourse. Browsing the issue queues throughout Drupal.org, it’s common to find questions 
like, “When will this be ready?” or “Why won’t someone fix this problem?” Ask yourself how you might 
respond to demands that you work on someone else’s goals and schedule, without any pay, and you 
realize that complaining is a pretty weak mechanism for getting things done. 

Whether you’re expecting to use Drupal to get paid for delivering a project, or planning to rely on a 
Drupal site to lower costs or increase revenue, it’s a cost-effective investment to support its developers 
and contribute to a long and healthy future. 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

841

Consider Long-term Support and Growth 
As cliché as it sounds, a Drupal project launch is not the end of a development project, it’s the beginning 
of a thriving online resource. Depending on the site’s goals, there may be an active community of users 
to nurture, features to add, and content managers providing new information and resources. This will 
fail if nobody knows how to nurture a community, add a feature, or provide new resources. 

To a developer who lives and breathes Drupal each day, it’s a disappointing surprise when the client 
doesn’t just pick the site up and run with it. Including an informal training session as part of the site 
delivery will help by making the client feel more at home and give them a safe place to ask “dumb” 
questions. Depending on the skills and requirements of the site contributors, a training session may last 
a few hours, or even a week or more. Also make sure that you’ve made arrangements for handling 
questions and additional support as new questions arise. 

Ensuring Your Success 
Understanding the needs of a Drupal project and approaching it from a goal-oriented perspective are 
the first steps toward becoming a happy Drupaler, no matter what you choose to do with it. There’s 
nothing worse than getting caught in a project that is over-budget, over time, or impossible to deliver. 
Preventing this means setting aside the resources you need to plan carefully and making sure you can 
get help when you need it. 

If you’ve gotten involved in the local or online Drupal community, you’re already halfway there. 
Approaching each project with the time, thoughtful consideration, and respect for those who have gone 
before you will help ensure that you’re moving your projects, your career, and possibly even Drupal itself 
forward. 

Create a Process 
As a Drupal professional, each project you work on builds on your expertise in harnessing Drupal’s 
flexibility, community support, and growth for ongoing success. Documenting your findings as a well-
defined process provides a repeatable plan of action that you can use to help others find their way as you 
introduce them to the new mindset. 

Some developers define a very rigid process. Before they begin, they develop an immutable feature 
list and identify specific costs, check-off dates, and milestones. Before a project begins, the client has a 
clear understanding of exactly what will be included in the project, what it might look like, and how 
much it will cost. This works well for small projects because it’s predictable for everyone and easier for 
the client to understand and buy into. 

Other developers prefer a more agile process where milestones and check-in meetings are 
established, and the option to make changes based on new findings is always available. This process 
works well when there are many participants or other variables that make it difficult to predict the 
outcome. It’s also possible to deliver a product that’s better than what was imagined at the beginning. 
This requires a willingness to trade a clear up-front picture for the best possible outcome. 

The specifics of your own process are based on how you work best, the nature of your projects, 
client expectations, and epiphanies you’ve had during your own trial and error. It doesn’t matter how 
structured or how loose your process is as long as everyone has a clear understanding of expectations—
and those expectations are being met.  

It’s easy to forget how confusing Drupal is when you’re just starting out, but a documented process 
can help clients and collaborators feel like they’re on solid ground, engaged in the project, and working 
with a clear understanding of what’s next. Tips for making this work include: 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

842 

• Start and end with project goals: Include a goal-oriented planning session at the 
beginning of the project, and schedule check-ins throughout the project to make 
sure those goals are reflected. It’s also OK to re-prioritize goals—for example, to 
defer the launch date for a killer feature—as long as everyone agrees on the new 
parameters. 

• Keep your clients involved: This is deceptively challenging because it’s so easy to 
assume that clients know what you’re talking about. Make sure there are regular 
meetings or check-in sessions, and, if the project is large enough, dedicate a 
project manager to the task of organizing these meetings. Most importantly, 
ensure that everyone has the proper foundation of knowledge to feel that they can 
make informed decisions or participate as appropriate. 

• Make sustainable choices: When a client requests features or changes, it’s easy to 
forget what they really need in the interest of chasing what they’re asking for. If 
they want to make a change that will make it hard to maintain in the future, go 
back to the stated goals and make sure you’re in alignment. If not, communicate 
accordingly. 

• Build in some community involvement: If you require changes or “hacks,” be sure 
to file issues on drupal.org so that others may benefit from your findings, and any 
improvements you make can find their way back into the tools. This raises your 
Drupal karma and supports ongoing sustainability for tools you depend on. 

• Include a post-launch plan: If you don’t want to be on the hook for ongoing 
support and training, make sure you’re working with someone who can take on 
this role. If you do plan on sticking around, create a retainer agreement or 
maintenance plan. Think about how new technologies can benefit their goals, and 
consider creating a long-term upgrade strategy. Your client will appreciate the 
forward-thinking attitude. 

Adapt and improve as you go. After each project is complete, take some time to make an honest 
assessment of what worked well and what could be improved next time. Involve your clients if that’s 
appropriate, and include everyone who worked on developing the project. 

Budget Your Time 
Many full-time Drupal contractors and development firms find themselves raising their rates 
significantly after their first few Drupal projects. This doesn’t mean that they’re raking in cash, it means 
they’re supporting an ongoing commitment to best practices, sustainable choices, and community 
participation that ensures that they’re staying on the right track. As we’ve learned thus far, this can save 
a lot of client money and time, so it’s actually a good investment. 

This chapter also highlights other time and planning variables, such as communicating what “done” 
means, working with the community, and coordinating with other participants on the project. The 
takeaway is that you should leave plenty of room in your development schedule to “measure twice, cut 
once” and at least doubling the amount of time you predict for a given task. 

Include learning time or community involvement time in the estimate, either by setting an hourly 
rate that allows you to spend less than 40 hours per week on client work or by doubling the time 
estimates to include these activities directly. 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

843

Leverage Existing Resources 
In addition to getting your foot in the door, building ties in the Drupal community provides you with a 
safe environment to ask questions, see how others are doing things, and get help if you need it. There are 
some additional resources that you can look to when you need an extra hand. 

Install Profiles and Distributions 

Drupal distributions are a way to hit the ground running with common functionality that lets your new 
site benefit from the research and hard work of people who already understand the needs of a certain 
niche audience. To the extent that a distribution is well-supported, its users can also benefit from a user 
community of like minds, a roadmap for the future, and support resources that pertain specifically to 
that configuration. 

If an install profile is a good fit for the goals of your project, it may be possible to provide something 
better than expected at a lower cost. You can visit http://drupal.org/project/installation+profiles to 
begin the process of looking for a profile. 

A Little Help from Your Friends 

It’s good to have an idea of who you can turn to when things get tricky, so keep some resources in mind 
from the beginning. It’s often a good idea to keep some experienced developers in mind so that you can 
consult with them to weigh in on different architecture strategies, recommend modules, or help you 
avoid potential pitfalls. 

Another good source for paid support is in fostering a relationship with the maintainers of the 
modules or solutions you rely on. Who better to tell you the costs of adding a feature to a module than 
that module’s author? Supporting the module maintainer also helps to secure the ongoing sustainability 
of the solution, which means it’s more likely to be supported when you are upgrading to Drupal 8 and 
beyond. 

Working with an experienced developer or strategist may mean budgeting a higher rate for a small 
portion of the project, but it is usually well worth it. An hour’s worth of insight could save thousands of 
dollars in workarounds and restructuring. 

Building Your Drupal Career 
If the rules for planning, developing, and supporting a Drupal site have changed, it’s no surprise that a 
Drupal developer’s career reflects a new approach. I have painted a picture of how well-managed Drupal 
projects are structured, highlighting the many roles you might fill throughout the planning, execution, 
community participation, and ongoing support of a Drupal project. 

A successful developer doesn’t need to wear every hat, but she does need to know which roles she 
can excel at and when to rely on others. This means that you have the freedom to choose to do what 
makes you happiest and focus on that. It also means that you should be aware that you may need to fill 
in the gaps from time to time. 

Finding Your Place 
The first thing is to figure out what “making a living” would look like. If you were happy and successful 
beyond your wildest dreams, what would you be doing with your time in Drupal? There’s a place for 
writers, marketers, business analysts, designers, activists, architects, coders, and trainers. Most Drupal 

http://drupal.org/project/installation+profiles


CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

844 

sites, even the smallest ones, are more successful when these personalities are involved in both 
development and long-term maintenance. 

Figuring out which roles you want to occupy will help inform your processes and identify where you 
might seek help and participation. For example: 

• If you have a good understanding of business processes or the nuances of a 
specific industry, you might make a great analyst. Your job would involve 
developing the goals of a project and making sure that Drupal fits the bill. 

• If you’re great at communicating technical concepts, well-organized, and able to 
keep people motivated, the project manager job title may be in your future. You 
can help rally the project participants and make sure that everyone has what they 
need to keep moving ahead. 

• If your strength is as a designer, you will want to consider looking for some 
advanced support or partnership resources with someone who is more technical. 
This will help you avoid the pitfalls of thinking that something will be easy and 
then getting caught in a project over your head. 

• Similarly, approaching your projects from a more technical background may 
hinder your capacity to find and work with clients who require more “flair.” If you 
find a designer you can trust, you can throw yourself into learning as much as you 
can about the inner workings of Drupal. 

• If you’ve got good people skills and want to provide ongoing support, you can 
consider becoming a trainer or support provider. 

It’s also smart to think about the size of projects and the team you’d like to work with. A single 
Drupal expert can fill every role and launch an impressive site in no time at all. Other projects are on 
behalf of large organizations with many participants and resources of their own, where each function is 
managed by an entire department. 

If you’re the type of person who wants to have a lot of influence over a project, you might be 
happiest as an independent contractor or as part of a small team or company. If you thrive on large 
projects with a lot of complexity, you might find yourself fitting in as part of a larger Drupal team. 

Getting Yourself Out There 
Whether you’re striking out on your own, on a job hunt, or staying put and ordering “Drupal rockstar” 
business cards, you’re never on your own. The first order of business is to get involved in the community 
so that you have a stable foundation. You’ll immediately benefit from the sage advice of people who 
have been there before you, and you’ll begin to form a network of people you can turn to before things 
get challenging. 

Perhaps the most important aspect of all is that you’ll be putting yourself in front of potential 
collaborators and employers. Anyone who appreciates the successful outcome of a sustainable, 
community-oriented development process will be impressed that you’re actively contributing to the 
Drupal ecosystem. 

User Groups and Local Communities 
Hopefully by now, you’ve already become part of the community at drupal.org. This is an important way 
to build your credibility while getting what you need from the community. If you want more hands-on 
assistance, participating in user groups are a good way to learn from people who want to share a 
discovery that might help you, or to impress people (and find work) when you have expertise of your 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

845

own. In addition to training and documentation, user groups are where we all learn about the best
practices you’re always hearing about. You can find a local user group for your area by visiting
groups.drupal.org and searching for your location or interest. 

Community involvement is what you make it. If you’d like to get something different out of a group
or community, consider what you can do to improve the resources: 

• If the topics are too basic or not covering what you want to learn, suggest meeting
topics, sprints, or additional learning groups that fit your needs better. You’ll be
sure to attract some like-minded people. 

• If you prefer a different format for meetings, suggest an alternative format. In
Minnesota, we have three monthly meetings for Drupalers: a general meeting, one
for e-commerce topics, and a social happy hour at a local bar. Each of these is
organized by a different person, and each attracts a different audience. 

• Suggest the group to friends, associates, and other people who might not already
know about it. Not everyone will be interested, but it’s good to attract fresh faces
and fun to hang out with people you already like. 

In all cases, keep your communication open and positive and build on the existing resources. The
goal should be to enhance the local community so that it better meets your needs, while still
acknowledging the effort that others have invested. 

Conferences and Camps 
DrupalCon is very different from a technical conference where each presentation is a sales pitch from a
product representative at a big company. Instead, each session you attend at DrupalCon is presented by
the author of a module you depend on, a leader of the community you participate in, or a company who
is helping Drupal thrive. This is an important way to keep your finger on the pulse of the Drupal
community while you learn about new modules and solutions, find out what’s under the hood of big
Drupal sites, optimize your business, and meet new friends and collaborators. In short, it’s extremely
valuable to attend a conference and valuable for clients to know that you’re keeping up with technology
so they don’t have to. 

Meanwhile, the discussions and sprints that take place at DrupalCon define the ongoing direction of
Drupal itself, and each attendee can choose whether to watch, learn, or get involved in helping to make
positive changes to Drupal and its community. You might attend DrupalCon as a spectator, believing
that you have nothing to contribute. All of a sudden, you might find yourself acting on your opinions of
how something could be done better. This transition, from spectator to contributor, is how Drupal gets
built. 

Travel time and conference fees are often prohibitive, but fear not! There’s a growing movement of
local “camps” that also offer speakers, working groups, and hands-on learning opportunities. But camps
are smaller and local to a particular region. Participating in a camp near your own hometown is a great
way to stay in the loop, and you can often get information that’s even more relevant or in-depth than
what’s at DrupalCon. Because Drupal is everywhere, you might also have some important module
developers in attendance at a local camp. 

“Think Drupal, Act Locally” 
Don’t forget what Drupal is for in the first place: Connecting people with a message with tools to put that
message online. It’s just as important to find a community that surrounds your interests beyond Drupal.
For example, communities surrounding: 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

846 

• Hobbies such as politics, church groups, sporting or outdoors groups, or just 
about any interest that strikes your fancy. 

• Industry or professional focus where you’ve already got passion or experience. 
This may include non-profit causes, specific industries such as real estate or the 
arts, or any other professional field. 

• Specific technologies that pertain to your specialty, such as graphics, social 
networking, database and programming technologies, ecommerce, semantic web, 
or content writing. 

• Communities that can directly help your business, such as groups for 
professionals, unions, co-working facilities, or professional development. 

You can find like-minded communities for just about any topic. It’s fun to think about how you 
might apply Drupal solutions to real-world needs while expanding your professional or personal 
development. Best of all, you’ll probably shine as the resident Drupal expert! It’s a great way to build 
confidence and may even lead to your dream job of working with Drupal and a cause that’s close to 
your heart.  

It’s tempting to get yourself over-committed by doing work on a volunteer basis for experience. 
Remember to treat every project with the same consideration for goal-oriented planning, ongoing 
involvement, and long-term thinking, especially an unpaid project that can fall off the radar because you 
can’t sustainably provide the time. Everything you learn about planning, expectations, sustainability, 
and ongoing involvement is doubly true for volunteer sites. 

Out on Your Own: Building a Drupal Business 
Perhaps you want to parlay your Drupal chops into a career by striking out on your own and starting a 
Drupal business, or you may be introducing a Drupal specialty to your existing business. After finding 
your niche, you’ll want to build a team that can help you keep things running smoothly for you and your 
clients. 

When starting out with small projects, it may seem silly to consider the notion of building a “team” 
to handle the development and long-term support. One person can often handle every role in a smaller 
project. But it’s crucial to consider that launching the site is not the end of the project but the beginning 
of an online Drupal presence. It will always be necessary to consider: 

• Who will upgrade the site by adding new functionality or by upgrading the site to a 
new version? 

• Who will provide content administration and long-term content control? 

• Who will make sure that the content administrators have the support and training 
they need? 

It’s good to think about all of this before you even begin your first Drupal project. New Drupalers are 
often surprised when they can’t just deliver on a project and effortlessly move onto the next paying gig. If 
long-term support is not in your future, consider finding someone to partner with so that you can 
sustainably take the load off yourself without leaving your clients hanging. 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

847

Building a Drupal Career 
With so much growth and the need to specialize, now is a great time to be in the Drupal job market. After 
figuring out where your interests lie, you might begin finding a new Drupal job or working more Drupal 
into your current job responsibilities. 

If you’re working as one of a few Drupal developers on your company’s staff, many of your job 
demands are the same as those of an independent contractor. You don’t have to take on all of the 
responsibilities associated with running a business, but as the onsite Drupal guru, you may find yourself 
answering for the ways that Drupal does things differently. This puts you in the role of resetting 
assumptions, establishing goals, creating a plan, and involving people throughout the process. Make 
sure that you’ve got the time, resources, and support of your company to make informed and 
sustainable choices. Doing things correctly and in a way that works well for the long haul can help make 
you an office hero. 

Alternatively, you might be looking at working as a small part of a large Drupal team, perhaps as part 
of a development and consulting team. Some of these companies prioritize sustainability, community, 
and good process, while others just want to crank out a lot of work. Part of your decision to work there 
will be based on whether they want to work the way you want to work, so be sure to ask about their 
process and decide where you fit in. 

Building Drupal: Making a Living as a Contributor 
The more we work with Drupal, the more we find ways that it could be better. Each new user brings a 
new perspective, a breadth of experience, and a new approach to solving problems they encounter along 
the way. The difference between a Drupal consumer and a Drupal contributor is nothing more than a 
willingness to share these insights, strategies, and solutions with the community at large. Sometimes a 
worthwhile contribution is nothing more than an insightful comment at a user group meeting. 
Sometimes it’s a substantial rewrite to a key part of Drupal. Large or small, each change is a permanent 
thread in the fabric of Drupal and its community. 

Contributing in this way is a rewarding way to help yourself while helping others. By solving your 
own problems in a public way, you gain access to new insights from people with common goals. All the 
while, you’re building your reputation, providing ongoing sustainability for your clients, and 
participating in the process of making Drupal more viable to more people. 

As rewarding as it is, the primary reason for not contributing in this way is lack of resources. Some 
developers have found a way to form a business model. The more we can support and identify these 
models, the better off we’ll all be. 

Benefits of “Giving Back” 
The words “giving back” carry the connotation of altruism and volunteerism. It seems pretty generous to 
take something you’ve earned money to build, or could have earned money to build, and just give it 
away for free. In fact, that’s a pretty silly business model: it’s not sustainable to “give” something that has 
value, so referring to it that way disregards a real business case. 

Doing What You Need to Do—but Better 
Before skipping to the “giving away” part of the equation, think about why you might write a module in 
the first place. Generally, your motive is to satisfy a specific goal; whether it’s performing a task more 
efficiently, connecting through a social network, increasing the participation of the community, or just 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

848 

staying online while your traffic soars. In short, your goal is not to give something away, the goal is to 
make something better for yourself. 

Software is uniquely beautiful because once you give it away, you still have it for yourself. You don’t 
usually benefit from hording the results of the effort you’ve expended to solve your own problem. After 
all, there’s no proprietary benefit to dealing with traffic, but if someone else with the same needs can 
provide feedback on their own experiences, you can benefit from their insights as much as they can 
benefit from yours. 

Participating in a Dialog 
Some broader efforts, such as usability, media handling, contact management, or integrating with 
remote systems, require a lot of effort. When Drupal handles these things properly, it’s a big win that 
attracts more users and will certainly help expand your business. But accomplishing any of these far-
reaching efforts takes a pretty big team, which you may not have at your disposal. 

The more you are able to communicate, participate, and drive an initiative that’s near to your heart, 
the more you’ll be able to influence the solutions that affect your business the most. Drupal affords every 
one of its users to take either an active or a passive role in this process. Each person who takes an active 
role, no matter how small, gets to influence the future of Drupal to suit their own goals. 

Community Karma 
In a relatively close-knit community like Drupal, it’s possible to tell who’s contributing and who’s merely 
consuming. If a module maintainer were to follow a link to the user account attached to a support 
request, what would she find? A series of issue comments that say nothing more than “subscribe” or 
meaningful comments and helpful patches? Most maintainers respond more quickly to issues from 
another contributor because of the possibility that they may get further assistance or contributions from 
that person—or just out of simple respect. 

Notoriety 
We all have our vanities, and some contributors “give back” for the sole purpose of being seen giving 
back. That works too, and having your name on a well-regarded module is a great way to publicly 
demonstrate your Drupal skills, while attracting clients who understand the value of supporting a 
contributing Drupal developer. 

Sustainability Counts! 
If we all started thinking that “giving back” to Drupal was nothing more than a volunteer effort with no 
tangible benefit, we would have a difficult time prioritizing it over our jobs, families, and other 
obligations. It would be bankrupt for everyone to assume that Drupal is about “getting stuff for free” and 
not advancing our own goals forward by using and supporting a platform that will help us continue to 
advance our goals in the future. 

There’s still work to do in this arena, since it’s rare for anyone to directly support a maintainer’s 
efforts. We typically prioritize our satisfying our own needs and those of our clients, perpetuate the 
notion that Drupal and its modules ought to be built, fixed, and supported free of charge, and forget to 
recognize when applying a small amount of resources might serve a long-term goal. 

The danger is creating a dependence on volunteerism. Sometimes that means that the most fruitful 
developers are those who have a lot of free time. For example, if a student writes a really great module 
during her free time, it doesn’t matter that she did it without any compensation, because she was happy 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

849

for the learning experience. Because she’s capable of writing such an awesome module, a Drupal firm 
snaps her up after she graduates. 

Her new employer probably wants her to continue working on the awesome module, but they’re 
tasked with keeping her gainfully employed. As long as nobody is willing to fund them for the module 
development, they need to keep her working on deliverables for paying gigs. Thus the developer’s day 
job is filled with client work while her free time is divided between Drupal, family, friends, and other 
hobbies. A crucial module loses the attention of a great developer, and that’s a big problem for people 
who rely on that module. 

As a community, it’s not practical to forgo functionality provided by this developer’s module, and 
it’s impolite to write her angry e-mails insisting that she give up her family time to work on it for us. 
While there may be 50,000 of us depending on this module, there’s currently no mechanism to request 
the tiny share that we could each contribute directly to sustain development. This will be a problem as 
long as the majority of Drupal users maintain the expectation that “someone” should fix or update the 
code completely free of charge. 

Potential Business Models 
I can paint a pretty bleak picture, but Drupal has managed to thrive over the years. This is because of the 
sheer leverage afforded by any effort put into Drupal. If one developer or end user invests half of what 
they might spend on a proprietary solution, they’ll benefit significantly more than if they went with that 
proprietary solution. 

Because of this, there are a number of indirect ways to support Drupal and open source, forming 
the rationale for contributing developers to help push Drupal forward for their own needs and for the 
rest of us. 

Convincing Your Clients of the Value of Contributing 
Most Drupal contributors support themselves through client development. In a most ideal scenario, that 
client is paying directly for the time that the developer spends on contributed code. This is in the client’s 
best interest for all of the reasons listed as benefits of “giving back.” Community contributions can make 
the tools you’ve built for them work better with less investment than having you write something 
proprietary. 

Take, for example, a web site whose goal is to increase sales. The client pays to build a solution that 
provides product recommendations whenever a visitor makes a keyword search. If you introduce the 
idea of releasing this feature as a module, the client may express some concern over “giving away the 
farm,”—or putting their competitive advantage into the hands of competitors, who may use it against 
them. 

But let’s revisit the goals of the site, which are to increase sales, not to become a company that 
maintains software. If that module is available to others, someone on Drupal.org might suggest a fix that 
enhances the search algorithm. Another user might uncover and fix a security hole that puts the site’s 
visitors at risk. The original client benefits from each of these improvements, increasing sales and 
consumer confidence along the way. When it comes time to upgrade to Drupal 8, there’s help on 
developing and testing an upgrade path. Thus, the client can continually advance and gain new sales-
improving features with far less effort than carrying the development load in-house. 

Contrast this with a one-off module that stays proprietary. Security holes and bugs are brushed 
under the carpet because nobody will see them anyway, and the client is faced with paying the developer 
for every change and fix. The functionality is now a barrier to growth because the entire cost of its 
maintenance is borne by that client. 

It’s not always easy to make the case for having clients pay you to write open source so that they can 
give their secrets away, but if you started with a goals-first development process, it’s possible to show a 
savvy client how to leverage Drupal.org to further his needs. 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

850 

The “Development Plus” Model 
Something that “works well enough” for the client is often cheaper than something that can be 
contributed and supported. In these cases, it’s difficult or even senseless to try and contribute code to 
Drupal.org. However, after participating in several projects, a Drupal developer begins to fantasize about 
projects that would streamline his process, improve upon her clients’ experiences with Drupal, and 
make it possible to do more with less in overtime. Effectively, this makes the developer the consumer, 
and she begins contributing code that would “scratch her own itch.” 

Before the CCK module existed, it was difficult for users, but relatively simple for coders, to add 
basic fields to an existing content type. For example, adding a subtitle to an article might have taken less 
than an hour. But this task became repetitive, and developers began to wish for a more automated 
means of performing that task. Thus, the CCK module was born. 

Getting CCK from a neat idea to a viable solution took thousands of hours of development time. 
Even the best account manger would have a difficult time convincing a client that they should fund a 
thousand hours of development to allow users to add fields. Thus CCK was developed out of necessity 
and of developers’ shared frustration with performing the same task over and over. 

After this investment, CCK became a major factor in Drupal’s flexibility and success as a content 
management system. But nobody would have predicted this, or funded the effort, without a few 
visionary coders who were willing to invest their time in that solution. 

This story could be told many times over, and it is part of the very fabric of the Drupal we know 
today. In each case, the time spent on contributing to these efforts was volunteered by a developer in her 
spare time or by a development company that can reap the rewards of long-term improvements to 
Drupal itself. The takeaway is that we can create a business model by investing our own surplus 
resources in solutions we believe in, thus making it a more viable resource for ourselves and our future 
customers. 

Develop a Product Offering 
Install profiles are a way to begin the process of building a site based on some assumptions about how it 
will be used or who will be using it. For example, a blog-only install profile allows a blog-only site to get 
up and running quickly with common configurations for blog posts, comments, and categories. 

In theory, it’s possible to take this work, package it up, and provide it as a hosted service for blog 
sites, hosted with this platform. Tread carefully! In a competitive marketplace, the likelihood is that your 
install profile can be downloaded and installed more cheaply elsewhere. 

The product is not the Drupal installation itself but the prepackaged knowledge, common 
resources, and support model that surrounds it. Approach a specific demographic that you already know 
well, or find a subject matter expert who already knows that market. Work to identify common needs 
and develop solutions that serve those needs. That solution may include an install profile or a hosted 
service, but the real model is probably training, community events, or developing relationships and tools 
that are useful to each of its participants. 

It’s challenging work to build a business model that competes with proprietary alternatives, but it is 
a rewarding way to fund new development while guaranteeing that it is useful to its benefactors. 

Direct Funding 
The business models described thus far paint a model where we must find indirect ways to cover the 
time we spend on contributing Drupal, but the most “honest” way to pay for the time we spend on open 
source solutions is to get paid with the express goal of funding our time working on contributions. This is 
challenging for a variety of reasons, but it’s not impossible. 

The best way to do this is to reach out to funders and grant-making organizations. Increasingly, 
these organizations are seeing the kinds of repetition of resources that frustrate developers. When a 



CHAPTER 36 ■ NOW YOU’RE IN BUSINESS: MAKING A LIVING WITH DRUPAL 

851

foundation provides resources to 100 non-profits and finds out that they’ve only managed to partially 
implement 100 copies of the same solution, they begin to realize it’s a waste of effort. If they’re able to 
see this pattern, it’s possible to appeal to them with a funding proposal that outlines the breadth of 
impact for a common solution that serves many organizations at a time. 

It may also be possible to appeal to a project’s user base directly by making them aware of your 
ability to do work for hire. There’s a strong case to be made for paying a module maintainer to fix 
something in the module itself, which might be equivalent to the cost of a brute-force workaround, 
which would otherwise need to be re-worked-around hundreds of times once again. 

Setting Expectations 
After determining your overall contribution goals and determining which business model might be a 
good fit for your work, you start to flesh out how much time you can actually spend supporting your 
work. Are you able to dedicate a few hours per day? A few hours per year? Are your choices strictly 
financial and you’d be able to make time for contribution work if someone could fund it? 

It’s important to include this information on the project page, by setting the “maintenance status” 
and providing a small description of your status in a README file, on your user profile, or on a module’s 
description page. 

For example, if you worked on a module for a client but have no intention of maintaining it beyond 
the project’s completion, you should set the module’s status as “seeking co-maintainer” or another 
status that indicates your intended level of involvement. 

Additionally, if you’re available for hire, make sure to include that information on the module’s page 
and ensure that you’re crediting anyone who has helped you get the functionality where it is. This is a 
useful way to garner support while recognizing those who have supported you so far. 

Getting Better all the Time 
Drupal powers hundreds of thousands of sites and provides thousands of developers with rewarding and 
productive jobs. And it only gets better: There’s a new success story for every well-managed project, 
which helps other site owners make the jump. And each contribution, small or large, makes it easier for 
developers to deliver great results with Drupal. 

By approaching Drupal with the right mindset, we can meet our goals by equipping the right people 
to wield control over the right aspects of your project. While tricky at first, Drupal’s ongoing progress is 
attributed to a long history of light bulbs switching on over users’ heads as they realize the affect they 
can have on their own message and online community. Stay with it, plan well, and remember what 
Drupal is for, and you’ll be behind the next Drupal success story. 

Every Drupal developer owes her career to its contributors, and every Drupal user has the potential 
to become the next contributor. By approaching the community with the right mindset, we can 
contribute to the inertia that’s pushing Drupal to the next level. Just like Drupal 7 and each previous 
release, Drupal 8 and beyond will be greater than the sum of its parts, better than any one person could 
conceive of. It’s a great time to be in business with Drupal! 

■ Note  Check in at dgd7.org/sustain for discussion and updates on the topics in this chapter—critical, as they 

are, to your success and to Drupal's success. 

  



C H A P T E R   37 
 

■ ■ ■ 

853

Maintaining a Project 

by Sam Boyer and Forest Mars  

“Talk is silver, code is gold.” 

This principle – a slightly nicer version of “Put up or shut up”—has driven the Drupal community since it 
was barely big enough to deserve the community label. As the project has gotten bigger, the meaning of 
code has expanded to something more like contribution, encompassing the essential work of designers, 
documenters, and trainers without whom Drupal wouldn’t be book-worthy. In this chapter, though, 
we’re going to focus on that original definition: contributing code; more specifically, creating and 
maintaining a project on Drupal.org. We’ll also talk a bit about recommended development workflows, 
in particular ways to leverage Drupal’s chosen version control system, Git. 

■ Caution  Drupal only recently adopted Git for version control. Consequently, some of the user interface and 

processes discussed in this chapter may deviate from what ultimately becomes production. The inconsistencies 
should be minor, but we have nevertheless done our best to provide links to the relevant canonical handbook 
documentation. In fact there are a number of improvements to Git integration that are being rolled out as part of 

“Phase Next” of the migration.  

What’s a Drupal Project? 
Drupal projects are bundles of code that can be downloaded as .zip or .tar files and installed on Drupal 
sites, as well as the satellite features, version control repositories, issue queues. Each project has its own 
project page on Drupal.org at /project/PROJECTNAME. So, for example, the token module’s project page 
would be at drupal.org/project/token.  

Drupal projects come in several different flavors: 

• Modules: The architectural building blocks that make Drupal go. Some 85-90% of 
all contributed projects are modules. Their development is covered in Part 5. 

• Themes: Front-end development, look and feel, skinning—different words with 
the same idea: themes are in charge of generating markup. Around 10-15% of 
contributed projects are themes. Theming is covered in Chapters 15 and 16. 



CHAPTER 37 ■ MAINTAINING A PROJECT 

854 

• Installation Profiles: Packages of modules, themes, and initial installation logic, 
they are covered in detail in Chapter 34. These make up just more than 1% of 
contributed projects. 

• Translations: Translations of core and/or of Drupal modules are no longer 
handled as projects on Drupal.org but instead through localize.drupal.org. The 
process for translations is quite different, so see there and dgd7.org/translate for 
more information on translations. 

• Theme Engines: Theme templating engines—e.g., PHPTemplate, Smarty, 
PHPTAL. Fewer than 10 of these exist, and most of those have been abandoned for 
years. For good reason: PHPTemplate is the de facto standard theme engine. The 
overwhelming majority of themes are built on it. While the instructions in this 
chapter do apply to theme engines, making a new one is exceptionally unlikely. 

The process for project creation and maintenance is almost identical for all the types of projects 
hosted on Drupal.org, so for simplicity’s sake this chapter will refer generically to “projects.” In any 
situation where something works differently for modules, themes, or installation profiles, we’ll make a 
note of it. 

Whatever type of project you’re creating, releasing a project on d.o carries with it certain 
responsibilities. It’s not like publishing a project to a public code repository system like GitHub—your 
project becomes a part of the Drupal community’s offering to the entire world, and, as such, your 
stewardship of it reflects not only on you but on the community as a whole. If your module largely 
duplicates the functionality of another module, it makes finding the right tool for the job more difficult. 
If your project has security holes, it means more work for the already-overworked Drupal.org security 
team and a security advisory—which is always a little egg on the face of the community. As we’ll discuss 
a little later, the project “sandbox” stage helps with this, but you should still keep it in mind whenever 
contemplating a new project you’d like to contribute to Drupal.org. 

Set Up Your Drupal.org Account for Contributing 
Creating a new Drupal project is a multi-step process. You’ll need to agree to the conditions of having 
your code hosted on Drupal.org and configure your Drurpal.org account for Git access. Then you can 
choose a project namespace and upload your code to the project’s sandbox. After you have a project 
sandbox you’ll be able to request your project be approved to package a full release. Note that all 
sandbox code is associated with a specific user’s account, which is slightly different from full project 
code, which has a maintainer, but is not subordinated to that user’s account. Also there is no provision 
for “company” accounts, so each Drupal.org account has to be set up by/for an individual, not a group.  

Once you have your Drupal.org account the first step is to log into it, and read and agree to the 
conditions for uploading your code. These conditions are found under your profile tab, under the Edit ➤ 
Git access tab (See Figure 37–1). 



CHAPTER 37 ■ MAINTAINING A PROJECT 

855

 

Figure 37–1. The conditions for uploading your code 

The documents in these links lay out the Drupal community’s philosophy on contributions, 
elaborate into greater detail on the responsibilities and expectations associated with project 
maintenance, and explain the legal requirements for putting code on Drupal.org. 

Those legal requirements are simple, but particularly essential, so we’ll paraphrase here what it 
means when it says that all code put on Drupal.org must be GPLv2+ compatible. In practice, that entails 
three conditions:  

• First, if you want to include an external library with your project you can only 
store that code directly in your project’s Git repository if it’s compatibly-licensed.  

• Second, the act of pushing your own otherwise-unlicensed code into a Git 
repository on the Drupal.org’s servers has the effect of licensing that code as 
GPLv2. This legal agreement is packed automatically with your release  

• Third, if you put someone else’s incompatibly-licensed code into a Drupal.org 
repository, the code will be removed. People who repeatedly disregard the GPLv2 
requirement may have their account suspended. This is the only legal requirement 
the community has for contributions, but it’s an essential one. 

Once you’ve agreed, by checking the box and clicking Save, you advance to the second step, creating 
a Git username (see Figure 37–2) Typically this will match your Drupal.org username, limited to URL-
safe characters; however, that’s not a requirement. Likewise you can set your password to be the same or 
different from your Drupal account itself. 

 

Figure 37–2. Creating a Git username 



CHAPTER 37 ■ MAINTAINING A PROJECT 

856 

Creating a Sandbox Project 
With one-time setup steps completed, it’s time to dig in and create a project—to be precise, a sandbox
project. Drupal.org uses sandbox projects as a way of letting anyone contribute code to Drupal while
preventing global namespace squatting and minimizing the chance of insecure (or malicious) code
making its way into sites being built by unsuspecting users. There’s a community approval process you’ll
need to go through before you can create fully functioning projects in the global namespace.  

Until you have completed this community approval process, your sandbox project will differ in a
few crucial ways from full projects, with the main difference being the use of a numeric value in place of
the project shortname. (Project shortnames are used in the Drupal hook system to prefix functions, but
this numeric substitution shouldn’t cause any problems with this.)  

We’ll get into the details of that approval process a little later, but creating sandboxes is almost
identical to creating full projects, so the instructions are pretty much interchangeable. 

■ Note More information about how sandbox projects work can be found at drupal.org/node/1011196. 

Head over to drupal.org/node/add/project-project, where you’ll be presented with the project
creation form. 

Figure 37–3. Project categories 

Status 
In most cases new projects should be marked Maintenance status and Development status as Actively
maintained and Under active development, respectively. Projects not intended to have a full release
might also be uploaded to your Drupal.org sandbox, for example, to share code with another, similar
project. Sharing your code in this manner allows you to take advantage of Drupal.org’s integrated Git
tools for highly collaborative code viewing and tracking. 



CHAPTER 37 ■ MAINTAINING A PROJECT 

857

Project Information 
Your sandbox project begins its life with a number for a name: instead of your chosen name for the 
project, your sandbox project will use a temporary numeric name for referencing. This is used as a 
solution to a larger namespacing issue, but it does add a touch of complication. To work with the hook 
system and to prevent collisions with functions in other modules, full projects prefix their function 
names with the shortname of their project. Your sandbox’s numeric name won’t do for that; instead use 
a prefix that corresponds in a meaningful way to your Project title and is unique in the Drupal 
namespace. There’s no guarantee that what you choose will still be available when you prepare to 
release, but, if it is, you’ll save a step (see Figure 37–4).  

• Project title: The human-readable name for the sandbox. This field can be 
updated. 

• Sandbox: Until you have applied for or been granted a full Git account, sandbox 
will be checked by default and will be your only choice. We’ll talk about this 
process later. Even when you do have full access it is still a good idea to start your 
project as a sandbox project; that way, when you do make it a full project, it 
already has code and is ready for use. 

• Description: The description is the primary place for communicating the project’s 
purpose to Drupal.org visitors. Well-written descriptions clearly express the 
purpose or use cases the project is intended to serve. If your project has 
dependencies (either external libraries or other Drupal projects), provide links. If 
your project is in a similar problem space as another pre-existing Drupal project, 
provide a link to that project, as well as an explanation of how your project differs. 
Of course, you might not know all this when creating a new project, especially 
your very first one—fear not, you can always update the description later! Once 
you’re done, submit the form; your project page will be created, and a new Git 
repository will be spun up on the Drupal.org servers, ready to accept your code. 

 

Figure 37–4. Project information 



CHAPTER 37 ■ MAINTAINING A PROJECT 

858 

■ Note About namespaces: To determine if the function name prefix you’re going to use is available, visit 
Drupal.org and add project/desired_name to the end of the URL. If you land on a project, that namespace is 
occupied. File not Found is an indication that the namespace may be available when you release. Keep in mind, 

however, that another sandbox project may have already reserved this namespace, even if it doesn’t yet have a full 

release (and thus a project shortname). 

Digging in with Git 
Git is a powerful beast, and using it sometimes feels like grocery shopping in a Ferrari. We introduced its 
use for personal version control in Chapter 2, but that was a drive around the block and—while covering 
what is your most constant use of Git—didn’t begin to touch on its full range of capabilities. Git can be 
daunting, even for people accustomed to other types of source control; it has unfamiliar names for some 
common actions, and it can take a while to really understand how your local repository interacts with 
other Git repositories (called remotes). But the Drupal community opted for it to be the version control 
system of choice for a reason: if you persevere, you’ll find Git highly capable of managing not only your 
project’s code but codebases for individual Drupal sites, or even large, highly complex Drupal-based 
systems run across server clusters and integrated with external tools and deployment strategies. 

All this talk of codebases and tools and systems should not distract from what maintaining an open 
source free software project is all about. The real reason for using a distributed version control system 
such as Git is so that you can work effectively with other people to build awesome things.  

The web has a nigh-bottomless supply of resources for learning Git commands—you can jump right 
in with the commands provided on a tab at your project’s drupal.org page—but learning how Git works 
is invaluable for using it to maintain projects in collaboration with other people.  

We’ll talk about a few commands and useful techniques in the rest of this chapter, but our focus 
here is really on the key steps for project maintenance, those steps that help you push your code to 
Drupal.org and create releases. If you want to learn more, there’s an appendix of Git resources at the end 
of this book. Keep in mind that, when browsing around the web for “git + drupal,” anything written 
before 2011 may not be particularly helpful. Drupal was still using CVS, and much of the talk prior to the 
switch was focused on making Git work with CVS. And Git itself has changed just enough in recent 
releases that you’ll want to make sure you have the most up-to-date information (and, of course, the 
most up-to-date version of Git).  

To access that repository, you’ll need to use SSH (Secure SHell), so we’ll make a quick detour 
through getting all that set up. 

Managing SSH 
Drupal.org uses SSH for all authenticated communication with Git repositories, so you’ll need to make 
sure you’re set up properly with SSH. Until you set up your SSH keys you’ll need to type in your 
password every time you interact with the server (assuming you’re working from the CLI—many GUIs 
will store your SSH password for you). If you choose to stick with password authentication, your SSH 
addresses for interacting with your Drupal sandbox repositories will look something like this: 

$ git clone dgd7@git.drupal.org:sandbox/dgd7/1041111.git 
Cloning into 1041111... 
dgd7@git.drupal.org's password: 

mailto:dgd7@git.drupal.org:sandbox/dgd7/1041111.git
mailto:dgd7@git.drupal.org's


CHAPTER 37 ■ MAINTAINING A PROJECT 

859

■ Note Your sandbox is identified by your username (dgd7 in this example), and the project is represented by its 

assigned numeric string (1041111.git in the example) instead of its project shortname.  

If your password is accepted and you have access to the named project, the previous command will 
clone the repository to your local system (more on cloning later.) If you find passwords cumbersome or 
insecure, then you can opt to use key-based authentication instead, for which you will need to generate 
a key on your local machine and add it to your account on Drupal.org.  

■ Note We’re going to skip over discussing how to create SSH keys, as it’s somewhat platform-specific and there 
are loads of good tutorials out there. GitHubs are particularly focused on the steps necessary for getting Git 

configured: github.com/guides/providing-your-ssh-key and are a good starting point. 

Once you have your public key, go to your d.o profile and click the SSH Keys tab. You’ll be presented 
with an interface for managing your public keys. Add your key, and it’ll be ready for use immediately 
with all git commands. With key-based authentication, you need not specify your username in your SSH 
commands, so the previous command becomes a bit simpler: 

$ git clone git@git.drupal.org:sandbox/dgd7/1041111.git 
Cloning into dgd7_example... 

Because key-based SSH addresses have one less awkward variable, we’re going to use them in 
examples throughout the chapter. If you’re using username and password-based authentication, fear 
not—simply substitute your username for git in the examples. However, you will probably find that once 
you have set key-based commit authentication you will wonder why anyone still uses the more 
cumbersome password-based authentication. 

Hack on Your Project 
Now that you have a sandbox project waiting and SSH all configured, you’re ready to start writing and 
contributing code. The first step is to get your local Git repository set up. To do that, we’ll need to clone it 
over SSH from Drupal.org: 

$ git clone git@git.drupal.org:sandbox/dgd7/1041111.git 
Cloning into 1041111... 
warning: You appear to have cloned an empty repository. 

The warning is normal—encouraging, really, because it indicates that the repository you just cloned 
is brand new, freshly created, and empty. In this example you are cloning a project you’ve just created, 
so there’s nothing there yet. However, you should realize that cloning a repository makes a full copy of 
the entire repository contents—that is, the project’s entire history—and places it on your local machine. 
Cloning, for example, can be a bandwidth-intensive operation, especially for large projects (at the 
launch of Drupal 7, core’s repository was around 50MB). However, having the full history is crucial to 
Git’s decentralized, distributed functionality, so we bite the bullet on the size of the initial clone  

Now that you have the repository, you can get to work adding, changing, and committing files—all 
of those Git basics that are covered in Chapter 2 and the Git resources listed earlier. Just as a quick recap, 

mailto:git@git.drupal.org:sandbox/dgd7/1041111.git
mailto:git@git.drupal.org:sandbox/dgd7/1041111.git


CHAPTER 37 ■ MAINTAINING A PROJECT 

860 

though, let’s add and commit some files into the new repository. For brevity’s sake the following 
example uses <?php> as a placeholder for your code: 

$ echo 'name = "DGD7 Example Module"' > 1041111.info 
$ echo '<?php>’ dgd7_example.module 

Or add these files using your graphical editor of choice. After building your code, git status should 
show that you have untracked files as follows: 

$ git status 
# On branch master 
# 
# Initial commit 
# 
# Untracked files: 
#   (use "git add <file>..." to include in what will be committed) 
# 
#       dgd7_example.info 
#       dgd7_example.module 
nothing added to commit but untracked files present (use "git add" to track) 

These files are currently on your working tree (i.e., working directory or working copy) only and not 
in your index (i.e., staging area). Next, we’ll add the files to the staging area index and then we will 
commit them. Note that the SHA1 hash in your message will be different—the hash is computed using 
repository contents (which are the same) but also the time the commit was made (which is different). 

$ git add dgd7_example.info dgd7_example.module 
$ git commit -m 'Initial commit' 
[master (root-commit) c8a69f9] Initial commit 
 2 files changed, 2 insertions(+), 0 deletions(-) 
 create mode 100644 dgd7_example.info 
 create mode 100644 dgd7_example.module 

This gets us as far as we went in Chapter 2 as all the operations so far have been local. (This is one of 
the most important ways Git differs from its non-DVCS predecessors: your code is stored in a local 
repository.) Next we’re going to take the additional step of pushing this commit to a remote repository, 
in this case our Drupal sandbox back on d.o: 

$ git push origin master 
Counting objects: 4, done. 
Delta compression using up to 2 threads. 
Compressing objects: 100% (2/2), done. 
Writing objects: 100% (4/4), 300 bytes, done. 
Total 4 (delta 0), reused 0 (delta 0) 
Unpacking objects: 100% (4/4), done. 
To git@git.drupal.org:sandbox/dgd7/dgd7_example.git 
 * [new branch]      master -> master 

Congratulations—you’ve just put your first bit of code onto Drupal.org! Note this is just the start of 
your new Drupal project or projects. Drupal sandboxes are intended to be a development space where 
you can actively work on and commit your code. Remember to commit early and commit often. This will 
give your sandbox a richer history that allows the module review team to get a sense of your coding style 
when you apply for active status. Don’t just wait until you want a full release and then upload the final 
version of your code! Perfection isn’t prized here as much as process.  

There’s not a lot else to say about generic project maintaining at this point—what you do with your 
sandbox is really up to you. If you’re just tinkering around and have no intention of ever really sharing 

mailto:git@git.drupal.org:sandbox/dgd7/dgd7_example.git


CHAPTER 37 ■ MAINTAINING A PROJECT 

861

your code with the wider world, that’s fine—the only restrictions imposed on sandboxes are some size 
limitations, and those mostly to prevent abuse.  

If you want to really share your project with the wider Drupal world, though, you’ll need to take the 
next step and have your sandbox promoted to full project status, which is a requirement for having an 
official release.  

From Sandboxville to Projectopolis 
So you’ve been happily hacking away at your module (or other project) committing fast and free locally, 
and pushing back to Drupal.org whenever you reach a suitable point, and you’re starting to think it’s 
time your project graduated from sandbox status and joined the ranks of full, user-facing projects. Great! 
This is a crucial juncture in the life cycle of your project. 

Once you have code in your sandbox you can then apply for permission to promote it to full status 
as a first-class module. This approval is required for your project to have an official release on 
Drupal.org. However, you only have to apply once, for the first time you wish to promote a project. 
Specifically, you are not applying to have a single project promoted; you are applying for yourself to be 
granted the role that enables you to promote your projects (using the code in your sandbox to 
demonstrate that you understand and it fulfills the basic requirements of Drupal). After you are granted 
this role the first time, you will be able to promote any of your sandbox projects when you need to, 
provided your code always adheres to the basic standards set forth by Drupal.org 

One of the main benefits you’ll get from a full release is sandbox access to Drupal’s full testing 
environment. At the time of this writing sandbox projects aren’t able to take advantage of Drupal.org’s 
automated testing framework.  

In order to ensure that developers have familiarized themselves with Drupal’s coding standards and 
are writing secure code, the first time you wish to promote an experimental project you’ll be required to 
apply for full Git privileges. This involves: 

1. Preparing a branch for consideration. 

2. Preparing your project for review. 

3. Applying at drupal.org/project/projectapplications. 

4. Participating in peer review for coding standards compliance and security 
considerations. 

5. Being assigned the appropriate role on Drupal.org. 

About Branches and Tags on Drupal.org 
Branches and tags, collectively known as refs in Git and sometimes referred to as labels on Drupal.org, 
are a crucial building block in Git and are also an essential part of the packaging and release systems 
used on Drupal.org. Drupal’s packaging system requires only a basic understanding of how branches 
and tags work (fortunately), but it’s worth sticking with it beyond the basics. Git’s real strength lies in its 
cheap branching, and so while we won’t go that far into it here, you’ll want to delve deeper into the 
developmental efficiencies Git enables in order to take advantage of Git’s power. (And look forward to 
some of the best use cases making their way into Drupal’s “Phase Next” Git rollout.) 

So, what’s so special about refs? First, they are used by the Drupal.org packaging and release system, 
and only branches and tags conforming to certain naming conventions will be approved for release. 
Once you grok how branching and tagging conventions work, you’ll have a much better understanding 
of the developmental structure underlying Drupal project versions.  



CHAPTER 37 ■ MAINTAINING A PROJECT 

862 

Preparing a Branch for Your Application 
If you have a pre-existing Git repository that you’re all ready to put onto d.o, all you have to do is add 
git.drupal.org as a new remote to the repository, then push: 

$ git remote add origin git@git.drupal.org:project/<projectname>.git 
$ git push --all origin 

In this example we are adding it as origin, which is a default remote used by your Git repository. If 
you already have an origin set (for example, your main development server) chances are you already 
know to name the remote repository at git.drupal.org anything you like. Since Git has excellent support 
for tab completion, we recommend giving it the name git.drupal.org. To see what remotes your local 
repository is aware of, you can use cat .git/config. 

After setting git.drupal.org as a remote, use git push—all to copy your complete code from your 
local repository into your project space on Drupal.org. Note that this will push all of the branches in your 
local repository.  

Preparing Your Project for Review 
The main part of the application process is a review of the code you have submitted to confirm that it is 
not a duplicate of already existing Drupal functionality and that it meets certain code and licensing 
requirements. These code requirements are intended to ensure that all code officially released on 
Drupal.org is secure, well-documented, and meets the specific coding standards set forth by Drupal’s 
legendary collaborative development community, and that it will be free from any licensing issues that 
could adversely affect other Drupal users.  

Coding Standards 
Drupal has a very specific, detailed, and well-documented set of coding standards available at 
drupal.org/coding-standards. Experienced coders from other PHP frameworks or languages may 
disagree with some of the choices we’ve made, but coding standards are a crucial part of community 
collaboration. By adhering to coding standards, all of us can read each other’s code more easily, we’re 
saved countless hours of bickering over syntax choices or rewriting code based on varying preferences, 
and those who support Drupal out in the world benefit from the consistency these standards provide. 

Fortunately, thanks to the Coder module (drupal.org/project/coder), adhering to Drupal coding 
standards is a cinch. Coder can even do a lot of the work for you, reading in what you’ve written and 
spitting out standards-compliant code. Whether you study and internalize the coding standards or clean 
up with Coder at the end, presenting standards-compliant code is the first step toward readying your 
module for the public. 

Here are some examples of coding standards for Drupal. This is not an exhaustive list, but it is 
intended to illustrate some of the specific requirements your code will be expected to adhere to:  

1. All classes should be commented. 

2. All functions should be commented. 

3. Simple test should be implemented (and passed!). 

4. All code revisions and patches should be commented. 

mailto:git@git.drupal.org:project/


CHAPTER 37 ■ MAINTAINING A PROJECT 

863

Security 
Security issues can be harder to spot, especially for novice programmers. Coder module can be of some 
assistance here, too, as it will highlight certain security holes—improper escaping of database queries or 
user input, for example. It isn’t much help with subtler issues, though, so familiarize yourself with 
common web application vulnerabilities (XSRF, XSS, etc.) and try to ensure your code doesn’t have such 
problems. Novice programmers and people new to Drupal will find an excellent starting point at 
Drupal.org’s “Writing secure code” at drupal.org/writing-secure-code (also see Chapter 6). 

Licensing 
When you originally set up your Git access you agreed to only upload GPL licensed code to your 
sandbox. Thus all code submitted as part of your application should already meet Drupal’s licensing 
requirements.  

Project Description 
Review your project description to ensure it provides a detailed description of exactly what your project 
does. If your project is similar to another project on d.o. you’ll want elaborate exactly how it is different, 
and why such functionality is being duplicated. Make sure that all data is up-to-date, clear, and proof-
read before you submit your application. Don’t forget to include a link to your project page, and, if your 
project is a theme, include a screenshot.  

Applying for Access 
The application itself isn’t complicated: file an issue in the Drupal.org Project applications at 
drupal.org/project/issues/projectapplications.  

Because the review process uses Drupal’s project issue tracker, you’ll need to fill out the following 
form fields:  

• Component: “new project application” and Category: “task” 

• Status: “needs review” 

• Title: your project’s title 

• Description: your project description (as above) 

Once given the sign off, you will be granted permissions both to create full projects and to promote 
sandbox projects to full projects. If for some reason your code is found not to meet the requirements you 
will be informed of the reason and given the opportunity to make the necessary fixes. While some of the 
reasons should be obvious, beginning Drupal developers sometimes miss less obvious, but no less 
impactful, requirements.  

For a more exhaustive list of reasons code is typically sent back for improvement, see 
drupal.org/node/539608. 



CHAPTER 37 ■ MAINTAINING A PROJECT 

864 

Receiving Access 
Subscribe to the issue queue to receive feedback on your application and to receive notification when 
your access is granted. Once you have access, the interface for adding or updating a project changes. 
Now when you edit your project for promotion, you’ll see new choices, as shown in Figure 37–5. 

 

Figure 37–5. Editing your project for promotion 

Summary 
If you’ve followed the instructions outlined in this chapter you will have been able to enable Git access 
on your Drupal.org account, create your own project sandbox and upload code to it, and have your 
Drupal projects (whether you are contributing modules, themes, or documentation) promoted to a first-
class Drupal release status. 

■ Note  Check out dgd7.org/maintain for links to resources on maintaining projects on Drupal.org. 



C H A P T E R   38 
 

■ ■ ■ 

865

Contributing to the Community 

by Benjamin Melançon and Claudina Sarahe 

“People come to me and ask how they can contribute. I always tell them to do what 
they want to do. If I told them what to do, then it wouldn’t always be fun and it 
wouldn’t necessarily translate into the passion that I’d like to see happen.” 

—Dries Buytaert, Drupal Project Lead 

“A contributor is someone who has three qualities: they see something and they say, 
‘that’s dumb,’ then they say ‘hey, I really wanna see that thing fixed,’ and they do 
something about it.” 

—Angela Byron, Drupal 7 Maintainer 

There is a common misconception that you have to be a programmer in order to contribute to Drupal. This 
is untrue; even those with little or no prior knowledge of code can contribute to the community in ways 
that will help make Drupal better. In fact, this is what happens all the time: people support the Drupal 
community by organizing events, answering questions, and sponsoring development sprints—all 
examples of vital non-code contributions that the community needs to grow. Non-code contributions, 
such as mentorship and writing documentation, are ideal ways to develop and grow one’s skills in coding 
and configuring Drupal. Growing the community means, on the one hand, growing the infrastructure and 
number of people and, on the other, growing the capabilities of people in the community. 

With this chapter, we conclude the book with a tour through the wide assortment of ways we can all 
make Drupal a better place to make web sites, to make a living, to make friends, and, just maybe, to 
make a better world. 

■ Note  This chapter might have been titled “Giving Back to the Community” except that some of those who have 

given the most to Drupal seem to have started giving before they got. 

Contributing is about doing something about things that you have an interest in improving. This is 
the message from Dries and Angie, the two people who performed the final review and committed every 
improvement made to Drupal 7. Trying to contribute where it doesn’t interest you is not likely to be 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

866 

effective. As Drupal continues to grow, so does the need for more contributors and types of
contributions. It is the authors’ hope that this chapter will help us all find ways we can contribute (if we
aren’t already), inspire us to want to contribute more, and increase our knowledge about the fuel that
powers Drupal’s success—the community. This chapter presents reasons to get involved and ways to
make your contributions more effective. This chapter is also a way of saying thanks to those that have
contributed and continue to contribute to Drupal.   

Why Contribute? 
There are many reasons to contribute. For the intrinsic joy of making or helping, to aid personal or
professional betterment, and out of commitment to community. To the authors, contributing is about
making the place where you live better. It’s like changing the oil in a car; it may not immediately affect
you but it will make a difference down the road not only to you but to others. 

Evan Donovan (drupal.org/user/168664), one of the hundreds of contributors to Drupal 7 core,
highlighted five reasons to contribute on his blog (donanvan.covblogs.com/archives/040454.html): 

• It’s fun to learn things. 

• It’s fun to solve problems. 

• It’s fun to help people out. 

• The work you contribute back to the community can be multiplied many-fold by
the others in the community. In turn, their work can provide a base for further
progress. 

• Sometimes, it can even be beneficial to your job prospects. 

Gábor Hojtsy (drupal.org/user/4166), a major contributor to Drupal core as well as the maintainer
of Drupal 7’s Locale module and the entire Drupal 6 series of releases, summarized the benefits of
contributing as offering the ability to:  

• Work on cool technology. 

• Work in an international team. 

• Show off your work and talent. 

• Travel. 

• Make money. 

Gábor, one of the first hires by Acquia (the company co-founded by Dries Buytaert eight years after
he founded Drupal), views contributing to open source projects as protecting one’s career: 

If you need a good way to ensure your job security, I think this is a way. Your active
work life is documented all around the Internet, you’ve been to conferences,
established your name in the industry. When you are compared to someone who
worked on a closed source legacy system and can only be believed for the pieces in his
Curriculum Vitae (further details of which are under a Non-Disclosure Agreement),
who is less risk to take on for a company? 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

867

Without Contributions, There Is No Drupal 
We—the authors writing, the readers reading—are here because of Drupal. Our ability to engage with 
Drupal (software, community events, knowledge) only exists because of all the earlier contributions of 
others, starting from the beginning when Dries opened his code. If no one had stepped up and 
contributed, there would be no Drupal. 

Larry Garfield (Crell, drupal.org/user/26398), a core contributor, lead maintainer of Drupal’s 
database layer, Senior Developer at Palantir, and Drupal Association Legal Affairs Director, uses the 
phrase “pay it forward” as a way to describe how free software works. 

When you work on an open source project or release code under a Free Software 
license you are doing something for someone else. Someone you don’t know, and who 
probably doesn’t know you, is going to benefit from your actions. You may yourself 
benefit from the work you do, but so will other people that have not done anything for 
you. And that is the very point.  

If one person does that, the world takes advantage of them. If a thousand people do 
that, you get Drupal. Or Linux. Or Apache. Or Firefox. Or the KDE desktop. Or, really, 
all of them combined. Every one of those projects is the result of thousands of people 
paying it forward, to each other and to you. The net result is a robust, healthy 
environment of quality code and, more importantly, a culture of sharing and mutual 
support, even across projects. 

In my day job, I work with Drupal. I’ve written tons of code for Drupal, both core and 
contrib, as have my colleagues, and we release as much as we can back to the 
community. We are paying it forward to the rest of the web development world in 
return for the million man-hours that have already been put into building what we’re 
leveraging for free. That is what makes open source work. 

Drupal’s success is largely due to the many ways in which people can contribute without barriers. 
Drupal is designed to be extended; it is designed to easily allow people to contribute along the way. The 
modular nature of the software has been essential to the phenomenal growth of both the technology and 
the community. While Drupal has paved an exemplary path by putting developers’ needs and happiness 
at the forefront of the core technological design, the success of an open source technology project is the 
balance of the building, maintenance, and evolution of the code and the sustained development and 
happiness of the community.  

“The principles that come to mind are those of self-organization and scratching your 
own itch. Getting out of people’s way as much as you can, and enabling people to 
accomplish what they are passionate about. When people can come together and take 
action collaboratively, impressive things can happen.”  

—Dries Buytaert 

Taking That First Step 
We can all relate to a time when it felt daunting to take that first step. You can feel like the new kid on the 
block when joining an already established community. The Drupal community takes care to continue to 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

868 

grow without any barriers to entry. Communities are often viewed as having insider groups, and to some 
extent this is inevitably true; the more active participants will work together more. This bonding based 
on related behavior and activities is common in life, but in the Drupal community it does not prevent 
anyone from joining. Membership in the community is defined by participation, especially contributing, 
and some of the many ways to contribute, open to everyone, will be covered in this chapter. Act like an 
insider (of whatever definition or group), and you will be an insider. Going far in Drupal is about 
knowing what you want and going after it. If you really want it, keep going!   

The following tips apply no matter what you are contributing: 

• Do not expect anything in return. A community is not a market arrangement (give X, get Y). 

• Don’t await the ticker-tape parade. Contributing to the community is being part of the 
community, not being celebrated by it. 

• Have a thick skin. Don’t take things personally. Katherine Senzee (ksenzee, 
drupal.org/user/139855) is a senior engineer who frequently helps people in IRC, writes 
documentation, and contributes significantly to Drupal code. She worked magic making the 
Overlay module for Drupal 7 core, and some insignificant author named Ben recommended 
disabling it in the first chapter of this book. Katherine doesn’t need validation for her efforts 
except that people do benefit—many consider Overlay a key usability enhancement. If 
Katherine or the other people who make Drupal great let criticism stop them, we wouldn’t 
have a single achievement. 

Transparent Communication 
Tim O’Reilly, speaking to Kent Bye, said that Drupal is one of the most important open source projects 
because it “has created a successful architecture of communication.” A very high proportion of Drupal 
interaction takes place in public, primarily on IRC and in the issue queues (drupal.org/project/issues). 
In fact, it’s hard to entirely avoid the issue queues, and why would you want to? Here you can see friends 
and co-workers disagree with each other—and people on different continents work out solutions 
together! Conversation also takes place in other venues, such as groups.drupal.org; and if a question 
can be conveyed in 140 characters there’s always Twitter and the drupal#.  

The great honesty and transparency of the Drupal project is a part of the community ethos. We learn 
and fail publicly. We believe it’s better to do and try publicly than to aim for perfection behind closed 
doors. But take care to converse with civility. We all have bad and good days. We don’t always get the full 
context of a person’s day in IRC or in the issue queue Take any comment the only way it can be: as one 
person's perspective at one moment in time. On the other side, if you notice curt behavior, especially 
directed to a newcomer who has made a basic beginner mistake such as asking a question in the wrong 
IRC channel, do take the time to say, “Hey, I’m sorry you experienced that. This channel is not the best 
for your question. Let me help you in #drupal-support!”  

Keeping a community happy, diverse, innovative, and active is no easy task, especially one relying 
on the collaborative power of individuals. The Drupal community is not perfect and we say it proudly. 
We learn and implement as we go along. The roads to Drupal contribution could be better marked and 
better-maintained. We need to get better at recognizing different kinds of contributions.  

How do we remove unnecessary barriers to contributing? How do we ensure that someone putting 
in effort is acknowledged and supported? Do we need better tools for discussion or decision-making? 
These questions are a frequent matter of discussion among those who care about Drupal; in fact, 
working on these problems is another way of contributing to the well-being of the community. We’ll 
look at some of these questions in the final section “Drupal as a Movement.”  

In the next section, we look at ways that are available to all of us to make Drupal code and the 
Drupal community better than ever. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

869

Ways to Contribute 
There are as many ways to contribute to Drupal as there are motivations for doing so, and all can be a 
rewarding experience in their own right. At the core, a contribution is made up of two components:  

• Time, which is great, since we all have time; it’s just a matter of how we use it!  

• Love, which is usually how we decide what or where to put our time towards.  

We offer you 12 ways to contribute to the community—advanced members and newcomers alike. 
This list is only a sampling from the growing number of ways to contribute to the welfare of the 
community and advancement of the code base; if you have another suggestion, please share it at 
dgd7.org/suggestions. If you write your ideas on your blog, please leave the link and a short descriptive 
sentence. Additionally, you have permission to use information from this book to contribute to 
drupal.org documentation. 

1. Providing Non-Technical Support 
A thanks or acknowledgement goes a long way. Appreciation takes many forms. If a member of the 
community helps you out, send them thanks on Twitter. Or make them some cookies! Those who 
attended Maureen Lyons’ session at DrupalCon Boston 2008 will always remember getting excellent 
vegan brownies.  

If you really like a module, theme, particular Drupal distribution, or product, acknowledge its value 
to your life. Christefano’s love letter to the Edit Term module (data.agaric.com/edit-term-love) surely 
helped give it the karmic boost it needed to get into core.  

Ryan Aslett (Mixologic, drupal.org/user/391689) sent the Views team love instead of bugs. Ryan 
created a task in the issue queue to “Keep Up the Awesome.”  

Every single project I work on I use Views. I never have problems with it...If the whole 
world understood Drupal, Views would immediately be championed as an epic work 
of art. 

Thanks for creating/helping to maintain something positively awesome. 

Fourteen other users added their praise, thanking the Views team—and thanking Mixologic for 
taking the time to express his gratitude publicly. The issue ended when Lynette Miles 
(esmerel,drupal.org/user/164022) changed the status to closed (works as designed) and wrote “Always 
fun to come across these ;)”. (As a rule, don't misuse the issue queues for any purpose— an even better 
way to show support is to help out in them, see way to contribute number 7.) 

You can nominate and profile people for the Drupal Community Spotlight at 
drupal.org/community-spotlight. Or post your own spotlight, as Alan Palazzolo did before contributing 
to the Spotlight, and Andrew Riley, Michael Anello, and Ryan Price are doing with The DrupalEasy 
Podcast, a weekly review of new developments and announcements in the worldwide Drupal 
community (drupaleasy.com/podcast). Don’t be afraid to share your thanks publicly. Others may be 
having similar thoughts. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

870 

2. Sharing Everything 

“If someone helps you out with an open source project, be it using it, developing for it, 
or even just writing about it, you can thank them personally. But the true thanks, 
what will really show gratitude, is paying it forward. You’ve just gained new 
knowledge and understanding. Share that knowledge and understanding with others. 
Help out the next person, or better yet the next people, to come after you.” 

—Larry Garfield (Crell) 

Sharing what you have learned is one of the best ways to contribute back to the community. The 
process of explaining concepts and answering questions is one of the best ways to learn, too. There are a 
wide variety of opportunities for mentoring, teaching and learning within the Drupal community, some 
of which include:   

• Making a presentation at your local meetup. 

• Sharing your blog posts; they don’t have to be Planet-worthy to share. 

• Sharing incomplete code. 

• Starting some documentation and letting others improve upon it. 

• Allowing distribution and modification of your documentation. You can allow 
access to your material under whatever Creative Commons level you prefer. 

Sharing is a notable aspect of the Drupal community. It doesn’t have to be Drupal specific. Karen 
Stevenson posted her cheat sheet about the Vi editor at lullabot.com/blog/using-vi-editor by stating 
“Here is my cheat sheet, in a public place that is easy to find.” 

Whenever you get stuck on something, whether Git’ing your way out of a merge conflict, properly 
setting up Drush site aliases, configuring a module, or overriding theme functions, you’re probably 
going to try searching for the answer. Record all the search terms you try. When you figure out how to get 
past the problem, or a piece of the problem, write up your notes. Put the notes up on your  site in a post 
with all the search engine terms you tried. When the next person (anywhere in the world) has the same 
problem and enters the same search terms, the post you just made will come up.  

Like Karen, part of the reason that Benjamin puts things online is to easily find them again. “I 
regularly search for answers across the whole web and find my own answers from two weeks or two 
years ago.”  

You can drop the quality filter entirely and post every investigation and half-baked idea on your own 
site. If you’re worried that this will make you look like you don’t know what you’re doing, well, quite the 
opposite: you will be raising awareness about yourself in the Drupal community. You’ll be perceived as 
someone who is willing to find solutions and collaborates with all, which might help you get important 
clients in the future. Or maybe someone will correct you. Either way, make sure your company name or 
drupal.org username and contact information are available in your posts. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

871

■ Note  If it’s a solution that can fit anywhere in Drupal documentation pages, add it, or link your notes to the 
more focused writeup. Contributing to the documentation guide is advantageous because the community views it 
as a serious commitment to Drupal betterment. It also makes it more likely that people will help you because they 

know you will pay it forward. 

Documentation can be as simple as a record of the things you’ve tried in order to get something 
done. You don’t need to know all the answers. In fact, you can contribute by sharing incorrect 
information!  

Contribute by Being Wrong 

“I stand corrected! Thanks to the commenters for enlightening me. Drush does in fact 
do this.” 

—Ben Buckman 

Drush is a powerful command line and scripting interface for Drupal, a veritable Swiss Army knife. 
It’s designed to make common development tasks for developers and themers much easier. Expert 
Drupal developer Ben Buckman (drupal.org/user/342780) was looking for a way to synchronize a 
database between remote and local servers. He created a scripting technique because he was unable to 
do it with Drush. He shared his technique on his web site. Commenters pointed out that Drush could in 
fact synchronize databases—and do it even better.  

Why is this an inspirational story? Sharing his approach led other people to share theirs. Once Ben 
discovered how to achieve his original goal with Drush, he updated his post and helped many others 
learn something new. Ben paid forward the “new knowledge and understanding” he’d gained by sharing 
it with others. (If you develop Drupal using live and dev sites and haven’t set up Drush site aliases for 
syncing databases and files, see Chapter 26!) 

Mentoring 
You don’t have to be too far along in Drupal to mentor. Beginners willing to demonstrate what they have 
learned are highly encouraged and welcomed into the community as the need for assisting others with 
the most basic tasks and concepts is so great.  

Check on people you mentor frequently and help them break down tasks to make sure they are not 
spinning their wheels without getting traction. IBM consultant Sacha Chua recommended this in 
reflections on mentoring a new Drupal developer, noting “otherwise, she might get lost or stuck, 
because she might not yet know where things are or whether she’s getting closer to an answer.” Sacha’s 
notes on work, connecting, and living an awesome life can be found at her blog sachachua.com and she 
shares her Drupal-related posts on Drupal Planet (drupal.org/planet).  

Conversely, just telling someone what code to type without explaining the concept behind the code 
doesn’t foster learning. Everyone learns differently. Be open to that as a mentor.  

Mentoring can be informal, semi-formal as with the Drupal Dojo project, or it can be part of formal 
programs such as the Google Summer of Code (GSOC) or Google Code-In (GCI, 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

872 

drupal.org/project/issues/gci). The Drupal Open Learning Initiative (DOLI; DrupalOpenLearning.org) 
outlines a number of projects and on-going programs produced by and for the Drupal community. 

The Drupal Dojo (DrupalDojo.com/about) is well known for the successful series 
of free weekly webinars. Anyone may sign up to present an educational 
program in the Dojo simply by adding their event to the “Building with Drupal” 
program lineup at groups.drupal.org/node/52023. The long-term vision 
includes transforming DrupalDojo.com from a virtual meeting place with 
program archives into a more robust Drupal Learning Resource Center that 
catalogs and references Drupal Learning materials. The Dojo also supports the 
expansion of educational programs such as regular IRC chats in the Freenode 
#Drupal-dojo channel, local weekly Dojo Meetings for training, and co-working 
sessions. As of January 2011, Drupal User Groups in Austin, Boston, and Seattle 
have all expanded their monthly meetings to include a weekly Drupal Dojo 
training or working session. The Drupal Dojo group is one of the largest groups 
on Groups.Drupal.org. 

Drupal Learning Projects (DrupalKata.com) provides opportunities to learn by 
doing, under the guidance of mentors, teams, or project managers. Projects are 
developed in the open by following workflow that insures documentation and 
opportunities to generate lessons, best practices, tips and tricks, tutorials, 
development strategies and a host of other learning materials, all based on the 
lessons learned during project development. These materials are then 
cataloged and distributed through the Drupal Dojo. 

Dojo Barn Raisings help a local non-profit by building a Drupal 7 site as an 
open learning project. All planning and development is completed in the open 
using the Drupal Kata project resources and culminates in a public barn-
raising, where Drupal volunteers, mentors, and apprentices work in teams to 
build the site in one or two public sessions. There are observation areas for the 
public to watch and learn as narrators explain the work as it’s completed. The 
Seattle Drupal User Group (groups.Drupal.com/seattle) launched another 
barn raising project (groups.drupal.org/node/121624) in January of 2011. 

Cataloging Drupal Learning was created shortly after DrupalCon San Francisco 
when a group of volunteers began the process of mapping Drupal learning by 
developing a questionnaire that associates job responsibilities and core 
competencies with Drupal learning objectives. The long-term goal is to 
establish standards for the cataloging of all Drupal learning content from 
courses to learning objects (groups.drupal.org/node/15975). 

Drupal Open Curriculum Project is developing a complete curriculum and 
course materials that anyone can use. This project offers many opportunities 
for individuals to get involved, regardless of experience with instructional 
design (gitorious.org/drupal-open-curriculum/pages/Home).  

Developing a Framework for Drupal Learning is an objective of the DOLI. It 
hopes to bring together the wide range of experts, mentors, trainers, and 
educators working to develop Open Drupal Curriculum in order to define a 
framework for Drupal Open Learning Curriculum, including guidelines and 
best practices for curriculum development.  

Drupal In A Day is an effort to develop shorter courses that cover Drupal for the 
newcomer. Learn all about Drupal in a day. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

873

3. Answering Questions in Forums, Groups, Mailing Lists, Meetups, 
and IRC 

“Each time you visit drupal.org take a quick look at the ‘New forum topics’ block. It 
only takes 5 minutes to help someone.” 

—Wim Mostrey (wmostrey, drupal.org/user/21228) 

Remember when you asked a question, especially one you were timid about, and got a helpful 
response? Helping earns you gratitude and increases your knowledge. Fox (drupal.org/user/426416, 
hefox on IRC) is establishing a reputation as an “honest to goodness [Drupal] genius” by answering 
questions in IRC. Fox is approaching an encyclopedic knowledge of Drupal and yet still has moments of 
not knowing an answer: “I was curious so I searched for it.”  

It really is that simple: sometimes all someone really needs is for another soul to do a five second 
search for them instead of telling them to search on their own or read the handbook. Taking the extra 30 
seconds to point them in the right direction also helps you; refining your search skills is never bad idea, 
especially when it comes to web development. 

Angie Byron (webchick, drupal.org/user/24967) started in Drupal by answering questions, which 
eventually led to offers to do Drupal odd jobs for a few hundred dollars a pop. Now she’s the Drupal 7 
maintainer, a former Lullabot consultant and now director in the office of the CTO at Acquia, the author 
or Using Drupal, and all-around Drupal community superstar! 

Chapter 9 lists places where you can get help; these are also the places where you can help others. 
Check in on the forums at drupal.org/forum, subscribe to some groups at groups.drupal.org, sign up for 
some mailing lists, go to Drupal meetups, or hang out in Drupal IRC channels.  

4. Writing Documentation for Drupal.org 
Perhaps the most important way to help the success of Drupal, and certainly one of the best ways to 
learn while doing, is to write documentation. You might build a powerful Drupal site equipped with all 
the bells and whistles and have it working perfectly without a single bug, but its impressiveness dims if 
people can’t use it or continue its development. Complete documentation for people developing, 
administering, or simply using a Drupal site can make the difference in the success of any Drupal 
project. 

■ Note  For more on documentation practices and guidelines for end users and internal production teams, see 

Chapter 11. 

There is a terrible misconception floating around that you are not allowed to write documentation if 
you don’t know enough about writing or don’t know enough about Drupal. We, the authors, don’t know 
how this came to be but it is not the case at all. 

First, anything is better than nothing. It’s much easier for someone else to improve the writing style 
or technical detail of existing documentation than it is to write it from scratch and find where it belongs. 
Of course, you can also be the person who improves the clarity or updates information on the existing 
documentation. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

874 

Second, if you’re reading this book and you’ve made this far, we’re willing to bet you can read and 
write—and that you have some interest in Drupal. Congratulations! We now pronounce you qualified to 
write Drupal documentation. There are no tests to pass when it comes to writing documentation. Just 
write simple, non-verbose, step-by-step instructions.  

In fact, a lack of Drupal sophistication can be a distinct advantage in a documentation writer! It 
makes you much more likely to notice areas where users will need help, processes that make no sense, 
and places that beg for explanation. 

Anyone with a drupal.org account can add and edit documentation. You can get an account at 
drupal.org/user/register and you can create documentation pages via drupal.org/node/add/book. 
Before you add a new page, do a search to make sure what you want to add doesn’t already exist. You 
may find that a page does exist but it wasn’t linked where you expected to find it. Adding links to related 
documentation will help others find the right page and is one of the most high-value, low-effort 
contributions you can make. 

Some pages can only be edited by people given the “documentation” role on drupal.org, which lets 
you post content with tables and images. If you are already a regular contributor to the other 
documentation pages, you will probably be granted this role. More information on getting more 
involved with documentation can be found at drupal.org/contribute/documentation and 
drupal.org/contribute/documentation/join. 

That’s all you need to know to get started! You certainly don’t have to set out with the single-minded 
goal of contributing to documentation to make a big impact. As you work with Drupal, improve the 
documentation whenever it lets you down. 

■ Note  The people putting the most time into documentation really don’t like comments on documentation pages 
(and in fact will probably have killed that capability by the time you read this; see drupal.org/node/810508 for 
more information). If you have information to add or correct, please edit the page. If it’s a change that requires 

discussion, file an issue about it. 

5. Contributing Patches 
Contributing patches does not necessarily mean contributing code. The novice tag 
(drupal.org/patch/novice) is a way to tag and sort core issues that are relatively simple to resolve. Just 
changing the wording of a comment got Benjamin listed as a code contributor to Drupal 7! 

The more users get hooked on making Drupal better, the better for all. Drupal will not be able to 
support the growing user base if contributions do not keep pace. Currently, less than 1% of Drupal users 
are contributing back. That means that 99% of users benefiting from Drupal are not paying it forward. 
But even at that meager percentage, Drupal is able to do amazing things! The leverage of your 
contribution is huge. 

■ Note  The Novice tag goes unnoticed by many, primarily by those that would be the most interested in 
contributing. At the time of writing, the effort to add Novice links to the set of quicklinks in Contributors blocks 

(mentioned in section “Reviewing the Contributions of Others”) is still active at drupal.org/node/448794. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

875

Another great way to start writing patches is to participate in a code or documentation sprint. These 
are self-organizing, informal gatherings of developers where participants work collaborative to complete 
code and documentation enhancements. The main Drupal Groups Events Calendar 
(groups.drupal.org/events) allows you to filter by event types if you aren’t already a member of your 
closest Drupal group.  

Keep an eye out for users who post topics in group forums or discussions that point back to the 
issue queue. These people are trying to rally troops to get something done! Documentation on creating 
patches with Git can be found at dgd7.org/patch. Additionally, you can find instructions for applying 
patches at drupal.org/patch/apply and creating patches at drupal.org/patch/create.  

6. Contributing Code and Design 
Contributing to Drupal by writing and maintaining projects is covered in Chapters 15 and 16 on 
theming, Chapters 18 to 24 on module development, and Chapter 37 on maintaining a project on 
drupal.org. 

7. Curating Issue Queues 
Another huge way to contribute to Drupal (and to the health and sanity of people writing code and 
documentation) is to help manage the vast number of questions, requests, and reports of problems. 
Every project on drupal.org has an issue queue. The goal of issue queue curation is the following: 

• To close issues that aren’t relevant or can’t be reproduced (or understood). 

• To get the right eyes on what is addressable. 

• To try to fix the problem yourself!  

If you are looking at an issue and it’s not clear how to do any of these things or even add a useful 
question or clarification, simply move on to the next issue. 

Authors throughout this book have encouraged you to file issues when you run into a broken part of 
a project (a bug) or even a missing feature. And as much as project maintainers want to hear from you, 
merely just adding to their pile of things to deal with is unlikely to win you many points. Daniel Kudwein 
(sun), a developer and designer who deals with dozens of pages of issues in his own projects’ queues, has 
a suggestion on his user page (drupal.org/user/54136). 

If you are asking yourself why your issue has not been resolved yet, then please have a 
look at my queue: drupal.org/project/user/sun. If you want me to help you, you want 
to help me—by testing other patches or answering support questions of other users. :) 

Pitching in by sorting through the accumulated input from the Drupal-using public is a direct way 
to earn the good will of a project maintainer. If it’s a project that you care about, you will also benefit 
from increasing your own knowledge about the project’s rough edges and strengths. All the while you’re 
paying it forward.  

Sun’s recommendations for helping in project issue queues are summarized below: 

• Find maintainer directions. (Not all project maintainers offer them or are as 
responsive as sun.) 

• Find duplicate issues. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

876 

• Set the status of one of the issues (usually the newer or less active issue) to closed
(duplicate). 

• Link to the open issue. 

■ Tip  You can create a link that will expand to include the title of the issue you link to by entering only the node

ID in brackets, preceded by a number sign, like this: [#1207734]. 

• Leave a comment on the open issue inking to the issue you closed, such as
“Marked [#1234578] as duplicate.” 

• Find related issues. Two issues may not be exactly the same, yet all the people
involved in each should know about the other one to help each other. In Linux
Journal’s February 2011 interview with Angela Byron, she said that she spent a lot
of her time as maintainer ensuring that developers who were working on similar
initiatives in core were in touch with each other.  

• Review patches. (This is covered separately later in this chapter under
“8 Reviewing Contributions of Others.”) 

• Answer support requests and close support requests (set status to fixed) where the
original poster seems to have received the information they need. 

• Set the status of bug reports that don’t have enough explanation or detail to be
reproduced to postponed (maintainer needs more info).  

• Close useless bug reports. In general, anything marked needs more information
and without a new reply from the original poster (sometimes abbreviated “OP”)
for more than a week or two is not reproducible and can be marked closed (cannot
reproduce). 

For an excellent example in community management of a project’s issue queue, check out the Views
Bug Squad. While some of the rules of engagement are specific to the Views module and the styles of Earl
Miles (merlinofchaos, drupal.org/user/26979) and co-maintainers Daniel Wehner (dereine,
drupal.org/user/99340) and Lynette Miles (esmerel, drupal.org/user/164022), most of the advice can
be applied to any module, theme, or other project. In particular, see the “How to Use the Issue Queue”
page (http://drupal.org/node/945492) in the Views Bug Squad Handbook (drupal.org/node/945414). 

http://drupal.org/node/945492


CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

877

 

Figure 38–1. The Drupal core issue queue, sorted by Last updated. 

■ Tip  It is a good practice to look at the oldest issues first. You can sort an issue queue by clicking on the table 
headers, including the “Last updated” column (see Figure 38–1). While starting from Drupal core’s oldest issues 
may seem daunting, in some respects the oldest issues can be easier to resolve. It is also perfectly all right to 

work on more current issues, of course. 

In her talk about the Drupal community at the Pacific Northwest Drupal Summit, Angie Byron 
issues a challenge to us Drupallers to answer one support question or forum request a day. The goal is 
about making progress, moving along steadily instead of in one giant cram session. Angie’s video and 
slides are available at webchick.net/node/80. 

8. Reviewing the Contributions of Others 
OK, so every method of contributing so far has started off with a claim that it’s the most important and 
it’s a great way to learn. They really all are! And in particular there is a crying need for reviewers. 
Reviewing, like writing documentation, is a particularly powerful way to learn how the Drupal software 
and community work while getting a sneak peak at upcoming developments.  

Like so much else in Drupal, reviewing centers around the issue queue. Issues ready for review are 
marked with the status needs review. To find issues for Drupal core that need review, go to 
drupal.org/project/issues/drupal and filter by status.  

One of Drupal 7’s new features is the Dashboard. You can add blocks of information (direct links to 
content, Drupal news, project specific issue queues) that you want to have at your fingertips. Keep 
current on the number of issues per queue by adding the Contributor Links block to your Dashboard 
(Figure 38–2).  



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

878 

 

Figure 38–2. In the Contributor Links block, note the Patches to review link under Queues. 

Using Dreditor to Review Patches 

All the professionals and cool kids (well, a lot of them) use a Greasemonkey script called Dreditor to 
perform patch reviews. Dreditor stands for Drupal editor; it’s script that turns your Firefox or Chrome 
browser into a patch reviewing machine. Created by Drupal angel Daniel Kudwein (sun), it’s available at 
drupal.org/project/dreditor. To use Dreditor, simply highlight a part of code you want to comment on, 
type your comment in the box that appears on the left, and click Save. 

■ Note  When multiple patches are attached to an issue, review only one at a time.  

Until you click Cancel, Dreditor assumes that you are you still are viewing the patch. If you try to 
review another patch by clicking Review, Dreditor won’t bring up the new patch you want to review; 
instead, you continue editing the first patch.  

9. Making Drupal.org Better 
One of the ways to make the greatest impact on the whole Drupal community is to help improve 
drupal.org. It has gone through a major redesign in partnership with Mark Boulton Designs; all needs 
and goals are well-identified. The high-priority features are outlined at drupal.org/node/1006924. You’ll 
notice that many sections still need to be upgraded to Drupal 7. There’s no better time to be effective, to 
learn, and to be part of the team contributing to the Drupal project in the most direct and important way 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

879

possible. Key parts of improving Drupal.org fall under the new Prarie Initiative, 
groups.drupal.org/prarie-initiative. 

Drupal.org is the Drupal community’s “online office”, as Angie Byron (webchick) called it in her 
DrupalCon Chicago panel on Scaling the Community. Angie is following up her three-year leadership 
stint on Drupal 7’s development by concentrating on making drupal.org rock ever harder! What a 
fantastic member of the community to get to work alongside. Get started by reading “So you want to 
help make Drupal.org awesome?” at drupal.org/node/1006562. The unstoppable Derek Wright (dww, 
drupal.org/user/46549) maintains an installation profile for creating copies of drupal.org on which 
people can do testing and development at drupal.org/project/drupalorg_testing. 

10. Hosting and Organizing Meetups, Camps, Summits, and More 

“It is fascinating to think that only a few years ago, the main DrupalCon was smaller 
than today’s DrupalCamps. It’s even more staggering when you realize that on any 
given weekend, there are probably several DrupalCamps happening in cities all 
around the world. It blows my mind. In-person meetings have been instrumental to 
Drupal’s success and growth. If you want to grow Drupal in your area, consider to put 
on a DrupalCamp and to organize regular meet-ups. It is the best way to bootstrap 
and foster your local Drupal community.” 

—Dries Buytaert 

The fact that we now have a half-dozen terms regularly used to describe Drupal gatherings indicates 
the demand for these events.  

DrupalCons are multi-day conferences traditionally held twice a year (one in 
North America and one in Europe). DrupalCons are now reaching about 4,000 
attendees. As Drupal grows, DrupalCons grow to reflect the diversity of the 
community attending from offering paid training to vendor booth areas. The 
week always culminates with a day of sprints, where people use the opportunity 
to work together on code and documentation. Conversations are happening in 
the world-wide community, particularly Asia-Oceana and Latin America, to add 
more DrupalCons outside North America and Europe axis.  

Drupal Summits are like mini, regional DrupalCons, multi-day, multi-faceted 
events. Drupal Summits are a new category, and the Pacific Northwest Drupal 
Summit is given credit as being the first to use the term. The first Latin 
American Drupal Summit happened in January 2011 in Lima, Peru. 

Drupal Camps are a one- or two-day event with multiple presenters that are 
usually held once a year per city. Camps can be organized BarCamp style (all 
sessions chosen on the day of the event) or the schedule may be set ahead of 
time. The Drupal Camp Organizing Guide can be found at 
groups.drupal.org/node/10437. There are also camps organized around a 
theme. Specific design-focused camps arose from people wanting to work 
together to improve design in Drupal. The first Design for Drupal (D4D) camp 
happened in Boston in 2008. Now there have been D4D camps in Boston, Los 
Angeles, Stanford, and Prague. 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

880 

Drupal Meetups occur in cities and towns the world over. Many are held at a 
regular monthly time and feature lightening talks (5 to 10 minute presentations 
on what people are doing with Drupal) and time for attendees to ask questions 
and get help or advice. For information on hosting meetups, see the Local User 
Group Organizers group at groups.drupal.org/local-user-group-organizers, 
and Drupal educator Heather James’ writeup of different meetup styles at 
acquia.com/blog/heather/what-do-you-do-your-drupal-meet.  

Drupal Cafés are usually smaller gatherings than the meetups and always held 
where food and drink are readily available.  

Drupal Dojos are smaller gatherings geared toward free, focused community 
learning. Austin, Boston, and Seattle hold weekly or twice monthly Drupal Dojo 
training/co-working sessions.  

Drupal Katas are Dojo sessions focused on a particular project.  

Sprints are events that result in doing, such that organizing one is a double 
contribution. You can have code, documentation, marketing, and planning 
sprints. Sprints can be open or limited to advanced levels. Decide in the 
beginning whether you want to teach, code, or have a hybrid, and make sure to 
include your plan in your announcement. Sessions are always more productive 
when expectations are set up front.  

Drupal parties are newer entries to the scene. There were more than 300 independently-
organized Drupal 7 release parties in 96 countries in early January 2011!  

Drupal Dev Days (drupaldays.org), a hybrid camp-sprint-summit event, drew 
hundreds of developers from a dozen countries to Europe in February 2011.  

The most important thing to note is that hosting and organizing is not top down. You can’t organize 
a DrupalCon by yourself but you can certainly be part of putting one on. You can put on smaller events 
yourself and be the catalyst for the rest of the event types. Get creative—John Zavocki (johnvsc) began to 
hold drupal Play Dates randomly across New York City, and George Matthes stepped up to be a regular 
host.  

Here are some good points and tips to keep in mind when deciding to organize, host, and plan for a 
sprint or camp where code work is going to be executed: 

• Find a place with stable Internet connection. Small code sprints can even be held 
in people’s homes.  

• Try to get veteran programmers involved and make sure someone with commit 
access to the project(s) is present or available remotely. 

• Have one primary person record issues and who is working on them. Keep notes 
on a Drupal wiki page or real-time collaboration document such as Google Docs 
or Etherpad (piratepad.net). 

• Have food available. Everyone will eventually get hungry! 

11. Money 
Writing a check is a perfectly valid way to contribute and is always appreciated. If you are unsure where 
to contribute or don’t have time to give to coding or organizing, donating money is great way to 
demonstrate your support. It takes money to put on events, purchase food for code sprints, and get 
insurance for camp attendees. The following are ways to monetarily contribute to Drupal.  



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

881

Donating to the Drupal Association 
The Drupal Association pays for things relating to the drupal.org infrastructure and works on selected 
other things, such as promotion of Drupal and fostering the community. It is extremely important work. 
Drupal has distinguished itself by providing excellent community support. As communities grow, their 
support requirements change. If you become a member of the Drupal Association, your membership is 
an annual contribution. For more information on the benefits of membership, go to 
association.drupal.org/membership. Once you are a member, you can give more at 
association.drupal.org/about/donations. 

Sponsoring Events 
Drupal events can always use sponsors. Drupal conferences may not have a sponsorship slot you can 
afford, but the nearest Drupal Camp most certainly will. (And if there aren’t any Drupal Camps near you, 
see the section about hosting your own events!) 

Sponsoring Developers 
Drupal developers are in high demand, but some of those who have contributed the most are doing so 
on their own time. Sponsoring development by people with a good community track record is a great 
way to give thanks. Say there’s a module that you repeatedly use, but perhaps it isn’t very popular 
because it serves a niche purpose—but it serves it well. Check in with the maintainer(s); they might be 
working on their own time and could use some monetary compensation.  

Scholarships are another way to sponsor developers. There’s no formal process for this, but if you 
know someone who should be presenting at a camp or conference, you can ask if they have train or 
plane fare or lodging. You can usually reach out to community members through their drupal.org 
contact forms.  

■ Tip  Get involved with ways to raise and make efficient, targeted use of funds at groups.drupal.org/paying-

plumbing. 

12. Making the Drupal Community Welcoming 

“It’s really the Drupal community and not so much the software that makes the 
Drupal project what it is. So fostering the Drupal community is actually more 
important than just managing the code base.” 

—Dries Buytaert 

Our main challenge is keeping the community welcoming and supportive as the community scales. 
Drupal’s Angela Byron (webchick) graced the cover of Linux Journal in 2011 for her leadership in the 
community and work on Drupal 7, yet her first contributions to any free software project came 10 years 
after she was introduced to and excited by the concept. The myth that kept her out was that you have to 
be Einstein smart to contribute to open source. “You don’t have to be,” she said. “There are a lot of smart 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

882 

people, but there’s also everyone else contributing and sharing what they know. And that can be 
anything.”  Drupal is very, very lucky to have gotten webchick and not lost her to Linux, but how many 
potential awesome contributors have we (and all open source projects, and the world) lost? It is an 
inescapable conclusion that we’re losing potential contributors because they do not have an inflated 
ego. We need to work to remove the false perception that you have to be some X level of smart to do 
Drupal and contribute to Drupal. 

Studies have shown that doing something to break (or simply distract people from) a lack of 
confidence disproportionately and significantly helped the test scores of underperforming groups. This 
is called the stereotype threat, and you can help combat it simply by welcoming everyone as a 
contributor. 

This also means we need to continue to be conscious of valuing all contributions, not only code. 
And just as people who come for the code stay for the community and begin to contribute in many other 
ways, so too people who start contributing through support, reviewing and testing, and documentation 
may end up making significant code contributions. 

The opposite of treating everyone as a potential contributor is stereotyping anyone for any reason. 
Drupal IRC channels have guidelines disallowing talk that is sexist, racist, or homophobic (see 
drupal.org/irc/guidelines). Inappropriate comments become a problem when they are not addressed. 
People must speak up when they see someone undercutting another’s right to equal treatment. By and 
large, the self-policing has worked. The advice is simple: Be sensitive to discrimination, and take action 
when it happens. It can mean the world to a community member to see someone step in and say “we 
don’t do that here.” Avoid a long awkward silence. Hopefully other members will back you up and soon 
move through the discussion.  

We must ensure that our community treats everyone well. We need to be conscious of valuing all 
contributions and members regardless of sex, age, race, or economic background. It is impossible to 
remain isolated from the larger issues of economic and social disparities but we can make an effort to 
ensure that we avoid reproducing or compounding them within our community. Rethinking our models 
of collaboration, funding for low income web-projects, teaching and training are great ways to start.  

Diversity makes free software more powerful. Drupal has a pretty diverse group of contributors in 
terms of backgrounds and countries, but traditionally, open source free software has an abysmal 
proportion of women participating. In fact, less than two percent of open source developers are women, 
versus 20 to 30 percent of proprietary software engineers and developers. Drupal is doing somewhat 
better with a 10 percent female participation rate, but there is still vast room for improvement. The 
DrupalChix group (groups.drupal.org/drupalchix) exists to address the underrepresentation of women 
in Drupal with the fortunate fact that we can do something about it. All-in-all, the Drupal community is 
showing excellence in keeping our environments safe and friendly to all.  

Building the Movement 
There is no grand plan coordinating the contributors to Drupal, which, according to Angie Byron, “gets 
really interesting if you’re trying to take the initiative of making something happen in the community 
because you’re trying to make a lot of individuals believe that the same thing is important. The 
community is founded on the concept of “do-ocracy” ... the only way things get done is if someone 
actually does them.  It’s a pretty simple concept, but there’s nobody being paid to care about Drupal 
core, there’s nobody paid to care about their modules unless they have some sort of special 
arrangement, so people care about stuff because they need it and they just dive in.” 

Amazing things have been accomplished (and amazing things are in the works) with this approach, 
but it's also worth noting that it is our ability to do some level of planning and coordination that makes it 
work. Drupal has been at its best in areas where: 



CHAPTER 38 ■ CONTRIBUTING TO THE COMMUNITY 

883

• People are able to contribute without (or with easily obtained) approval. 

• Tools for coordination exist and the process and authority for making decisions is 
clear. 

Where either of these are true, such as in Drupal core and contributed projects, Drupal is often at its 
best. Whether ironically or fittingly, working on improving these two qualities in various places in 
Drupal are where you are most likely to require approval with no clear means of coordinating or making 
decisions (see dgd7.org/resistance). 

Perhaps the most exciting thing about working on these points—how do many people work together 
on complex, crucial projects without structures of control or coercion, economic or otherwise?—is that 
they are critical, not just to Drupal’s success but to making a better world. 

A better world is what a surprisingly large amount of people mean when thinking about Drupal as a 
movement. Similarly, many people in Drupal are aware that Drupal, by giving them the ability to 
contribute to world-changing software and to make a living at the same time, is a unique and wonderful 
gift. 

We share this gift each time we introduce others to Drupal but it’s also possible to use our sense of 
community and the practices we put in place to build community beyond Drupal. This has not 
happened much yet, but Drupal has remarkably conscious people throughout the community. Josh 
Koenig (joshk, drupal.org/user/3313), founder of Chapter 3, one of the first Drupal shops, recently wrote 
on his blog: “We are entering a time where the potential exists for the first time to create an effective and 
non-oppressive set of rules that span the entire globe. Only within such a framework of global scope is a 
working post-industrial economy with 6 billion participants humanely possible.” 

Acting on this widely-shared desire for a better world in concert with the work we are doing to 
build a stronger Drupal community could dramatically increase our effectiveness at building both. 
After all, the software itself is mostly about communication and coordination, the underpinnings of 
all accomplishment and power. We, the people working with Drupal, have an opportunity to 
transform a historically temporary increase in autonomy and fair pay into crucial support of the 
struggle for liberty and justice for all. 

The hardest work in Drupal is building the community while preserving its ethos: making it so 
people can contribute in every way possible and creating ways to coordinate to get great things done. 
This work, overlapping as it does with the pressing needs of our planet, is also the most exciting. 

See you in the issue queues—and perhaps in person and in whatever else the community comes up 
with! 
  



P A R T   VIII 
 

■ ■ ■ 

 

Appendix 

Appendix A Covers the essential steps of upgrading a Drupal site from Drupal 6 to Drupal 7 and 
introduces its twin alternative, data migration. 
 
Appendix B gets you started with profiling Drupal to identify, and so be able to fix, performance 
bottlenecks. See also Chapter 27 on scaling Drupal. 
 
Appendix C focuses on the rendering system, or Render API, one of the major innovations in Drupal 7, 
and how it can benefit site builders. 
 
Appendix D gives tips on how to approach graphical design for a site from a Drupal perspective. 
 
Appendix E explains Drupal’s accessibility enhancements and helps show you what practices to follow 
and what resources to use to make your site accessible to all. 
 
Appendix F shows you how to get Drupal up and running on Windows and gets you started with 
Windows-based tools for working with Drupal. 
 
Appendix G gives you a start to running Drupal on Ubuntu—including how to run Ubuntu on a virtual 
machine if you want to use this popular Linux variant for Drupal development. 
 
Appendix H gets you through installing Drupal on Mac OS X. 
 
Appendix I covers getting Drupal installed and running with a cross-platform Drupal stack installer. 
 
And visit dgd7.org and dgd7.org/bonus for new material that supplements this book. 

 
  



A P P E N D I X   A 
 

■ ■ ■ 

887

Upgrading a Drupal Site from 6 to 7 

by Benjamin Melançon and Stefan Freudenberg with a Data Migration 

overview by Mike Ryan 

“Dream. Drive. Do.” 

—Anjali Forber-Pratt 

A cost of Drupal’s continuous innovation is that upgrading a Drupal site a major version (such as Drupal 
6 to Drupal 7) is usually a major deal. Drupal core promises an upgrade path for your data. It promises 
nothing for your code. Indeed, you can count on custom code breaking when you upgrade between 
major versions of Drupal. The custom code on your site that will no longer work will likely include your 
theme. On a complex site, you will have to replace abandoned modules or deal with new versions of 
modules that work somewhat differently. 

For these reasons, many site owners and developers choose to add features, re-work functionality, 
and refresh the design as part of the upgrade. The key is to manage all these moving parts in a way that 
allows you to test the upgrade and new features together while bringing in new live data. You can 
accomplish this by capturing the configuration changes in code (along with the module and theme 
changes, already in code) and applying the upgrade to live data. You can also accomplish this by 
building a site in Drupal 7 and migrating in the content from a Drupal 6 (or Drupal 5 or 4.7 or non-
Drupal) site. We focus on the upgrade approach and include an overview of data migration 
considerations. Many of the same principles and things to watch out for apply to both approaches. 

First, however, you have to decide if you want to move your site from Drupal 6 to Drupal 7 at all. If 
your site is working fine and you aren’t planning to make any changes, you probably don’t want to 
upgrade yet. When you do have ideas that will require writing code to implement, that is a good 
indication it is time to upgrade. To upgrade a moderately-sized Drupal 6 site to Drupal 7, you will 
generally need to complete each of these broad steps: 

• Update all modules to the most recent Drupal 6 release. 

• Figure out which modules are available in Drupal 7. 

• Replace Drupal 6 core and contrib modules with Drupal 7 counterparts. 

• Run update.php. 

• Use CCK’s Content Migrate module to update the CCK fields. 

• Reconfigure views, image style presets, content types, fields, and more, as needed. 

• Update and replace custom code or abandoned modules and add features. 

• Create a new Drupal 7 theme. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

888 

We aren’t going to do all of that in this appendix. This book covers theming in more than 100 pages
in Chapters 15 and 16 and covers site configuration and module development in numerous other
chapters. This appendix will cover the upgrade-specific parts of these steps to provide a solid foundation
for rebuilding a site in 7. 

It’s good that we’ll be working on an inspirational site, that of Paralympic gold medalist Anjali
Forber-Pratt, because upgrading is a lot like training. You want to set things up so that you can run the
upgrade over and over until you achieve your goals. In our approach to upgrading, we will be set to
follow through with a major overhaul of the site using the everything-in-code deployment approach
discussed in Chapter 13. Again, this chapter won’t take you through building out all the features of the
new site—but the story continues at dgd7.org/anjali. 

■  Tip  See also the steps from UPGRADE.txt under MAJOR VERSION UPGRADE. We haven’t followed the steps
exactly here, because Drush lets us skip a bit, but they are the community-expected practice and a good fallback

if the methods here don’t work. The steps may not work either, but you will be better positioned when asking for
community support! Being able to clearly document and describe your issues in the Drush issue queue would also
work, if following the drush site-upgrade approach.  For more about seeking answers beyond the book, see

Chapter 9 on getting help and getting involved. 

Whatever you do, always back up your site before updating anything related to the database (as in
going to update.php or introducing changes to modules that may require this). The standard "back it
up!” warning goes triple when doing a major-version upgrade. 

■  Caution  Do not attempt a major-version upgrade on a live site. Even if it has been fully tested, upgrade a copy
of the site alongside the live site, and then switch from the live to the upgraded copy when it is successful. You’ll
have to put the live site into a read-only mode or, if it’s just user posts and comments you need to worry about,

you can manually bring over changes from the overlap period. 

Note that some Drupal developers recommend using a build-fresh-and-migrate-content-in
approach even for moderately complex sites. It’s definitely an option to consider, especially for an
upgrade with a major overhaul of a complex site, and so is discussed in the “Data Migration” section of
this appendix. (Migration is, of course, the only option for upgrading a non-Drupal site to Drupal. For
this reason, its tools are being developed at a faster pace than traditional upgrade tools.) The planning
steps described here, and discussed further in that section, will be similar. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

889

■  Tip  If upgrading from Drupal 5 to Drupal 7, you must upgrade to Drupal 6 first. Follow the instructions in 
UPGRADE.txt for Drupal 6 (which will broadly follow the steps taken in the first part of this chapter). Upgrade both 
core and contrib. However, do not bother with the fixing steps: do not upgrade your theme, do not port your 

custom modules, do not find replacements for contrib modules that don’t have an upgrade path. Leave broken any 
of these parts from a 5 to 6 upgrade, proceed with the upgrade to 7, and then fix things. Alternatively, a two-
version upgrade calls ever more loudly for starting fresh and using Migrate (drupal.org/project/migrate) to 

bring in your content, users, paths, taxonomies. (The brief overview of data migration that closes this chapter has 
a strong bias toward the Migrate module.)  Another approach is to write your own upgrade module to use Drupal’s 

APIs to make the leap; see quicksketch.org/node/5739. 

The most important point of this appendix is to do everything and anything you do to upgrade your 
site in a re-playable way. 

Assess the Situation 
The unfortunate truth is that improving an existing site can be more work than starting fresh, and this 
applies when doing an upgrade, too. Estimating the work involved is important and difficult. You can get 
an overview by looking at the content types and how many nodes of each there are, the core and 
contributed modules enabled, and number of major structural elements such as views, node queues, 
vocabularies, panels, etc. 

For upgrading a theme, you will almost certainly have to write some code, unless you are using a 
theme off drupal.org uncustomized, in which case it might get upgraded for you. Theming and Drupal’s 
default regions have changed a bit, however, and it’s unlikely that even a contributed theme that is 
ported will function identically without some reconfiguration. 

Content Overview 
There are many modules and tools to help you get an overview of a site (including Nancy Wichmann’s 
Site Documentation module at drupal.org/project/sitedoc, which does much more than just content 
types). You can also get a content overview of a Drupal 6 site with an SQL query like the one shown in 
Listing A–1. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

890 

Listing A–1. SQL Query That Counts the Number of Nodes of Each Content Type 

mysql 
mysql> USE anjali; 
mysql> SELECT type, count(*) FROM node GROUP BY type; 
+----------------+----------+ 
| type           | count(*) | 
+----------------+----------+ 
| activitystream |      918 | 
| blog           |       90 | 
| event          |       83 | 
| feed_ical      |        2 | 
| inthenews      |        4 | 
| multichoice    |        3 | 
| news           |       12 | 
| page           |       11 | 
| photo          |       28 | 
| quiz           |        1 | 
| resource       |        6 | 
| sponsor        |        6 | 
| stat           |        8 | 
| story          |        5 | 
| video          |        8 | 
| webform        |        1 | 
+----------------+----------+ 
16 rows in set (0.00 sec) 

Knowing the counts is always better than guessing or making assumptions. For example, given the 
above counts, if the Highlights and Statistics (stat) content type is best redone from scratch, it’s not the 
end of the world, with 8 posts. The Twitter and Facebook status updates (activitystream) content, at 918 
posts, will need to be re-imported into the new site if it can’t upgrade directly. 

Contributed Modules 
Most of the functionality you care about on a site likely comes from contributed modules. For each 
module, you will first want to ask if you still want its functionality at all. If yes, you will want to check on 
the state of that module in Drupal 7. Is it something that has been ported already?  Is it something you 
can port—and provide an upgrade path, if needed—yourself? (See Chapter 21 on porting modules to 
Drupal 7.) Is it something you will need to rely on the community to port for you? This latter option 
means that the schedule is not necessarily yours; in that case, you will probably want to try to find a 
maintainer or other contributor whom you can sponsor to do the port. 

The first step is knowing what modules you have. Again, this can be done with an SQL query. 

mysql> SELECT name FROM system WHERE status=1 and type='module'; 

Or it can also be done with Drush. 

drush pm-list --pipe --type=module --status=enabled --no-core > modules.txt 

Remember, you are investigating your Drupal 6 site to get a plan for upgrading to 7. If you followed 
best practices, you would already have a spreadsheet of each module installed on your site and its 
purpose, but if you didn’t follow best practices (or are taking over someone else’s Drupal 6 site), you 
need to figure this out. For a complex site that may not have followed best development practice (and 
few have), a module being enabled does not necessarily mean it is in use.   



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

891

Make a spreadsheet starting with this list of modules names and add columns for Purpose, Want to 
keep, and D7 status. An early version of this spreadsheet assessing the Drupal 6 version of 
anjaliforberpratt.com/ can be found at dgd7.org/220; a version from the end of the process is on that 
resource page also. 

In general, the goal is not usually to make an identical site in the next version of Drupal but to make 
a site that reaches all of its (revised) objectives and carries forward the content, paths, and users. This 
means that you should not automatically include every previously used module you can find available 
for the new version of Drupal. Instead, modules should be evaluated against their purpose in the old site 
and the purpose on the new site, taking into account if the purpose is different or if the best way to 
achieve a purpose has changed. 

■  Tip  A great project by Daniel Kudwien (sun) provides modules to help upgrade Drupal sites: 
drupal.org/project/upgrade_status. The first module, Upgrade Status, gives the availability in the next version 

of Drupal of the modules you have installed on your site now. The second module, Upgrade Assist, runs you 
through all the preparation steps (taking your contributed modules into account). Use the 6.x version for upgrading 

your 6.x site to Drupal 7! 

Create a Plan 
Once you know the situation, compare what you want with what you have, and prepare a plan to get 
there. For complex projects, you may want to put in an intermediate phase where you replace the site—
on production—with a Drupal 7 version that does not yet implement all the features you envision. 

The start of the book and Chapter 10 (on Planning and Project Management) are good overview 
resources. Tune in to dgd7.org/anjali to look at the planning documents used in the upgrade process. 

Run the Upgrade (Again and Again) 
The key concept of this section is to set up your upgrade process so that you can try it as many times as 
you need to, with changes to your Drupal 7 module selection and custom code each time, to have a 
working site at the end. 

■ Note  The final section of this appendix, “Data Migration,” takes a similar approach to repeatedly bringing data 

in, but separates it from (and makes unnecessary) any upgrade. 

Preparation 
Before beginning anything, update the Drupal 6 installation you wish to upgrade to the latest security 
and bugfix of Drupal 6 (see Chapter 7), and then update all upgrade-bound contributed modules to their 
latest stable release. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

892 

Anything that you can clean up on the live site will help you a lot. An unused content type (zero 
nodes of that type)? Delete it. A module that’s not used or is really only for site-building use? Disable and 
possibly uninstall it.  The less your upgrade script has to clean up the live site, the easier your life will be. 
On Anjali’s site, Nodequeue module was unused and About This Node module (about_this_node) was 
for site building only. Both could be disabled on the production site without any adverse effect (in fact, 
disabling unnecessary modules means the live Drupal 6 site consumes less resources and may gain 
slightly snappier performance). 

Drush Aliases for All Sites Involved in the Upgrade 
If you think there’s only one site involved in the upgrade, you missed Chapter 13. There’s the live Drupal 
6 site you don’t want to do anything on directly. There’s at least one local Drupal 6 site that’s a copy of 
the live one (for development and testing things like disabling those unused modules, as in the previous 
section). There’s probably a test or stage Drupal 6 site for letting people who aren’t able to look over your 
shoulder at your computer vet changes to the site. Then there is, of course, at least one local 
development Drupal 7 site. And there should be a test or stage Drupal 7 site, too. And when you finally 
go live, there’s a production Drupal 7 site up at the same time as the production Drupal 6 site, and you 
make the switch on your web server. 

Managing all these sites and moving databases and files can be quite easy if you set up aliases for 
them in Drush, as described in Chapter 26 and shown in Listing A–2. 

Listing A–2. Drush Aliases File for anjaliforberpratt.com with Test and Local Aliases Added for the 7 

Version 

<?php 
/** 
 * @file 
 * Drush aliases file.  See drush/examples/example.aliases.drushrc.php. 
 * 
 * Copy the database from production to development: 
 * drush sql-sync @anjali.prod @anjali.dev --structure-tables-key=common 
 * 
 * Copy the database from production to testing: 
 * drush sql-sync @anjali.prod @anjali.test --structure-tables-key=common 
 * 
 * Copy the database from testing to production (as for first launch): 
 */ 
$aliases['prod'] = array( 
  'remote-host' => 'sojourner.mayfirst.org', 
  'remote-user' => 'anjaliforberpratt', 
  'root' => '/var/local/drupal/anjali/web', 
  'uri' => 'anjaliforberpratt.com', 
); 
$aliases['test'] = array( 
  'remote-host' => 'simone.mayfirst.org', 
  'remote-user' => 'ben', 
  'root' => '/var/local/drupal/anjali/web', 
  'uri' => 'anjali.agariclabs.org', 
); 
$aliases['test7'] = array( 
  'remote-host' => 'simone.mayfirst.org', 
  'remote-user' => 'ben', 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

893

  'root' => '/var/local/drupal/anjali7', 
  'uri' => 'anjali7.agariclabs.org', 
); 
$aliases['dev'] = array( 
  'root' => '/home/ben/code/anjali/web', 
  'uri' => 'anjali.localhost', 
); 
$aliases['dev7'] = array( 
  'root' => '/home/ben/code/anjali7/web', 
  'uri' => 'anjali7.localhost', 
); 

Setting up these Drush aliases makes working with the old and new sites much easier. 

DRUSH MAGIC 

There is a nearly all-Drush approach to site upgrades. Greg Anderson reworked the drush site-upgrade 
command with additional capabilities such as automatic non-core module disabling and a theme-reset to 
garland. It also deals with changing dependencies, such as views-7.x requiring CTools while views-6.x 
does not, a common cause of surprising and mysterious fatal errors on the upgraded site. For many sites, 
the site upgrade can be a matter of the following steps:  

1. Define an alias for your new d7 site (as above).   

2. Run the command drush site-upgrade @anjali.dev7.   

3. Wait 15 minutes or more for it to complete.   

4. Test and re-theme your site.   

5. Repeat as needed. 

It is the repeat-as-needed step that gets tricky. By the time you read this, the command in the form drush 
site-upgrade @anjali.dev7 (run from the Drupal 6 dev copy of live) will probably work for you for both 
the initial upgrade and re-testing it, but this appendix shows a stepped approach that works now. 

A Middle Way 
Drush’s site-upgrade command will do everything for you, but for a complex site where the goal is to 
have every element of the upgrade committed to version control such that the code is perfect for your 
new Drupal 7 site and every single database change to get it there is encoded in an update hook, it’s 
doing too much. Therefore, this appendix takes something of a middle ground approach between 
manual and pure Drush automation. You will soon see why the Drush site-upgrade command is far 
preferable if it will support your use case and workflow. 

Starting the 7 Code Base 
Even the Drush command moves you to a new site. For your version control, you could start a new 
branch in your repository or start a fresh repository for your Drupal 7 site, which is also just fine and 
probably cleaner and better (see Listing A–3). 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

894 

Listing A–3. Starting the Upgrade with a New Drupal 7 Project 

mkdir ~/code/anjali7 
cd ~/code/anjali7 
drush -y dl --drupal-project-rename=web 
mkdir web/sites/all/modules/contrib 
mkdir web/sites/default/files 
mkdir private_files 
sudo chown -R :www-data web/sites/default 
sudo chmod -R g+w web/sites/default 
sudo chown -R :www-data private_files 
sudo chmod -R g+w private_files 
git init 
git add . 
git commit -m "Drupal base." 
cp web/sites/default/default.settings.php web/sites/default/settings.php 

■  Tip  These commands can be saved in a shell script (this was taken from the author’s) or you can use 
Drubuntu’s drubuntu-site-add Drush command. Not shown above is copying over a .gitignore file which will 
exclude settings.php and the files directories from version control, copying over a model Rakefile (for 
deployment) and calling a script that creates a fresh database; see dgd7.org/218 for the link to the script and its 

dependencies. 

A database for the site above needs to be created (and settings.php set to look at it). Use 
PHPMyAdmin or another tool on your system or see the scripts at dgd7.org/218. The drush site-upgrade 
command will look for and download all copies of Drupal 7 modules it can find, automatically. 

■  Caution  Make sure your database is clean!  If a Drupal 7 table somehow gets created in your local 
development Drupal 6 source site, it will stay there and break your upgrades. If you do not wipe your destination 
Drupal 7 site’s database before trying again, it will break the upgrade. The drush sql-sync command does not 

delete tables; it only replaces the contents of tables it is bringing in. Therefore, it’s imperative that you drop and 

recreate the database or specifically wipe all tables before bringing new data in, as shown in Listing A–4. 

Listing A–4. Drop All Database Tables and Fetch the Latest Database from Production. Do Not Run This 

Command on Your Live Server. 

mysql -BNe "show tables" anjali | awk '{print "drop table " $1 ";"}' | mysql anjali 
drush sql-sync @anjali.prod @anjali.dev 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

895

You do not need to put the load on your site of fetching a fresh database every time you test the 
upgrade; the previous steps only need to be performed every so often, when you want to make sure your 
upgrade still works with the latest site content. 

To test an upgrade, delete any data in the target (Drupal 7) site’s database. Then go to the root 
directory of the local Drupal 6 site, which is now a freshly-made copy of the production site you wish to 
upgrade, and run the upgrade (see the command-line steps in Listing A–5). 

■ Note  For the drush site-upgrade command to work, the anjali7 database user needs the ability to create 
databases or you need to pass in the username and password of a database user that does in the command with 
the flags --db-su and --db-su-pw.  Or you can add database switch user username and password to your 
~/.drush/drushrc.php. Working with this file is described in Chapter 26’s section “Going In-Depth with Drush 

Configuration Options and Aliases,” and the two lines you can add are 
$options['db-su'] = 'root'; 

$options['db-su-pw'] = 'rootpass'; 

(with 'root' and 'rootpass' replaced with the username and password of a privileged database user). 

Listing A–5. Delete all Tables in the Destination Database and Run the Upgrade. 

mysql -BNe "show tables" anjali7 | awk '{print "drop table " $1 ";"}' | mysql anjali7 
cd ~/code/anjali/web 
drush site-upgrade @anjali.dev7 

Using Drush gets you out of having to set $update_free_access = TRUE; in settings.php. It also 
avoids “Maximum execution time of 30 seconds exceeded” for which you often have to increase 
max_execution_time in php.ini. You don’t get the reassuring pulsing blue progress bar, but if you can 
trust that Drupal and Drush are working away silently, you can stop staring at the command line waiting 
for the prompt to come back, and go blend an energy smoothie to prepare you for the work that will 
come next. The upgrade process will occasionally print messages to your screen but it will take a long 
time, so don’t stare at it—do something productive! 

■ Note  Views has a new dependency in CTools, so you’ll need to download it (site-upgrade will take care of it 
for you). This does not enable CTools, though, so the upgrade will run through (update runs for all present and 

installed modules even if they are not enabled), but trying to use the site will fail until CTools is enabled. At the 
time of writing, a bug between Views and Drupal core also required applying a patch, found by searching online 
and drupal.org for the error dumped on the screen (remember to develop with all error reporting enabled; see 

Chapter 18 or dgd7.org/err). You shouldn’t see that particular problem, but expect to be searching the web and 
issue queues for error messages to see if other people have come up with solutions for the problems you run into 

when upgrading. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

896 

The development version of the Hashcash module for Drupal 7 is preventing login to the upgraded 
site, so disable it with Drush (drush -y dis hashcash). 

Capturing Additional Upgrade Steps in Update Hooks 
That part was supposed to be easy, but often isn’t. Now comes the fun part. Once you can run 
update.php on your Drupal 6 database surrounded by Drupal 7 code and come out with a somewhat 
working site on the other end, you can proceed to make it an awesome working site. 

If no one will be adding content for the days, weeks, or months it’ll take to upgrade the site, then 
great—just click around, and when you’ve finished rebuilding your site in Drupal 7, replace the old 
Drupal 6 one. If there will be new posts, comments, or other content and user changes on the live site, or 
you will be working with a team and you want to do it right, take the time (and trouble) to capture every 
configuration change in code. This approach is discussed in Chapter 13 in the section on Deployment. 

Optional: Begin the Custom Upgrade Functions from the Drupal 7 
Version of the Site’s Glue Code Module 
The custom update functions need to go in a custom module. Enabling this module can be scripted or 
done manually—or you can try the approach here. 

In a perhaps foolhardy attempt to run everything with one extended database update, I am using an 
existing, enabled custom module to start things off by enabling a custom upgrade module. Even though 
the custom module will have the same name as it did on the Drupal 6 site (anjali), it need not have any 
connection to it, and you can start off fresh. Instead of putting all the upgrade code in this module, 
which you’ll likely want to keep around, it can call a separate upgrade module. It begins by listing this 
upgrade module as a dependency, as shown in Listing A–6. 

Listing A–6. Glue Code Module .info File Listing the Dedicated Upgrade Module as a Dependency 

name = AnjaliFP.com glue code 
description = Site-specific custom code for AnjaliForberPratt.com 
core = 7.x 
dependencies[] = anjaliup 

Next, modules still need a .module file, even if it’s blank, so create that as shown in Listing A–7. 

Listing A–7. Empty .module File for the Glue Code Module 

<?php 
/** 
 * @file 
 * Custom code for AnjaliForberPratt.com. 
 */ 

Now you get to where the action is—a .install file, shown in Listing A–8, which takes care of most of 
the upgrade work you will do. 

Listing A–8. A .install File That Enables a Dedicated Upgrade Module 

<?php 
/** 
 * @file 
 * Install, update, and uninstall functions for the Anjali glue code module. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

897

 */ 
 
/** 
 * Enable the Anjaliup module to do 6.x to 7.x-specific site-building. 
 */ 
function anjali_update_7001() { 
  module_enable(array('anjaliup')); 
} 

The idea with this is that once the upgrade code is in place, you can run drush updatedb and 90 
minutes later, you have an upgraded site! (Times will vary; it took 90 minutes for this site on an Ubuntu 
virtual machine on a somewhat overtaxed laptop.) The following is the ideal approach, which is used by 
drush site-upgrade:  

• Turn off non-essential modules in a temporary site on the Drupal 6 (source site) 
codebase. 

• Upgrade just core in a temporary site in the Drupal 7 (destination site). 

• Then do the full upgrade.   

This is the approach achieved for rerunning the upgrade (in an automatic mode requiring no 
responses to prompts) with two Drush commands in the section “Rerun the Upgrade.” 

Creating an Upgrade Module 
Ideally, anything that has to do with building the Drupal 7 site can go in normal site-specific modules or 
Feature modules (discussed briefly in the next section). 

It is highly recommended that you use a core theme that has both a Drupal 6 and Drupal 7 version 
for going through the upgrade, and this means Garland. After the upgrade, to focus on the site structure, 
content, and functionality, and not the design, you can switch to Stark. Ultimately, you will change this 
code to instead enable the custom theme you build for this site. But until you get to the point of testing 
the theme against the rest of the upgrade and functionality you add, you can capture in code the act of 
changing to the bare-bones Stark theme, as shown in Listing A–9. 

Listing A–9. Checking the Presence and Status of Themes in the System Table 

drush sqlc 
SELECT name, status FROM system WHERE type='theme'; 

In this case the news is good: only Drupal 7 themes are listed; there are no leftover entries in the 
table from Drupal 6. To put your upgrade in code and test incremental updates, you can do the same 
thing modules do to upgrade: implement hook_update_N() for the running of update code, where the N 
stands for a number in the series of updates; see Listing A–10. 

Listing A–10. Change to the Stark Theme and Set Seven as the Administration Theme 

/** 
 * Enable and set the Stark theme and set Seven as admin theme. 
 * 
 * Queries adapted from system.admin.inc system_theme_default() and friends. 
 *  
 * Note:  The Drupal 6 themes do not exist in the system table; they have been 
 * cleaned up by Drupal's upgrade so we do not have to delete them ourselves. 
 */ 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

898 

function anjaliup_update_7003() { 
  $theme = 'stark'; 
  // Disable Garland. 
  theme_disable(array('garland')); 
  // Enable our chosen theme. 
  theme_enable(array($theme)); 
  variable_set('theme_default', $theme); 
  variable_set('admin_theme', 'seven');
} 

This is function anjaliup_update_7003() because you happen to place it to run after two clean-up
functions, below. Removing Unused Modules from Code and Database. Using this upgrade approach,
you can delete unwanted Drupal 6 modules from code easily and they won’t bother you anymore. To
give your Drupal 7 site a clean start without ghosts of modules, you can clean up the database as well. 

Rather than trying to run an uninstall process while the site is still in Drupal 6, you can delete traces
of unwanted modules from the database yourselves. (Plus, many modules don’t remove all their traces
at uninstall.) There are three places modules usually store information in the database: their own tables,
the variable table, and the system table. 

To see what there is to be culled, you can look at the database. On the command line, Drush can
connect you to your test site’s database automatically when run from within the site root (saving the
trouble both of looking up credentials and typing a USE databasename step). The following SELECT
statement returns every module in the system table with its status (0 for disabled, 1 for enabled) and
schema version: 

drush sqlc 
SELECT name, status, schema_version FROM system WHERE type='module'; 

You can see the results—254 modules, many dating back to the Drupal 5 version of this site (read:
ancient history)—at dgd7.org/270. Only the modules with schema versions in the 7000s or zero are
genuinely present and potentially working. 

■  Tip  The Enabled Modules module (drupal.org/project/enabled_modules), maintained by the fabulous
Julian Granger-Bevan, will show you all this information in an even easier to digest format— plus let you know if

the code base for a module in the database is missing. 

To delete rows from a table, you want to use the db_delete() statement provided by Drupal’s
Database API, as shown in Listing A–11. 

Listing A–11. Delete a Row for a No-Longer-Present Module from the {system} Table 

/** 
 * Remove all traces of unwanted Drupal 6 (and earlier) modules. 
 */ 
function anjaliup_update_7001() { 
  // Delete Devel module from the {system} table. 
  db_delete('system')->condition('name', 'devel')->execute();
} 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

899

■ Note  Update functions don’t run when you install a module (enable it for the first time). In order to have the 
upgrade, you embed in these functions to run when this module is enabled, and you have to call all the update 
hook implementations from the install hook implementation.  That’s not the way to use hook_install() and 

hook_update_N() in an ordinary module, but a dedicated upgrade module is not ordinary. This is shown in Listing 

A–17. 

Looking through the list of tables (with the query SHOW TABLES; when using the Drupal 7 site 
database) shows more things you will want to delete: tables associated with defunct modules. Leftover 
tables shouldn’t affect site performance at all, but they can waste a lot of developer time when trying to 
debug something and there are database tables that have nothing to do with anything anymore lying 
around. One module that shouldn’t show up anywhere on a production site nor in the production site’s 
database is the Devel module. It would uninstall itself properly, but it isn’t even part of the Drupal 6 
site’s codebase anymore, and it makes a lot more sense to code a few cleanup commands yourself then 
to download the module just to uninstall it. 

Let’s therefore add another line to the update hook for removing obsolete database information. 
This line will delete the entire devel_queries table and is shown in Listing A–12. 

Listing A–12. Add a Line to Drop the Devel Module's devel_queries Table from the Database 

/** 
 * Remove all traces of unwanted Drupal 6 (and earlier) modules. 
 */ 
function anjaliup_update_7001() { 
// ... 
  db_drop_table('devel_queries'); 
} 

(The function for dropping tables was found in function drupal_uninstall_schema() in 
includes/common.inc by searching Drupal’s code for ‘uninstall_schema’. I happened to remember 
‘uninstall_schema’ from when it had to be called explicitly in Drupal 6. Drupal 7 takes care of this call for 
you, but a search for ‘drop_table’ would have found the db_drop_table() function too!) 

The last place to look for left-over module data is the variable table. Anjali’s site, which started as 
Drupal 5, moved to Drupal 6, and now is moving to Drupal 7, has 1,059 rows in the variable table—all of 
them aren’t used, and  chasing down every unused one is not the best use of time. However, it makes 
sense to clean up a module’s variable table entries as you remove its other outcroppings. Listing A–13 
shows how to delete any variable with a name beginning with ‘hashcash’, as the Hashcash module 
doesn’t clean up after itself fully. 

Modules that have multiple variables usually clean up after themselves by deleting all variables 
“like” the start of the module name. Be aware that this could mean deleting variables for the wrong 
module. When cleaning up a site yourself you can check for this and make sure, for example, that 
deleting variables used by Context module (context) doesn’t also wipe out the variables used by the 
completely unrelated Contextual Administration module (context_admin). 

Listing A–13. Delete All Variables Matching a Pattern  

db_delete('variable')->condition('name', 'hashcash%', 'LIKE')->execute(); 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

900 

■  Tip  If the Drupal database query you’re just written is inexplicably not working, make sure you have the -

>execute() method attached! 

Realizing that each of these actions—deleting system table entries, dropping tables, and deleting 
variables—will have to be done multiple times each, you can automate it with the aid of Drupal 
Database API’s “or condition” chained together repeatedly as many times as you need to use it; see 
Listing A–14. 

Listing A–14. Database Cleanup Update Function in anjaliup.install Refactored to Facilitate Code Reuse 

/** 
 * Remove all traces of unwanted modules from Drupal 6 (and earlier). 
 */ 
function anjaliup_update_7001() { 
  // Delete old, not even present modules from the {system} table. 
  $missing = array( 
    // Site builder modules should not be in the production database. 
    'devel', 
    'devel_themer', 
    'enabled_modules', 
  ); 
  $or = db_or(); 
  foreach ($missing as $name) { 
    $or->condition('name', $name); 
  } 
  db_delete('system')->condition($or)->execute(); 
 
  // Drop tables which are no longer used. 
  $tables = array( 
    'devel_queries', 
    'devel_times', 
  ); 
  foreach ($tables as $table) {  
    db_drop_table($table); 
  } 
 
  $variable = array( 
    'devel%', 
    'hashcash%', 
  ); 
  $or = db_or(); 
  foreach($variables as $variable) { 
    $or->condition('name', $variable, 'LIKE'); 
  } 
  db_delete('variable')->condition($or)->execute(); 
} 

To drop multiple tables, you simple rerun the db_drop_table() command in a foreach loop. Nothing 
too interesting there. The db_delete() statements, however, are pretty cool. You can first build a chain of 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

901

or condition methods building on the result of a db_or() function. Then this set of conditions can be 
handed into the condition method of a single db_delete() statement. 

Modules that have working uninstall functions can be uninstalled by the drush site-upgrade 
function before they ever touch the Drupal 7 site. That’s how the Hashcash module’s table and entry in 
the {system} table get deleted, as you’ll see in the section “Rerunning the Upgrade,” but it failed to clean 
up its variable, so you do that here. (Incidentally, although we decided against continuing to use it for 
this site for now, is actually pretty cool and worth checking out in Drupal 7.) 

Enabling Modules in Code 
You already saw how to do this in the update function in the custom module the site inherited from its 
Drupal 6 edition, which was used to enable the dedicated upgrade module, but see Listing A–15 anyway. 

Listing A–15. Enable a Given Array of Modules 

/** 
 * Enable modules which the site needs. 
 */ 
function anjaliup_update_7002() { 
  $modules = array( 
    'ctools',  // now handled by drush site-upgrade, according to Moshe. 
    'content_migrate', 
    'contextual', 
    'file', 
    'image', 
    'link', 
    'pathauto', 
    'rdf', 
    'shortcut', 
    'token', 
    'toolbar', 
    'views', 
  ); 
  module_enable($modules); 
} 

Disabling Modules in Code 
It won’t be often, but you may want to disable a core module that upgraded well (or, later in your 
development, after the upgrade, you may replace one contrib module with another). In this case, you 
can programmatically disable a module (or multiple at once, as the function module_disable() takes an 
array); see Listing A–16. 

Listing A–16. Disabling Two Core Modules That Won’t Be Used in Drupal 7 

/** 
 * Disable core modules we no longer want to use. 
 */ 
function anjali_update_7002() { 
  $modules = array( 
    'tracker', 
    'trigger', 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

902 

  ); 
  module_disable($modules); 
} 

Disabling, rather than uninstalling, preserves their data; your upgrade code can use the data if 
desired and then uninstall the modules with the function drupal_uninstall_modules(), which can be 
used exactly the same as module_disable()— by handing in an array of module system names. 

Automating the Fields Upgrade 
The move of CCK to core as Fields makes this upgrade more complicated, and by default not at all 
automatic. A special module within the CCK module, Content Migrate, is used to help upgrade Drupal 6 
CCK fields to Drupal 7 fields. 

If you don’t need to script your upgrade (as for a simple site without many live content updates), 
you can visit admin/structure/content_migrate and migrate the fields like a regular person. To run this 
upgrade from code, you need to find the code that this module uses to do the migration. 

Chapter 18, on making modules, discussed finding code related to a given functionality by 
investigating the page that contain that functionality and built the X-ray module 
(drupal.org/project/xray) in part to help that investigation. Another great way to find API functions is 
through Drush commands for modules that provide them. Content Migrate provides a content-migrate-
fields Drush command that calls two more of its Drush commands: content-migrate-field-structure 
and content-migrate-field-data. These are defined in the file 
cck/content_migrate/includes/content_migrate.drush.inc and turn out to be thin wrappers around 
_content_migrate_batch_process_create_fields() and 
_content_migrate_batch_process_migrate_data(), which you can use in your update hook. 
(Alternatively, running some or all of an upgrade as a bash or Drush script also counts as putting it in 
code and could use the Drush commands directly.) 

Either Content Migrate’s Drush command or its administration page can provide you with the 
machine names and the types of the fields available for upgrading (and a trial run with one of these 
methods is recommended to prove it works before trying to build it into code!). 

To upgrade file and image fields, you need to enable the core file and image modules first. Even 
though a Drupal 6 site has contrib counterparts (filefield and imagefield), Drupal will not know to turn 
on file and image.   These must be enabled before CCK’s content_migrate can run for files and images. 
We already did this in the update 7002; given that all the updates will be run again together we can add 
the modules we need enabled, starting with Content Migrate itself; see Listing A–17. 

Listing A–17. Upgrading Fields from within hook_update_N() Functions 

/** 
 * Enable modules which the site needs. 
 */ 
function anjaliup_update_7002() { 
  $modules = array( 
// Existing code not shown due to space considerations. 
    'content_migrate', 
    'file', 
    'image', 
    'link', 
  ); 
  module_enable($modules); 
} 
 
/** 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

903

 * Upgrade fields. 
 */ 
function anjaliup_update_7003() { 
  $fields = array( 
    'field_description', 
    'field_event_date', 
    'field_gcal_status', 
    'field_link', 
    'field_location', 
    'field_stat', 
    'field_year', 
    'field_file', 
    'field_image', 
    'field_sponsor_logo', 
  ); 
 
  module_load_include('inc', 'content_migrate', 'includes/content_migrate.admin'); 
 
  // First upgrade the structure for each field (this is the drush approach). 
  $context = array(); 
  foreach ($fields as $field_name) { 
    _content_migrate_batch_process_create_fields($field_name, $context); 
  } 
 
  // Then migrate the data for each field. 
  $context = array( 
    'sandbox' => array(), 
  ); 
  foreach ($fields as $field_name) { 
    _content_migrate_batch_process_migrate_data($field_name, $context); 
  } 
} 

Now a major step in the upgrade of most any Drupal site from Drupal 6 to Drupal 7 is fully provided 
through re-playable code. Rerun the upgrade any time you want to test your upgrade process against live 
data. How to do this is covered next. 

Rerunning the Upgrade 
Every time you want to test the upgrade code you are writing, rerun the upgrade. Remember, this wipes 
out any configuration or content you have done on your local upgraded site unless that configuration 
and content has been exported to code. 

First is the hack of calling all the update functions from the enable function. Aside from creating a 
Drush upgrade script rather than an upgrade module, one way to avoid this particular hack would be to 
install an empty module with the same name as the upgrade module on Drupal 6 first, so that the update 
hooks would run with the upgrade. However, calling each update function explicitly works for me. 
Having them as hook_update_N() functions makes it easy to test the new pieces of the upgrade you add: 
simply go to update.php (or use the command drush updatedb) and it will run any hook_update_N() 
functions that you have added that have a higher N than the last one run; the code in Listing A–18 is to 
run all update hooks for the upgrade module when it is enabled for the first time during upgrade by 
calling them from its implementation of hook_install(). 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

904 

Listing A–18. Run all Update Hooks for the Upgrade Module  

function anjaliup_install() { 
  // Remove all traces of unwanted modules from Drupal 6 and earlier. 
  anjaliup_update_7001(); 
 
  // Disable core modules we no longer want to use. 
  anjaliup_update_7002(); 
 
  // Enable and set the Stark theme and set Seven as admin theme. 
  anjaliup_update_7003(); 
 
  // Enable essential modules. 
  anjaliup_update_7004(); 
   
  // Upgrade fields. 
  anjaliup_update_7005(); 
 
  // Enable feature modules. 
  anjaliup_update_7006(); 
} 

Now you’re ready to rerun the upgrade from the top. At the time of this writing, drush site-upgrade 
(sup) is very good about allowing you to use an existing Drupal core installation and not re-downloading 
it (which is particularly great if you have replaced it with Pressflow, for instance). It’s not so good, at the 
time of this writing, at running the modules upgrades without over-prompting you for input. 

Listing A–19. Rerun the Site Upgrade Without Downloading Core or Contributed Modules, After 

Uninstalling Modules You Want to Leave Behind in Drupal 6. 

drush site-upgrade @anjali.dev7 --reuse --core-only --uninstall=hashcash,ping 
drush @anjali.dev7 site-upgrade-modules 

The commands in Listing A–19 could be put together in a shell script or a Drush script (see Chapter 26). 
Indeed, the entire site upgrade could be made a Drush script rather than a series of update hooks; use 
the approach you are more comfortable with. Ordinarily site-upgrade-modules can take a list of modules 
to enable, but you can just as easily add any modules you want in your update hook. 

As usual, don’t wait around. Move on to another task. Depending on your computer and your site, 
this task can take more than an hour. (One of the advantages to the migration approach to upgrading 
sites, described later in this chapter, is that it is a natural fit for the concept of continuous or incremental 
migration, so that even a busy site can be brought up-to-date, switched over, and any final content 
brought in— for a minimum of time, even no time at all, when visitors’ ability to contribute to the site is 
disabled.) 

Some things will fail. The point of putting everything into code you can replay is so that you can fix 
any failures and keep building on top of a solid foundation, even as new content gets added to the live 
site. 

That’s enough about cleanup. Time to build some new things for the new site! 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

905

Create a Feature 
Make your re-build and enhance steps replayable by building an upgrade Features module or set of 
Features modules. A set of Features modules is recommended because by separating functionality into 
different Features, you may be able to build something you or others can use on other sites. 

When undertaking a major upgrade, you will inevitably also want to take the opportunity to change 
some things about the way the site works. Resist, as much as possible, adding major new features to the 
site you are upgrading.  However, if reproducing the way the site currently works will take some effort 
and you want to change the way it works, then plan out your new feature, encapsulate it as a Feature 
module, and make it part of the upgrade. 

■ Note  Everything exportable by Features can be exported without Features. For key modules, like Views, 
Features is simply using built-in export capability. You can put everything in code yourself; Features provides a 

convenient consistent interface and tools around this process. 

The Features module allows you to export the following components which exist in Drupal core: 
Fields, Text formats, Image styles, Menus, individual Menu links, Content types, Taxonomy vocabularies 
(not the terms in them), Permissions, and Roles. Other modules that work with it then allow you to 
export the elements of the site they provide; prominent examples include the Views or Nodequeue 
modules. Additional modules extend Features to export other things, such as the Strongarm module 
(drupal.org/project/strongarm), which allows you to export variables (which include much of what you 
might touch in the Configuration section of your site’s administration pages). 

Consider Creating a Base Feature Module 
The ideal for Features development is that each Feature be standalone, that nearly any site can get the 
Features module and its dependencies and be up and running with the functionality bundled together 
by that Feature. When using Features to capture the configuration for a specific site into code, such 
complete separation is not practical. Instead, certain elements that cross several Features of your site, 
such as taxonomy vocabularies and the fields that hold them, can be exported to a base Feature which 
you then can have other Features require. Creating a base feature works just like creating any feature 
and is described briefly next. (Once you have a base Feature, you can add it as a Dependencies 
component for another Feature.) 

Building a Feature Module 
As a major purpose of Features is to capture in code configuration done through the user interface, so it 
is natural to create a feature through the user interface also. It is also possible to build a feature with 
Drush by giving a feature name and a space-separated list of component names to the command drush 
features-export, but as there can be hundreds of components available, it is easier to identify the 
components you want to use through the Features user interface. 

First, of course, you need to build your site’s functionality to your liking. You might create or edit a 
content type, create a new type of vocabulary, and very likely make or modify a listing page with Views, 
as described in Chapter 3. In the code shown in this chapter, the Views module is enabled, but not Views 
user interface, as we don’t want it enabled on the production site at all. Enable Views UI locally (with 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

906 

drush en views_ui), and build out your view, as well as any other structure and configuration to achieve 
a particular feature for your site. 

■  Tip  Record each act of configuration so that you can use Features to export that configuration to code in the 

next step—or to know when Features doesn’t necessarily provide a way to export that configuration (thereby 
requiring that you find a helper module that does or code it yourself). Resources at dgd7.org/anjali follow on 

this appendix—and book—with every tool and trick ultimately needed to upgrade and build out anjalifp.com. 

Navigate to Administration  Structure  Features  Create Feature 
(admin/structure/features/create). Give your Feature a name (such as News), a machine name (such as 
anjali_news), and a description (such as “Original news and in-the-news content types and listings”). 

There’s no need to put in a Version string because this is not for public release and it will have a Git 
hash each time you commit it to code anyway, and you could tag versions of the site with Git. 

Go to the Edit components section and begin adding the components for this Feature. Select 
Content types and add relevant ones that exist from the Drupal 6 site or that you created in the previous 
step. For example, checkmark “In the news” and “News” content types (note that it may take a moment 
to process adding these). Fields associated with each content type will be included in your Feature 
automatically. 

Then select another type of component, such as Views, and add the one you just worked on. Keep 
doing this until you’ve set to export everything you did to fix or add the most recent functionality to the 
site. Click Download feature and save it into your sites/all/modules/custom directory. (Many people 
have a features directory in modules, but as Features modules can be either contrib or custom, it makes 
sense to treat them as one or the other, like any other module.) 

Don’t worry about making your Feature complete and perfect the first time. You will be able to 
tweak and re-export the Feature as many times as you need to. 

■  Tip  You may want to install Diff module, which is required to see the difference between the site’s current 
configuration and a Feature. The Diff module is also useful for administrators to see differences between versions 
of text content. Get it with drush dl diff and enable with drush -y en diff. Make it a permanent part of your 
site by committing it with Git, such as git add sites/all/modules/contrib/diff and git commit -m “Diff 

module for helping show differences between features and content.” 

Adding Feature Modules to the Automatic Upgrade 
You’ve now encapsulated significant configuration into code, but you need to automate these steps. 
Again, this can be very easily scripted with Drush with the command drush en featurename, as either 
Drush commands in a bash script or a proper Drush script, but let’s stick with the hook_update_N() 
approach here, as shown in Listing A–20. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

907

Listing A–20. Enable the Feature Modules That Contain Your Site’s Features 

/** 
 * Enable feature modules. 
 */ 
function anjaliup_update_7007() { 
  $install = array( 
    'anjali_base', 
    'anjali_news', 
  ); 
  features_install_modules($install);   
} 

As you create more Feature modules, add them to this function (and call this function from your 
hook_install(), and they will be put into action in the course of the upgrade. 

Features modules are a best practice of development whether you are upgrading a site or not, so you 
may well be developing Features modules for a site you build fresh in Drupal 7 for the purpose of 
migrating content in, also.  Also, no matter the approach you take, a custom site will require a custom 
theme built in Drupal 7.  See Chapters 15 and 16 for that. 

Data Migration 
Suppose you plan to move an existing web site from another CMS to Drupal. You want to preserve all the 
articles, comments, and user accounts while making the transition as smooth as possible. Fortunately, 
Drupal 7 makes migrating the data from other systems simpler than previous versions. 

Another CMS may have different sets of fields on their users, comments, and content than those you 
see in core Drupal, but with the new Field API, corresponding fields can easily be added to all Drupal 
core objects. If the source has kinds of objects that don’t match cleanly with those core Drupal objects, 
appropriate Drupal entities can be defined to hold them. (See Chapter 24 for creating a new entity.) 

The new Database API (DBTNG) makes it easier to migrate data directly from different database 
engines. Static caching in previous Drupal versions made bulk operations (such as creating or deleting 
thousands of nodes) vulnerable to memory exhaustion. The new drupal_static() helper function for 
static caching allows recovery of memory from static caches, so many more items can be processed in a 
single batch. 

What issues will you face? You’ll find that data migration is not a one-time event, but an ongoing 
development process evolving symbiotically alongside site-building.  

Managing the Process  
It might seem that the most natural approach to data migration is to fully design the new site, define the 
objects (nodes, users, etc.) comprising the site, then work out how to migrate the data into the 
presumably optimal design. You can’t be tempted to put off beginning migration work, though, for 
several very good reasons. 

1. Migration development forces you to get your hands dirty with the legacy data, 
which inevitably leads to discoveries that influence the design, such as 
inconsistencies in the data, forgotten tables, obscure features only available 
through an XML feed, etc. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

908 

■ Gotcha  The first time that stakeholders see the migrated data in context, they will wonder why some
significant feature isn’t present. It will be because they took it so much for granted they didn’t explicitly ask for it.

The earlier this happens in the development process, the better. 

2. The sooner the target site can be at least partly populated with real legacy data
and made visible to stakeholders, the better. Manufactured sample data
always looks exactly like you expect it— legacy data won’t.  

3. Migration is the canary in the coal mine of performance. When developing
web site functionality, viewing and creating nodes one at a time, a tenth of a
second wasted in an inefficient node hook doesn’t even register (until formal
load testing is done, which is typically late in the development process). When
those tenths are multiplied by thousands of nodes when running a migration,
however, the pain is felt immediately and assuaged quickly. 

Data migration will be an iterative process. You’ll start migrating as soon as you have access to the
legacy data and some content types to migrate into, and repeatedly rollback and reimport as the both
the migration and the site-building develop. 

■  Caution  Web development environments are generally configured based on typical assumptions for serving
web pages—the database server is optimized for reading, not for writing, and memory may be limited. Data
migration has different requirements. On a migration project of any significant size, you’ll be creating and

deleting nodes and users in batches of thousands, if not millions. To do this without waiting overnight (or over a
weekend) for a full-fledged test run to complete, you will need plenty of memory (configure PHP’s memory_limit to

512MB if possible), fast disks on the database server, and a wide pipe to the legacy data. 

Understanding the Legacy Data 
It’s critical to understand the data on the old site. It’s good to have documentation, but recognize that
the actual data may have drifted from the documented schema and usage. You can’t take anything
you’re told about the data for granted—you must analyze the data thoroughly. It’s essential to query ALL
the data to be migrated (don’t just take samples). You’re sure to discover that the field you were told
contains only five possible values has—for 11 articles out of 58,281—some other value. You will become
adept at GROUP BY and subqueries as you analyze the legacy data to within an inch of its life. You’ll
identify “required” fields that aren’t actually used (or always have the value “6”) or fields that contain
values that are outside of the documented range. Work closely with the site builders to figure out what
fields need multiple values, what are required and what are optional, and what the defaults should be
when legacy data is absent. 

As a first step, create shared Google spreadsheets from the source tables. There should be columns
for the legacy field name, the disposition (destination Drupal field name or DNM for “Do Not Migrate”),
a description of their meaning, and any special handling if migrating the data isn’t a simple one-to-one
copy. Meet with the experts on the legacy data and go through the spreadsheets, table-by-table and
field-by-field, to identify an initial set of field mappings. But you don’t need to have every mapping fully 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

909

fleshed out at this point. It’s one thing to sit in a meeting and make decisions about the content types 
and fields that will compose your new Drupal site. It’s quite another to see how they work in practice. By 
performing migrations into a staging environment visible across the project—starting as soon as 
possible after the first node types are defined and rerunning with each significant stage of 
development—you can get continuous feedback and refinement of both the site-building and migration 
processes. 

■  Tip  Migrate early and often. 

Specific Sticking Points 
Certain problems crop up repeatedly in data migration and are worth looking out for from the start. 

• Dates: Differences in date handling between database engines; timezones. 

• Files: How will the files be served on the Drupal site (directly from the Drupal files 
directory, from a separate file server, etc.)? How will the files get copied from the 
old system? Will it be done within the content migration process or on the side 
(e.g., via rsync)? Can the legacy file directory be mounted on the migration 
system? 

• Paths: Will the primary path aliases on the Drupal site be different from the 
original? If so, will you use pathauto to generate a new path structure? In this case, 
you need a means to permanent redirect to the new paths. If you want to preserve 
the same path structure, then you need to migrate the paths.  

• Character sets: So, you run your first migration, and apostrophes are showing up 
in Drupal as garbage characters. Extended characters get mucked up. What to do? 
The problem is different character sets on the different databases, by converting 
the wayward characters or aligning the database character sets. 

• Performance: We’ll say it again:  Migration is the canary in the coal mine of 
performance. You’ll need to instrument your code using the Drupal Timer API. In 
particular, using timer_start() and timer_stop() calls 
(api.drupal.org/timer_start, api.drupal.org/timer_stop) in any core function 
containing “invoke” (a hook  invocation) will be very helpful. Static caching can be 
a big help; if the migration code needs to do frequent lookups, cache the results 
using drupal_static(), so your cached data can be flushed if memory becomes 
tight. 

Initial Analysis 
For the initial analysis: 

• Set up spreadsheets. 

• Review among legacy experts, site-builders, and migrators. 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7 

910 

• Analyze the information. Look for discrepancies, outliers. Find min/max values for 
everything.  

• Take a census. How many articles have related articles? What’s the maximum 
number of related articles for one article? 

■ Note  The Migrate module can help with self-documentation to surfaces issues so they’re visible to all. You can 

then do things such as link mappings to an issue-tracking system.  

Iterate  
Build migration processes. Run them. Work with site-builders: do you need another field? Does a field 
defined as singular need to be multiple? Why are articles importing at a rate of only 100/minute? Modify 
and rerun. 

■ Note  Migrate module maintains map tables between source and destination keys, which supports rolling back. 

Show  
Let all site builders see the migrated data.  Let them show the stakeholders. 

Audit 
Compare source and destination data.  Migrate module’s map tables can be used for auditing. 

Time 
How long does it take to migrate all data? Where are the bottlenecks?  

Launch Day  
By now, you know how long a full migration will take. Unless the volume of data being migrated is quite 
small, you don’t want to wait until the last minute to actually begin migrating it. 

Continuous migration is the solution. Doing a full migration of your data from scratch will likely 
take many hours. If possible, you want to do a bulk migration a couple of days before, and have a process 
for incrementally migrating changes as they occur those last couple of days so that the day is in sync 
when you’re ready to throw the switch. To do this, you need a reliable means of detecting changes; the 
old system needs to support a trustworthy “last modified” timestamp on all items being migrated or a 
transaction log. Note that typically deletions are harder to detect (but fortunately, typically web content 
is not actually deleted, but marked disabled/cancelled). Compare to database replication, to set 



APPENDIX A ■ UPGRADING A DRUPAL SITE FROM 6 TO 7

911

expectations modestly. You’re not going to achieve perfect, immediate synchronization; you want to 
minimize the window between beginning pre-migration and the final switchover (and re-audit after). 

Summary 
Upgrading a site is one of Drupal’s pain points, but Drupal’s continuous gains in allowing configuration 
to be captured in code make the experience more enjoyable and reliable. As migration tools also 
continue to make dramatic improvements, upgrading may become a special case of migration. In both 
cases, the key is to start early and be able to bring in live data into your site build on a regular basis. 

■  Tip  Follow along at dgd7.org/anjali for the unfolding story of upgrading and rebuilding 
anjaliforberpratt.com for the amazing person of the same name. In addition to covering more details about 
upgrading, the development of Anjali Forber-Pratt’s site provides a case-specific reprise of much of the Definitive 

Guide to Drupal 7. 

  



A P P E N D I X    B 
 

■ ■ ■ 

913

Profiling Drupal and Optimizing 

Performance 

by Nathaniel Catchpole and Stefan Freudenberg 

You don’t usually need to worry about performance when developing Drupal sites and modules; instead, 
you should focus on clean, functional design and readability of your code. However, if your site 
experiences more traffic than usual or it somehow feels slow, there are ways to analyze and improve the 
situation. 

User-Perceived Performance 
When it comes to web sites, the perceived performance is key to user acceptance. In the words of Roy T. 
Fielding, a central figure in defining the modern web’s architecture, user-perceived performance “is 
measured in terms of its impact on the user in front of an application. [...] The primary measures for 
user-perceived performance are latency and completion time.”1  

• Latency is the time between initiating a request on the client side and the first 
indication of a response.  

• Completion time is the amount of time it takes for the complete request to be 
fulfilled. 

Short latency is preferred for web browsers as they are capable of rendering the received content 
incrementally. The browser starts loading additional assets like images and JavaScript while parsing the 
incoming markup and can start rendering the page before images have finished loading. Latency is 
affected by the time a server needs to generate and send a response. 

What Makes a Web Site Slow? 
There are many reasons why a web site slows down over time; your aim should be to find the most 
important bottlenecks. Happily, Drupal is able to help out in common situations. 

                                                

1 Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” 
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm, 2000. 

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

914 

First, you need to have a look under the skin of your beautifully designed site. Firebug allows you to 
analyze the bits and bytes coming from the server after hitting the return button. Look at Firebug’s 
network tab in Figure B–1; the first row shows the request to the page you are currently viewing, and the 
rows below it are all additional requests automatically fired by the browser to retrieve CSS, JavaScript, 
images, and other resources. Hovering over a row shows a detailed breakdown of time spent on DNS 
lookup, connecting to the server, sending the request, waiting for the first indication of response, and 
receiving the data. In Figure B–1, latency is the time between “Started” and the end of “Waiting.” If that 
time is long, you either have a slow network connection or the server spends too much time generating 
the page (more on this later). 

 

Figure B–1. Firebug net summary 

Remember that rendering can start before all resources are fetched. Basically, it starts where Firebug 
shows the blue bar in the network timeline, which marks the point in time when the markup is 
completely parsed. You want this to be as close as possible to the time when your browser received the 
markup. Luckily, there are free tools that might give you some clues in case it is not. YSlow, a Firebug 
plug-in created by the engineers at Yahoo and available at developer.yahoo.com/yslow, can rate your site 
in different categories ranging from the number of HTTP requests to web server configuration options 
(see Figure B–2). 



APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

915

 

Figure B–2. YSlow grade 

There’s a wealth of information that can’t be explained fully in this chapter, but here’s what can be 
improved using vanilla Drupal: if YSlow gives you a bad grade in “Make fewer HTTP requests,” enable 
“Aggregate and compress CSS files” and “Aggregate JavaScript files” on the performance screen 
(navigate to Configuration  Development  Performance in the administrative UI). JavaScript can’t be 
automatically minified by Drupal, so these options make Drupal produce a few minified CSS files and a 
couple JavaScript files from all the CSS and JavaScript files provided by modules and your theme (and 
there can be dozens of each). Setting these options will earn you a better grade on the Minify CSS and 
JavaScript test. To learn more about these concepts, follow the Read more links to the YSlow 
documentation. 



APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

916 

■ Note  Drupal does not aggregate CSS and JavaScript into one file each for a couple reasons. Primarily, this is 
because some files need to be included on all pages while some only need to be included on certain pages. This is 
an intentional change from Drupal 6, when you would see only one file per page, but might end up with a different 

huge aggregated file as you navigated to different pages. Now you will end up with more than two CSS files per 
page (aggregated every page and aggregated page specific) because Drupal creates aggregation files that respect 
the order in which CSS files are loaded, and divides its aggregation into groups to reduce the likelihood of 

requiring a different split and a new aggregation because of the addition of a conditional style. For JavaScript, 
header and footer output is aggregated separately, of course. To get maximum performance, you are free to 
change how Drupal aggregates with hook_css_alter() and hook_js_alter(). See also 

www.metaltoad.com/blog/drupal-7-taking-control-css-and-js-aggregation. 

Another suggested technique is compressing page components with gzip on the server before 
transmitting them. This reduces download time at the expense of some overhead on the client side 
caused by the need to unzip the received data. Enable “Compress cached pages” only if your web server 
is not configured to deliver compressed HTML. Apache’s mod_deflate can also be configured to 
compress dynamic and static content on the fly. 

Real Performance 
After reading all about speeding up transmission and rendering of content, you—if a PHP developer—
are probably eagerly waiting for the server-related stuff where you can thrive. The Drupal and PHP 
developer communities have already produced many solutions for situations of high CPU usage, a very 
common issue for successful Drupal sites. 

Page and Block Level Caching 
In Chapter 5 of his dissertation2, Fielding describes the architectural constraints of Internet applications. 
“Cache constraints require that the data within a response to a request be implicitly or explicitly labeled 
as cacheable or non-cacheable.” Drupal has improved on meeting that requirement over the last 
development cycle and can now provide the correct HTTP headers to support caching reverse-proxies 
like Varnish. Note that it still features a built-in page cache solution for those who don’t have access to 
that kind of additional resources. In many cases, the workload of a busy server can be reduced 
significantly by turning on page caching or adding an intermediary cache. This is especially true if the 
bulk of the traffic comes from anonymous visitors. Page caching can be controlled in the Development 
section of the administration interface (see Figure B–3). 

                                                

2 Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” 
www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm, 2000. 

http://www.metaltoad.com/blog/drupal-7-taking-control-css-and-js-aggregation
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm


APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

917

 

Figure B–3. Cache settings  

Page caching is not an option, though, for logged in users because Drupal pages contain elements that 
are customized to individual visitors, such as a display of their user name or their level of permissions. It 
still makes sense to cache the results of resource-intensive algorithms and database queries using Drupal’s 
simple yet powerful cache API described in Chapter 27. Drupal blocks can be cached by means of the block 
API, which leverages the cache API. But how do you know what needs to be cached on a complex site? The 
first rule is: don’t guess! Find out in a systematic way using adequate tools. 

Profiling Drupal, a Primer 
After identifying a slow page on a Drupal site, a common approach is to look at the devel query log to 
identify slow queries on that page. However, what do you do if devel says the following: 

"Executed 39 queries in 9.66 ms. Queries exceeding 5 ms are highlighted. Page execution time 
was 210.19 ms" 

This means that 200ms of the page generation was spent doing things in PHP, not in database 
queries. Drupal itself doesn’t offer any clues for breaking down that 200ms, so you should consider using 
a code profiler. The two most common profilers used with PHP are xdebug and xhprof. 

• xdebug is currently easier to install and is often enabled on local development 
environments already (http://xdebug.org). 

• xhprof has lower overhead when enabled or profiling, plus it offers easy access to 
memory usage per function (https://github.com/facebook/xhprof). 

For this example, we’ll use xdebug and webgrind—a free web-based GUI for examining the callgrind 
data available from https://github.com/jokkedk/webgrind that should work on any server with xdebug 
and PHP (i.e., any server that can profile a Drupal site). Note that the same information can be gained 
using xhprof and its own web-based GUI. You’ll need to install xdebug and webgrind if you haven’t 
already; see their web sites for documentation. 

http://xdebug.org
https://github.com/facebook/xhprof
https://github.com/jokkedk/webgrind


APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

918 

The page we’ll profile is admin/configs; slow performance on this page is very unlikely to be the 
cause of overall site slowness, but it’s a page you are likely to visit thousands of times as a Drupal user, so 
it makes sense for it to load reasonably quickly. For this example, I downloaded Drupal 7.0, copied the 
profiles/standard to profiles/foo, did a find and replace for function names, and installed using the 
foo profile. 

Now, disable devel module and set xdebug.profiler_enable_trigger=1 in php.ini, then request the 
page again your browser using admin/config?XDEBUG_PROFILE=1. 

If everything is set up correctly, you should see a cachegrind.out file listed in webgrind, the output 
of which should look like Figure B–4. 

 

Figure B–4. Webgrind view of a profile produced by xdebug 

You can see that webgrind reports 715 different functions called in 436 milliseconds (1 runs, 85 
shown). Note that there is significant overhead to profiling with xdebug, so a page taking 436 
milliseconds during profiling when devel just said 210ms isn’t unusual.  

It helps if you understand the table headings.  

• Function is the function that was called. 

• Invocation count is the number of times that function was called during the 
request. 

• Total self cost is the time spent within that function, not including any functions it 
calls. 

• Total inclusive cost is the time spent inside the function, including any functions 
it calls and any functions called from those functions, etc. 

The default sort in webgrind is by “self” cost. At the top is drupal_load() and it takes 9.59% of the 
request by itself and 12% including child functions. However, the page won’t load at all if modules aren’t 
loaded, so it’s unlikely this is going to be easily optimized; also, 12% of the request leaves 88% 
unaccounted for. 



APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

919

However, just below that, file_scan_directory() takes 9.21% of the request itself and 46.64%
including child functions. 46% of this request is a full 200ms, so this could be the culprit! 

The first thing to do after finding a likely culprit is to profile the page a second time. Often slow
operations like file system scans in Drupal are cached, and if a page is slow even on a cache miss, it’s
usually best to optimize the uncached functions first by improving algorithms or adding caching. 

In this case, though, repeated profiling of the page always shows file_scan_directory() and it’s
consistently just under 50% of the whole request. Note that file_scan_directory() is a low-level
function, called by 18 different functions in Drupal 7 core, so it’s now time to look at the function detail
to see where it’s being called from (see Figure B–5). 

Figure B–5. Webgrind displaying a call hierarchy 

From here, you can follow the chain upwards: drupal_system_listing() is called by
drupal_required_modules(), which is called by install_profile_info(), which is called by
system_requirements(). Note that drupal_required_modules() also calls drupal_parse_info_file() 47
times, taking 88ms on this request. 

At this point, it’s time to open up your favorite editor to see why we’re calling
install_profile_info() from system_requirements(). Here’s the relevant code for Drupal 7.0: 

  // Display the currently active install profile, if the site 
  // is not running the default install profile. 
  $profile = drupal_get_profile(); 
  if ($profile != 'standard') { 
    $info = install_profile_info($profile); 
    $requirements['install_profile'] = array( 
      'title' => $t('Install profile'), 
      'value' => $t('%profile_name (%profile-%version)', array( 
         %profile_name' => $info['name'], 
         %profile' => $profile, 
         %version' => $info['version'] 
    )), 
      'severity' => REQUIREMENT_INFO, 
      'weight' => -9 
    ); 
  } 

So in this case, we’re scanning directories and parsing the install files of 47 different modules to get
the name and version of the currently installed profile. Seems a bit of a waste, doesn’t it! 



APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

920 

Since this is a real performance issue in Drupal 7.0, it also has a real issue in the issue queue. Go to 
drupal.org/node/1014130 to see how it might be fixed. 

Slow Database Queries 
Second rule: unless you are particularly concerned about improving a limited part of your code, look at 
the big picture. More often than not, a high server load is caused by heavy database usage. Not all 
queries to the database are equal, however, and some will take much more time and resources than 
others. But you need to identify the troublesome queries in order to deal with them. If you are using 
MariaDB/MySQL or PostgreSQL, you can use the database server’s slow query logging facility to write 
queries to a file that run for more than a configurable amount of time or that don’t use indexes properly. 
Still, you need a statistics tool that tells you how often a slow query is executed in a given period of time 
and how much time it is consuming over all. It won’t help much to optimize an especially slow query 
that is only run during cron executions and isn’t affecting visitors at all (or only marginally). We’ve been 
using mk-query-digest from the Maatkit tools (www.maatkit.org) for some time now. 

Table B–1 shows a typical slow query summary produced by mk-query-digest. The header shows 
some overall numbers and the time range, and the profile part lists the slow queries by response time. 
Each query listed in the ranking is shown in detail. If you want to know which part of Drupal is firing the 
query, you can use the devel module, which can log all queries executed and display them along with the 
containing function. For an in-depth explanation, check out www.maatkit.org/wp-
content/uploads/2010/03/query-analysis-with-mk-query-digest.pdf. 

Table B–1. A Typical Slow Query Summary Produced by mk-query-digest 

# 2s user time, 940ms system time, 21.97M rss, 64.80M vsz 

# Current date: Tue Jan 11 22:19:46 2011 

# Files: STDIN 

# Overall: 13.26k total, 219 unique, 0.15 QPS, 0.04x concurrency  

# Query total min Max Avg 95% stddev Median 

# Exec time  3768s 0 32s 284ms 0 2s 0 

# Lock time 6s 0 1s 452us 0 21ms 0 

# Rows sent 2.95M 0 916.40k 233.14 49.17 8.95k 0 

# Rows exam 32.10M 0 916.40k 2.48k 6.96k 13.48k 4.96 

# Time range 2011-01-10 06:27:47 to 2011-01-11 06:26:33 

# bytes 1.65M 22 23.81k 130.66 329.68 459.90 107.34 

http://www.maatkit.org
http://www.maatkit.org/wp-content/uploads/2010/03/query-analysis-with-mk-query-digest.pdf
http://www.maatkit.org/wp-content/uploads/2010/03/query-analysis-with-mk-query-digest.pdf
http://www.maatkit.org/wp-content/uploads/2010/03/query-analysis-with-mk-query-digest.pdf


APPENDIX B ■ PROFILING DRUPAL AND OPTIMIZING PERFORMANCE 

921

# Profile   

# Rank Query ID Response time Calls R/Cal Item 

# 1  0x5C504BFA0C055D3C 2822.0000   74.9% 414 6.8164 SELECT comments users 

# 2 0x140613D48BD6C7C6 234.0000       6.2% 41 5.7073 SELECT comments 

# 3 0xBB641C051DF3EC05 209.0000       5.5% 35 5.9714 SELECT comments 

# 4 0xD782E6FD765926FF 99.0000         2.6% 18 5.5000 SELECT comments 

# 5 0x67A347A2812914DF 90.0000         2.4% 906 0.0993 SELECT session 

This kind of analysis gives a site-wide performance assessment; by addressing those queries, the 
server load can be reduced considerable in many cases, thereby enabling the server to handle much 
more traffic. 

Even if everything is configured perfectly and caches are used to the utmost extent, traffic may grow 
and outpower even the best server. Don’t worry—Drupal has options if your main bottleneck is the 
database. If you have many SELECT queries splitting the load over two or more servers, using replication 
can improve the situation. Typically, you would set up separate servers dedicated to running a database. 
Setting up database replication is beyond the scope of this book but there is excellent documentation 
available for MySQL at dev.mysql.com/doc/refman/5.1/en/replication-howto.html and PostgreSQL at 
www.slony.info/documentation/2.0/tutorial.html. In order to make Drupal use one or more slaves, you 
have to add database configurations to your settings.php, as shown in this example: 

$databases['default']['slave'] = array( 
 'driver' => 'mysql', 
 'database' => 'dgd7', 
 'username' => 'root', 
 'password' => 'AY7qiKol', 
 'host' => 'localhost', 
 'prefix' => '', 
  ); 

Replication support also makes sure queries are intelligently split between master and slave 
databases. When you have just edited a node, the next query that will fetch data to view your changes 
will be sent to the master because the slaves might have stale data. 

Summary 
While there are many ways to improve the speed of pages of your Drupal site, there’s no one-size-fits-all 
solution. Tuning your server only makes sense if there’s really a bottleneck on that end. Always try to 
identify the  bottleneck causing the biggest impact. And last but not least, the easiest way to a smooth-
running site is a simple design: don’t overload your site with features (the warning sign is a growing 
number of modules). More resources as authors or readers come up with them will be posted at 
dgd7.org/profile to help keep you up to speed. 
  

http://www.slony.info/documentation/2.0/tutorial.html


A P P E N D I X   C 
 

■ ■ ■ 

923

Page Rendering and Altering 

by Károly Négyesi 

One of the fundamental changes in Drupal 7 is how the HTML appearing in the browser is assembled. 
For example, in previous Drupal versions, the content of a block was returned as an HTML string. Then, 
the theme_block() function put this HTML in a template together with the subject, returned a somewhat 
bigger HTML string, and concatenating several of these together yielded the HTML for one region. 

In Drupal 7, on the other hand, the content of the block is returned as an array from the block 
callback. Then it gets put inside an array and so on. The end result is a gigantic, multi-dimensional array 
fed to the drupal_render() function, which ultimately produces the HTML string the browser gets. But 
before it does this it allows us to interact with the whole content of the page in much richer ways than we 
could when it was just strings passed around. 

Let’s review this huge page array for the default home page with every block disabled first. Later we 
will walk the code flow to see how it’s assembled. 

To see the page array I installed the Devel module to get the pretty printed arrays, as shown in Figure C–1. 

 

Figure C–1. Enabling Devel module’s “Display $page array” option to see how the page looks to 

hook_form_alter() 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

924 

Next, disable every block (aside from Management, which is not accessible for anonymous), as 
shown in Figure C–2. 

■ Note  After disabling all blocks, you will need to use the path ‘user’ to log back into your Drupal site. 

 

Figure C–2. The blocks administration page 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

925

After this preparation we can finally take our first look at a really bare bones page and its page array, 
as shown in Figure C–3. 

 

Figure C–3. Page array as displayed by Devel module for a page with no content or sidebar blocks— the 

bare minimum 

The structure of the array may be familiar to you from looking at form arrays: there are properties 
marked with the # sign and then the children, in this case the only child is content. One property I would 
like to draw your attention to is the element #type, which is page, meaning that the children of this 
element will be themed by the page template (see Chapters 15 and 16, on Theming). Let’s peek into the 
content, as shown in Figure C–4. 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

926 

 

Figure C–4. Inside the content child of the page array 

It’s the same again: more properties and one child element—let’s open that child, system_main, and 
hopefully we find something useful in there, in Figure C–5. 

 

Figure C–5. Drilling down through child render elements content and system_main to default_message 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

927

Well, no such luck, so we opened its child element, the default_message array, too. And there it 
ends: we see the message “No front page content has been created yet.” in the #markup property. 
Although there is no #type property here, that just means the #type is markup, meaning the HTML 
equivalent of this element is simply contents of the #markup property. 

The only thing left closed is the #theme_wrappers arrays, so let’s look into them (see Figure C–6). 

 

Figure C–6. Most basic page array with every element and property expanded 

If you start from the message you see how it’s wrapped first in a block theme wrapper, then in a 
region theme wrapper, then in a page, and then finally in the html theme wrapper. Now that we have 
seen such a page array in its entirety, let’s see the actual code flow—and the places where we can 
intervene. 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

928 

Step 1: The Router Item 
After Drupal has been bootstrapped, the last thing index.php does is call 
menu_execute_active_handler(). This retrieves the router item from the menu_router based on the 
current path. There is an important chance here to intervene, hook_menu_item_alter(). This allows you 
to change anything about the menu item, such as changing the access callback based on the IP of the 
current user. You could relax some access control for people logging in from the office. Or you might 
want to provide access to only those who have used a path alias for a node and not to those who have 
used node/[nid]. Such can be used to implement simple token-based access by creating a random path 
alias and sending it to the user. 

Once the access control has passed, the menu system will call the page callback, which puts 
together the main content. hook_menu_item_alter() can be useful to change which page callback is fired. 
For example, the router system only allows per node page callbacks or a single one for every node. But, 
you might want a different page per node type. Or if you run the Organic Groups module 
(drupal.org/project/og), then entirely different pages might be necessary for different groups. All this 
becomes possible through hook_menu_item_alter().  

Step 2: The Page Callback Is Fired 
Almost the whole book is basically about what this can do. The page callback might load entities, view 
them, and create lists, tables, etc., but at the end of the day it just returns a renderable array. For 
example, the default home page returns this: 

$build['default_message'] = array( 
    '#markup' => "<p>No front page content has been created yet.</p>", 
    '#prefix' => '<div id="first-time">', 
    '#suffix' => '</div>', 
); 

We have seen this before, haven’t we? 

Step 3: The Delivery Callback 
Now you are back in menu_execute_active_handler(). The next callback to fire is the delivery callback, 
which defaults to drupal_deliver_html_page(). As the name suggests, by default you are delivering the 
page callback results in HTML. 

■ Note  The strict use of the term “page callback result” is important because “page” contains the return of page 

callback, the blocks, and everything else (as we will soon see). 

You could deliver in JSON or deliver parts of the page callback results in JSON. Core does not use 
this capability a lot, but overlay has an interesting case. When a form submit instructs Drupal to close 
the overlay on the next page, it’s faster to display just the styles and scripts to close the overlay instead of 
displaying the whole page needlessly. So here’s a delivery callback to display nothing: 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

929

function overlay_deliver_empty_page() { 
  $empty_page = '<html><head><title></title>' . drupal_get_css() . drupal_get_js() . 
'</head><body class="overlay"></body></html>'; 
  print $empty_page; 
  drupal_exit(); 
} 

You can use hook_menu_item_alter() to change the delivery callback—you have already seen how 
altering the access or the page callback can be useful, now you see the usefulness of altering the delivery 
callback.  

Let’s presume that drupal_deliver_html_page() was chosen (that’s the case almost always anyway) 
and let’s check what that function does. It handles page not found or access denied cases, and, most 
importantly, it calls drupal_render_page(). 

Step 4: drupal_render_page() 
The name is very deceiving: this function does a lot more than merely render the page. Remember, so far 
you only have the page callback result, not the whole page—so this function builds the page. With just a 
little exaggeration, all that’s fun and powerful in Drupal 7 is fired from this function. (The field API is 
powerful but tedious.) 

First, hook_page_build() is called, which allows other modules to add to the page array—because 
here you build that. Your modules can add to the page array, also. Second, hook_page_alter() is fired. 

Step 5. hook_page_alter() 
This is the hammer that makes all problems look like a nail. If you have ever seen a “dynamic hammer,” 
some special forces use for breaching a door, well this is it. 

For example, if you want to move the node links into a block called “Article tools,” then it’s next to 
impossible in Drupal 6. The links are bolted to the node, and it’s a lot easier to write code that re-
displays the links in a block than it is to move them. Of course this is a lot of code to duplicate and might 
cause expensive operations to repeat. In Drupal 7 we have an excellent hammer to drive that bolt out, 
and we can just move the link without much ado. Most of the example actually will be making sure the 
result looks like a block (note that this example only works if you have a region called sidebar_first like 
the default theme Bartik does): 

function dgd7_page_alter(&$page) { 
  if ($node = menu_get_object()) { 
    // Create an HTML string out of the links so it can be checked for emptiness 
    $links = drupal_render($page['content']['system_main']['nodes'][$node->nid]['links']); 
    // Remove from the original place. 
    unset($page['content']['system_main']['nodes'][$node->nid]['links']); 
    // The rest of this code puts $links in a block if it's not empty. 
    if ($links) { 
      $page['sidebar_first']['dgd7_tools']['#markup'] = $links; 
      $page['sidebar_first']['dgd7_tools']['#block'] = (object) array( 
        'module' => 'dgd7', 
        'delta' => 'dgd7_tools', 
        'subject' => t('Article tools'), 
        'region' => 'sidebar_first', 
      ); 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

930 

      $page['sidebar_first']['dgd7_tools']['#theme_wrappers'][] = 'block'; 
    } 
  }
} 

Another example is changing fixed lists in Drupal core. Let’s say you wanted to insert an
advertisement or public service announcement into the middle of an aggregator items list or the
comments of a node. This is quite tricky in previous versions of Drupal—you would probably need to
display the ad from a template, which counts how many times the comment or the item was displayed—
but in Drupal 7 it’s again just trivial: you put it in place and that’s it: 

function dgd7_page_alter(&$page) { 
  if ($node = menu_get_object()) { 
   $comments = &$page['content']['system_main']['nodes'][$node->nid]['comments']['comments']; 
   $comments['ad'] = dgd7_get_ad(); 
   // The first comment weight is 0, the second is 1, go between them. 
   unset($comments['#sorted']); 
   $comments['ad']['#weight'] = 0.5; 
 }
} 

function dgd7_get_ad() { 
 return array('#markup' => t('Hello I am an ad!'));
} 

And so we finally arrived to the point where the page array has been completed: it has started life as
the page callback result, got additional pieces like blocks in hook_page_build(), and got the details put in
place by hook_page_alter(). With all this said and done, you have an array that is ready to be rendered,
and so drupal_render() is called. This is where the array will turn into HTML. 

Step 6. drupal_render() 
This is a recursive function called on every child of the page array. So you start with running
drupal_render($page), then continue with drupal_render($page['content']), then with
drupal_render($page['content']['system_main']), and finally with
drupal_render($page['content'][‘system_main’]['default_message']). If there would be siblings, the
siblings are called first before the children (this is called breadth-first traversal of the page tree). 

Let’s just focus on one call of drupal_render(). First there is an access check. Every small or big
piece can have access control in Drupal 7. Then the cache is checked. Again, no matter how small or big
the part of the page you are looking at, the HTML string resulting from the rendering of it can be cached
easily. To utilize this, the #cache argument needs to be set. This is an associative array, the keys will be
familiar if you are familiar with cache_set: key, bin, expire (while cache_set takes a data argument as
well, that’s obviously the HTML string itself). So for example: 

$element['#cache']  = array( 
  'cid' => 'foo:bar', 
  'bin' => 'cache_something', 
  'expire" => 900,
); 

Now, creating the cache id (cid) from multiple parts is quite common—even this small example
contained ‘foo:bar’. Instead of specifying the cid key directly, you can supply an array of keys instead: 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

931

$element['#cache’]  = array( 
  'keys' => array('foo', 'bar'), 
  'bin’ => 'cache_something', 
  'expire' => 900, 
); 

The advantage of course is the easier manipulation of keys in hook_page_alter(). Finally, you can 
set a ‘granularity,’ which is a binary combination (Why not an array? Good question! We will fix that in 
Drupal 8) of flags: DRUPAL_CACHE_PER_ROLE, DRUPAL_CACHE_PER_USER, DRUPAL_CACHE_PER_PAGE. For example: 

$element['#cache']  = array( 
  'keys' => array('foo', 'bar'), 
  'granularity' => DRUPAL_CACHE_PER_ROLE | DRUPAL_CACHE_PER_PAGE, 
  'bin' => 'cache_something', 
  'expire' => 900, 
); 

This means the element is different per role and per page—but it’s not different for every user, 
which means that the cache table is not bloated much and the chance for a miss is much higher. 

If you had a cache miss, then you come to the array of #pre_render functions. It is a similar array of 
callbacks like form #process callbacks. 

One possible scalability tactic is to work as little as possible while creating the page and instead 
move the costly work into #pre_render and also the previously described caching possibility. This is 
particularly useful for complicated queries. It’s so useful that there is a helper function for this called 
drupal_render_cache_by_query(). This functions sets up #cache based on the query and #pre_render 
properties for you. Here is a slightly simplified example from forum.module: 

function forum_block_view($delta = '') { 
  $title = t('Active forum topics'); 
  $query = db_select('forum_index', 'f') 
    ->fields('f') 
    ->addTag('node_access'); 
    ->orderBy('f.last_comment_timestamp', 'DESC') 
    ->range(0, variable_get('forum_block_num_active', '5')); 
  $block['subject'] = $title; 
  // Cache based on the altered query. Enables us to cache with node access enabled. 
  $block['content'] = drupal_render_cache_by_query($query, 'forum_block_view'); 
  $block['content']['#access'] = user_access('access content'); 
  return $block; 
} 
 
function forum_block_view_pre_render($elements) { 
  $result = $elements['#query']->execute(); 
  if ($node_title_list = node_title_list($result)) { 
        $elements['forum_list'] = $node_title_list; 
        $elements['forum_more'] = array('#theme' => 'more_link', '#url' => 'forum', '#title'  
=> t('Read the latest forum topics.')); 
  } 
  return $elements; 
} 

See how the query is only executed in the pre_render? Remember, #pre_render only fires after 
caching, so this means the query will not be sent to the database unless there is a cache miss. You can do 
this with any DBTNG query. 



APPENDIX C ■ PAGE RENDERING AND ALTERING 

932 

The next steps will actually create HTML, with the results saved in $element['#children']. If #theme 
is defined, then that’s the function that will produce HTML. Next up, if $element['#children'] is empty, 
then you iterate the actual children of the element—remember, child keys do not start with # – call 
drupal_render() on them and append the result to $element['#children']. Next the #theme_wrapper 
theme hooks—if there are any—get a chance to wrap the element into HTML. It’s most likely those also 
change $element['#children']. 

You are almost done! You have the children of the element finally in an HTML form in 
$element['#children']. Next, #post_render functions fire; typically these are used to do some sort of 
string filtering on the resulting HTML.  

The almost last step is to add any JS and CSS required for the element by processing #states and 
#attached. The #attached property allows you to add libraries, JS, and CSS to a render array, and it’s 
explained in the doxygen of drupal_process_attached() (which you can see at 
api.drupal.org/drupal_process_attached). 

Finally, #prefix and #suffix are prefixed and appended to $element['#children'], and this is the 
return value of drupal_render(). Also, this is what gets stored in the render cache. 

To sum up, for every child of an element passed into drupal_render(), either the function defined in 
#theme or a recursive call to drupal_render() turns it into HTML. This is how an entire Drupal page can 
be one large renderable array that you can modify, before rendering, with hook_page_alter(). 

■  Tip  For more resources on page rendering and altering, including an effort led by Bryan Hirsch to fully 

document the Render API, visit dgd7.org/render. 



A P P E N D I X   D 
 

■ ■ ■ 

933

Visual Design for Drupal 

by Dani Nordin 

Visual design plays a vital role in any successful web site project. Like many content management 
systems, however, Drupal presents many challenges to designers who aren’t used to working with it. 
This appendix gives a bit of background on creating visual design for Drupal, and it offers some helpful 
tips for making your life easier as a Drupal designer. 

Why Designers Should Work with Drupal 
Drupal started its life as a developer-centered community, and in many ways it can still be viewed that 
way. Over the last couple of years, however, the Drupal community has seen a renaissance of designers, 
user experience professionals, and other creatives who have worked hard to improve the experience of 
designers in the Drupal community.  

• All over the world, Drupal designers and themers are getting together for Drupal 
Camps devoted to the challenges of designing for Drupal.  

• Online, there is an active design4drupal community on groups.drupal.org 
(groups.drupal.org/design-drupal) that discusses these issues.  

• Drupal themers, such as Robert Christensen of Mustardseed Media 
(mustardseedmedia.com/podcast), and Emma Jane Hogbin of Design to Theme 
(www.designtotheme.com/) develop useful content meant to help Drupal designers 
understand how to turn their designs into Drupal themes. 

• Since 2009, the Design and Usability track for the annual Drupalcon has grown 
significantly, and independent Birds of a Feather (BoF) discussions have brought 
designers and themers together to talk about the challenges of designing for 
Drupal. 

In addition to all these efforts from the community at large, the development of Drupal 7, and the 
redesign of Drupal.org, represents an important step forward in bringing designers into Drupal. 
Enhancements in the administrative interface, the HTML output, and the ease of overriding CSS output, 
along with more steps toward creating semantic code with Views (a long-standing problem for Drupal 
designers) with Views 3’s incorporation of some of the Semantic Views 
(drupal.org/project/semanticviews) module have made Drupal 7 the most designer-friendly release yet.  

http://www.designtotheme.com/


APPENDIX D ■ VISUAL DESIGN FOR DRUPAL 

934 

Designing for Drupal: What It Means 
One of the biggest differences between designing for Drupal and designing for Flash, straight HTML or 
even a blog system like WordPress is this: visual design must always come toward the END of the 
project life cycle. For web designers not accustomed to designing for content management systems, this 
can be a huge hurdle to jump.  

In reality, once you get used to how Drupal works, it’s much easier to understand how to design for 
it. If you’re already used to working in HTML and CSS (where components of the page are broken into 
page divisions, for example), you’re already halfway into understanding design for Drupal. The primary 
challenge that Drupal poses is that you, the designer, aren’t generating the HTML. Drupal is. Thus, the 
first challenge to creating visual design for Drupal is understanding, and finding ways to manage, the 
HTML that Drupal is spitting out. 

Anatomy of a Drupal Page 
On most sites, the pages that Drupal creates are generated from a combination of any number of 
different areas. This is one of the things that makes Drupal so powerful, but it also adds a layer of 
complexity when it comes to visual design. For example, Figure D–1 shows a sample page from a Drupal 
site that I created. 

 

Figure D–1. The Experience page on Cooperperkins.com 



APPENDIX D ■ VISUAL DESIGN FOR DRUPAL 

935

If you were creating this straight in markup, it might look something like this:  

<html> 
<head> 
        <title>Cooper Perkins :: Experience</title> 
</head> 
 
<div id="header"> 
                <div id="logo"><a href="index.html" title="Cooper Perkins Home"> 
<img src="/logo.gif" alt="Cooper Perkins Logo" /> </a> 
        </div> 
<ul id="navigation"> 
        <li><a href="expertise.html">expertise</a></li> 
        <li><a href="experience.html" class="active">experience</a></li> 
        <li><a href="expertise.html">about</a></li> 
        <li><a href="contact.html">contact</a></li> 
</ul> 
</div> 
 
<div id="middle"> 
        <div id="projects"> 
        <h2>Our projects</h2> 

And so on. But when you look under the hood at the code that Drupal generates, you see something 
much different (see Figure D–2). 

 

Figure D–2. Inspecting the code under the hood. The highlighted text represents the image of the Scooba in 

the upper left. NOTE: This site was built in Drupal 6. 



APPENDIX D ■ VISUAL DESIGN FOR DRUPAL 

936 

This is because Drupal is creating this page by pulling content from different areas of the site’s 
underlying database. Thus, the first step in designing for Drupal is understanding: 

• Where information is being pulled from to create your page.  

• How much of that you can control. 

• What Drupal actually calls each bit of information so it can be styled. 

For example, on this site, information is being pulled from the following areas (see Figure D–3): 

• “Our Projects” section: pulled from a view called “projects” and a block called 
“project list.” 

• “Our Projects” menu: pulled from the “projects” view and a block called “project 
menu.”  

• Page text and headline: pulled from the node itself. 

 

Figure D–3. An overview of where the content is being pulled from 



APPENDIX D ■ VISUAL DESIGN FOR DRUPAL 

937

The important thing to note about the structure of these pages, as it relates to design, is that for 
many Drupal pages, the layout of the page actually depends on the way that Drupal is configured. This 
adds a certain layer of complexity to the visual design, but once you understand more about how Drupal 
works, it’s easier to create dynamic and functional layouts that are also visually effective. See Figures D–4 
and D–5 for examples. 

 

Figure D–4. The EcoAlign site, designed by Claudio Vera of Studio Module (studiomodule.com), uses a 

dynamic Flash header and unique shapes to add visual interest and create a distinctly “non-Drupally” 

feel.  



APPENDIX D ■ VISUAL DESIGN FOR DRUPAL 

938 

 

Figure D–5. The Stoltze Design team worked extensively with developers to push the boundaries of Drupal 

design, focusing on bold, dynamic imagery. 

Design from the Content Out 
As mentioned in the Introduction (How Drupal Works), Drupal works by sorting your content into 
distinct Nodes based in different Content Types and displaying those nodes via pages, blocks, and views 
(see Figure D–6). 

 

Figure D–6. A rendering of how Drupal works 



APPENDIX D ■ VISUAL DESIGN FOR DRUPAL 

939

This is one of the key reasons why content strategy, and understanding the content that is going into 
your site, is a vital component of any Drupal project. This is also one of the reasons visual design is best 
completed toward the end of the project; as the site’s content changes, so does the design.  

Making Your Life Easier As a Drupal Designer 
Jacine Luisi (twitter: @jacine), of Gravitek Labs (graviteklabs.com), is a front-end developer who 
specializes in theming for enterprise-level Drupal sites. In addition to writing the Theming chapter in 
this book, she is the creator of the Sky theme (a gridded, HTML5-ready base theme for Drupal—
drupal.org/project/sky), the Skinr project, which allows themers to create customized CSS styles that 
are re-usable within the administrative interface (drupal.org/project/skinr), and was a major 
contributor to Bartik, the default theme in Drupal 7. Together, we’ve compiled some advice for visual 
designers to help you make your life easier as you work with Drupal. 

Remember—The Purpose of Design Is Communication 
Watch out for areas in your design that aren’t clear to the user—particularly areas such as navigation, 
featured content areas, or lists. Remember that the purpose of design is communication—not showing 
off how “cool” you can make things look. 

Understand Site Architecture and Content Strategy 
The importance of understanding the underlying content architecture of a Drupal project cannot be 
understated. When designing in Drupal, make sure that you understand how the site’s content will flow 
from section to section, and build your site’s design around the structure of the content, not the other 
way around. 

Choose Fonts Wisely 
Some designers love to use unique fonts (non-websafe fonts) throughout every area of their site. We 
suggest limiting this to titles and feature sections and against CSS using background images for titles, 
especially for global sites. This is important not only for usability but for page loading time. As Drupal 
depends on being able to change content dynamically, using CSS background images for titles makes it 
difficult for site maintainers to make needed changes. Additionally, these images can cause accessibility 
problems for screen readers or the visually impaired. 

If you do want to use non-standard web fonts, consider using fonts licensed for @font-face, the CSS3 
designation that allows browsers to render fonts in web-safe formats. Check out 
www.css3.info/preview/web-fonts-with-font-face for more information on using @font-face. Font 
hosting services like Typekit (typekit.com) and FontDeck (fontdeck.com) make it easy to include @font-
face-ready fonts on your Drupal site, and sites like FontSquirrel (fontsquirrel.com) offer free @font-
face-ready fonts, and functionality that will generate the @font-face styles for you. 

Clearly Review the Requirements and Outline the Intended 
Functionality of Special Features 
We’ve seen designers sneak in AJAX or jQuery functionality, above and beyond the site plan, claiming 
“that’s what it was always supposed to do.” Sometimes it’s not a big deal, other times it can’t be done by 
the themer and a developer needs to get involved. This causes project management and budget issues, 
which are especially problematic when they happen last minute. 

http://www.css3.info/preview/web-fonts-with-font-face


APPENDIX D ■ VISUAL DESIGN FOR DRUPAL 

940 

Design for the Entire User Experience 
Designing in Drupal isn’t just about dressing up content; users of your Drupal site will also have to
contend with 404 pages, search pages, and user login screens, not to mention form validation. Making
sure that these components integrate with your overall site design is an essential part of making sure
that your site’s users have the best possible experience.  

What follows is a brief (and by no means exhaustive) list of areas to consider when designing your
Drupal sites, in addition to the standard considerations for each content type: 

• User login/registration screens 

• 404 and 403 pages 

• Site breadcrumbs and navigation menus 

• Special tags, such as <blockquote> and <code> 

• Form elements 

• Table layouts 

• User profiles 

• The site login block 

• Site messages, such as form validation or error messages 

• Taxonomy pages (i.e., lists of content based on category or tag) 

• Social areas of the site, such as Groups pages (if applicable)

Nica Lorber of San Francisco’s Chapter Three wrote a fantastic post 
(chapterthree.com/blog/nica_lorber/design_drupal_template_approach) outlining a templated
approach to Drupal design that accounts for many of the Drupal default behaviors, to prevent things
from being overlooked during the visual design process. In addition, Nica offered Chapter Three’s
template as a Fireworks .PNG file with layers, which can help make the design process much easier. 

HTML5 in Drupal 
While there is an effort to make Drupal 8 HTML5-native (see drupal.org/node/963832), the
specification and its adoption were not ready in time for Drupal 7. However, there is a strong
effort happening in the community to make Drupal ready for HTML5 right now. This effort is
aligned with its own Drupal User Group (groups.drupal.org/html5), IRC room (#drupal-html5),
and Twitter account (@drupalhtml5), along with several Drupal base themes on Drupal.org. 

For more about HTML5 in Drupal, progress and initiative should be kept up to date at
drupal.org/html5. 

How You Can Get Involved 
While the Drupal community has come a long way in the past couple of years (and Drupal creator Dries
Buytaert has been heard many times saying that the community needs more designers), the community
still needs designers to make their voices heard. Want to get involved? Check out a Drupal Design Camp
in your area. Suggest Design sessions for upcoming Drupal Camps and DrupalCon. Start a Drupal
Designers group in your area. Write blog posts on the challenges of designing for Drupal and help other
designers get over the hurdles you’ve had to face.  

Whatever you do to get involved, the Drupal community needs your voice. So get out there and be
heard. Come by dgd7.org/design for these links (and more) and to stay up on reader- and author-
contributed resources. 



A P P E N D I X   E 
 

■ ■ ■ 

941

Accessibility 

by Mike Gifford 

Drupal 7 has made a huge leap towards universal accessibility thanks to the contributions of almost 400 
people over the last three years. Drupal 7 core is one of the most accessible content management 
systems/platforms available today. Both public and administration pages have been reviewed for 
accessibility problems, and many barriers to participation have been eliminated. Drupal’s modular 
structure uses APIs and hooks to make core functions available to themes and modules, which means 
that many of the enhancements in core will be inherited when developers are customizing sites. 
Unfortunately, this does not mean that every site developed with it will be accessible.  

Recent Enhancements 
The Forms API has seen a great many enhancements to ensure that interactive elements of a site are as 
accessible as possible, including the following: 

• Skip navigation has been brought into all core themes, and there are default 
approaches to dealing with hidden, invisible, and visible display settings on focus 
elements.  

• There are improvements in providing sufficient color contrast and intensity for 
people with low vision. In addition, images have been added to system messages 
to provide additional visual cues for all users.  

• Likewise, there have been enhancements to the password management system to 
encourage everyone to have good passwords, including a progress bar that uses 
WAI-ARIA to alert screen readers about the level of security. (For more on WAI-
ARIA, see the “Bring in WAI-ARIA” section in this appendix.) 

• In most cases, drag-and-drop interfaces present barriers for blind users. To 
address this, drag-and-drop re-ordering can now be disabled by the user as 
required.  

• Alerts have been added for some of the interactive elements that are added by 
jQuery. A screen reader user is now informed of the short list provided by auto-
complete. 

• Drupal core can now be both installed and administered by blind and/or 
keyboard-only users. The web site’s content can also be viewed effectively by 
more people with disabilities.  



APPENDIX E ■ ACCESSIBILITY 

942 

What Are the Standards? 
The World Wide Web Consortium (W3C)’s Web Accessibility Initiative (WAI) has been leading the 
development of international standards for accessible technologies. In the United States, the national 
standard is Section 508; however, it’s being revised and will likely reflect Web Content Accessibility 
Guidelines (WCAG) 2.0.  

Drupal is global community, and therefore we chose to test against WCAG 2.0. We also used some of 
the draft Accessible Rich Internet Applications (ARIA) Suite options, which allow screen readers to 
receive alerts when content changes dynamically. 

Released at the end of 2008, WCAG 2.0 has broadened its scope from the web and aims to be 
technology-neutral. Rather than focusing narrowly on HTML, these guidelines offer the more general 
requirement that a site should be perceivable, operable, understandable, and robust (POUR). There are 
a number of techniques defined within these guidelines to help ensure that a site does not present 
barriers to its users.  

As we begin to expect more dynamic, interactive web behavior delivered to a wider range of devices, 
it becomes increasingly important to have a generic set of guidelines that are flexible. This is why in 
WCAG 2.0 was built around the POUR principles, which essentially ask you: 

• Can all users perceive your content? Simple things like testing color contrast and 
providing alternative text and captions for images and non-textual content can 
help with this.  

• Can everyone operate your site? The tools people can now use to interact with web 
sites range from a mouth stick and head pointer to specialized software, 
keyboards, and screen readers.  

• Is your site understandable? Does the user interface operate in a predictable 
manner? Are there ways for users to quickly identify their mistakes and correct 
them? 

• How robust is your site? Is it future-compatible and based on open standards? 
What existing technology will you support and use for testing? 

Who Benefits? 
Yes, blind people will benefit if accessibility best practices are followed, but you already knew that. They 
represent a minuscule sub-section of the population, and they’re just one group of users with disabilities 
to consider. In a 2005 survey conducted in the U.S. by the Survey for Income and Program Participation 
(SIPP), it was estimated that there were 54.4 million people with disabilities.  

The classic icon for accessibility is the wheelchair, but when using the Internet, many people who 
use wheelchairs are in no way disadvantaged. The above estimate of people with disabilities includes 
people with mobility impairments but probably doesn’t include those who are colorblind or dyslexic. We 
can only get rough estimates for the number of people with the latter two afflictions, but it’s a significant 
portion of the population—and a somewhat invisible one as it’s not possible to tell at a glance if 
someone is dyslexic. 

The enhancements in Drupal 7 aren’t just going to benefit those we readily recognize as being 
disabled. Most countries are facing a rapidly aging population; this means an increase in users who have 
problems with their vision, fine motor control, and hearing. By developing for the more demanding 
requirements for accessibility, we are able to ultimately find solutions that improve everyone’s user 
experience.  

Accessibility issues will affect everyone, even if only temporarily. As we age, our bodies and our 
minds change in ways that make technology harder to use and accessible design more important. And as 



APPENDIX E ■ ACCESSIBILITY 

943

we collectively live longer, the number of people who will benefit from accessibility enhancements 
grows. Accessibility issues are ultimately ones that are about our humanity.  

It’s the Law 
There is a good chance that you are living in a country that has signed the United Nations Convention 
on the Rights of Persons with Disabilities. This convention is a commitment to allow inclusive 
participation by all. Furthermore, many countries have or are developing their own legislation for 
accessibility. In the USA, the Americans with Disabilities Act has shown leadership by recognizing the 
right for people with disabilities to live life independently and participate fully in all aspects of life. 
Australia, Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, India, Ireland, Israel, 
Italy, Japan, Korea, the Netherlands, New Zealand, Portugal, Spain, Switzerland, and the United 
Kingdom also have laws governing accessibility and information communications technologies.  

Accessibility is becoming a legal requirement, and organizations need to be aware of this. In fact, 
government agencies and for-profit companies have been sued because their sites presented barriers to 
disabled people. This doesn’t happen often, but both Target and the International Olympic Committee 
have been successfully sued for failing to implement accessible web sites.   

Nine Ways to Make Your Site Accessible  
Drupal 7 provides you with a solid framework to build a very accessible web site, but it isn’t enough to 
ensure that your site is accessible. The implementation of contributed themes and modules can easily 
set up barriers for your users. The structure of user-generated content and the implementation of image 
fields can create further barriers. 

There is a lot that could be written on this, but we’ll be limiting this to the basics of choosing good 
modules and themes. We will take a look at color and contrast, as this is one aspect of accessible design 
that is often overlooked. We’ll then look at how to set up automated testing and do your own simulation. 
Finally, we’ll look at how to keep your site current regarding new standards to ensure that it stays 
accessible to everyone.  

Accessible Modules 
Drupal modules range in complexity and reliability. Drupal Core’s hooks can be called from modules 
and themes, which can alter much of Drupal’s core functionality. This means that if a module isn’t 
developed with accessibility in mind it can degrade the accessibility of your site. You can search for 
accessibility issues for modules within the issue queue to see if there are any known issues with the 
modules you are installing (see drupal.org/project/issues/search/?issue_tags=accessibility). 

If you run into an accessibility issue that isn’t listed in an issue queue, please add a bug report to the 
issue queue so that it can be addressed. It is only through actions like this that we can improve Drupal’s 
thousands of modules and themes, and develop best practices for accessibility.  

The goal of the Accessible Helper module (drupal.org/project/accessible) is to make it easier for 
your site to be accessible. There are also sub-modules that allow you to easily implement improvements 
in accessibility for your site’s theme, modules, and content. 



APPENDIX E ■ ACCESSIBILITY 

944 

Theming Your Site 
There are good contributed base themes like AdaptiveTheme, Genesis, and Zen that work well for 
Drupal 7 and have been tested for accessibility. Starting with a solid base framework will help make sure 
your theme is accessible. 

When developing your theme, don’t forget to add alt tags to all of your images. Meaning is often 
conveyed to users visually through images, and it’s important to take the time to think how to express 
that to someone who may not be able to see them. Using automated testing tools (discussed later) is a 
great way to catch missing alt tags for images. 

The Drupal guide to theming accessible sites (drupal.org/node/506866) is quite good, and there are 
many ways to make the job of producing an accessible web site easier. Using CSS3, you can now provide 
some of the same effects you previously needed to use images for, such as rounded corners and great 3D 
effects. The CSS border-radius property and proprietary extensions for Webkit and Mozilla allows you to 
add depth to objects. Eliminating images makes web pages more accessible, faster, and easier to 
maintain. 

Be very cautious of the use of the CSS display:none property, as screen readers interpret it literally. 
When an item is styled with display:none, it’s invisible to screen readers as well as on-screen displays. 
Make sure that any lists of links (like a menu) has a header (usually an H2). If it needs to be hidden from 
sighted users, use the new Drupal CSS class .element-invisible.  

Developing to a standard will save time and money over the life of the project. Ensuring that your 
theme validates against W3C guidelines will ensure that your site is future compatible and also that it 
will present well for a broad range of browsers. Using free tools like the W3C’s (validator.w3.org) or 
Validator.nu (validator.nu) will help you find problems in your CSS and HTML. 

Contrast and Color 
Understanding the many different ways people see the world will improve your ability to design for 
them. The Drupal docs have some great resources about the use of color and the need for proper color 
contrast; see drupal.org/node/464500.  

Many sites don’t provide enough text contrast for the content to be easily read by all users. There are 
simple tools to ensure that your site provides enough contrast for low vision users, such as 
webaim.org/resources/contrastchecker. 

Color is often used to convey meaning to users, but not everyone can differentiate between all 
colors. Eight percent of the male population has trouble seeing color. If you want to communicate 
important messages to your users, use color along with position, proximity, and graphical elements like 
icons. This extra attention to clarity will also help people with learning and cognitive disabilities 
decipher and navigate your site.  

Automated Testing 
Once you have done all this, the next step is to use automated testing tools to evaluate what you might 
have missed. WebAim’s WAVE (wave.webaim.org) is a great tool for testing sites for known barriers. They 
offer a Firefox toolbar that is especially handy for determining the impact on interactive pages that 
require a user to be logged in. The Functional Accessibility Evaluator (fae.cita.uiuc.edu) evaluates a 
single web page and offers additional features after you register. Tools like the Mozilla Firebug 
Ainspector (code.google.com/p/ainspector/) can extend the popular Firebug tool to allow you to 
produce reports on accessibility.   

There are a number of tools that can help you get a better sense of how others are perceiving your 
web site. Google’s search bot remains the largest, richest, blind web user, so the more you provide 
semantic information for your content, the better your SEO is likely to be—and also your accessibility.  



APPENDIX E ■ ACCESSIBILITY 

945

Although screen readers don’t work in the same way, it’s worth checking out a site in Lynx to get a sense 
of how it’s viewed in plain text; see en.wikipedia.org/wiki/Lynx_(web_browser). 

Simulation 
It’s also good to unplug your mouse and try to navigate around your site. The core themes and the ones 
suggested previously have an option to skip past or straight to the navigation links in a site. This allows 
keyboard-only users to navigate your site more easily. For more information, see the AIM site 
(webaim.org/techniques/keyboard/). 

The most powerful, and arguably the most popular, screen reader is JAWS; however, other free 
screen readers are quickly picking up in popularity.  Anyone using a modern Apple computer, iPad, or 
iPhone has VoiceOver built right into it. Windows users can download the free software application 
NVDA (www.nvda-project.org), and Linux users can use ORCA (live.gnome.org/Orca). 

A sighted person can learn to navigate a site using a screen reader, but it is just an approximation of 
what a blind user would experience. Even someone who is recently blind will navigate a web site 
differently than someone who was born blind. A web developer will learn a great deal in navigating their 
own web site using a screen reader, but they bring with them the visual knowledge about how the 
information architecture works. To really understand how to best facilitate blind users’ (or any disabled 
users’) navigation of your site, it’s always good to encourage feedback from people who have those 
disabilities themselves. 

Bring in WAI-ARIA 
Some elements of the Accessible Rich Internet Applications (WAI-ARIA) standard were brought into 
Drupal 7 core. WAI-ARIA is still a draft document so its use was limited. It was added in places where 
there was no other way to communicate to a screen reader an important piece of information.  WAI-
ARIA can offer more tools for adding semantic information to your site.   

WAI-ARIA landmark roles define keywords for specific blocks of HTML to convey more meaning to 
screen readers. Landmarks allow a web developer to divide up a web page to make their content easier 
to navigate. The Juice Studio Firefox plug-in offers support in identifying the landmark roles that are 
defined in your site (juicystudio.com/article/examining-wai-aria-document-andmark-roles.php).  

Drupal 7 and jQuery provide many interactive elements. The more dynamic elements are used, the 
more important it will be to add support for ARIA’s live regions so that their messages can be effectively 
communicated back to the screen reader. By being able to define the importance of the interactive 
element as “polite, “assertive,” or “rude,” a screen reader can be instructed to either interrupt the 
existing text it is reading or wait until it’s finished.   

Maintenance is Critical 
People often approach accessibility guidelines as another thing to simply check off and be done with. 
Ultimately, though, this isn’t a very useful practice. What’s really needed is a code of practice rather than 
a list of checkboxes.  

WCAG 2.0 provides an important set of success criteria for accessibility, but this is only so useful in 
isolation. Having a perfectly accessible web site (WCAG 2.0 AAA) just is not attainable in anything but the 
very simplest site. Sites should attempt to achieve as many success criteria as they can, but it’s important 
to schedule regular reviews for ongoing enhancement and to make sure that the publishing practices of 
the site continue to create accessible content. 

Drupal is a powerful framework, and any user-generated content is likely to be a source of 
accessibility problems. Modules like HTML Purifier (drupal.org/project/htmlpurifier) can help ensure 

http://www.nvda-project.org


APPENDIX E ■ ACCESSIBILITY 

946 

that all xHTML is valid. Other modules, such as the Accessible Content module 
(drupal.org/node/394252), offer specific accessibility enhancements to Drupal core. 

Schedule Regular Reviews of New and Old Pages 
Commonly accessed pages should be regularly reviewed by automated testing tools, and a structure of 
regular randomized tests will help keep your site as accessible as possible. Ideally, a large site would 
bring in a focus group periodically to provide feedback. Ongoing evaluation is the only means by which a 
site can be perpetually upgraded to reflect the changing technology and behavior of its users.   

When testing, be strategic about your process. Working with Drupal 7, you can reduce your testing 
workload by eliminating some of the unknowns. After that, it’s a matter of picking a few strategic pages 
to test representative functionality. 

Get Expert Feedback 
Consider bringing in an accessibility professional to assist you in improving your site. Best practices in 
delivering accessible content are changing constantly, as are the software and hardware that disabled 
people use to access your site. As new standards are developed and adopted, best practices need to be 
reconsidered to ensure that the content is being effectively displayed.  

Bringing in an external person or team to review your site and look for enhancements can be well 
worth the investment. They will know how to look for and eliminate common barriers that an automated 
testing tool won’t be able to detect. Also, consider hiring someone with a disability to do this review; we 
all learn to use technology in different ways, and the experience of disability is something that can’t be 
fully simulated. 

If you have a question, you can post it to the Accessibility Group (groups.drupal.org/ 
accessibility) and you can read the documentation about Drupal’s Accessibility initiatives at 
drupal.org/about/accessibility. 
 

■ Tip  For all these links and resources, and more as we find them, visit dgd7.org/access. 

 



A P P E N D I X   F 
 

■ ■ ■ 

947

Windows Development 

Environment 

by Brian Travis 

For those developers who spend most of their coding time with Microsoft development tools, the world 
of Linux/Unix is a scary place. In this chapter, I will cover various tools and configurations that make 
Drupal a friendly place for developers who prefer Windows. 

There are systems out there that can make your Windows environment look like Linux. Cygwin 
comes to mind. But I, and a lot of Windows developers that I know, are not looking for that. People who 
develop on Windows are comfortable in their environment and don't want their beloved environment to 
look like Linux. They want to be able to use the tools they feel comfortable with and still get the benefits 
of the hard work done by the open-source community. 

Windows developers have the same desires to give back to the community as the Linux-focused 
crowd, but the Windows zeitgeist is mostly fee for service. By showing the Windows developers that 
there’s a community of openness and sharing in the Drupal world, they might have that incentive to give 
back and will expand the community as a whole. 

So if you’re a Windows developer, welcome to the wonderful world of Drupal! 
If you prefer Linux, have some empathy for your brothers and sisters who prefer Windows. Don’t 

discount them or force Linux on them. Rather, show them how they can live in their world and still be a 
part of a larger world of open-source developers. 

I think Drupal 7 could be a way to introduce a massive group of really smart people into a mature 
open-source environment that they long for. 

LAMP to WISP 
As you probably know, Drupal is written for the so-called LAMP stack, “Linux/Apache/MySQL/PHP.” 
While it is possible to substitute Windows for Linux, it is a bit more difficult to substitute IIS for Apache, 
and even harder to substitute SQL Server for MySQL. And don’t even think about replacing PHP with C# 
or Visual Basic. 

There are three different paths you can take to do your development in a Windows environment: 

• Use a basic LAMP stack, substituting Windows for Linux. This is probably the most 
common approach Windows programmers take to getting their Drupal system up 
and running. This is commonly called a “WAMP stack.” 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

948 

• Start with the WAMP stack, but switch out Apache and use Internet Information 
Server (IIS) as the web server. This has the unfortunate acronym “WIMP” but is 
used in places where IIS is the preferred web server. 

• Go all the way and replace IIS for Apache and Microsoft SQL Server for MySQL. 
This is called “WISP” and is made possible by the new database abstraction layer 
built into Drupal 7. 

I’ll cover the first configuration in this appendix. In my book, Pro Drupal 7 for Windows Developers, 
you can find more information about getting Drupal running on IIS and SQL Server. 

I’ve been using Windows 7 running under VMWare, and so the screen shots and tools will be for that 
platform. Adjust for your system. 

Visual Studio 
For my money, Visual Studio is the perfect development environment. Visual Studio, along with .NET 
reflection-based IntelliSense, fits my development habits like a glove; I can’t imagine coding without it. 

There are other development environments available for the Windows developer. Many of these, 
including Eclipse and NetBeans, were ported from the Linux environment and have a definite Linux feel 
to them. I tried these environments and, while they certainly have a richness about them, I found that 
none of them was as intuitive and easy to set up and use as Visual Studio. The problem was that 
Microsoft doesn’t support PHP. 

And then I discovered VS.Php from JCX Software (http://jcxsoftware.com/vs.php). They sell a plug-
in for Visual Studio that provides the same kind of environment for PHP as you would expect out of the 
Microsoft-supported languages C# and Visual Basic. VS.Php is less than a hundred dollars and can be 
used with the free Visual Studio shell. 

VS.Php has all the goodness you would expect out of an add-in to Visual Studio. In addition to 
syntax coloring, you also get breakpoints, step-debugging, variable interrogation, and IntelliSense. 

If you want to develop for Drupal (or any other PHP-based framework), then using VS.Php is a no-
brainer. I’ll be using this add-in to demonstrate the Windows-based Drupal environments. 

After installing VS.Php into your existing Visual Studio environment, or creating a new 
implementation of the Visual Studio shell with VS.Php, you’ll need to load a WAMP stack. 

WAMP Stack 
If you are using the VS.Php Visual Studio add-in, you’ve already got an instance of Apache, since VS.Php 
adds that on install. VS.Php also loads PHP. You don’t, however, have a database instance. For a WAMP-
based installation of Drupal, you’ll need MySQL. 

There are several freely available WAMP tools out there. I prefer WampServer 
(http://wampserver.com), but you can use any other that you might already have installed or prefer for 
some reason. 

Actually, all you need in addition to VS.Php is MySQL. You can install that by itself, but without a 
stand-alone Apache instance and PHP interpreter you will always have to go through Visual Studio to see 
your site. By having a full WAMP stack available, you can access your site without loading Visual Studio. 

http://jcxsoftware.com/vs.php
http://wampserver.com


APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

949

■ Tip  By having a stand-alone WAMP server in addition to VS.Php, you can access your site simultaneously with 
Visual Studio/VS.Php and outside. This is handy, for example, if you want to test how a site would look in different 

browsers or even using different users logged on. 

First, get the WampServer bits and start the installation. The version current as I write this is 2.1. 
Download the bits as shown in Figure F–1. 

 

Figure F–1. WampServer bits from wampserver.com 

When you install, you will be asked where to put the bits. It’s probably best for now to take the 
default, which is c:\wamp, as shown in Figure F–2. 

 

Figure F–2. Location of the WAMP bits 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

950 

WAMP requires some administration privileges. Starting the WAMP server will probably require you
to accept the UAC screen (see Figure F–3). 

Figure F–3. UAC for WampServer Manager 

■ Tip  If you have Skype, you’ll want to turn it off, as users have reported problems installing WampServer with
Skype running. Skype uses port 80 (HTTP) as an alternative for incoming connections. If you want to use WAMP
and Skype together, go into the Tools  Options  Advanced Connection panel in Skype and deselect the option

“Use 80 and 443 as alternatives for incoming connections”. 

To make sure everything has been loaded properly, go to a web browser and access
http://localhost. You should see the WampServer happy screen, as shown in Figure F–4. 

This tells you that everything has been loaded, and it gives you the current versions loaded. If you
have a problem, check to see if the WampManager icon is in the tool tray and that it is green. If it is not,
then something in the stack didn’t start. 

The most common cause of this problem is that Apache didn’t start. The most common reason for
Apache not starting is that you have something else controlling port 80. The most common application
that controls port 80 is Microsoft IIS. 

If you have this problem, you can check to see who is sitting on port 80 by asking WampServer.
Clicking on the icon will give you the WampServer control panel, as shown in Figure F–5. 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

951

 

Figure F–4. The WampServer default happy screen 

 

Figure F–5. The WampServer control panel 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

952 

On the Apache submenu, there is a selection to “Test Port 80” (see Figure F–6). 

  

Figure F–6. Testing the HTTP port 

This will bring up a command window so you can see who is using that port, as shown in Figure F–7. 

 

 

Figure F–7. IIS is using port 80 

If you want to fix this, you’ll need to turn off IIS: go to Computer Management. I usually get there by 
typing iis in the Search programs and files area of the Start menu. This will bring up the IIS control 
panel. On Windows 7 it looks like the screen shown in Figure F–8. 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

953

 

Figure F–8. IIS in Windows 7 

Here we can see that, indeed, IIS is using port 80. Clicking Stop should release that port so Apache 
can use it. It is possible to run Apache on a different port, but I would not recommend it, especially while 
you are possibly learning a new environment. 

Drupal Bits 
Now that your WAMP environment is set up, it’s time to load the Drupal 7 core code. The most direct 
way is to go to http://drupal.org/project/drupal. There you can see all of the currently supported 
versions, both in .tar.gz and .zip formats. For Windows users, the .zip format is probably the easiest 
(see Figure F–9). 

 

Figure F–9. Current Drupal distribution on drupal.org 

Windows Explorer will open the .zip file, as shown in Figure F–10. 

http://drupal.org/project/drupal


APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

954 

 

Figure F–10. The Drupal distribution as a .zip file 

Extract the folder into a convenient location. I use c:\wamp\www\drupal-7.0, but you can put it 
wherever it feels good to you (see Figure F–11). You’ll need to reference this directory in the next step. 

 

Figure F–11. Extracting the .zip file 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

955

Now you’ll need to tell Apache where to find Drupal. This is done by using Apache’s configuration 
file, httpd.conf. WampServer provides a convenient method to edit the file from the WampServer 
Manager application, as shown in Figure F–12.  

 

Figure F–12. Editing Apache’s configuration file 

This will bring up Notepad and allow you to edit the configuration file (see Figure F–13). 

  

Figure F–13. Setting Apache’s directories to point to Drupal 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

956 

There are two lines that you need to update in this file. One is DocumentRoot and the other is 
<Directory>. Set these both to the directory where you extracted the Drupal programs. 

To do this, simply search for the two strings, one at a time: 

1. Edit…Find…DocumentRoot 

2. Change the quoted value to your directory. Mine looks like this: 
DocumentRoot "c:/wamp/www/drupal-7.0/" 

3. Edit…Find…<Directory 

4. Change the quoted value to your directory again. Mine looks like this: 
<Directory "c:/wamp/www/drupal-7.0/"> 

■ Caution  There might be more than one entry starting with <Directory. Be sure to modify the one that has 
an attribute. Also be careful to properly quote the value. This is an XML document and is very sensitive to the 

XML well-formedness constraints. 

Once this is done, save the file and restart Apache to read the edited file (see Figure F–14). 

 

Figure F–14. Restarting Apache 

■ Note  If your service doesn’t restart, the most likely culprit is a misplaced quote or angle bracket in your 
configuration file. As I mentioned before, the XML parts of this configuration file are pretty sensitive to syntax. Just 

open the file again and check to see if everything looks right. 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

957

Once this is done, go to http://localhost again to see if everything is configured correctly. If so, you 
should get the Drupal installation screen (see Figure F–15). 

 

Figure F–15. The Drupal installation screen 

From here, configuring Drupal is the same as under a typical LAMP installation. See Chapter 1 for 
information about how to configure a standard Drupal installation. 

VS.Php 
Once you have your WAMP stack running, it’s time to load Visual Studio and the VS.Php add-on, if that’s 
the development environment you have chosen. 

I use Visual Studio 2010, but VS.Php supports older versions of Visual Studio as well. Plus, there is a 
distribution of VS.Php that has the free Visual Studio shell in case you don’t have a full license of Visual 
Studio installed. I’ll cover that version in this section. 

Get the VS.Php bits from http://www.jcxsoftware.com/download.php. If you are using the free Visual 
Studio shell, you’ll want to get the Web installer (see Figure F–16). 

http://www.jcxsoftware.com/download.php


APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

958 

 

Figure F–16. VS.Php installer site 

If the installer doesn’t detect Visual Studio on your machine, it will offer to install the shell, as shown 
in Figure F–17.  

 

Figure F–17. Installing the free Visual Studio shell 

This is by far the cheapest way to get started with Drupal on Windows. As of this writing, VS.Php is a 
free 30-day evaluation. 

■ Tip  If you elect to install the Visual Studio Shell from the VS.Php installer, you may get a request for a restart. 

When you come back up, you’ll have to start the VS.Php installer again. 

The VS.Php installation is pretty straightforward. It’s probably safe to take the defaults for now. You 
should end up with the happy screen shown in Figure F–18. 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

959

 

Figure F–18. VS.Php happy screen  

Once VS.Php is installed, you can start VS.Php, which will start Visual Studio and then add itself to 
the development environment. Now we need to tell VS.Php about the Drupal code. From Visual Studio, 
select File  New  Php Project from Existing Code.... You will probably get the nag screen for the 30-day 
trial. After that, you will see a wizard that prompts you for the location of the PHP code (see Figure F–19). 

 

Figure F–19. New project from existing PHP code 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

960 

You can pick PHP version 5.2 or 5.3; both are supported by Drupal 7. 
Since you have a new language, you’ll want to tell Visual Studio how to handle the source code. The 

settings that follow are compatible with Drupal’s code formatting conventions. In Visual Studio, go to
Tools  Options, and then expand to Text Editor  PHP  Tabs (see Figure F–20). 

Figure F–20. Making sure tabs are consistent with Drupal tab rules 

Drupal’s code formatting conventions require two spaces for indents and that the spaces should be
kept instead of inserting the tab character. Now let’s tell Visual Studio that there are some additional file
extensions that it should know are PHP code files. That is found under File Extensions on the same
screen (see Figure F–21). 

Figure F–21. Adding filename extensions 

Add the .info and .module extensions and click OK. 

■ Note  Coding standards for the Drupal community are consolidated in a single link, drupal.org/coding-
standards. As a new Drupal programmer, it would be a good idea for you to familiarize yourself with the

standards so as to not be labeled a noob. 

Now let’s try to run the code from within Visual Studio. Set a breakpoint at line 21 of index.php, as
shown in Figure F–22. 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

961

 

Figure F–22. Setting a breakpoint in PHP 

Now press F5 to debug. You might get an error indicating a problem with starting the web server. 
Just dismiss this and try debugging again. Once things start loading, you might get the screen shown in 
Figure F–23. 

 

Figure F–23. Configuration error 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

962 

There are two things to check to resolve this: 

• It could be because the WampServer is not running. Remember that you had to 
reboot to load Visual Studio. Just start WampServer again and try to debug. 

• There is a directive in the .htaccess file that is not recognized by the Apache 
engine. Open the .htaccess file, which is in the same directory as your base 
Drupal install, and comment the line that has the word Order in it (see Figure F–
24). 

 

Figure F–24. Correcting the .htaccess file 

Putting a hash (#) in front of the line makes it a comment. 

■ Tip  VS.Php keeps its own set of log files. In Windows 7, the error log is found at C:\Users\{your user 

name}\AppData\Roaming\Jcx.Software\VS.Php\Apache2\drupal-7.0\logs. 

Save the file and press F5 again to debug. If everything goes right, Visual Studio should stop at the 
breakpoint you set in index.php. From there, you can step through the code, interrogate variables, check 
the call stack, and anything else you can do with your favorite .NET language (see Figure F–25). 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

963

 

Figure F–25. VS.Php turns Visual Studio into a PHP debugging environment 

phpMyAdmin and MySQL Connector 
As I mentioned before, MySQL comes packaged with WampServer. MySQL comes with a tool that will 
allow you to manage your database server. You can create and delete databases, create and query tables, 
and manage users and permissions. This tool is called phpMyAdmin and is available from the WampServer 
console (see Figure F–26). 

  

Figure F–26. Accessing phpMyAdmin 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

964 

This launches your default browser and presents your MySQL database, as shown in Figure F–27. 

 

Figure F–27. phpMyAdmin screen 

If you would rather use Visual Studio to manage your database server, you can install the MySQL 
Connector for .NET, which is available for free at http://dev.mysql.com/downloads/connector/net. This 
will install itself into Visual Studio and give you the same kind of functionality you are accustomed to 
with the Visual Studio Server Explorer (see Figure F–28). 

 

Figure F–28. MySQL Connector for Visual Studio 

http://dev.mysql.com/downloads/connector/net


APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

965

At this point, you are ready to start the learning process. Step through the code, interrogate 
variables, and watch how the database interacts with the code. I find this the best, fastest way to learn a 
new environment. And all from the comfort of your favorite Windows development environment. 

In the next section, we will install a tool that has become indispensible to many Drupal developers. 
That tool is Drush.  

Drush 
Drush, the “Drupal shell,” is covered in Chapters 2 and 26. Drush is a set of PHP programs that will make 
your Drupal development experience a lot easier. Drush requires several Linux–y tools to run. On a 
Linux machine, these are probably already there and all you need to do is to download the Drush code. 

Unfortunately, the standard Windows machine doesn’t have all of those tools, so you’ll need to 
install them on your machine. This is sort of a hassle, but I guarantee you, if you spend a few minutes 
now getting this environment set up, you will save far more time as you start developing your Drupal 
applications in a Windows environment. 

Installing Drush for Windows 
Here is a procedure for getting those tools loaded and running. 

First, download the Drush bits at http://drupal.org/project/drush. Grab the latest version (see 
Figure F–29). 

  

Figure F–29. Download the Drush bits 

Unzip the files into a convenient directory. I use c:\drush. We’ll add that to our environment path a 
little later. 

Now, we need to get the Drush prerequisites. These are all open-source tools, and they each have 
Windows binaries with an installer. The download page for first one, libarchive, is shown in Figure F–30. It 
is located at http://gnuwin32.sourceforge.net/packages/libarchive.htm. 

http://drupal.org/project/drush
http://gnuwin32.sourceforge.net/packages/libarchive.htm


APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

966 

 

Figure F–30. Download page for an open source tool 

Grab whatever flavor you want. I usually just download the Setup program for the complete 
package. Run the setup program and take the defaults (see Figure F–31). This will install your program 
but won’t make changes to the path. We’ll deal with that in a moment. 

 

Figure F–31. Setup program for open source tools 

You’ll need a total of four GNU packages to make Drush work: 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

967

• http://gnuwin32.sourceforge.net/packages/libarchive.htm 

• http://gnuwin32.sourceforge.net/packages/gzip.htm 

• http://gnuwin32.sourceforge.net/packages/wget.htm 

• http://gnuwin32.sourceforge.net/packages/gtar.htm 

Now we need to set the PATH environment variable to include the Drush, PHP, and binaries installed. 
To do this, you need to get to the Environment Variables screen. This is different depending on your OS. 
Right-click Computer and select Properties. Click Advanced system settings and then Environment 
Variables…. You will see the screen shown in Figure F–32. 

 

Figure F–32. Environment variables dialog 

Under User variables, click New…, and you will see the New User Variable window, shown in 
Figure F–33. 

  

Figure F–33. User variable dialog 

Enter path in the variable name and the new directories in the Variable value field. Be sure to 
include the path to a compatible version of PHP, since Drush will be using that. I used 
C:\drush\;C:\Program Files\GnuWin32\bin\, but your system might be different. 

http://gnuwin32.sourceforge.net/packages/libarchive.htm
http://gnuwin32.sourceforge.net/packages/gzip.htm
http://gnuwin32.sourceforge.net/packages/wget.htm
http://gnuwin32.sourceforge.net/packages/gtar.htm


APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

968 

The semicolon separates the paths. Paths are those to where the following files are located: php.exe, 
drush.bat, and the tar/gzip/wget binaries. 

If you have a command prompt window open already, you’ll need to close it and open another one 
in order for it to read the new path. 

Running Drush 
Now let’s test to see if we were successful in installing Drush and its prerequisites. Using a command 
prompt window, change to the directory just above the “modules” and “themes” directories. Mine is 
C:\wamp\www\drupal-7.0\sites\all\. 

Type drush at the command prompt. You’ll get a nice long list of the wonderful things you can do, as 
shown in Figure F–34. 

 

  

Figure F–34. Drush help screen 



APPENDIX F ■ WINDOWS DEVELOPMENT ENVIRONMENT 

969

■ Note  I have gotten a message on some machines indicating that a particular DLL is missing. 

 
I don’t know exactly why this happens, but you can download the DLL at www.dll-files.com/dllindex/dll-

files.shtml?msvcr71. 

If this works for you, you have just made your Drupal experience a lot more productive. Drush helps 
you do a lot of things that would otherwise require a lot of mousing around. 

Drush knows where the Drupal projects are out in the ‘tubes. It also knows the database location 
and login information by reading the settings.php file created by the installer. Because of this, it can 
perform these administrative tasks without requiring the GUI. That means, of course, that anyone who 
has access to Drush and your directory structure can do the same thing. Standard security precautions 
are applicable. 

Summary 
Drupal was originally designed to run under the LAMP stack. Much progress has been made in the 
standardization of the code to make it possible to move beyond that particular technology stack. With 
Drupal 7, it is possible to use different web servers and databases. In this appendix, we did just that, 
replacing the “L” in LAMP, Linux, with Windows. To learn more about working with Drupal on Windows, 
check out http://drupalforwindows.com and check out my book, Pro Drupal 7 for Windows Developers. 
There is also a Drupal group dedicated to Windows developers and administrators. It is 
http://groups.drupal.org/drupal-windows. 

I expect that there will be a lot of demand for Drupal running under Windows with the WISP stack, 
and that a Windows-focused community will appear and champion this platform to make Drupal even 
more popular than it already is. 
  

http://www.dll-files.com/dllindex/dll-files.shtml?msvcr71
http://www.dll-files.com/dllindex/dll-files.shtml?msvcr71
http://www.dll-files.com/dllindex/dll-files.shtml?msvcr71
http://drupalforwindows.com
http://groups.drupal.org/drupal-windows


A P P E N D I X   G 

■ ■ ■ 

971

Installing Drupal on Ubuntu 

by Benjamin Melançon 

Developing your sites in a Linux environment means that the norm for all the tools you use will be that
they are open source free software, like Drupal itself. More important to you, perhaps, the server,
programming language, and database that Drupal relies upon are easier to set up and keep running on
Linux. 

I highly recommend that you develop web sites within a Linux environment for one additional
reason: your Drupal sites are likely to be hosted on a server running on Linux. While all varieties of GNU-
Linux are heartily endorsed, if you’re running any version other than the popular Ubuntu, I will assume
you already know what you are doing. This appendix will focus on setting up Drupal in Ubuntu. 

■ Tip  If you aren’t running Linux and don’t want to switch your main operating system yet for the sake of

developing on or simply running local web sites, you can run Linux in a virtual machine. 

The most important quality to have going into setting up your development environment is
patience. It takes some time up front to get things working, but it will save you lots of time down the
road. 

Running Ubuntu on Windows or Mac OS X 
To use Linux on a computer that is running another operating system—when you have a Mac OS X or
Windows personal computer—you can run Linux very effectively in a virtual machine (VM). VMs have
become quite good in recent years. 

Download the VM of your choice. The open source VirtualBox is free for Windows or Mac (see
virtualbox.org). The proprietary VMWare (including VMWare Fusion for running Linux on Mac OS X) is
pretty affordable. 

Also download the disk image for a current Ubuntu version (go to ubuntu.com/download and choose
Download and install). 

Once both the VM software and the Ubuntu disk image have downloaded to your computer, follow
the instructions for your VM for installing an operating system. The most important thing is telling the
VM where your disk image is on your computer (and it needs to stay at this location). Accepting the
defaults for other configuration will work. 



APPENDIX G ■ INSTALLING DRUPAL ON UBUNTU 

972 

■ Note  If using VirtualBox, instead of downloading the Ubuntu disk image, you can get Ubuntu set up for Drupal 
development already on a VirtualBox appliance: drupal.org/project/quickstart. Quickstart gives you an 
environment similar to Drubuntu, described in the following section, but it is not compatible with Drubuntu—you 

have to pick one or the other. 

Customizing Ubuntu for Drupal Development with Drubuntu 
Drubuntu sets up a Drupal development environment for a single developer, with the LAMP stack 
(Linux, Apache, MySQL, PHP), Eclipse integrated development environment, Firefox developer tools, 
Git, Drush, and more. Drubuntu also includes its own Drush scripts for adding and removing your local 
sites. 

■ Tip  The area of Ubuntu-based environments set up for Drupal development is rapidly improving. See 

dgd7.org/ubuntu for the latest recommendations. 

Get the current instructions for installing Drubuntu from its project page at 
drupal.org/project/drubuntu. It has a way to bootstrap its own installation without even downloading 
first, by grabbing the drubuntu-bootstrap.sh shell script out of the repository directly. You can of course 
download Drubuntu from its project page (./drubuntu/drubuntu-bootstrap.sh) and run it, also. 

Enter your password and type y for yes as requested (it will often say you may need to enter your 
password when you won’t) and be patient while it installs a hefty development environment, including 
many things you will use every day. 

Creating a Root MySQL Password 
One thing Drubuntu does not set up for you that you can do to make your development environment a 
more convenient place to work is setting a MySQL root password. 

mysqladmin -u root password YourPassword 

Then add that password to a MySQL configuration file, so you never have to enter it. Open or create 
the file with a text editor such as Vim. 

vi ~/.my.cnf 

Give it these contents: 

[client] 
user=root 
pass=YourPassword 



APPENDIX G ■ INSTALLING DRUPAL ON UBUNTU 

973

Installing Drupal 
Drubuntu’s great value is in installing LAMP, Git, Drush, and other tools for you. You don’t have to use 
its special tools (such as the drubuntu-site-add Drush command), and in fact you will not do so here. 
Someone is sure to put together the ultimate start a new site Drush command, and most developers 
have their own shell scripts—but these often tie into repositories or server practices that are not 
generalized. You can check out examples of helper shell scripts for many things, including setting up a 
new site like Listing G–1 shows with one command, at dgd7.org/sh. 

When everything related to a project is in one place, it is easy to put in version control together (see 
Chapter 2). Therefore, I recommend you create a folder to be a project folder and put Drupal in a 
subfolder of that (for instance, called drupal or web). Having a project folder above the web root allows 
you to keep materials together with the project that should not be in the public web root (which is what 
the directory where Drupal’s index.php is). It is good practice to create a directory for the project (in this 
case, dgd7) and put Drupal core into the web root (dgd7/web) in a sub-directory that I’ll refer to as the 
Drupal root directory. 

After placing a copy of Drupal core there, go to your Drupal root directory and create a copy of the 
sites/default/default.settings.php file, renaming it to sites/default/settings.php while making the 
copy, and change the permissions of the files directories to make them writable. 

Listing G–1. Non-Drush command line steps to download Drupal and prepare it for running the web 

installer. Change drupal-7.1 to the current stable release of Drupal; for instance, drupal-7.4. 

wget http://ftp.drupal.org/files/projects/drupal-7.1.tar.gz 
tar -xzf drupal-7.1.tar.gz 
mkdir -p ~/code/dgd7 
mv drupal-7.1 ~/dgd7/web 
cd ~/code/dgd7/web 
cp sites/default/default.settings.php sites/default/settings.php 
chmod -R o+w sites/default 

■ Tip  Those first five steps can be done even more quickly with Drush: cd ~/code; mkdir dgd7; cd dgd7; 

drush dl drupal --drupal-project-rename=web; cd web. 

Drubuntu sets up Apache to automatically serve up any directory placed in the ~/workspace 
directory as a web site. That is, if you create a directory ~/workspace/dgd7 and put an index.html file in 
there, you can go to dgd7.localhost in your browser and you will see that index.html file as a web page. 
Because Drupal is running out of a subdirectory of its project directory, put the full project directory in 
your own ~/code directory and create a symlink targeting the project’s web root from the workspace 
directory, like so: 

ln -s /home/ben/code/dgd7/web /home/ben/workspace/dgd7 

When creating test sites that are not going to become projects (or if not following this approach of 
having a project repository that includes the web root as a subdirectory) you can create projects directly 
in Drubuntu’s workspace directory and skip the symlink step. 

http://ftp.drupal.org/files/projects/drupal-7.1.tar.gz


APPENDIX G ■ INSTALLING DRUPAL ON UBUNTU 

974 

Creating the Database 
Drupal stores information in a database. All the information about your site is stored in this database, 
neatly divided up into different tables based on the type of information, such as posts, comments, and 
users. Creating a MySQL (see Listing G–2) or MariaDB database for your new Drupal web site to use is 
fast and easy using the command line, but you can also use an application or a web application such as 
phpMyAdmin. If using phpMyAdmin, you can quickly create a database and a user at the same time by 
going to Privileges ➤ Add a new User, and under “Database for User” select “Create database with same 
name and grant all privileges”. 

Listing G–2. Command line instructions to create a database in MySQL. If you haven’t created a .my.cnf 

file as described in “Creating a Root MySQL Password,” the first line will have to be mysql -u root -p 

password. 

$ mysql 
mysql> CREATE DATABASE database; 
mysql> GRANT ALL PRIVILEGES ON database.* TO "username"@"localhost" IDENTIFIED BY "password"; 
mysql> FLUSH PRIVILEGES; 
mysql> EXIT; 

Fill in your own values for the parts in italics. For the database name, you can keep it simple and call 
it dgd7, and to keep it really easy call your database user dgd7, too. Hostname in this case will be 
localhost, and because security is not an issue on your own computer go ahead and make the password 
dgd7, too. 

■ Tip  See dgd7.org/sh for shell scripts to automate the creation of the database and everything else I just 
covered. When installing one site it doesn’t matter much, but when you do a lot, the time adds up, and it helps to 

get in the habit of creating new test sites. 

Drupal’s Automatic Installer 
Now load up your Drupal root directory in your browser. The exact address will be different depending 
on your local hosting environment. Usually it’s localhost/drupal or similar. You’ll automatically be 
redirected to the install.php and Drupal’s automatic installer. 

On the first page you choose the installation profile you want to use; unless you have downloaded a 
contributed one from Drupal.org or created one of your own, you likely want to use the Standard profile, 
as Minimal is really minimal. Click through the Choose language page, unless you want to first download 
a non-English translation, to get to the Set up database page. Here, you probably want to leave 
“Database type” as the default “MySQL, MariaDB, or equivalent” and enter under Database name, user, 
and password the values you provided in creating the database. Submit the form and Drupal will install 
itself! When it is done, you will be able fill in some basic site details along with creating a username and 
e-mail address with credentials suitable for the administrative user account (see Figure G–1). 



APPENDIX G ■ INSTALLING DRUPAL ON UBUNTU 

975

 

Figure G–1. Drupal’s site configuration page for site name and the first, privileged user, after installing a 

site 

Congratulations! You now have an empty Drupal site. There is no content yet, and Drupal 7 is nice 
enough to tell you that there is no front page content. Front page content means (sensibly) content that 
is marked as “promoted to front page.” Head to Chapter 1 to build out a new site. 

■ Note  For more information and, in particular, a better description and new recommendations based on reader 

feedback, visit dgd7.org/ubuntu. 

  



A P P E N D I X   H  
 

■ ■ ■ 

977

Mac OSX Installation 

by Dani Nordin 

To set up a Drupal environment on a Mac platform using MAMP, start by downloading the free version 
of MAMP at mamp.info (left icon, see Figure H–1). Once the file has downloaded, unzip it, and click on 
the unzipped file to launch the installer. 

 

Figure H–1. Screenshot of mamp.info. You want the icon on the left. 

MAMP basically turns a folder in your computer into a miniature development server; as a result, all 
sites that you develop locally will essentially be subfolders of that main folder. It’s important to make 
sure you set the location of the main folder to something that makes sense for your file system and to 
back up that folder regularly.  

To start up MAMP, perform the following steps:  

1. Press the MAMP icon in your dock. This will start up the MySQL server and 
PHP.  

2. Ignore the browser window that it opens up and press back to the MAMP 
screen (see Figure H–2).  



APPENDIX H ■ MAC OSX INSTALLATION 

978 

 

Figure H–2. The MAMP home screen 

3. Press the Preferences button, and go to the Apache Tab. Set the document root 
(referred to as the “web root” going forward) to something that makes sense for 
your file system. 

 

Figure H–3. Setting up a default document root for MAMP 

As you can see from Figure H–3, I set my main folder inside a Dropbox. Dropbox, available at 
getdropbox.com, allows you to store up to 2GB of data for free, and all data is synced over the Web with 
every change. If you don’t have a ton of large files to store, Dropbox is an easy way to keep your data 
available to you no matter what machine you’re on.  



APPENDIX H ■ MAC OSX INSTALLATION 

979

Downloading Drupal Core File 
Next, download the Drupal core installation file from http://drupal.org/project/drupal (or 
drupal.org/start). Extract the file into the document root that you set up earlier in MAMP and change 
the name of the extracted folder to DGD7 or something similar.   

Command-line Fu 
Here are the command-line steps to download Drupal and prepare it for running the web installer. 
Change drupal-7.0 in the code to the number of the current stable release of Drupal 7, which you can 
find at http://drupal.org/project/drupal. Better yet, copy the link from the site before starting! 

■ Note  Do this from your web root. Comments surrounded by ** describe what’s actually happening. 

wget http://ftp.drupal.org/files/projects/drupal-7.0.tar.gz  
        **downloads the file from the provided link** 
tar -xzf drupal-7.0.tar.gz  
        **extracts it from the compressed file** 
mkdir ~/dgd7  
        **makes a new directory called dgd7** 
mv drupal-7.0 ~/dgd7/web  
        **moves the Drupal folder into the dgd7 directory** 
cd ~/dgd7/web  
        **navigates to the new directory** 

Creating the Database 
In order to install Drupal, you need to create a database on your local MySQL server. You can create a 
database using phpMyAdmin, which is free and available at phpmyadmin.net. Alternately, Navicat, a paid 
software available at navicat.com, is one of the easiest ways I’ve found to deal with databases. Although 
the premium software is on the pricey side (and you’ll need it for copying or syncing databases on 
multiple servers—important when it’s time to launch), you can download a free version called Navicat 
Lite at navicat.com/en/download/download.html that’s available for both Windows and Mac. You can also 
download Navicat as a free trial for 30 days. 

For the purposes of this demonstration, I’ll use Navicat Premium, but the process in Navicat Lite is 
basically the same. 

1. Open Navicat and select Connection  New Connection  MySQL. 

2. Create your settings as follows: Your hostname is localhost, and your username 
and password will both be root. The port, if you’ve left your MAMP default as is, 
will likely be 8888. In mine, it’s been changed to 8889 (see Figure H–4). 

http://drupal.org/project/drupal
http://drupal.org/project/drupal
http://ftp.drupal.org/files/projects/drupal-7.0.tar.gz


APPENDIX H ■ MAC OSX INSTALLATION 

980 

  

Figure H–4. Connection settings for Navicat 

3. Once you’ve created the connection, open the connection by double-clicking 
its name in the left column. Right-click on the connection name and select 
Create New Database from the menu. Name the database dgd7. 

That’s it. Done. See how easy it was? 

Command-line Steps for Creating the Database 
Here are the command-line instructions to create a MySQL database. Comments surrounded by ** 
explain what is happening. Remember that you’re going to do this in the web root using Terminal. 

$ mysql -u root -p  
        **logs into the web root** 

mysql> CREATE DATABASE dgd7;  
        **creates a database called “dgd7”** 
mysql> GRANT ALL PRIVILEGES ON database.* TO "username"@"localhost" IDENTIFIED BYÉ 
 "password";  

        **does exactly what it says it’s doing** 
mysql> FLUSH PRIVILEGES;  
        **so does this** 
mysql> EXIT;  
        **and this** 

You will need to fill in your own values for the parts in italics. For root, use your database's admin 
username (typically, root). (In some setups, the root password will be blank by default.) For the database 
name, you can keep it simple and call it dgd7. To keep things really easy, call your database user dgd7, 



APPENDIX H ■ MAC OSX INSTALLATION 

981

too. The hostname in this case will be localhost and because security is not an issue on your own 
computer, go ahead and make the password dgd7, too. 

Starting the Install: Now the Fun Starts 
Now that you’ve created your database, go to localhost:8888/dgd7 in your browser. This should take you 
to localhost:8888/dgd7/install.php. Choose the standard installation profile for now; it will take care of 
some basic configurations for you (see Figure H–5). On the next page, select English as the installation 
language. If you need to install it in another language, there’s a handy link on that screen that will show 
you how to do so. 

 

Figure H–5. The Drupal install screen 

Now it’s time to use the database information you just created. On the screen that follows, enter the 
values that you provided when you created the database.  

Submit the form. Drupal will install itself within a couple of minutes. When the installer finishes, 
you’ll be able to fill in some basic site details along with a username and e-mail address for the 
administrative user account (see Figures H–6 and H–7). 



APPENDIX H ■ MAC OSX INSTALLATION 

982 

Figure H–6. Setting up site defaults 



APPENDIX H ■ MAC OSX INSTALLATION 

983

 

Figure H–7. Database settings 

■ Caution  The first user created in the installation process is given permission to do everything on the site—
forever. Therefore, it is strongly advised to never use this user as your own personal account. Rather, use it as a 
“superuser” or administrator account and give it a strong password. The site might be just on your computer now, 

but when you move it online, you’ll need to preserve the user accounts. Drupal requires all e-mail addresses for 
site users to be unique, so if you only have one e-mail address, it makes sense to create a second e-mail account, 

like admin.user@gmail.com, that you use specifically for the superuser account. 

mailto:admin.user@gmail.com


APPENDIX H ■ MAC OSX INSTALLATION 

984 

 

Figure H–8. Your new home page, including the Drupal administration menu 

Congratulations! You now have an empty Drupal site, ready for content (see Figure H–8). Head to 
Chapter 1 to build out a new site. 

■  Tip  For reader notes about installing Drupal on Mac OS X, visit dgd7.org/mac. 



A P P E N D I X   I 
 

■ ■ ■ 

985

Setting Up a Drupal Environment 

with the Acquia Dev Desktop 

by Ed Carlevale 

The Dev Desktop app from Acquia has many virtues. Download the installer (see Figure I–1) and within 
10 minutes you will have the server, database, and your first Drupal site up and running. Access to 
phpMyAdmin is a click away. Create as many fresh installations as you want. Clone a site by dumping 
the database and importing the sql file into a new installation. Elegant, easy, and powerful. 

 

Figure I–1. Drupal stack installer from Acquia 



APPENDIX I ■ SETTING UP A DRUPAL ENVIRONMENT WITH THE ACQUIA DEV DESKTOP 

986 

■ Note  The Dev Desktop is available for both Mac and Windows. I’ve only used the Mac version, and have found 
it to be a thing of beauty. The Drupal 6 version for Windows was said to be a bit quirky, though those issues may 

have been addressed in the Drupal 7 version. 

Installation 
Download the Dev Desktop as a disk image file from Acquia’s web site 
(acquia.com/downloads).  

Click the file to expand the disk image and open the installer.  

Double-click the icon to launch the installation process.  

The installer will walk you through a series of screens for the file locations, port settings, and default 
site settings (see Figure I–2). The default settings are what you want. The Drupal site settings are used for 
the first site you create, but you can modify the settings for any subsites or imported sites that you 
create.  

 

Figure I–2. Default settings for the Dev Desktop installation 

■ Note  You can set up multiple copies of the Dev Desktop (on your hard drive, a portable hard drive, Dropbox, 

etc). Simply repeat the installation process and modify the settings accordingly. For the port settings, increment 

the default settings (8082, 8083, etc.).  

When the installation process has completed, the installer requests permission to create your first 
web site. Click yes. This will launch the Dev Desktop’s Control Panel (see Figure I–3) and open a new 
browser window showing the Welcome screen of your new web site (see Figure I–4). Log in using the 
Username and Password you provided during the setup. 



APPENDX I ■ SETTING UP A DRUPAL ENVIRONMENT WITH THE ACQUIA DEV DESKTOP 

987

 

Figure I–3. Dev Desktop’s Control Panel 

 

Figure I–4. Login screen for stack installer’s first web site 

Taking It Further 
The real power of the Dev Desktop has to do with how easy it is to create more sites. You have two 
options: 

1. Create subsites off your main installation—or multisites, to use Drupal 
terminology. A subsite creates a new database but uses the files and modules of 
your original installation. 

2. Create a new, stand-alone Drupal 7 installation. This is ideal for use with 
installation profiles. 

The first is quick, the second is powerful. Win, win.  



APPENDIX I ■ SETTING UP A DRUPAL ENVIRONMENT WITH THE ACQUIA DEV DESKTOP 

988 

It all happens from the Dev Desktop’s Control Panel, which will become your best friend from here 
on out. From here you can open phpMyAdmin, navigate to any of the sites that you’ve created, or create 
new sites (see Figure I–5). 
 

 

Figure I–5. Control Panel links 

Creating a Subsite  
To create a subsite of your current installation, start from your Control Panel and go to Settings ➤ Sites ➤
New. This opens up the form shown in Figure I–6. Fill in a site name. The database and subserver fill in 
automatically, and the other settings draw on the defaults that you provided during the installation 
process. Click OK. In a minute or so the new site is created. Click the Go To button to open the site in a 
new browser window. 

More information on multisites is available from Drupal’s online documentation 
(drupal.org/node/53705). 



APPENDX I ■ SETTING UP A DRUPAL ENVIRONMENT WITH THE ACQUIA DEV DESKTOP 

989

 

Figure I–6. Creating a subsite 

■ Note  With the Drupal 6 version of the Dev Desktop, some contributed modules were moved from their default 
location (/sites/all/modules) to a folder within the core modules folder (modules/acquia), thus complicating module 

updates. For the Drupal 7 version, some contributed modules are placed within the Profiles folder (see Figure I–7), but 

the new Automatic Update functionality handles updates efficiently and unobtrusively behind the scenes. 

 

Figure I–7. Directory structure for the Dev Desktop’s main Drupal installation and associated subsites 



APPENDIX I ■ SETTING UP A DRUPAL ENVIRONMENT WITH THE ACQUIA DEV DESKTOP 

990 

Importing Sites 
The Import option is ideal for using with installation profiles. Simply download the install file and unzip 
it to a convenient folder, keeping it outside of the folder that stores the Dev Desktop’s main Drupal 
installation. Then, navigate to Settings ➤ Sites ➤ Import (see Figure I–8). 

 

Figure I–8. Importing a new Drupal installation 

For more information on installation profiles, see Chapter 38. Head to Chapter 1 to build out a new 
site. 

■ Note  For updates and discussion on running Drupal with Acquia’s Dev Desktop, see dgd7.org/stack.  And of 

course, for corrections and new material related to this book as a whole, check out dgd7.org/updates. 



 

Index 
 

■ ■ ■ 

 

991

■ Special Characters & Numbers 
#access property, 338 
#ajax attribute, 511 
#ajax property, dynamic forms via, 591–592 
#attached property, 322, 788–789, 932 
#attributes array, 449 
#callback property, 547 
#description property, 336, 411, 781 
#drupal-contribute, 199, 534 
#element_validate property, 779, 781 
#field_name, 755 
#items property, 324 
#markup line, 796, 799 
#markup property, 411–412, 927 
#post_render methods, 932 
#pre_render property, 332 
#prefix property, 322, 411, 790 
#region property, 322 
#sorted property, 322 
#states attribute, 511 
#suffix property, 322, 411 
#theme property, 322–324, 331, 437 
#theme_wrappers property, 322, 331, 435, 790, 

927, 932 
#title property, 411 
#type element, 411, 925 
#type property, 322, 324, 927 
#view_mode, 755 
#weight property, 322, 336, 339 
$_GET['q'] path, 691 

$account parameter, 469 
$action_links variable, 327, 767 
$arg parameter, 396, 481 
$attributes variable, 297 
$base_path, 686 
$base_root, 686 
$base_url, 686 
$classes variable, 297, 314–315 
$closure variable, 286 
$conf array, 637 
$conf variable, 467, 689 
$content variable, 297, 326–328 
$databases = array( ) line, 246 
$directory variable, 296 
$(document).ready( ) method, 364 
$every_page flag, 362 
$filters['dgd7_tip'] array, 776 
$form argument, 505 
$form array, 465, 544 
$form['email'] field, 332 
$form_id argument, 505 
$form_id parameter, 505 
$form_state argument, 505, 781 
$has_credit, 406 
$HOME directory, 602, 607 
$HOME/.drush directory, 608 
$HOME/.drush/drushrc.php file, 607–608 
$i iteration, 779 
$i variable, 779 
$Id$ comment, 389 



■ INDEX 

992 

$is_admin variable, 296 
$is_front variable, 296, 347 
$item variable, 327 
$items array, 681–682
$items['outrageous'] array, 670–671
$language variable, 297 
$logged_in variable, 296 
$logo variable, 276 
$main_menu variable, 277, 289 
$messages variable, 311
$name_of_variable, 399 
$node object, 399, 677–678 
$node->book array, 799 
$num_hidden variable, 419–420 
$output variable, 335 
$page variable, 326 
$page['content'] variable, 286
$page_bottom region, 357 
$page_callback variable, 413 
$path parameter, 396, 481 
$permissions variable, 432 
$picture variable, 277 
$rm array, 779 
$rows variable, 434 
$secondary_menu variable, 277, 289
$site_name, 276 
$site_slogan, 276 
$styles variable, 345 
$submitted variable, 319 
$tabs variable, 326 
$text available, 399
$theme_hook_suggestions variable, 297, 305, 

308–309 
$title_attributes variable, 297
$title_attributes_array, 319
$title_prefix variable, 297, 301, 328
$title_suffix variable, 297, 301, 328
$update_free_access, 142 
$user variable, 277, 297, 399, 410
$user_profile variable, 326 
$variables array, finding contents of, 317
$variables parameter, 316
$very_slow_result, 637 
$whole_form, 781 

($every_page), 362 
($path == 'admin/content') comparison, 403
<?php print $block->subject ?> tag, 300
<?php print $content ?> tag, 300 
<?php print $sidebar_first; ?> tag, 321 
<?php print drupal_render_children($form);  

?> tag, 337 
<?php print render($title_prefix); ?> line, 301
<?php> tag, 392, 404, 860 
@ingroup themeable method, documenting 

codes with, 433–435 
[*]_rollback method, 631 
~/code directory, 973
~/code/dgd7/web/sites/all/modules/custom/ 

xray directory, 388 
~/workspace directory, 973 
+ entity_exportable_schema_fields( ) method, 

551 
->condition( ) method, 451 
->execute( ) method, 451
->fetchAllAsoc( ) method, 797
->fetchAllKeyed( ) method, 446
->fetchAssoc( ) method, 796, 798
->fetchField( ) method, 443 
->save( ) method, 557 
2>&1 modifier, 632 
2bits.com, 88 
404 errors, modules for handling, 106–107 

404 Navigation, 107
Apache Solr, 106
Global Redirect, 107
Search 404, 106–107 

404 Navigation module, 107 

■ A 
accepting tasks, 217
access 

applying for, 863 
receiving, 864 
settings, creating bookmarks with server, 

235–236 
to Suggestion content type Status field, 

limiting, 187–190 
user, conditionally taking action based on, 

468–469 



■ INDEX 

993 

access arguments, 678 
access callback item, 671, 678 
access callback key, 670 
accessibility, 941–946 

legislation of, 943 
population segments benefiting from,  

942–943 
recent enhancements, 941 
for sites, 943–946 

accessible modules, 943 
automated testing, 944–945 
contrast and color, 944 
expert feedback, 946 
maintenance, 945–946 
regular reviews of pages, 946 
simulation, 945 
themes, 944 
WAI-ARIA, 945 

standards for, 942 
Accessibility Group, 946 
Accessible Helper module, 943 
Accessible Rich Internet Applications (ARIA), 

942, 945 
accordion library, 367 
Account link option, 758 
ACID (Atomic, Consistency, Isolation, and 

Durability), and BASE, 643–645 
Acquia company, 197 
Acquia Dev Desktop app, 985–990 

creating subsites with, 988–989 
importing sites with, 990 
installation, 986–987 

Action links, 54 
active voice, 745 
activitystream, 890 
Add content option, 225 
Add new comment link, 328 
add new links, contextual, 767–771 
Add or remove shortcut link, 277 
addanother_access method, 495 
addanother_message method, 496 
addanother_node_access method, 495 
addanother_node_insert method, 495 
adherence, to coding standards, 406 
admin menu, Drupal site, 224 

admin path, 275 
admin/appearance page, 13, 275, 278, 281, 348 
admin/appearance/settings location, 275 
admin/config path, 700 
admin/config/content/blog, 804 
admin/config/content/formats, 103, 186, 773, 

787 
admin/config/content/formats/filtered_html, 

794 
admin/config/content/formats/full_html, 794 
admin/config/development, 463 
admin/config/development/coder/upgrade, 

491 
admin/config/development/content_type_ove

rview, 100 
admin/config/development/devel, 474 
admin/config/development/maintenance, 140, 

142 
admin/config/development/performance 

page, 636–637, 798 
admin/config/development/testing/settings, 

522 
admin/config/development/xray, 465 
admin/config/group/permissions, 122 
admin/config/group/roles, 122 
admin/config/media/image-

styles/edit/thumbnail, 184 
admin/config/people, 465 
admin/config/people/accounts, 27, 127, 184, 

465 
admin/config/people/comment_notify, 105 
admin/config/people/gravatar, 183 
admin/configs, 918 
admin/config/search/path/patterns, 190 
admin/config/search/path/settings, 96 
admin/config/search/path/update_bulk, 802 
admin/config/search/settings, 701 
admin/config/system/site-export, 804 
admin/config/system/site-information page, 

276 
admin/config/system/YourModuleName link, 

493 
admin/config/user-interface/shortcut, 13 
admin/config/YourModuleName, 493 
admin/content, 21, 423–425, 767 
admin/content/book/settings, 171 



■ INDEX 

994 

admin/help, 482 
admin/help#xray, 482 
admin/help/shortcut, 13 
administration 

code, creating separate file for, 465 
reserving first user for, 126 
theme, 274–278 

enabling and setting default, 274–275 
Global Settings, 275–277 
installing new, 277–278 

Administration menu, 12–13 
administration pages 

stylesheets for, conditionally including, 
788–790 

of Views module, 53–56 
Action links, 54 
Advanced Help module, 53 
available Views, 55–56 
changing listed Views, 54 

administrative information, defining for Views, 
71–74 

administrative interfaces 
modules for, 99–103 

Content Type Overview, 99–102 
Environment Indicator, 99 
Masquerade, 103 
Smart Crop, 99 
Workbench suite, 99 

providing for entities, 555–559 
administrative options, Search module,  

700–701 
Administrative overlay, 741 
administrative tables, cloning and making 

using exposed filters, 80–81 
Administrator role, 27 
admin/modules, 51, 94, 117, 422, 474, 490, 521, 

550 
admin/modules Modules page, 15 
admin/modules/install, 110 
admin/people/permissions, 13, 156, 189, 407, 

467–468 
admin/people/permissions/roles Permissions 

Roles, 26 
admin/reports, 430 
admin/reports/dblog, 106, 142 

admin/reports/status, 142 
admin/reports/updates, 132, 139, 145, 147 
admin/reports/xray, 422, 424, 426 
admin/settings/YourModuleName menu path, 

493 
admin/structure, 481 
admin/structure path, 394, 396 
admin/structure/block, 21, 176, 183, 529 
admin/structure/block page, 282, 292 
admin/structure/block/add-menu-block, 176 
admin/structure/content_migrate, 902 
admin/structure/content-types, 767 
admin/structure/features/create, 811, 906 
admin/structure/field_permissions, 187 
admin/structure/menu, 162 
admin/structure/menu/manage/main-menu, 

277 
admin/structure/menu/manage/user-menu, 

277 
admin/structure/menu/settings, 277 
admin/structure/pages, 119 
admin/structure/taxonomy, 24 
admin/structure/types/add, 17 
admin/structure/types/manage/%, 481 
admin/structure/types/manage/blog, 117 
admin/structure/types/manage/book, 168 
admin/structure/types/manage/book/fields, 

172 
admin/structure/types/manage/book/fields/ 

body, 172 
admin/structure/types/manage/book/fields/ 

field_image/edit, 186 
admin/structure/types/manage/group, 112 
admin/structure/types/manage/profile/fields, 

152 
admin/structure/types/manage/profilevdispla

yvteaser, 166 
admin/structure/types/manage/resource/field

s, 181 
admin/structure/types/manage/suggestion/ 

fields, 26 
admin/structure/types/manage/suggestion/ 

fields/field_status/field-settings, 188 
admin/structure/views, 56, 68–69, 85–86,  

767–768 
admin/structure/views/add, 802 



■ INDEX 

995 

adminvreports/updates/update, 146 
adminvstructure/types/manage/article, 481 
admin/xray, 422 
Advanced Help module, 53 
Advanced Settings box, 73 
aegirproject.org, 386 
aesthetics, concerns about, 222 
aggregation, of CSS files, 341 
agile style, 208–209 
ajax support, 574 
algorithms, language negotiation, 691 
Alias context, 608 
alias drush='~/dev/drush/drush' code, 36 
alias drush='/path/to/drush/drush' code, 36 
alias files (aliases.drushrc.php), for Drush,  

600–601 
aliases 

creating for drush command, 35–37 
for Drush, 892–893 

aliases.drushrc.php file, 601, 607, 619–620 
all directory, 94 
--all flag, 603, 615 
--all option, 624 
AllowOverride directive, 248 
alphas, building and verifying with users,  

733–734 
alter hooks, modifying forms using, 339–340 
altering queries and results, hooks for, 709–710 
Ambiguity attribute, 725 
analysis, Apache Solr project and, 710–711 
analyzing, choosing method of, 737 
Anderson, Greg, 595 
anjaliup_update_7003( ) method, 897 
Anonymous user role, 27 
Answer support requests, 876 
AntiSpam module, 98 
Apache configuration file, 955 
Apache Solr project, 106 

configuration, 707–708 
enabled filters, 707 
type biasing and exclusion, 707–708 

customization, 708–710 
integrating with server, 710–711 

managing data in Solr index, 710 

searching and analysis, 710–711 
Apache Tab, MAMP screen, 978 
Apache virtual host configuration file, 248 
Apache web server, 247–248 
apachesolr.api.php, 708–709 
API methods, 258 
api.drupal.org, 452 
api.drupal.org/api/function/hook_menu/7, 

423 
api.drupal.org/api/group/themeable/7, 436 
api.drupal.org/block_admin_display_form, 789 
api.drupal.org/check_plain, 474 
api.drupal.org/db_query_range, 797 
api.drupal.org/db_transaction, 442 
api.drupal.org/drupal_add_css, 789 
api.drupal.org/drupal_process_attached, 932 
api.drupal.org/form_error, 544 
api.drupal.org/hook_comment_view, 393 
api.drupal.org/hook_field_formatter_info, 757 
api.drupal.org/hook_filter_info, 774 
api.drupal.org/hook_form_alter, 410 
api.drupal.org/hook_help, 396 
api.drupal.org/hook_menu, 396 
api.drupal.org/node_menu_local_tasks_alter, 

770 
api.drupal.org/number_field_formatter_setting

s_form, 759 
api.drupal.org/theme_table, 434, 457 
api.drupal.org/theme_user_admin_permission

s, 433 
api.drupal.org/timer_start, 

api.drupal.org/timer_stop, 908 
api.jquery.com/category/events, 545 
APIs (Application Programming Interfaces), 

258–259 
changes, list of, 489 
form elements, 331 
Forms, 591–592 

automatic file inclusion, 592 
dynamic forms via #ajax property, 591–

592 
human, 713 
outlining, 542 
providing, 536–537 

keeping API and UI separate, 536–537 



■ INDEX 

996 

using to hide complexity, 537 
Search module, 704–706 
Simpletest framework, 530–531 
site-specific modules using, 792–794 

Appearance page, Drupal, 274 
Apple Mac OS X, running Ubuntu operating 

system on, 971 
Application Programming Interfaces. See APIs; 

Render API 
applications 

for access, 863 
preparing branches for, 862 

Appropriate degree of refinement attribute, 722 
Archive view, 57 
archives, uncompressing, 238–239 
arguments, for Drush scripts, 618 
ARIA (Accessible Rich Internet Applications), 

942, 945 
arithmetic operator, 400 
array_keys( ) method, 457 
array_merge_recursive( ) method, 783 
arrays 

$variables, finding contents of, 317 
render 

in core templates, 326 
overview, 321 

renderable, 437 
asort( ) method, 432 
assertNoRaw('html'), 530 
assertNoText('text'), 530 
assertRaw('html'), 530 
assertText( ) method, 527 
assertText('text'), 530 
Assigned field, 488 
assigned tasks, 217 
assignment operator, 399–400 
association.drupal.org/about/donations, 881 
association.drupal.org/membership, 881 
Atomic, Consistency, Isolation, and Durability 

(ACID), and BASE, 643–645 
atzzolo.org/category/topics/drupal-highlights, 

869 
audience, for Rules module, 723 
auditing, migration processes, 910 
Authenticated user role, 27 

Author field, 225 
Author profiles, connecting to author user 

accounts, 155–156 
authors 

approximate pages contributed by each, 155 
building headshot view of, 158–162 

author biographies view page, 162–164 
Image style, 159–161 
menu link for page view, 161–162 

giving permission to create profiles,  
156–157 

linking chapters to, 178 
linking to other pages by, 153–154 
listing, 157–164 
showcasing with profile pages, 149–157 
user accounts of, connecting Author profiles 

to, 155–156 
autogenerating, human-readable URLs with 

Pathauto module, 190–191 
automated backups, 249 
automated module installer, 146 
automated testing, for accessibility, 944–945 
automatic file inclusion, 592 
automatic installers, 11–12, 974–975 
automatic upgrades, adding Features module 

to, 906–907 
avoiding production bottlenecks, 225 

■ B 
Backlinks view, 57 
Backup and Migrate module, 249 
Backupninja tool, 250 
backups 

overview, 263–264 
of websites, 249–251 

Banner Ad region, 291 
bare repository, 253 
Bartik theme, 270, 294, 300 
BASE (Basically Available, Scalable, and 

Eventually Consistent), ACID and, 
643–645 

base Features modules, 905 
base table, 553 
base theme property, 279 



■ INDEX 

997 

base themes 
custom, 351 
popular, 350 
starting with good, 351–352 
and subthemes, 348–351 

.bash_aliases file, 602 

.bashrc file, 602 
Basic settings, 163 
Basically Available, Scalable, and Eventually 

Consistent (BASE), ACID and, 643–645 
batch tasks, 809 
behaviors, 364–365 

attaching, 364 
detaching, 365 

Berkun, Scott, 219 
best practices, in theming, 351–354 

leveraging default CSS classes, 353–354 
modules vs. themes, 354 
overriding template files with purpose, 353 
starting with good base theme, 351–352 

biasing, 707–708 
bi-directional text support, 343 
binary operators, and concatenators, spaces on 

either side of, 406 
biographies, of authors, 162–164 
block level caching, 916–917 
Block module, 91, 286 
block system, 223 
Block template, 306 
block theme, 927 
block__MODULE template, 304 
block__MODULE__DELTA template, 306 
block__REGION template, 306 
block_admin_configure, 412 
block_view block, 395 
block--MODULE--DELTA.tpl.php, 306 
block--MODULE.tpl.php, 304 
<blockquote> tag, 940 
block--REGION.tpl.php, 306 
blocks 

creating new, 223 
overview, 21–24 
placing, 76 

Blocks administration page, 287 

block.tpl.php file, 295, 298, 301, 306, 351 
blog/[user]/[title], 83 
Body field, 225 
<body> tags, 295, 357–358 
Book element, 24–25 
Book module, making table of contents with, 

168–178 
adding to main menu, 178 
Chapter content type, 172–175 
setting permissions for organizing and 

writing chapters, 170–171 
using Menu Block module to display better, 

176–177 
book module templates, reusing to display 

non-book navigation, 798–801 
book navigation, next and previous links 

mimicking, 795–801 
book_node_load( ) method, 694 
book_node_view( ) method, 798 
book_page_alter( ) method, 697 
bookmarks, creating with server access setting, 

235–236 
book-navigation.tpl.php template, 798–799 
bootstrap phases, 685–698 

execution of page callback, 692–693 
initialize configuration, 686 
initialize database layer, 689 
initialize session handling, 690 
initialize variable system, 689–690 
load modules and initialize theme, 691–692 
select language, 691 
set up page header, 690 
try to serve cached page, 687–689 
typical example, 694–698 

bootstrap.inc, 474 
Bot module, 107 
bottlenecks, avoiding, 225 
brainstorming meetings, 214 
branches 

preparing for applications, 862 
and tags on Drupal.org, 861 

browsers and devices, compatibility testing, 
232–233 

budgeting time, and success as developer, 842 
bueditor module, 97 



■ INDEX 

998 

builtin help command, 603 
business models, for contributors, 849–851 

convincing clients of value of contributing, 
849 

developing install profile, 850 
development plus model, 850 
direct funding, 850–851 

Buying the Definitive Guide to Drupal 7 page, 
19 

■ C 
--cache option, 614 
cache tables, caching data using default,  

765–766 
cache_get( ) method, 637, 765 
cache_get modules, 765 
cache_set( ) method, 637, 765, 930 
cache-clear command, 598 
cached pages, try to serve, 687–689 
cachegrind.out file, 918 
caches, clearing, 407 
caching, 63, 636–638 

data, using default cache table, 765–766 
disabling during development, 637–638 
memcached system, 638 
page and block level, 916–917 

Cafés, Drupal, 880 
callback methods, 592 

entity access, defining, 554 
overview, 676–677 

callbacks 
delivery callback, 928–929 
execution of page, bootstrap phase, 692–693 
page callback, 928 
settings, 776 

camps, 845 
Camps, Drupal, 879 
Cannot modify header information error, 303 
CAP (Consistency, Availability, and Partition 

Tolerance), between ACID and BASE, 
643–645 

careers, 843–847 
getting involved in community, 844–846 

communities of like interests, 845–846 
conferences and camps, 845 

user groups, 844–845 
possibilities for, 843–847 
starting own business, 846 

Cart module, 583 
Cascading Style Sheets files. See CSS files 
case "admin/content": line, 403 
case statements, 403 
Category field, 488 
Category option, filter drop-down, 486 
CCK module, 850 
cd command, 42, 602 
cd Dropbox/MAMP/dgd7 command, 33 
cd /path/to/site command, 33 
c:\drush, 965 
change picture link, adding underneath user 

photo, 320 
Chaos Tools dependency, 95 
Chaos Tools project, 256 
Chapter content type 

adding metadata to with fields, 172–173 
setting how fields will be displayed by,  

173–175 
Chapter number field display, 754–757 
Chapter option, 225 
chapters 

creating sample, 225 
linking to authors, 178 
Resource content type referencing, 179–181 

allowing people to attach generic files to 
content, 180 

connecting content types with Node 
reference, 181 

managing Resource content type 
display, 181 

reusing chapter image field, 179–180 
setting permissions for organizing and 

writing, 170–171 
check_plain( ) method, 474, 478 
checkins, 215 
Checkout complete, 582 
checkout system, 581–583 
chmod u+x dev/drush/drush command, 35 
chmod u+x /path/to/drush/drush command, 

35 
Christenson, Bob, 226 



■ INDEX 

999 

classes 
adding to template wrappers, 318 
container form elements with specified, 

790–791 
Clear all caches button, 798 
Clear vocabulary attribute, 724 
CLI context, 608 
client-facing document, 209 
clients 

and entering content early, 222 
getting involved, 842 
interaction, with Drupal interface, 222 

Clone view, 57 
Close useless bug reports, 876 
closing PHP tag, 404 
coda, on contributed modules, 792 
code 

capturing all changes in, 256–260 
creating, editing, and reviewing content 

on production, 259 
Features project, 256–258 
pages or content sections that require 

methodality, 259–260 
writing update hooks, 258–259 

copying, 540–541 
corrected, 493–495 
custom, 488 
deployment of changes in, 254–255 
disabling modules in, 901–902 
Drupal 7 base, 893–896 
enabling modules in, 901 
exporting Views to, 85–86 
finding model, 497–498 
keeping base current, 132–133 
making reusable, 511–515 

documenting, 513 
following coding standards, 513 
making methodality configurable,  

512–513 
releasing work, 514–515 
tying components together, 513 

original, 495–496 
packaging, 816–817 

hosting on drupal.org, 817 
makefiles, 816–817 

reviews, security, 132 
secure, 133–135 
sharing in sandbox on Drupal.org, 541 
snippets, internal documentation, 225 
themeable, documenting with @ingroup 

themeable method, 433–435 
updated, 496–497 
writing, 542–543 

code comments, 392 
code contributions, 265 
code directory, 144 
Code Filter module, 103 
Code Sprints, 880 
<code> tag, 940 
coder module output, 493 
Coder review module, 478–479 
Coder Upgrade module, 489–493 
coder_upgrade directory, 490 
coder_upgrade subdirectory, 490 
coder_upgrade/old directory, 490 
coder_upgrade/old/addanother- path, 491 
coding standards 

Drupal, 404–406 
internal documentation, 226 
overview, 862 

color, 718–719 
accessible, 944 
harmony of, 719 
scheme, of core theme, 13–14 

Color module, 91 
--color=auto option, 632 
Colorbox module, 104 
Coming Soon page, 212 
command aliases, 598 
command hook, for Drush extensions, 627–628 
command-line 

accessing, 230–231 
Mac OSX operating system installation, 

979–981 
steps, 490–497 

coder module output, 493 
corrected code, 493–495 
original code, 495–496 
updated code, 496–497 



■ INDEX 

1000 

command-line tools, Linux, 264 
commands folder, 606 
Comment module, 91 
Comment Notify module, 104–105 
comments, code, 392 
comment.tpl.php file, 295 
Commerce module, 569 
Commerce project, Drupal. See Drupal 

Commerce project 
commerce_cart_product_add( ) method, 574 
commerce_cart.module, 574 
commerce_payment.checkout_pane.inc, 591 
commerce_price_create_instance( ) method, 

570 
commerce_product_type_get_name( ) method, 

590 
commerce_product.forms.inc, 592 
Commerce/Commerce UI, 568 
CommerceProductEntityController class, 590 
commit message, writing, 263 
communication, effective, 218 
community, 195–201, 865–883. See also 

contributors 
building modules for, 104–106 

Comment Notify, 104–105 
Organic Groups, 105 
Profile2, 106 
Rate, 105 
Role Limits, 106 
Userpoints, 105 
Voting API dependency, 105 

contributing to, 840, 866–881 
answering questions, 873 
by being wrong, 871 
handling issue queues, 875–877 
hosting conferences, 879–880 
importance of, 867–868 
making Drupal.org better, 878–879 
mentoring, 871–872 
monitarily, 880–881 
non-technical support, 869 
patches, 874–875 
reviewing patches, 878 
writing documentation, 873–874 

documentation for, 226 

getting involved in, 844–846 
communities of like interests, 845–846 
conferences and camps, 845 
user groups, 844–845 

good karma in, 848 
where to find, 196–201 

conferences and meetups, 197 
Drupal Planet aggregator, 196 
DrupalCamp events, 198 
DrupalCon conferences, 198 
Drupal.org forums, 197 
Groups.Drupal.org site, 197 
IRC, 199–200 
issue queues, 200–201 
local meetups, 198–199 
mailing lists, 197 
podcasts, 196–197 

community web sites, creating with Organic 
Groups module, 109–124 

creating content, 117–119 
installing and configuring, 110–114 
Members, Roles, and Permissions settings, 

122–124 
Panels module, 119–122 
using Views with, 115–117 

compact( ) method, 420 
comparison operator, 400–401 
compatibility testing, browser and device,  

232–233 
completion dates, estimating, 211–212 
Component field, 488 
Component option, filter drop-down, 486 
compression of CSS files, 341 
concatenators, binary operators and, 406 
concentration, 264 
Concept design, defined, 213 
concerns, about aesthetics, 222 
conditional statements. See also operators 
conditional stylesheets, adding for Internet 

Explorer, 345 
conferences, 197, 845, 879–880 
configurable methodality, 512–513 
configuration, initializing, 686 
configuration features, 810–815 

drune_track.*.inc file, 812 

x



■ INDEX 

1001 

drune_track.module file, 812–815 
exceptions, 814–815 
overrides, 813 
updates, 813 

using installation profiles and features as 
development tool, 815 

Configuration menu, 492, 494 
configuration page, for modules, 469–483 

conditionally taking action based on 
configuration settings or user access, 
468–469 

creating separate file for administration 
code, 465 

defining menu items for settings form,  
464–465 

defining new permissions, 467–468 
settings form, 465–467 

configuration settings, conditionally taking 
action based on, 468–469 

configure directive, 390 
Configure filter criterion, 64 
Consistency, Availability, and Partition 

Tolerance (CAP), between ACID and 
BASE, 643–645 

Contact module, 333 
container form elements, with specified classes, 

790–791 
container__xray__form, 412 
content, 19–21 

connecting with Node reference, 181 
contextual add new links for, 767–771 

finding better way, 770–771 
models, 767–770 

designing from, 938–939 
entering early, and clients, 222 
fine-tuning, 164–167 

modifying teaser display and setting 
trim length, 166–167 

using view modes to display same 
content in different ways, 166 

Group, 111–114 
with human-readable URL and main menu 

link, 19–20 
modules for display of, 103–104 

Code Filter, 103 
Colorbox, 104 

Panels, 103 
modules for entry of, 99–103 

Content Type Overview, 99–102 
Environment Indicator, 99 
Masquerade, 103 
Smart Crop, 99 
Workbench suite, 99 

needs managing, 837 
overviews of, 889–890 
posting and promoting to front page, 20–21 
of render arrays 

altering inside, 325–326 
generating new, 323–325 
moving between regions, 325 

types, 16–19 
connecting with Node reference, 181 
contextual add new links for, 767–771 
Group, 111–114 

of website, 207 
content child, 926 
content editors, 223 
Content region, 285 
Content Staging, Drupal Project Stage, 208 
Content staging stage, 9 
Content translation module, 93 
Content Type Overview module, 99–102 
content/[node:title], 190 
content_migrate_batch_process_create_fields( 

) method, 902 
content_migrate_batch_process_migrate_data( 

) method, 902 
content-migrate-field-structure, 902 
context item, 621 
contexts, for Drush, 608–609 
contextual add new links, for content types, 

767–771 
finding better way, 770–771 
models, 767–770 

contextual commands, 603 
contextual filters, 62, 82–83 
Contextual Links module, 91 
contrast, accessible, 944 
contrib directory, 94 
Contributed (contrib) module term, 501 
contributed modules, 890–891 



■ INDEX 

1002 

coda on, 792
dependencies, 592–593
storage of, 94
updating, 145–147 

automated module installer, 146
with Drush tool, 146–147 

contributed projects, dealing with issues in, 135
contributing to community, 866–881 

answering questions, 873 
by being wrong, 871 
handling issue queues, 875–877
hosting conferences, 879–880
importance of, 867–868 
making Drupal.org better, 878–879
mentoring, 871–872 
monitarily, 880–881
non-technical support, 869
patches, 874–875 
reviewing patches, 878 
writing documentation, 873–874 

Contribution Sprints, 738
contributors, 847–851 

benefits of being, 847–848 
good community karma, 848
improving own work, 847–848
notoriety, 848 
participating in dialog, 848 

business models for, 849–851 
convincing clients of value of 

contributing, 849
developing install profile, 850
"development plus" model, 850
direct funding, 850–851 

expectations for, 851
sustainability of, 848–849 

Control Panel links, 988
control statements, 405
control structures, 402–403 

if, elseif, and else statements, 402–403
loops, 403 
switch and case statements, 403 

conversations, importance of, 218
Cooperperkins.com, 934
copying code, 540–541 

copywriting 
causes of unhelpful, 744–745
overview, 743–744 

core 
Drupal 

dealing with issues in, 135
loading code for, 953–957 

files 
CSS, 342 
downloading for Mac OSX installation, 

979–984
jQuery UI in, 366–379 

effects, 378–379
elements, 367–378 

modules in, 91–94
templates 

common, 295
render arrays in, 326 

themes directory, 269–274
Bartik theme, 270
Garland theme, 271
Seven theme, 272 
Stark theme, 272–273
theme engines, 273–274 

core attribute, 807 
core debug( ) method, 752 
core directive, 389 
Core Drupal Commerce Entities, 584 
Core Drupal Commerce Fields, 584 
core methods, Drupal, 943 
Core module term, 501 
core property, 279 
core-cli command, 602 
core-rsync command, 612, 614
core-status command, 612 
count( ) method, 420–421 
countQuery( ) method, 445 
<create a new book> tag, 175 
Create content menu, 492 
Create New Database option, Navicat, 980
credentials, login, 237
Csikszentmihalyi, Mihaly, 264 
CSS (Cascading Style Sheets) files, 341–348 

adding, removing, and replacing, 343–348 



■ INDEX 

1003 

aggregation and compression, 341 
leveraging default classes, 353–354 
patterns and naming conventions, 342–343 

bi-directional text support, 343 
core and module CSS files, 342 

rendered, 231–232 
streamlining form elements with, 766 
stylesheets for administration pages, 

conditionally including, 788–790 
styling with, 440–442 

CSS class, 63 
CTools, 257–258 
ctools folder, 51 
Custom display settings, 749 
Custom module term, 501 
custom modules, 501–502 
Customer module, 577 
Customer/Customer UI, 568 
cvs.drupal.org, 389 
Cyberduck, 235 

■ D 
Dashboard, customizing, 225 
Dashboard link, Drupal site, 224 
Dashboard Main region, 287 
Dashboard module, 91 
Dashboard Sidebar region, 287 
data 

decentralized dataspaces, 654 
hooks for adding, 708–709 
legacy, 908–909 
linking on global scale, 655 
migration of, 907–911 

auditing, 910 
initial analysis, 909–910 
iterating, 910 
launching, 910–911 
legacy data, 908–909 
managing, 907–908 
showing, 910 
sticking points, 909 
timing, 910 

storing and editing in UI, 548–549 

data models 
defining, 547–555 
overview, 452 

data.agaric.com/edit-term-love Edit Term 
module, 869 

database abstraction layer, initializing, 
bootstrap phase, 689 

Database API, 442–456 
.install file, 451–452 
data models, 452 
displaying same data in two locations,  

447–449 
dynamic queries, 450–451 
fetching data 

with select queries, 443–445 
with static queries with joins on two 

tables, 445–447 
inserting and updating data, 455–456 
tables, 453–454 
using variable_get( ) method and another 

static select counting and grouping 
query, 450 

database backup tools, 45 
Database Logging module, 92 
Database overriding code, 56 
databases, 639–645 

CAP between ACID and BASE, 643–645 
creating 

command-line steps, 980–981 
for Drupal sites, 974 
Mac OSX operating system installation, 

979–980 
exporting, 244 
finding system names in, 428–430 
indexes, 640–642 
MongoDB, 645–650 

Null values in, 649–650 
watchdog subsystem, session 

subsystem, and message queue,  
648–649 

NULL values in SQL, 642–643 
setting up 

with phpMyAdmin tool, 239–240 
with wizards and manual tools, 240 

slow queries, 920–921 
date_validate( ) method, 543 



■ INDEX 

1004 

datepicker library, 368 
db_delete( ) method, 536, 898, 900–901 
db_drop_table( ) method, 899–900 
db_insert( ) method, 455, 536 
db_merge( ) method, 455 
db_or( ) method, 901 
db_query( ) method, 443–446, 450–451, 457, 689 
db_query_range( ) method, 797–798 
db_select( ) method, 445, 450–451 
db_update( ) method, 455, 536 
dblog_overview( ) method, 456 
--db-su option, 613 
--db-su-pw option, 613 
deadlines, 212 
Debian package manager, 250 
debug( ) method, 311, 410, 416, 456, 481, 504, 

543, 748, 752, 796 
--debug flag, 615 
'debug' log level, 625 
--debug option, 625, 632 
debug($items) method, 761 
debug($node) method, 796 
debug(debug_backtrace( )) method, 475 
debug(field_info_bundles( )) method, 460 
debug(list_themes( )) method, 416 
decentralized dataspaces, 654 
default cache tables, caching data using,  

765–766 
default key, 246 
Default Order States and Statuses, 585 
default regions, 284–286 
default status, 813 
Default view mode, 165 
default_message array, 927 
.default_views.inc file, 812 
default.settings.php file, 141 
definitivedrupal.mayfirst.org domain, 248 
DefinitiveDrupal.org, 747, 771–772, 776 
definitivedrupal.org/patch, 875 
definitivedrupal.org/suggestions, 869 
DefinitiveGuide.org account, 155 
degrading, JavaScript language and jQuery 

library, 365–366 
delivery callback, 928–929 
Demonstration module, 254 

dependencies 
on contributed modules, 592–593 
making optional, 538–539 

dependencies attribute, 807 
Dependencies item, 360 
dependencies[] directive, 389–391 
Deploy module, 251, 259 
Deployment and launch stage, 9 
deployment of websites, 251–261 

approach, 252 
capturing all changes in code, 256–260 
code changes, 254–255 
content, 253–254 
development workflow, 260–261 
workflow, 252–253 

Deployment/Launch, Drupal Project Stage, 208 
description, project, 742–743 
description attribute, 807 
description property, 279 
Design, Drupal Project Stage, 208 
designs, 723. See also visual design 

Drupal Commerce project, 587–588 
with limited resources, 722 
mockups for detailed, 733 
process of 

making informed decisions, 721 
overview, 720–721 

of project planning, 206–207 
stress-testing, 730–733 

Empty screen state, 731 
Error screen state, 733 
Flooded screen state, 732 
Normal screen state, 731 

Dev Days, Drupal, 880 
Dev Desktop app, Acquia. See Acquia Dev 

Desktop app 
Dev Desktop Control Panel, 987 
devel command file, 607 
Devel dpm( ) method, 752 
Devel module, tracing errors with, 474–476 
Develop for Drupal handbook, 134 
developer profile, 804–805 
developers, 835–843 

being successful as, 841–843 



■ INDEX 

1005 

budgeting time, 842 
create process, 841–842 
using distributions, 843 
using experienced developers, 843 
using install profiles, 843 

common pitfalls of, 835–836 
consulting with experts, 838 
content needs managing, 837 
and contributing to community, 840 
long-term benefits of using Drupal, 838 
long-term support, 841 
making sustainable choices, 840 
sponsoring, 881 
starting with goals, 838–839 
supporting different participants, 839–840 
understanding concepts of Drupal site,  

836–837 
development 

disabling caching during, 637–638 
from human mindset, 263–265 

backup, 263–264 
contributing, 265 
experimenting, 264–265 
revision control, 263 

meetings, 215 
of project plan, 207 

Development, Drupal Project Stage, 208 
development environments, 227–241 

for beginners, 233–241 
selecting hosting services, 234–238 
server-side tasks and tools, 239–241 
uncompressing archives, 238–239 

enhancing existing, 229–233 
accessing command line, 230–231 
browser and device compatibility 

testing, 232–233 
hosting sites locally, 230 
PHP files, 233 
rendered HTML, 231–232 

Microsoft Windows. See Microsoft Windows 
development environment 

starting with Quickstart appliance, 228–229 
Visual Studio, 948 

development plus model, business model for 
contributors, 850 

development profiles, 804–805 
development standards, Drupal Commerce 

project, 588 
development team, documentation for,  

225–226 
development tools, using installation profiles 

and features as, 815 
development workflow, of websites, 260–261 
devices, browsers and, compatibility testing, 

232–233 
DGB (Drush Git Backup), 249 
DGD7 site code, 43 
dgd7_field_formatter_view( ) method, 761 
dgd7_tip directory, 775 
dgd7_tip_add_rm_formset( ) method, 778–779, 

790 
dgd7_tip_filter_info( ) method, 776 
dgd7_tip_settings( ) method, 776 
dgd7_tips_settings( ) method, 782 
dgd7.aliases.drushrc.php file, 610 
dgd7.css file, 794 
dgd7glue folder, 749 
dgd7glue_drupal_page_title( ) method, 763 
dgd7glue_field_formatter_settings_form( ) 

method, 761 
dgd7glue_field_formatter_settings_summary( ) 

method, 761 
dgd7glue_field_formatter_view( ) method, 761 
dgd7glue_nextprev_suggestion( ) method, 797–

798, 800 
dgd7glue_node_view( ) method, 795 
dgd7glue_preprocess_field( ) method, 754 
dgd7glue.info file, 749 
dgd7glue.module, 798 
dialog, participating in community, 848 
dialog library, 369–370 
diff command, 140, 498 
diff method, updating with, 143–144 
diff tool, 141 
diff via, 138 
direct feedback, 264 
direct funding, business model for 

contributors, 850–851 
directives 

configure, 390 
dependencies[], 389–390 



■ INDEX 

1006 

overview, 389 
package, 391 

directories, setting permissions, 245 
<Directory> tag, 956 
Disable view, 57 
disabled = status, 444 
discovery 

meetings, 214 
phase of project planning, 205–206 

Discovery, Drupal Project Stage, 208 
Display Status, 62 
displays. See also Views 

content 
fine-tuning, 164–167 
modules for, 103–104 

creating additional, 74 
defining elements of content for, 72 
defining order of content for, 72 
defining type of content for, 71 
of fields, setting with Chapter content type, 

173–175 
multiple to highlight first result, 77–78 
names of, 60 
Resource content type, managing, 181 
settings 

overriding, 63 
of Views, 61 

tabs for unique, 78–79 
teaser, modifying, 166–167 
types of, 58–59 

Disposable attribute, 724 
Distinct gesture attribute, 724 
distributions, 803–818 

configuration features, 810–815 
drune_track.*.inc file, 812 
drune_track.module file, 812–815 
using installation profiles and features 

as development tool, 815 
Drune example, 805 
future of, 817–818 
packaging code, 816–817 

hosting on drupal.org, 817 
makefiles, 816–817 
packaging, 817 

site templates, 803–805 
development profiles, 804–805 
example distribution, 805 
full-featured services, 804 

structure of, 806–809 
drune.info file, 807 
drune.profile file, 807–809 

and success as developer, 843 
<div class="content"> wrapper, 328 
<div class="inner"> tag, 352–353 
<div class="user-picture"> tag, 293 
<div id="header"> tag, 292 
<div id="page-wrapper"> tag, 292 
div tags, 75 
<div> wrapper, 315 
DNS (Domain Name System) settings, 247 
docs/drush.api.php file, 613 
documentation, 221–226, 741–743 

for community, 226 
for development team, 225–226 
for end-user, post-launch, 222–223 
on-site, for modules, 482–483 
what makes good, 221–225 
writing, 873–874 

documentation contributions, 265 
documenting code, 513 
DocumentRoot, 956 
documents, client-facing, 209 
Dojo Barn Raisings, 872 
Dojos, Drupal, 880 
DOM traversal technique, 657 
domain name, 247 
Domain Name System (DNS) settings, 247 
donating, to Drupal Association, 881 
Downloads section, 89 
dpm( ) method, 308, 311, 317, 505, 795 
draggable library, 370 
Dreditor, reviewing patches using, 878 
Dropbox, 978 
droppable library, 371 
Drubuntu script, customizing Ubuntu OS for 

development with, 972 
drubuntu-site-add, 894, 973 
drune_track feature, 809 



■ INDEX 

1007 

drune_track.*.inc file, 812 
drune_track.info file, 812 
drune_track.module file, 812–815 

exceptions, 814–815 
overrides, 813 
updates, 813 

drune.info file, 806–807 
drune.install file, 814 
drune.profile file, 806–809 

batch tasks, 809 
form tasks, 808–809 

Drupal 
7-code base, 893–896 
coding standards, 404–406 
core, dealing with issues in, 135 
and HTML5, 940 
installing on Ubuntu operating system,  

973–975 
automatic installer, 974–975 
database, 974 

meet-ups, 824 
story of, 821–833 

beginnings, 822–824 
Drupal Foundation, 828 
hacking of server, 825–827 

upgrading from 6 to 7. See upgrading 
Drupal 7 platform, improvements in, 589–593 

contributed module dependencies, 592–593 
core entities and fields, 589–591 
Forms API, 591–592 

Drupal administration menu, 984 
Drupal Association, donating to, 881 
Drupal Cafés, 880 
Drupal Camps, 879 
Drupal Commerce project, 565–593 

development history, 586–588 
design philosophy, 587–588 
development standards, 588 

implementing, 585–586 
improvements in Drupal 7, 589–593 

contributed module dependencies,  
592–593 

core entities and fields, 589–591 
Forms API, 591–592 

key features, 565–566 
overview, 565 
store configuration, 566–585 

Cart module, 583 
checkout system, 581–583 
Commerce module, 569 
Customer module, 577 
dynamic pricing, 570 
enabling payment methods, 579–581 
line items, 573–575 
order system, 577–578 
Payment module, 578 
Price module, 569–570 
Product display node type, 575–577 
Product module, 571–573 
Product Reference module, 575 
summary of main components, 584–585 

Drupal Commons, 804 
Drupal context, 608 
Drupal core code, loading, 953–957 
Drupal Dev Days, 880 
Drupal Dojos, 880 
Drupal events, 832 
Drupal install screen, 981 
Drupal Katas, 880 
Drupal Learning Projects, 872 
Drupal Meetups, 880 
Drupal Open Curriculum Project, 872 
Drupal parties, 880 
Drupal Planet aggregator, 196 
Drupal project page, 10 
Drupal projects, 832, 853–854 
Drupal Security Report, 134 
Drupal Summits, 879 
drupal_add_css( ) method, 343–344, 361, 788–

789 
drupal_add_js( ) method, 356–359, 361–362 
drupal_add_library( ) method, 360–362,  

366–367 
drupal_add_library('system', 'ui.dialog);,  

369–371 
drupal_add_library('system', 'ui.progressbar);, 

372 
drupal_add_library('system', 'ui.resizable);, 373 



■ INDEX 

1008 

drupal_add_library('system', 'ui.selectable);, 
374 

drupal_add_library('system', 'ui.slider);, 375 
drupal_add_library('system', 'ui.sortable);, 376 
drupal_add_library('system', 'ui.tabs);, 377 
drupal_alter( ) method, 538 
drupal_bootstrap( ) method, 407, 685–686 
drupal_deliver_html_page( ) method, 676, 692, 

697, 928–929 
drupal_deliver_page( ) method, 692, 697 
drupal_flush_all_caches( ) method, 407, 436 
drupal_form_submit( ) method, 258–259 
drupal_get_form( ) method, 464–465 
drupal_get_normal_path( ) method, 692 
drupal_get_path( ) method, 356, 770 
Drupal_http_request( ) method, 710 
drupal_is_front_page( ) method, 296 
drupal_load( ) method, 918 
drupal_parse_info_file( ) method, 919 
drupal_placeholder( ) method, 476 
drupal_process_attached( ) method, 932 
drupal_render( ) method, 692, 697, 923, 930, 

932 
drupal_render_cache_by_query( ) method, 931 
drupal_render_children( ) method, 334, 782 
drupal_render_children($form), 337 
drupal_render_page( ) method, 929 
drupal_required_modules( ) method, 919 
drupal_set_message( ) method, 451, 495 
drupal_static( ) method, 907, 909 
drupal_system_listing( ) method, 919 
drupal_uninstall_/chema( ) method, 899 
drupal_uninstall_modules( ) method, 902 
drupal_write_record( ) method, 536 
Drupal.attachBehaviors( ) method, 364–365 
Drupal.behavior method, 364, 368, 371–377 
Drupal.behaviors object, 364 
DrupalCacheInterface, 688 
DrupalCamp events, 198 
DrupalCon conferences, 198 
drupalcontrib.org, 394 
drupalCreateUser( ) method, 530 
DrupalDefaultEntityController class, 553, 694 
DrupalDojo.com, 869, 872 
drupalGet('path') method, 530 

drupalLogin($user), 530 
DrupalOpenLearning.org, 872 
Drupal.org 

accounts, setting up for contributing,  
854–855 

branches and tags on, 861 
contributing patch files to, 498–499 
improving, 878–879 
linking to with field formatters, 757–766 

caching data using default cache table, 
765–766 

fetching usernames, 763–764 
sandboxes on, sharing code in, 541 
sharing modules on, 791–792 
submitting patches to, 531–532 

drupal.org, hosting on, 234, 817 
drupal.org documentation, 869 
Drupal.org forums, 197, 873 
drupal.org project page, 228 
Drupal.org User ID, 154 
drupal.org username, 870 
drupal.org web forums, 196 
drupal.org/coding-standards, 478 
drupal.org/community-spotlight, 869 
drupal.org/contribute/documentation, 874 
drupal.org/contribute/documentation/join, 

874 
drupal.org/home, 140 
drupal.org-hosted module, 488 
drupal.org/irc/guidelines, 881 
drupal.org/localize, 11 
drupal.org/node/add/book, 874 
drupal.org/node/add/project-project, 541, 856 
drupal.org/patch, 91 
drupal.org/patch/apply, 875 
drupal.org/patch/create, 875 
drupal.org/patch/novice, 874 
drupal.org/planet, 871 
drupal.org/project/advanced_help, 183 
drupal.org/project/api, 394 
drupal.org/project/backupmigrate Backup and 

Migrate module, 45 
drupal.org/project/bbcode, 772 
drupal.org/project/browscap, 232 
drupal.org/project/captcha_pack, 99 



■ INDEX 

1009 

drupal.org/project/coder, 406, 478, 862 
drupal.org/project/content_type_overview, 

100, 179 
drupal.org/project/corolla, 13 
drupal.org/project/custom_formatters, 154 
drupal.org/project/customfilter, 772 
drupal.org/project/devel, 474 
drupal.org/project/dreditor, 878 
drupal.org/project/drubuntu, 972 
drupal.org/project/drupalforfirebug, 232 
drupal.org/project/drupalorg_testing, 879 
drupal.org/project/enabled_modules, 898 
drupal.org/project/entity, 550 
drupal.org/project/examples, 773 
drupal.org/project/field_group, 96 
drupal.org/project/field_permissions, 187 
drupal.org/project/flexifilter, 772 
drupal.org/project/grammar_parser, 406 
drupal.org/project/image_resize_filter, 781 
drupal.org/project/imagefield_crop, 159 
drupal.org/project/insert, 186 
drupal.org/project/issues, 868 
drupal.org/project/issues/drupal, 877 
drupal.org/project/issues/gci, 872 
drupal.org/project/issues/projectapplications, 

863 
drupal.org/project/issues/remarkup, 794 
drupal.org/project/link, 96, 151 
drupal.org/project/markdown, 772 
drupal.org/project/media, 97 
drupal.org/project/modules, 88, 90, 94 
drupal.org/project/multicolumncheckboxesrad

ios, 766 
drupal.org/project/openid_provider, 15 
drupal.org/project/oracle, 442 
drupal.org/project/pathauto, 190, 801 
drupal.org/project/pathologic, 187 
drupal.org/project/project_shortname, 94 
drupal.org/project/quickstart, 228, 972 
drupal.org/project/references, 96 
drupal.org/project/relation, 96, 179, 182 
drupal.org/project/remarkup, 792 
drupal.org/project/reptag, 772 
drupal.org/project/simplehtmldom, 772 
drupal.org/project/sitedoc, 889 

drupal.org/project/skinr, 939 
drupal.org/project/sky, 939 
drupal.org/project/smartcrop, 159 
drupal.org/project/sqlsrv, 442 
drupal.org/project/strongarm, 905 
drupal.org/project/textile, 772 
drupal.org/project/themes, 13 
drupal.org/project/token, 190, 853 
drupal.org/project/typogrify, 772 
drupal.org/projectvctools, 95 
drupal.org/project/views, 89 
drupal.org/project/votingapi, 537 
drupal.org/project/wysiwyg_linebreaks, 97 
drupal.org/project/xray, 769 
drupal.org/requirements, 234 
drupal.org's version control, 492 
drupal.org/user/register, 874 
drupal.orgvnode/1002658, 146 
drupal.orgvproject/hacked, 143 
drupal.orgvproject/migrate, 889 
drupal.orgvproject/xray, 902 
drupal.orgvsecurity-team, 137 
drupal.orgvuser/26979, 876 
drupal.org/writing-secure-code, 863 
drupalPost( ) method, 527–528 
Drupaltherapy, 226 
Drush, 31–46, 595–633 

alias files (aliases.drushrc.php), 600–601 
aliases for all sites involved in upgrade,  

892–893 
applying code updates with, 603–606 
combined with manual approach for 

upgrading, 893–896 
command-specific options, 609 
contexts for, 608–609 
database backup tools, 45 
Drush Shell, 601–603 
installing, 32–38 

creating alias, 35–37 
downloading Drush tool, 34 
extensions for, 606–607 
making Drush tool executable, 35 
testing, 37–38 

scripting with, 617–626 



■ INDEX 

1010 

arguments for, 618 
drush_dispatch command, 619 
drush_html_to_text command, 623 
drush_invoke command, 619 
drush_invoke_process command, 620 
drush_invoke_process_args command, 

620 
drush_invoke_sitealias command, 620 
drush_invoke_sitealias_args command, 

620 
drush_log command, 625–626 
drush_op_system command, 619 
drush_print command, 622 
drush_print_pipe command, 622 
drush_print_table command, 622–623 
drush_set_error comand, 626 
drush_shell_exec command, 619 
dt command, 622 
options for, 618 
processing command results, 620–621 
prompting user, 623–624 

site lists for, 609–610 
site selection with, 597–600 
updating with 

contributed modules, 146–147 
overview, 142 

using remote commands with, 610–617 
making local copy of remote Drupal site, 

612–614 
managing dump files, 614–615 
setting up SSH key pair, 611–612 
using Drush site context to control  

sql-sync options, 616–617 
using sql-sync without installing Drush 

on remote system, 615–616 
writing extensions for, 626–633 

altering Drush command behavior with, 
631–633 

command hook for, 627–628 
help hook for, 630–631 
implementing command methods, 628 
manually specify command with 

callback, 629 
placing command implementation in 

separate file, 629 

returning array to pass data to other 
Drush scripts, 629 

drush @dev core-status command, 609 
drush cache-clear all command, 598, 613 
drush cc all command, 46, 407, 798 
drush cc command, 494 
drush command, 35 
drush commandname command, 33 
drush convert-makefile command, 817 
drush core-cli command, 601 
drush core-rsync command, 612 
drush dl menu_block; drush en -y menu_block, 

176 
drush dl MODULE_NAME, 31 
drush dl modulename, 38 
drush docs-commands command, 628 
drush en featurename, 906 
drush en views_ui, 904 
drush features-export command, 905 
drush features-revert command, 813 
drush features-update command, 813 
.drush folder, 607 
Drush Git Backup (DGB), 249 
drush help --filter command, 630 
Drush help screen, 968 
drush make command, 816–817 
drush mmas command, 628 
Drush programs, 965–969 

installing, 965–968 
running, 968–969 

Drush project page, 34 
drush site-install command, 540, 806 
drush site-upgrade command, 888, 893, 895, 

897, 901, 904 
drush sql-dump > /path/to/filename.sql 

command, 45 
drush sql-query 'show tables;' | grep cache 

command, 613 
drush sql-sync @dev @live command, 617 
drush sql-sync command, 612, 894 
drush topic docs-api command, 633 
drush up command, 31–32, 38, 147 
drush upc ctools views, 147 
drush verify-makefile command, 817 
drush_bootstrap_max method, 631 



■ INDEX 

1011 

drush_choice method, 624 
drush_command_invoke_all method, 632 
drush_command_invoke_all_ref method, 632 
drush_COMMANDFILE_HOOK method, 631 
drush_COMMANDFILE_HOOK_validate 

method, 631 
drush_COMMANDFILE_post_HOOK method, 

631 
drush_COMMANDFILE_pre_HOOK method, 

631 
drush_confirm method, 624 
drush_devel_download method, 632 
drush_dispatch command, 619 
drush_dispatch method, 629 
drush_docs_readme method, 629 
drush_extras module, 611 
drush_get_merged_options method, 621 
drush_HOOK_init method, 631 
drush_html_to_text command, 623 
drush_invoke command, 619 
drush_invoke_process command, 620 
drush_invoke_process_args command, 620 
drush_invoke_sitealias command, 620 
drush_invoke_sitealias_args command, 620 
drush_key_value_to_array_table method, 623 
drush_log command, 625–626 
drush_log method, 624–626 
drush_op_system command, 619 
drush_print command, 622 
drush_print method, 624 
drush_print_file method, 629 
drush_print_pipe command, 622 
drush_print_pipe method, 629 
drush_print_table command, 622–623 
drush_prompt method, 624 
drush_redispatch_get_options method, 625 
drush_set_error command, 626 
drush_set_error method, 624–625, 631–632 
drush_shell_exec command, 619 
drushed modules, 386 
drush/examples/helloworld.script file, 618, 622 
drush/examples/sandwich.drush.inc file, 626 
drush.php file, 608 
drushrc.php file, 600, 606–607, 613, 617 

dsm( ) method, 311 
dt command, 622 
Dublin Core vocabulary, 662 
dump files, managing, 614–615 
dur option, 648 
dynamic forms, via #ajax property, 591–592 
dynamic pages, building using Views module. 

See Views module 
dynamic pricing, 570 
dynamic queries, 450–451 

■ E 
EcoAlign site, 937 
Edit view, 57 
effective communication, 218 
effects, jQuery UI, 378–379 
element field name, 26 
element_validate property, 544 
elements 

forms accepting multiple, 776–779 
jQuery UI 

accordion library, 367 
datepicker library, 368 
dialog library, 369–370 
draggable library, 370 
droppable library, 371 
progressbar library, 372–373 
resizeable library, 373 
selectable library, 374 
slider library, 375 
sortable library, 376 
tabs library, 377–378 

render 
manipulating output of, 322–326 
overview, 322 

else statements, 402–403 
elseif statements, 402–403 
<em> tags, 413 
Empty screen state, 731 
Enable and set default link, 281 
enabled filters, 707 
end-user, documentation for, 222–223 
engine property, 279 
engines, theme, 273–274 



■ INDEX 

1012 

entities, 460–461 
and fields, 589–591 

order entity, 590–591 
product entity, 589–590 

providing administrative interface for,  
555–559 

providing new types, 549–555 
defining entity access callback method, 

554 
defining new permission, 554–555
reasons for creating, 550 

entity class, 553 
entity keys, 553 
ENTITY_build_content( ) method, 694
entity_load( ) method, 559
entity_metadata_comment_access( ) method, 

554 
entity_prepare_view( ) method, 694
ENTITY_view_multiple( ) method, 694
EntityAPIController class, 553
entityFieldQuery( ) method, 549
Environment Indicator module, 99, 252
Environment variables dialog, 967
error code, 621 
error log level, 625 
error messages, 472–476 

fatal errors
runtime, 473
syntactic, 472 

finding cause of, 473–474
searching for solutions to, 472
tracing with Devel module, 474–476 

Error screen state, 733 
error_log item, 621
ERROR_REPORTING_DISPLAY_ALL, 408
error_status item, 621 
errors 

search and 404-modules for handling,  
106–107

showing, 408 
etc/backup.d file, 250 
events, sponsoring, 881 
every_page flag, 358 
everything in code approach, 251–252
everything through the web philosophy, 252 

example components, 813 
example modal dialog, 60
example_something( ) method, 469
example_update_7001( ) method, 451
example.aliases.drushrc.php file, 600
example.com/blog/blog-post-title, 96
example.drushrc.php file, 608, 613
exampleform_unsubscribe( ) form, 331
example.js file, 357 
examples directory, 608 
examples folder, 618
examples/examples.drushrc.php file, 622
example/web directory, 140
exceptions, 814–815 
exclusion, 707–708 
existing modules, hooking into, 504
expectations, for contributors, 851
experts 

consulting with, 838 
and success as developer, 843 

explorative usability tests, 736–737
environment, 737 
method, 736 
scenario, 736 
setting up module, recording, and logging, 

738
tasks, 736–737 

Export view, 58 
exportables, 811 
exporting, Views to code, 85–86
exposed filters, cloning and making 

administrative tables using, 80–81
Exposed form in block, 62 
Exposed form style, 62 
exposed forms, 62 
extensions for Drush, 626–633 

altering Drush command behavior with, 
631–633 

command hook for, 627–628 
help hook for, 630–631 
implementing command methods, 628
installing, 606–607 
manually specify command with callback, 

629 



■ INDEX 

1013 

placing command implementation in 
separate file, 629 

returning array to pass data to other Drush 
scripts, 629 

extract( ) method, 471 

■ F 
facet blocks, 703 
fatal errors 

runtime, 473 
syntactic, 472 

faux-exportables, 811 
Features, defined, 214 
features directory, 906 
Features modules, 905–907 

adding to automatic upgrade, 906–907 
base, 905 

Features project, 256–258 
features property, 279 
Features suite, 252 
features_revert( ) method, 258 
.features.content.inc file, 812 
feedback 

direct and immediate, 264 
expert, about site accessibility, 946 
from issue queues, 741 
on wireframes, 729–730 

Feeds module, 259, 805 
field displays, 754–757 
field formatters, linking to Drupal.org/Twitter 

accounts with, 757–766 
caching data using default cache table,  

765–766 
fetching usernames, 763–764 

Field SQL Storage, Field UI module, 92 
field_add_more_js( ) method, 777 
field_attach_form( ) method, 557 
field_attach_load( ) method, 694 
field_create_field( ) method, 560 
field_get_items( ) method, 509 
field_info_bundles( ) method, 460–461 
field_language( ) method, 509 
field_status, 187 

fields 
adding metadata to Chapter content type 

with, 172–173 
adding types of to Field module, 96–97 
editing, 74–75 
entities and, 589–591 

order entity, 590–591 
product entity, 589–590 

programmatically creating and attaching, 
559–560 

setting display of with Chapter content type, 
173–175 

of Views, 61 
Fields API, 509–510 
Fields module, adding field types to, 96–97 
Fields upgrades, automating, 902–903 
field.tpl.php file, 293, 295 
'file' => filename.extension, 424 
file directories, setting permissions, 245 
file placement, 9–11 
File Transfer Protocol clients. See FTP clients 
file xray.admin.inc, 465 
file_get_contents( ) method, 710 
file_scan_directory( ) method, 919 
file.js, 365 
files 

adding to repository, 859–861 
automatic inclusion of, 592 
generic, allowing people to attach to 

content, 180 
Photoshop, 206 
uploading, with FTP clients, 237 

files attribute, 807 
files[ ] = mymodule.test, 519 
FILO (first in, last out) order, 308 
--filter flag, 607 
filter module, PHP, 128 
filter settings 

forms 
accepting two additional rows, 777–779 
providing instructions on, 781–782 

validating, 780–781 
filter_example.module, 773, 775–776 
filter_xss( ) method, 478 
--filter=devel flag, 607 



■ INDEX 

1014 

filtered_html_plus, 185 
filters 

contextual, 62, 82–83 
criteria 

groups, 65–66 
of Views, 61 

custom text, 771–795 
adding custom markup for output, 795 
container form elements with specified 

classes, 790–791 
custom hooks, 783 
editing text formats, 794 
examples, 773 
filtering content, 783–788 
modules, 771–773, 776–788, 791–794 
stylesheets for administration pages, 

788–790 
tags and replacement markup form, 

776–782 
enabled, 707 
exposed, cloning and making 

administrative tables using, 80–81 
filters, unchanged, 163 
Filters section, 64–65 
find command, 646 
Find duplicate issues, 875 
Find maintainer directions, 875 
Find related issues, 876 
fine-tuning content display, 164–167 

modifying teaser display and setting trim 
length, 166–167 

using view modes to display same content 
in different ways, 166 

Firebug net summary, 914 
FireFTP, 236 
first in, last out (FILO) order, 308 
fitness, of paths, 679–680 
Flooded screen state, 732 
flow state, 264 
FOAF (Friend of a Friend) vocabulary, 662 
fonts, choosing for visual design, 939 
foo_load( ) method, 677 
footers, 61, 357 
foreach( ) statement, 763 
foreach loop, 419, 421 

Form API, 134 
Form component type, 504 
form elements 

container, with specified classes, 790–791 
investigating, 543–544 

form tasks, 808–809 
form variable, 547 
form_alter( ) method, 412 
form_error( ) method, 544 
form_get_error( ) method, 547 
form_id form, 332 
form_process_password_confirm( ), 542 
form_set_error( ) method, 544 
form_set_value( ) method, 779 
form_state variable, 547 
<form> ID attribute, 333 
Format settings 

configuration options for, 67–68 
for Views, 72 

format_plural( ) method, localization with t( ) 
method and, 412–414 

formats, text, 794 
formatters, fields, 757–766 
formatting 

allowing images, adding to text, 184–187 
data for display as tables, 433–435 
Views, 60–61 

formmsgs directory, 540 
formmsgs entity, 553 
formmsgs_form( ) method, 557 
formmsgs_form_submit( )method, 557 
formmsgs_load( ) method, 557 
formmsgs_load_by_name( ) method, 557 
formmsgs_load_multiple( ) method, 557 
formmsgs.admin.inc file, 556 
forms 

accepting multiple elements, 776–779 
altering, 409–412 
API elements and default properties, 331 
dynamic, via #ajax property, 591–592 
filter settings 

accepting two additional rows, 777–779 
providing instructions on, 781–782 

manipulating elements 



■ INDEX 

1015 

in template files, 337–338 
in theme methods, 335 

Simpletest framework and, 528–530 
streamlining elements with CSS, 766 
theming, 329–340 

finding form ID, 332–333 
hook_theme( ) method, 333–334 
markup generation, 329–332 
modifying using alter hooks, 339–340 
with template files, 336–339 
with theme methods, 334–335 

Forms API, 591–592 
automatic file inclusion, 592 
dynamic forms via #ajax property, 591–592 

Forum module, 93 
FOSDEM (Free and Open Source Developers' 

European Meeting), 824 
FOSS (Free and Open Source Software), 822 
Free and Open Source Developers' European 

Meeting (FOSDEM), 824 
Free and Open Source Software (FOSS), 822 
Friend of a Friend (FOAF) vocabulary, 662 
Front page view, 57 
<front> text, 22 
FTP (File Transfer Protocol) clients 

setting to use text editor, 238 
setting up, 235–238 

creating bookmarks with server access 
setting, 235–236 

entering login credentials, 237 
selecting security protocol, 236–237 
starting connection and uploading files, 

237 
text editor, 237–238 

function signatures, of hook_help( ) method, 
480 

function_exists($function_name), 670 
function_name( ) method, 404 
functional requirements 

development and implementation, 207 
IA stage, 206 

functional testing, with Simpletest framework, 
517–532 

.test files, 522–526 
advantages and caveats, 518 

API, 530–531 
description, 519–520 
forms, 528–530 
further reading, 530–531 
running tests, 520–522, 526–527 
setting up tests, 520–522 
submitting patches to Drupal.org, 531–532 
TDD, 519 
when to use, 518 

functionality 
extending with modules, 15–16 

disabling unneeded, 15–16 
OpenID module, 15 

modifying existing, 504 
pages or content sections requiring,  

259–260 
functions 

calling directly, 438–439 
identifying needed, 414–421 
theme, 301–304 

calling, 302 
hook suggestions and, 308–310 
overriding, 302–304 

■ G 
garfieldtech.com/blog/language-tradeoffs, 393 
Garland theme, 271, 277 
garland_width setting, 277 
garland.info file, 277 
Gestalt psychology, 716–717 
get_defined_vars( ) method, 311 
getfirebug.com, 753 
git add -A command, 255 
git add commands, 42, 776 
git bisect, 263 
git checkout mymodule.info, 45 
git checkout -- path/to/filename.php 

command, 45 
git clone --bare command, 254 
git commit -a -m command, 263 
git commit command, 43 
git diff command, 249 
.git directory, 254 
Git homepage, 40 



■ INDEX 

1016 

git init command, 42 
git log command, 45 
git pull command, 139 
git reset command, 255 
git reset --hard HEAD command, 44 
git revert HEAD command, 45 
git status command, 42, 45, 255 
git status type, 139 
Git system, 263 
Git tool, 31–38, 45–46, 858–861 

adding files to repository, 859–861 
database backup tools, 45 
git checkout mymodule.info command, 45 
git log command, 45 
git status command, 45 
installing, 39–41 
SSH protocol, 858–859 
working with, 41–45 

creating repository, 42–44 
identifying user, 41–42 
reverting in Git tool, 44–45 

Git version control system, 254–255 
git.drupal.org, 389, 792, 862 
gitignore file, 894 
gitorious.org/drupal-open-

curriculum/pages/Home, 872 
Global Redirect module, 107 
Global Settings page, 275–276 
Global Theme Settings, 275–277 

custom, 277 
Logo setting, 276 
Main and Secondary menus settings, 277 
Name and Slogan settings, 276 
Shortcut Icon setting, 277 
User Pictures in Posts and Comments 

settings, 277 
User Verification Status in Comments 

option, 277 
global variables, 296–301 
Glossary view, 57 
glue code modules, custom upgrade methods 

from, 896–897 
GNU General Public License, 822 
goals 

setting, 264 

starting with, 838–839 
GoMockingbird, 206 
Grid option, 68 
GROUP BY, 908 
Group content types, 111–114 
group rule, 358 
Group-related Roles, 123 
groups 

creating, 114 
in drupal_add_js( ) method, 357–359 

Groups landing page, 116 
Groups.Drupal.com/seattle, 872 
groups.drupal.org profile pages, 763 
Groups.Drupal.org site, 197 
Groups.Drupal.org User ID, 154 
groups.drupal.org/contributed-module-ideas, 

91 
groups.drupal.org/drupalchix, 882 
groups.drupal.org/events, 875 
groups.drupal.org/html5, 940 
groups.drupal.org/peer-review, 479–480 
GUI tools, 264 
-h parameter, mysql command, 246 

■ H 
<h2> tags, 319 
hackable URLs, views allowing for user pages, 

801–802 
hacking core, 277 
hacking of server, 825–827 
hardcoded variables, 289 
hard-coding, variables in template files, 288 
<head> tags, 295, 345 
headers 

overview, 61 
setting up page, bootstrap phase, 690 

Headers already sent error, 303 
headshot images 

building for authors, 158–162 
author biographies view page, 162–164 
Image style, 159–161 
menu link for page view, 161–162 

overview, 151 
helloworld.drush file, 618 



■ INDEX 

1017 

help command, 598, 603 
help hook, for Drush extensions, 630–631 
Help region, 285 
Help-displays help text module, 92 
Heyes, Richard, 622 
hidden regions, 286–287 
<Hidden> tag, 165 
hide( ) method, 319, 327–329 
Highlighted region, 323 
highlighting first result with multiple displays, 

77–78 
Home context, 608 
home pages, project, 130–131 
homepage.css stylesheet, 347 
hook suggestions 

overview, 305 
and template files, 305–308 
and theme methods, 308–310 

hook_anything_whatsoever( ) method, 393 
hook_apachesolr_field_mappings_alter(&$map

pings) method, 709 
hook_apachesolr_modify_query( ) method, 709 
hook_apachesolr_modify_query($query, 

$caller) method, 709 
hook_apachesolr_node_exclude($node, 

$namespace) method, 709 
hook_apachesolr_prepare_query($query, 

$caller) method, 709 
hook_apachesolr_search_result_alter($doc, 

$extra) method, 710 
hook_apachesolr_update_index( ) method, 709 
hook_apachesolr_update_index($document, 

$entity, $namespace) method, 708 
hook_apachesolr_update_index($document, 

$node, $namespace) method, 709 
hook_block( ) method, 260 
hook_block_view( ) method, 395 
hook_boot( ) method, 687–690 
hook_comment_presave( ) method, 503 
hook_comment_view( ) method, 393 
hook_commerce_currency_info_alter( ) 

method, 569 
hook_commerce_customer_profile_info( ) 

method, 577 
hook_commerce_line_item_info( ) method, 

568, 574 

hook_commerce_line_item_info_alter( ) 
method, 574 

hook_commerce_payment_info( ) method, 579 
hook_commerce_product_info( ) method, 590 
hook_commerce_tax_info( ) method, 574 
hook_contact_site_form( ) method, 334 
hook_cron( ) method, 685 
hook_css_alter( ) method, 343, 345–348, 916 
hook_custom_theme( ) method, 692 
hook_db_rewrite_sql( ) method, 63 
hook_default_formmsgs( ) method, 538 
hook_default_views( ) method, 538 
hook_entity_info( ) method, 460, 550–551, 554, 

556, 571 
hook_entity_info_alter( ) method, 590–591, 748, 

750 
hook_entity_load( ) method, 694 
hook_entity_prepare_view( ) method, 694 
hook_entity_view( ) method, 695 
hook_entity_view_alter( ) method, 695 
hook_exit( ) method, 687–689 
hook_field_attach_load( ) method, 694 
hook_field_formatter_*( ) method, 758 
hook_field_formatter_info( ) method, 757–758 
hook_field_formatter_view( ) method, 761–762 
hook_field_storage_pre_load( ) method, 694 
hook_filter_info( ) method, 774–776 
hook_form_alter( ) method, 190, 339–340, 392, 

409, 440, 505, 542, 545, 923 
hook_form_FORM_ID_alter( ) method, 340, 409 
hook_forms( ) method, 464 
hook_help( ) method, 394–396, 416, 422, 440, 

463, 480, 482, 539 
hook_init( ) method, 692 
hook_install( ) method, 258, 451, 508, 560, 808, 

814, 899, 903, 907 
hook_install_tasks( ) method, 807–808 
hook_js_alter( ) method, 362–363, 916 
hook_language_init( ) fuction, 689, 691 
hook_language_negotiation_info( ) method, 

691 
hook_language_negotiation_info_alter( ) 

method, 691 
hook_library( ) method, 359–362, 545 
hook_library_alter( ) method, 363 



■ INDEX 

1018 

hook_load( ) method, 694 
hook_menu( ) method, creating pages with, 

421–426 
choosing paths for administration pages, 

422 
menu items, 422–426 

hook_menu implementations, 675, 682 
hook_menu_alter( ) method, 362, 424, 427, 681, 

705 
hook_menu_alter array, 679–682 
hook_menu_item_alter( ) method, 928–929 
hook_module_implements_alter(&$implement

ations, $hook) method, 509 
hook_node_info( ) method, 513 
hook_node_insert( ) method, 772 
hook_node_load( ) method, 694 
hook_node_update( ) method, 772 
hook_node_update_index($node), 709 
hook_node_view( ) method, 513, 772, 795, 798 
hook_node_view($node, $view_mode, 

$langcode) method, 709 
hook_node_view_alter( ) method, 695, 804 
hook_nodeapi method, 496 
hook_page_alter( ) method, 325–326, 437, 511, 

697, 929–932 
hook_page_build( ) method, 260, 697, 929–930 
hook_permission( ) method, 426, 555 
hook_permissions( ) method, 432, 555 
hook_preprocess_comment( ) method, 754 
hook_preprocess_HOOK( ) method, 754 
hook_preprocess_node( ) method, 748–749, 754 
hook_preprocess_page( ) method, 362, 754 
hook_process_HOOK( ) method, 754 
hook_rdf_mapping( ) method, 661 
hook_requirements( ) method, 452 
hook_schema( ) method, 258, 451, 453–454, 

551, 553 
hook_search_execute( ) method, 704–705 
hook_search_info( ) method, 704–705 
hook_search_page( ) method, 705–706 
hook_stream_wrapper_alter( ) method, 691 
hook_stream_wrappers( ) method, 691 
hook_system_info_alter( ) method, 286–287 
hook_theme( ) method, 301–302, 316, 333–334, 

407, 435–436, 439, 476, 483 

hook_theme_registry_alter( ) method, 799 
hook_update_dependencies( ) method, 452 
hook_update_N( ) method, 258, 451–452, 454, 

560, 814, 897, 899, 903, 906 
hook_url_inbound_alter( ) method, 692 
hook_views_default( ) method, 538 
hook_views_default_view( ) method, 513 
hook_watchdog( ) method, 689 
hooking, into modules, 537–538 
hooks, 304–310, 393–397, 503, 783 

adding data, 708–709 
alter, modifying forms using, 339–340 
altering queries and results, 709–710 
calling all implementations of, 432–433 
description of, 304 
execution order of, 508–509 
preprocess and process, 315–317 
Search module 

defining new searches, 704 
optional, 704–706 

update, 258–259 
capturing additional upgrade steps in, 

896–904 
hookvnode_view( ) method, 695 
host server, with SSH, 243 
hosting 

conferences, 879–880 
services, 234–238 

FTP client setup, 235–238 
selecting according to performance and 

service, 234–235 
sites, locally, 230 

hosting name, 247 
.htaccess files, 10, 138–139, 141, 245, 248, 962 
HTML (HyperText Markup Language) 

attributes, 297–301 
rendered, 231–232 
semantic markup, 656 

HTML List option, 68 
html theme, 927 
html_tag, 324 
HTML5-and Drupal, 940 
htmlspecialchars( ) method, 472–475 
html.tpl.php file, 293, 295 
html.tpl.php template, 288 



■ INDEX 

1019 

HTTP (Hypertext Transfer Protocol) 
accelerators, Varnish, 638 

HTTP port, 952 
httpd.conf file, 955 
http://drupal.org project page, 486 
http://purl.org/dc/terms/ namespace, 653 
Hudson tool, 260 
hybrid approach, 253 
HyperText Markup Language. See HTML 
Hypertext Preprocessor. See PHP 
Hypertext Transfer Protocol (HTTP) 

accelerators, Varnish, 638 

■ I 
identi.ca, 655 
IDEs (Integrated Development Environments), 

237 
idiosyncrasies, internal documentation, 226 
if ($path == 'admin/structure')... statement, 403 
if module_exists( ) method, 259 
if statements, 338, 402–403 
if... statements, 675 
image fields, reusing, 179–180 
Image styles, 159–161 
image_resize_filter, 147 
image_resize_filter.module, 782 
image_style_name_validate( ) method, 544 
images 

headshots, 151 
inserting into posts, 186–187 
of users, 183–184 

immediate feedback, 264 
implementation, of project plan, 207 
Implements hook_somethingorother( ) 

method, 496 
include file, 550 
--include-conf option, 612 
includes/common.inc, 899 
includes/entity.controller.inc file, 553 
includes/graph.inc, 536 
in/config/development/performance, 341 
indenting, two spaces, 405 
indexes, 640–642 
index.php file, 10, 502, 608, 685, 692, 784, 960, 

962 

Inexpensive attribute, 721 
.info files, 278–281, 355–356, 388–391 

adding stylesheets via, 343–344 
directives 

configure, 390 
dependencies[], 389–390 
overview, 389 
package, 391 

properties, 279–281 
.info folder, 85 
information architecture 

and design meetings, 214–215 
overview, 206 

Information Architecture Discovery, Drupal 
Project Stage, 208 

inline parameter, 357 
<input type="submit" \>, 331 
install directory, 140 
.install files, 259, 451–453, 550, 560 
install_profile_info( ) method, 919 
installation profiles, 803–818 

configuration features, 810–815 
drune_track.*.inc file, 812 
drune_track.module file, 812–815 
using installation profiles and features 

as development tool, 815 
developing, as business model for 

contributors, 850 
future of, 817–818 
packaging code, 816–817 

hosting on drupal.org, 817 
makefiles, 816–817 

site templates, 803–805 
development profiles, 804–805 
example distribution, 805 
full-featured services, 804 

structure of, 806–809 
drune.info file, 807 
drune.profile file, 807–809 

and success as developer, 843 
installers 

automated module, 146 
automatic, 974–975 
one-click, circumventing, 240–241 

http://drupal.org
http://purl.org/dc/terms/


■ INDEX 

1020 

installing Drupal, on Ubuntu operating system, 
973–975 

installing program, 9–12 
automatic installer, 11–12 
file placement, 9–11 

install.php file, 974 
INSTALL.txt, 386 
Integrated Development Environments (IDEs), 

237 
interaction, adding dynamic front-end, 510–511 

#ajax attribute, 511 
#states attribute, 511 
jQuery UI library, 510–511 

interfaces, administrative 
modules for, 99–103 
providing for entities, 555–559 

interim names, for modules, 773–775 
internal documentation, 225 
Internet Explorer, adding conditional 

stylesheets for, 345 
Internet Protocol (IP) address, 247 
Internet Relay Chat (IRC) site, 199–200 
Invocation count, 918 
IP (Internet Protocol) address, 247 
IRC (Internet Relay Chat) site, 199–200 
isset( ) method, 419, 421 
issue queues, 200–201 

feedback from, 741 
handling, 875–877 

issues 
posting, 486–488 
reporting, 740–741 

item_list( ) method, 459 
iterating, migration processes, 910 

■ J 
JavaScript language 

and jQuery library, 355–366 
.info files, 355–356 
behaviors, 364–365 
degrading, 365–366 
drupal_add_js( ) method, 356–357 
libraries, 359–362 
overriding, 362–363 

rendered, 231–232 
Jenkins Continuous Integration tool, 260 
joins, static queries with, 445–447 
jQuery library, 355–379 

.info files, 355–356 
drupal_add_js( ) method 

overview, 356–357 
weight in, 357–359 

further resources, 379 
and JavaScript language, 355–366 

.info files, 355–356 
behaviors, 364–365 
degrading, 365–366 
drupal_add_js( ) method, 356–357 
libraries, 359–362 
overriding, 362–363 

UI, 366–379, 510–511 
jquery.js file, 363 
Js item, 360 
JS_DEFAULT, 358–359 
JS_LIBRARY, 358–359 
JS_THEME, 358 
js-file-one.js file, 360 
js-file-two.js file, 360 
Jump Menu option, 68 

■ K 
karma, in community, 848 
Katas, Drupal, 880 
keyup( ) method, 545 
kickoff meetings, 213–214 
Kit specification, 257 
Knaddison, Greg, 134 
kpr( ) method, 748, 755 
kpr($vars);, 749 
Krumo library, 311 

■ L 
LAMP (Linux/Apache/MySQL/PHP) stack, to 

WISP, 947–948 
languages 

negotiation algorithms, 691 
selection, bootstrap phase, 691 

Last updated issue, 488 



■ INDEX 

1021 

launching 
meetings, 216 
migration processes, 910–911 
of website, 207 

laws 
of proximity, 717–719 
of similarity, 717 

layout 
defined, 213 
strategies for, 289–292 

Learning Projects, Drupal, 872 
left-to-right (LTR), 343 
legacy data, 908–909 
legislation, of accessibility, 943 
libraries, jQuery, 359–362 

drupal_add_library( ) method, 361–362 
hook_library( ) method, 359–361 

licensing, 863 
lifecycle of project, 209–213 

estimating completion dates, 211–212 
minimum viable project, 212 
project plan, 209–211 
risks, 212 
tracking system, 212–213 

limitations, role of in project planning, 203–204 
Line Item/Line Item UI, 568 
line items, 573–575 
line_item_id values, 574 
Link display, 63 
linking 

chapters to authors, 178 
to other pages by authors, 153–154 
from profiles to web sites, 151–153 

links, menu, 161–162 
links template, 309 
links__comment template, 309 
links__contextual template, 309 
links__contextual__node template, 309 
links__node template, 309 
Linux/Apache/MySQL/PHP (LAMP) stack, to 

WISP, 947–948 
list_themes( ) method, 415–416 
listing 

authors of sites, 157–164 

author biographies view page, 162–164 
building authors headshot view, 158–

162 
page, 726–729 

loader methods, 677–679 
local copy, of remote Drupal site, 612–614 
local hosting, of sites, 230 
local tasks 

defining tabs with, 425 
second to complement default, 431–432 

Locale module, 93 
locale.module, 765 
localhost hostname, Navicat, 979 
localization, with t( ) and format_plural( ) 

methods, 412–414 
--lock option, 605 
log item, 621 
logging, setting up for testing, 738 
logging in 

allowing with OpenID module, 15 
entering credentials, 237 

logical operators 
combining sorts with, 65–66 
overview, 401–402 

logintoboggan module, 603 
Logo checkbox, 276 
Logo setting, 276 
long-term memory, 714–715 
long-term support, 841 
loops, 403 
Lopp, Michael, 219 
LTR (left-to-right), 343 
Lullabot consulting and training shop, 197 
Lullabots, 226 

■ M 
Mac OSX operating system installation, 

downloading core file, 977–984 
command-line fu, 979 
creating database, 979–980 
starting install, 981–984 

Machine Name field, 62 
machine_name.info, 389 
mailing lists, 197 



■ INDEX 

1022 

Main and Secondary menus settings, 277
main menu, adding table of contents to, 178
main menu link, 19–20 
<Main menu>, 19 
Main page areas, 730 
Main page content block, 286
maintenance 

accessibility, 945–946
of project, 207 

major modules. See modules, major 
make command, 816 
makefiles, 816–817 
MAMP icon, 977 
MAMP screen, 977 
man backupninja command, 250 
man command, 245 
man git command, 45 
Manage display page, 165 
manual tools, setting up databases with, 240
mappings 

RDF structure, 661–665 
options for working with, 661–662
vocabularies, 662–665 

semantic markup, 659–660
markdown filter, 97 
markup 

adding custom for output, 795
generation of, 329–332
replacement, tags and, 776–782 

Masquerade module, 103
max_execution_time, 895
Media module, 804
MediaWiki, 225 
meetings, brainstorming, 214
Meetup.com, 199 
meetups, 824 

local, 198–199
overview, 197 

Members settings, 122–124
memcached system, 638
memory, human, 713–715
memory item, 621 
mental models, 714–715
mentoring, 871–872 

Menu Block module 
overview, 104 
using to display better table of contents, 

176–177 
Menu component type, 504
menu items 

create new, 223 
declaring for X-ray module, 425–426
defining for settings form, 464–465
defining pages with normal, 422–424
defining tabs with local task, 425 

menu links, for page view, 161–162
Menu module, 92 
Menu Position module, 104 
Menu Settings page, 277 
menu system, and paths, 667–683 

callback methods, 676–677 
fitness, 679–680 
loader methods, 677–679 
menu system, 667–673 
modifying existing router items, 680–683
structure of, 674–676 

MENU_DEFAULT_LOCAL_TASK, 425
menu_execute_active_handler( ) method, 407, 

475, 928
menu_get_active_help( ) method, 395–396
menu_get_item( ) method, 438–439
MENU_NORMAL_ITEM, 425
menu_router database, 682
menu_router table, 680 
menus 

adding to Views, 73
modules for, 104 

message item, 621 
message queue, 648–649
meta:COMMANDFILE:summary item, 630
meta:COMMANDFILE:title item, 630
metadata 

adding to Chapter content type with fields, 
172–173 

defining .info files, 278–281 
method ->extend('TableSort'), 457
methodologies, of project management,  

207–209 



■ INDEX 

1023 

Microsoft Windows development environment, 
947–969 

Drush programs, 965–969 
installing, 965–968 
running, 968–969 

LAMP stack to WISP, 947–948 
loading Drupal core code, 953–957 
phpMyAdmin and MySQL Connector tools, 

963–965 
Visual Studio development environment, 

948 
VS.Php add-on, 957–962 
WAMP stack, 948–953 

Microsoft Windows, running Ubuntu operating 
system on, 971 

Migrate module, 259 
migration of data, 907–911 

auditing, 910 
initial analysis, 909–910 
iterating, 910 
launching, 910–911 
legacy data, 908–909 
managing, 907–908 
showing, 910 
sticking points, 909 
timing, 910 

milestones 
closing meetings, 215–216 
site review at completion of, 217–218 
tracking, 212 

Minimal detail attribute, 725 
minimum viable project (MVP), 212 
misc/favicon.ico file, 277 
misc/machine-name.js file, 356 
Mission Statement block, 23 
mission statement, custom, 21–24 
mk-query-digest, 920 
mockups 

defined, 213 
for detailed designs, 733 
of DGD7 home page, 8 

mod_deflate, 916 
model code, finding, 497–498 
models, 767–770 

concept, of Rules module, 722 

finding, 559–560 
view, using to display same content in 

different ways, 166 
Modifying field label, 113 
modular modules, 537–539 

hooking into, 537–538 
making dependencies optional, 538–539 

modularity, 713 
.module files, 391–392 
Module Page Signup, 734 
module_disable( ) method, 901–902 
module_exists('block'), 539 
module_implements_alter( ) method, 452 
module_invoke_all( ) method, 393, 432, 783 
module_invoke_all('x') method, 395 
modulename_function( ) method, 405 
modulename.api.php file, 538 
modules, 87–107, 463–469, 485–488 

$path and $arg parameters, 481 
accessible, 943 
administrative interface and content entry, 

99–103 
Content Type Overview module, 99–102 
Environment Indicator module, 99 
Masquerade module, 103 
Smart Crop module, 99 
Workbench suite of modules, 99 

automated installer, 146 
book, templates for, 798–801 
Bot, 107 
choosing, 129–132 

approach, 772–773 
project home page, 130–131 
security code reviews, 132 

coda on contributed, 792 
Coder review, 478–479 
Coder Upgrade module, 489–493 
community building and social networking, 

104–106 
Comment Notify module, 104–105 
Organic Groups module, 105 
Profile2 module, 106 
Rate module, 105 
Role Limits module, 106 
Userpoints module, 105 



■ INDEX 

1024 

Voting API dependency, 105 
configuration page for, 469–483 

conditionally taking action based on 
configuration settings or user access, 
468–469 

creating separate file for administration 
code, 465 

defining menu items for settings form, 
464–465 

defining new permissions, 467–468 
settings form, 465–467 

content display, 103–104 
Code Filter module, 103 
Colorbox module, 104 
Panels module, 103 

contributed 
overview, 890–891 
patch files to Drupal.org, 498–499 
updating, 145–147 

in core, 91–94 
CSS files, 342 
custom coding, 488 
custom upgrade methods from glue code, 

896–897 
custom utility methods, 470–471 
dependencies on contributed, 592–593 
development of, 383–408 

.info file, 388–391 

.module file, 391–392 
hooks, 393–397 
placement of custom modules, 385–387 
repository for modules, 388 
technical skills, 397–408 
two files in folder, 383–385 

disabling in code, 901–902 
enabling in code, 901 
error messages, 472–476 

fatal errors, 472–473 
finding cause of, 473–474 
searching for solutions to, 472 
tracing with Devel module, 474–476 

evolution of, 87 
extending site methodality with, 15–16 
Features, 905–907 

adding to automatic upgrade, 906–907 

base, 905 
finding existing, 534–535 
finding model code, 497–498 
fixing problems with, 91 
handling search and 404 errors, 106–107 

404 Navigation module, 107 
Apache Solr module, 106 
Global Redirect module, 107 
Search 404 module, 106–107 

hook_help( ) method, 480 
identifying problems, 493–497 
implementations, 317 
interim names for, 773–775 
list of API changes, 489 
loading, bootstrap phase, 691–692 
locating and choosing, 88–91 
locating needed, 771–772 
major, 533–561 

defining data model, 547–555 
defining goals, 561 
finding existing modules, 534–535 
knowledge of tools, 535–536 
modular modules, 537–539 
planning approach to, 541–547 
programmatically creating and 

attaching fields, 559–560 
providing administrative interface for 

entities, 555–559 
providing APIs, 536–537 
providing new entity type, 549–555 
test environment, 539–541 

menus and navigation, 104 
on-site documentation for, 482–483 
OpenLayers, 107 
Peer Review group, 479–480 
performance issues with, 88 
PHP filter, avoiding using, 128 
posting issues, 486–488 
preprocess methods, 476–477 
releasing, project page and documentation, 

741–743 
renaming, 788 
repository for, 775–776 
setting up for testing, 738 
sharing on Drupal.org, 791–792 



■ INDEX 

1025 

site building essentials, 94–98 
adding field types to Fields module,  

96–97 
AntiSpam and Mollom modules, 98 
Pathauto module, 95–96 
Token dependency, 96 
Views module, 95 
Webform module, 98 
WYSIWYG module, 97 

site-specific using API, 792–794 
storing contributed, 94 
vs. themes, 354 
upgrade, 897–901 
using APIs in, 409–461 

altering forms, 409–412 
calling all implementations of hooks, 

432–433 
calling methods directly, 438–439 
creating pages with hook_menu( ) 

method, 421–426 
Database API, 442–456 
displaying data in sortable tables, 456–

460 
entities, 460–461 
formatting data for display as tables, 

433–435 
identifying needed methods, 414–421 
localization with t( ) and format_plural( ) 

methods, 412–414 
Permissions administration page,  

426–431 
second local task to complement default 

local task, 431–432 
styling with CSS files, 440–442 
themes, 435–437 

writing site-specific, 501–515 
case examples, 506–511 
custom modules, 501–502 
hook system, 503 
making code reusable, 511–515 
method for, 503–506 

modules directory, 502, 508 
modules_number field, 460 
modules/acquia, 989 
modules/block directory, 298 

modules/block.module, 445 
modules/book, 798 
modules/contact/contact.test file, 531 
modules/field/field.form.inc, 777 
modules/file/file.js, 365 
modules/help/help.api.php, 396 
modules/image/image.admin.inc, 544 
modules/node folder, 423 
modules/node/node.test file, 518, 522, 531 
module-specific regions, 287 
modules/simpletest/drupal_web_test_case.ph

p file, 531 
modules/system directory, 292, 309 
modules/system/system.api.php, 393 
modules/user/user.admin.inc: 

user_admin_permissions( ) method, 
433 

modules/user/user.install, 796 
modules/user/user.js, 544 
Mollom module, 98 
monetizing, 835–851 

building career, 843–847 
getting involved in community, 844–846 
possibilities for, 843–847 
starting own business, 846 

as contributor, 847–851 
benefits of, 847–848 
business models for, 849–851 
expectations for, 851 
sustainability of, 848–849 

as developer, 835–843 
being successful, 841–843 
common pitfalls of, 835–836 
consulting with experts, 838 
content needs managing, 837 
and contriburing to community, 840 
long-term benefits of using Drupal, 838 
long-term support, 841 
making sustainable choices, 840 
starting with goals, 838–839 
supporting different participants,  

839–840 
understanding concepts of Drupal site, 

836–837 
mongod, 648 



■ INDEX 

1026 

MongoDB database, 645–650 
Null values in, 649–650 
watchdog subsystem, session subsystem, 

and message queue, 648–649 
mongodb_watchdog, 649 
monitary support, of community, 880–881 
More link, 61, 75–76 
moreoutrageous_menu_alter( ) method, 681 
moreoutrageous_message( ) method, 682 
MustardSeed Media video podcast, 226 
MVP (minimum viable project), 212 
mymodule_active_users( ) method, 524 
mymodule.info file, 519 
mymodule.module file, 519 
mymodule.test file, 519 
mysql command, 246 
MySQL Connector tools, 963–965 
MySQL RDBMS, root password, 972 
MySQL root password, 246 
mysqldump command, 244–245, 614 
mytheme_css_alter( ) method, 348 
mytheme_js_alter( ) method, 362 

■ N 
name attribute, 807 
name code, 530 
name field_user, 155 
name property, 279 
Name setting, 276 
names, for modules 

interim, 773–775 
renaming, 788 

nameservers, 247 
naming conventions, of CSS files, 342–343 

bi-directional text support, 343 
core and module, 342 

nano .bash_profile file, 36 
Napkin sketch wireframe, 6 
Navicat Lite, 979 
Navicat Premium, 979 
navigation 

book, next and previous links mimicking, 
795–801 

modules for, 104 

non-book, reusing book module templates 
to display, 798–801 

Navigation region, 291 
negotiation algorithms, language, 691 
New Bookmark window, 236 
new tasks, 217 
new_stuff element, 323–324 
next links, mimicking book navigation, 795–801 
ninjahelper program, 250 
--no option, 624 
no results behavior, 62 
Node component type, 504 
Node export module, 259 
Node module, 314 
Node reference, connecting content types with, 

181 
node types, Product display, 575–577 
'node/%node' menu router item, 677–678 
node/[nid], 928 
node/[node ID], 92 
node_access_grants( ) method, 709 
node_add( ) method, 769 
node_add_access( ) method, 676 
node_add_body_field( ) method, 559 
node_add_page( ) callback, 676 
node_build_content( ) method, 695 
node_form_block_admin_configure_alter( ) 

method, 412 
node_help( ) method, 396 
node_load( ) method, 677, 694 
node_menu( ) method, 481, 676 
node_menu_local_tasks_alter( ) method, 770 
node_page_default( ) method, 307 
node_page_title( ) method, 678 
node_page_view( ) method, 678, 694 
node_save( ) method, 258–259 
node_show( ) method, 694 
node_type, 445 
node_view( ) method, 695 
node_view_multiple( ) method, 694 
node/42 path, 674 
node/add Add content page, 17 
node/add/article, 481 
node/add/blog, 117, 530 
node/add/book, 174 



■ INDEX 

1027 

node/add/group, 114, 117 
node/add/page, 16, 19 
node/add/suggestion, 769–770 
node.admin.inc file, 424 
node--article--teaser.tpl.php file, 749 
node--article.tpl.php file, 749 
node-compact class, 748 
node.css file, 348 
node/integer/action type paths, 675 
node.module, 676, 770 
node--profile--compact.tpl.php file, 751–752 
node--profile.tpl.php file, 751 
nodes, making changes to, 319–320 
node--suggestion.tpl.php file, 753 
node-title class, 319 
node.tpl.php file, 295, 648, 751–752 
nodewords, 147 
none property, 944 
normal menu items, defining pages with,  

422–424 
Normal screen state, 731 
--notes option, 609 
notice log level, 625 
notoriety, benefits of being contributor, 848 
NULL values 

in MongoDB database, 649–650 
in SQL, 642–643 

■ O 
object item, 621 
OG Example panel, 120 
ok log level, 625 
one-click installers, circumventing, 240–241 
on-site documentation, for modules, 482–483 
ontologies, 653 
Open Curriculum Project, Drupal, 872 
Open ID module, 93 
open source projects, contributing to, 265 
OpenID module, allowing registration and 

logging in with, 15 
openid_form_user_login_alter( ) method, 412 
openid_form_user_login_block_alter( ) 

method, 412 
openid.net, 15 

OpenLayers module, 107 
operators, 399–402 

arithmetic, 400 
assignment, 399–400 
combining sorts with logical, 65–66 
comparison, 400–401 
logical, 401–402 
string, 400 
ternary, 401 

optimizing, 734–738 
choosing analysis method, 737 
choosing users to test, 735–736 
explorative usability test, 736–737 

environment, 737 
method, 736 
scenario, 736 
tasks, 736–737 

participants 
finding, 737 
informing of privacy considerations, 738 
recruiting, 737 
scheduling, 738 

reasons for testing Rules module, 735 
setting up module, recording, and logging, 

738 
test plan outline, 735 

options 
command-specific, 609 
for Drush scripts, 618 

order entity, 590–591 
order of content, defining for displays, 72 
order rule, 358 
order system, 577–578 
Order/Order UI, 568 
Organic Groups module 

creating community web sites with, 109–124 
creating content, 117–119 
installing and configuring, 110–114 
Members, Roles, and Permissions 

settings, 122–124 
Panels module, 119–122 
Views, 115–117 

overview, 105 



■ INDEX 

1028 

OSX operating system installation, Mac. See 
Mac OSX operating system 
installation, downloading core file 

output item, 620 
output_charset option, 

examples/examples.drushrc.php file, 
622 

outrageous_menu( ) method, 669–670, 682 
outrageous_message( ) method, 669–671 
outrageous/dog/friend path, 673 
Overlay module, 92 
overrides, 813 
overriding display settings, 63 
overviews, content, 889–890 
-p parameter, mysqldump command, 244 

■ P 
package directive, 391 
package manager, Debian, 250 
packaging code, 816–817 

hosting on drupal.org, 817 
makefiles, 816–817 
packaging, 817 

page arguments key, 678 
page caching, 916–917 
page callback method, 414, 682, 928 
page rendering, 923–932 

delivery callback, 928–929 
drupal_render( ) method, 930 
drupal_render_page( ) method, 929 
hook_page_alter( ) method, 929–930 
page callback, 928 
router item for, 928 

page requests, bootstrap phases, 685–698 
execution of page callback, 692–693 
initialize configuration, 686 
initialize database layer, 689 
initialize session handling, 690 
initialize variable system, 689–690 
load modules and initialize theme, 691–692 
select language, 691 
set up page header, 690 
try to serve cached page, 687–689 
typical example, 694–698 

Page Settings, 163 

page view, menu links for, 161–162 
page_arguments array, 475 
page_bottom region, 286 
page_top region, 286 
page-level suggestions, 306–308 
pagers, 61 
pages 

anatomy of, 934–938 
creating with hook_menu( ) method, 421–

426 
choosing paths for administration 

pages, 422 
menu items, 425–426 

defining with normal menu items, 422–424 
page.tpl.php file, 276, 293, 295 
Panels module, 103, 119–122 
parameters, spaces between, 405 
parenthesis, control statements and, spaces 

between, 405 
participants 

finding, 737 
informing of privacy considerations, 738 
not asking for solutions, 739 
putting at ease, 740 
questioning, 739 
recruiting, 737 
scheduling, 738 
waiting before offering assistance, 740 

parties, Drupal, 880 
password-protected URL, 222 
passwords 

MySQL RDBMS root, 972 
strong, 125–126 

patch command, 492, 499 
patch files, contributing to Drupal.org, 498–499 
patches 

contributing, 874–875 
reviewing, using Dreditor, 878 
submitting to Drupal.org, 531–532 

patching existing modules, 514 
PATH environment, 967 
Path module, 92, 259 
Pathauto module, 259 

autogenerating human-readable URLs with, 
190–191 



■ INDEX 

1029 

overview, 95–96 
Pathologic module, 259 
paths 

choosing for administration pages, 422 
menu system and, 667–683 

callback methods, 676–677 
fitness of paths, 679–680 
loader methods, 677–679 
modifying existing router items, 680–683 
structure of paths, 674–676 

patterns of CSS files, 342–343 
bi-directional text support, 343 
core and module, 342 

payment methods, enabling, 579–581 
Payment module, 578 
Payment/Payment UI, 568 
Pear Consol Table library, 622 
Peer Review group, 479–480 
perception, 715–717 
performance, 913–921 

issues with modules, 88 
real, 916–921 

page and block level caching, 916–917 
profiling primer, 917–920 
slow database queries, 920–921 

reasons for slow websites, 913–916 
user-perceived, 913 

permissions 
allowing people to attach generic files to 

content, 180 
assigning, 127 
checking, 407 
conditionally taking action based on,  

468–469 
defining new, 467–468, 554–555 
giving to authors to create profiles, 156–157 
limiting access to Suggestion content type 

Status field, 187–190 
overview, 27–28 
setting for organizing and writing chapters, 

170–171 
for Views module, 50–53 

configuring, 52–53 
downloading, 51 
enabling, 51–52 

Permissions administration page, finding 
system names, 426–431 

in code, 430–431 
in database, 428–430 

Permissions settings, 122–124 
personal control, sense of, 265 
pg_dump command, 614 
photos, adding change picture link underneath 

user, 320 
Photoshop files, 206 
PHP (Hypertext Preprocessor) 

files, 233 
filter module, avoiding using, 128 
language 

closing tag, 404 
overview, 398 

PHP Filter module, 128, 260 
PHP property, 279 
php.exe, 968 
phpMyAdmin screen, 239, 963–964 
phpMyAdmin tool 

overview, 963–965 
setting up databases with, 239–240 

PHP.net, 470 
php.net/integer, 398 
php.net/sort, 432 
php.net/substr, 398, 781 
php.net/switch, 403 
php.net/ternary, 401 
php.netvwhile, 403 
PHPs /* */ C-style, 392 
PHP's print_r( ) method, 752 
PHPTemplate, 273 
pictures, of users, 183–184 
--pipe flag, 627 
--pipe option, 602, 606 
Plentiful attribute, 722 
pm-download command, 603, 607, 609, 624 
pm-enable command, 632 
pm-list command, 622 
pm-releasenotes command, 605, 623 
pm-update command, 605 
pm-updatecode command, 604–605, 609 
podcasts, 196–197 



■ INDEX 

1030 

Poll module, 93 
porting modules, upgrading, 485–499 

Coder Upgrade module, 489–493 
contributing patch files to Drupal.org,  

498–499 
custom coding, 488 
finding model code, 497–498 
identifying problems, 493–497 
list of API changes, 489 
posting issues, 486–488 

post-launch, documentation for end-user,  
222–223 

post-launch plan, 842 
post-project debriefs, 216 
posts 

inserting images into, 186–187 
showing content that references post being 

viewed, 182–183 
Preferences button, MAMP screen, 978 
preg_quote( ) method, 786 
preg_replace( ) method, 786–788 
preprocess methods, 313–320, 476–477 

adding change picture link underneath user 
photo, 320 

adding classes to template wrappers, 318 
finding contents of $variables array, 317 
hooks, 315–317 
making changes to nodes, 319–320 
theming forms with template files, 338–339 

previous links, mimicking book navigation, 
795–801 

Price module, 569–570 
pricing, dynamic, 570 
principles, 745–746 
print render($content['field_image']);, 752 
print_r( ) method, 311, 752, 796 
Priority field, 488 
Priority option, filter drop-down, 486 
privacy of test participants, 738 
problems, identifying in code, 493–497 
process API, 620 
process code 

keeping base current, 132–133 
writing secure, 133–135 

process methods, 313–320 
adding change picture link underneath user 

photo, 320 
adding classes to template wrappers, 318 
finding contents of $variables array, 317 
hooks, 315–317 
making changes to nodes, 319–320 

Product display node type, 575–577 
product entity, 589–590 
Product module, 571–573 

adding products to site, 572–573 
product types, 571 

Product Pricing/Product Pricing UI, 568 
Product Reference module, 568, 575 
production bottlenecks, avoiding, 225 
Product/Product UI, 568 
products 

adding to site, 572–573 
types, 571 

.profile file, 602 
Profile module, 94 
profile pages, showcasing authors of sites with, 

149–157 
approximate pages contributed by each 

author, 155 
connecting Author profiles to author user 

accounts, 155–156 
giving authors permission to create profiles, 

156–157 
headshot image, 151 
linking, 151–154 

Profile2 module, 106 
profile2_get_types( ) method, 557 
profile/drune/drune.make file, 816 
profilename.info file, 806–807, 815 
profilename.install file, 808 
profilename.profile file, 806–807, 815 
profiles 

Author, connecting to author user accounts, 
155–156 

giving authors permission to create,  
156–157 

linking to web sites, 151–153 
profiles folder, 806 
profiles/foo, 918 



■ INDEX 

1031 

profiles/standard, 918 
profiling, primer on, 917–920 
progressbar library, 372–373 
project goals, 842 
Project information section, 89 
Project Information section, 130 
project manager, meetings with, 214 
project pages, 741–743 
project plan, purpose statement of, 209 
project/desired_name, 858 
projects 

contributed, dealing with issues in, 135 
description of, 742–743 
home pages, 130–131 
lifecycle of, 205 
maintaining, 853–864 

Drupal projects, 853–854 
Drupal.org accounts, 854–855 
Git tool, 858–861 
project information, 857 
promoting projects from sandbox, 861–

864 
sandbox projects, 856 
status of projects, 856 

managing, 203–219 
further resources, 219 
methodologies, 207–209 
tasks, 213–219 

planning, 203–219 
example for BeachHouse non-profit, 

210–211 
further resources, 219 
project concept, 204–207 
project lifecycle, 209–213 
role of limitations, 203–204 

preparing for review, 862–863 
coding standards, 862 
licensing, 863 
project description, 863 
security, 863 

prompting user, in Drush scripts, 623–624 
properties, theme, 279–281 
property attribute, 659 
prototypes, iterating rapidly, 222 

proximity, law of, 717–719 
psychology, Gestalt, 716–717 
pure PHP themes, 274 
purpose statement, of project plan, 209 

■ Q 
QA (Quality Assurance), 208, 217, 252, 256 
Quality assurance stage, 9 
queries 

database, slow, 920 
dynamic, 450–451 
hooks for altering, 709–710 
static, with joins on two tables, 445–447 
static select, counting and grouping, 450 

Query settings, 62 
Quick attribute, 724 
quicksketch.org/node/5739, 889 
Quickstart appliance, starting development 

environments with, 228–229 

■ R 
randomName( ) method, 530 
randyfay.com/node/76, 408 
Rate module, 105 
RDF (Resource Description Framework) 

mappings structure, 661–665 
options for working with, 661–662 
vocabularies, 662–665 

overview, 652–654 
RDF module, 92, 298 
RDF_DEFAULT_BUNDLE, 660 
rdf_mapping_delete( ) method, 661 
rdf_mapping_load( ) method, 661 
rdf_mapping_save( ) method, 661 
rdf_process( ) method, 315 
RDFa, semantic markup, 656–658 
RDFa processing model, 657 
RDFa semantic markup, 656–658 
readability, of custom utility methods, 470–471 
README.txt file, 349, 595, 851 
real performance, 916–921 

page and block level caching, 916–917 
profiling primer, 917–920 
slow database queries, 920–921 



■ INDEX 

1032 

Recent comments view, 57 
recording, setting up for testing, 738
recruiting participants, 737 
referencing, showing content that references 

post being viewed, 182–183
region theme, 927 
regions, 282–292 

default, 284–286 
vs. hard-coding variables in template files, 

288 
hidden, 286–287 
layout strategies, 289–292
module-specific, 287
moving content between, 325
and themes, 288 

Regions asset, 349 
regions property, 280 
region.tpl.php file, 295 
registration, allowing with OpenID module, 15
regression, defined, 518 
regular expressions 

overview, 784–785
testing, 785–788 

rejecting tasks, 217 
relationships, 62 
Relationships configuration, 83–84
releasing modules, project page and 

documentation, 741–743
releasing work, 514–515 

new modules, 514–515
patching existing modules, 514 

remote commands, with Drush, 610–617
making local copy of remote Drupal site, 

612–614 
managing dump files, 614–615 
setting up SSH key pair, 611–612 
using Drush site context to control sql-sync 

options, 616–617 
using sql-sync without installing Drush on 

remote system, 615–616 
remote Drupal site, local copy of, 612–614
render( ) method, 321, 327–329, 752, 782
Render API (Application Programming 

Interface), 321–326 

elements 
manipulating output of, 322–326
overview, 322 

render arrays 
in core templates, 326
overview, 321 

render arrays 
altering content inside, 325–326
in core templates, 326
overview, 321 

render element, 439 
renderable arrays, 436–437 
rendering languages, 231–232
rendering pages. See page rendering
Replacement markup filter, 787
replacement markup, tags and, 776–782 

defining settings callback, 776 
filter settings, 777–782 
forms accepting multiple elements, 776–779
manipulating values before saving with 

validate method, 779–780
repository 

adding files to, 859–861
creating for Git tool, 42–44
for modules, 388, 775–776 

resizeable library, 373 
Resource content type, referencing chapters, 

179–181 
allowing people to attach generic files to 

content, 180 
connecting content types with Node 

reference, 181 
managing Resource content type display, 

181 
reusing chapter image field, 179–180 

Resource Description Framework. See RDF
restore later feature, 263 
'restrict access' => TRUE directive, 554
results 

defining number of, 72 
hooks for altering, 709–710 
of usability tests, analyzing, 740 

reverting, in Git tool, 44–45
Review order, 582 
Review patches, 876 



■ INDEX 

1033 

reviews 
by Coder module, 478–479 
of pages, for accessibility, 946 
by Peer Review group, 479–480 
preparing projects for, 862–863 

coding standards, 862 
licensing, 863 
project description, 863 
security, 863 

revision control, 263 
Revision moderation module, 259 
right-to-left (RTL), 343 
risks, in projects, 212 
robots.txt, 139, 141 
Role Limits module, 106 
roles, 27–28 
Roles settings, 122–124 
<root of Definitive Guide to Drupal 7> tag, 176 
--root option, 600–601, 608 
root passwords, MySQL RDBMS, 972 
router items 

modifying existing, 680–683 
for page rendering, 928 

rows 
filter setting forms accepting two additional, 

777–779 
overriding styles for, 74 

rsync command, 255 
RTL (right-to-left), 343 
Rules module 

audience for, 723 
concept model of, 722 
listing page, 726–729 
reasons for testing, 735 
sketching UI, 725 

runtime fatal errors, 473 

■ S 
sachachua.com, 871 
sample chapter, creating, 225 
sandboxes 

on Drupal.org, sharing code in, 541 
projects, 856 
promoting projects from, 861–864 

access, 863–864 
branches and tags on Drupal.org, 861 
preparing branches for applications, 862 
preparing projects for review, 862–863 

sandwich_drush_command method, 627 
--sanitize option, 616 
scaling, 635–650 

caching, 636–638 
disabling during development, 637–638 
memcached system, 638 

databases, 639–645 
CAP between ACID and BASE, 643–645 
indexes, 640–642 
MongoDB, 645–650 
NULL values in SQL, 642–643 

Varnish HTTP accelerator, 638 
why needed, 635–636 

scheduling, participants, 738 
schema.xml file, 709–710 
Schneider, Jan, 622 
'scope' => 'footer' setting, 357 
scope rule, 358 
scp command, 245 
screencasts, Drupaltherapy, 226 
screenshot property, 280 
screenshot.png file, 281 
scripting, with Drush, 617–626 

arguments for, 618 
drush_dispatch command, 619 
drush_html_to_text command, 623 
drush_invoke command, 619 
drush_invoke_process command, 620 
drush_invoke_process_args command, 620 
drush_invoke_sitealias command, 620 
drush_invoke_sitealias_args command, 620 
drush_log command, 625–626 
drush_op_system command, 619 
drush_print command, 622 
drush_print_pipe command, 622 
drush_print_table command, 622–623 
drush_set_error comand, 626 
drush_shell_exec command, 619 
dt command, 622 
options for, 618 



■ INDEX 

1034 

processing command results, 620–621 
prompting user, 623–624 

scripts directory, 144 
scripts property, 280 
scripts[ ] = file.js, 355 
Search 404 module, 106–107 
search errors, modules for handling, 106–107 

404 Navigation, 107 
Apache Solr, 106 
Global Redirect, 107 
Search 404, 106–107 

Search for box, 488 
Search for text field, 486 
Search module, 699–711 

administrative options, 700–701 
Apache Solr project 

configuration, 707–708 
customization, 708–710 
integrating with server, 710–711 

API, 704–706 
search results and facet blocks, 703 

search results, 703 
search.api.php file, 704 
searches, Apache Solr project and, 710–711 
Secure Shell (SSH) protocol, 858–859 
security, 125–136, 863 

process, 128–136 
choosing modules and themes, 129–132 
code, 132–135 
dealing with issues, 135–136 

selecting protocol, 236–237 
of sites, 125–128 

assigning permissions, 127 
avoiding using PHP filter module, 128 
keeping text formats tight and secure, 

127 
reserving first user for administration, 

126 
strong passwords, 125–126 

security bugs, 131 
security@drupal.org, 135 
--security-only flag, 605 
--select flag, 603 
-select option, 490 

--select option, 624 
select queries 

counting and grouping, using variable_get( 
) method and, 450 

fetching data with, 443–445 
selectable library, 374 
selecting sites, with Drush, 597–600 
Selection settings, 121 
semantic markup, 651–665 

data content, 654 
decentralized dataspaces, 654 
HTML, 656 
information identification, 651–654 
linking data on global scale, 655 
RDF mappings structure, 661–665 

options for working with, 661–662 
vocabularies, 662–665 

RDFa, 656–658 
web, 659–660 

Semantically-Interlinked Online Communities 
(SIOC) vocabulary, 662 

server, hacking of, 825–827 
servers 

access setting, creating bookmarks with, 
235–236 

creating databases on and importing,  
245–246 

integrating Apache Solr project with,  
710–711 

managing data in Solr index, 710 
searching and analysis, 710–711 

transferring site to, 245 
server-side tasks and tools, 239–241 

circumventing one-click installers, 240–241 
database setup 

with phpMyAdmin tool, 239–240 
with wizards and manual tools, 240 

session handling, initializing, 690 
session subsystem, 648–649 
Set the status of bug report, 876 
settings callback, 776 
settings form, 464–467 
settings property, 280 
settings.php file, 126, 141–142, 246–247, 597, 

616, 648, 689, 921 

mailto:security@drupal.org


■ INDEX 

1035 

setUp( ) method, 528 
setup.exe, 230 
Seven theme, 272, 275, 345 
Shortcut Icon setting, 277 
shortcut list, customizing, 225 
Shortcut module, 92, 277 
show( ) method, 327–329, 782 
SHOW TABLES, 899 
--show-invoke option, 632 
--show-invoke output option, 632 
--show-passwords option, 609, 615 
Sidebar First region, 289, 300 
sidebar_first region, 529–530, 929 
similarity, law of, 717 
Simple Knowledge Organization System (SKOS) 

vocabulary, 662 
simplehtmldom.sourceforge.net, 772 
Simpletest framework, functional testing with, 

517–532 
.test files, 522–526 
advantages and caveats, 518 
API, 530–531 
description, 519–520 
forms, 528–530 
further reading, 530–531 
running tests, 520–522, 526–527 
setting up tests, 520–522 
submitting patches to Drupal.org, 531–532 
TDD, 519 
when to use, 518 

--simulate option, 612 
simulation, accessibility, 945 
SIOC (Semantically-Interlinked Online 

Communities) vocabulary, 662 
SIPP (Survey for Income and Program 

Participation), 942 
site architecture, and visual design, 939 
Site builder, 735 
Site context, 608 
site launch checklist, internal documentation, 

226 
site lists, for Drush, 609–610 
site recipes, internal documentation, 226 
site selection, with Drush, 597–600 
site templates, 803–805 

development profiles, 804–805 
example distribution, Drune, 805 
full-featured services, 804 

sitealias API, 620 
site-alias command, 616 
sites. See websites 
sites directory, 140 
sites folder, 94, 140, 597, 637 
sites/all/libraries folder, 97 
sites/all/modules directory, 491, 508, 523 
sites/all/modules/contrib directory, 94, 386, 

502 
sites/all/modules/ctools directory, 51 
sites/all/modules/custom directory, 94, 384, 

386–387, 502, 906 
sites/all/modules/mymodule/mymodule.info 

file, 526 
sites/all/modules/mymodule/mymodule.mod

ule directory, 523 
sites/all/modules/mymodule/mymodule.test 

directory, 519, 524 
sites/all/modules/views directory, 51 
sites/all/themes directory, 278 
sites/all/themes/gamma/gamma.info, 356 
sites/all/themes/gamma/js/gamma.js, 356 
sites/all/themes/mytheme directory, 292 
sites/default, 540, 647–648 
sites/default/default.settings.php file, 11, 973 
sites/default/files directory, 11, 490 
sites/default/files/coder_upgrade/new 

directory, 491 
sites/default/files/coder_upgrade/old 

directory, 490 
sites/default/modules/ directory, 386–387 
sites/default/modules file, 493 
sites/default/settings.php directory, 240, 637, 

973 
sites-enabled directory, 248 
sites/example.com/modules/custom/ 

directory, 387 
site-specific modules, using API, 792–794 
sites/sitename/themes directory, 278 
sitesvall/modules/custom, 386 
site-upgrade command, 893 
site-upgrade-modules, 904 



■ INDEX 

1036 

sketching 
overview, 724–725 
Rules module UI, 725 

Skip navigation, 941 
skip-tables option, 615 
SKOS (Simple Knowledge Organization System) 

vocabulary, 662 
Slate color, 14 
slider library, 375 
Slogan setting, 276 
small_square, 160 
Smart Crop module, 99 
Smith, Greg, 219 
social networking, modules for, 104–106 

Comment Notify, 104–105 
Organic Groups, 105 
Profile2, 106 
Rate, 105 
Role Limits, 106 
Userpoints, 105 
Voting API dependency, 105 

sogame.cat/dummylipsum, 174 
Solr project, Apache. See Apache Solr project 
sort( ) method, 432 
Sort criteria, 61, 66–67 
sortable library, 376 
sortable tables, displaying data in, 456–460 
sorts, combining with logical operators, 65–66 
source .bash_profile file, 37 
source command, 602 
--source-dump option, 614 
spaces 

between control statements and 
parenthesis, 405 

on either side of binary operators and 
concatenators, 406 

indenting two, 405 
between parameters, 405 

Specific context, 608 
sponsoring, 881 
SQL (Structured Query Language), NULL values 

in, 642–643 
SQL dumps, 263 
sql-conf command, 615 

sql-sync command 
using Drush site context to control options, 

616–617 
using without installing Drush on remote 

system, 615–616 
square_root( ) method, 517 
SSH (Secure Shell) protocol, 858–859 
SSH key pairs, setting up, 611–612 
st( ) method, 808 
staging server, 222 
staging websites, 251–261 

approach, 252 
capturing all changes in code, 256–260 
of code changes, 254–255 
of content, 253–254 
development workflow, 260–261 
workflow, 252–253 

standards, coding, 862 
Stark theme, 272–273 
starter themes, 350 
static queries 

counting and grouping, using variable_get( 
) method and, 450 

with joins on two tables, fetching data with, 
445–447 

stats.php, 648 
Status field, Suggestion content type, 187–190 
Status option, filter drop-down, 486 
storage 

of contributed modules, 94 
of data, 548–549 

store configuration, Drupal Commerce project, 
566–585 

Cart module, 583 
checkout system, 581–583 
Commerce module, 569 
Customer module, 577 
dynamic pricing, 570 
enabling payment methods, 579–581 
line items, 573–575 
order system, 577–578 
Payment module, 578 
Price module, 569–570 
Product display node type, 575–577 
Product module, 571–573 



■ INDEX 

1037 

Product Reference module, 575 
summary of main components, 584–585 

stress-testing designs, 730–733 
Empty screen state, 731 
Error screen state, 733 
Flooded screen state, 732 
Normal screen state, 731 

string operator, 400 
strlen($element['#value']), 781 
Strongarm module, 258 
Structured Query Language (SQL), NULL values 

in, 642–643 
structure/features, 111 
structure-tables option, 615 
Style settings, 163 
style-rtl.css file, 343 
styles, overriding, 74 
stylesheets 

adding conditional for Internet Explorer, 
345 

adding via .info files, 343–344 
for administration pages, conditionally 

including, 788–790 
conditionally loading with drupal_add_css( 

) method, 344 
controlling using hook_css_alter( ) method, 

345–348 
stylesheets property, 280 
stylesheets[all] = file.css, 355 
stylesheets[TYPE][] directive, 440 
styling, with CSS files, 440–442 
Submit Again module, 495 
submit button, changing label of, 505–506 
submit method, 259 
subsites, creating with Acquia Dev Desktop 

app, 988–989 
substr( ) method, 398 
substr_count( ) method, 781 
subthemes, base themes and, 348–351 

custom, 351 
inheritance, 349 
popular, 350 

success as developer, 841–843 
budgeting time, 842 
create process, 841–842 

using distributions, 843 
using experienced developers, 843 
using install profiles, 843 

success log level, 625 
sudo a2ensite dgd7 command, 248 
sudo apt-get install git command, 39 
Suggest and explore rather than confirm 

attribute, 722 
Suggestion content type 

overview, 16–19 
Status field, limiting access to, 187–190 

suggestions 
hook 

and template files, 305–308 
and theme methods, 308–310 

page-level, 306–308 
suggestions path, 768 
suggestions/installing-drubuntu, 802 
Summits, Drupal, 879 
superuser accounts, setting up, 983 
Survey for Income and Program Participation 

(SIPP), 942 
sustainability 

of contributors, 848–849 
in theming, 351–354 

leveraging default CSS classes, 353–354 
modules vs. themes, 354 
overriding template files with purpose, 

353 
starting with good base theme, 351–352 

sustainable choices, 842 
switch statements, 403, 763 
SwitchTheme, 275 
syntactic fatal errors, 472 
Syslog module, 94 
system names, finding 

in code, 430–431 
in database, 428–430 

system_admin_config_page( ) method, 465 
system_block_view( ) method, 395–397 
system_element_info( ) method, 324, 331 
system_help block, 395, 397 
system_init( ) method, 692 
system_main, 926 
system_modules( ) method, 384 



■ INDEX 

1038 

system_rebuild_theme_data( ) method, 285, 
415, 421 

system_requirements( ) method, 919 
system_schema( ) method, 453 
system_settings_form( ) method, 465, 467 
system_themes_page( ) method, 415 
system.admin.css file, 342 
system.base.css file, 342, 354 
system.maintenance.css file, 342 
system.menus.css file, 342 
system.messages.css file, 342 
system.module file, 414–415 
system.theme.css file, 342 

■ T 
t( ) methods, 412–414, 424, 470–471, 474, 479, 

529, 808 
table of contents, making with Book module, 

168–178 
adding to main menu, 178 
Chapter content type, 172–175 
setting permissions for organizing and 

writing chapters, 170–171 
using Menu Block module to display better, 

176–177 
Table option, 68 
tables, 453–454 

administrative, cloning and making using 
exposed filters, 80–81 

formatting data for display as, 433–435 
sortable, displaying data in, 456–460 

tabs 
defining with local task menu items, 425 
for unique displays, 78–79 

tabs library, 377–378 
tags 

<?php opening, 404 
branches and, on Drupal.org, 861 
closing PHP, 404 
and replacement markup form, 776–782 

defining settings callback, 776 
filter settings, 777–782 
forms accepting multiple elements,  

776–779 

manipulating values before saving with 
validate method, 779–780 

--tar option, 817 
--target-dump option, 614 
--target-structure-tables='users,user_roles' 

option, 620 
task management systems, 213 
tasks, server-side, 239–241 

circumventing one-click installers, 240–241 
database setup, 239–240 

Taxonomy module, 24–26, 92 
taxonomy system, 223 
Taxonomy term view, 57 
taxonomy terms, 223 
taxonomy_help( ) method, 396 
Tax/Tax UI, 568 
t('Content summary'), 413 
TDD (test-driven development), 519 
teaser display, modifying, 166–167 
technical skills, 397–408 

<?php opening tag, 404 
automating adherence, 406 
checking permissions, 407 
clearing caches, 407 
closing PHP tag, 404 
control statements starting new lines, 405 
control structures, 402–403 

if, elseif, and else statements, 402–403 
loops, 403 
switch and case statements, 403 

Drupal coding standards, 404–406 
operators, 399–402 

arithmetic, 400 
assignment, 399–400 
comparison, 400–401 
logical, 401–402 
string, 400 
ternary, 401 

PHP language, 398 
preceding internal methods with 

underscore, 404–405 
showing errors, 408 
spaces 

between control statements and 
parenthesis, 405 



■ INDEX 

1039 

on either side of binary operators and 
concatenators, 406 

indenting two, 405 
between parameters, 405 

terminology, 398–399 
template files, 293–301 

common core templates, 295 
global variables, 296–301 
hook suggestions and, 305–308 
overriding, 295–296 
overriding with purpose, 353 
themes vs. hard-coding variables in, 288 
theming forms with, 336–339 

manipulating form elements, 337–338 
preprocess methods, 338–339 

template_preprocess( ) method, 297, 314 
template_preprocess_block( ) method, 297, 305 
template_preprocess_book_navigation( ) 

method, 799 
template_preprocess_field( ) method, 754 
template_preprocess_html( ) method, 344–345 
template_preprocess_node( ) method, 297, 305, 

314–316, 476 
template_preprocess_user_picture( ) method, 

320 
template_preprocess_username( ) method, 277 
template_process( ) method, 315 
template.php file, 318, 333, 356, 359, 476 
templates 

adding classes to wrappers, 318 
book module, reusing to display non-book 

navigation, 798–801 
common core, 295 
core, render arrays in, 326 
custom theming, 751–754 

templates subdirectory, 751 
terminology, in code, 398–399 
ternary operator, 401 
test environments, code, 539–541 

copying, 540–541 
sharing in sandbox on Drupal.org, 541 

.test files, 522–526 
test plans, outline for, 735 
test-driven development (TDD), 519 
test.info file, 481 

testing 
automated, for accessibility, 944–945 
choosing users to test, 735–736 
explorative usability, 736–737 

environment, 737 
method, 736 
scenario, 736 
tasks, 736–737 

Rules module, reasons for, 735 
setting up module, recording, and logging, 

738 
Testing module, 94 
test.module, 481 
test.php file, 445, 787 
text 

adding format that allows images, 184–187 
bi-directional support, 343 
custom filters 

adding custom markup for output, 795 
container form elements with specified 

classes, 790–791 
editing text formats, 794 
examples, 773 
filtering content, 783–788 
hooks, 783 
modules, 771–773, 776–788, 791–794 
stylesheets for administration pages, 

788–790 
tags and replacement markup form, 

776–782 
editing formats, 794 
editors 

configuring preferences for, 238 
setting FTP client to use, 238 
setting up, 237–238 

keeping formats tight and secure, 127 
text_long format, 559 
Theme, defined, 213 
theme( ) methods, theming forms with,  

334–335 
manipulating form elements in, 335 
using drupal_render_children( ) method, 

334 
Theme Developer module, 312–313 
Theme Developer window, 313 



■ INDEX 

1040 

theme engines, 854 
Theme Screenshot, 349 
Theme Settings, 349 
theme_block( ) method, 923 
theme_contact_site_form( ) method, 334 
theme_container( ) method, 324 
THEME_container( ) method, 412 
theme_container( ) method, 790 
THEME_container__xray( ) method, 412 
THEME_container__xray__form( ) method, 412 
theme_form( ) method, 332 
theme_form_element( ) method, 766 
theme_get_suggestions( ) method, 306 
'theme_hook_suggestions' array, 748 
theme_html_tag( ) method, 324 
theme_image_resize_filter_form( ) method, 782 
theme_item_list( ) method, 324 
theme_links( ) method, 277, 308 
THEME_links( ) method, 309 
THEME_links__comment( ) method, 309 
THEME_links__contextual( ) method, 309 
THEME_links__contextual__node( ) method, 

309 
THEME_links__node( ) method, 309 
theme_links__system_main_menu( ) method, 

309 
theme_links__system_secondary_menu( ) 

method, 309 
theme_menu_link( ) method, 278 
theme_more_link( ) method, 303 
theme_my_theme_hook( ) method, 302 
theme_name_menu_link( ) method, 278 
theme_name.info file, 278 
theme_node( ) method, 305 
theme_node__suggestion( ) method, 753 
THEME_preprocess_page( ) method, 310 
THEME_preprocess_page__front( ) method, 

308 
theme_table( ) method, 336, 437, 457 
theme_that( ) method, 302 
theme_this( ) method, 302 
theme_user_admin_permissions( ) method, 

433 
theme_username( ) method, 277 
theme_xray_permission_names( ) method, 435 

theme_xray_show_callback, 475 
theme_xray_show_page_callback( ) method, 

439 
themeable codes, documenting with @ingroup 

themeable method, 433–435 
themes, 435–437 

accessible, 944 
choosing, 129–132 

project home page, 130–131 
security code reviews, 132 

enabling and setting default, 274–275 
implementations, 317 
initializing, bootstrap phase, 691–692 
regions and, 288 
renderable arrays, 436–437 
resources for, 436 

theming, 269–354 
administration, 274–278 

enabling and setting default theme,  
274–275 

Global Theme Settings, 275–277 
installing new theme, 277–278 

base and subthemes, 348–351 
base themes, 350–351 
inheritance, 349 

core themes directory, 269–274 
Bartik theme, 270 
Garland theme, 271 
Seven theme, 272 
Stark theme, 272–273 
theme engines, 273–274 

defining metadata, .info files, 278–281 
forms, 329–340 

finding form ID, 332–333 
hook_theme( ) method, 333–334 
markup generation, 329–332 
modifying using alter hooks, 339–340 
with template files, 336–339 
with theme methods, 334–335 

functions, 301–304 
calling, 302 
overriding, 302–304 

hook suggestions 
and template files, 305–308 
and theme methods, 308–310 



■ INDEX 

1041 

hooks, 304–310 
managing CSS files, 341–348 

adding, removing, and replacing, 343–
348 

aggregation and compression, 341 
patterns and naming conventions,  

342–343 
preprocess and process methods, 313–320 

adding change picture link underneath 
user photo, 320 

adding classes to template wrappers, 
318 

finding contents of $variables array, 317 
hooks, 315–317 
making changes to nodes, 319–320 

regions, 282–292 
default, 284–286 
vs. hard-coding variables in template 

files, 288 
hidden, 286–287 
layout strategies, 289–292 
module-specific, 287 
and themes, 288 

render( ), hide( ), and show( ) methods,  
327–329 

sustainability and best practices, 351–354 
leveraging default CSS classes, 353–354 
modules vs. themes, 354 
overriding template files with purpose, 

353 
starting with good base theme, 351–352 

Template files, 293–301 
common core templates, 295 
global variables, 296–301 
overriding, 295–296 

templates, custom, 751–754 
theme layer, finding available variables in, 

311–313 
using Render API, 321–326 

elements, 322 
render arrays, 321–326 

three-column layout, 285 
tilting images, 184 
time, budgeting of, 842 
Timely attribute, 724 

timer_start( ) method, 909 
timestamp item, 621 
timing, migration processes, 910 
'title arguments' => array(1), 678 
title code, 530 
Title field, 150, 225 
title item, 359, 671 
titles, of Views, 60–71 
Token dependency, 96 
Toolbar module, 93 
toolbar.js file, 363 
tools 

knowledge of, 535–536 
server-side, 239–241 

circumventing one-click installers,  
240–241 

database setup, 239–240 
Total inclusive cost, 918 
Total self cost, 918 
.tpl.php suffix, 336 
Tracker module, 94 
Tracker view, 57 
tracking milestones, 212 
tracking system, 212–213 
Trigger module, 94 
trim length, setting, 166–167 
Trimmed format, 167 
t('Save blocks'), 529 
twice-nested array, 246 
Twitter accounts, linking to with field 

formatters, 757–766 
caching data using default cache table,  

765–766 
fetching usernames, 763–764 

tying components together, 513 
type attribute, 808 
type item, 621 
types, biasing, 707–708 
Typical Slow Query Summary, 920 
-u parameter, mysqldump command, 244 

■ U 
Ubuntu operating system, 971–975 

customizing for development with 
Drubuntu script, 972 



■ INDEX 

1042 

installing Drupal on, 973–975
automatic installer, 974–975
database, 974 

running on Microsoft Windows or Apple 
Mac OS X, 971

ubuntu.com/download, 971
UIs (User Interfaces) 

administrative, providing for entities,  
555–559 

editing data in, 548–549 
keeping separate from API, 536–537
Rules module, sketching, 725 

uncompressing, archives, 238–239 
Under Construction icon, 212 
underscores, preceding internal methods with, 

404–405 
Unformatted option, 68 
Uniform Resource Locators. See URLs 
Unit tests, 517 
Universally Unique Identifiers (UUIDs), 260
--unlock=all option, 606
--unlock=module_name option, 606
update hooks 

capturing additional upgrade steps in, 
896–904 

automating Fields upgrade, 902–903
modules, 896–902 
rerunning upgrade, 903–904 

overview, 258–259 
Update manager module, 93 
update path, 710 
update_advanced module, 606 
updatedb command, 605 
update.php file, 126, 141, 252, 255, 259, 605, 

887–888, 896, 903
updates 

applying with Drush, 603–606
overview, 813 

updating, 137–147 
contributed modules, 145–147 

automated installer, 146
with Drush tool, 146–147 

with diff method, 143–144
with Drush tool, 142 

importance of, 137–138
manually, 139–142
preparation for, 138–139 

upgrade modules, 897–901
UPGRADE.txt file instructions, 140–142
upgrading 

automatic, adding Features module to,  
906–907 

custom methods for, from glue code,  
896–897 

from Drupal 6 to Drupal 7, 887–911 
assessing the situation, 889–891
capturing additional upgrade steps in 

update hooks, 896–904 
data migration, 907–911
Features module, 905–907
running the upgrade repeatedly,  

891–896 
Fields upgrade, automating, 902–903
modules, 485–488 

Coder Upgrade module, 489–493
contributing patch files to Drupal.org, 

498–499 
custom coding, 488 
finding model code, 497–498
identifying problems, 493–497
list of API changes, 489
posting issues, 486–488 

rerunning, 903–904 
uploading files, with FTP clients, 237
--uri option, 600–601, 608 
URL - checkout/#, 583 
URLs (Uniform Resource Locators) 

human-readable, 19–20, 190–191
password-protected, 222 
requests. See page requests, bootstrap 

phases 
views allowing hackable for user pages,  

801–802
usability tests, 739–740 

explorative, 736–737
environment, 737
method, 736
scenario, 736
tasks, 736–737 



■ INDEX 

1043 

participants 
not asking for solutions, 739 
putting at ease, 740 
questioning, 739 
waiting before offering assistance, 740 

setting up module, recording, and logging, 
738 

use @alias command, 603 
Use AJAX, 62 
USE databasename, 898 
Use grouping, 62 
Use pager, 61 
Use Slave Server, 63 
user access, conditionally taking action based 

on, 468–469 
user accounts, of authors, connecting Author 

profiles to, 155–156 
user experience, 713–746 

bringing principles into practice, 720–746 
analyzing results, 740 
building alpha and verifying with users, 

733–734 
challenges, 721–722 
copywriting, 743–744 
design process, 720–721 
feedback from issue queues, 741 
larger concept, 722–729 
optimizing, 734–738 
principles, 745–746 
project description, 742–743 
releasing modules, 741–743 
reporting issues, 740–741 
usability test, 739–740 
wireframes, 729–733 

color harmony, 719 
designing for, 940 
human API, 713 
laws 

of proximity, 717–719 
of similarity, 717 

memory, 713–714 
modularity, 713 
perception, 715–717 

User Groups, 738 
user groups, 844–845 

user interface, hiding elements from, 507–508 
User Interfaces. See UIs 
user login box, Drupal site, 224 
user object, 530 
user pages, views allowing hackable URLs for, 

801–802 
User Pictures in Posts and Comments settings, 

277 
user stories, creating, 216–217 
User Verification Status in Comments option, 

277 
user_access( ) method, 426, 468–469, 554–555 
user_admin_settings( ) method, 465 
user_menu( ) method, 464 
user_picture theme hook, 293 
user_roles table, 617 
user/7/shortcuts user's Shortcuts tab, 13 
user/86/edit, 15 
usernames, fetching, 763–764 
user-perceived performance, 913 
user-picture.tpl.php file, 293, 320 
Userpoints module, 105 
users, 27–28 

choosing which to test, 735–736 
photos, adding change picture link 

underneath, 320 
pictures of, 183–184 
reserving first for administration, 126 
verifying alpha with, 733–734 

users table, 617 
usr/share/drush/commands folder, 609 
utility methods, custom, 470–471 
UUIDs (Universally Unique Identifiers), 260 

■ V 
validate method, manipulating values before 

saving with, 779–780 
validating filter settings, 780–781 
values, manipulating before saving with 

validate method, 779–780 
var_dump( ) method, 311 
var_export( ) method, 796 
variable system, initializing, 689–690 
variable_get( ) method, 450, 465, 467–469, 785 
variable_set( ) method, 465, 467 



■ INDEX 

1044 

variables 
finding available in theme layer, 311–313 
global, 296–301 
in template files, themes vs. hard-coding, 

288 
Varnish HTTP accelerator, 638 
var/www directory, 245 
var/www/dgd7 directory, 246 
--verbose flag, 625 
verbose messages, 522 
--verbose option, 625 
Version item, 359 
Version option, filter drop-down, 486 
version property, 280 
version-specific dependencies, 390 
vertical-tabs.css file, 346 
very_slow_find( ) method, 636 
vi /etc/apache2/sites-available/dgd7 

command, 247 
video podcast, MustardSeed Media, 226 
view modes 

overview, 747–751 
using to display same content in different 

ways, 166 
view pages, for biographies of authors, 162–164 
Views 

allowing hackable URLs for user pages, 801–
802 

available, 55–56 
default, 56 
elements of listings, 55–56 

changing listed, 54 
with contextual filters, 82 
creating with Views module, 68–76 

adding features to, 74–76 
adding menus, 73 
administrative information, 71 
Advanced Settings box, 73 
displays, 71–72 
dynamically editing, 73–74 
format settings, 72 
goal of, 68 
number of results, 72 
previewing work, 73 
setting up basics for, 69–71 

systematic approach to, 68–69 
title for, 71 
viewing, 74 

deconstructing, 57–68 
configuration detail, 59–63 
display types, 58–59 

exporting to code, 85–86 
with exposed filters, 81 
extending, 76–81 

cloning and making administrative 
tables using exposed filters, 80–81 

displays, 77–79 
handling zero results, 76 
with other modules, 84 

using with Organic Groups module, 115–117 
Views module, 49–95 

Administration page, 53–56 
Action links, 54 
Advanced Help module, 53 
available Views, 55–56 
changing listed Views, 54 

advanced implementations, 82–84 
contextual filters, 82–83 
Relationships configuration, 83–84 

Chaos Tools dependency, 95 
creating Views with, 68–76 

adding features to, 74–76 
adding menus, 73 
administrative information, 71 
Advanced Settings box, 73 
displays, 71–72 
dynamically editing, 73–74 
format settings, 72 
goal of, 68 
number of results, 72 
previewing work, 73 
setting up basics for, 69–71 
systematic approach to, 68–69 
title for, 71 
viewing, 74 

deconstructing Views, 57–68 
configuration detail, 59–63 
display types, 58–59 
filter criteria groups, 65–66 



■ INDEX 

1045 

Filters section, 64–65 
Format settings, 67–68 
overriding, 63 
Sort criteria, 66–67 

description of, 49–53 
examples of usage, 50 
permissions for, 50–53 

exporting to code, 85–86 
extending Views, 76–81 

cloning and making administrative 
tables using exposed filters, 80–81 

displays, 77–79 
handling zero results, 76 
with other modules, 84 

view.tpl.php file, 351 
virtual host configuration file, Apache, 248 
virtualbox.org, 971 
visual design, 933–940 

advice on, 939–940 
choosing fonts wisely, 939 
designing for entire user experience, 940 
remembering purpose of design, 939 
understanding site architecture, 939 

with Drupal 
advantages of working with Drupal, 933 
anatomy of pages, 934–938 
designing from content out, 938–939 
differences of, 934 
and HTML5, 940 

Visual Studio development environment, 948 
vocabularies, RDF, 662–665 
Voting API dependency, 105 
VS.Php add-on, 957–962 
VS.Php happy screen, 959 

■ W 
WAI (Web Accessibility Initiative), 942 
WAI-ARIA (Accessible Rich Internet 

Applications), 945 
WAMP (Windows/Apache/MySQL/PHP) stack, 

948–953 
WampServer control panel, 951 
WampServer default happy screen, 951 
warning log level, 625 

watchdog( ) method, 765 
watchdog subsystem, 648–649 
watchdog-show command, 623 
waterfall style, 207–208 
WCAG (Web Content Accessibility Guidelines) 

2.0, 942, 945 
Web Accessibility Initiative (WAI), 942 
Web Content Accessibility Guidelines (WCAG) 

2.0, 942, 945 
web root, 978–979 
web server, Apache, 247–248 
web sites, 243–261 

accessibility for, 943–946 
automated testing, 944–945 
contrast and color, 944 
expert feedback, 946 
maintenance, 945–946 
modules, 943 
regular reviews of pages, 946 
simulation, 945 
themes, 944 
WAI-ARIA, 945 

Acquia Dev Desktop app 
creating subsites with, 988–989 
importing sites with, 990 

adding products to, 572–573 
adding Resource content type that 

references chapters, 179–181 
allowing people to attach generic files to 

content, 180 
connecting content types with Node 

reference, 181 
managing Resource content type 

display, 181 
reusing chapter image field, 179–180 

adding text format that allows images,  
184–187 

inserting images into posts, 186–187 
authors of 

linking chapters to, 178 
listing, 157–164 
showcasing with profile pages, 149–157 

autogenerating human-readable URLs with 
Pathauto module, 190–191 

backing up, 249–251 



■ INDEX 

1046 

Chapter number field display, 754–757 
community. See community web sites, 

creating with Organic Groups module 
contextual add new links for content types, 

767–771 
finding better way, 770–771 
models, 767–770 

custom text filters, 771–795 
adding custom markup for output, 795 
container form elements with specified 

classes, 790–791 
custom hooks, 783 
editing text formats, 794 
examples, 773 
filtering content, 783–788 
modules, 771–773, 776–788, 791–794 
stylesheets for administration pages, 

788–790 
tags and replacement markup form, 

776–782 
custom theming templates, 751–754 
essential modules for building, 94–98 

AntiSpam and Mollom, 98 
Fields, 96–97 
Pathauto, 95–96 
Token dependency, 96 
Views, 95 
Webform, 98 
WYSIWYG, 97 

fine-tuning content display, 164–167 
modifying teaser display and setting 

trim length, 166–167 
using view modes to display same 

content in different ways, 166 
hosting locally, 230 
implementation, 8–28 

Administration menu, 12–13 
appearance, 13–14 
blocks, 21–24 
content, 16–21 
extending methodality with modules, 

15–16 
installing program, 9–12 
Taxonomy module, 24–26 
users, roles, and permissions, 27–28 

limiting access to Suggestion content type 
Status field, 187–190 

linking profiles to, 151–153 
linking to Drupal.org and Twitter accounts 

with field formatters, 757–766 
caching data using default cache table, 

765–766 
fetching usernames, 763–764 

making table of contents with Book module, 
168–178 

adding to main menu, 178 
Chapter content type, 172–175 
setting permissions for organizing and 

writing chapters, 170–171 
using Menu Block module to display 

better, 176–177 
next and previous links mimicking book 

navigation, 795–801 
planning, 4–8 

design, 7–8 
discovery, 4–5 
information architecture, 5–7 

putting online, 243–248 
databases, 244–247 
pointing visitors to your site, 247–248 
transferring site to server, 245 

reasons for slow, 913–916 
security of, 125–128 

assigning permissions, 127 
avoiding using PHP filter module, 128 
keeping text formats tight and secure, 

127 
reserving user 1 for administration, 126 
strong passwords, 125–126 

showing content that references post being 
viewed, 182–183 

staging and deployment, 251–261 
approach, 252 
capturing all changes in code, 256–260 
of code changes, 254–255 
of content, 253–254 
development workflow, 260–261 
workflow, 252–253 

streamlining form elements with CSS, 766 
user pictures, 183–184 
view modes, 747–751 



■ INDEX 

1047 

views to allow hackable URLs for user 
pages, 801–802 

work in progress version, 222 
Webform module, 98 
weight, in drupal_add_js( ) method, 357–359 
weight rule, 358 
while ($expression) ... statement, 403 
widgets, 152 
Windows development environment, 

Microsoft. See Microsoft Windows 
development environment 

Windows/Apache/MySQL/PHP (WAMP) stack, 
948–953 

wireframes, 729–733 
getting feedback on, 729–730 
mockups for detailed design, 733 
stress-testing design, 730–733 

Empty screen state, 731 
Error screen state, 733 
Flooded screen state, 732 
Normal screen state, 731 

wireframing, 206–207 
WISP, LAMP stack to, 947–948 
wizards, setting up databases with, 240 
Workbench suite of modules, 99 
workflow, of websites, 252–253 
wrappers, templates, 318 
Writing Secure Code, 134 
www.w3.org/TR/xhtml-rdfa-primer/, 658 
WYSIWYG editors, 223 
WYSIWYG module, 97, 223 

■ X 
xdebug.profiler_enable_trigger=1, 918 
X-ray module, declaring menu items for,  

425–426 

xray_admin_settings( ) method, 464–465 
xray_block_view_system_help_alter( ) method, 

397 
xray_display_section_summaries, 465 
xray_form_alter( ) method, 392–393, 399, 410, 

469 
xray_help( ) method, 395–396, 399 
xray_help_admin_appearance( ) method, 416 
xray_menu( ) method, 468 
xray_module_implements_alter( ) method, 457 
xray_overview_page( ) method, 449 
xray_oxford_comma_list( ) method, 439, 449, 

459, 471 
xray_permission_names( ) method, 435 
xray_permission_names_page( ) method, 432, 

436 
xray_show_page_callback( ) method, 475 
xray_stats_blocks_enabled_by_theme( ) 

method, 447 
xray_stats_content_type_total( ) method, 413, 

450 
xray.admin.inc, 465 
xray.info file, 384, 387, 440 
xray.module file, 384, 394 

■ Y 
--yes option, 624 
YSlow grade, 915 

■ Z 
zebra_help( ) method, 396 
zero results, handling, 76 
.zip formats, 953 

http://www.w3.org/TR/xhtml-rdfa-primer/


 

The Definitive Guide 
to Drupal 7 

 

 

 

 

 

■ ■ ■ 

Benjamin Melançon, Jacine Luisi, Károly Négyesi, 
Greg Anderson, Bojhan Somers, Stéphane 
Corlosquet, Stefan Freudenberg, Michelle Lauer, Ed 
Carlevale, Florian Lorétan, Dani Nordin, Ryan 
Szrama, Susan Stewart, Jake Strawn, Brian Travis, 
Dan Hakimzadeh, Amye Scavarda, Albert Albala, Allie 
Micka, Robert Douglass, Robin Monks, Roy Scholten, 
Peter Wolanin, Kay VanValkenburgh, Greg Stout, 
Kasey Qynn Dolin, Mike Gifford, Claudina Sarahe, 
Sam Boyer, and Forest Mars, with contributions from 
George Cassie, Mike Ryan, Nathaniel Catchpole, and 
Dmitri Gaskin 
 

 



 

The Definitive Guide to Drupal 7 

Copyright © 2011 by Benjamin Melançon, Jacine Luisi, Károly Négyesi, Greg Anderson, Bojhan Somers, 
Stéphane Corlosquet, Stefan Freudenberg, Michelle Lauer, Ed Carlevale, Florian Lorétan, Dani Nordin, Ryan 
Szrama, Susan Stewart, Jake Strawn, Brian Travis, Dan Hakimzadeh, Amye Scavarda, Albert Albala, Allie Micka, 
Robert Douglass, Robin Monks, Roy Scholten, Peter Wolanin, Kay VanValkenburgh, Greg Stout, Kasey Qynn 
Dolin, Mike Gifford, Claudina Sarahe, Sam Boyer, and Forest Mars, with contributions from George Cassie, 
Mike Ryan, Nathaniel Catchpole, and Dmitri Gaskin 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-4302-3135-6 

ISBN-13 (electronic): 978-1-4302-3136-3 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights. 

President and Publisher: Paul Manning 
Lead Editors: Ben Renow-Clarke and Matthew Moodie 
Technical Reviewer: Richard Carter 
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick, 

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, 
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh 

Coordinating Editor: Debra Kelly 
Copy Editor: Mary Behr 
Compositor: MacPS, LLC 
Indexer: BIM Indexing & Proofreading Services 
Artist: April Milne 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 6th 
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, 
or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution 
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any 
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the 
information contained in this work.  

The source code for examples and projects shown in this book is available to readers at definitivedrupal.org 
and apress.com. You will need to answer questions pertaining to this book in order to successfully download 
the code. 

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales


Dedicated to the Drupal community.



 

vi 

Contents 

Contents at a Glance ................................................................................................. iv 

Foreword .............................................................................................................. xxxiv

About the Authors ................................................................................................. xxxv 

About the Technical Reviewer .................................................................................. xli

Acknowledgments ................................................................................................... xlii

Preface: Why Drupal ............................................................................................... xliii  

What’s New in Drupal 7? ....................................................................................... xlvii  

How to Use This Book ............................................................................................... liii  

How Drupal Works ................................................................................................... lvii  

 

Part I: Getting Started ................................................................................................ 1

■Chapter 1: Building a Drupal 7 Site ......................................................................... 3

Planning: Setting Parameters and Knowing Where You’re Going ...................................... 4
Discovery: Why Should This Site Be Built? ............................................................................................... 4

Information Architecture: Exactly What Will You Build? ............................................................................ 5

Design ....................................................................................................................................................... 7

Implementation .................................................................................................................. 8
Installing Drupal ........................................................................................................................................ 9

Drupal’s Administration Menu ................................................................................................................ 12

Appearance: Changing a Core Theme’s Color Scheme ........................................................................... 13

Extending Functionality with Modules .................................................................................................... 14

Allowing People to Register and Log In with OpenID ....................................................... 15
Creating Content Types and Adding Content .......................................................................................... 16



■ CONTENTS

vii

Creating Content . ...................................................................................................................................... 19

Blocks: Creating a Mission Statement . .................................................................................................... 21

Taxonomy: Categorizing Content . ............................................................................................................ 24

Users, Roles, and Permissions .................................................................................................................. 27

Time for a Celebratory Beverage . ................................................................................... 29

■Chapter 2: Essential Tools: Drush and Git ............................................................. 31

A Beginner’s Guide to Installing Drush ............................................................................ 32

Git: Development Grease ................................................................................................. 38
Why Git? . ................................................................................................................................................... 39

Installing Git . ............................................................................................................................................. 39

Working with Git ........................................................................................................................................ 41

Other Useful Git Commands . ........................................................................................... 45

Database Backup Tools ................................................................................................... 45

Summary . ........................................................................................................................ 46

Part II: Site Building Foundations ............................................................................ 47

■Chapter 3: Building Dynamic Pages Using Views ................................................. 49

What Are Views? .............................................................................................................. 49
Examples of Views Usage ......................................................................................................................... 50

Download, Enable, and Configure Permissions for the Views Module(s) . ............................................... 50

The Views Administration Page . ..................................................................................... 53
Advanced Help Module ............................................................................................................................. 53

Action Links . ............................................................................................................................................. 54

Change Which Available Views Are Listed . .............................................................................................. 54

Available Views . ........................................................................................................................................ 55

Deconstructing a View . ................................................................................................... 57
Display Types . ........................................................................................................................................... 58

Views Configuration Detail ........................................................................................................................ 59

Overriding: A Views Concept ..................................................................................................................... 64

Understanding What Type of Content Will Be Output: Views Filters . ...................................................... 64

Advanced Filter Criteria Groups: Combining Sorts with Logical Operators . ............................................ 66



■ CONTENTS 

viii 

Understanding the Order in Which Content Will Be Output: Views Sort Criteria ..................................... 67

Understanding What Pieces of Content Will Be Output: Views Format Settings ..................................... 67

Creating a Basic View ...................................................................................................... 68
The Goal .................................................................................................................................................. 68

Systematic Approach .............................................................................................................................. 69

Set Up the Basics for Your Views ............................................................................................................ 69

Define the Administrative Information .................................................................................................... 71

Define the Title ........................................................................................................................................ 71

Define What Type of Content You Want to Display .................................................................................. 71

Define What Elements of the Content You Want to Display .................................................................... 72

Define Format Settings ........................................................................................................................... 72

Define the Order in Which You Want Your Content to Display ................................................................. 72

Define the Number of Results ................................................................................................................. 72

Add a Menu ............................................................................................................................................. 73

Define Advanced Settings ....................................................................................................................... 73

Preview Your Work .................................................................................................................................. 73

Dynamically Editing Your View ................................................................................................................ 73

Admire Your View .................................................................................................................................... 74

Add More Features .................................................................................................................................. 74

Extend a View .................................................................................................................. 76
Handling the Use Case of Zero Results ................................................................................................... 76

One Page, Multiple Displays to Highlight First Result ............................................................................. 77

Using Tabs for Unique Displays .............................................................................................................. 78

Cloning and Making Administrative Tables Using Exposed Filters ......................................................... 80

Advanced Views Implementations ................................................................................... 82
Contextual Filters .................................................................................................................................... 82

Relationships .......................................................................................................................................... 83

Other Modules .................................................................................................................. 84

Exporting to Code ............................................................................................................. 85

Additional Resources ....................................................................................................... 86

■Chapter 4: There’s a Module for That .................................................................... 87

Modules for Drupal Are Constantly Evolving .................................................................... 87



■ CONTENTS 

ix 

Fewer Modules Is Better .................................................................................................. 88

How to Find and Choose a Module ................................................................................... 88

What to Do When Something’s Wrong with a Module ..................................................... 91

Modules in Core ............................................................................................................... 91

Where to Store Contributed Modules ............................................................................... 94

Site Building Essentials .................................................................................................... 94
Views ....................................................................................................................................................... 95

Pathauto .................................................................................................................................................. 95

Token (Dependency) ............................................................................................................................... 96

Additional Field Types ............................................................................................................................. 96

WYSIWYG ................................................................................................................................................ 97

Webform ................................................................................................................................................. 98

AntiSpam or Mollom ................................................................................................................................ 98

Other Modules That May Prove Useful ............................................................................. 99
Administrative Interface and Content Entry ............................................................................................ 99

Content Display ..................................................................................................................................... 103

Menus and Navigation .......................................................................................................................... 104

Community Building and Social Networking ......................................................................................... 104

Paths, Search and 404 Errors ............................................................................................................... 106

Miscellany ............................................................................................................................................. 107

The Beauty of It All ......................................................................................................... 108

■Chapter 5: Creating Community Web Sites with Organic Groups ........................ 109

Installing and Configuring Organic Groups .................................................................... 110
Group Content Types ............................................................................................................................. 111

Creating Groups .................................................................................................................................... 114

Using Views with Organic Modules ................................................................................ 115

Creating Group Content .................................................................................................. 117

Getting Started with Panels ........................................................................................... 119

Members, Roles, and Permissions ................................................................................. 122

Summary ........................................................................................................................ 124



■ CONTENTS 

x 

■Chapter 6: Security in Drupal .............................................................................. 125

Setting Up a Secure Drupal Site ..................................................................................... 125
Use Strong Passwords .......................................................................................................................... 125

Reserve User 1 for Administration Purposes Only ................................................................................ 126

Be Cautious When Assigning Permissions ............................................................................................ 127

Keep Text Formats Tight and Secure .................................................................................................... 127

Avoid Using the PHP Filter Module ........................................................................................................ 128

Security Process ............................................................................................................ 128
Choosing Modules and Themes: How Secure Are Contributed Projects? ............................................. 129

Keep Your Code Base Current ............................................................................................................... 132

Writing Secure Code ............................................................................................................................. 133

Dealing with Security Issues ............................................................................................................. 135

Summary ........................................................................................................................ 136

■Chapter 7: Updating Drupal ................................................................................. 137

Why Update .................................................................................................................... 137

Preparation .................................................................................................................... 138

Manual Update ............................................................................................................... 139
Follow the Steps in UPGRADE.txt .......................................................................................................... 140

Drush Update ................................................................................................................. 142

Diff Update ..................................................................................................................... 143

Contributed Modules ...................................................................................................... 145
Drupal’s Automated Module Installer .................................................................................................... 146

Updating Modules with Drush ............................................................................................................... 146

Summary ........................................................................................................................ 147

■Chapter 8: Extending Your Site ........................................................................... 149

Showcasing Authors with Profile Pages ........................................................................ 149
Giving Authors a Headshot Image ......................................................................................................... 151

Linking from Profiles to Web Sites ........................................................................................................ 151

Authors’ Other Homes on the Internet .................................................................................................. 153

A Non-displaying Data Field: Approximate Pages ................................................................................. 155



■ CONTENTS

xi

Connecting Author Profiles to Authors’ User Accounts ......................................................................... 155

Giving Authors Permission to Create Profiles ....................................................................................... 156

Listing the Authors ......................................................................................................... 157
Building the Authors Headshot View ..................................................................................................... 158

Building an Author Biographies View Page, Reachable As a Tab on the Authors View ........................ 162

Fine-tuning Content Display ........................................................................................... 164
Using View Modes to Display the Same Content in Different Ways ...................................................... 166

Modifying Teaser Display and Setting Trim Length .............................................................................. 166

Making the Table of Contents with Book Module .......................................................... 168
Setting Permissions for Organizing and Writing Chapters .................................................................... 170

Adding Metadata to the Chapter Content Type with Fields ................................................................... 172

Setting How the Chapter Content Type Displays Its Fields ................................................................... 173

Using Menu Block to Display a Better Table of Contents ...................................................................... 176

Adding the Table of Contents to the Main Menu ................................................................................... 178

Linking Chapters to Their Authors .................................................................................. 178

Adding a Resource Content Type That References Chapters ......................................... 179
Reusing Chapter’s Image Field ............................................................................................................. 179

Allowing People to Attach Generic Files to Content .............................................................................. 180

Connecting Content Types with a Node Reference ............................................................................... 181

Managing Resource Content Type Display ............................................................................................ 181

Showing Content That References the Post Being Viewed ............................................ 182

Giving Faces to the People Posting on Your Site ............................................................ 183

Adding a Text Format That Allows Images ..................................................................... 184
Bonus: Making It Easy to Insert Images into Posts ............................................................................... 186

Limiting Access to the Suggestion Status Field ............................................................. 187

Autogenerating Human-readable URLs with Pathauto ................................................... 190

Summary ........................................................................................................................ 191

Part III: Making Your Life Easier ............................................................................ 193

■Chapter 9: Drupal Community: Getting Help and Getting Involved ...................... 195

How to Get the Most from Your Participation ................................................................. 196



■ CONTENTS 

xii 

Where to Find the Community ........................................................................................ 196
Reading, Listening, and Watching ........................................................................................................ 196

IRC ......................................................................................................................................................... 199

The Issue Queues .................................................................................................................................. 201

Summary ........................................................................................................................ 202

■Chapter 10: Planning and Managing a Drupal Project ........................................ 203

The Role of Limitations .................................................................................................. 203

Putting Down Your Concept on Paper ............................................................................ 204
1. Discovery .......................................................................................................................................... 205

2. Information Architecture ................................................................................................................... 206

3. Design ............................................................................................................................................... 206

4. Development and Implementation .................................................................................................... 207

5. Content .............................................................................................................................................. 207

6. Deployment/Launch .......................................................................................................................... 207

7. Maintenance ..................................................................................................................................... 207

Project Management Methodologies and Drupal ........................................................... 207

Taking the Lifecycle into Account on Paper ................................................................... 209
What’s a Project Plan? .......................................................................................................................... 209

Estimating Completion Dates ................................................................................................................ 211

Risks ..................................................................................................................................................... 212

Minimum Viable Project/Product .......................................................................................................... 212

Keeping Track of Commitments ............................................................................................................ 212

Project Manager Tasks Beyond Development ............................................................... 213
Kickoff Meetings ................................................................................................................................... 213

Discovery Meetings ............................................................................................................................... 214

Information Architecture/Design Meetings ........................................................................................... 214

Development Meetings ......................................................................................................................... 215

Checkins ............................................................................................................................................... 215

Milestone Closing Meetings .................................................................................................................. 215

Launch Meetings ................................................................................................................................... 216

Post-Project Debriefs ............................................................................................................................ 216

Other Tasks for Project Managers ................................................................................. 216



■ CONTENTS

xiii

Creating User Stories ............................................................................................................................ 216

Implementing Tasks and Task Workflow .............................................................................................. 217

Tasks That Make up Milestones ........................................................................................................... 217

Bad Days ............................................................................................................................................... 218

Further Resources .......................................................................................................... 219

■Chapter 11: Documenting for End Users and the Production Team .................... 221

What Makes Good Documentation? ............................................................................... 221

Getting Clients into Content Entry Early ......................................................................... 222

Creating End-User Documentation Post-Launch ............................................................ 222

The Anatomy of Good Client Documentation .................................................................. 223

Documenting for the Development Team ...................................................................... 225

Documenting for the Community ................................................................................... 226

The More You Know ....................................................................................................... 226

■Chapter 12: Development Environment ............................................................... 227

Starting with Quickstart ................................................................................................. 228

Enhancing Your Existing Dev Environment .................................................................... 229
Hosting Your Site Locally ...................................................................................................................... 230

Accessing the Command Line ............................................................................................................... 230

Working with Rendered HTML, CSS, and JavaScript ............................................................................ 231

Browser and Device Compatibility Testing ........................................................................................... 232

Working with PHP Files ......................................................................................................................... 233

The Most Basic Development Environment ................................................................... 233
Select Hosting Service .......................................................................................................................... 234

Uncompressing Archives ...................................................................................................................... 238

Server-Side Tasks and Tools ................................................................................................................ 239

Summary ........................................................................................................................ 241

■Chapter 13: Putting a Site Online and Deploying New Features ......................... 243

Putting Your Site Online ................................................................................................. 243
1. Export the Database .......................................................................................................................... 244



■ CONTENTS 

xiv 

2. Transfer to Server ............................................................................................................................. 245

3. Create a Database on the Server and Import Your Database ............................................................ 245

4. Set the Database Settings in settings.php ........................................................................................ 246

5. Point Incoming Traffic for Your Domain(s) to Your Site on the Server .............................................. 247

Before You Go Any Further, Back Up .............................................................................. 249

Staging and Deployment ................................................................................................ 251
Approach ............................................................................................................................................... 252

The Workflow ........................................................................................................................................ 252

Bringing Content from Production to Development (and Stage/QA) ..................................................... 253

Bring Code Changes from Development to Stage, then Live ................................................................ 254

How to Put “Everything In Code” .......................................................................................................... 256

Development Workflow Recap .............................................................................................................. 260

Summary ........................................................................................................................ 261

■Chapter 14: Developing from a Human Mindset .................................................. 263

Use Revision Control ...................................................................................................... 263

Backup ........................................................................................................................... 263

Experiment Freely .......................................................................................................... 264

Contribute ...................................................................................................................... 265

Part IV: Front-End Development ............................................................................. 267

■Chapter 15: Theming ........................................................................................... 269

The Core Themes Directory ............................................................................................ 269
Core Themes ......................................................................................................................................... 270

Theme Engines ..................................................................................................................................... 273

Theme Administration .................................................................................................... 274
Enabling and Setting a Default Theme .................................................................................................. 274

Administration Theme ........................................................................................................................... 275

Global Theme Settings .......................................................................................................................... 275

Installing a New Theme ........................................................................................................................ 277

Defining Theme Metadata (.info Files) ........................................................................... 278
Required Properties .............................................................................................................................. 279



■ CONTENTS 

xv 

Additional Properties ............................................................................................................................. 279

Working with Regions .................................................................................................... 282
Default Regions ..................................................................................................................................... 284

Hidden Regions ..................................................................................................................................... 286

Module-Specific Regions ...................................................................................................................... 287

Regions and Your Theme ...................................................................................................................... 288

Using Regions vs. Hard-coding Variables in Template Files ................................................................. 288

Layout Strategies .................................................................................................................................. 289

Template Files ................................................................................................................ 293
Common Core Templates ...................................................................................................................... 295

Overriding Template Files ..................................................................................................................... 295

Global Template Variables .................................................................................................................... 296

Theme Functions ............................................................................................................ 301
How Theme Functions Are Created ....................................................................................................... 301

Calling Theme Functions ....................................................................................................................... 302

Overriding Theme Functions ................................................................................................................. 302

Theme Hooks and Theme Hook Suggestions ................................................................. 304
What Is a Theme Hook? ........................................................................................................................ 304

Theme Hook Suggestions ..................................................................................................................... 305

Suggestions and Template Files ........................................................................................................... 305

Suggestions and Theme Functions ....................................................................................................... 308

Summary ........................................................................................................................ 310

■Chapter 16: Advanced Theming .......................................................................... 311

Finding Available Variables in the Theme Layer ............................................................ 311
Using the Theme Developer Module ..................................................................................................... 312

Preprocess and Process Functions ................................................................................ 313
Implementing Preprocess and Process Hooks ...................................................................................... 315

Finding the Contents of $variables ....................................................................................................... 317

Preprocess Functions in Action ............................................................................................................. 318

Using the Render API ..................................................................................................... 321
What Is a Render Array? ....................................................................................................................... 321

Identifying Render Elements ................................................................................................................. 322



■ CONTENTS 

xvi 

Manipulating the Output of Render Elements ....................................................................................... 322

Notable Render Arrays in Core Templates ............................................................................................ 326

Introducing render(), hide(), and show() ......................................................................... 327

Theming Forms .............................................................................................................. 329
How Form Markup Is Generated ........................................................................................................... 329

First Steps for Theming Forms .............................................................................................................. 332

Theming Forms with Theme Functions ................................................................................................. 334

Theming Forms with Template Files ..................................................................................................... 336

Modifying Forms Using Alter Hooks ...................................................................................................... 339

Managing CSS Files ....................................................................................................... 341
Aggregation and Compression .............................................................................................................. 341

Patterns and Naming Conventions ........................................................................................................ 342

Adding, Removing, and Replacing CSS Files ........................................................................................ 343

Working with Base and Subthemes ............................................................................... 348
Creating a Subtheme ............................................................................................................................ 348

Inheritance and How It Works ............................................................................................................... 349

Finding a Good Base Theme ................................................................................................................. 349

Tips for Creating Your Own Base Themes ............................................................................................. 351

Sustainability and Best Practices ................................................................................... 351
Start With a Good Base ......................................................................................................................... 351

Override Template Files with Purpose .................................................................................................. 353

Leverage Default CSS Classes .............................................................................................................. 353

Do My Changes Belong in a Module? .................................................................................................... 354

Summary ........................................................................................................................ 354

■Chapter 17: jQuery .............................................................................................. 355

Implementing jQuery and JavaScript ............................................................................. 355
Including JavaScript ............................................................................................................................. 355

JavaScript Libraries .............................................................................................................................. 359

Overriding JavaScript ............................................................................................................................ 362

Drupal Behaviors ................................................................................................................................... 364

Degrading JavaScript/jQuery Nicely ..................................................................................................... 365

jQuery UI ......................................................................................................................... 366



■ CONTENTS

xvii

jQuery UI in Drupal Core .......................................................................................................................... 366

Further jQuery Resources . ............................................................................................ 379

Summary . ...................................................................................................................... 379

Part V: Back-End Development .............................................................................. 381

■Chapter 18: Introduction to Module Development .............................................. 383

A Very Simple Module .................................................................................................... 383
Two Files in a Folder ............................................................................................................................... 383

Where to Put a Custom Module . ............................................................................................................. 386

Create a Repository for Your Module . .................................................................................................... 388

The .info File . .......................................................................................................................................... 388

The .module File ...................................................................................................................................... 392

Hooks . ..................................................................................................................................................... 393

Technical Skills . ............................................................................................................ 398
PHP Basics . ............................................................................................................................................. 398

Terminology . ........................................................................................................................................... 399

Operators and Conditional Statements . ................................................................................................. 399

Control Structures ................................................................................................................................... 402

Drupal Coding Standards ........................................................................................................................ 404

Development Tip #1: When Something Isn’t Working, Clear Caches . ................................................... 407

Development Tip #2: When Anything’s Missing, Check Permissions . ................................................... 407

Development Tip #3: Set Your Site to Show All Errors ........................................................................... 408

Summary . ...................................................................................................................... 408

■Chapter 19: Using Drupal’s APIs in a Module ...................................................... 409

Altering Forms . .............................................................................................................. 409

Localization with t() and format_plural() . ...................................................................... 412

Finding a Drupal Function That Does What You Need ................................................... 414
Investigating What the Function Gives You . ........................................................................................... 416

Creating a Page with hook_menu() ............................................................................... 421
Choosing a Path for an Administration Page . ......................................................................................... 422

Defining a Page with a Normal Menu Item . ........................................................................................... 422



■ CONTENTS 

xviii 

Defining a Tab with a Local Task Menu Item ........................................................................................ 425

Declaring Menu Items for X-ray Module ............................................................................................... 425

Using Existing Permissions in Your Module ................................................................... 426
Finding Permissions’ System Names in the Database .......................................................................... 428

Finding Permissions’ System Names in Code ....................................................................................... 430

A Second Local Task to Complement the Default Local Task ........................................ 431

Call All Implementations of a Hook ................................................................................ 432

Format Data for Display as a Table ................................................................................ 433
Documenting Themeable Code with @ingroup themeable ................................................................... 433

Making Modules Themeable .......................................................................................... 435
Resources for Theming in Modules ...................................................................................................... 436

A More Drupal 7 Approach: Leveraging the Power of Render Arrays ................................................... 436

Calling a Drupal Function Directly .................................................................................. 438

Styling Your Module: Adding a CSS File ......................................................................... 440

Database API .................................................................................................................. 442
Fetching Data with a Select Query ........................................................................................................ 443

Fetching Data with a Static Query with a Join on Two tables ............................................................... 445

A Non-Database Interlude: Displaying the Same Data in Two Locations .............................................. 447

Using variable_get() and Another Static Select Counting and Grouping Query ..................................... 450

Dynamic Queries ................................................................................................................................... 450

The .install File ...................................................................................................................................... 451

Figuring Out Your Data Model ............................................................................................................... 452

Creating a Database Table .................................................................................................................... 453

Inserting and Updating Data ................................................................................................................. 455

Displaying Data in a Sortable Table ............................................................................... 456

Drupal Entities:  Common Structure Behind Site Components ...................................... 460

Summary ........................................................................................................................ 461

■Chapter 20: Refining Your Module ...................................................................... 463

Creating a Configuration Page for Your Module ............................................................. 463
Building a Settings Form ....................................................................................................................... 465

Defining New Permissions .................................................................................................................... 467



■ CONTENTS 

xix 

Conditionally Taking Action Based on Configuration or User Access .................................................... 468

Writing a Utility Function when Drupal APIs Miss Your Need ......................................... 470
Listing Data as Human-Readable, Properly-Punctuated Text ............................................................... 470

Making Mistakes and Embracing Error Messages ......................................................... 472
Searching for Answers .......................................................................................................................... 472

Syntactic Fatal Errors ............................................................................................................................ 472

Runtime Fatal Errors ............................................................................................................................. 473

Tracking Down the Cause of Errors and Warnings ............................................................................... 473

Making a Preprocess Function ....................................................................................... 476

Final Considerations ....................................................................................................... 478
Coder Module Review ........................................................................................................................... 478

Peer Review .......................................................................................................................................... 479

Using hook_help() as Drupal Intended .................................................................................................. 480

Summary ........................................................................................................................ 483

■Chapter 21: Porting Modules to Drupal 7 ............................................................ 485

Deciding to Upgrade a Module ....................................................................................... 485
Posting the Issue ................................................................................................................................... 486

Why Not Custom Code? ......................................................................................................................... 488

Undertaking the Upgrade ............................................................................................... 488
Keeping Track of What You Need to Know ............................................................................................ 489

Automating (Part of) the Module Upgrade ............................................................................................. 489

Identifying What’s Wrong ...................................................................................................................... 493

Finding Models to Follow ...................................................................................................................... 497

Contributing the Upgrade to Drupal.org ......................................................................... 498

■Chapter 22: Writing Project-Specific Code .......................................................... 501

Custom Modules ............................................................................................................ 501

Hooks ............................................................................................................................. 503

The Method .................................................................................................................... 503
What is it that I need to modify and why am I doing it? ........................................................................ 503

Where can I hook into? ......................................................................................................................... 504



■ CONTENTS 

xx 

What is already there? .......................................................................................................................... 504

How can I modify existing functionality for my own needs? ................................................................ 504

An Example: Changing the Label of a Submit Button ............................................................................ 505

Specific Use Cases ......................................................................................................... 506
Hiding Elements from the User Interface .............................................................................................. 507

Execution Order of Hooks ...................................................................................................................... 508

Working with Fields .............................................................................................................................. 509

Adding Dynamic Front-End Interaction ................................................................................................. 510

Making Code Reusable .................................................................................................. 511
Make Functionality Configurable .......................................................................................................... 512

Tie Components Together ..................................................................................................................... 513

Document Your Code ............................................................................................................................ 513

Follow Drupal’s Coding Standards ........................................................................................................ 513

Release Your Work ................................................................................................................................ 514

Summary ........................................................................................................................ 515

■Chapter 23: Introduction to Functional Testing with Simpletest ........................ 517

Advantages (and Caveats) of Using Simpletest ............................................................. 518

When to Use Simpletest ................................................................................................. 518

What Is Test-Driven Development (TDD)? ...................................................................... 519

How Simpletest Works ................................................................................................... 519

Setting up and Running a Test ....................................................................................... 520

Anatomy of a .test File ................................................................................................... 522
Writing Your First Test .......................................................................................................................... 523

Running Your First Test .................................................................................................. 526

Simpletests and Forms .................................................................................................. 528

The Simpletest API and Further Reading ....................................................................... 530

Submitting a Patch to Drupal.org ................................................................................... 531

Summary ........................................................................................................................ 531

■Chapter 24: Writing a Major Module ................................................................... 533

How Not to Build a Module ............................................................................................. 534



■ CONTENTS

xxi

Know the Tools Drupal Gives You .................................................................................. 535

Should Your Module Provide an API? ............................................................................. 536
Keep API and UI Separate ..................................................................................................................... 536

Use APIs to Hide Complexity ................................................................................................................. 537

Making Your Module Modular ........................................................................................ 537
Unleashing the Power of Hooking Into Your Module ............................................................................. 537

Progressive Enhancement: Making Use of Other Modules If They Are Enabled ................................... 538

Getting Started with a Test Environment ....................................................................... 539
Stealing Some Code to Start ................................................................................................................. 540

Sharing Your Code in a Sandbox on Drupal.org .................................................................................... 541

Planning Your Approach ................................................................................................. 541
Outlining an API ..................................................................................................................................... 542

Diving Into Doing ................................................................................................................................... 542

Defining Your Data Model .............................................................................................. 547
How to Store the Data and How to Edit It in the UI ............................................................................... 548

Providing a New Entity Type .......................................................................................... 549
When to Create an Entity Type ..................................................................................................... 550

How to Create an Entity Type ....................................................................................................... 550

Defining an Entity Access Callback Function ........................................................................................ 554

Giving Your Entities an Administrative Interface ............................................................ 556

Programmatically Creating and Attaching Fields ........................................................... 559
Finding a Model .................................................................................................................................... 559

Define Done .................................................................................................................... 561

Part VI: Advanced Site-Building Topics .................................................................. 563

■Chapter 25: Drupal Commerce ............................................................................ 565

Drupal Commerce Overview .......................................................................................... 565

Key Features .................................................................................................................. 565

Digging Into Drupal Commerce ...................................................................................... 566
Commerce ............................................................................................................................................. 569

Price ...................................................................................................................................................... 569



■ CONTENTS 

xxii 

Dynamic Pricing .................................................................................................................................... 570

Product .................................................................................................................................................. 571

Line Item ............................................................................................................................................... 573

Product Reference ................................................................................................................................ 575

Building a Product Display Node Type .................................................................................................. 575

Customer ............................................................................................................................................... 577

Order ..................................................................................................................................................... 577

Payment ................................................................................................................................................ 578

Enabling Payment Methods .................................................................................................................. 579

Checkout ............................................................................................................................................... 581

Cart ....................................................................................................................................................... 583

Summarizing the Main Components ..................................................................................................... 584

Implementing Drupal Commerce ................................................................................... 585

Development History ...................................................................................................... 586
Design Philosophy ................................................................................................................................. 587

Development Standards ........................................................................................................................ 588

Building on Drupal 7 ....................................................................................................... 589
Core Entities and Fields ........................................................................................................................ 589

Forms API Improvements ...................................................................................................................... 591

Contributed Module Dependencies ....................................................................................................... 592

Summary ........................................................................................................................ 593

■Chapter 26: Drush ............................................................................................... 595

Getting Started with Drush ............................................................................................. 596
Drupal Site Selection in Drush Commands ........................................................................................... 597

Drush Alias Files (aliases.drushrc.php) ................................................................................................. 600

Using the Drush Shell ............................................................................................................................ 601

Applying Code Updates with Drush ................................................................................ 603

Installing Drush Extensions ............................................................................................ 606

Going In-Depth with Drush Configuration Options and Aliases ...................................... 607
Drush Contexts ...................................................................................................................................... 608

Command-Specific Options .................................................................................................................. 609

Site Lists ............................................................................................................................................... 609



■ CONTENTS

xxiii

Using Remote Commands to Deploy Sites with Drush ................................................... 610
Setting Up an SSH Key Pair ................................................................................................................... 611

Making a Local Copy of a Remote Drupal Site ...................................................................................... 612

Managing Dump Files ........................................................................................................................... 614

Using sql-sync Without Installing Drush on the Remote System .......................................................... 615

Using the Drush Site Context to Control sql-sync Options .................................................................... 616

Scripting with Drush ...................................................................................................... 617
Processing Script Command Line Arguments and Options ................................................................... 618

Running External Commands ................................................................................................................ 619

Processing Invoke Process Results ...................................................................................................... 620

Output and Logging ............................................................................................................................... 621

Prompting the User ............................................................................................................................... 623

Logging and Error Reporting ................................................................................................................. 624

Writing Drush Extensions ............................................................................................... 626
The Drush Command Hook ................................................................................................................... 627

Providing the Command Implementation Function ............................................................................... 628

Return an Array to Pass Structured Data to Other Drush Scripts .......................................................... 629

Manually Specify the Command Function with a Callback Item ........................................................... 629

Placing the Command Implementation in a Separate File .................................................................... 629

The Drush Help Hook ............................................................................................................................ 630

Altering Drush Command Behavior ....................................................................................................... 631

Summary ........................................................................................................................ 633

■Chapter 27: Scaling Drupal ................................................................................. 635

Do You Need to Care About Scaling? ............................................................................. 635

Cache ............................................................................................................................. 636
Disabling Caching During Development ................................................................................................ 637

memcached .......................................................................................................................................... 638

Varnish ........................................................................................................................... 638

On Databases ................................................................................................................. 639
Indexes .................................................................................................................................................. 640

NULL in SQL .......................................................................................................................................... 642

A CAP Between ACID and BASE ............................................................................................................ 643



■ CONTENTS 

xxiv 

MongoDB ........................................................................................................................ 645
Watchdog, Session, and Queue ............................................................................................................ 648

Null Values in MongoDB ........................................................................................................................ 649

Summary ........................................................................................................................ 650

■Chapter 28: Spice Your Content Up With Tasty Semantics .................................. 651

Information Overload ...................................................................................................... 651

How Did We Get There? ................................................................................................. 654

Decentralized Dataspaces ............................................................................................. 654

Linking Data at the Global Web Scale ............................................................................ 655

Do You See What I Mean? .............................................................................................. 656

RDFa, or How HTML Can Be Augmented with Semantics .............................................. 656

RDFa, Microformats and Microdata ............................................................................... 658

Drupal 7 and the Semantic Web .................................................................................... 659

Understanding the Structure of RDF Mappings .............................................................. 661
Working with RDF Mapping Structures ................................................................................................. 661

RDF Vocabularies in Drupal 7 ................................................................................................................ 662

Using RDF Beyond Drupal Core with the Contributed Modules ...................................... 664

Summary ........................................................................................................................ 665

■Chapter 29: The Menu System  and the Path Into Drupal ................................... 667

Drupal’s Menu System by Example ............................................................................... 667

The Never-ending Path .................................................................................................. 673
Structure of a Path ................................................................................................................................ 674

Callback Functions ................................................................................................................................ 676

Loader Functions .................................................................................................................................. 677

Fitness ............................................................................................................................ 679

Modifying Existing Router Items .................................................................................... 680

Summary ........................................................................................................................ 683

■Chapter 30: Under the Hood: Inside Drupal When It Displays a Page ................. 685

Bootstrap ........................................................................................................................ 685



■ CONTENTS 

xxv 

First Bootstrap Phase: Initialize Configuration ...................................................................................... 686

Second Bootstrap Phase: Try to Serve a Cached Page ......................................................................... 687

Third Bootstrap Phase: Initialize the Database Layer ........................................................................... 689

Fourth Bootstrap Phase: Initialize the Variable System ........................................................................ 689

Fifth Bootstrap Phase: Initialize Session Handling ................................................................................ 690

Sixth Bootstrap Phase: Set up the Page Header ................................................................................... 690

Seventh Bootstrap Phase: Find out the Language of the Page ............................................................. 691

Final Bootstrap Phase: Load Modules and Initialize Theme .................................................................. 691

Execution of the Page Callback ...................................................................................... 692
A Typical Example ................................................................................................................................. 694

Summary ........................................................................................................................ 698

■Chapter 31: Search and Apache Solr Integration ................................................. 699
Search Module Administrative Options ................................................................................................. 700

Search Results and Facet Blocks ................................................................................... 703

Search Module API ......................................................................................................... 704
Hooks Implementations Required to Create a Search .......................................................................... 704

Additional Search Module Hooks .......................................................................................................... 704

Apache Solr Search Configuration ................................................................................. 707
Enabled Filters ...................................................................................................................................... 707

Type Biasing and Exclusion .................................................................................................................. 707

Apache Solr Search Customization ................................................................................ 708
Hooks for Getting Data into Solr ............................................................................................................ 708

Hooks for Altering Queries and Results ................................................................................................ 709

Integrating with the Apache Solr Server ........................................................................ 710
Managing Data in the Solr Index ........................................................................................................... 710

Searching and Analysis ......................................................................................................................... 710

Summary ........................................................................................................................ 711

■Chapter 32: User Experience ............................................................................... 713

Modularity ...................................................................................................................... 713

Human API ..................................................................................................................... 713



■ CONTENTS 

xxvi 

Memory .......................................................................................................................... 713

Long Term Memory ........................................................................................................ 714
Mental Model ........................................................................................................................................ 714

Perception ...................................................................................................................... 715
Gestalt Psychology ................................................................................................................................ 716

Law of Similarity ............................................................................................................ 717

Law of Proximity ............................................................................................................ 717
Color ...................................................................................................................................................... 718

Color Harmony ............................................................................................................... 719

Practice .......................................................................................................................... 720
The Process .......................................................................................................................................... 720

The Challenges ...................................................................................................................................... 721

Concept: What Exactly Are You Building? ............................................................................................. 722

Wireframes ............................................................................................................................................ 729

Build: Build an Alpha and Verify with Users .......................................................................................... 733

Optimize: Observations and New Versions ........................................................................................... 734

Running the Usability Test .................................................................................................................... 739

Analysis of Results ................................................................................................................................ 740

Reporting of Issues ............................................................................................................................... 740

Feedback from Issue Queues ................................................................................................................ 741

Release: Project Page and Documentation ........................................................................................... 741

Copywriting ........................................................................................................................................... 743

Causes of Unhelpful Copy ..................................................................................................................... 744

Principles .............................................................................................................................................. 745

■Chapter 33: Completing a Site: The Other 90% ................................................... 747

Creating a View Mode .................................................................................................... 747

Creating a Custom Theming Template ........................................................................... 751

Modifying the Chapter Number Field’s Display .............................................................. 754

Linking to Drupal.org and Twitter Accounts with Field Formatters ............................... 757
Fetching the Username ......................................................................................................................... 763

Caching Simple Data Using Drupal’s Default Cache Table .................................................................... 765



■ CONTENTS

xxvii

Streamlining an Awkward Form Element with CSS . ..................................................... 766

Contextual “Add New” Links for Content Types ............................................................ 767
Finding and Following a Model . ............................................................................................................. 767

 

Noticing and Adopting a Better Way . ..................................................................................................... 770

Making a Custom Text Filter . ........................................................................................ 771
Looking for a Module that Does What You Need . ................................................................................... 771

Choosing an Approach ............................................................................................................................ 772

Finding an Example (Hint: the Examples Project) . ................................................................................. 773

Giving a Module an Interim Name . ......................................................................................................... 773

Start a Repository for Your Module . ....................................................................................................... 775

Making the Tags and Replacement Markup Form ................................................................................. 776

Making Your Own Hook ........................................................................................................................... 783

Filtering the Content ............................................................................................................................... 783

Renaming Your Module ........................................................................................................................... 788

Conditionally Including a Stylesheet for an Administration Page . .........................................................788

Adding a Container Form Element with a Specified Class . ................................................................... 790

Sharing Your Module on Drupal.org . ...................................................................................................... 791

Coda on a Contributed Module . .............................................................................................................. 792

Making a Site-Specific Module that Uses Your API . ............................................................................... 792

The Payoff . .............................................................................................................................................. 794

Adding Custom Markup for Output . ........................................................................................................ 795

Making Next and Previous Links That Mimic Book Navigation . .................................... 795
Pulling the Information ............................................................................................................................ 795

Creating a View to Make User Pages Have Hackable URLs . ......................................... 801

In Conclusion . ................................................................................................................ 802

■Chapter 34: Drupal Distributions and Installation Profiles ................................. 803

Site Templates ............................................................................................................... 803
Full-Featured Services ............................................................................................................................ 804

Development Profiles .............................................................................................................................. 804

An Example Distribution: Drune . ............................................................................................................ 805

Creating Installation Profiles . ........................................................................................ 806
Structure of an Installation Profile . ........................................................................................................ 806



■ CONTENTS 

xxviii 

Dealing with Configuration: Features ............................................................................. 810
Using Installation Profiles and Features as a Development Tool .......................................................... 815

Packaging Your Code ..................................................................................................... 816
Drush Makefiles .................................................................................................................................... 816

Hosting on drupal.org ............................................................................................................................ 817

Packaging ............................................................................................................................................. 817

The Future of Distributions ............................................................................................. 817

Summary ........................................................................................................................ 818

Part VII: Drupal Community .................................................................................... 819

■Chapter 35: Drupal’s Story: A Chain of Many Unexpected Events ....................... 821

The Original Accident ..................................................................................................... 822
Drupal Gains a Foothold ........................................................................................................................ 823

The Extended Weekend from Hell .................................................................................. 825

If You Have a Problem, Please Search Before Posting a Question ................................. 828

The Story Continues ....................................................................................................... 833

■Chapter 36: Now You’re in Business:  Making a Living with Drupal ................... 835

Building a Drupal Site: New Rules for New Technologies .............................................. 835
“I Hate Drupal:” Things That Can Go Wrong ......................................................................................... 835

Understanding Drupal ........................................................................................................................... 836

Building on Drupal ................................................................................................................................. 838

Ensuring Your Success ......................................................................................................................... 841

Building Your Drupal Career ........................................................................................... 843
Finding Your Place ................................................................................................................................ 843

Getting Yourself Out There .................................................................................................................... 844

Out on Your Own: Building a Drupal Business ...................................................................................... 846

Building a Drupal Career ....................................................................................................................... 847

Building Drupal: Making a Living as a Contributor ......................................................... 847
Benefits of “Giving Back” ..................................................................................................................... 847

Sustainability Counts! ........................................................................................................................... 848

Potential Business Models .................................................................................................................... 849



■ CONTENTS 

xxix 

Setting Expectations ............................................................................................................................. 851

Getting Better all the Time ............................................................................................. 851

■Chapter 37: Maintaining a Project ...................................................................... 853

What’s a Drupal Project? ................................................................................................ 853

Set Up Your Drupal.org Account for Contributing ........................................................... 854

Creating a Sandbox Project ............................................................................................ 856

Status ............................................................................................................................. 856

Project Information ........................................................................................................ 857

Digging in with Git .......................................................................................................... 858
Managing SSH ....................................................................................................................................... 858

Hack on Your Project ............................................................................................................................. 859

From Sandboxville to Projectopolis ................................................................................ 861
About Branches and Tags on Drupal.org .............................................................................................. 861

Preparing a Branch for Your Application ............................................................................................... 862

Preparing Your Project for Review ........................................................................................................ 862

Applying for Access .............................................................................................................................. 863

Receiving Access .................................................................................................................................. 864

Summary ........................................................................................................................ 864

■Chapter 38: Contributing to the Community ....................................................... 865

Why Contribute? ............................................................................................................. 866
Without Contributions, There Is No Drupal ............................................................................................ 867

Taking That First Step ........................................................................................................................... 867

Ways to Contribute ......................................................................................................... 869
1. Providing Non-Technical Support ..................................................................................................... 869

2. Sharing Everything ............................................................................................................................ 870

3. Answering Questions in Forums, Groups, Mailing Lists, Meetups, and IRC ...................................... 873

4. Writing Documentation for Drupal.org .............................................................................................. 873

5. Contributing Patches ......................................................................................................................... 874

6. Contributing Code and Design .......................................................................................................... 875

7. Curating Issue Queues ...................................................................................................................... 875



■ CONTENTS 

xxx 

8. Reviewing the Contributions of Others ............................................................................................. 877

9. Making Drupal.org Better .................................................................................................................. 878

10. Hosting and Organizing Meetups, Camps, Summits, and More ...................................................... 879

11. Money ............................................................................................................................................. 880

12. Making the Drupal Community Welcoming ..................................................................................... 881

Building the Movement .................................................................................................. 882

Part VIII: Appendix ................................................................................................. 885

■Appendix A: Upgrading a Drupal Site from 6 to 7 ................................................ 887

Assess the Situation ....................................................................................................... 889
Content Overview .................................................................................................................................. 889

Contributed Modules ............................................................................................................................. 890

Create a Plan ......................................................................................................................................... 891

Run the Upgrade (Again and Again) ............................................................................... 891
Preparation ........................................................................................................................................... 891

Drush Aliases for All Sites Involved in the Upgrade .............................................................................. 892

A Middle Way ........................................................................................................................................ 893

Capturing Additional Upgrade Steps in Update Hooks ................................................... 896
Optional: Begin the Custom Upgrade Functions from the Drupal 7 Version of the Site’s Glue Code 
Module .................................................................................................................................................. 896

Creating an Upgrade Module ................................................................................................................ 897

Enabling Modules in Code ..................................................................................................................... 901

Disabling Modules in Code .................................................................................................................... 901

Automating the Fields Upgrade ............................................................................................................. 902

Rerunning the Upgrade ......................................................................................................................... 903

Create a Feature ............................................................................................................ 905
Consider Creating a Base Feature Module ............................................................................................ 905

Building a Feature Module .................................................................................................................... 905

Adding Feature Modules to the Automatic Upgrade ............................................................................. 906

Data Migration ............................................................................................................... 907
Managing the Process .......................................................................................................................... 907

Understanding the Legacy Data ............................................................................................................ 908



■ CONTENTS

xxxi

Specific Sticking Points ........................................................................................................................ 909

Initial Analysis ....................................................................................................................................... 909

Iterate .................................................................................................................................................... 910

Show ..................................................................................................................................................... 910

Audit ...................................................................................................................................................... 910

Time ...................................................................................................................................................... 910

Launch Day ........................................................................................................................................... 910

Summary ........................................................................................................................ 911

■Appendix B: Profiling Drupal and Optimizing Performance ................................ 913

User-Perceived Performance ......................................................................................... 913

What Makes a Web Site Slow? ...................................................................................... 913

Real Performance .......................................................................................................... 916
Page and Block Level Caching .............................................................................................................. 916

Profiling Drupal, a Primer ...................................................................................................................... 917

Slow Database Queries ......................................................................................................................... 920

Summary ........................................................................................................................ 921

■Appendix C: Page Rendering and Altering .......................................................... 923

Step 1: The Router Item ................................................................................................. 928

Step 2: The Page Callback Is Fired ................................................................................ 928

Step 3: The Delivery Callback ........................................................................................ 928

Step 4: drupal_render_page() ........................................................................................ 929

Step 5. hook_page_alter() .............................................................................................. 929

Step 6. drupal_render() .................................................................................................. 930

■Appendix D: Visual Design for Drupal ................................................................. 933

Why Designers Should Work with Drupal ...................................................................... 933

Designing for Drupal: What It Means ............................................................................. 934

Anatomy of a Drupal Page .............................................................................................. 934

Design from the Content Out .......................................................................................... 938

Making Your Life Easier As a Drupal Designer ............................................................... 939



■ CONTENTS 

xxxii 

Remember—The Purpose of Design Is Communication ....................................................................... 939

Understand Site Architecture and Content Strategy ............................................................................. 939

Choose Fonts Wisely ............................................................................................................................. 939

Clearly Review the Requirements and Outline the Intended Functionality of Special Features ........... 939

Design for the Entire User Experience .................................................................................................. 940

HTML5 in Drupal ............................................................................................................ 940

How You Can Get Involved ............................................................................................. 940

■Appendix E: Accessibility .................................................................................... 941

Recent Enhancements ................................................................................................... 941

What Are the Standards? ............................................................................................... 942

Who Benefits? ................................................................................................................ 942

It’s the Law .................................................................................................................... 943

Nine Ways to Make Your Site Accessible ....................................................................... 943
Accessible Modules .............................................................................................................................. 943

Theming Your Site ................................................................................................................................. 944

Contrast and Color ................................................................................................................................ 944

Automated Testing ................................................................................................................................ 944

Simulation ............................................................................................................................................. 945

Bring in WAI-ARIA ................................................................................................................................. 945

Maintenance is Critical ......................................................................................................................... 945

Schedule Regular Reviews of New and Old Pages ............................................................................... 946

Get Expert Feedback ............................................................................................................................. 946

■Appendix F: Windows Development Environment ............................................... 947

LAMP to WISP ................................................................................................................. 947

Visual Studio .................................................................................................................. 948

WAMP Stack ................................................................................................................... 948

Drupal Bits ..................................................................................................................... 953

VS.Php ............................................................................................................................ 957

phpMyAdmin and MySQL Connector .............................................................................. 963

Drush .............................................................................................................................. 965



■ CONTENTS

xxxiii

Installing Drush for Windows ................................................................................................................ 965

Running Drush ...................................................................................................................................... 968

Summary ........................................................................................................................ 969

■Appendix G: Installing Drupal on Ubuntu ............................................................ 971

Running Ubuntu on Windows or Mac OS X .................................................................... 971

Customizing Ubuntu for Drupal Development with Drubuntu ........................................ 972

Installing Drupal ............................................................................................................. 973

■Appendix H: Mac OSX Installation ....................................................................... 977

Downloading Drupal Core File ........................................................................................ 979

■Appendix I: Setting Up a Drupal Environment with the Acquia Dev Desktop ...... 985
Installation ............................................................................................................................................ 986

Taking It Further .................................................................................................................................... 987

Index: ...................................................................................................................... 991



 

xxxiv 

Foreword 

There are many Drupal books out there vying for your hard-earned money. From site building to 
theming to module development, there are books out there that specialize in whatever area of Drupal 
you might be interested in. 

This book, on the other hand, is one of a kind. Its aim is to expose you to all facets of Drupal, in 
many cases from the very experts who helped author them. There is material here for literally all levels of 
Drupal experience and interest. 

The book starts with introductory material about getting up and running quickly with a simple site 
and how to extend it with some of Drupal’s most popular contributed modules. There are also chapters 
on how to make your Drupal site not look like a Drupal site with both beginning and advanced theming 
and jQuery for front-end development. You’ll learn how to customize Drupal through module 
development, for use cases that go beyond what the vast library of contributed projects can do, as well as 
how to port Drupal 6 modules to Drupal 7 and how to add automated tests to ensure your code stays 
working. And for the übergeeks out there, there’s information on utilizing Drupal from the command 
line and pairing it with Git, and managing server deployments and performance. There’s even material 
about more wide-reaching topics that expand far beyond Drupal, such as project management, creating 
documentation for your web site, and user experience. 

Found throughout are best practice recommendations and tales of battle directly from the field, 
from a truly all-star cast of some of the biggest, brightest, and most innovative minds in the Drupal 
community. As the co-maintainer or Drupal 7, I’m incredibly excited to see this enormous body of work 
come together. Bravo to Benjamin and the rest of the authoring team! 
 

Angela Byron (webchick) 
Drupal 7 Maintainer



 

xxxv 

About the Authors 

■ Benjamin Melançon, as a co-founder and principal of Agaric (agaric.com), helps people create and 
use powerful web sites. He and Agaric look to work with companies and organizations that value 
openness and freedom and share a passion for creating collaborative networks that scale. Seeking the 
most power possible for all people over their own lives (as a working definition of justice and liberty), 
Benjamin lives to connect ideas, resources, and people. 

 
■ Albert Albala began dabbling in Drupal in 2006, after completing a university undergraduate degree 
combining linguistics and computer science and. After two years with Joomla, he co-founded 
Mediatribe.net, a partnership offering Drupal consulting services. In 2009 he joined Koumbit, a Drupal-
oriented not-for-profit collective in Montreal. Being part of a larger team has allowed him to concentrate 
on Simpletest and Features, two areas that are reinforcing the quality of Drupal sites as the platform 
matures. Albert’s other activities include small-scale international development projects through Terre 
des jeunes. 

 
■ Greg Anderson is one of the co-maintainers of drush, the Drupal shell. He also runs the Developer 
Technical Support Group in the Americas for Ricoh Corporation. Greg uses Drupal in both his work and 
in his personal life. He did the Drupal conversion of the web site for The Great Dickens Fair, where he 
and other performers bring the spirit of Christmas to life. He is assisting with another large migration of 
many web sites for The Society for Creative Anachronism, a historic recreation society where he and his 
wife run the children’s program. He also works with a community school district support group and 
writes an environmental blog with his wife. 

 
■ Sam Boyer led the Drupal project's migration from CVS to Git and continues to lead the efforts of the 
Drupal.org Git Team to expand Git-related features on Drupal.org. To that end, he is also a member of 
the d.o infrastructure team. 

Sam’s core contributions were light prior to D8, but he now devotes a fair bit of effort to a scattering 
of Drupal's lower-level, critical path systems. In contrib, he co-maintains Panels and CTools with 
merlinofchaos, and he leads maintainership of the Version Control API suite of modules. 

 
■ Ed Carlevale is a long-time web developer at MIT, working in the area of energy and sustainability 
(mitenergyclub.org, sustainability.mit.edu). As the founder of the nascent MIT Drupal Group, he has 
hosted many Drupal events at MIT, including Dries Buytaert’s State of Drupal (MIT World, 2009), Boston 
Design4Drupal Camp 2009 and 2010, and the monthly meetings of the Boston Drupal Group, led by 
Moshe Weitzman. 

 
■ George Cassie has built a variety of sites and tools with Drupal, starting back in version 4.7. He 
currently works as a Client Advisor at Acquia with a focus on Drupal Gardens. 

 
■ Nathaniel Catchpole has been using Drupal since version 4.5 and has been a regular contributor to 
Drupal core since 2006. He contributed more than 400 patches to the Drupal 7 release alongside 
extensive code profiling, and he maintains the entity cache and performance hacks contributed 
modules. 

 



■ ABOUT THE AUTHORS 

xxxvi 

■ Stéphane Corlosquet holds a master’s degree specializing in Semantic Web from the Digital 
Enterprise Research Institute (DERI), Ireland. He currently works at the Mass General Institute for 
Neurodegenerative Disease (MIND), MGH, as a Software Engineer focusing on the Science 
Collaboration Framework, a Drupal-based distribution to build online communities of researchers in 
biomedecine.  

Stéphane has contributed to Drupal 6 and is one of the top 30 contributors to Drupal 7 core. He 
maintains the RDF module in Drupal 7 and is a member of the Drupal security team. Since joining the 
community in 2005, he has been a speaker at many DrupalCons and DrupalCamps, mostly on the topic 
of RDF and Drupal. He co-authored “Produce and Consume Linked Data with Drupal!” which won the 
ISWC 2009 Best Semantic Web In Use Paper award.  

Stéphane lives in the Boston area with his beloved wife, Diliny, new-born son, Kiran, and hyper-
active dog, Maya. 

 
■ Kasey Qynn Dolin is an anthropologist with extensive experience studying (and organizing) the 
growth and survival of communities and not-for-profit projects. She received a BS in Anthropology, with 
minors in Latin American Studies (focus on Brazil) and International Studies from Virginia 
Commonwealth University. Her published works include “Candombléwords, Sounds, and Power in 
Jamaican Rastafari” and “Yorùbán Religious Survival in Brazilian Candomblé.” 

 
■ Robert Douglass has worked with Drupal full-time since 2004. He wrote the first book that was 
published about Drupal (Building Online Communities with Drupal, phpBB and Wordpress; Apress, 
2005) and has been the technical editor of all three editions of Pro Drupal Development (Apress, 2007). 
Through teaching and personal influences he has helped hundreds of people transition into careers as 
Drupal developers and service providers. In 2005 he led Drupal’s involvement in the first Google 
Summer of Code program and has been active as a leader and mentor ever since. 

Robert has been a member of the Drupal Association General Assembly since 2006 and has actively 
participated in many Association activities, including the organization of DrupalCons and 
DrupalCamps. In 2008 he co-founded the Drupal-Initiative, Germany’s non-profit for the promotion of 
Drupal. After a two-year tenure as the Vice President of that organization, he helped coordinate the 
election of a new Board and handed over control in 2010. 

In 2007 Robert founded and built goPHP5.org, an initiative to bring open source PHP projects and 
Webhosts together in order to speed the upgrade to PHP5. One result of this is that Drupal 7 
relinquished PHP4 compatibility, allowing the core team to do things like add the PDO database drivers. 
Over 100 software projects and over 200 web hosts joined the movement and it received a lot of press. 

Robert’s largest code contributions to Drupal have come in the form of the Apache Solr module and 
the Memcache module, both of which began in 2007 and which he still maintains today. In addition to 
being a full-time consultant and Advisor for Acquia, Robert also serves on the advisory boards of 
Commerce Guys and ICanLocalize, where he helps with business, product, and marketing decisions. 

 
■ Stefan Freudenberg is a back-end developer with some experience in Linux system administration. 
Drawn into developing web sites with Drupal and into the community in late 2008, he has spent most of 
his commercial and volunteer activity on it. His debugging and profiling skills make him popular with 
his teams while arguing for simpler architecture and standards compliance is what he enjoys most but is 
not always as well received. Stefan is a principal at Agaric (agaric.com). 

 
■ Dmitri Gaskin is a Drupal contributor who is perhaps better known as dmitrig01. He started coding 
when he was 8 and started with Drupal when he was 11. Since then, Dmitri has become very familiar 
with Drupal, PHP, JavaScript, and jQuery. He maintains several modules (including Drush Make) but 
mostly works on Drupal core patches. Dmitri has talks at Drupalcon, Badcamp, and Google. When 
Dmitri isn’t coding, he’s writing music, listening to music, or attending the tenth grade. 

 
■ Mike Gifford founded OpenConcept Consulting Inc. in 1999. He has been particularly active in 
developing and extending open source content management systems to empower people to have more 



■ ABOUT THE AUTHORS

xxxvii

control over their own sites. Mike has been very active in building online campaigns for progressive
organizations and politicians in both Canada and the United States. 

Since 2005, OpenConcept (OC) has been developing exclusively on Drupal. The OC team has
contributed a number of modules to the Drupal community and promotes the use of Drupal within the
government and non-profit sectors. 

Mike has been involved with accessibility issues since the early 1990s and is a strong advocate for
standards-based design. Since 2009, he has contributed to the accessibility enhancements adopted by
the Drupal community, including improvements in Drupal 7 core. Mike has presented at DrupalCamp
Toronto & Montreal, most recently on OC’s work on accessibility enhancements. 

■ Dan Hakimzadeh is an original co-founder of Agaric. Dan spends his time and energy building on this
mystical phenomenon popularly called the Internet. He believes in the principles of free open source
software and develops primarily using the Drupal content management framework. 

■ Michelle Lauer (aka miche on drupal.org) started her Drupal adventures in 2006 and quickly became
known for her incredible sense of detail while possessing the ability to see the big picture. These innate
skills allowed Michelle to cultivate her specialty of site architecture and multi-phased deployments. In
addition to custom module development and theming, she develops and implements the strategy for
complex content architecture from the end user experience to the manageability by web site
administrators. Michelle’s resume includes presentations at DrupalCon Paris, DrupalCon San Francisco,
and DrupalCamp Montreal, as well as coordinator and curriculum author for DrupalCamp NH Training
Day. Learn more about Michelle on bymiche.com and follow her on Twitter @bymiche. 

■ Florian Loretan started working with Drupal in 2005, a passion which turned into a full-time job two
years later. As a Drupal developer, he has worked on many large social networking projects and has
provided consulting services to many well-established web development agencies. His contributions
include modules and themes as well as many core patches. Originally from Switzerland, Florian has also
been an active member in many communities worldwide. He was a core organizer of the first Drupal
Dev Days, a track chair for DrupalCon Copenhagen and he has participated in the organization of many
other events. He has given presentations at DrupalCons, DrupalCamps and various local communities
from Geneva to San Diego. Florian is a co-founder of Wunderkraut, a company providing Drupal
coaching and consulting services for the European market. He occasionally writes on his personal blog
at happypixels.com. 

■ Jacine Luisi is a front-end developer, specializing in Drupal theme development. She’s been working
on web sites since 2004 and has been working primarily with Drupal since 2007. She spends much of her
free time working on markup- and CSS-related issues for Drupal core; she also works on contributed
projects such as the Skinr module and the Sky theme. She currently resides in Rye Brook, NY. 

■ Forest Mars is a hypermedia architect who has been using Drupal since 2005—mainly in the space of
media and business integration—and is extremely active in the Drupal community. As a member of the
DrupalCon Paris 2009 team he built the infamous “Druplicon Road Trip” site. Some of his recent projects
include architecting a video delivery platform for the world's largest television network and New York City’s
first civic engagement platform. In whatever time he has left over he gives talks on the Drupal API such as
“Bongo for Mongo” and “The Horrible Truth about Drupal.” He lives in New York without his two cats. 

■ Allie Micka has been an open source developer and advocate since 2001. She has worked on several
open source applications, including three years of extensive development and participation in the
Drupal project. Through her hosting and services work, she has provided active sponsorship and
education in local communities and now works on education, infrastructure and open source
development at Advantage Labs. Prior to this, Allie was the team manager of web development for a
major online brokerage, which taught her to apply enterprise business strategies to sustainable
community participation. 



■ ABOUT THE AUTHORS 

xxxviii 

■ Robin Monks (robinmonks.com) is an avid open source contributor with over seven years experience 
within the Drupal community and is the founder of Podhurl Inc. He currently works on tools and 
services to expand the growth of the “Open Web.” 

 
■ Károly Négyesi spent the 1990s as a columnist and editor of Hungary’s then-largest computing 
monthly, Chip Magazine. After that, he turned to web programming. His life and Drupal got hopelessly 
entangled in 2004. Since then he has become one of the most prolific core contributors with a brief stint 
of being the first leader of the security team. These days he is the senior software architect for 
Examiner.com, one of the biggest Drupal-based web sites. He is very intrigued about cognitive sciences 
and considers Orson Scott Card’s Ender’s Game as the Book. 

 
■ Dani Nordin (tzk-design.com) is a user experience designer who switched from Wordpress to Drupal 
in 2008. Since then, she’s been active as a voice in the Design for Drupal community and has spent 
entirely too much time looking for ways to make design for Drupal more efficient and effective. She 
speaks regularly at Boston Drupal events, including Boston’s Design for Drupal Camp. Dani is currently 
writing The Designer’s Guide to Drupal, to be released in 2011. You can find her most often on Twitter, 
where she goes by @danigrrl. 

 
■ Mike Ryan has given much to the Drupal community since first contributing in 2003. He’s behind the 
Migrate and Table Wizard modules, and he specializes in migrating data to Drupal as part of Cyrve. He 
was also the original author of the Pathauto module, the extremely popular Drupal module for 
automatically creating friendly URLs for pages and thus greatly improving SEO. 

 
■ Claudina Sarahe began her career as a front-end developer for both Pop Art and The New Group in 
Portland, Oregon. In 2007, she left the West Coast and set up shop in New York, where she began work at 
the Huffington Post. She then went on to become one of the founding members of UNICEF Innovation. 
It was at UNICEF where her interest in open-source technology strategies developed. She further 
pursued this at Method, leading interactive development for clients such as Charlie Rose, PBS, 
Scholastic, and Count Me In. She lead the strategy and initial product development for Vestify, a 
crowdfunding web application for entrepreneurs powering the MassChallenge Global Start-Up 
Competition. 

For the last three years and counting she has been working with Drupal and loves the code but 
above all, the community. She still loves front-end development and is excited about the HTML 5 
initiative and overall rise in concern within the Drupal community around front-end issues, including 
usability and accessibility. 

Claudina Sarahe has turned a lot of her focus to bettering collaboration between clients and 
technologists and to Drupal education for less advantaged and bi-lingual middle to high school 
students. She believes the philosophy and practices of open source offer great models for society as a 
whole to learn from. She is currently a principal at Agaric (agaric.com). 

 
■ Amye Scavarda is a project manager. She’s been involved with Drupal since October 2008 and in that 
time has realized how much there is to learn. She runs Function, a consulting company focusing on 
open source, and organizes community events in her spare time. She lives in Portland, OR and you’ll 
find her online as @msamye on twitter and amye in IRC. 

 
■ Roy Scholten is an interaction designer and has a small design studio, yoroy. He lives in the 
Netherlands and speaks Dutch, English, and German. He is the UX maintainer for Drupal 7. Before 
Drupal 7 reached beta, Roy made a Drupal 7 site using only core functionality with a custom theme that 
is CSS only. It’s in Dutch at gaghilversum.nl. 

 
■ Bojhan Somers is an interaction designer living and working in Amsterdam. He is passionate about 
designing complex (web) applications and physical things, and he is studying Interaction Design at 
Utrecht school of Arts. Bojhan is active as UX-Team Lead in the Drupal community, and he regularly 



■ ABOUT THE AUTHORS 

xxxix 

speaks about open source, information architecture, and design on conferences. Bojhan has been 
involved with the Drupal community, helping form the UX team and taking a leading role in bringing 
user experience changes to the core software. He enjoys the challenges of designing in an open source 
environment. 

 
■ Susan Stewart is an eight year Drupal veteran with a passion for community engineering. As Drupal’s 
Support Team lead and president of Drupal Indy Group, Susan is always looking for new ways to grow 
the community and turn passive consumers into active contributors. She works as a Drupal consultant 
in Indianapolis, Indiana. 

 
■ Greg Stout is Director of Technology at GlobalPost. Each month GlobalPost serves breaking and in-
depth global international news to more than 6 million readers from its Drupal site. 

A trained expert in user interface design and development, Greg has 16 years experience in web 
application development, web site development, product and project management, feature planning, 
specification, design, creation, and usability testing. He has worked on a number of high-profile 
commercial web sites including Sovereign Bank and Kinko’s Print on demand B2B service. 

Recently, Greg was part of the User Interface Development team at Ektron Inc., which produces the 
popular .N scalable web authoring and content management solution CMS400.NET. He holds a BA in 
Computer Graphics and Visual Effects from the Roy H. Park School of Communications at Ithaca 
College, Ithaca, NY. 

 
■ Jake Strawn has been working with the web since 1998. He started with a brief background in 
HTML/CSS, moving into PHP/MySQL and web application programming. After almost eight years of 
PHP/MySQL programming, he discovered Drupal and his life was changed forever, as complex tasks 
were made simple with a framework built for extensibility and efficiency. Jake has extensive experience 
with the Drupal framework with over 1600 commits to his name (drupal.org/user/159141). He has been 
a speaker at many Drupal events including DrupalCons and DrupalCamps. Jake works almost 
exclusively with Drupal 7 now and has invested hundreds of hours into learning and expanding on the 
new Drupal 7 APIs, including upgrading his 960 grid-system–based Omega base theme 
(drupal.org/project/omega), which promises to be one of the most powerful base themes in Drupal 7. 
Jake also recently relaunched his blog (himerus.com) on Drupal 7. 

 
■ Ryan Szrama got his start in web development through an online sales company based in Louisville, 
KY, his home of over 10 years. It was there that he nursed Ubercart through its infancy to its use on over 
20,000 web sites as the Project Lead and community face of the project. Ryan joined Commerce Guys in 
2009 and continued to lead Ubercart until switching gears into Drupal Commerce, a new initiative that 
empowers users to build e-commerce sites with the best new features Drupal 7 has to offer. He focuses 
most of his time developing the code base, growing the community of contributors to the project, and 
training new users online and at community events. 

 
■ Brian Travis has been disassembling technology since shortly after birth. Before computers came 
along, he was content with household appliances. An advocate of the “learn by making mistakes” school, 
Brian is never afraid of doing just that. He lives in beautiful New Hampshire. 

 
■ Kay VanValkenburgh is a Boston-based Drupal project director with a strong focus on training and 
mentorship. His latest venture is OwnSourcing, started in 2010 to develop hands-on training and 
project-specific documentation that help non-developers do great things with Drupal. Under the same 
aegis, Kay founded a mentorship program to help budding Drupal developers get their start (see 
ownsourcing.com/mentorship). Kay geeks out on usable software, how people learn, world languages, and 
competitive sailing. 

 
■ Peter Wolanin’s involvement with Drupal dates to late 2005 when a friend who had been a Howard 
Dean supporter involved him in a project to build a new web presence for the local Democratic party 



■ ABOUT THE AUTHORS 

xl 

club. They started building the site using Drupal 4.7 beta. Peter soon became as much interested in the 
challenge of fixing bugs and adding features in Drupal core and contributed modules as actual site 
building. He became a noted contributor to Drupal 5, 6, and 7; a member of the Drupal documentation 
team; a member of the Drupal Security Team; and was elected a Permanent Member of the Drupal 
Association in 2010. Peter joined the Acquia engineering team in 2008, and enjoys the company of his 
stellar colleagues. Peter graduated from Princeton University, received a doctoral degree in Physics from 
the University of Michigan, and conducted post-doctoral and industrial research in Biophysics and 
Molecular Biology. 



 

xli

About the Technical Reviewer 

■ Richard Carter is a seasoned web designer and front-end web developer with a 
focus on integrating designs into content management, e-commerce, and other 
software. He has worked with clients including Directgov, NHS Choices, and 
University College Dublin, and—most memorably—a Buddhist abbey.  

Richard is author of four books (MediaWiki Skins Design, Packt Publishing, 2008; 
Magento 1.3 Themes Design, Packt Publishing, 2011; Joomla! 1.5 Themes Cookbook, 
Packt Publishing, 2010; and Magento 1.4 Themes Design, Packt Publishing, 2011) and 
has acted as a technical reviewer on MediaWiki 1.1 Beginners Guide (Packt Publishing, 
2010) and Inkscape 0.48 Essentials for Web Designers (Packt Publishing, 2010).  
Currently Creative Director at Peacock Carter Ltd, a web design agency based in the 
North East of England, Richard tweets (@RichardCarter) and blogs at 
earlgreyandbattenburg.co.uk. 

 
 

Photo by Chris Ord of  

Xtraordinary Photography,  
xophoto.co.uk 



 

xlii 

Acknowledgments 

Tremendous thanks to all the many people who reviewed or revised any portion of this book, including 
Susan Mildrum of LinioGroup.com (First Steps, Extending Your Site, Module Development), Diliny 
Corlosquet (Commerce), Moshe Weitzman (Drush, Page Rendering), Angela Byron (Scaling Drupal), 
Brian Gilbert, Eric Johnston, Daniel Kudwein (Contributing to the Community), Fox (The Other 90%), 
Rich Johnson (Deploy), Shreya Sanghani and Andrew Grice (Preface, Contributing to the Community), 
Amanda Miller Johnson (Introduction), Evelyn Melançon and Stephen Cataldo (Module Development), 
Matt Corks, Heidi Strohl, Christopher Gervais, Guillaume Boudrias, Shane Bill, Koumbit.org 
(Simpletest), Greg Knaddison, Ben Jeavons, and Nick Maloney (Security), Lin Clark, Oshani Seneviratne, 
Nick Maloney, Boris Mann for the analogy of RDFa and food for robots (Semantic), Benjamin Doherty 
(GIT), Reinhard Gloggengiesser (Site-specific Code, Distributions and Installation Profiles), and Boz 
Hogan (Building a Drupal 7 Site, Views). In addition, various authors put in significant work as reviewers 
also. In particular, Károly Négyesi acted as technical editor and a consistent push for quality on many 
chapters, especially in Part 4 on theming and Part 5 on module development. Stéphane Corlosquet and 
Albert Albala also put in review work on many chapters, joined by Dan Hakimzadeh, Amye Scavarda, Ed 
Carlevale, Dani Nordin, Peter Wolanin, and more. 
 

 
 
 


	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface: Why Drupal?
	Drupal Is a CMS for Building Dynamic Web Sites
	Drupal Is an Application Framework
	Drupal Is a Social and Semantic Web Platform
	Drupal Is a Community
	A Community at Critical Mass

	Drupal Is...
	Easier to Use
	More Flexible
	More Scalable
	Other Changes in 7
	Install Modules and Themes Through the User Interface
	New Core Themes and Enhancements
	Enhancements to Content Entry and Organization
	RDFa Support
	Security and Testing Improvements
	Who Should Read This Book?
	Requirements
	Approach and Philosophy
	Conventions
	Beyond the Book

	How Drupal Works
	What Drupal Really Does

	Planning a Drupal Project: Designing from the Content Out
	Phase 1: Discovery
	Phase 2: Information Architecture and Functional Requirements
	Phase 3: Development Implementation
	Phase 4: Design and Theme Implementation
	Phase 5: Staging, Testing, and Launch


	Building a Drupal 7 Site
	Planning: Setting Parameters and Knowing Where You’re Going
	Discovery: Why Should This Site Be Built?
	Information Architecture: Exactly What Will You Build?
	Design

	Implementation
	Installing Drupal
	Drupal’s Administration Menu
	Appearance: Changing a Core Theme’s Color Scheme
	Extending Functionality with Modules

	Allowing People to Register and Log In with OpenID
	Creating Content Types and Adding Content
	Creating Content
	Blocks: Creating a Mission Statement
	Taxonomy: Categorizing Content
	Users, Roles, and Permissions

	Time for a Celebratory Beverage

	Essential Tools: Drush and Git
	A Beginner’s Guide to Installing Drush
	Git: Development Grease
	Why Git?
	Installing Git
	Working with Git

	Other Useful Git Commands
	Database Backup Tools
	Summary

	Building Dynamic Pages Using Views
	What Are Views?
	Examples of Views Usage
	Download, Enable, and Configure Permissions for the Views Module(s)

	The Views Administration Page
	Advanced Help Module
	Action Links
	Change Which Available Views Are Listed
	Available Views

	Deconstructing a View
	Display Types
	Views Configuration Detail
	Overriding: A Views Concept
	Understanding What Type of Content Will Be Output: Views Filters
	Advanced Filter Criteria Groups: Combining Sorts with Logical Operators
	Understanding the Order in Which Content Will Be Output: Views Sort Criteria
	Understanding What Pieces of Content Will Be Output: Views Format Settings

	Creating a Basic View
	The Goal
	Systematic Approach
	Set Up the Basics for Your Views
	Define the Administrative Information
	Define the Title
	Define What Type of Content You Want to Display
	Define What Elements of the Content You Want to Display
	Define Format Settings
	Define the Order in Which You Want Your Content to Display
	Define the Number of Results
	Add a Menu
	Define Advanced Settings
	Preview Your Work
	Dynamically Editing Your View
	Admire Your View
	Add More Features

	Extend a View
	Handling the Use Case of Zero Results
	One Page, Multiple Displays to Highlight First Result
	Using Tabs for Unique Displays
	Cloning and Making Administrative Tables Using Exposed Filters

	Advanced Views Implementations
	Contextual Filters
	Relationships

	Other Modules
	Exporting to Code
	Additional Resources

	There’s a Module for That
	Modules for Drupal Are Constantly Evolving
	Fewer Modules Is Better
	How to Find and Choose a Module
	What to Do When Something’s Wrong with a Module
	Modules in Core
	Where to Store Contributed Modules
	Site Building Essentials
	Views
	Pathauto
	Token (Dependency)
	Additional Field Types
	WYSIWYG
	Webform
	AntiSpam or Mollom

	Other Modules That May Prove Useful
	Administrative Interface and Content Entry
	Content Display
	Menus and Navigation
	Community Building and Social Networking
	Paths, Search and 404 Errors
	Miscellany

	The Beauty of It All

	Creating Community Web Sites with Organic Groups
	Installing and Configuring Organic Groups
	Group Content Types
	Creating Groups

	Using Views with Organic Modules
	Creating Group Content
	Getting Started with Panels
	Members, Roles, and Permissions
	Summary

	Security in Drupal
	Setting Up a Secure Drupal Site
	Use Strong Passwords
	Reserve User 1 for Administration Purposes Only
	Be Cautious When Assigning Permissions
	Keep Text Formats Tight and Secure
	Avoid Using the PHP Filter Module

	Security Process
	Choosing Modules and Themes: How Secure Are Contributed Projects?
	Keep Your Code Base Current
	Writing Secure Code

	Summary

	Updating Drupal
	Why Update
	Preparation
	Manual Update
	Follow the Steps in UPGRADE.txt

	Drush Update
	Diff Update
	Contributed Modules
	Drupal’s Automated Module Installer
	Updating Modules with Drush

	Summary

	Extending Your Site
	Showcasing Authors with Profile Pages
	Giving Authors a Headshot Image
	Linking from Profiles to Web Sites
	Authors’ Other Homes on the Internet
	A Non-displaying Data Field: Approximate Pages
	Connecting Author Profiles to Authors’ User Accounts
	Giving Authors Permission to Create Profiles

	Listing the Authors
	Building the Authors Headshot View
	Building an Author Biographies View Page, Reachable As a Tab on the Authors View

	Fine-tuning Content Display
	Using View Modes to Display the Same Content in Different Ways
	Modifying Teaser Display and Setting Trim Length

	Making the Table of Contents with Book Module
	Setting Permissions for Organizing and Writing Chapters
	Adding Metadata to the Chapter Content Type with Fields
	Setting How the Chapter Content Type Displays Its Fields
	Using Menu Block to Display a Better Table of Contents
	Adding the Table of Contents to the Main Menu

	Linking Chapters to Their Authors
	Adding a Resource Content Type That References Chapters
	Reusing Chapter’s Image Field
	Allowing People to Attach Generic Files to Content
	Connecting Content Types with a Node Reference
	Managing Resource Content Type Display

	Showing Content That References the Post Being Viewed
	Giving Faces to the People Posting on Your Site
	Adding a Text Format That Allows Images
	Bonus: Making It Easy to Insert Images into Posts

	Limiting Access to the Suggestion Status Field
	Autogenerating Human-readable URLs with Pathauto
	Summary

	Drupal Community: Getting Help and Getting Involved
	How to Get the Most from Your Participation
	Where to Find the Community
	Reading, Listening, and Watching
	IRC
	The Issue Queues

	Summary

	Planning and Managing a Drupal Project
	The Role of Limitations
	Putting Down Your Concept on Paper
	1. Discovery
	2. Information Architecture
	3. Design
	4. Development and Implementation
	5. Content
	6. Deployment/Launch
	7. Maintenance

	Project Management Methodologies and Drupal
	Taking the Lifecycle into Account on Paper
	What’s a Project Plan?
	Estimating Completion Dates
	Risks
	Minimum Viable Project/Product
	Keeping Track of Commitments

	Project Manager Tasks Beyond Development
	Kickoff Meetings
	Discovery Meetings
	Information Architecture/Design Meetings
	Development Meetings
	Checkins
	Milestone Closing Meetings
	Launch Meetings
	Post-Project Debriefs

	Other Tasks for Project Managers
	Creating User Stories
	Implementing Tasks and Task Workflow
	Tasks That Make up Milestones
	Bad Days

	Further Resources

	Documenting for End Users and the Production Team
	What Makes Good Documentation?
	Getting Clients into Content Entry Early
	Creating End-User Documentation Post-Launch
	The Anatomy of Good Client Documentation
	Documenting for the Development Team
	Documenting for the Community
	The More You Know

	Development Environment
	Starting with Quickstart
	Enhancing Your Existing Dev Environment
	Hosting Your Site Locally
	Accessing the Command Line
	Working with Rendered HTML, CSS, and JavaScript
	Browser and Device Compatibility Testing
	Working with PHP Files

	The Most Basic Development Environment
	Select Hosting Service
	Uncompressing Archives
	Server-Side Tasks and Tools

	Summary

	Putting a Site Online and Deploying New Features
	Putting Your Site Online
	1. Export the Database
	2. Transfer to Server
	3. Create a Database on the Server and Import Your Database
	4. Set the Database Settings in settings.php
	5. Point Incoming Traffic for Your Domain(s) to Your Site on the Server

	Before You Go Any Further, Back Up
	Staging and Deployment
	Approach
	The Workflow
	Bringing Content from Production to Development (and Stage/QA)
	Bring Code Changes from Development to Stage, then Live
	How to Put “Everything In Code”
	Development Workflow Recap

	Summary

	Developing from a Human Mindset
	Use Revision Control
	Backup
	Experiment Freely
	Contribute

	Theming
	The Core Themes Directory
	Core Themes
	Theme Engines

	Theme Administration
	Enabling and Setting a Default Theme
	Administration Theme
	Global Theme Settings
	Installing a New Theme

	Defining Theme Metadata (.info Files)
	Required Properties
	Additional Properties

	Working with Regions
	Default Regions
	Hidden Regions
	Module-Specific Regions
	Regions and Your Theme
	Using Regions vs. Hard-coding Variables in Template Files
	Layout Strategies

	Template Files
	Common Core Templates
	Overriding Template Files
	Global Template Variables

	Theme Functions
	How Theme Functions Are Created
	Calling Theme Functions
	Overriding Theme Functions

	Theme Hooks and Theme Hook Suggestions
	What Is a Theme Hook?
	Theme Hook Suggestions
	Suggestions and Template Files
	Suggestions and Theme Functions

	Summary

	Advanced Theming
	Finding Available Variables in the Theme Layer
	Using the Theme Developer Module

	Preprocess and Process Functions
	Implementing Preprocess and Process Hooks
	Finding the Contents of $variables
	Preprocess Functions in Action

	Using the Render API
	What Is a Render Array?
	Identifying Render Elements
	Manipulating the Output of Render Elements
	Notable Render Arrays in Core Templates

	Introducing render(), hide(), and show()
	Theming Forms
	How Form Markup Is Generated
	First Steps for Theming Forms
	Theming Forms with Theme Functions
	Theming Forms with Template Files
	Modifying Forms Using Alter Hooks

	Managing CSS Files
	Aggregation and Compression
	Patterns and Naming Conventions
	Adding, Removing, and Replacing CSS Files

	Working with Base and Subthemes
	Creating a Subtheme
	Inheritance and How It Works
	Finding a Good Base Theme
	Tips for Creating Your Own Base Themes

	Sustainability and Best Practices
	Start With a Good Base
	Override Template Files with Purpose
	Leverage Default CSS Classes
	Do My Changes Belong in a Module?

	Summary

	jQuery
	Implementing jQuery and JavaScript
	Including JavaScript
	JavaScript Libraries
	Overriding JavaScript
	Drupal Behaviors
	Degrading JavaScript/jQuery Nicely

	jQuery UI
	jQuery UI in Drupal Core

	Further jQuery Resources
	Summary

	Introduction to Module Development
	A Very Simple Module
	Two Files in a Folder
	Where to Put a Custom Module
	Create a Repository for Your Module
	The .info File
	The .module File
	Hooks

	Technical Skills
	PHP Basics
	Terminology
	Operators and Conditional Statements
	Control Structures
	Drupal Coding Standards
	Development Tip #1: When Something Isn’t Working, Clear Caches
	Development Tip #2: When Anything’s Missing, Check Permissions
	Development Tip #3: Set Your Site to Show All Errors

	Summary

	Using Drupal’s APIs in a Module
	Altering Forms
	Localization with t() and format_plural()
	Finding a Drupal Function That Does What You Need
	Investigating What the Function Gives You

	Creating a Page with hook_menu()
	Choosing a Path for an Administration Page
	Defining a Page with a Normal Menu Item
	Defining a Tab with a Local Task Menu Item
	Declaring Menu Items for X-ray Module

	Using Existing Permissions in Your Module
	Finding Permissions’ System Names in the Database
	Finding Permissions’ System Names in Code

	A Second Local Task to Complement the Default Local Task
	Call All Implementations of a Hook
	Format Data for Display as a Table
	Documenting Themeable Code with @ingroup themeable

	Making Modules Themeable
	Resources for Theming in Modules
	A More Drupal 7 Approach: Leveraging the Power of Render Arrays

	Calling a Drupal Function Directly
	Styling Your Module: Adding a CSS File
	Database API
	Fetching Data with a Select Query
	Fetching Data with a Static Query with a Join on Two tables
	A Non-Database Interlude: Displaying the Same Data in Two Locations
	Using variable_get() and Another Static Select Counting and Grouping Query
	Dynamic Queries
	The .install File
	Figuring Out Your Data Model
	Creating a Database Table
	Inserting and Updating Data

	Displaying Data in a Sortable Table
	Drupal Entities: Common Structure Behind Site Components
	Summary

	Refining Your Module
	Creating a Configuration Page for Your Module
	Building a Settings Form
	Defining New Permissions
	Conditionally Taking Action Based on Configuration or User Access

	Writing a Utility Function when Drupal APIs Miss Your Need
	Listing Data as Human-Readable, Properly-Punctuated Text

	Making Mistakes and Embracing Error Messages
	Searching for Answers
	Syntactic Fatal Errors
	Runtime Fatal Errors
	Tracking Down the Cause of Errors and Warnings

	Making a Preprocess Function
	Final Considerations
	Coder Module Review
	Peer Review
	Using hook_help() as Drupal Intended

	Summary

	Porting Modules to Drupal 7
	Deciding to Upgrade a Module
	Posting the Issue
	Why Not Custom Code?

	Undertaking the Upgrade
	Keeping Track of What You Need to Know
	Automating (Part of) the Module Upgrade
	Identifying What’s Wrong
	Finding Models to Follow

	Contributing the Upgrade to Drupal.org

	Writing Project-Specific Code
	Custom Modules
	Hooks
	The Method
	What is it that I need to modify and why am I doing it?
	Where can I hook into?
	What is already there?
	How can I modify existing functionality for my own needs?
	An Example: Changing the Label of a Submit Button

	Specific Use Cases
	Hiding Elements from the User Interface
	Execution Order of Hooks
	Working with Fields
	Adding Dynamic Front-End Interaction

	Making Code Reusable
	Make Functionality Configurable
	Tie Components Together
	Document Your Code
	Follow Drupal’s Coding Standards
	Release Your Work

	Summary

	Introduction to Functional Testing with Simpletest
	Advantages (and Caveats) of Using Simpletest
	When to Use Simpletest
	What Is Test-Driven Development (TDD)?
	How Simpletest Works
	Setting up and Running a Test
	Anatomy of a .test File
	Writing Your First Test

	Running Your First Test
	Simpletests and Forms
	The Simpletest API and Further Reading
	Submitting a Patch to Drupal.org
	Summary

	Writing a Major Module
	How Not to Build a Module
	Know the Tools Drupal Gives You
	Should Your Module Provide an API?
	Keep API and UI Separate
	Use APIs to Hide Complexity

	Making Your Module Modular
	Unleashing the Power of Hooking Into Your Module
	Progressive Enhancement: Making Use of Other Modules If They Are Enabled

	Getting Started with a Test Environment
	Stealing Some Code to Start
	Sharing Your Code in a Sandbox on Drupal.org

	Planning Your Approach
	Outlining an API
	Diving Into Doing

	Defining Your Data Model
	How to Store the Data and How to Edit It in the UI

	Providing a New Entity Type
	When to Create an Entity Type
	How to Create an Entity Type
	Defining an Entity Access Callback Function

	Giving Your Entities an Administrative Interface
	Programmatically Creating and Attaching Fields
	Finding a Model

	Define Done

	Drupal Commerce
	Drupal Commerce Overview
	Key Features
	Digging Into Drupal Commerce
	Commerce
	Price
	Dynamic Pricing
	Product
	Line Item
	Product Reference
	Building a Product Display Node Type
	Customer
	Order
	Payment
	Enabling Payment Methods
	Checkout
	Cart
	Summarizing the Main Components

	Implementing Drupal Commerce
	Development History
	Design Philosophy
	Development Standards

	Building on Drupal 7
	Core Entities and Fields
	Forms API Improvements
	Contributed Module Dependencies

	Summary

	Drush
	Getting Started with Drush
	Drupal Site Selection in Drush Commands
	Drush Alias Files (aliases.drushrc.php)
	Using the Drush Shell

	Applying Code Updates with Drush
	Installing Drush Extensions
	Going In-Depth with Drush Configuration Options and Aliases
	Drush Contexts
	Command-Specific Options
	Site Lists

	Using Remote Commands to Deploy Sites with Drush
	Setting Up an SSH Key Pair
	Making a Local Copy of a Remote Drupal Site
	Managing Dump Files
	Using sql-sync Without Installing Drush on the Remote System
	Using the Drush Site Context to Control sql-sync Options

	Scripting with Drush
	Processing Script Command Line Arguments and Options
	Running External Commands
	Processing Invoke Process Results
	Output and Logging
	Prompting the User
	Logging and Error Reporting

	Writing Drush Extensions
	The Drush Command Hook
	Providing the Command Implementation Function
	Return an Array to Pass Structured Data to Other Drush Scripts
	Manually Specify the Command Function with a Callback Item
	Placing the Command Implementation in a Separate File
	The Drush Help Hook
	Altering Drush Command Behavior

	Summary

	Scaling Drupal
	Do You Need to Care About Scaling?
	Cache
	Disabling Caching During Development
	memcached

	Varnish
	On Databases
	Indexes
	NULL in SQL
	A CAP Between ACID and BASE

	MongoDB
	Watchdog, Session, and Queue
	Null Values in MongoDB

	Summary

	Spice Your Content Up With Tasty Semantics
	Information Overload
	How Did We Get There?
	Decentralized Dataspaces
	Linking Data at the Global Web Scale
	Do You See What I Mean?
	RDFa, or How HTML Can Be Augmented with Semantics
	RDFa, Microformats and Microdata
	Drupal 7 and the Semantic Web
	Understanding the Structure of RDF Mappings
	Working with RDF Mapping Structures
	RDF Vocabularies in Drupal 7

	Using RDF Beyond Drupal Core with the Contributed Modules
	Summary

	The Menu System and the Path Into Drupal
	Drupal’s Menu System by Example
	The Never-ending Path
	Structure of a Path
	Callback Functions
	Loader Functions

	Fitness
	Modifying Existing Router Items
	Summary

	Under the Hood: Inside Drupal When It Displays a Page
	Bootstrap
	First Bootstrap Phase: Initialize Configuration
	Second Bootstrap Phase: Try to Serve a Cached Page
	Third Bootstrap Phase: Initialize the Database Layer
	Fourth Bootstrap Phase: Initialize the Variable System
	Fifth Bootstrap Phase: Initialize Session Handling
	Sixth Bootstrap Phase: Set up the Page Header
	Seventh Bootstrap Phase: Find out the Language of the Page
	Final Bootstrap Phase: Load Modules and Initialize Theme

	Execution of the Page Callback
	A Typical Example

	Summary

	Search and Apache Solr Integration
	Search Module Administrative Options
	Search Results and Facet Blocks
	Search Module API
	Hooks Implementations Required to Create a Search
	Additional Search Module Hooks

	Apache Solr Search Configuration
	Enabled Filters
	Type Biasing and Exclusion

	Apache Solr Search Customization
	Hooks for Getting Data into Solr
	Hooks for Altering Queries and Results

	Integrating with the Apache Solr Server
	Managing Data in the Solr Index
	Searching and Analysis

	Summary

	User Experience
	Modularity
	Human API
	Memory
	Long Term Memory
	Mental Model

	Perception
	Gestalt Psychology

	Law of Similarity
	Law of Proximity
	Color

	Color Harmony
	Practice
	The Process
	The Challenges
	Concept: What Exactly Are You Building?
	Wireframes
	Build: Build an Alpha and Verify with Users
	Optimize: Observations and New Versions
	Running the Usability Test
	Analysis of Results
	Reporting of Issues
	Feedback from Issue Queues
	Release: Project Page and Documentation
	Copywriting
	Causes of Unhelpful Copy
	Principles


	Completing a Site: The Other 90%
	Creating a View Mode
	Creating a Custom Theming Template
	Modifying the Chapter Number Field’s Display
	Linking to Drupal.org and Twitter Accounts with Field Formatters
	Fetching the Username
	Caching Simple Data Using Drupal’s Default Cache Table

	Streamlining an Awkward Form Element with CSS
	Contextual “Add New” Links for Content Types
	Finding and Following a Model
	Noticing and Adopting a Better Way

	Making a Custom Text Filter
	Looking for a Module that Does What You Need
	Choosing an Approach
	Finding an Example (Hint: the Examples Project)
	Giving a Module an Interim Name
	Start a Repository for Your Module
	Making the Tags and Replacement Markup Form
	Making Your Own Hook
	Filtering the Content
	Renaming Your Module
	Conditionally Including a Stylesheet for an Administration Page
	Adding a Container Form Element with a Specified Class
	Sharing Your Module on Drupal.org
	Coda on a Contributed Module
	Making a Site-Specific Module that Uses Your API
	The Payoff
	Adding Custom Markup for Output

	Making Next and Previous Links That Mimic Book Navigation
	Pulling the Information

	Creating a View to Make User Pages Have Hackable URLs
	In Conclusion

	Drupal Distributions and Installation Profiles
	Site Templates
	Full-Featured Services
	Development Profiles
	An Example Distribution: Drune

	Creating Installation Profiles
	Structure of an Installation Profile

	Dealing with Configuration: Features
	Using Installation Profiles and Features as a Development Tool

	Packaging Your Code
	Drush Makefiles
	Hosting on drupal.org
	Packaging

	The Future of Distributions
	Summary

	Drupal’s Story: A Chain of Many Unexpected Events
	The Original Accident
	Drupal Gains a Foothold

	The Extended Weekend from Hell
	If You Have a Problem, Please Search Before Posting a Question
	The Story Continues

	Now You’re in Business: Making a Living with Drupal
	Building a Drupal Site: New Rules for New Technologies
	“I Hate Drupal:” Things That Can Go Wrong
	Understanding Drupal
	Building on Drupal
	Ensuring Your Success

	Building Your Drupal Career
	Finding Your Place
	Getting Yourself Out There
	Out on Your Own: Building a Drupal Business
	Building a Drupal Career

	Building Drupal: Making a Living as a Contributor
	Benefits of “Giving Back”
	Sustainability Counts!
	Potential Business Models
	Setting Expectations

	Getting Better all the Time

	Maintaining a Project
	What’s a Drupal Project?
	Set Up Your Drupal.org Account for Contributing
	Creating a Sandbox Project
	Status
	Project Information
	Digging in with Git
	Managing SSH
	Hack on Your Project

	From Sandboxville to Projectopolis
	About Branches and Tags on Drupal.org
	Preparing a Branch for Your Application
	Preparing Your Project for Review
	Applying for Access
	Receiving Access

	Summary

	Contributing to the Community
	Why Contribute?
	Without Contributions, There Is No Drupal
	Taking That First Step

	Ways to Contribute
	1. Providing Non-Technical Support
	2. Sharing Everything
	3. Answering Questions in Forums, Groups, Mailing Lists, Meetups, and IRC
	4. Writing Documentation for Drupal.org
	5. Contributing Patches
	6. Contributing Code and Design
	7. Curating Issue Queues
	8. Reviewing the Contributions of Others
	9. Making Drupal.org Better
	10. Hosting and Organizing Meetups, Camps, Summits, and More
	11. Money
	12. Making the Drupal Community Welcoming

	Building the Movement

	Upgrading a Drupal Site from 6 to 7
	Assess the Situation
	Content Overview
	Contributed Modules
	Create a Plan

	Run the Upgrade (Again and Again)
	Preparation
	Drush Aliases for All Sites Involved in the Upgrade
	A Middle Way

	Capturing Additional Upgrade Steps in Update Hooks
	Optional: Begin the Custom Upgrade Functions from the Drupal 7 Version of the Site’s Glue Code Module
	Creating an Upgrade Module
	Enabling Modules in Code
	Disabling Modules in Code
	Automating the Fields Upgrade
	Rerunning the Upgrade

	Create a Feature
	Consider Creating a Base Feature Module
	Building a Feature Module
	Adding Feature Modules to the Automatic Upgrade

	Data Migration
	Managing the Process
	Understanding the Legacy Data
	Specific Sticking Points
	Initial Analysis
	Iterate
	Show
	Audit
	Time
	Launch Day

	Summary

	Profiling Drupal and Optimizing Performance
	User-Perceived Performance
	What Makes a Web Site Slow?
	Real Performance
	Page and Block Level Caching
	Profiling Drupal, a Primer
	Slow Database Queries

	Summary

	Page Rendering and Altering
	Step 1: The Router Item
	Step 2: The Page Callback Is Fired
	Step 3: The Delivery Callback
	Step 4: drupal_render_page()
	Step 5. hook_page_alter()
	Step 6. drupal_render()

	Visual Design for Drupal
	Why Designers Should Work with Drupal
	Designing for Drupal: What It Means
	Anatomy of a Drupal Page
	Design from the Content Out
	Making Your Life Easier As a Drupal Designer
	Remember—The Purpose of Design Is Communication
	Understand Site Architecture and Content Strategy
	Choose Fonts Wisely
	Clearly Review the Requirements and Outline the Intended Functionality of Special Features
	Design for the Entire User Experience

	HTML5 in Drupal
	How You Can Get Involved

	Accessibility
	Recent Enhancements
	What Are the Standards?
	Who Benefits?
	It’s the Law
	Nine Ways to Make Your Site Accessible
	Accessible Modules
	Theming Your Site
	Contrast and Color
	Automated Testing
	Simulation
	Bring in WAI-ARIA
	Maintenance is Critical
	Schedule Regular Reviews of New and Old Pages
	Get Expert Feedback


	Windows Development Environment
	LAMP to WISP
	Visual Studio
	WAMP Stack
	Drupal Bits
	VS.Php
	phpMyAdmin and MySQL Connector
	Drush
	Installing Drush for Windows
	Running Drush

	Summary

	Installing Drupal on Ubuntu
	Running Ubuntu on Windows or Mac OS X
	Customizing Ubuntu for Drupal Development with Drubuntu
	Installing Drupal

	Mac OSX Installation
	Downloading Drupal Core File

	Setting Up a Drupal Environment with the Acquia Dev Desktop
	Installation
	Taking It Further

	Index
	Special Characters & Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice




