
SMITH

A
ctio

n
Scrip

t 3.0 D
esign

 Pattern
s

US $44.99

Mac/PC compatible

www.friendsofed.com

SHELVING CATEGORY
WEB DESIGN/FLASH

AdvancED ActionScript 3.0
Design Patterns

AdvancED ActionScript 3.0 Design Patterns provides you with the building blocks you

need to effectively utilize object-oriented techniques to develop applications in Flash

Builder and Flash Professional. It demonstrates each pattern with practical code exam-

ples, presenting a fresh look and approach to using proven structured techniques and

methods commonly found in rich interactive application development. This enables you

to find the approach most suitable for your project.

In this book, you’ll learn how to:

• Correctly structure code for reusability and maintainability.

• Recognize patterns and utilize them, or elements of them, in your own project.

• Use object-oriented programming to increase the flexibility of your application.

Whether it’s a design pattern you can entirely use in your own applications, or one that

you can take an element from and develop further, AdvancED ActionScript 3.0 gives you

the raw material you need to use object-oriented programming best practices in your

development to great effect. It helps you to fully understand the benefits of OOP and

master its implementation in your applications.

RELATED TITLES

• Take advantage of the benefits of OOP

• Learn to correctly structure code

• Explore new programming techniques

• Recognize and understand patterns used by professionals in the field

• Write more efficient code

• Think of ActionScript coding in a whole new light

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

CONTENTS

xiv

Introduction

Design patterns are an abstract concept and a subject that involves being vague to help solve problems. This
is somewhat ambiguous and makes design patterns a difficult topic. Fortunately, a difficult subject does not
necessarily mean one that is complicated in its understanding. This will be evident in AdvancED ActionScript
3.0: Design Patterns.

This book requires prerequisite knowledge of ActionScript and Object Oriented Programming, but it
demonstrates the hand-in-hand relationship of OOP and design patterns. The beginning chapters of this
book discuss and detail OOP principles, and while some aspects may be review, all will be preparation for
upcoming chapters. Each chapter will prepare you for the next. Until Chapter 5 (the first review quiz), you will
be reinforcing your knowledge up to that point, as well as creating a foundation for your understanding of the
design pattern chapters. Chapters 6-8 thoroughly cover design patterns. Each pattern discussed is
demonstrated and explained with examples, real-life analogies, and answers to frequently asked
questions. Chapter 9 (the second review quiz of the book) again reinforces your knowledge up to that point.
Chapters 10-12 round out the book by covering the use of combining patterns and discuss how to remain
object-oriented in a fast-paced industry.

Welcome to AdvancED ActionScript 3.0: Design Patterns.

1

Chapter 1

Object-Oriented Programming

Object-oriented programming (OOP) is the practice of creating a software architecture that enables
flexibility through modular design. A programmer who is object-oriented isn’t necessarily one who is a
more advanced coder, but one who chooses to be a more strategic coder, and who adheres to the
principles of OOP. OOP isn’t a language; it’s the practice of architecting and the thought process behind it
that leads to applications and languages being object-oriented, such as ActionScript (AS) 3.0.

AS 3.0 was built as an object-oriented language to mirror the mental model of a programmer who knows
the benefits of breaking code into a series of objects that can message one another. But many who
choose to develop with AS 3.0 don’t use OOP. This is due to the somewhat daunting nature of OOP, as
well as the time required to learn it. AS 3.0 is meant to support the development of flexible architecture,
and using OOP can help prevent unmanageable code. Flexible architecture is easier to modify because
the objects that make up the application possess distinct boundaries, which simplifies substituting among
the objects you’re working with. Therefore, it’s beneficial to code with an object-oriented thought process.
However, that isn’t saying you can’t use AS 3.0 with a procedural programming mindset and be
successful.

Procedural programming, which is a linear method of developing, often culminates in lines of code that
have no separation of behaviors or train of thought. The language becomes nothing more than a series of
routines and subroutines. Procedural programming can work well if you’re the sole developer on a project,
because you’re familiar with your code. However, when more programmers are involved, it can be
cumbersome for them to become familiar with one another’s code and sift through the lines to see where a
change needs to be made. With OOP, each behavior in the application is contained in a unique class,
providing a more elegant way to view object collaborations. Because each unique class possesses a
name, it’s easy to track down; and because it should possess a single behavior, the class has only one
reason to ever change.

CHAPTER 1

2

The image in Figure 1-1 is the result of the procedural code provided in Listing 1-1. The code uses an
image of my cat (Buttercup), and analyzes the pixel information to generate a halftone image.

Figure 1-1. A color image of my cat Buttercup being converted to that of a halftone image

Listing 1-1. The following code converts an image into that of a halftone

import flash.display.BitmapData;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.geom.ColorTransform;
import flash.geom.Rectangle;

var img : BitmapData = new Buttercup(1 , 1);
var sampleSize : int = 4;
var brushSize : int = 4;
var pixelsTall : uint = img.height;
var pixelsWide : uint = img.width;
var rect : Rectangle = new Rectangle(0 , 0 , sampleSize , sampleSize);
var totalBytesToScan : int = pixelsWide * pixelsTall;
var position : int = 0;
var offset : Number = sampleSize * .5;
var averageColor : uint;
var pixels : Vector.<uint > ;
var darks : Number;
var halftone : Shape = new Shape();
var scale : Number;

while (position <= totalBytesToScan)
{
 pixels = img.getVector(rect);

OBJECT-ORIENTED PROGRAMMING

3

 averageColor = grayScaleAverage(pixels);
 darks = brightness(averageColor);

 if (darks > 0)
 {
 halftone.graphics.beginFill(averageColor , 1);
 scale = (255 - darks) / 255;
 halftone.graphics.drawCircle(rect.x + offset , rect.y + offset , Â
 scale * brushSize);
 }

 if (rect.x >= pixelsWide)
 {
 rect.x = 0;
 rect.y += sampleSize;
 }
 else
 {
 rect.x += sampleSize;
 }
 position += sampleSize * sampleSize;
}

addChild(halftone);

function brightness(color : uint) : int
{
 var R : uint = color >> 16 & 0xff;
 var G : uint = color >> 8 & 0xff;
 var B : uint = color & 0xff;
 return int(0.2126 * R + 0.7152 * G + 0.0722 * B);
}

function rgbAverage(pixels : Vector.<uint>) : uint
{
 var colors : uint;
 var pixelLength : int = pixels.length;
 var averageR : uint = 0;
 var averageG : uint = 0;
 var averageB : uint = 0;

var localPixels : Vector.<uint > = pixels;

 while (--pixelLength >= 0)
 {

CHAPTER 1

4

 color = uint(localPixels[pixelLength]);
 averageR += color >> 16 & 0xFF;
 averageG += color >> 8 & 0xFF;
 averageB += color & 0xFF;
 }

 averageR /= pixels.length;
 averageG /= pixels.length;
 averageB /= pixels.length;
 color = averageR << 16 | averageG << 8 | averageB;
 return color;
}

function grayScaleAverage(pixels : Vector.<uint>) : uint
{
 var color : uint;
 var pixelLength : int = pixels.length;
 var averageR : uint;
 var averageG : uint;
 var averageB : uint;
 var localPixels : Vector.<uint > = pixels;

 while (--pixelLength >= 0)
 {
 color = uint(localPixels[pixelLength]);
 averageR += color >> 16 & 0xFF;
 averageG += color >> 8 & 0xFF;
 averageB += color & 0xFF;
 }

 averageR /= pixels.length;
 averageG /= pixels.length;
 averageB /= pixels.length;
 var luma : int = (averageR * 0.3 + averageG * 0.59 + averageB * 0.11);
 color = luma << 16 | luma << 8 | luma;
 return color;
}

This can be considered, and very well may be, a perfectly working system with only 87 lines of code.
However, the code could easily begin to grow unmanageable. I even added a bit of extra code, in case I
want to make a change to the system: the rgbAverage method lets me generate colored halftones if I wish.

Briefly glancing at Listing 1-1 shows it to be cumbersome and gives you little understanding about the
application and how the code functions. You would probably need to analyze the code line by line to gain
true insight into how the application works. But the code can be made much more organized and flexible if

OBJECT-ORIENTED PROGRAMMING

5

it’s built with the four principles of OOP in mind, encapsulation, polymorphism, inheritance, and data
hiding.

Encapsulation
If you have to ask, “What am I looking at?” there is a good chance that what you’re viewing is far from the
norm. For example, you know there is an engine under the hood of a car, yet you ignore such mechanics
and focus on what you’re required to interact with while driving the vehicle—or so it appears. In reality,
you’re concerned with what it takes to get you comfortably from point A to point B. This is known as a
problem domain: what requires the focus in this case is how to remain comfortable or navigate directions.

If you’re attempting to understand engines but they don’t relate to your occupation or a hobby, you’ve
probably changed your focus to a new problem domain: your broken-down engine and how you can fix it.

What you need to know per problem domain must be properly separated from what you don’t need to
know, so you aren’t overloaded with extraneous information. This way, you can maintain your focus.

With this in mind, let’s apply this understanding to the halftone application. The goal of the application is to
take an image and digitally alter its tone, revealing a halftone effect. If, much like the car example, you
separate the engine from everything else to reveal what physically allows the application to move, then
you focus on the code in Listing 1-2.

Listing 1-2. The “engine” of the application

import flash.display.BitmapData;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.geom.ColorTransform;
import flash.geom.Rectangle;

var img : BitmapData = new Buttercup(1 , 1);
var sampleSize : int = 4;
var brushSize : int = 4;
var pixelsTall : uint = img.height;
var pixelsWide : uint = img.width;
var rect : Rectangle = new Rectangle(0 , 0 , sampleSize , sampleSize);
var totalBytesToScan : int = pixelsWide * pixelsTall;
var position : int = 0;
var offset : Number = sampleSize * .5;
var averageColor : uint;
var pixels : Vector.<uint > ;
var darks : Number;
var halftone : Shape = new Shape();
var scale : Number;

while (position <= totalBytesToScan)
{

CHAPTER 1

6

 pixels = img.getVector(rect);
 averageColor = grayScaleAverage(pixels);
 darks = brightness(averageColor);
 if (darks > 0)
 {
 halftone.graphics.beginFill(averageColor , 1);
 scale = (255 - darks) / 255;
 halftone.graphics.drawCircle(rect.x + offset , rect.y + offset , Â
 scale * brushSize);
 }

 if (rect.x >= pixelsWide)
 {
 rect.x = 0;
 rect.y += sampleSize;
 }
 else
 {
 rect.x += sampleSize;
 }
 position += sampleSize * sampleSize;
}

addChild(halftone);

Remarkably, you’ve reduced 87 lines of code into 40 lines that define your system; this code is what you
expect to find as the engine under the hood. The removed lines of code perform behaviors to be used by
the engine and should be separated from the code in listing 1-2 so you can begin to create
distinguishable roles.

Polymorphism
Defining boundaries among your system’s roles allows for interchangeability among other behaviors with
similar method parameters, method name, and return type. These three components of a method are the
contracts that proper messaging requires and together are referred to as a signature. As long as the
signatures between varied implementations remain the same, the behaviors can be swapped to achieve
various results without having to modify much code, if any.

Let’s consider two behaviors extracted from Listing 1-2: grayscaleAverage and rgbAverage. These
behaviors are responsible for determining the average brightness of the parameterized vector of pixels and
returning the calculated value. Whether the value returned possesses three color channels or one is
determined by the method used to perform the calculations.

Because these two behaviors possess individual method names, the invoker of the behavior must be
aware of what behavior is being called, which lessens the flexibility between the messenger and receiver.

OBJECT-ORIENTED PROGRAMMING

7

To allow the two behaviors to be interchanged indistinguishably, you must ensure that both methods
expose a common interface. Because the signatures and return types of both methods are exact, you
must devise a common name by which you can invoke the method. Both methods average the brightness
of a given pixel sample, so you can state that average is the common link between your algorithms (see
Figure 1-2).

Figure 1-2. Both methods must reflect a consistent interface.

But a common interface isn’t enough to enable code substitution with procedural programming. While both
methods make use of the same name, they can’t be added into the application and be compiled without
throwing an error. What we need is a way to distinguish both implementations, while still making use of the
common method name. Enter inheritance.

Inheritance
The concept of inheritance is modeled in object-oriented languages, enabling developers to write code in
the form of hierarchical relationships. As facilitators of OOP, programmers can encapsulate a collection of
behaviors and attributes into an isolated body known as an object. Such an object can then be used when
you create additional objects, which you can do by deriving them from the original object. Much like
children who benefit from the possessions of their mother and father, so can objects benefit through
inheritance. Compartmentalized attributes and behaviors are used by child objects, creating a hierarchy
between the two. A child object in a hierarchy of objects is referred to as a subclass, and its parent is
referred to as its superclass.

Just as humans can be classified as mammals, any subclass in an object-oriented language can be
generalized as a particular collection of attributes and behaviors of any of its ancestors. The referral to all
encapsulated behaviors and attributes as objects indicates that the hierarch of all relationships is an
encapsulation known as Object. Such generalization among varied implementations is required to fulfill
polymorphic behavior.

To use polymorphic behaviors, your references must be typed to a generalization, thus ensuring that any
and all objects to which the reference is assigned possess similar interfaces. This is so the substitution
among objects doesn’t break the messaging between client and receiver.

To create a generic type that ensures both grayscale and color halftone behaviors expose the average
interface, you must create a hierarchical relationship. In this case, the two behaviors are siblings that
inherit the average interface from a common superclass. Not only does inheritance establish a hierarchy to
allow this application to use polymorphism, but it also enables code reuse, which can minimize duplicate
and repetitive code.

As Table 1-1 shows, the two implementations appear nearly identical in a side-by-side sibling comparison.
The only difference between the two is the declaration of the luma variable and its calculation in the
grayscale implementation.

CHAPTER 1

8

Table 1-1. Side-by-side comparison of both halftone algorithms

//color halftone behavior

function average(pixels:Vector.<uint>) Â

: uint{

var color : uint;
var pixelLength : int = pixels.length;
var averageR : uint;

var averageG : uint;
var averageB : uint;
var localPixels : Vector.<uint > = pixels;

while (--pixelLength >= 0)
{

color = uint(localPixels[pixelLength]);
averageR += color >> 16 & 0xFF;
averageG += color >> 8 & 0xFF;
averageB += color & 0xFF;
}

averageR /= pixels.length;
averageG /= pixels.length;
averageB /= pixels.length;
color= averageR << 16 | averageG << 8 | Â
averageB;
return color;

}

//grayscale halftone behavior

function average(pixels:Vector.<uint>) Â

:uint{

var color : uint;
var pixelLength : int = pixels.length;
var averageR : uint;

var averageG : uint;
var averageB : uint;
var localPixels : Vector.<uint > = pixels;

while (--pixelLength >= 0)
{

color = uint(localPixels[pixelLength]);
averageR += color >> 16 & 0xFF;
averageG += color >> 8 & 0xFF;
averageB += color & 0xFF;
}

averageR /= pixels.length;
averageG /= pixels.length;
averageB /= pixels.length;
var luma : int = (averageR * 0.3 + Â
averageG * 0.59 + averageB * 0.11);

color = luma << 16 | luma << 8 | luma;

return color;
}

Referring back to the concept of encapsulation, you can maintain a localized area of focus and minimize
additional lines of code by appropriately situating all common code in the originator of the behavior to
which the code applies. You begin by extracting variables that are common to both methods and inserting
them as attributes of their superclass, as shown in Table 1-2.

OBJECT-ORIENTED PROGRAMMING

9

Table 1-2. Common variables are extracted from both siblings and inserted as attributes of their generic
superclass.

//generic attributes
 var color : uint;
 var pixelLength : int = pixels.length;
 var averageR : uint;
 var averageG : uint;
 var averageB : uint;
 var localPixels : Vector.<uint > = pixels;

//generic operation
function average(pixels : Vector.<uint>) : uint{
 //do nothing

}

//color halftone behavior
function average(pixels:Vector.<uint>)Â

:uint{
pixelLength = pixels.length;
localPixels = pixels;

while (--pixelLength >= 0)
{
color = uint(localPixels[pixelLength]);
averageR += color >> 16 & 0xFF;
averageG += color >> 8 & 0xFF;

averageB += color & 0xFF;
}

averageR /= pixels.length;
averageG /= pixels.length;
averageB /= pixels.length;

color= averageR << 16 | averageG << 8 | Â
averageB;

return color;
}

//grayscale halftone behavior
function average(pixels:Vector.<uint>)Â

:uint{
pixelLength = pixels.length;
localPixels = pixels;

while (--pixelLength >= 0)
{
color = uint(localPixels[pixelLength]);
averageR += color >> 16 & 0xFF;
averageG += color >> 8 & 0xFF;

averageB += color & 0xFF;
}

averageR /= pixels.length;
averageG /= pixels.length;
averageB /= pixels.length;

var luma : int = (averageR * 0.3 + Â

averageG * 0.59 + averageB * 0.11);
color = luma << 16 | luma << 8 | luma;
return color;
}

CHAPTER 1

10

Without the excess variables, you can immediately see that minus two lines of code, both implementations
are exactly the same. We can also move the averaging of all channels from both halftone algorithms into
your superclass as the default implementation of the average interface; then both algorithms can use it.

Table 1-3 uses implementation inheritance, where the default implementation of the interface average in
the superclass is available to both subclasses. In addition, both subclasses can redefine such inherited
implementations, as shown in the table.

Table 1-3. The channel averaging among a sampled region of pixels has been localized to the superclass.

//ChannelAveraging algorithm
//generic attributes
 var color : uint;
 var pixelLength : int = pixels.length;
 var averageR : uint;
 var averageG : uint;
 var averageB : uint;

 var localPixels : Vector.<uint> = pixels;

//default operation
function average(pixels : Vector.<uint>) : uint{
 while (--pixelLength >= 0)
 {

 color = uint(localPixels[pixelLength]);
 averageR += color >> 16 & 0xFF;
 averageG += color >> 8 & 0xFF;
 averageB += color & 0xFF;
 }

 averageR /= pixels.length;
 averageG /= pixels.length;
 averageB /= pixels.length;

 return null;
}

//color halftone algorithm
function average(pixels:Vector.<uint>)Â

:uint{

super.average(pixels)

color= averageR << 16 | averageG << 8 | Â
averageB;

//grayscale halftone algorithm
function average(pixels:Vector.<uint>) Â
:uint{

super.average(pixels)

var luma : int = (averageR * 0.3 + Â
averageG * 0.59 + averageB * 0.11);

OBJECT-ORIENTED PROGRAMMING

11

return color;
}

color = luma << 16 | luma << 8 | luma;
return color;
}

Both subclasses inherit the average implementation to which they immediately refer via the keyword super,
which refers to the superclass’s implementation of the defined method name—in this case, average. From
there, the superclass determines the averaged channels, which are used by the remaining implementation
of both algorithms.

The end result is the reduction of duplicate code, the localization of logic specific to each behavior, and the
increased cohesion of all three objects. We’ve also devised a generalized type where your reference can
be strongly typed, enabling polymorphism between the two behaviors.

Data Hiding
Data hiding is the act of concealing information from a possible client of the application and a possible
problem domain. In object-oriented languages, data hiding helps maintain proper encapsulation and is
enforced by the use of namespaces such as the following:

• Attributes and behaviors that use the private declaration can be targeted/referenced only in

the scope to which they’re declared.

• Protected is a slightly less restrictive use of private. Behaviors and attributes declared as

protected can only be used within the class that defined them, or by that classes subclasses.

• If a class’s attribute or behavior is declared as internal, it can be viewed by any class in the

same package. By default, behaviors and attributes are always internal unless declared

otherwise.

• Any attribute or behavior declared as public can be viewed by any class of any package.

To illustrate why data hiding is so important in OOP, refer back to Table 1-3, which shows distinct
behaviors encapsulated in three unique objects. The first object calculates the average color per color
channel of a sampled range of pixels. The second object calculates those channels into a hexadecimal
color, which is returned to the messaging object. The third object calculates the calculated channels of the
first object into a grayscale tone value, which is returned to the messaging client.

Each object has an obvious role in the application, and when a change is required or a bug occurs, the
object you must modify is apparent. The code is so clear because each object maintains control over the
manipulation of its own attributes—for now, at least. But when another object erroneously references a
variable that doesn’t pertain to it, tracking down an error may become puzzling and delay immediate
repair. Data hiding can help prevent such errors from taking place by ensuring proper visibility among
messaging objects.

As shown in Table 1-4, the average interface is declared public. The attributes declared by the superclass
of the halftone algorithms are another story: they’re marked as both private and protected, thus ensuring
that only appropriate objects can view/manipulate such data.

CHAPTER 1

12

Table 1-4. Addition of namespace modifiers to enforce an object’s ability to maintain its proper states

//ChannelAveraging algorithm
//generic attributes
 protected var color : uint;
 private var pixelLength : int = pixels.length;
 protected var averageR : uint;
 protected var averageG : uint;
 protected var averageB : uint;

 private var localPixels : Vector.<uint> = pixels;

//default operation
public function average(pixels : Vector.<uint>) : uint{
 while (--pixelLength >= 0)
 {

 color = uint(localPixels[pixelLength]);
 averageR += color >> 16 & 0xFF;
 averageG += color >> 8 & 0xFF;
 averageB += color & 0xFF;
 }

 averageR /= pixels.length;
 averageG /= pixels.length;
 averageB /= pixels.length;

 return null;
}

//color halftone algorithm

public function average(pixels :
Vector.<uint>) : uint{

 super.average(pixels)

 color= averageR << 16|averageG << 8 | Â

 averageB;

 return color;

}

//grayscale halftone algorithm

public function average(pixels :
Vector.<uint>) : uint{

 super.average(pixels)

 var luma : int = (averageR * 0.3 + Â

 averageG * 0.59 + averageB * 0.11);

 color = luma << 16 | luma << 8 | luma;

 return color;

}

OBJECT-ORIENTED PROGRAMMING

13

You can further ensure that the attributes of the superclass are read-only to each subclassed behavior by
adding public getter methods as additional interfaces of the superclass. Doing so lets each subclass
retrieve attribute values without being able to reassign a value to the reference. To enforce that each
subclass uses the getter methods versus reading the properties to which they currently have access, you
continue to mark all protected attributes of the superclass as private.

This example illustrates the potential power of an object-oriented language. Remaining object-oriented as
you write code, which makes the code easier to maintain and more flexible. Now that we’ve covered the
principles of OOP, let’s focus on their implementation into an object-oriented language.

Note: It’s always easier to say how to properly engineer a better structure after all is said and done. Don’t
be discouraged if you understood the previous example but can’t yet create OOP code on your own. The
goal is to understand how the building blocks add modularity and flexibility while reducing the possibility of
disaster, by following the four principles of OOP.

ActionScript as an Object-Oriented Language
Working with an object-oriented mentality opens the door to a new manner of programming. ActionScript
lets you flexibly develop rich Internet applications (RIAs) when you program according to the four OOP
principles:

• Encapsulation: ActionScript allows for the compartmentalization of behaviors and data into a

class.

• Polymorphism: Objects within a hierarchy can respond to the operations defined by their

hierarch, when indistinguishably messaged by the client.

• Inheritance: Like every class in the API, a custom class is an extension of the most

generalized class in the language. This most basic class is appropriately called Object. The

Object class makes it possible to add custom classes to a system, as long as those classes

use the proper language structure and syntax.

• Data hiding: A class ensures its own behavioral and data security by using namespaces. In the

ActionScript language, five namespaces provide varying levels of security.

• public: Add the keyword public in lowercase before the declaration of variables or

methods. This namespace modifier provides no security. Behaviors and variables can be

seen and manipulated by all classes and objects.

• Internal: The default namespace. This is the first tier of security in that the class is public,

but only to other classes in the same package.

• private: The opposite of public, allowing no access except by the class that made the

private declaration.

• protected: Similar to private, but visibility among properties and behaviors are available to

classes which subclass the class which defines any protected attribute or behavior.

• final: Ensures that either class or method cannot be extended, and thus protects all

declared behaviors or classes form being modified via inheritance.

CHAPTER 1

14

• Custom namespace: Declaring a custom namespace for either a behavior or an attribute

treats any such modified elements as being private, although it’s only private to classes

which have not opened the custom namespace (we’ll learn more about this later in the

chapter).

Defining an External Definition
Up to now, you’ve explored the principles of OOP and seen how the four principles of OOP work
harmoniously to improve your code architecture. All that remains is to learn how to physically construct
these objects in the AS 3.0 language.

Part of the burden of defining a custom object is that such an object isn’t natively understood by the
compiler. You must tell the compiler what the object does and also where to find it. Essentially, the
compiler must be made aware of an external definition.

Any spoken language can have multiple definitions for a particular word, which may create confusion
during a conversation. Similarly, computers require a way to tell which definition should be used;
otherwise, unexpected errors may arise.

Because it’s impossible to have two files with exactly the same name and extension in the same system
folder, a definition can be differentiated by its location along with its file name. Therefore, each definition
can be viewed as being unique to the compiler.

The location of a definition, noted by its folder structure, becomes the pointer to the appropriate definition.
This is known as a Unified Resource Identifier (URI); it enables the compiler to differentiate among
definitions of similar names.

The first step in creating an external definition is writing the wrapper that surrounds the body of the
definition. This is demonstrated in Table 1-5.

Table 1-5. The skeletal structure of an external definition

1

2

3

4

5

6

7

package [folder[, folder...]]{

 [visible] type_of_definition DefinitionsName

 {

 //BODY OF THE DEFINITION;

 }

}

As you can see, to begin a definition, you identify its location using the package directive. This represents
the folder structure where the definition resides. The arrangement of folders for the project is entirely up to
you, but it’s beneficial to group your objects in a manner that represents the relationships between
definitions. This grouping may be apparent in the physical naming of the folders as well as in their

OBJECT-ORIENTED PROGRAMMING

15

hierarchy. It not only keeps your classes organized, but also gives other developers a clear idea which
definitions are being used and what other objects may be used with them.

As denoted by line 1 in Table 1-5 the package directive is followed by the full path to where the definition
resides, denoted with dot notation. If the class doesn’t reside in a folder structure, then the folder
arguments following the package directive may be left blank.

An example you’re sure to have seen is the import code for the MovieClip class (see Figure 1-3).

import flash.display.MovieClip;

Figure 1-3. The MovieClip import reflects the MovieClip package.

As you can see, MovieClip is a class in a series of nested folders that reveals the nature of the class—you
don’t even need to see the code that MovieClip contains. The import refers to where the location of the
definition used.

If you open the MovieClip.as file, the first line looks like: package flash.display{

Now that you’ve specified the location of your definition, ActionScript expects the type of definition and the
name of the definition. The name must also be that of the saved .as file. Although the package and
filename specify a particular definition, the actual definition, which varies depending on the type of
definition being created, is placed in the body as shown on line 5 of Table 1-5.

ActionScript uses three types of definitions: class, namespace, and interface. The next section, describes
the parts of each definition.

Parts of a Class
Even the most introductory ActionScript books cover the creation of custom classes (see Table 1-5).
Often, this is to demonstrate the use of the language. It would be beyond the scope of those books to
ensure that you have the proper object-oriented mindset as you construct your classes. With this in mind,
don’t be too anxious to skip ahead if you feel you may already be familiar with constructing classes.

Figure 1-4. The expected syntax and structure to properly define a custom class

CHAPTER 1

16

On line 4 in Figure 1-4, you used the keyword class to signify that the following definition relates to a
class. The class directive can include four additional modifiers, not including its visibility. By default, you
don’t see any of the keywords other than class in your editor, because everything in brackets in Figure 1-
4 is optional; these elements let you make custom modifications to the class.

The first optional modifier is the keyword dynamic. Specifying that your class is dynamic lets you add
properties to your class definition at runtime. Without this modifier, the class is locked: you can’t add new
properties or behaviors later. Dynamic can only be used to modify the definition of the class, not the
properties or methods. Subclasses of a dynamic class can’t inherit dynamic behavior, because it’s specific
to the current definition.

The next modifier specifies the visibility of the class’s definition and defaults to internal, but can be
specified as public to allow any classes outside the declared package view its definition. Although there
are five namespaces that modify visibility, only internal and public can be used to modify the visibility of
a definition.

The last optional attribute, final, specifies that the class can’t be subclassed. Because inheritance is a
significant part of OOP, the use of this final keyword may be confusing, but it enforces data hiding.
Declaring a definition as final prohibits any classes from subclassing the definition. This ensures that the
class can’t be modified, short of physically changing the code in the original file.

Following the class directive, you add a name to identify the definition. To distinguish this from methods
and variables that use camelCase, class names use a capital letter at the start of each word. Class names
should be specific to the behavior they define. An appropriately named class can allude to the behaviors
that a developer expects to find within the definition.

The remaining keywords (extends and implements), again optional, let you add your class to an existing
hierarchy . By default, all classes extend the top-level Object unless specified otherwise. This is why it’s
said that to initialize a class is to instantiate an object. At the core of every class is an Object.

Through the principle of inheritance, your class gains all public and protected, properties and behaviors
of each class in the hierarchy of the chosen superclass.

Suppose we were devising a class named Foo, and Foo requires the abilities possessed by MovieClip.
Choosing to subclass MovieClip looks like the following:

package
{
 public class Foo extends MovieClip
 {
 public function Foo()
 {
 // constructor code
 }
 }
}

Because ActionScript doesn’t support inheriting from multiple classes, the keyword implements allows you
to add into your class the interface utilized by a specific type. By implementing an interface, in addition
to adding existing public methods to your definition, you are also adding the interfaces type to the
hierarchical chain of your definition as well.

OBJECT-ORIENTED PROGRAMMING

17

Currently, our Foo class that extends MovieClip can be typed as Object, EventDispatcher,
InteractiveObject, DisplayObjectContainer, Sprite, and finally MovieClip. This is because MovieClip is
the subclass of another subclass, of another subclass, all the way up to the most generic class of all,
Object:

MovieClip ‰ Sprite ‰ DisplayObjectContainer ‰ InteractiveObject ‰ DisplayObject ‰
EventDispatcher ‰ Object

Before you go any further, let’s see what it means to extend from EventDispatcher. As you can see in
Table 1-6, EventDispatcher is a subclass of Object and implements an interface named
IEventDispatcher.

Table 1-6. The composition of EventDispatcher

Inheritance EventDispatcher ‰ Object

Implements IEventDispatcher

IEventDispatcher is referred to as an interface, which, as the word implies, declares the public methods,
and only public methods, with which you can “interface” or interact. If these methods were defined as
anything other than public, then technically you couldn’t use them or interface with them—hence the term.
Therefore, they must be public. An interface isn’t a class, but it requires a name to which a collection of
defined methods can be referred; it too can be used to add another type to your class.

The inclusion of IEventDispatcher demonstrates that the interface is what allows MovieClips and Sprites
to exhibit the public methods listed in Figure 1-5.

Figure 1-5. The IEventDispatcher interface inherited by MovieClip and Sprite

Now that you have your class’s definition, you’re can add the attributes and behaviors to the definition’s
body. You can specify their visibility as private, public, protected, internal, or using custom namespaces,
and you can also declare them as being static.

Static isn’t a visibility modifier, but it establishes whether the attribute or behavior is a member of the
class or the instantiation itself. The difference is that if a behavior or attribute is an instance member, any
assignment is localized to the individual object; but a class member signified via the keyword static is
referenced by every instance (see Listing 1-3).

Listing 1-3. Demonstrates how class members are referenced by every instance

package
{
 public class StaticExample

CHAPTER 1

18

 {
 public static var classString:String = ' I am a variable Â

 of the Class itself ';

 public var instanceString:String = ' I am a variable of the Â

 instance ';

 public function changeClassMember(str:String):void
 {
 classString = str;
 }

 public function changeInstanceMember(str:String):void
 {
 instanceString = str;
 }

 public function traceClassString():void
 {
 trace(classString);
 }

 public function traceinstanceString():void
 {
 trace(instanceString);
 }

 }

}

Listing 1-3 defines two variables one belonging to the Class and the other to the instance. The four
methods, will offer the means to trace our either of the variables, or to adjust them. Listing 1-4, will
demonstrate how class members are referenced by any and all instances, while the object members are
not.

Listing 1-4. The DocumentClass devises the behaviors of StaticExample

package
{

import flash.display.Sprite

public class DocumentClass extends Sprite
{

 private var _staticExampleInstanceA:StaticExample;

OBJECT-ORIENTED PROGRAMMING

19

 private var _staticExampleInstanceB:StaticExample;

public function DocumentClass()
{
 _staticExampleInstanceA = new StaticExample();
 _staticExampleInstanceB = new StaticExample();

 _staticExampleInstanceA.changeInstanceMember('an instance Â

member is independent');
 _staticExampleInstanceB.changeClassMember('a class member is Â

not');

 _staticExampleInstanceA.traceClassString(); //a class member is Â
not

 _staticExampleInstanceB.traceInstanceString(); //I am a Â
variable of the instance

 _staticExampleInstanceA.traceClassString(); //class member is Â
not
}

}
}

As demonstrated in Listing 1-4, a class member is referenced by an instance rather than copied into the
instantiation itself.

The keyword variable, or var, as it’s written in ActionScript, shouldn’t be new to you, but the keyword
const may be. Much like var, const is used to hold properties or values; but whereas values declared with
var can change, values declared as const can’t. The keyword const is short for constant, and as the
name implies, it doesn’t allow the value to change. You use const when there is a reference that isn’t
expected to change after a value has been decided. Some examples are values in physics, like gravity, or
the days in a year. Using a constant is insurance that the value will never be modified by any oversight,
unless you change it at compile-time.

Constants can prevent the need to track down literals in your code as well. This is the preferred manner of
adding literals. It’s also a convenient way to refer to the same literal on multiple lines, because if the value
must change, it’s only changed in one place. The identifier must be assigned at the moment of its
declaration.

The Constructor
The constructor is your point of origin for using a class and is the only way to instantiate an object of this
class into your program. To ensure that all definitions of all superclasses are linked, the constructor
method initiates and invokes the constructor of its superclass, and so forth, until the Object class’s
constructor is initialized. This is called an inheritance chain, and it reflects the manner in which you create

CHAPTER 1

20

your classes onto your reference. Along with any inheritance initiations, you can use the constructors to
initialize chosen variables or constants with specific assignments.

Custom Namespaces
Namespaces are nothing new to the world of OOP and determine the visibility of definitions, attributes, and
methods. The predefined namespaces public, protected, private, and internal are well known, but
custom namespaces are rarely used. Thus a custom namespace is the epitome of data hiding, because it’s
the road less traveled. The lack of familiarity makes it a great way to hide data; and the fact that you can
name the definition makes it all the more unlikely that the namespace will be used without being opened
specifically.

Using a custom namespace is the equivalent of hiring a bouncer to secure the door of a back-room poker
game where only invited guests know the password. The only way an uninvited guest can get through the
door is if the password leaks out.

Creating and using a custom namespace is as easy as this:

1. Declare the namespace identifier.

2. Prefix your definition with the custom namespace identifier.

3. Open the custom namespace to the reference that’s attempting to target your customized
definition.

The following sections explain these steps.

Declaring the Namespace Identifier
Because you need to define your namespace, you must define an external definition by which the
namespace can be referred to and located. The type of definition is indicated via the namespace directive,
along with the name by which the definition can be identified. Remember, the definition name must reflect
the saved .as filename. Finally, it’s optional to redefine a URI string that ensures that the namespace isn’t
duplicated. If you choose not to supply a URI, the package structure is inserted to prevent name conflicts
when compiled:

package
{
 [visible] namespace custom_name_space = "http://namespaces/customnamespace"
 {
 }
}

As with all definitions, if you wish to modify the visibility of this namespace, you can. Although, public and
internal are your only available options. If you fail to modify the visibility, remember that it defaults to
internal at compile time. Because no body is expected or even allowed, it’s common to see namespaces
without the extra brackets surrounding the body, as shown here:

package
{

OBJECT-ORIENTED PROGRAMMING

21

 public namespace custom_name_space = 'http://namespaces/customnamespace'
}

Applying a custom namespace
Once a custom namespace has been defined, you can use it by importing its definition into the class and
then declaring the custom namespace as the modifier of the definition you wish to customize. Use it as the
prefix for your chosen attribute or behavior definition:

 package
 {
 import custom_name_space

 public class Foo extends MovieClip
 {

 custom_name_space function aRandomFunction():void
 {
 }

 }
 }

Opening a namespace within a class
Finally, because Flash isn’t expecting to use your custom definition, you must make sure your compiler
(bouncer) knows that you have the secret password by referring to it.

AS 3.0 allows for not just definitions but also statements in a body. If a statement appears in the body but
not in a defined operation, it’s executed once at the moment the class definition is encountered. Thus, in
the class that you wish to open your custom namespace, you can apply the following statement
immediately after you create your definition:

package
{

 import Foo;
 import custom_name_space;

 public class DocumentClass extends Sprite
 {
 use namespace customNameSpace;

 public function DocumentClass()
 {

CHAPTER 1

22

 var foo:Foo= new Foo();
 foo.aRandomFunction();
 }
 }
}

Using the directive use namespace can open an individual namespace or a set of namespaces within the
class. This lets you access all declared attributes and behaviors marked with the custom namespace of
our referenced class Foo.

Constructing an Interface
The final type of external definition that you can define is an Interface. You do so using the interface
keyword directive. Table 1-7 shows an example.

Table 1-7. The structure of an interface definition

package [folder[, folder...]]

 interface IInterfaceName [extends InterfaceName]

 {

 //BODY OF THE DEFINITION;

 }

}

In this example, the definition’s name, InterfaceName appears to begin with two Is. The first I is to indicate
that the name refers to an interface. Like a class definition, an interface definition can specify a superclass,
but it must be that of an interface. Just as the name implies, and as you saw earlier when analyzing the
IEventDispatcher Interface, all methods declared must be public.

Change
Sometimes change can be good. However, nine out of ten times, change in the world of programming is a
bad thing. Simple changes on paper can turn into hours of work, depending on how the code is written.
Rather than fear change, embrace it. Roll out the red carpet and let change take its place in the spotlight.
Change is a diva and needs to be treated as such.

When you decide to give change center stage, you’re better prepared to deal with maintenance, rather
than making adjustments on demand. Rather than leave a ticking time bomb in your code, isolate it and
allow it to be used in your system like any other object.

I believe that many developers have learned to rely too much on the use of subversioning systems.
Subversioning is a very useful technique in which code can be saved to backups with detailed notes about

OBJECT-ORIENTED PROGRAMMING

23

what changes have been made. At the time of subversion, a version number is assigned to the file,
allowing for code rollbacks to a previous version. Although I promote the use of versioning, changes to
code and rollbacks should be the role of inheritance and polymorphism.

General Terms and Definitions
This list doesn’t include all words that are discussed in the book, but it defines for you terms that are used
frequently when dealing with OOP:

• Class: The classification of defined properties, states, and behaviors that can be

shared/modified among instances.

• object: An instantiated type referred to by its inherited traits.
• Object: The top-level class.

• Unified Modeling Language (UML): The standard representation used to build models for large

and small computer applications.

• Encapsulation: The principle of separating and localizing behavior into an object

• Abstraction: Being absent of details (a generalization).

• Composition: The manner in which arrangements of objects collaborate to fulfill the behaviors

that make up a distinct object.

• Delegation: The process of using behaviors of another object to achieve a result

communicated by the original object.

• Inheritance: The means by which subclasses inherit attributes and behaviors of a superclass.

• Interface: The exposed methods on an object, which another object can message.

• Implementation: The code used in the body of a declared method.

• Private: This modifier limits the visibility of any attributes/behaviors to the scope that declared

them.

• Subclass: A class belonging to the hierarchy of a superclass.

• Superclass: The parent class of a subclass.

• Properties: The attributes that make up the states of an object.

• Behavior: The expected response of an object

• Message: The communication between objects; a request.

• Namespace: A directive, which enables the visibility of a class’s properties and methods.

• Public: This modifier extends the visibility of a defined property or method to all scopes

• Protected: This modifier specifies the visibility of property or method as being visible to class,

which declared them as well as that classes subclasses.

• Concrete: A class’s or object’s inability to be generalized due to its implemented specifics.

• Type: The category of a class, which is based on its exposed Interface.

• Polymorphism: Latin meaning many faces; a process that allows interchangeability among

objects with the same interface.

• Spaghetti code: Unorganized code with no clear structure, intertwined with no clear beginning

or ending.

• Hashtable: A data structure used to store data in key/value pairs.

CHAPTER 1

24

• Procedural code: Code that separates data from associated behaviors.

• Loose coupling: The generalized collaboration among objects.

• Tight coupling: The act of collaboration among objects with reference to concrete objects.

• Object-oriented programming: The practice of architecting a system that adheres to four

principles (encapsulation, polymorphism, inheritance, and data hiding), thereby promoting

flexibility.

• Design pattern: A core solution to solving a particular and reoccurring problem.

Summary
OOP is a structural device, rather than the act of making objects. Having a better structure lets you
compartmentalize your code by using distinctions that allow for more efficient assembling,
interchangeability, and readable language. On the other hand, OOP can add complexity to a system, and it
generally takes patience, forethought, and—most important—time to perfect. All in all, using classes
properly and putting thought into each class reflects the flexibility you aim for, but you must understand the
importance of encapsulation, polymorphism, inheritance, and data hiding.

The largest misconception about OOP is the belief that to be object-oriented, you must be working with
objects. Working with objects merely for the sake of appearing object-oriented increases the likelihood of
failure and negates the benefits of programming in an object-oriented manner. It’s imperative that you
understand the four principles to which objects are formed. A plethora of objects doesn’t enhance code
flexibility but instead becomes an obstacle in the way of maintenance, upkeep, and change.

This chapter has provided a lot of information and has more than likely left your brain hurting—which
means your brain is working. OOP isn’t something that happens immediately; it takes practice, a lot of it, to
realize why it’s a beneficial practice to follow.

Don’t resort to mimicry or memorization. Understanding is the only key to being object-oriented. Spend
some time considering how you could take already-developed code and transform it into a properly
structured system, using the four OOP principles. Being able to point out behaviors that can be
encapsulated, and interchanged, will help you understand the chapters to come. Knowledge is half the
battle. Go code!

Key Points
• Code can be made much more efficient if it’s built with the four principles of OOP in mind:

encapsulation, data hiding, polymorphism, and inheritance.

• Generalizing common behavior allows for interchangeability.

• The goal of OOP is to build an architecture that allows flexibility and easier maintenance.

• Class names should be specific to the behavior they define and should always begin with an

uppercase letter.

• The keyword implements lets you add into your class the methods required by other defined

types.

• The point of creating a class isn’t only to use it to build objects, but also to separate behaviors

and/or data. Instantiating an object means you expect the behaviors and/or state to change.

3

OBJECT-ORIENTED PROGRAMMING

25

• Don’t resort to mimicry or memorization when practicing OOP.

• OOP is a structural device and is not the same as the act of making objects.

• OOP can add complexity to a system.

• Changes to code and rollbacks should be the role of inheritance.

• Change is a constant

27

Chapter 2

ActionScript 3.0: The Facts Behind the Basics

As you know, a procedure can be carried out several ways. “Hello World,” for example, is often the very
first application implemented when you’re learning a language. If you were to write down the many unique
ways to output “Hello World,” I’ll bet you could devise at least 10. The more you learn the API of a
language, the more options available to you as a developer.

Not every object-oriented language is written similarly. Each language has its own set of nuances that
developers come to love or dread. To best implement your object-oriented code, you must become familiar
with such aspects of the ActionScript 3.0 language.

This chapter explores specifics of the ActionScript language. It will benefit your object-oriented
implementations and further your understanding of the language.

ActionScript 3.0
ActionScript is a total rewrite of its lingual predecessors. Originally, ActionScript followed the Ecma
standards and was modelled around the prototype as the means to develop classes. To add to the object
hierarchy, you used the fundamental prototype object to model objects with the properties of another
object. In ActionScript 2.0, the class directive was added, but the use of the word class was nothing but a
superficial way to work with objects. It didn’t change the fact that behind the scenes, the prototype
continued to link the classes together.

It wasn’t until ActionScript 3.0, which finally moved toward a class-driven, object-oriented language, that
actual change took place behind the scenes of compilation. These tweaks brought both good and bad and
included the following: performance, garbage collection, the event model, strong typing, the display model,
and method closures.

CHAPTER 2

28

The Traits Object
New to the ActionScript language, the traits object was added to provide true class inheritance. The
inclusion of a traits object greatly reduces the delay caused by property lookup. In previous ActionScript
languages, object properties were shared among cloned objects by what was known as the prototype
chain. If the property targeted on an instantiated object couldn’t be found, the expected property is
searched for within the next object up the chain, and the search continued until the top-level object was
found.

The traits object vastly enhances property lookup by eliminating the need for the prototype chain. Every
class, when compiled, possesses a number of objects, one of which is the new traits object. The
traits object is supplied with all the properties that are inherited. As long as the class is not marked as
dynamic, performance is significantly improved.

Although the traits object is new to ActionScript 3.0, it doesn’t fully replace the prototype object. To
remain compatible with the Ecma specification, the prototype object remains, but the ActionScript 3.0
preferred manner of inheritance is to use the traits object and fixed inheritance. Only properties declared
within a class can be passed, versus dynamic assignments of properties and methods at runtime. If you’ve
ever opened a top-level class, this is the reason it contained function declarations.

Although the traits object remains behind the scenes and isn’t accessible by code, it’s the model for
each object among many of the methods you’ll see in this chapter.

Garbage Collection
Each object created in an object-oriented programming (OOP) language requires a particular allocation of
system memory. Each object’s allocation of memory varies, but the more objects created, the more
memory consumed, and the fewer resources remain available. When objects are no longer used by the
system, they’re gathered and destroyed in order to reclaim the memory they consumed.

Compartmentalization makes a system more flexible and modular but increases the number of objects
used in an application. Using design patterns to achieve a flexible and loosely coupled architecture
enables code reuse and polymorphism. However, the collaborations among objects that allow for such
flexibility require attention to memory management. This isn’t a drawback to the patterns themselves, but
it’s a reality that OOP developers must consider as Garbage Collection requires the Developer to be
proactive.

Memory Management
Knowing how to eliminate weeds is great, but understanding how to prevent their growth is even better. It’s
no surprise that the majority of Flash developers aren’t computer science majors. It’s also no surprise that
being a Flash developer has evolved from a hobby to a profession. Therefore, you can understand why
developers often fight memory management as a result of poor performance.

The transition to ActionScript 3.0 has introduced developers to memory management, which for many is
an incredibly new concept. Those who migrated from previous versions of ActionScript have never

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

29

concerned themselves with memory, and those who have developed solely with ActionScript 3.0 have
focused on memory almost as little as those who transitioned from an earlier release.

The most difficult aspect of memory management is understanding the memory used within the
application. Most of the ActionScript literatures focuses on removing events as the end of the memory
consumption issue.

The tool to understanding memory consumption is the flash.sampler package, which also isn’t well
known among developers (see Figure 2-1).

Figure 2-1. The flash.sampler package and its contents

The sampler package was originally supplied with Flex and was uses by a profiler added to the compiler.
The package gives you greater insight into the internal workings of the role each object plays and the
resulting impact on memory resources. Even if you don’t have a special editor such as FDT or Flash
Builder, you can fully use the contents of this package; the only requirement is that you run the compiled
code in the Flash Player Debugger version 9.0.115.0 or later.

It goes without saying that the more specialized the object hierarchy is, the more memory it probably
requires. Without knowing how memory use varies among objects, you can’t choose the objects that best
suit the requirements of the chosen behavior. The static method getSize(obj:Object):Number in the
sampler package enables you to view the amount of memory resources used by an application object.

The object passed as a parameter of the getSize method is analyzed. The return value is the number of
bytes in memory the object uses. Here’s an example:

trace(getSize(new Object())); //results in 40 Bytes;

As you see, the instantiated Object is passed into the getSize method, and its value in memory is
returned (40 bytes in this case).

CHAPTER 2

30

Figure 2-2 shows that each object has a specific value that it imposes on memory resources. A reference
alone, either Complex or Primitive—excluding Number—reserves 4 bytes of memory. Number, because
it’s a double float precision, requires twice that amount (8 bytes). String is a slightly different matter.
String values are calculated based on the characters used; the memory required varies depending on
whether the string is static or dynamic at the time of reference creation, and whether it’s a single character.

Figure 2-2. The results of a few trials of the getSize method

Using getSize, you can compile a class and calculate the number of bytes your class adds as overhead
in an application. The code in Listing 2-1 defines class Circle, which extends the built-in ActionScript
3.0 object Shape. The class has the properties such as _color, _radius, and _object.

Listing 2-1. The Circle class extends Shape and has three properties: _color, _radius, and _object.

package
{
 import flash.display.Shape;

 public class Circle extends Shape
 {
 private var _color : uint;
 private var _radius : Number;
 private var _object : Object;

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

31

 public function Circle(radius : Number)
 {
 _radius = radius;
 _object = new Object();
 }

 public function get color() : uint
 {
 return _color;
 }

 public function set color(color : uint) : void
 {
 _color = color;
 }
 }
}

Before you instantiate the Circle class, let’s predict how much memory will be used by an instance of a
Circle object. You can refer to Figure 2-2 for assistance.

The Circle class inherits its properties from Shape, which you know uses 224 bytes of memory. It has two
primitive references: a Number (8 bytes) and an unsigned integer (4 bytes). It also has an Object
reference, which you know requires 4 bytes. Now, if you add those values, you can predict that an
instance of Circle requires approximately 240 bytes.

If you were wondering why the instantiation of Object within the constructor isn’t included in the equation,
the answer is simple. Although you know that an instance of Object requires 40 bytes, only primitives
retain a value; complex references of objects are merely pointers (you learn more about pointers in the
section “Mark and Sweep”). These pointers refer to the location in memory where these objects exist. 40
bytes are added to your application as soon as you instantiate the Circle object, but those 40 extra bytes
are calculated as part of the total memory consumed, not in the Circle instance.

trace(getSize(new Circle(0))) // 240 Bytes

Note that the memory required is 240 bytes. Due to the many bug fixes implemented from one player to
the next the memory consumption varies. The values used here are from the Flash player 10.1.102 build.

Let’s look at another example. This time, we’ll use MovieClip as the superclass. Let’s name this class
MovieClipExtension and, for demonstration purposes, supply absolutely nothing beyond a constructor:

package
{
 import flash.display.MovieClip;

 public class MovieClipExtension extends MovieClip
 {

CHAPTER 2

32

 public function MovieClipExtension()
 {
 }
 }
}

If you estimate the file size, you assume it’s that of an instantiated MovieClip, or 428 bytes. But here’s the
call to getSize():
trace(getSize(new MovieClipExtension ())) // 412 bytes

The application states that MovieClipExtension consumes 412 bytes of memory resources, which is not
what you expected. However, recall that MovieClip is a dynamic class: therefore it supplies memory for a
hashtable, where it stores dynamically added properties at runtime. MovieClipExtension, on the other
hand, wasn’t declared as a dynamic class and is considered a sealed class by default. The hashtable that
resides in the instance of a dynamically defined MovieClip isn’t added to the traits object of
MovieClipExtension, and therefore you save a few bytes. If you were to declare your new class as
dynamic, getSize would reveal MovieClipExtension’s memory consumption to be equal to that of an
instantiated MovieClip.

The impact of 412 bytes on a system may not appear to be much; in fact, it may appear to be laughable.
But in any application, bytes can add up quickly. In a system like ActionScript 3.0, where garbage
collection can’t be forced and is activated only when too much memory has been consumed, preserving
memory resources is a vital. Choosing the appropriate objects is a must in any object-oriented language,
and you must reflect this in the classes for your patterns.

Mark and Sweep
To reduce the overhead of running a tedious algorithm, which can stutter the player’s performance, the
garbage collector (GC) is triggered only at a specific point. The GC uses a mark and sweep approach,
where as long as zero pointers target a location in memory, that memory is considered eligible to be
emptied. As you know, in ActionScript, a primitive reference is an actual copy; therefore it isn’t as much of
a threat in an object’s persistence as a complex reference. Complex references are physical pointers to
memory locations, as a means of maintaining memory. Although pointers aid in reducing memory
duplication, they also prevent the GC from dumping its target.

Let’s look at an example. In Figure 2-3, although it appears that a variable possesses properties and
methods declared by the new instance of Object, the properties aren’t copied onto it. Rather, a location of
blocks in memory is endowed with all that your template has to pass on, and then a direct connection to its
location, like a bridge, is adhered to a reference.

Figure 2-3. Instantiation and memory location referenced

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

33

Only by nullifying this bridge can you make the GC view the memory as no longer being referenced within
the application (see Figure 2-4). Doing so enables the GC to dump the contents of data blocks that are no
longer being used, thus freeing up memory. But while the memory address is in use, other variables can
point to the same location in memory, thus preventing the release of memory from your program even
when obj’s bridge is nullified.

Figure 2-4. Location to memory severed

In order to efficiently free up memory, you must set to null all references to any memory location, as
shown in Figure 2-4. Doing so marks the location as eligible to be freed. All references that are marked
are added to a zero count stack, where it’s determined whether they’re available to be emptied.

Figure 2-5 demonstrates that while the reference ‘obj’ may be set to null, secondaryObj has not been, and
therefore the memory consumed from the Objects instantiation cannot yet be reclaimed.

Figure 2-5 Instantiation and memory location referenced via secondaryObj;

Design patterns, whether creational, behavioral, or structural, pass references for delegation and
modification. Some examples are the Observer pattern (discussed in Chapter 7) and the Command
pattern (also discussed in Chapter 7), just to name two. The relationships among objects may prevent
memory from being released, so you need to ensure this release when you no longer require the objects’
services.

Implementing a Disposable Pattern
Hooray, your first pattern! The Disposable pattern, as it’s appropriately named, is one of many behavioral
patterns. The intent of this pattern is to separate the logic required among objects from the modeled
behavior defined in the abstract class during the removal of composed references. As you can see in
Figure 2-6, the collaborators in the pattern are as follows:

1. Disposable interface

2. Abstract class

3. Concrete class

CHAPTER 2

34

Figure 2-6. Class diagram of the Disposable pattern

Without specific lingual pattern interpretation, you can’t merge such a pattern into an ActionScript system,
due to the language’s preexisting conditions. The reasons are as follows.

First, there are no proper directives that can absolutely enforce an abstract class, as of the current release
of ActionScript 3.0. You can pretend a class is abstract, but there is no foolproof way to ensure that this
class will never be used. As the definition of an abstract class specifies, it’s a class that will and can never
be instantiated.

The closest you can get to an abstract class is to create a class that throws an error in the constructor,
preventing the compiler from continuing without this error being corrected (see Listing 2-2).

Listing 2-2. Faux abstract class in ActionScript 3.0, which results in an error if you try to instantiate it

package
{
 public class AbstractClass
 {
 public function AbstractClass()
 {
 throw new IllegalOperationError("This class is intended as an abstract�Â
class and mustn\'t be instantiated");
 }
 }
}

This faux manner of devising an abstract class does the intended job of enforcing that the class can’t be
instantiated. However, it lacks proper ability to enforce its subclasses to override all abstract methods it
contains. I’ve seen some clever means by which this has been made possible, but enforcement is only
available at runtime, which can slow development.

Note: Feel free to explore “Runtime Enforcement of Abstract Classes in AS3” by Josh
Tynjala at http://joshblog.net/2007/08/19/enforcing-abstract-classes-at-runtime-in-
actionscript-3/.

http://joshblog.net/2007/08/19/enforcing-abstract-classes-at-runtime-in-actionscript-3/
http://joshblog.net/2007/08/19/enforcing-abstract-classes-at-runtime-in-actionscript-3/
http://joshblog.net/2007/08/19/enforcing-abstract-classes-at-runtime-in-actionscript-3/

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

35

The next best option is to inject your method directly into your top-level class, thus trickling it into any
subclass defined by a developer. Unfortunately, this is also impossible while adhering to fixed inheritance.
In an effort to obtain optimal performance and use as few memory resources as possible, properties and
methods are added to the traits object using fixed inheritance, as discussed earlier. Fixed inheritance
also prevents you from adding methods and properties at runtime via the prototype object. To inject a
dispose method into the language’s classes, you need to physically modify the classes that came with
your OOP language. This becomes an issue in itself, because each developer must have the same
modified language classes, which can cause a lot of confusion with future releases and legacy code. Plus,
if new developers are hired, they too need to modify their classes.

Because you can’t rely on inheritance as the sole means to establish your disposable method, you’re left
with only one viable solution to make this pattern available: implement the interface into every custom
class defined. This is an efficient approach that all developers can use. It’s the ideal implementation for the
Disposable pattern in the ActionScript 3.0 language.

Not every object in ActionScript requires a null value to its reference, although it’s better to overdo it than
not. Primitive data types do allocate memory within an application, but they do so only for the lifespan of
the object in which they’re declared. Complex types, on the other hand, require all pointers to be severed.
The implementation of the destroy method is specific to the class and the references that it contains.

To properly remove all complex objects, it helps to be able to see all references within a class. This allows
you to directly target the references and to set them to null in the disposal method. Unfortunately, when
you use nested library clips, the instance names are often added to the classes at compile time. This is
known as stage instance declaration, and each project, by default, is an automatic occurrence.

Figure 2-7. A nested clip whose instance name is that of inner_mc in TestClip

For example, using the flash.sampler package, let’s demonstrate the compiled complex reference that
is inserted into an object using the static method getMemberNames(). This method accepts two
parameters: the object, from which it retrieves all QName members; and whether to include any instance
names that may be available to the object.

QName is an ActionScript 3.0 class; it’s short for qualified name. Chapter 1 discussed how the compiler can
locate and refer to a particular definition with a URI along with the definition’s name. All definitions in the

CHAPTER 2

36

language are referenced absolutely behind the scenes as qualified names, which eliminates any ambiguity
about which definition is being referred to. This is referred to as being fully qualified.

Therefore, when an instance member is found and returned via getMemberNames, it’s returned as a
qualified name. Appropriately, QName provides two properties that a qualified name uses: localName and
uri. localName represents the member name, and uri is the namespace in which localName remains
unique. Here’s an example making use of our TestClip from Figure 2-7:

 var tc:MovieClip= new TestClip()
 for each (var members:QName in getMemberNames(tc , true))
 {
 trace(members.localName) //inner_mc, currentScene, currentFrameLabel, etc..
 }

As you can see, inner_mc is added as an object reference in the TestClip object. What is slightly
misleading is that you may think you’re calling the clip through the instance name, but the compiler inserts
an identifier to match that of your declared instance name.

Tip: As a best practice, you should always deselect Automatically Declare Stage Instances, to enforce
your class physically declaring any necessary instances with which it associates.

To deselect this option in Flash CS5, choose File ‰ Publish Settings ‰ Flash ‰ Settings, and locate the
Stage property as shown in Figure 2-8.

Figure 2-8. Deselect the Automatically Declare Stage Instances option.

Unfortunately, this option defaults to being selected on a per .fla basis.

If you remove ActionScript’s ability to supply instances automatically to your code, you’re required to
manually declare any and all instances as properties among the appropriate classes.

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

37

Manually Declared Stage instances
With your handy dandy object-oriented skills, you know that it’s always wise to separate the
implementation from its structure, allowing for flexibility. Having disabled automatic stage instance
declarations, you have to declare the reference yourself; otherwise, when you compile your code, a
ReferenceError occurs:

 ReferenceError: Error #1056: Cannot create property inner_mc on TestClip.
 at flash.display::Sprite/constructChildren()
 at flash.display::Sprite()
 at flash.display::MovieClip()
 at TestClip()
 at DocumentClass()

To add a variable representing the nested clip, open the TestClip class and add private var
inner_mc. But you find that again, at compile time, you’re confronted with a ReferenceError. Unless you
specifically declare inner_mc as a public variable, you continue to face the same ReferenceError. Why?
This has to do with the order in which things are compiled and the hashtable used by MovieClips that
enabled the clips to be added. Because MovieClips let you add dynamic properties, its references must
remain public. By extending the MovieClip class to allow TestClip to be defined, the hashtable is
removed unless you specify dynamic behavior for TestClip as well. This allows the nested clip to be
accepted after your classes are compiled. If you were to define your clip as dynamic, you could get away
with defining inner_mc as private. Again you’ve broken the concept of encapsulation, because you’re
allowing dynamic behavior on the class. This is exactly what would occur if you declared TestClip as a
sealed class and used it as the base class of ContainerClip.

Figure 2-9. Clip using TestClip as its base class

Now, when you compile the clip, because you’ve defined private var inner_mc in the class TestClip,
the compiler no longer throws a reference error. The reason is apparent when you use the describeType
method from the flash.utils package. This method reveals the details of the parameterized object
instance, in the form of XML:

CHAPTER 2

38

trace(describeType(new SpecificallyGivenName()))
// <type name=" SpecificallyGivenName " base="TestClip" isDynamic="true"Â

 isFinal="false" isStatic="false"> ...

When the Flash compiler can’t find a class labeled SpecificallyGivenName, it supplies one at the time of
compilation; and to fulfill its role, SpecificallyGivenName is defined as being dynamic. This leaves you
with the solution of defining your references as being public, so you can continue to seal your class to
further maintain data hiding.

Application Domain
The application domain, not to be confused with problem domain, represents the memory location of an
application’s given definitions. When a .swf file is published, the compiler bundles all application
definitions into that of an application domain. If a .swf is loaded into another .swf, the definitions of both
.swfs remain partitioned from one another. This ensures that the definitions of one application don’t
interfere with the naming conventions of possibly same named definitions between the two .swf files.

You instantiate an ApplicationDomain by importing the flash.system.ApplicationDomain class. The
ApplicationDomain class, when instantiated, accepts as an optional parameter a reference to a
preexisting applicationDomain. Specifying a preexisting applicationDomain lets the devised partition
use definitions from the passed-in applicationDomain (appDom for short).

Two important properties of the ApplicationDomain class are currentDomain and parentDomain.
currentDomain is a static property that points to the applicationDomain, which holds the code currently
being executed. parentDomain is a pointer to the parent’s ApplicationDomain, providing one exists.

By default, when a .swf file is published, its applicationDomain doesn’t have a parentDomain, and all
definitions are considered to be stored in what is referred to as a systemDomain. This is where built-in
definitions of the ActionScript 3.0 language are contained (MovieClip, Sprite, Loader, and so on). The
packaged definitions are partitioned onto that of the systemDomain, allowing all user-defined code to refer
to the built-in definitions. Only when a .swf file is loaded into another .swf is a parentDomain possibly
available. Possibly, because a parentDomain is available only when an instantiation of an
ApplicationDomain includes a reference to an existing applicationDomain, thus creating a hierarchy
among the appDoms.

When you load one .swf file into another, you can modify the partitioning of the loading .swf’s definitions
by specifying one of the following four application domain settings:

• Child of the loader’s ApplicationDomain: The default setting when loading a .swf file,

applied using new ApplicationDomain(ApplicationDomain.currentDomain). This line of

code creates the new application domain on the loading .swf, but with a relationship to the

application domain of the parent container. Attaching the ApplicationDomain on the parent’s

appDom allows the loaded .swf file to use the parent’s definitions by referring to them as if they

were located in the loaded .swf file’s ApplicationDomain.currentDomain.

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

39

• Loader’s ApplicationDomain: Specified as ApplicationDomain.currentDomain. No

partition is created, allowing all definitions of the child to be loaded into the loader’s appDom.

This is, of course, with the exception of duplicate definitions, which are disregarded.
• Child of the system ApplicationDomain: Specified as new ApplicationDomain(null).

Creates a partition among the child and parent definitions. This ensures that definitions of

similar names don’t interfere with one another. It also ensures that the definitions of the two

.swfs aren’t visible to one another, thus isolating definitions between the two.

• Child of a specified ApplicationDomain: Specified as ApplicationDomain(
'application_domain_here'). When you specify the relationship between a loading .swf

file’s definitions and another, you can partition the ApplicationDomain among the child’s

appDom with the visibility of another appDom’s definitions. You can do so via the parentDomain

property or through a reference to an appDom.

You can use the specification among ApplicationDomains only when loading .swf files published for the
ActionScript 3.0 language. To specify the ApplicationDomain settings, a property on the
LoaderContext object must reflect such changes, as you’ll see next.

The LoaderContext
LoaderContext is an object that, when instantiated, can be passed into a Loader object, allowing for the
modification of additional options. One such option is the applicationDomain property, which you can set
by supplying one of the four values listed in the previous section to the
LoaderContext.applicationDomain, as shown in Listing 2-3.

Listing 2-3. Specifies the appDom of the loading definitions to be included within the applicationDomain
to which the loader’s definitions exist

var loader:Loader= new Loader();
var urlRequest:URLRequest = new URLRequest('externalSWF.swf');
var loadContext:LoaderContext= new LoaderContext();
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,onComplete);
 loadContext.applicationDomain = ApplicationDomain.currentDomain;

 loader.load(urlRequest,loadContext);

Currently you’ve set the ApplicationDomain of the loading .swf file as a child of the loader’s, of the
'externalSWF.swf's; applicationDomain.

Specifying the applicationDomain among definitions enables both the compiler and you as a developer
to tap into the scope of existing definitions. Specifying the applicationDomain among loaded definitions
allows for definition reuse, similar to the use of runtime shared libraries.

By understanding how definitions are compiled into the appDoms, you can further your understanding of
how you work with objects and their instantiations, via the use of the new operator, as discussed in the
next section.

CHAPTER 2

40

The Class Object
All definitions in ActionScript 3.0 are instances of the built-in Class object. Although the Class object is of
little use to a developer, its instances are a different matter. You use these all the time when you use the
new operator. Each Class object can be referenced by the name it was given when you specified its
external definition. As you saw earlier in Figure 2-3, any reference that remains within scope can be
obtained.

Fortunately, the scope of your application, and your definitions’ longevity, can coincide with the
applicationDomain of the particular .swf file. If you have a reference to the current appDom and want to
retrieve a particular Class object with which to work, you can do so using the getDefinition and
getDefinitionByName methods.

Suppose the externalSWF.swf file from Listing 2-3 was defined by an attached class DocumentClass,
shown in Listing 2-4.

Listing 2-4. Base class of externalSWF

package
{
 import flash.display.Sprite;

 public class DocumentClass extends Sprite
 {
 public function DocumentClass()
 {
 // constructor code
 trace('DocumentClass instantiated');
 }
 }
}

The base class, DocumentClass, is converted into a Class object and appropriately partitioned in one of
the four manners the applicationDomain allows.

getDefinition()
The getDefinition method retrieves a Class object from an existing applicationDomain explicit to the
definition name parameterized within. This is reflected in the method signature:
getDefinition(memberName:String):Class.

To demonstrate how you can use getDefinition to retrieve a Class object, specify DocumentClass as
the memberName you wish to retrieve from the applicationDomain of externalSwf.swf from within the
currentDomain of the parent .swf file (see Listing 2-5).

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

41

Listing 2-5. Retrieving the DocumentClass Class object from the currently executing appDom via
getDefinition

var loader:Loader= new Loader();
var urlRequest:URLRequest = new URLRequest('externalSWF.swf');
var loadContext:LoaderContext= new LoaderContext();
 loadContext.applicationDomain = ApplicationDomain.currentDomain;
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,onComplete);
 loader.load(urlRequest,loadContext);

function onComplete(e:Event) :void
{
var returnedObject:Class= e.target.applicationDomain.getDefinition('DocumentClass'));
 trace(returnedObject) ; //[class DocumentClass]
}

As demonstrated in the listing 2-5, you can retrieve the DocumentClass Class object from the appDom
of the currentDomain after externalSWF.swf has been loaded. When you obtain the desired Class
object, you can do with it as you see fit. You can pass the reference, retain the reference, or even
instantiate it via the new operator.

The returned Class object of the getDefinition isn’t limited to class definitions. The returned object
can be a class, a namespace, or even an interface; all are subclasses of the Class object.

getDefinitionByName()
Much like getDefinition, getDefinitionByName also retrieves a public Class object from an
ApplicationDomain explicit to the definition name parameterized within. The difference between the two
is that getDefinitionByName is a global function and can only return a Class. In other words, don’t
expect to retrieve namespaces or interfaces via getDefinitionByName. Listing 2-6 shows an example.

Listing 2-6. Retrieving the DocumentClass class object from the currently executing appDom via
getDefinitionByName

var loader:Loader= new Loader();
var urlRequest:URLRequest = new URLRequest('externalSWF.swf');
var loadContext:LoaderContext= new LoaderContext();
 loadContext.applicationDomain = ApplicationDomain.currentDomain;
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,onComplete);
 loader.load(urlRequest,loadContext);

function onComplete(e:Event):void
{
 var returnedObject:Class = Class(getDefinitionByName('DocumentClass'));
 trace(returnedObject); //[class DocumentClass]
}

CHAPTER 2

42

As you can see, getDefinitionByName doesn’t need to succeed the reference of an
applicationDomain, because it always points to the currently executing appDom. Another noteworthy
difference is that getDefinitionByName returns a Class object, but the method’s signature specifies a
return type of Object. To provide strong-typing to the reference, knowing the object is a Class object, you
can cast the return value to be Class:

var returnedObject:Class= Class(getDefinitionByName('DocumentClass'));

The next section takes a look at what it is to Strong Type a reference.

Strong Typing
Data typing is nothing new to the ActionScript language, but the performance gained by supplying data
types is. Strong typing facilitates proper use of objects in a system by associating, or binding, the
reference to an object’s intended interface. Associating a variable with a data type optimizes the bytecode
and improves player performance significantly.

Although performance should be reason enough to use typing data, it also provides many benefits in terms
of productivity by reducing errors.

Because ActionScript is a dynamically typed language, it provides runtime type checking. Although this
makes the language incredibly versatile, it leads to slower debugging, because errors are revealed only
when your code is running. Fortunately, the Flash IDE (when in strict mode) offers compile-time checking
as well.

Runtime Type Checking
Dynamic languages let an application modify its behavior at runtime. When a program can constantly
adapt, you can only verify mismatch errors and type coercions with runtime type checking.

Runtime type checking, as the name suggests, ensures there no improper mismatches take place while
the application is running. To accomplish this, the interpreter must determine and imply data types as
they’re being used. Thus, although runtime type checking allows the language to remain fluid, it can slow
the debugging process.

New to ActionScript 3.0 is the addition of compile-time type checking, which lets you predict and prevent
any possible mismatch or type-coercion errors that may occur while your code is running.

Compile-Time Type Checking
Typing a reference preserves the contract among object messaging within the system. It there’s any
incorrect use of the object through an attempt to call a method or property, you’re made aware of it either
at the moment of compilation or even while authoring, via a type-mismatch error. The editor may
determine the means by which you’re informed. Compile-time type checking also ensures the proper
passing of references and assists you if any improper mismatches occur during development.

Compile-time checking is optional, and its use does not prevent runtime type checking from occurring.
Using compile-time type checking doesn’t ensure that all runtime errors are eliminated.

z

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

43

By default, the Flash IDE settings enable compile-time checking. Deselecting the Strict-Mode option in
settings defers all type checking to runtime checking.

Although strict mode provides type checking, data types among variables and/or expressions must be
typed within your code.

Restricting a Dynamic Language
The benefit of typing variables, parameters, and return types is the optimization of ActionScript bytecode
(ABC), which reduces the interpreter’s need to imply data types at runtime. It also gives you immediate
feedback from the editor in an effort to prevent type errors early on.

Practicing optimal implementation of design patterns in ActionScript 3.0 requires you to choose the most
appropriate types to bind to the expressions and variables among each pattern’s collaborative objects.
Using types that are overly specific reduces the pattern’s reusability, leading to tightly coupling. However,
falling back on an overly generalized type requires careful collaboration and attention to your system and
its parts. The beauty of many patterns is their ability to assist with generalizations among objects that you
may not otherwise have foreseen.

Unfortunately, subclasses can’t redefine types among variables or expressions defined by their
superclass. This often reduces code reuse because you must write more to satisfy such needs. If code
reuse appears to outweigh the optimization of typing, ActionScript offers a solution.

Although I’m not advocating the use of weakly typed data or the lack of typing, the compiler isn’t as flexible
the interpreter, known as AVM2. Because ActionScript is a dynamic language, runtime reflection is
possible, which can make your applications more flexible.

ActionScript 3.0 lets you bypass compile-time checking by using the untyped property or wildcard
annotation represented by the multiply symbol *. Assignment to an untyped property doesn’t cause
compile-time errors because the reference is recognized as holding any value. These assignments are, on
the other hand, type-checked and properly cast at runtime.

Casting
When you pass references among objects to that of a generalized type, you often have to cast an object
back into its actual data type. There are two ways to cast an object in ActionScript 3.0: the cast operation,
which wraps an expression such as Type(expression), and the as operator (expression as
DataType). Both approaches have distinct advantages over the other, such as readability, conversion
precedence, and casting failures.

Typically, in ActionScript 3.0, you use the as operator to properly cast an object into another data type.
Why? Because, unfortunately, too many developers mimic behavior presented to they learned the
language. This is due to three reasons.

First, not every cast works properly when used as a wrapped expression. The following code compares
the readability of type casting using the two acceptable approaches:

obj as MovieClip versus MovieClip(obj)

CHAPTER 2

44

To many developers, it’s clearer that obj as MovieClip is type casted. MovieClip(obj) may be
mistakenly read as a new Instantiation.

Second, the attempted casting of an array to an object and back to an array demonstrates a casting faux
pas when using the wrapped cast of an expression:

var ar:Array = ['bob' , 'tom' , 'mike'];
var obj:Object = ar;
var arTyped:Array = Array(obj);
trace(arTyped.length); // 1
trace(arTyped[0]); // 'bob','tom','mike'
trace(arTyped[0][0]); // 'bob'

arTyped = obj as Array
trace(arTyped.length); // 3

Unfortunately, not all casting operations work as you may expect. In this example, attempts to upcast the
Array to an Object and downcast it back to an Array aren’t particularly successful. You expect to end
with an array that possesses an index of 3. The result is correct when you use the as operator but not
otherwise. Instead, your object is downcast to an array and then wrapped in the first index of a new array.

Finally, the following attempt to cast the instance of an object into that of a MovieClip demonstrates the
cast failure between both cast manners:

var object:Object= {}
trace(MovieClip(object)) // TypeError: Error #1034: Type Coercion Â

failed: cannot convert Object@30f68f71 to flash.display.MovieClip.

trace(object as MovieClip) // null

When a cast is successful, the original object is returned for continued use without interruption. When a
cast is unsuccessful, the object isn’t returned, and any reference to the expected return is set to null.

As you can see, you can use as to successfully cast an object without any unexpected side effects.
Unfortunately, as you can also see, using casting via the as operator doesn’t offer a type-cast error at
runtime.

The truth is that the as operator is useful, but it doesn’t offer much in the way of development beyond
readability. Although it successfully casts an Array, it offers no assistance in the way of debugging your
system. This is why you should avoid the as operator for type casting if possible and instead use a cast
operation.

Configuration Constants
Every tool has a particular feature that makes it useful. A screwdriver is a simple tool, and yet it’s the most
commonly used. As often as you use it, you keep it tucked away, out of sight. For whatever reason, a
screwdriver isn’t a conversation piece. This seems to be the case with one of my favorite features of the
Flash IDE: the configuration (config for short) constants.

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

45

Throughout the build process of any rich Internet application (RIA), it’s uncommon to succeed without the
assistance of debugging. During this process, you can end up with numerous unnecessary lines of code
that wind up getting compiled into your application. These lines are not unlike those of traces, but the
Flash compiler offers a means to remove such declarations from your code. It also lets you eliminate
specific statements if they’re based on the condition of a config constant. The Flash compiler includes a
few perks; config constants are one of them. Consider the following lines of code:

//handle intro if the swf is not loaded into a container
 if (this.parent != null) {
 force_intro()
 }

Often, when working in a team environment, developers toggle code on and off when attempting to test
and debug code that is meant to work with a framework after it’s loaded into another .swf file. Typically, in
such web site development, a loaded asset doesn’t perform its intro until told to do so by the container. In
order to test a file properly, you must either test it within the container or remove the code that prevents the
.swf file from running its intro.

The previous code demonstrates a conditional statement that runs a particular operation if the parent of
the .swf file doesn’t exist. Suppose this conditional statement runs in the constructor of the document
class. Because the .swf file runs outside of the container, there is no parent; therefore you force the intro
to occur on your application. Throughout the duration of the build, you add a slew of conditionals to ensure
that things work according to your needs. The more you allow such conditionals to build up, the less likely
you are to remove them later, and the more memory you use.

This is where the beauty of the config constants comes into play. If you construct your code around an
intended config constant, you can easily remove those lines from the compilation of the .swf file, therefore
reducing file size and enhancing performance.

To use config constants, choose File ‰ Publish Settings ‰ Flash ‰ Settings ‰ Config Constants, as
shown in Figure 2-10.

Figure 2-10. Configuration constants for conditional compiles

CHAPTER 2

46

As you can see, FLASH_AUTHORING is supplied automatically. You can supply as many constants as you
please by clicking + in the upper-right corner.

Just like any conditional used in your code, a config constant must satisfy a requirement. As long as the
condition is met, the code within the conditional statement is added to your compiled .swf file; otherwise,
say goodbye to the code, because it is not added. This is the beauty of config constants versus plain old
conditional statements.

Here’s an example of a config constant used around a conditional statement for conditional compiling:

if (CONFIG::FLASH_AUTHORING == true){
 force_intro();
}

The only drawback to config constants is that they’re specific to the Flash IDE. Recent releases of the
FlashDevelop application include added support for config const, as well as Flash Builder.

ActionScript Editors
When you use encapsulation, the more modular your code, the more objects your system can use.
Understanding their relationships is crucial in managing the objects in your application; but for ease of
maintenance and development, having a good editor is very important.

Unfortunately, the Flash IDE doesn’t have the proper tools to enable effective RIA construction. The power
of the IDE lies in its library and the ease of using a visual editor to develop down-and-dirty assets.

Many phenomenal Flash/Flex editors are available that warrant your attention. They include Adobe Flash
Builder, FlashDevelop, IntelliJ IDEA, and—my personal favorite—FDT. Each does a terrific job of providing
code hints as you type; these hints visually help you recall the available interface without having to pause
your thought process.

Profiling is another great bundle. Why just debug a system, when at the same time you can see all aspects
of how it’s functioning? FDT and Flash Builder tap into the sampler package and reveal the memory used,
the instances currently used, and the cumulative instance count. Working in these editors gives you many
tools for creating classes and can often save you time. Code completion, live warnings, and refactoring are
some of the time-saving techniques that can help you get ahead of a deadline.

Finally, one of the most useful aspects of these editors is the visual representation of your project’s
packages and their contents (see Figure 2-11). The days of opening and closing folders are long gone,
and searching for a specific class is easy as 1, 2, 3. I don’t know where I’d be without my FDT editor.

ACTIONSCRIPT 3.0: THE FACTS BEHIND THE BASICS

47

Figure 2-11. The flash.sampler package and its contents, as viewed in FDT

These are just a few of the many features offered by ActionScript editors. Some of them have advantages
over the others. With that said, it’s wise to use the same editor as your team members, because each
editor has particular behaviors and/or exclusive features. This doesn’t mean you should merely follow your
team’s lead—after you research the capabilities of each editor, take the time to discuss their benefits with
your team and suggest how a particular editor can improve overall development.

Summary
The idea that sometimes things don’t go your way is important as a guide during development. You can
strive for optimal flexibility, but you can only do so much to loosen the binds of your architecture while
keeping it structurally sound. As revealed through the Vector class, you must make do with what your
foundations allow. You must strive for loosely coupled relationships among your objects, perhaps by
downcasting to Object. If this is the case, you need to use compile-time and runtime errors to help fix
mismatches among Object casting. Always do what is best to keep your application on track.

Understanding the impact of an object in your language is a great strength. It enables you to realize
potential weaknesses the object may have on your system. You must consider all aspects of the language
you use in order to achieve the best implementation of your design patterns. By gathering information
about your system and its objects, you can build efficiently.

Key Points
• Design patterns don’t include language specifics.

• The preferred manner of inheritance in ActionScript 3.0 is fixed inheritance.

• Design patterns require appropriate attention with consideration to memory management.

CHAPTER 2

48

• The Flash.sampler package gives you insight into each object’s impact on memory

resources.

• Pointers may prevent the garbage collector from dumping memory.

• Design patterns pass object references for delegation and modification.

• ActionScript 3.0 doesn’t recognize abstract classes.

• Always deselect the Automatically Declare Stage Instances option.

• Strong typing facilitates the proper use of objects in a system.

• Strong typing optimizes ActionScript bytecode.

• Avoid the as operator for up/down casts if possible.

• Use config constants for conditional compilation.

• getDefinition and getDefinitionByName return Class object.

• Special editors provide special tools for ActionScript developers.

49

Chapter 3

Decision-Making and Planning

The ability to make wise decisions is important when you’re doing something as demanding as building
rich Internet applications (APIs). One decision you may have to make involves choosing to do what is best
for your or what is best for the team. The choice may seem obvious on paper, especially if you’re a team
player—but late nights and frustration with a project may begin to influence your decision about what’s
best for you rather than the team.

Making poor decisions about object-oriented practices may result in even more late nights and greater
frustration for both you and your team. You can only make a sound decision when you really understand
the problem you’re trying to solve. Only when you’ve analyzed any and all problem domains can you
determine a plan of action. As Louis Pasteur said, “Chance favors the prepared mind”; and if you’re
prepared, then if and when change is introduced, you’ll be able to address it effectively.

Object-Oriented Analysis (OOA)
Using OOP with RIAs offers a practical way to divide code into smaller and more manageable pieces. The
act of OOP, as explained in Chapter 1, means strictly adhering to principles that enable your architecture
to be flexible, modular, and maintainable. Your code will be properly encapsulated and separated from the
inner workings of other behaviors that may require change. OOP, in short, helps you build quality objects
that in turn enable flexibility, modularity, and easier maintenance.

Often, developers jump right in and implement objects at the beginning of a new project. Doing so molds
rigidity into the system’s foundation. This “shoot first, ask questions later” mentality is understandable
when time is working against you, but it will come back to haunt you. The next time you’re driving over a
bridge or leaning over the balcony of a 10-story building, consider the possible result if a civil engineer had
jumped right into the construction phase of the project.

CHAPTER 3

50

In order to properly and successfully use a good structure, you must know all possible behaviors before
you can devise a plan. You learn about the behaviors through an iterative process known as object-
oriented analysis (OOA).

OOA is a process that aims to reveal all necessary behaviors and objects related to a given problem
domain. Only when you’ve completed an analysis can you hope to construct a design. Such a design can
then be used as the blueprint from which you model the implementation of a system. This design process
has come to be known as object-oriented design (OOD).

Utilizing a micro-site from past experience, I will demonstrate the OOA & OOD process.

Case Study
Suppose that as an RIA developer, you’ve been tasked to develop a microsite to promote a new line of
windbreakers. The client has requested a site to demonstrate the weather conditions for which their
product is the optimal apparel. They would like to focus on each product, the details of the product, and
colors it comes in. In addition, the client wants to show each product being used in the specified weather
conditions.

At this point, you may or may not be a part of the conception phase; it depends on a clear definition of
team roles. In this case, let’s assume that a creative team has already conceptualized what this site will
look like, and you’ve just been tasked to build it.

The Kick-Off
The client request that was delivered to the designers is delivered to the developer team along with the
designed compositions shown in Figure 3-1. Although the discussion in this section may vary based on
your position and or job description, as a developer, your role is ultimately to assemble the features
required by a client using the presentation shown by a designer. Although the compositions reveal the end
result of the project, they don’t deliver everything you need. A picture is worth a thousand words, so it’s
easy for a message to be improperly delivered to the viewer. The intended audience may be the developer
or the client. The people who see the comps can easily have their own interpretations, which can lead to
future confusion. This is why your first decision as a developer must be to properly analyze the system.

DECISION-MAKING AND PLANNING

51

Figure 3-1. The above image is the wireframe of the comps that I received.

CHAPTER 3

52

Turning Off the Volume
The material on the site has been designed by professionals to do exactly what it’s supposed to do. It may
be supposed to grab your attention or guide your eyes to follow a particular path. Much like Odysseus and
his men traveling past the islands of the sirens, you mustn’t allow the designer’s techniques to lure you in.

Instead of focusing on what is presented, you need to focus on what is necessary to devise a quality
application. To keep yourself from being swayed by the visual messaging of the comps, you can rely on
use cases to demonstrate the system’s goals.

Use Case Scenario
A use case is nothing more than sequential actions performed within the confines of a scenario. These
steps move toward accomplishing a specific goal. Each scenario has a clear beginning and ending, and
there is always only one goal per use case. In short, a use case is a story that explains the system.

Depending on the agency for which you work, getting your hands on the statement of work (SOW) is the
optimal way to determine your use case. A SOW is a document that details the project requirements and
defines the agency’s work activities. If you don’t have access to a SOW, ask the designer to detail the
steps their comp demonstrates, as they understand them, and then walk through the comp with them.

Here’s are possible case scenarios for the example site:

• User Landing

A user comes to the site.

The user views a blurb about the product.

The site navigation is revealed.

• Product Gallery

A user selects a product.

Display product image and detailed specs.

User purchases the product.

• Image Gallery

A user selects a photo image.

Display weather conditions photo.

Present information callout.

User browses images.

Update information callout.

Because I didn’t have a SOW available, I relied on the designer’s understanding. You should build to these
specifications and not to the visuals, because the visuals are more likely to change.

Your goal is to get rid of specifics in order to remain loose and general, because design assets may not be
completed yet and, therefore, may change. Yet from the moment your kickoff began, so did the countdown
toward your deadline. This is another reason to only concern yourself with the features requested by the
client: these are the aspects of your system that are most solid and least likely to change.

DECISION-MAKING AND PLANNING

53

Requirements from the Features
When you devise a list of features, it is possible to obtain additional requirement details from them. Keep in
mind I say “possible” because many things can go hand in hand. For example, if I say “peanut butter and
_____,” you may reply, “jelly.” This is because these two things often go together. Although your project
features as stated may only include peanut butter, the clients may not realize that jelly is a key requirement
for the peanut butter to be possible. Also, consider the creation of a form. While it may appear that this
means a client requires a submit button and an email field, one may not consider the necessities of an
error box, or the success message.

Therefore, site design takes advantage of the needs and wants of the users, and inferences are made to
better support the abilities of the user.

Note: Requirements from features are susceptible to change, so it’s important not to mix them with what
you assume to be constants.

If you review the features from the User Landing use-case scenario, you can determine related
requirements for the project build. For instance, as Figure 3-2 shows, you can deduce that a preloader
and a footer are possible development requirements, even though they aren’t marked as client features.

Figure 3-2. Supplemental requirements of the User Landing use-case scenario

You need the preloader when the site is ready to progress to the landing page. It is a way for users to
understand that a process is taking place and they should be patient.

The footer is a general feature that’s part of the navigation. Specifics of what’s in the footer are generally
geared toward the client and therefore don’t need to be added now, because they may change.

The Product Gallery use case, shown in Figure 3-3, illustrates that you need to write XML to contain a
product and any specs the product requires. This way, you can keep specifics out of your system. And
because the XML will be loaded into the application, you can adjust its language without having to
republish any code. Because you don’t know how many products you’re showing at a given time, your
system doesn’t include this information and only knows to iterate over the number of children in the XML.

CHAPTER 3

54

Figure 3-3. Supplemental requirements of the Product Gallery use-case scenario

This raises the fact that the XML needs to be loaded. At this moment you’re uncertain whether it will be
loaded before or after the landing page. And you know that if a product image needs to be displayed, you
must load it as well. Again, when will it be loaded? For now it’s irrelevant, because all you’re doing is
fulfilling supplemental requirements.

According to the client, each client has some form of navigation to go along with it. This is marked in
Figure 3-3.

Finally, as shown in Figure 3-4, another preloader is required to help load the scenic photos.

Figure 3-4. Supplemental requirements of the Photo Gallery use-case scenario

Flow Chart
Flow charts are another tool that can prevent dilemmas. A flow chart maps out the possible sequence of
steps the user may take when navigating through a system. It’s beneficial because it helps to point out
essential concepts that may not have been designed or considered. For example, if the user is asked to
submit a form, what happens if an error occurs? How is the user redirected back into the system? What
paths can they take from that point?

Figure 3-5 shows the different scenarios a user may face, based on their decisions. The user may directly
or indirectly take the actions on the system.

DECISION-MAKING AND PLANNING

55

Figure 3-5. The flow chart of your current user experience

Many software applications create flow charts, but the simplest approach is always to use paper. It’s not
necessary to add a legend or note about who generated the flow chart, although doing so can help
someone who hasn’t viewed the chart before—everyone has their own style in producing a flow chart, and
you want to ensure that the viewer clearly understands the flow. What is required is the flow chart’s version
number. This helps viewers to understand the model’s progression, lets you track changes, and indicates
the version in which a change took place.

As indicated by the question marks in Figure 3-5, some paths require more clarification. What happens if
a user decides to purchase a product? Are they redirected? Do you need to devise a new section? What if
a user doesn’t have Flash—does the site have an HTML page? And what if the user clicks within the
footer? Do they go to an external page, or do you display new content in the current page? The answers to
these questions should be as generic as possible so they don’t interfere with your current process.

CHAPTER 3

56

Performance
The next step in being preemptive toward problems requires both generic and specific information about
your current system. You need to ensure that the site will work optimally before you back yourself into a
corner with the implementation. Before you get into the next round of analysis, you should make sure you
consider the limitations of ActionScript 3.0. Such limitations include the frame rate and its dependence on
the browser’s redraw speed, which depends on the user’s processor and connection (such as wireless or
high-speed Ethernet). You also need to be aware of the number of server requests, the amount of time it
takes to parse an XML file, and, always, how much memory your application requires. The Flash player is
a browser plug-in, and this is also performance related. If a user doesn’t have the player installed, how will
your application perform?

The type of RIA you’re building also helps determine the performance issues you need to consider. For
instance, if you’re building a desktop application, you don’t need to be concerned with the browser’s
connection to your application’s frame rate. Of course, there may be other performance issues you need to
be concerned about.

Your first pass through the analysis doesn’t reveal any cause for poor performance. But having done your
due diligence, you know to be careful about a few particulars. As you continue to analyze your system, be
aware of how you store and load data. During every iteration of the analysis, new issues may arise that
you can’t see at this stage.

Layering
You’ve gathered a satisfying amount of information from your initial analysis of the system. To recap what
you have thus far, you’ve devised a use-case scenario to explain the features expected by the client, and
you’ve determined what requirements accompany those features. From there, you determined whether
additional requirements are necessary to ensure a smooth user experience. Finally, using the knowledge
you’ve accumulated, you’ve noted any areas of performance concern that should be corrected before they
cause issues in your system.

Layering is an iterative process that attempts to increase the amount of specifics to a structure in order to
best combat unforeseen change. Of course, because change is a constant, anything may change at any
time; but your work hasn’t been fruitless. The immediate goal is to remain ahead of the changes by
separating the generic from the specific and remaining flexible. While you gather information, remain
aware of potential concerns for the application.

Your initial analysis of the system revealed a great deal of information you can use. But as you saw in the
flow chart in Figure 3-5, a few questions need to be answered in order for the application to run smoothly.
Eventually, all generics must become specifics, or you’ll end up with an application that does nothing. You
can consider each analytical pass to be another layer that tries to fill the gaps revealed by the layers
below. Each pass grows more specific and reveals the modifications of behaviors that were once generic.
The number of passes you make depends on the size of your application, the aspects of the application,
and your desired level of magnification (that is, how closely you want to analyze each object).

Although each iterative pass may seem to analyze the same system, your analysis is applied to a new
problem domain each time you add a layer of specifics. The repetition reveals the union (overlap) of
objects in the system. This repetition makes you better acquainted with the system’s requirements and
objects, which lets you handle change efficiently.

The beauty of layering is that each layer represents additional system behaviors you’ve added. It also
magnifies your bird’s-eye view so you can zoom in on the system.

DECISION-MAKING AND PLANNING

57

Analysis Continued
Having completed your first analytical pass, you must repeat the cycle to fill in the missing pieces.
Currently you have three open-ended paths, as revealed in the flow chart in Figure 3-5. As long as paths
remain open-ended, the system will include generalized behaviors as well as specialized behaviors. You
need to concern yourself with the complete flow of the system.

Currently, you don’t know what happens if the user doesn’t have the Flash player plug-in, if the user clicks
a footer link, or when a user purchases a product. We’re informed that the site should prompt the user via
an HTML document that that they need Flash to view the site. The other two questions can only be
answered by the project manager and the designer, and the answers may or may not be simple.
Therefore, you’ll leave those questions unanswered until the answers are necessary.

Figure 3-6 reflects these changes, updates the legend to reveal a new symbol, and states the current
version of the flow chart.

Figure 3-6. User flow chart reflecting the latest revisions

CHAPTER 3

58

The Breakup
You’re said to be working at a low level when you look at your system as a whole. This is because to view
a system in its entirety, you must back up to a specific distance to be able to see everything. Much as in
real life, you often have to increase your distance from multiple objects to see them in the same frame. As
you back up or zoom out, you also minimize the details of the items you’re trying to view. The loss of
details lets you keep your focus on the system as a whole. When you manage to assess the big picture,
you can begin to increase the magnification and look at details. The easiest way to do that is to break the
whole into the sum of its parts.

Product Gallery
You’ve already seen the features necessary to the client. Now you need to consider the specifics that the
designer has added to achieve those features. By viewing the comps and speaking with the designer, you
can understand their vision of how the product gallery will be presented.

According to the designer, the steps involved in a user selecting a product in the product gallery are as
shown in the following use-case scenario:

• Product Gallery

• Product Selected

1. Display product image and detailed specs.

a. The user views the product image.

b. The user views the description.

c. The user views all available colors.

d. The user views all available sizes.

e. The user views interior navigation.

i. The user can purchase the current product.

ii. The user can navigate between products.

The new details added to the product-selection use-case scenario may also reveal developmental
requirements that need to be added, as Figure 3-7 shows.

Figure 3-7. Updated requirements for the Product Gallery use case

You know you’re using XML; and if multiple parts will be pulled in, you can separate them into different
nodes of the XML. Given what the designer has in mind for the page that shows the product and its
description, you know what type of elements to use. As shown in Figure 3-7, you can add references to
specific objects in ActionScript 3.0. Where the page has text, you know you use a text field. Where the
page uses images, you require bitmaps. Because there are two display colors, you need a collection of the
graphics object. There is an in-page navigation where the designer lets the user purchase a product and

DECISION-MAKING AND PLANNING

59

enhances the user experience by supplying Previous and Back buttons. And on the topic of the buttons,
this is a good opportunity to find out what occurs if the user clicks Buy It Now.

A quick conversation with the designer and the project manager reveals that you aren’t responsible for the
e-commerce section of the site. When a user clicks the Buy It Now button, they go to an external web
page. You can reflect this in the flow chart, as shown in Figure 3-8.

Figure 3-8. Making a purchase opens an external page.

Performance
Again you’ve reviewed and added to your system. Now you need to work on preventing performance
problems: repeat the earlier performance analysis to see if you recognize any other potential issues due to
your recent changes.

CHAPTER 3

60

Nothing causes any concerns at the moment; but a problem could occur that’s so small, it can’t be
foreseen. For example, an external link could hinder performance later, depending on what that page
holds. Suppose you’re using a sound analyzer. If a second page from another domain opens and plays
sounds, your analyzer will fail due to a security error. Because the sound analyzer is global to all players, it
reads bytes from every player. When bytes are served from a server other than yours, if you can’t find a
policy file with the proper permissions, the sound player will be prevented from reading those bytes.

Scenic Gallery
In discussing the designer’s vision for the Image gallery, the designer reveals the approach used to lay out
the design. Using this information, you can sprinkle another layer of specifics onto the original Image
Gallery use-case scenario:

• Image Gallery

1. An image is chosen displaying an outdoorsman wearing the product.

f. The user views the image.

g. The user views the image Information callout.

i. The user clicks the information to read about the image.

ii. The user can download the current image in one of three resolutions.

Again, you attempt to gather any supplemental requirements from the use case. Figure 3-9 shows the
necessary developmental requirements. Much as with the Product Gallery use case, you use XML to hold
the information about the image.

Figure 3-9. Developmental requirements for the Image Gallery

With the new information provided by the detailed use-case scenario, you again come across a possible
break in the flow of the user experience. If a user decides to download the current image in one of three
possible resolutions, you have to account for any issues that may arise. You need to be aware of the File
Reference object that ActionScript 3.0 uses to download a file. File Reference lets you listen in on specific
events, but it doesn’t natively display any visual indication to the user about whether their download is
complete or unsuccessful; it also doesn’t display a progress bar during the download. You need to add
information that the designer didn’t think of. The updates shown in Figure 3-10 reflect the latest revisions.

DECISION-MAKING AND PLANNING

61

Figure 3-10. The sequence reflecting the download of an image

The downloaded image may or may not require an error box or a success box that informs the user the
status of the image they selected.

Footer
Because the footer is part of the site’s navigation, you need to refine what links a user will find there and
the way you present them (see Figure 3-11):

1. The user views the footer navigation.

The user clicks Contact Us.

The user clicks Store Locator.

The user clicks Mailing List.

CHAPTER 3

62

The user clicks Privacy Policy.

The user clicks Terms & Conditions.

Figure 3-11. The footer has five buttons.

Again, we need to see if the footer links add to your system by talking to the designer and project manager
to ensure these additional comps aren’t overlooked. We’re informed that we aren’t expected to add
functionality to the system to reflect the footer links; they will take the user to eternal pages. Figure 3-12
shows the revised flow chart.

Figure 3-12. Each link in the footer opens an external page.

DECISION-MAKING AND PLANNING

63

Because the footer doesn’t add complexity, it shouldn’t cause any performance issues.

Wrapping Up the Analysis
When you’ve explored all possible user paths, you can be confident that you’ve analyzed all client
features, designer features, and developmental features for the system. Having an overview of the system
along with each subsystem’s parts gives you a starting point when determining objects and their
associations during the design phase. Again, because change is a constant, you should have a
documented list of all possible objects from your complete analysis before you make any further
modifications.

In this case, the identified objects are as follows:

• Shell

• Site-loader

• Site

• Blurb

• Navigation

• Product

• Image

• Footer

• Scenic Image XML

• Image Gallery

• Image XML

• Image Preloader

• Photo

• Information Callout

• Info photo

• Information XML

• Progress bar

• Image description

• Product image XML

• Product Gallery

• Product XML

• Interior navigation

• Buy It Now

• Previous

• Next

• Image Preloader

• Product image

• Specs

• Description

CHAPTER 3

64

• Available colors

• Available sizes

• Buttons

• Footer

• Contact Us

• Store Locator

• Mailing List

• Privacy Policy

• Terms & Conditions

• Buttons

This list contains what you believe to be all objects required for the application; you can only confirm this
by making proper object associations. You can identify how the objects work together to fulfill the
requirements. Much like a brand-new jigsaw puzzle spread on a table, you must assemble the pieces you
currently have in order to identify any missing pieces or revealing pieces you no longer need.

Object Oriented Design (OOD)
Now that you’ve completed the analysis phase, you can begin to think about the objects and their
relationships. At this stage, you evaluate each object’s necessity and continue to look for other objects that
are required for the intended behaviors between associations. Being able to orchestrate the objects before
you attempt to implement them gives you a greater ability to adapt their behaviors.

The following steps are required before you implement objects:

1. Review the current objects, and remove any duplicates or extraneous objects you’ve
documented.

2. Document appropriate names and behaviors for the remaining objects. Each object should
have only one defined behavior, which means it has only one reason to ever need to change.

3. Based on the behaviors, separate generalized objects from any behaviors that may require
change. If behaviors don’t vary, there is no need for an abstract class.

4. Make associations, and create new objects if needed to achieve specific behaviors.

Unfortunately, to develop optimal associations and reuse elements, you must be aware of the many ways
to do so. Even with years of experience, your object associations may prevent you from architecting a
framework that enables your object-oriented goals. For now, you must stop here, to avoid making improper
decisions about your objects until you know more about design patterns. You continue the OOD phase of
this case study in Chapter 11.

Summary
OOP, meaning working with objects, doesn’t help you discover all the objects required for a system. But
OOA does.

DECISION-MAKING AND PLANNING

65

As you’ve seen in this chapter’s case study, iterative sweeps and incremental additions to the system help
you develop the requirements to complete the system’s user flow. By remaining distant from the specifics,
you can view the entire system. And by slowly layering on the specifics, you’re better able to see how they
may affect the behavior or performance of the application, as well as recognize potential pitfalls before the
build begins. The analysis phase, as repetitive and arduous as it is, is a must to achieve maximum
flexibility in a system.

The case study illustrates why change is a constant. First and foremost when developing an application,
you must pay strict attention to capturing all of the client’s desired features. The designer may attempt to
enhance these features through presentation and/or user experiences, and may inadvertently make client-
requested features less prominent or inject a feature that increases your workload. For example, if the
designer added thumbnails for Facebook and Twitter icons, your workload could potentially increase by
two days or more, depending on the additional screens, behaviors, or technology required.

Proper incremental analysis enables you to anticipate areas of concern during review and design, rather
than during implementation.

OOD, on the other hand, uses conceptualized objects from the analysis and devises flexible and loosely
coupled associations between them. OOD lets you realize class behaviors, establish elements for reuse,
and reduce the dependencies among them.

Key Points
• Building a perfect system is an iterative process.

• You should do most work on paper because you won’t try to salvage it and it’s faster.

• When you write code, you instinctually try to fix existing code.

• OOA and OOD make up 80% of project development.

• Ideas are often compounded.

• A flow chart’s version becomes a log of the analysis performed on the system.

• Use-case scenarios demonstrate the steps taken toward accomplishing a goal.

• OOA uses iterative passes to reveal all behaviors in the project.

• OOD models the associations of realized requirements.

67

Chapter 4

Intro to Design Patterns

Although many developers were slow to adopt object-oriented programming (OOP), in the 1990s a handful
of computer scientists at IBM were making strides in devising structures based on object-oriented
principles. They addressed solutions to reoccurring programmatic issues that decreased the scalability and
maintainability of their applications. In their debut book, Design Patterns: Elements of Reusable Object-
Oriented Software (Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides; Addison-Wesley,
1994), the so-called Gang of Four demonstrated the practicality of using OOP.

As you saw in Chapter 3, you can determine a list of objects that you may be able to implement into your
application. Although analysis reveals such objects, it doesn’t reveal the means by which these objects
can collaborate with and message one another in a flexible structure. The many variations among object-
oriented languages helps as well as hinders our efforts to architect a flexible structure. You also need a
clear understanding of the benefits an object-oriented language provides; hence the inclusion of Chapter 2
in this book.

Without adequate OO knowledge, developers can still use object collaborations, but at the cost of
efficiency, possible structural flexibility, and with the potential for personal frustrations.

Not all developers fall victim to such dilemmas. Experienced developers over time have learned numerous
techniques they use to combat flexibility issues. As each project changes, such solutions are modified and
tweaked to suit the new variations.

At the suggestion of OOP pioneers (James Coplien, for example), many developers have documented the
implementations they use to overcome particular problems. This documentation provides a catalog of
solutions that overcome the lack of flexibility in the design of collaborative objects.

Design Patterns Catalog
Before ActionScript was a language, the answers to many programmatic challenges had already been
tested, refined, solved, and documented. Many of these are probably obstacles you have, at some point,

CHAPTER 4

68

struggled to work around. These issues existed long before you or me and will always remain in this field.
This is because change is a constant.

What began as theories and hacks came to be time-tested solutions to reoccurring problems that
developers face. These patterns provide solutions to the need for flexibility of behaviors, structure, and
creation of collaborative objects in an application.

In most cases, these patterns target the objects themselves, using dynamic binding and polymorphism;
others deal with the code that is fixed in classes and their subclasses. Design patterns introduce solutions
you may not have previously seen or known about.

In addition to providing solutions, design patterns serve as a language developers can use to describe an
arrangement of code. The more familiar you become with specific patterns, the easier it will be to realize
how they can help you loosen the couplings between objects and achieve a more reusable, scalable,
maintainable system.

Selecting Patterns
Over time, developers are drawn to certain patterns and eventually become so familiar with those patterns
that they use them almost without thinking. More important than your affinity for specific patterns is
choosing a pattern based on the circumstances, or what the problem dictates. By analyzing the problem at
hand, you can arrive at the necessary pattern.

Many patterns have been cataloged according to their purpose, the category to which they pertain, and
their name. This book focuses on three categories: creational, behavioral, and structural. The following
definitions are from Design Patterns: Elements of Reusable Object-Oriented Software:

Creational patterns abstract the instantiation process. They help make a
system independent of how its object are created, composed, and represented.

Behavioral patterns are concerned with algorithms and the assignment of
responsibilities between objects. They describe not just patterns of objects or
classes but also the patterns of communication between them.

Structural patterns are concerned with how classes and objects are composed
to form larger structures.

Pattern Identification
Every pattern has a specific name. This name is the identifier by which a solution is known and referred to
by programmers. In the case of a design pattern, the name symbolizes the objects used, the collaboration
in which they work, and the behaviors they possess.

INTRO TO DESIGN PATTERNS

69

Reading a Design Pattern
The football players in Figure 4-1 may be in the right positions, but you can’t tell how they work together
to achieve their goal. The simple use of lines and arrows brings the strategy to life, indicating the
relationships of the players as shown in Figure 4-2.

Figure 4-1. Representation of a team formation

Figure 4-2. Representation of a team’s strategic game play

A professional developer’s design-pattern books are much like the playbook of a professional team,
showing the actions of every athlete on the field. But in the developer’s case, the star athletes are objects.

Why do you need to be able to read a design pattern? Simple. Design patterns aren’t lines of code that
can be easily copied and pasted into your application. Instead, they illustrate the means to conquer a
specific problem via diagrams like the one in Figure 4-2. As you’ve seen, no two object-oriented
languages are the same; and therefore not all implementations are the same, even if the difference is a
mere matter of syntax. What does remain the same is the mental model the language mirrors. Think of a
design pattern as a seed waiting to blossom with your help.

In order to achieve maximum flexibility, patterns often use added levels of indirection, which can
complicate object-oriented designs. Being able to understand the ways in which a pattern is presented can
make all the difference in your ability to understand it. They will illustrate the object distinctions and the
relationships they possess.

UML
As you may know, Unified Modeling Language (UML) is the tool used to lay out all object-oriented designs.
It’s the language spoken between an architect and a developer, and it’s the standard used to represent
model-driven architecture.

CHAPTER 4

70

Having a standard ensures that models can be understood by developers using varying software
languages. This is an advantage, because to be adopted by the widest possible audience, patterns should
avoid language specifics. To read a design pattern, you need to be able to properly interpret its UML class
diagram.

The Class Diagram
The class diagram is the most common form of modeling you’ll see in design patterns. These diagrams, as
the name suggests, expose the classes used in a system/subsystem and the relationships among them.
Class diagrams don’t show the steps an object takes to message another; sequential diagrams and
interaction diagrams illustrate that behavior, which is beyond the scope of this book.

Classes
The classes in a class diagram represent specific elements of the system or subsystem used in the
pattern. Classes in a design pattern diagram typically expose only the public methods to which another
object can message. This is because the diagram is only concerned with exposing aspects that reflect the
relationships among the objects, not implementations. However, some attributes are often included to
further illustrate object behaviors.

Figure 4-3. A typical Class Diagram

As illustrated in Figure 4-3 attributes and behaviors can be seen following symbols that denote the
appropriate visibility of the member.

Relationships
The objects in each system serve special roles, and their relationships help reveal how they’re used. Some
relationships indicate collaborations, some compositions, and some indicate subclasses. The relationships
among system classes are represented using association and generalization.

Association
Associations among objects are illustrated by the way objects in a class diagram are connected to each
another. The simplest way to indicate a relationship is to draw a line connecting two classes (see Figure
4-4). This is referred to as a common association.

INTRO TO DESIGN PATTERNS

71

Figure 4-4. Illustrates a common association between Vector.<uint> and GrayScaleHalftone

Although the line signifies the connection between the two classes, the diagram doesn’t specify ownership
or the flow of communication between the objects. Some diagrams remedy this lack of specifics by using
association roles; to do so, you add text above the association, explaining the relationship. In Figure 4-4,
you could identify the objects’ roles by adding uses > above the association, indicating that
GrayScaleHalftone uses the vector, and not the other way around.

Often, the line between objects in a diagram is dashed or dotted, representing an object or behavioral
implementation:

• Object implementation: A dashed line from one class to another represents the instantiation of
an object. The dashed line begins at the object initiator and points to the class that will be
instantiated.

• Behavioral implementation: When a behavior supplies a specific implementation, a dashed
line flows from the method to a callout that shows the specific behavior.

Aggregation
An aggregated relationship is one in which multiple parts are combined to produce a distinct object. You
can think of an aggregation as a “has-a” relationship: the whole is produced by the sum of its parts. The
behaviors of the parts aren’t limited to benefitting the whole they help create. An unfilled diamond
connecting the whole to a part defines the relationship as an aggregation; it signifies the object’s ability to
exist independently of the whole.

An example of aggregation is the relationship of an RSS feed to a blog, where the feed is created from the
combination of many articles. Without the articles, the RSS feed can’t exist; but the articles exist
independently of the RSS on the blog (see Figure 4-7).

Figure 4-7. An illustration of 3 Generic Articles as an aggregate to some RSS feed.

CHAPTER 4

72

Composition
Composition is a type of association in which one or more objects together produce a whole, and exist only
to perform behaviors on that whole. Due to this dependence, the parts are meaningless as individual
objects outside their roles within the whole. The UML representation of a composition relationship is a solid
diamond connecting the part to the whole (see Figure 4-8).

Figure 4-8. House requires a roof, walls, and a ceiling to fulfil the role of a house

Generalization
The last type of association is generalization, which you can think of as inheritance. The hierarchy among
objects is identified by a common association from the subclass to its superclass. An unfilled arrowhead
appears at the superclass end of the connecting line (see Figure 4-9).

Figure 4-9. Using a generalized association to an abstract class aThread

Interfaces
Much like a class, an interface’s name appears in the first segment of the UML diagram; its public method
is shown in the second segment (see Figure 4-10). The fact that this is an interface is indicated by the
interface declaration above the name, prefixed by two left arrows (<<) and suffixed by two right arrows
(>>).

Figure 4-10. A defined interface in a class diagram

Many object-oriented languages, including ActionScript 3.0, don’t support abstract classes. For this reason
many class diagrams display an association from an implementation of an object to an interface.

INTRO TO DESIGN PATTERNS

73

Chapter Summary
This chapter explained how to approach design patterns as they are documented, and intended for use.
We learned that a design pattern is the core of a solution.

No matter what Object-Oriented Language a programmer may use, a solution should be readily available
to them by understanding the core of such a solution. A design pattern’s documentation addresses the
necessary objects and their associations in a manner that is unspecific to a programming language. Each
documentation is noted with the use of the Unified Modeling Language, and, therefore, a programmer
should be familiar with UML in order to understand how to read a design pattern, as well as architect his or
her own Object-Oriented Designs.

Chapter 4 concludes the discussion of the necessary aspects of Object Oriented Programming and the
pre-requisites of the upcoming chapters.

Key Points
• Design patterns are solutions to common object-oriented design dilemmas.

• Design patterns are divided into three categories: creational, behavioral, and structural.

• Creational patterns abstract the instantiation process.

• Behavioral patterns are concerned with algorithms and the assignment of responsibilities
between objects.

• Structural patterns are concerned with how classes and objects are combined to form larger
structures.

• A common association is illustrated by connecting objects with a thin line.

• Composition is a relationship among objects that share a similar lifeline.

• Aggregation is a whole made up of independent parts.

• Class diagrams, sequential diagrams, and interaction diagrams can be used to design
collaborations.

• UML stands for Unified Modeling Language.

• Inheritance can be signified using an interface.

• Design patterns don’t reflect a specific object-oriented language.

Upcoming Chapters
Chapter 4 is only an introduction to design patterns. The information here is supported, and reinforced in
the chapters thoroughly discussing design patterns, Chapters 6-8. After this chapter, you will be able to
test your knowledge from the first four chapters before proceeding to Chapters 6-8.

CHAPTER 4

74

I encourage you to read these chapters in order, because the discussion of one pattern may reference a
previous pattern. All the examples have been written to best illustrate how a design pattern appears in an
actual application. As you read the code for each example, remember that patterns shouldn’t be taken at
face value; the code that illustrates each pattern is intended to solve an issue particular to the example.
Remember, a design pattern suggests how to solve a common dilemma; it doesn’t show you specifically
how it should be implemented in every scenario.

75

Chapter 5

Q&A

It’s no surprise that everyone has their own style of learning new material. Some learn material from
hearing it, some from reading it, and some by trial and error. Object-oriented programming covers a vast
amount of material, and books often fail to offer a means of validation about how well you’ve learned the
information. I have always found this to be frustrating, because I prefer to have immediate feedback about
how well I’ve understood what I read.

This chapter provides two quizzes consisting of 50 questions each, to provide you with immediate
feedback about how well you know the material covered in Chapters 1-4. The questions pertain to OOP
and its use with the ActionScript 3.0 object-oriented language. Due to the advanced nature of the material,
some questions may be answered with previous understandings before this book. Because some people
learn best from explanations provided after a test, the quizzes include detailed explanations. You won’t be
scored or judged on your answers, so you can use this chapter as a way to further your understanding of
object-oriented thought processes in ActionScript 3.0.

Quiz 1
Understanding object-oriented programming is easy. True False

1. Circle the best answer.

Learning object-oriented programming is a(n) _____________ process.

 Slow Iterative Cumbersome Arduous

2. Fill in the blank.

There are ____ principles of object-oriented programming.

CHAPTER 5

76

3. What are the principles of object-oriented programming?

___________________________ ____________________________

___________________________ ____________________________

___________________________ ____________________________

4. Match each OOP principle to the correct definition.

__ ensures properties can’t be changed without your permission.

__ should possess only one behavior.

__ works well with dynamic binding.

__ allows behaviors to change.

A. Encapsulation B. Inheritance C. Polymorphism D. Data hiding

5. External definitions can have custom name spaces. True False

6. Fill in the blanks.

Object-oriented programming is the practice of creating a software architecture that enables
___________ through ___________ design.

7. Circle the best answer.

An object-oriented programmer is __________________.

 more advanced in coding more strategic in developing

8. Match the characteristics with the programming practices.

Procedural programming Faster performance

 Slower performance

Object-oriented programming Routines

 Subroutines

 Methods

 Behaviors

Q&A

77

9. Complete the sentence.

The nature of a subclass is to ______________________________

__.

10. List the three directives that are understood as external definitions.

11. Fill in the blank.

_____________ classes have an internal hashtable.

12. In the following code, is ClassB sealed or dynamic?

package
{
 import flash.display.Sprite;

 dynamic public class ClassA extends Sprite
 {
 }
}

package
{
 public class ClassB extends ClassA
 {
 }
}

13. How can you modify a behavior of a class that is marked final?

__

__

__

__

x

CHAPTER 5

78

14. What are the uses of packages and the names of external definitions?

__

__

__

__

15. Why should you use function casting such as TYPE(expression) in AS 3.0?

__

__

__

__

16. What is an example of a wrong time to use function casting such as

TYPE(expression) in AS 3.0?

__

__

__

__

17. Circle the answer that best completes the sentence.

An interface can include __________________.

Getters and setters

Visibility modifiers

Attributes

Algorithms

18. Static is a visibility modifier. True False

19. Given the following code, which answer is correct?

package
{
 public interface ISpeak
 {

Q&A

79

 function speak() : void
 }
}

package
{
 public class Human
 {
 public function speak() : void
 {
 trace('hello');
 }
 }
}

package
{
 public class Cat implements ISpeak
 {
 public function speak() : void
 {
 trace('meow');
 }
 }
}

A. var itSpeaks :ISpeak= ISpeak(new Human()) ;

B. var itSpeaks :ISpeak= new Cat() ;

C. var itSpeaks :ISpeak= new Human() ;

D. Both A and B

20. Why would you instantiate a class?

__

__

__

__

CHAPTER 5

80

21. Fill in the blank.

Inheritance is said to have a ____________ coupled relationship.

22. How does the MovieClip from the library break encapsulation?

__

__

__

__

23. Circle the answer that best completes the sentence.

Object-oriented programming is __________________.

a structural device

the act of making objects

24. OOP has a few downsides. List as many as you can.

__

__

__

__

__

25. How do design patterns help developers?

__

__

__

__

26. List the three categories of design patterns.

Q&A

81

27. Fill in the blank.

A good rule of thumb is to never exceed more than ___ levels of inheritance.

28. What is the difference between interface inheritance and class inheritance?

__

__

__

__

29. Fill in the blanks.

One design principle is to favor ___________ over ___________.

30. Circle the answer that best completes the sentence.

Composition relies on __________________.

delegation

tight coupling

objects

IS-A relationships

31. Fill in the blank.

The relationship shown is __________________.

Mother
New Born_baby:New Born

32. Match the items in the two columns.

This type checking hates poor code. Compile-time type checking

This type checking doesn’t like mismatches. Runtime type checking

33. Explain when you would use an abstract class instead of an interface in AS 3.0.

__

__

__

__

CHAPTER 5

82

34. List the differences between an abstract class and an interface in AS 3.0.

__

__

__

__

__

__

35. Circle the answer that best completes the sentence.

Object-oriented programming begins with __________________.

objects

implementation

collaboration

factoring

36. Given the following classes, circle the term that best describes its encapsulation.

package
{
 public class CrestTartarAndCavityProtection extends ToothPaste
 {
 public function CrestTartarAndCavityProtection() : void
 {
 }

 public function fightTartar() : void
 {
 }

 public override function fightCavities() : void
 {
 }

 public function whitenTeeth() : void
 {
 }
 }

Q&A

83

}

 Cohesive Incohesive

37. When do you not need to perform an analysis of a system?

__

__

__

__

38. Performance can change requirements. True False

39. Consider the following code:

package
{
 //Felidae is the Heirarchy of the cat family
 internal class Felidae
 {
 protected var _canPurr : Boolean;
 protected var _region : String;
 protected var _speed : int;

 public function run() : void
 {
 }

 public function sleep() : void
 {
 }

 public function eat() : void
 {
 }
 }
}

package
{

CHAPTER 5

84

 public final class Cougar extends Felidae
 {
 public function Cougar()
 {
 _canPurr = true;
 _region = "South America";
 _speed = 40; // mph
 }
 }
}

What conclusions can you draw about the application from the use of the final keyword?

40. Why is having a broad understanding of an object-oriented language important when
dealing with design patterns?

Q&A

85

41. Assign the appropriate access modifiers to achieve the following: the classes within
utils.color.type should never be set by anything other than ColorConverter, but their
get values can be read outside their package.

CHAPTER 5

86

42. Fill in what is needed to ensure that someObject doesn’t linger with the garbage collector
when remove() is called.

43. Explain what the top-level function getDefinitionByName is used for.

Q&A

87

44. Rank the likelihood of change among the following, where 1 means least likely to change
and 5 means most likely to change.

__ Client requirements

__ Design layout

__ Transitions/Motion

__ User flow

__ Creative assets

45. Using the following table, which displays the bytes per object, how many bytes will
SomeClass occupy?

package
{
 public class SomeClass extends Shape
 {
 private var _tField : TextField;
 private var _obj : Object;

 public function SomeClass()
 {
 _obj = {};
 }
 }
}

SomeClass takes up ______ bytes.

46. On deployment, all documents used during analysis can be tossed out in celebration.

True False

CHAPTER 5

88

47. Why is it best to implement the disposable pattern as nothing more than a class interface?

48. The time used during the build process is best spent in implementation. True False

49. All classes are expected to have their behaviors changed. True False

50. All classes created during a project are best left in the project’s general source folders.
 True False

Q&A

89

Answers to Quiz 1
Understanding object-oriented programming is easy True False

Explanat ion: Object-oriented programming is a very advanced concept, and is often
misunderstood by some advanced programmers. Despite what some may say,
understanding OOP isn’t easy. Remember this through your frustrations.

1. Circle the best answer.

Learning object-oriented programming is a(n) _____________ process.

 Slow Iterative Cumbersome Arduous

Explanat ion: Although learning OOP is slow, cumbersome, and arduous, only iterative
truly describes the process required to understand all OOP concepts. Much of OOP is a
thought process that isn’t often learned in a linear fashion.

2. Fill in the blank.

There are 4 principles of object-oriented programming.

3. What are the principles of object-oriented programming?

 Encapsulation Inheritance

 Polymorphism Data hiding

4. Match each OOP principle to the correct definition.

 D ensures properties can’t be changed without your permission.

 A should possess only one behavior.

 C works well with dynamic binding.

 B allows behaviors to change.

A. Encapsulation B. Inheritance C. Polymorphism D. Data hiding

5. External definitions can have custom name spaces. True False

Explanat ion: The Dynamic, Final, Public, and internal keywords are the only
modifiers of a directive. Custom namespaces are allowed within external definitions as
access modifiers of a property and/or behavior.

CHAPTER 5

90

6. Fill in the blanks.

Object-oriented programming is the practice of creating a software architecture that enables
flexibility through modular design.

Explanat ion: Through the use of objects, you can compartmentalize code, which lets
you introduce polymorphism into your code more easily. The greater the separation
between the system and the code that creates it, the more flexibility developers are
granted.

7. Circle the best answer.

An object-oriented programmer is __________________.

 more advanced in coding more strategic in developing

Explanat ion: It’s a misconception that if you do something on a daily basis, you must
get to be amazing at it by the time you reach a certain age. There are plenty of cases
that prove this is far from the truth. Most college basketball players, although great,
don’t make it to the NBA despite having played all their lives. Being an object-oriented
programmer doesn’t mean you’re more advanced because you understand OOP; rather,
you’ve embraced OOP for the structure it enables.

8. Match the characteristics with the programming practices.

Procedural programming Faster performance

 Slower performance

Object-oriented programming Routines

 Subroutines

 Methods

 Behaviors

9. Complete the sentence.

The nature of a subclass is to supply the behavior of an abstract method, or add a more
specialized behavior to an existing behavior.

10. List the three directives that are understood as external definitions.

 Interface

 Namespace

 Class

Q&A

91

11. Fill in the blank.

Dynamic classes have an internal hashtable.

12. In the following code, is ClassB sealed or dynamic?

package
{
 import flash.display.Sprite

 dynamic public class ClassA extends Sprite
 {
 }
}

package
{
 public class ClassB extends ClassA
 {
 }
}

Sealed

Explanat ion: Remember from Chapter 2 that classes remain sealed unless specified
as dynamic.

13. How can you modify a behavior of a class that is marked final?

When a class itself is marked final, the only way to modify any behavior of the class is

to open the file and modify it. But don’t do so at any cost. That would break an OOP

design principle: a class should be open for extension and closed for modification.

Explanat ion: The final keyword ensures protection from modification by any means,
short of overwriting the file’s contents. This protection may not always be for the class’s
best interest but for yours. Consider a class that is broken but that will serve a key role
in later development. By marking the class final, you can ensure that no team
members will have any behaviors that are affected by future class modifications.

CHAPTER 5

92

14. What are the uses of package structures and the names of external definitions?

The name of an external definition should precisely define the intended behavior the

definition provides to an application. The defining package in which it resides elaborates on

the associations it uses and provides additional context for the named behavior. Finally,

package structures guarantee uniqueness among definitions.

15. Why should you use function casting such as TYPE(expression) in AS 3.0?

Function casting operations are best used to acquire thrown errors when a cast is

unsuccessful. This aids in debugging, which is always a good thing.

16. What is an example of a wrong time to use function casting such as TYPE(expression
) in AS 3.0?

Type(expression) is the equivalent syntax to instantiating a new object, if the constructing

arguments are manipulated by the class. Because of the operation, an unexpected error may

occur.

17. Circle the answer that best completes the sentence.

An interface can include __________________.

Getters and setters

Visibility modifiers

Attributes

Algorithms

18. Static is a visibility modifier. True False

Explanat ion: The internal, public, private, protected, and custom namespaces
are the only access modifiers, or visibility modifiers. Using the static keyword declares
an attribute or behavior that is owned by the class itself, not the instance of the class.

19. Given the following code, which answer works best?

package
{
 public interface ISpeak

Q&A

93

 {
 function speak() : void
 {
 }
 }
}

package
{
 public class Human
 {
 public function speak() : void
 {
 trace('hello');
 }
 }
}

package
{
 public class Cat implements ISpeak
 {
 public function speak() : void
 {
 trace('meow');
 }
 }
}

A. var itSpeaks :ISpeak= ISpeak(new Human()) ;

B. var itSpeaks :ISpeak= new Cat() ;

C. var itSpeaks :ISpeak= new Human() ;

D. Both A and B

Explanat ion: Although it may appear that answer D is correct, the proper answer is in
fact B. The interfaces are exact, but to enable typecasting, the object must have the
expected type in its traits object. Cat is the only class to use the ISpeak interface,
which is why only an instance of Cat can fulfill the binding of an ISpeak variable.

CHAPTER 5

94

20. Why would you instantiate a class?

By copying a predefined template, objects can modify their attributes and/or states

independently of one another, allowing for a reduction in the collective number of static

classes used to achieve the same goals.

21. Fill in the blank.

Inheritance is said to have a tightly coupled relationship.

Explanat ion: Because a subclass inherits class attributes and behaviors, any change
to the superclass directly affects the subclass. Thus a subclass, although able to inject
its own specifics, is at the mercy of any errors caused by the classes from which it
derives its behaviors.

22. Why does the MovieClip from the library break encapsulation?

When you use a MovieClip from the library, nested clips must be defined as public, which

doesn’t allow the class to monitor all modifications made to it.

23. Circle the answer that best completes the sentence.

Object-oriented programming is __________________.

a structural device

the act of making objects

24. OOP has a few downsides. List as many as you can.

Object-oriented programming can add more complexity to a system.

Object-oriented programming requires memory management.

Instantiating objects takes time, which makes OOP slower than procedural programming.

OOP requires a lot of planning and strategy.

If you use OOP improperly, your code will be harder to maintain.

Learning OOP != understanding OOP.

Q&A

95

25. How do design patterns help developers?

Design patterns introduce solutions you may not have previously seen or known existed.

Beyond their generalized solutions, design patterns are like a language, because they’re a

road map to your code.

26. List the three categories of design patterns.

Creational

Behavioral

Structural

27. Fill in the blank.

A good rule of thumb is to never exceed more than 3 levels of inheritance.

Explanat ion: The further you are from the origin of the inherited behaviors and/or
attributes, the more errors can occur among the subclasses due to the slightest
modification of any of the superclasses. The greater the number of levels of inheritance,
the greater the impact the error may cause.

28. What is the difference between interface inheritance and class inheritance?

Interface inheritance enables an object to be bound to a reference in lieu of another object,

whereas class inheritance defines an object’s behavior in terms of a superior’s

implementation.

29. Fill in the blanks.

One design principle is to favor composition over inheritance.

Explanat ion: Whereas inheritance fails to offer a loosely coupled relationship to
behavioral modification, composition promotes it. Composition is the preferred solution,
but you end up with more classes if not more objects.

CHAPTER 5

96

30. Circle the answer that best completes the sentence.

Composition relies on __________________.

delegation

tight coupling

objects

IS-A relationships

31. Fill in the blank.

The relationship shown is instantiation.

32. Match the items in the two columns.

This type checking hates poor code. Compile-time type checking

This type checking doesn’t like mismatches. Runtime type checking

33. Explain when you would use an abstract class instead of an interface in AS 3.0.

When you’re dealing with inheritance, or IS-A scenarios, it’s best to use an abstract class so

that defined methods and/or variables can be inherited by the subclass, reducing duplicate

code. Although an interface can provide a type for an object, it doesn’t localize the

commonalities that objects share, because it only concerns itself with public methods. An

abstract class, on the other hand, is an object; and an object is a group of code encapsulated

within a definition. This localizes states and behaviors so they can be used by multiple objects

known as subclasses. Using an abstract class also ensures that minor fixes are reflected in all

subclasses. And finally, it separates the specifics of behaviors from the interface, enabling a

more flexible means of extension.

34. List the differences between an abstract class and an interface in AS 3.0.

An abstract class can contain code but is never instantiated.

An interface can’t contain code.

An abstract class’s attributes can include visible modifiers.

An interface can only declare public methods.

You can use multiple interfaces, but you can extend only one class.

Q&A

97

35. Circle the answer that best completes the sentence.

Object-oriented programming begins with __________________.

objects

implementation

collaboration

factoring

36. Given the following classes, circle the term that best describes its encapsulation.

package
{
 public class CrestTartarAndCavityProtection extends ToothPaste
 {
 public function CrestTartarAndCavityProtection() : void
 {
 }

 public function fightTartar() : void
 {
 }

 public override function fightCavities() : void
 {
 }

 public function whitenTeeth() : void
 {
 }
 }
}

 Cohesive Incohesive

Explanat ion: Unless you’re a dental junkie and have witnessed that
CrestTartar&Cavity protection does in fact whiten teeth, the proper answer is
incohesive. The chosen class name alludes to a behavior that prevents tartar and
cavities but offers an additional behavior: whitening. A cohesive class provides one and
only one behavior that is relevant to the expected task of the class. Because this class
includes more than one behavior, it isn’t cohesive.

CHAPTER 5

98

37. When do you not need to perform an analysis of a system?

Proper analysis is always required, and therefore the only time it doesn’t need to be
performed is when it has already been done.

38. Performance can change requirements. True False

Explanat ion: Performance is a reason to change a design and/or technical requirements,
but never client requirements. Only technical limitations should modify what a client wants.

39. Consider the following code:

package
{
 internal class Felidae
 {
 protected var _canPurr : Boolean;
 protected var _region : String;
 protected var _speed : int;

 public function run()
 {
 }

 public function sleep()
 {
 }

 public function eat()
 {
 }
 }
}

package
{
 final public class Cougar extends Felidae
 {
 public function Cougar()
 {
 _canPurr = true;
 _region = "South America";
 _speed = 40;
 // mph

Q&A

99

 }
 }
}

What conclusions can you draw about the application from the use of the final keyword?

The application doesn’t care about subcategories of Cougar. Also, because Cougar doesn’t

modify behaviors of the Felidae class, any subclass that intends to modify Felidae should

be done by subclassing Felidae directly.

40. Why is having a vast understanding of an object-oriented language important when
dealing with design patterns?

design patterns are absent of any language specifics in efforts for developers to apply them to

any object-oriented Lanaguage. Having a vast knowledge of both the classes, and syntax used

by the OOL, you can be best assured to implement a pattern in the most efficient manner

possible.

41. Assign the appropriate access modifiers to achieve the following: the classes within
utils.color.type should never be set by anything other than ColorConverter, but their
get values can be read outside their package.

CHAPTER 5

100

Q&A

101

42. Fill in what is needed to ensure that someObject doesn’t linger with the garbage collector
when remove() is called.

43. Explain what the top-level function getDefinitionByName is used for.

getDefinitionByName is a means to retrieve a Class object belonging to a fully qualified

class name from the application’s current domain. The returned object can create new

instances or be used to view its class members.

44. Rank the likelihood of change among the following, where 1 means least likely to change
and 5 means most likely to change.

0 Client requirements

1 Design layout

3 Transitions/Motion

2 User flow

4 Creative assets

CHAPTER 5

102

Explanat ion: The least likely to change is always the client’s requirements because
clients know what they want—that’s why they approached your company. Before
moving into the development phase, the requirements need to be approved, most often
by the client: that’s the design layout. A user flow is the backbone representing the path
the user takes to fulfill client requirements as expressed by the designer’s layout. A user
flow is more likely to be enhanced than changed significantly. Transitions, behaviors,
and creative assets are very specific, and specifics are always likely to change.
Transitions and behaviors are concepts that designers already have in mind, whereas
assets tend to get worked out along the way.

45. Using the following table, how many bytes will SomeClass occupy?

package
{
 public class SomeClass extends Shape
 {
 private var _tField : TextField;
 private var _obj : Object;

 public function SomeClass()
 {
 _obj = {};
 }
 }
}

SomeClass takes up 232 bytes.

46. On deployment, all documents used during analysis can be tossed out in celebration.
 True False

Explanat ion: Similar to the way City Hall keep building blueprints on file, all
forms of analysis should be stored to serve as the blueprints for any remodeling
in the future.

Q&A

103

47. Why is it best to implement the disposable pattern as nothing more than a class interface?

For memory management purposes, almost every class requires the dispose method. You

can’t inject the method into top-level classes, so you must develop a new subtype for every

class you need to extend. This can be problematic if you forget to use your new subtypes and

may lead to new issues later when you try to correct any mistakes. By adding the behavior as

an interface, you add a protocol to upcast to IDisposable and bypass any issues that may

arise when you try to add a subclass.

48. The time used during the build process is best spent in implementation.

 True False

Explanat ion: Implementation should occupy the least amount of time during development.
You should spend the most time performing object-oriented analysis and design.

49. All classes are expected to have their behaviors changed. True False

Explanat ion: This isn’t true and shouldn’t be in your mind during class development,
because it would lead to using many public and protected modifiers and potentially
breaking the rule of data-hiding. During OOA and OOD, class hierarchies present themselves,
and should be separated from specific behaviors rather than those that are generalized. These
relationships determine which classes are expected to have their behaviors changed, and you
can design those classes accordingly.

50. All classes created during a project are best left in the project’s general source folders.
 True False

Explanat ion: Although it’s wise to ensure that you download all appropriate classes from a
repository, doing so doesn’t enable one of the most powerful features of the object-oriented
process: reuse. During the course of your build, you develop classes with specific behaviors
and classes that use those behaviors to achieve specific goals within your application. Many
of these behaviors may be used outside this application, and thus should be stored in their
own team library.

CHAPTER 5

104

Quiz 2
Understanding object-oriented programming is easy. True False

1. Why is inheritance the cornerstone of OOP?

2. Consider the following figure:

If class B inherits class A, which already imported the definition of class C, why does class B
require the definition of class C as well?

3. Composition builds systems by combining less complex parts. True False

4. Fill in the blank.
A class that doesn’t define an interface for subclasses is known as a(n)
___________________ class.

Q&A

105

5. Circle the best answer.

someMethod(obj:Object):void is known as a _____________.

 function method signature receiver

6. Complete this design principle: Program to a(n) _____________, not to a(n)
______________.

7. Circle the best answer.

An object’s type refers to its _____________.

 superclass behaviors interface signatures

8. Explain how EventDispatcher can enable flexible architecture.

9. Explain how inheritance breaks encapsulation.

10. Why is it best to add an interface to a concrete class versus adding a method?

CHAPTER 5

106

11. Consider the following figure:

var cb:Class_B = new Class_B()

Explain why this is poor OOP.

12. Given the following class, which term best describes its encapsulation?

package
{
 public class WhiteningTartarCavityProtection extends ToothPaste
 {
 public function WhiteningTartarCavityProtection() : void
 {
 }

 public function fightTartar() : void
 {
 }

 public override function fightCavities() : void
 {
 }

 public function freshenBreath() : void
 {
 }
 }
}
 Cohesive Incohesive

Q&A

107

13. Circle the answer that best completes the sentence.

Object-oriented programming ends with __________________.

objects

implementation

collaboration

factoring

14. Memory management is necessary in Flash. True False

15. Break this object into smaller components and define their collaborations via simple
associations.

16. Generalize the following objects, and create a class diagram displaying their associations.

CHAPTER 5

108

17. Return types should be specific. True False

18. Show the appropriate associations.

19. Explain why stage instances must be turned off.

__

__

__

__

20. Static code can be polymorphic. True False

21. Circle the best answer based on your opinion.

Learning object-oriented programming is a(n) _____________ process.

 slow Iterative involved complicated

22. You don’t need to supply the import directive if you refer to an external definition via the fully
qualified name. True False

23. Interfaces can use interface inheritance. True False

24. Show the appropriate association.

Q&A

109

25. Protected constants can be overwritten by subclasses. True False

26. Match the items in the two columns.

internal I’m seen.

private You have to be aware of me to see me.

protected I’m seen by those around me.

custom I can’t be seen by those like me.

public I’m seen by those like me.

27. Fill in the blank.

 ______________ is a lesser benefit of OOP due to the lifespan of an RIA.

 Modularity Flexibility Scalability Maintainability

28. Complete this design principle: Closed for _______________, open for
________________.

29. Circle the answer that best completes the sentence.

A team build should only divide and conquer after __________________.

kick-Off

it has determined the requirements

design patterns have been applied

a system flow chart has been crafted

30. Class variables can’t be changed. True False

31. Explain the importance of understanding that designer and client requirements are more
often than not compound requirements.

__

__

__

__

__

__

CHAPTER 5

110

32. Consider the following code:

package color.utils
{
 public class ColorConverter
 {
 public static function toARGB() : uint
 {
 // 32 bit unsigned integer AARRGGBB
 }
 }
}

Using the static class ColorConverter and its static method toARGB, you can convert any
colorspace value to a 32-bit unsigned value. This is a perfect class to introduce into the color-
picker API for the client. Unfortunately, the client’s application can’t use 32-bit unsigned
integers—only 24-bit.

Devise a means to modify this behavior.

33. Uh oh: there’s an object-oriented mistake in Listing 5-1. Correctly instantiate the
appropriate Sprites in Listing 5-2.

Listing 5-1

package
{
 import flash.display.Sprite;

 import com.utils.bitmapdata.Sprite;

 var topLevelSprite : Sprite = new Sprite();
 var bitmapDataSprite : Sprite = new Sprite();
}

Listing 5-2

Package
{

 import flash.display.Sprite;
 import com.utils.bitmapdata.Sprite;

 var topLevelSprite:Sprite=__________________________
 var bitmapDataSprite:Sprite =_______________________
}

Q&A

111

34. Using nothing but the following image, explain the benefits of the symbols with the
properties.

 #protected __private $static public

__

__

__

__

35. Using the method describeType(obj:Object):xml from the flash.utils package, you
get the following results from a Vector.<int> instance:

<type name="__AS3__.vec::Vector.<int>" base="Object" Â
isDynamic="true" isFinal="true" isStatic="false">
<extendsClass type="Object"/>
<constructor>
<parameter index="1" type="uint" optional="true"/>
<parameter index="2" type="Boolean" optional="true"/>
</constructor>
</type>

List all possible upcasts from the XML output.

36. A package for a definition is the definition’s URI. True False

CHAPTER 5

112

37. Given that Circle is defined in your SWF library,

ApplicationDomain.currentDomain.getDefinition('Circle') Â
==getDefinitionByName('Circle')

True False

38. Fill in the blank.

______________ is a container of class definitions in your RIA.

39. Explain why you should avoid *, .rest, and arguments.

__

__

__

__

40. Fill in the blank.

Using the ________ keyword lets you call a method of a superclass.

41. Getters and setters should always be public. True False

42. Explicit getters and setters can be used in lieu of implicit getters and setters.

Explicit: public function getText():String
Implicit: public function get text():String

Explain from an OO standpoint why one may be better than the other.

__

__

__

__

43. Class A declares a property _date as being a protected variable. Class B extends class A
and modifies _date through the variable. This manner of modification is acceptable
practice. True False

Q&A

113

44. What is the purpose of the top-level class named Class?

__

__

__

__

45. AS 3.0 supports method overloading. True False

46. Class methods, or static methods, can access both instance and class variables.
 True False

47. When would you use getDefinition instead of getDefinitionByName?

__

__

__

__

48. How can runtime shared libraries work with an ApplicationDomain?

__

__

__

__

49. You can specify an ApplicationDomain in the LoaderContext of a Loader. True
 False

50. How do the return types differ between getDefinition and getDefinitionByName?

__

__

__

__

CHAPTER 5

114

Answers to Quiz 2
Understanding object-oriented programming is easy. True False

Explanat ion: Object-oriented programming is a very advanced concept and is often
misunderstood by experienced programmers. Despite what some may say,
understanding OOP isn’t easy. Remember this when you’re frustrated.

1. Why is inheritance the cornerstone of OOP?

Inheritance enables polymorphism, which is the main reason object-oriented languages exist.

2. Consider the following figure:

If class B inherits class A, which already imported the definition of class C, why does class B
require it as well?

Unlike previous versions of the language, in ActionScript 3.0 every definition must be imported

if any reference is used in the class. After the import directive, you can use classes by

specifying either the fully qualified identifier or the class name.

3. Composition builds systems by combining less complex parts. True False

4. Fill in the blank.

A class that doesn’t define an interface for subclasses is known as a(n) concrete class.

5. Circle the best answer.

someMethod(obj:Object):void is known as a _____________.

 function method signature receiver

Q&A

115

6. Complete this design principle: Program to a(n) interface, not to a(n) implementation.

7. Circle the best answer.

An object’s type refers to its _____________.

 superclass behaviors interface signatures

Explanat ion: Because a type defines an object’s public methods, the only possible
answer is interface. Signatures and behaviors don’t specify their visibilities; you can’t
presume that they’re public.

8. Explain how EventDispatcher can enable flexible architecture.

The events dispatched can bubble, allowing objects to know the event they’re listening for and

not specifically who it’s coming from. This enables a very loose coupling between the

dispatcher of the event and the listening object.

9. Explain how inheritance breaks encapsulation.

Encapsulation facilitates groupings among related attributes and behaviors. Although a

superclass may adhere to this idea of encapsulation, subclasses merely change the behaviors

of the superclass. Removing the behavior from the attributes that are related can potentially

cause errors, if any changes are made to the contents of the superclass. More important, the

subclass can decisions for the superclass via the protected attributes, which breaks the idea

of the superclass governing its modifications.

10. Why is it best to add an interface to a concrete class versus adding a method?

Adding a method to a class doesn’t offer the availability to upcast the concrete class to the

interface it possesses. Thus, you’d be programming to an implementation rather than an

interface. Generalizing code is always preferred.

11. Consider the following figure:

CHAPTER 5

116

var cb:Class_B = new Class_B()

Explain why this is poor OOP.

By typing cb to Class_B instead of Class_A, you’re programming to a concrete, which is the

same as programming to an implementation and not an interface. By classifying cb as type

Class_A, you can substitute other objects, if required, in place of Class_B.

12. Given the following class, which term best describes its encapsulation?

package
{
 public class WhiteningTartarCavityProtection extends ToothPaste
 {
 public function WhiteningTartarCavityProtection() : void
 {
 }

 public function fightTartar() : void
 {
 }

 public override function fightCavities() : void
 {
 }

 public function freshenBreath() : void
 {
 }
 }
}

 Cohesive Incohesive

Explanat ion: The inclusion of the FreshenBreath as a behavior continues to decrease
the level of cohesion. A class should have only one reason to change, thus possessing
only 1 behavior.

Q&A

117

13. Circle the answer that best completes the sentence.

Object-oriented programming ends with __________________.

objects

implementation

collaboration

factoring

14. Memory management is necessary in Flash. True False

15. Break this object into smaller components and define their collaborations via simple
associations.

16. Generalize the following objects, and create a class diagram displaying their associations.

 s

CHAPTER 5

118

17. Return types should be specific. True False

Explanat ion: Return types should be specific only if necessary. It’s best to generalize
return types because doing so facilitates reuse. This doesn’t mean everything should
return Objects. The generalization should remain to the task at hand, to first and
foremost ensure a working application. Return types should be those of interfaces and
common types.

18. Show the appropriate associations.

Explanat ion: The associations are compositions. To be considered human, you must
have a brain volume of 1800 cubic centimeters, opposable thumbs, and an upright spine.

19. Explain why stage instances must be turned off.

To ensure that all complex assets are visible in the class so that you can nullify them for

garbage collection, stage instances must be turned off.

20. Static code can be polymorphic. True False

Explanat ion: Fixed code can be polymorphic. For example, var mc:Sprite = new
MovieClip() demonstrates polymorphic behavior, because MovieClip satisfies the
interface of Sprite.

21. Circle the best answer based on your opinion.

Learning object-oriented programming is a(n) _____________ process.

 Slow Iteritive involved complicated

Explanat ion: In my opinion, OOP is involved. You have to be patient and dedicated. This
question is in the quiz to help you understand your own issues with OOP. Be aware of
them and find a way to get past them. You’ve gotten this far.

22. You don’t need to supply the import directive if you refer to an external definition via the
fully qualified name. True False

23. Interfaces can use interface inheritance. True False

Q&A

119

24. Show the appropriate associations.

Explanat ion: A receiver behavior isn’t defined by the DVD player, television, or
radio. Therefore the relationships are aggregates.

25. Protected constants can be overwritten by subclasses. True False

Explanat ion: Once a constant has been declared, it can’t be reassigned.

26. Match the items in the two columns.

internal I’m seen.

private You have to be aware of me to see me.

protected I’m seen by those around me.

custom I can’t be seen by those like me.

public I’m seen by those like me.

27. Fill in the blank.

______________ is a lesser benefit of OOP due to the life span of an RIA.

 Modularity Flexibility Scalability Maintainability

Explanat ion: Although OOP provides all of these benefits, many RIAs have a short life
span, and thus scalability often isn’t necessary. Modularity, flexibility, and
maintainability, on the other hand, offer many more opportunities during the building
process and enable you to reuse code.

28. Complete this design principle: Closed for modification, open for extension.

29. Circle the answer that best completes the sentence.

A team build should only divide and conquer after __________________.

kick-Off

it has determined the requirements

design patterns have been applied

a system flow chart has been crafted

CHAPTER 5

120

Explanat ion: Without knowing all the tools in your toolbox, you can't possibly
choose the most appropriate device for the job. Without knowing how to diminish
tightly coupled relationships and ensure proper data-hiding, a team of developers has
a higher likelihood of stepping on one another’s toes.

30. Class variables can’t be changed. True False

Explanat ion: Class variables are nothing more than variables that are global to the
many instances of the class. Only constants are unable to change after they’ve been
declared.

31. Explain the importance of understanding that designer and client requirements are more
often than not compound requirements.

Designers are often influenced by external factors when they conceive a design or a

behavior that something exhibits. Very rarely are a designer’s thoughts so unique that this

statement isn’t true. The same can be said of clients and their requirements. They’re easily

swayed to need and want functionality based on what they’ve seen or have come to view as

standard in the RIA realm. Because these requirements are based on past experience, every

line of code you write is bound to be included in your next project. Not using proper OOP

principles to devise code reuse will lead to compounded efforts on your part.

32. Consider the following code:
package color.utils{
 public class ColorConverter{
 static public function toARGB():uint
 //32 bit unsigned integer AARRGGBB
 }
}

Using the static class ColorConverter and its static method toARGB, you can convert any
colorspace value to a 32-bit unsigned value. This is a perfect class to introduce into the
color-picker API for the client. Unfortunately, the client’s application can’t use 32-bit
unsigned integers—only 24-bit.

Devise a means to modify this behavior.

Q&A

121

Explanat ion: By wrapping ColorConverter with your new object, ARGBToRGB, you
can intercept the returned calculation and remove the Alpha value, essentially changing
the object’s behavior. With the RGB interface, via interface inheritance, the client doesn’t
need to program to the concrete creation but to an IRGB type.

33. Uh oh: there’s an object-oriented mistake in Listing 5-1. Correctly instantiate the
appropriate Sprites in Listing 5-2.

Listing 5-1

package
{
 import flash.display.Sprite;

 import com.utils.bitmapdata.Sprite;

 var topLevelSprite : Sprite = new Sprite();
 var bitmapDataSprite : Sprite = new Sprite();
}

Listing 5-2

Package
{

 import flash.display.Sprite;
 import com.utils.bitmapdata.Sprite;

 var topLevelSprite:Sprite= new flash.display.Sprite();

 var bitmapDataSprite:com.utils.bitmapdata.Sprite= Â

 new com.utils.bitmapdata.Sprite();
}

Explanat ion: By referring to the fully qualified path and/or supplying the Uniform
Resource Identifier and Uniform Resource Name, you can prevent naming conflicts.

CHAPTER 5

122

34. Using nothing but the following image, explain the benefits of the symbols with the
properties.

 #protected __private $static public

When classes are extended, their details are clear to the compiler but may not be as apparent

to you. Using symbols as indicators can help you understand what class controls a property or

behavior. Essentially, it’s a reference to scope.

35. Using the method describeType(obj:Object):xml from the flash.utils package, you
get the following results from a Vector.<int> instance:

</type><type name="__AS3__.vec::Vector.<int>" base="Object" Â
isDynamic="true" isFinal="true" isStatic="false">
<extendsClass type="Object"/>
<constructor>
<parameter index="1" type="uint" optional="true"/>
<parameter index="2" type="Boolean" optional="true"/>
</constructor>
</type>

List all possible upcasts from XML output.

Object

Explanat ion: As you can see, the XML output states the extendsClass to that of type
Object solely. Because Object is the only protocol of Vector.<int>, it can only be upcast to
Object.

36. A package for a definition is the definition’s URI. True False

Explanat ion: Via the import directive, you can open a namespace referring to a location, to
which a className can be referred. Ultimately the package becomes a namespace.

Q&A

123

37. Given that Circle is a Circular shape in your SWF library,

ApplicationDomain.currentDomain.getDefinition('Circle') Â
==getDefinitionByName('Circle')

 True False

Explanat ion: Because you’re trying to find Circle in the current domain of the static class
ApplicationDomain, you target the same domain that would be used if we called the global
function getDefinitionByName.

38. Fill in the blank.

ApplicationDomain is a container of class definitions in your RIA.

Explanat ion: ApplicationDomain is the partition of definitions within the current
SWF.

39. Explain why you should avoid *, .rest, and arguments.

Using these declarations passes references blindly, which isn’t object-oriented behavior.

Knowing which object types to work with is object-oriented. The statements listed offer no

generalizations and deter proper OO coding.

40. Fill in the blank.

Use of the super keyword lets you call a method of a superclass.

Explanat ion: Although a subclass has access to all protected and public
methods/properties in its superclasses, you can only reach the method of a
superclass if you haven’t already specified the same method in your class. This
method always takes precedence. To target the superclass’s method, you can use
the super keyword followed by the method to message: super.superMethod();.

41. Getters and setters should always be public. True False

42. Explicit getters and setters can be used in lieu of implicit getters and setters.

Explicit: public function getText():String
Implicit: public function get text():String

Explain from an OO standpoint why one may be better than the other.

Implicit getters/setters are very convenient and are often generated automatically by third-

party editors, which makes them prevalent. The downside is that using them is like working

with the physical properties of the object. Also, implicit getters and setters are always

CHAPTER 5

124

expected to be public, and that may lead to clumsy data-hiding. Explicit getters and setters,

on the other hand, demonstrate physical methods being targeted and can be as visible as

necessary to hide data.

43. Class A declares a property _date as being a protected variable. Class B extends class A
and modifies _date through the variable. This manner of modification is acceptable
practice. True False

Explanat ion: Data-hiding ensures that a class has full control over modifying its
own attributes to prevent error. Although a protected attribute is visible to all
subclasses, it should remain in control over its own modifications. This ensures that
the anticipated behavior remains among the methods in the superclass and is visible
to the superclass for use.

44. What is the purpose of the top-level class named Class?

Much like the traits object associated with a class, a Class object is created for each class

definition in an application. Using Class objects lets you acquire definitions from libraries and

instantiate instances of those definitions.

45. AS 3.0 supports method overloading. True False

46. Class methods, or static methods, can access both instance and class variables.
 True False

Explanat ion: Static methods can only reference static variables. Instance methods,
on the other hand, can reference both instance and class variables.

47. When would you use getDefinition instead of getDefinitionByName?

getDefinition can return an Object, whereas getDefinitionByName returns only a Class

object. The difference is that a Class is only one of the three external definitions in the AS 3.0

language. If you require a defined namespace or interface, you can get it via the

getDefinition method. Another thing that distinguishes when to use one versus the other is

when you’re attempting to reach a definition outside the currentDomain.

getDefinitionByName is a global function that reaches only to the currentDomain, whereas

getDefinition lets you supply the memory to target.

Q&A

125

48. How can runtime shared libraries work with an ApplicationDomain?

When a SWF is loaded into an application, the definitions that accompany the SWF are

partitioned from current definitions. RSL works in the same manner. Each partition has

exclusive access to the definitions, unless the pointer of the currentDomain is targeted. By

loading a SWF containing definitions that can be used throughout a large RIA, you can store

and retrieve those definitions

49. An ApplicationDomain can be specified in the LoaderContext of a Loader.

True False

50. How do the return types differ between getDefinition and getDefinitionByName?

getDefinition returns an Object that can be a namespace, an interface, or even a class,

whereas getDefinitionByName can only return a class definition.

127

Chapter 6

Creational Patterns

Creational patterns let you separate the details required to instantiate an object from the architecture. Thus
far, a common theme in this book has been how to architect a system that adheres to the four principles of
OOP, thereby promoting flexibility. You achieve this flexibility by wrapping code in an object that provides a
common interface, shared among other objects. This way, your system can include interchangeable
behaviors.

The code is modeled around these interfaces, and the objects’ behaviors are usable once they’re
instantiated. However, as simple as this appears on paper, many conditions in reality can render your
flexible/reusable code, inflexible/un-reusable.

Listing 6-1 shows how using a concrete instantiation in code limits the method’s flexibility and reuse.
Although returnByteArray explicitly references the instantiation of GrayscaleImage, all values returned are
always the same—not to mention that you can’t get the ByteArray from another existing image. This one
reference limits the remaining code’s reusability, without added modification.

Listing 6-1. BitmapDataByteArray returns the ByteArray of GrayscaleImage to a client.

public class BitmapDataByteArray
{
 public function returnByteArray() : ByteArray
 {
 var img : BitmapData = new GrayscaleImage(1 , 1);
 var byteArray : ByteArray = img.getPixels(img.rect)
 img.dispose()
 img = null
 byteArray.position = 0;
 return byteArray
 }
}

CHAPTER 6

128

That Which Must Not Be Named
The conundrum you’re faced with is how to create an instance of an object that requires particular details,
without injecting any algorithms or information unnecessarily into the body of the class. The simplest
approach uses parameterization.

When you pass a reference of an object into the welcoming arms of some code, a method, a class, and so
on, the code can remain ignorant of the details that created the parameterized object and still use its
referenced behaviors.

Unfortunately, parameterization perpetuates the burden of creation. It removes the role of creator from one
class and places it into another. In other words, something still has to create the object.

Listing 6-2 shows how the removal of the concrete reference, from the code that uses it, gives the code
flexibility for reuse with different instances of the similar BitmapData type. Although returnByteArray
doesn’t contain any concrete references, you can see that another body of code is facing the burden of
creating the instance.

Listing 6-2. A client instantiates BitmapDataByteArray and passes in a GrayscaleImage.

var bitmapDataByteArray:BitmapDataByteArray= new BitmapDataByteArray();
var grayscaleByteArray : ByteArray = bitmapDataByteArray.returnByteArray(new
 Â GrayscaleImage(1,1));

public class BitmapDataByteArray
{
 public function returnByteArray(bmpD : BitmapData) : ByteArray
 {
 var img : BitmapData = bmpD
 var byteArray : ByteArray = img.getPixels(img.rect);
 img.dispose();
 img = null;
 return byteArray;
 }
}

Creational patterns aren’t intended to replace every occurrence of the new operator, but rather offer a way
to conceal concrete implementations from the code that uses the instance. In a nutshell, creational
patterns provide solutions to isolate the manufacturing process of concrete instances from the code that
uses their interfaces.

The patterns covered in this chapter are as follows: the Factory Method pattern, the Abstract Factory
pattern, the Builder pattern, and the Singleton pattern. The discussion of each pattern includes a technical
overview, a vignette, an AS 3.0 example, and frequently asked questions.

The technical overview defines the technical specifics of each patterns, its parts, a class diagram, and the
pattern’s purpose. The vignette is a real-world example that demonstrates and/or represents each pattern.

All the vignettes in this chapter revolve around the fast-food industry, because it provides many parallels to
simplification and abstraction. Then, the example reveals the pattern as it would be used in ActionScript

CREATIONAL PATTERNS

129

3.0 code. Finally, the FAQ section discusses the answers to questions that may arise as you study design
patterns.

The Simple Factory
A Simple Factory encapsulates the conditional logic used to create a product. Figure 6-1 shows the class
diagram.

Figure 6-1. Simple Factory class diagram

A Simple Factory has the following parts:

• Abstract product

• Concrete product

• Concrete creator

• Client

Its benefits are as follows:

• Conceals the logic of product creation

• Only deals with the product interfaces

It also has this drawback:

• Lacks the flexibility to change (change is a constant)

A Comprehensive Look
Simple Factory isn’t a design pattern, but it needs to be included in this chapter because the Factory
Method design pattern uses what resembles a simple factory. Often, developers new to design patterns
mistakenly think the Factory Method pattern is meant to create objects, giving rise to what has become
referred to as the Simple Factory.

The following example doesn’t show how to use the Simple Factory but demonstrates its inflexibility and
why you shouldn’t confuse this and the Factory Method pattern.

CHAPTER 6

130

Example
The creational logic in Listing 6-3 amounts to 46 lines in Shell. Although debugging 46 lines of code isn’t
a burden, making changes to 500 lines can be. Each time you make a change to Shell, you risk adding
errors. This is never good, especially in an application framework.

Listing 6-3. An excerpt of the 500-lined logic from an application’s framework, labelled Shell.

private function createOverlay(overlayType : String , dataObject : * = null) : void
 {
 header.disableNavigation();
 currentSection.pause();
 if (currentOverlay)
 {
 destroyCurrentOverlay();
 }

 switch(overlayType)
 {
 case SectionEvent.VIDEO_OVERLAY:
 currentOverlay = new VideoOverlay();
 break;
 case SectionEvent.PHOTO_OVERLAY:
 currentOverlay = new PhotoViewer();
 break;
 case SectionEvent.AUDIO_OVERLAY:
 currentOverlay = new AudioOverlay();
 break;
 case SectionEvent.TWITTER_OVERLAY:
 currentOverlay = new TwitterOverlay();
 break;
 case OverlayEvent.TWITTER_SUBMIT_OVERLAY:
 currentOverlay = new AddTweetOverlay();
 break;
 }

 currentOverlay.y = SiteConfig.HEADER_HEIGHT;
 currentOverlay.addEventListener(OverlayEvent.CLOSE_OVERLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.INTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.OUTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.PLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.SUBMIT_TWEET , handleEvent);

 currentOverlay.addEventListener(OverlayEvent.TWITTER_SUBMIT_OVERLAY ,
 Â handleEvent);

CREATIONAL PATTERNS

131

 addChild(currentOverlay);

 currentOverlay.updateLayout(stage.stageWidth , (stage.stageHeight –
 Â SiteConfig.FOOTER_HEIGHT - SiteConfig.HEADER_HEIGHT));

 currentOverlay.intro();
 }

 private function destroyCurrentOverlay() : void
 {
 }

... // truncated code

As shown in Listing 6-4, extracting the creational logic in Shell to a new object lets you modify the same
lines of code without having to open Shell. This reduces the threat of introducing disaster into a potentially
working system.

Listing 6-4. OverlayFactory was created solely to manufacture the appropriate overlay for the system.

package
{
 public class OverlayFactory
 {
 public function OverlayFactory()
 {
 }

 public function createOverlay(overlayType : String) : Overlay
 {
 var currentOverlay : Overlay

 switch(overlayType)
 {
 case SectionEvent.VIDEO_OVERLAY:
 currentOverlay = new VideoOverlay();
 break;
 case SectionEvent.PHOTO_OVERLAY:
 currentOverlay = new PhotoViewer();
 break;
 case SectionEvent.AUDIO_OVERLAY:
 currentOverlay = new AudioOverlay();
 break;
 case SectionEvent.TWITTER_OVERLAY:
 currentOverlay = new TwitterOverlay();

CHAPTER 6

132

 break;
 case OverlayEvent.TWITTER_SUBMIT_OVERLAY:
 currentOverlay = new AddTweetOverlay();
 break;
 }

 return currentOverlay;
 }
 }
}

Extracting the manufacturing of overlays from Shell into the new OverlayFactory object makes change a
less disruptive force. You only need to ensure that OverlayFactory is kept as a reference in Shell. This lets
Shell continue using instances of overlays but relieves Shell of the burden of creating them.

Listing 6-5. Updated excerpt from Shell demonstrating the reference to OverlayFactory

...
var factory : OverlayFactory = new OverlayFactory();
... cont

header.disableNavigation();
currentSection.pause();

 if (currentOverlay)
 {
 destroyCurrentOverlay();
 }

 var currentOverlay : Overlay = factory.createOverlay(overlayString);

 currentOverlay.y = SiteConfig.HEADER_HEIGHT;
 currentOverlay.addEventListener(OverlayEvent.CLOSE_OVERLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.INTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.OUTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.PLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.SUBMIT_TWEET , handleEvent);

 currentOverlay.addEventListener(OverlayEvent.TWITTER_SUBMIT_OVERLAY ,
 Â handleEvent);

 addChild(currentOverlay);

 currentOverlay.updateLayout(stage.stageWidth , (stage.stageHeight –
 Â SiteConfig.FOOTER_HEIGHT - SiteConfig.HEADER_HEIGHT));

CREATIONAL PATTERNS

133

 currentOverlay.intro();
 }

 private function destroyCurrentOverlay() : void
 {
 ... //truncated code

So far, you’ve removed the logic used to create the overlay from the framework that supports the
application. You’ve not only reduced the number of lines but also managed to increase the shell’s
cohesiveness, by extracting unrelated functions. The point of the framework is to ensure communication
among objects, not to develop the necessary logic to create objects. The more cohesive you can make
your framework, the fewer reasons you have to keep opening the file to perform frivolous maintenance.

Knowing the importance of the framework, if you need to make any changes to the instantiation logic, you
no longer have to concern yourself with Shell. This is beneficial, especially when you’re dealing with
multiple developers who are all working toward the same goal. If changes are made to the Shell,
developers that may be working on Shell dependant code may also become impeded as well.

Extracting code that manufactures objects adheres to the four principles of OOP, because doing so
provides the appropriate boundaries around object creation. This localization of code helps to partition or
encapsulate the possibility of variation in your application. In this case, you’re separating the various
overlays that may be used in the application.

Although the Simple Factory works at the moment, if you need to add another overlay to the application,
you’ll have to edit the Simple Factory. This is the case because you haven’t used an abstract class. To
arrive at one of the most important features of OOP—polymorphism—you must use a hierarchy. With a
hierarchy, you can make changes while using common code provided by the superclass. Additionally,
including a superclass lets you program to an interface, so your factory can exhibit polymorphic
capabilities.

The Simple Factory isn’t a design pattern because it doesn’t account for change. Classes should be open
to extension but closed to modification.

FAQ
• If you used an abstract class that declares the method createOverlay, subclassed it, and

overrode the method, would the Simple Factory then be considered a design pattern?

Yes. It would then be considered a design pattern named Factory Method.

The Factory Method Pattern
The Factory Method pattern encapsulates creational logic in subclasses, allowing them to infer their own
implementations. Figure 6-2 shows the class diagram.

CHAPTER 6

134

Figure 6-2. Factory Method pattern class diagram

This pattern has the following parts:

• Abstract product

• Concrete product

• Abstract creator

• Concrete creator

• Client

The pattern’s benefits are as follows:

• Factory methods eliminate the need to bind application-specific classes into your code.

• The code only deals with the product interfaces.

It also has this drawback:

• Sometimes subclasses can’t be created.

A Comprehensive Look
The Factory Method pattern lets you separate the instantiation and the utilization of a product using
inheritance. You do so via a method in the creator class, which is the interface a subclass must override
and provide an appropriate implementation for. Whereas the superclass is responsible for this abstract
method and its signatures, the subclass is privy to the objects that can be instantiated and returned. The
subclass uses logic or conditional statements that determine the appropriate object to manufacture.

This approach provides flexibility among possible revisions of the product(s) used, because you can create
different implementations by making new subclasses of the abstraction.

The most important aspect of the Factory Method pattern is that product creation is always deferred to a
subclass. The reason is the hierarchical relationship that makes polymorphism possible among different
implementations.

CREATIONAL PATTERNS

135

The method in the factory gives this particular pattern its name; this method’s name reflects the product
and the way to achieve the product. The name should make the method easily identifiable as a factory
method. Often, the create, get, and make prefixes are used for these method names, to help developers
who are familiar with this particular pattern identify its existence in the code.

The superclass is an abstract class that acts as the base class of the manufacturer. As a template for
manufacturing, it provides the necessary default behaviors that ensure proper assembly of the object type
returned, as well as exposes a factory method that is used by the subclass to define the particular
object(s) for creation.

The factory’s subclass has a different role to accompany the superclass. The subclass’s role is to hold the
logic necessary in order to choose the object to instantiate for the superclass. This is performed by
overriding the exposed factory method and implementing the given logic.

By separating the logic of object creation from the manner in which the object is assembled, you can more
easily substitute the logic of the subclass for that of another in the system. By hiding the assembly from the
subclass, you also maintain a strict means of assembly without the subclass meddling and trying to
assemble the object a particular way. In other words, the abstraction ensures that products are initialized
uniformly. It also localizes the particulars between the two classes: the subclass possesses the logic to
instantiate a particular product, and the superclass assembles the object because it needs to use that
object.

Vignette
MikeDonalds is a franchise restaurant chain. Anyone with the desire to do so can open a franchise as long
as they adhere to MikeDonalds’ strict policies; it isn’t Joe Schmo whose name is on the line, but rather
MikeDonalds and the company’s continued reputation.

Now Joe Schmo wants to purchase into the McDonalds franchise because he feels it will be a huge
success in his country where there currently are no MikeDonalds restaurants. The only issue is that Joe
Schmo and his fellow countrymen have slightly different tastes than those served by the original
MikeDonalds. Bratwurst is a cornerstone of any meal in Joe’s country. Joe convinces MikeDonalds to put a
bratwurst sandwich on his restaurant’s menu; but because the MikeDonalds name is at stake, the
company takes total ownership of the sandwich’s preparation, cooking, flavor, packaging, and pricing.
Joe’s only say in the matter is his suggestion of a product the locals enjoy. To MikeDonalds, the bratwurst
as nothing more than a new type of burger to sell.

Meanwhile, another franchise owner has a suggestion for a new product in her Chile location. Because
empanadas are common to the area, she suggests empanadas with queso, and MikeDonalds approves
the suggestion. To MikeDonalds, it’s just another food item that requires appropriate preparation and
packaging.

MikeDonalds views each specific item as a form of a generic product. If it became aware of the
empanadas or the bratwurst, the product wouldn’t be reusable when a new, similar product type is offered.

Each franchise owner is a representative (factory subclass) of the MikeDonalds Company as well as the
provider of logic regarding which product to create for the customer (client). MikeDonalds is the company
(factory) that sets the rules and tone for every product it sells; it can’t afford to have the products prepped
any other way, because business might decline. The most freedom the company gives those who
purchase into the franchise is the chance to express their understanding about appropriate products to
create.

CHAPTER 6

136

The AS 3.0 Cast
In AS 3.0, the Factory Method pattern’s parts are as follows:

• Abstract creator: The manufacturer that defines the type used in its particular factory. A factory

can perform nearly any creational operation needed for a class:

• Initialize

• Pull in data

• Configure

• Set states

• Concrete creator: The factory subclass containing the logic necessary to instantiate the

appropriate object in a genus of products expected by the superclass.

• Abstract product: The product genus, which exposes the interface that all concrete products of

the given genus inherit.

• Concrete product: The physical object that can be instantiated and that extends the abstract

product to express itself as a member of the type used in the creator’s logic.

• Client: The abstract creator is, more often than not, the client of the factory method. Although,

depending on the scenario, the client may be external to the creator, and may have knowledge

among the product’s interface. You’ll see an example of this with the Memento pattern in

Chapter 7.

When It’s Useful
The Factory Method pattern is useful in these situations:

• When you don’t know the objects that will be used at runtime, but you’re aware of the common

interface

• When you require uniformity/localization among product creation and product assembly

• Any time you use new in a line of code

Example
Revisiting the Shell code from Listing 6-3, you still need to extract the creational logic that returns the
appropriate instantiation of an overlay to use.

You know that including an abstraction could have assisted you in the Simple Factory. You can also use
the abstraction to separate the logic and the preparation of the product returned. Doing so provides
uniformity and flexibility, and saves you from having to add the assembly to each different logic
implementation. You want to ensure that the logic can be easily extended, as well as modified.

You extract the Shell logic that created the overlays (see Listing 6-6) and place it for the time being in a
class called OverlayFactory, as shown in Listing 6-7. In Listing 6-8, you also remove the preparation
of the returned product of the factory to a class called OverlayPreparation.

CREATIONAL PATTERNS

137

Listing 6-6. Revisiting the 500-line excerpt of creational logic in Shell

private function createOverlay(overlayType : String , dataObject : * = null) : void
{
 header.disableNavigation();
 currentSection.pause();
 if (currentOverlay)
 {
 destroyCurrentOverlay();
 }

 switch(overlayType)
 {
 case SectionEvent.VIDEO_OVERLAY:
 currentOverlay = new VideoOverlay();
 break;
 case SectionEvent.PHOTO_OVERLAY:
 currentOverlay = new PhotoViewer();
 break;
 case SectionEvent.AUDIO_OVERLAY:
 currentOverlay = new AudioOverlay();
 break;
 case SectionEvent.TWITTER_OVERLAY:
 currentOverlay = new TwitterOverlay();
 break;
 case OverlayEvent.TWITTER_SUBMIT_OVERLAY:
 currentOverlay = new AddTweetOverlay();
 break;
 }

 currentOverlay.y = SiteConfig.HEADER_HEIGHT;
 currentOverlay.addEventListener(OverlayEvent.CLOSE_OVERLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.INTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.OUTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.PLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.SUBMIT_TWEET , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.TWITTER_SUBMIT_OVERLAY ,
 Â handleEvent);

 addChild(currentOverlay);

 currentOverlay.updateLayout(stage.stageWidth , (stage.stageHeight –
 Â SiteConfig.FOOTER_HEIGHT - SiteConfig.HEADER_HEIGHT));

CHAPTER 6

138

 currentOverlay.intro();
}

private function destroyCurrentOverlay() : void
{
 ... implementation not shown
}
... truncated code

Listing 6-7. OverlayFactory encapsulates the logic required to instantiate the appropriate overlay.

package
{
 public class OverlayFactory
 {
 public function OverlayFactory()
 {
 }

 public function createOverlay(overlayType : String) : Overlay
 {
 var currentOverlay : Overlay

 switch(overlayType)
 {
 case SectionEvent.VIDEO_OVERLAY:
 currentOverlay = new VideoOverlay();
 break;
 case SectionEvent.PHOTO_OVERLAY:
 currentOverlay = new PhotoViewer();
 break;
 case SectionEvent.AUDIO_OVERLAY:
 currentOverlay = new AudioOverlay();
 break;
 case SectionEvent.TWITTER_OVERLAY:
 currentOverlay = new TwitterOverlay();
 break;
 case OverlayEvent.TWITTER_SUBMIT_OVERLAY:
 currentOverlay = new AddTweetOverlay();
 break;
 }

 return currentOverlay;
 }

CREATIONAL PATTERNS

139

 }
}

Listing 6-8. OverlayPreparation

package
{
 public class OverlayPreparation
 {
 private var factory : OverlayFactory = new OverlayFactory()
 private var currentOverlay : Overlay

 public function OverlayPreparation()
 {
 }

 public function createOverlay(overlayType : String) : Overlay
 {
 currentOverlay = factory.createOverlay(str)

 currentOverlay.y = SiteConfig.HEADER_HEIGHT;
 currentOverlay.addEventListener(OverlayEvent.CLOSE_OVERLAY , handleEvent);

 currentOverlay.addEventListener(OverlayEvent.INTRO_COMPLETE , handleEvent);

 currentOverlay.addEventListener(OverlayEvent.OUTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.PLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.SUBMIT_TWEET , handleEvent);

 currentOverlay.addEventListener(OverlayEvent.TWITTER_SUBMIT_OVERLAY ,
 Â handleEvent);

 currentOverlay.updateLayout(stage.stageWidth , (stage.stageHeight –
 Â SiteConfig.FOOTER_HEIGHT - SiteConfig.HEADER_HEIGHT));
 return currentOverlay;
 }
 }
}

The first step in devising a common link is to note the commonalities that these two objects share. The two
are, in a way, related in trying to achieve the same goals, and both depend on the product type. This
dependency helps to ensure that both the assembler and the factory work toward a final product that
doesn’t break the contract between the two classes.

CHAPTER 6

140

Considering the contract between the two objects, it’s clear that you can use this method to join the two
existing classes using inheritance. The common method can be refactored into an abstract class that your
subclass can override (see Listing 6-9 and Listing 6-10).

Listing 6-9. AbstractOverlayFactory is the abstract class and declares the createOverlay method.

package
{
 public class AbstractOverlayFactory
 {
 public function createOverlay(overlayType : String) : Overlay
 {
 throw new IllegalOperationError('createOverlay must be overridden')
 return null
 };
 }
}

Listing 6-10. OverlayFactory subclasses AbstractOverlayFactory in order to implement logic.

package
{
 public class OverlayFactory extends AbstractOverlayFactory
 {
 override public function createOverlay(overlayType : String) : Overlay
 {
 var currentOverlay : Overlay

 switch(overlayType)
 {
 case SectionEvent.VIDEO_OVERLAY:
 currentOverlay = new VideoOverlay();
 break;
 case SectionEvent.PHOTO_OVERLAY:
 currentOverlay = new PhotoViewer();
 break;
 case SectionEvent.AUDIO_OVERLAY:
 currentOverlay = new AudioOverlay();
 break;
 case SectionEvent.TWITTER_OVERLAY:
 currentOverlay = new TwitterOverlay();
 break;
 case OverlayEvent.TWITTER_SUBMIT_OVERLAY:
 currentOverlay = new AddTweetOverlay();
 break;
 }

CREATIONAL PATTERNS

141

 }
 }
}

Currently you generate an abstraction that enables many subclasses to be created by extending
AbstractOverlayFactory and overriding createOverlay to implement its logic in determining the
appropriate product to return. What you’ve yet to create is the means by which object preparation occurs.

The logic should have zero knowledge of how the object is prepared. Similarly, the preparation shouldn’t
know how an overlay is chosen. Both of the two classes should focus on is the product’s type, because
this is what maintains compatibility between the classes.

By adding the preparation to the factory abstraction, you get all the benefits without any additional issues.
You can also create new subclasses with different logic implementations, and not have to recode their
assembly, because only the objects—not their type—change.

Listing 6-11. AbstractOverlayFactory includes the assembly process for the returned object.

package
{
 public class AbstractOverlayFactory
 {
 public function makeOverlay() : Overlay
 {
 var currentOverlay : Overlay = createOverlay(str);

 currentOverlay.y = SiteConfig.HEADER_HEIGHT;
 currentOverlay.addEventListener(OverlayEvent.CLOSE_OVERLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.INTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.OUTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.PLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.SUBMIT_TWEET , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.TWITTER_SUBMIT_OVERLAY ,
 Â handleEvent)

 return currentOverlay
 }

 protected function createOverlay(overlayType : String) : Overlay
 {
 throw new IllegalOperationError('createOverlay must be overridden')
 return null
 };
 }
}

CHAPTER 6

142

To ensure that preparation is used and not bypassed, AbstractOverlayFactory removes createOverlay as
part of its interface so that only the superclass can call it. As a protected method, each subclass overrides
createOverlay with its chosen implementation; and preparation is ensured because that process is in the
additional method makeOverlay. The makeOverlay method has become the factory method that any client
may message; in return, the client gets a product. Although this example returns the assembled product to
an external client, this isn’t always the case. Even the abstraction can be the client of the product, as well
as the invoker of the factory method.

makeOverlay delegates the responsibility of creating an overlay to the logic in an encapsulated creator.
Because the subclass and the abstract class both rely on the product type, the union between product
preparation and creation is localized into one object, while maintaining great cohesion for maintenance.

What results from the factory method is a cohesive set of classes that localize common behavior in a
product to be used in a system. By using inheritance, you can partition preparation from instantiation while
abstracting the product from the client.

Localization and the union between preparation and creation are so well contained that it appears as if all
you’re instantiating is a class that implements the logic for object instantiation.

FAQ
• If the subclass and the superclass form the factory, and both know about the abstract product,

why separate the logic from the assembly?

You should keep the code localized for ease of maintenance. However, by injecting the
means to package and prepare a product into the logic, you remove the flexibility to add or
remove new products without physical maintenance of the object. The separation offers
flexibility through its use of inheritance.

• If each product differs in the way it needs to be assembled or prepared, should a subclass

have more control than the abstract over the means of preparing each object?

The factory method focuses on one abstract type to return. If the assembly of a particular
object varies from other objects of its type, it may be unabstracted. If this isn’t the case,
you can use the Builder pattern with the factory method. However, a subclass shouldn’t
have any knowledge about the preparation.

• If the subclass is a smarter and more specialized form of the superclass, shouldn’t you be able

to modify the methods declared in the abstract if they need to be more specific?

As stated in the previous answer, a subclass shouldn’t have any knowledge about the
preparation of the product. If each concrete class could modify the logic and the
preparation, the hierarchy could have infinite levels. This would be poor practice, because
if any change occurred in the lower levels of a subclass, an error could present itself in any
subclass.

• Can a factory build more than one product?

Yes, a factory can return more than one product. Ensure that each factory method is
named appropriately for the product being returned. If the products need to reside together
as a set, consider the next pattern: Abstract Factory.

CREATIONAL PATTERNS

143

Related Patterns
The following patterns are related to the Factory Method pattern:

• Abstract Factory

• Builder

• State

• Template Method

The Abstract Factory Pattern
The Abstract Factory pattern provides an interface for creating families of related products while
concealing the object-instantiation process. Figure 6-3 shows the class diagram.

Figure 6-3. Abstract Factory pattern class diagram

This pattern has the following parts:

• Abstract product

• Concrete product

• Abstract creator

• Concrete creator

• Client

CHAPTER 6

144

The pattern’s benefits are as follows:

• Uses abstracts factories of like interfaces

• Enables the interchanging of product families

It also has this drawback:

• Introducing a new product is difficult.

A Comprehensive Look
The Abstract Factory pattern is an extension of the Factory Method pattern in that it uses many factory
methods to create a subset, or related grouping of products. These product sets can then become
interchangeable with other sets. This is due to the factory’s polymorphism, established by the abstraction
to the factory. The purpose of the Abstract Factory pattern is to group products, often of varying types. In a
nutshell, an abstract factory is a collection of factory methods whose collective products work together.

The abstract factory conceals the concrete objects it instantiates by concerning itself with the product
interfaces. For extensibility, the Abstract Factory pattern defers the manufacturing of objects to
subclasses. This lets the caller of the request remain unfamiliar with particulars beyond those of the
abstractions in use: the abstraction of the factory and the abstractions of any products the factory returns.

The factory’s abstraction declares the interface that subclasses must implement. As the base class for all
like-minded factories, the interfaces of all products used are exposed via the appropriate factory methods.
As the Factory Method pattern states, the name of each method should describe the creation of the
product. Often, the create, get, and make prefixes are used to help developers who are familiar with this
pattern identify its existence in the code.

The factory’s subclass has a different role to accompany the superclass. The subclass knows which
concrete products are created and conceals this knowledge from the system, including its own abstraction.
With the Abstract Factory pattern, each product is realized at author time; therefore, the methods don’t
require conditional logic. Rather than use a conditional statement to determine a product, a conditional
statement determines the factory to use.

The client—the factory’s messenger—uses each set of products via the appropriate factories as needed.

Vignette
A fast-food restaurant decided to increase its sales by adding a new breakfast sandwich to its menu. The
sandwich contained eggs, cheese, bacon, and sausage. When a customer ordered, they had the option of
choosing a specific type for each of the ingredients offered. The choices were as follows:

• Egg: Free-range, egg substitute, egg whites, or regular

• Cheese: Cheddar, Swiss, asiago, or muenster

• Bacon: Veggie, regular, Canadian, or turkey

• Sausage: Country, original, English, or vegetarian

Unfortunately, the fast-food restaurant wasn’t delivering quick service. People liked the food—but the
number of options slowed the ordering process as well as preparation time, and instead of increasing
sales, caused customers to leave due to the long wait. Rather than continue to allow the delay between
when the customer ordered and when they received their food, the franchise decided to narrow the options

CREATIONAL PATTERNS

145

available. To do this, it picked the four most popular combinations of ingredients and offered four different
breakfast sandwich options. The new selections were as follows:

• Product A: Egg whites, asiago cheese, turkey bacon, English sausage

• Product B: Egg substitute, muenster cheese, veggie bacon, vegetarian sausage

• Product C: Egg, cheddar cheese, regular bacon, original sausage

• Product D: Free-range egg, Swiss cheese, Canadian Bacon, country sausage

After the four new items were introduced to the public, wait times decreased due to more rapid ordering.
However, the restaurant’s wait times were still significantly longer than those of fast-food competitors. This
was due to the new routine in the kitchen. Preparing items that had previously been on the menu had
become second nature to the employees. But the staff were unfamiliar with the new sandwiches and had
to put more thought and time into their preparation. Even though each refrigerator drawer was labeled with
an ingredient—cheese, sausage, bacon, and so on—employees had to recall and differentiate options
every time they made a sandwich.

The company created a new solution to quickly decrease preparation time and improve sales. Modifying
the kitchen organization, the restaurant designated a drawer for each specific sandwich:

• Drawer 1: Product A

• Drawer 2: Product B

• Drawer 3: Product C

• Drawer 4: Product D

By organizing a set of ingredients per product, all the employees needed to know was which drawer to
use.

The AS 3.0 Cast
In AS 3.0, the Abstract Factory pattern’s parts are as follows:

• Abstract creator: The exposed interface, as well as the base factory. Defines the interface that

an interchangeable set of factories can message, and defines the abstract products to be used

in the factory. A factory can perform nearly any creational operation needed for a class:

• Initialize

• Pull in data

• Configure

• Set states

• Concrete creator: A factory subclass that contains the logic necessary to instantiate the

appropriate object in a genus of products expected by the superclass for each factory method

declared in the superclass.

• Abstract product: A product genus that exposes the interface that all concrete products of the

given genus inherit.

• Concrete product: The physical object that can be instantiated. Extends the abstract product to

express itself as a member of the type to be used in the logic of the creator.

• Client: The messenger of the abstract factory. Can be any aspect of the application or system

that has prior knowledge of the abstract products as well as the abstract factory that is in use.

CHAPTER 6

146

When It’s Useful
The Abstract Factory pattern is useful in the following situations:

• When similar items have a reason to vary

• When you need to localize appropriate objects into a set

• When you need to add a layer of abstraction among products

Example
The Abstract Factory pattern relies on a uniform abstraction among different factories. This allows a
factory to be parameterized and remain abstract to the code that uses it. The uniformity ensures that
although each factory’s implementation may vary, the product returned is that of a specific type.

You can see the benefit of using an abstraction with multiple factories in the overlay example. Suppose
you’re informed that the overlays you created are suitable only if the user comes from a particular coast.
Because the United States has two coasts, you need another set of overlays that reflect the opposite
coast. This value is passed in as a variable from PHP at load time.

Listing 6-12 revisits the code used in the Simple Factory example that showed the logic to create an
overlay. The problem you now face is the need to create an appropriate set of products that can be
interchanged depending on which coast a user comes from.

Listing 6-12. Simple Factory demonstrating the encapsulation of creational logic

public function createOverlay(overlayType : String) : Overlay
{
 var currentOverlay : Overlay

 switch(overlayType)
 {
 case SectionEvent.VIDEO_OVERLAY:
 currentOverlay = new VideoOverlay();
 break;
 case SectionEvent.PHOTO_OVERLAY:
 currentOverlay = new PhotoViewer();
 break;
 case SectionEvent.AUDIO_OVERLAY:
 currentOverlay = new AudioOverlay();
 break;
 case SectionEvent.TWITTER_OVERLAY:
 currentOverlay = new TwitterOverlay();
 break;
 case OverlayEvent.TWITTER_SUBMIT_OVERLAY:
 currentOverlay = new AddTweetOverlay();
 break;
 case OverlayEvent.NEW_FORM_OVERLAY:

CREATIONAL PATTERNS

147

 currentOverlay = new NewFormOverlay();
 break;
 }
}

The code in Listing 6-12 uses conditional logic to determine which overlay is necessary at runtime by
using string parameterization. This determination is due to the unknown object that is required at runtime.

The Abstract Factory pattern, on the other hand, uses any number of factory methods to create a complete
set of products. For this reason, conditionals are often unnecessary. Additionally, because the Abstract
Factory pattern uses product sets, products can vary in type in the factory abstraction. In other words, two
factory methods of different types can be used in an abstract factory.

Listing 6-13 shows an abstract class that acts as a template for every subclass. Note how the overlays,
which previously were called in one operation, have been refactored into their own factory methods.

Listing 6-13. An abstract class ensures uniformity among subclassed factories.

package
{
 public class AbstractFactoryCoastOverlaySets
 {
 public function createPhotoViewerOverlay() : APhotoOverlay
 {
 var photoViewer : APhotoOverlay = makePhotoOverlay()
 return photoViewer
 }

 public function createVideoOverlay() : AVideoOverlay
 {
 var video : AVideoOverlay = makeVideoOverlay()
 return video
 }

 public function createAudioOverlay() : AAudioOverlay
 {
 var audio : AAudioOverlay = makeAudioOverlay()
 return audio
 }

 public function createTwitterOverlay() : ATwitterOverlay
 {
 var tweet : ATwitterOverlay = makeTwitterOverlay()
 return tweet
 }

 public function createFormOverlay() : AFormOverlay

CHAPTER 6

148

 {
 var form : AFormOverlay = makeFormOverlay()
 return form
 }

 private function commonDisplayObjectPrep(dO : DisplayObject) : DisplayObject
 {
 var currentOverlay : DisplayObject = dO as DisplayObject;

 currentOverlay.y = SiteConfig.HEADER_HEIGHT;
 currentOverlay.addEventListener(OverlayEvent.CLOSE_OVERLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.INTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.OUTRO_COMPLETE , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.PLAY , handleEvent);
 currentOverlay.addEventListener(OverlayEvent.SUBMIT_TWEET , handleEvent);

 currentOverlay.addEventListener(OverlayEvent.TWITTER_SUBMIT_OVERLAY ,
 Â handleEvent);

 return currentOverlay
 }

 protected function makePhotoOverlay() : APhotoOverlay
 {
 };

 protected function createVideoOverlay() : AVideoOverlay
 {
 };

 protected function createAudioOverlay() : AAudioOverlay
 {
 };

 protected function makeTwitterOverlay() : ATwitterOverlay
 {
 };

 protected function makeFormOverlay() : AFormOverlay
 {
 };
 }
}

CREATIONAL PATTERNS

149

Now each coast has its own factory. You do this by subclassing the abstract class
AbstractFactoryCoastOverlaySets and applying the appropriate implementations per coast. This allows
each factory to specify how each product is returned and localizes the code related to each coast.

Note the inclusion of the private method commonDisplayObjectPrep. This example shows that you can
maintain a common preparation if all returned products require similar preparations. Otherwise, each
product can also have its own prep work before it’s returned to the client. This is acceptable because types
are often different in an abstract factory.

Listing 6-14. West-coast overlays

package
{
 public class WestCoastOverlaySet extends AbstractFactoryCoastOverlaySets
 {
 override protected function makePhotoOverlay() : APhotoOverlay
 {
 return new WestCoastPhotoOverlay()
 };

 protected override function makeVideoOverlay() : AVideoOverlay
 {
 return new WestCoastVideoOverlay()
 };

 protected override function makeAudioOverlay() : AAudioOverlay
 {
 return new WestCoastAudioOverlay()
 };

 protected override function makeTwitterOverlay() : ATwitterOverlay
 {
 return new WestCoastTwitterOverlay()
 };

 protected override function makeFormOverlay() : AFormOverlay
 {
 return new WestCoastFormOverlay()
 };
 }
}

Listing 6-15. East-coast overlays

package
{
 public class EastCoastOverlaySet extends AbstractFactoryCoastOverlaySets

CHAPTER 6

150

 {
 override protected function makePhotoOverlay() : APhotoOverlay
 {
 return new EastCoastPhotoOverlay()
 };

 protected override function makeVideoOverlay() : AVideoOverlay
 {
 return new EastCoastVideoOverlay()
 };

 protected override function makeAudioOverlay() : AAudioOverlay
 {
 return new EastCoastAudioOverlay()
 };

 protected override function makeTwitterOverlay() : ATwitterOverlay
 {
 return new EastCoastTwitterOverlay()
 };

 protected override function makeFormOverlay() : AFormOverlay
 {
 return new EastCoastFormOverlay()
 };
 }
}

By decoupling the return types from Overlay to that which each overlay generalizes, you give the compiler
more control over your author-time bindings. Now all you need are abstract classes for each of product.

With two factories in your system, you need to know which factory to instantiate. Listing 6-16 uses a
simple factory to determine which factory should be used in the application. You use a simple factory
rather than an abstract factory because there are only two coasts, and I don’t foresee any change
occurring here.

Listing 6-16. CoastOverlayLogic is a simple factory that determines the appropriate coast factory.

package
{
 public class CoastOverlayLogic
 {
 private const WEST_COAST:String='west_coast'
 public function CoastOverlayLogic()
 {
 }

CREATIONAL PATTERNS

151

 public function createOverlayPreparation(coast : String) :
 Â AbstractFactoryCoastOverlaySets
 {
 switch(coast)
 {
 case WEST_COAST:
 return new WestCoastOverlaySet();
 break;
 default:
 return new EastCoastOverlaySet();
 break;
 return null
 }
 }
 }
}

To illustrate how you can add another factory, let’s suppose you also need a factory for Canada. You can
create another subclass as shown in Listing 6-17 and Listing 6-18.

Listing 6-17. Canadian overlays

package
{
 public class CanadaOverlaySet extends AbstractFactoryCoastOverlaySets
 {
 override protected function makePhotoOverlay() : APhotoOverlay
 {
 return new CanadaPhotoOverlay();
 }

 protected override function makeVideoOverlay() : AVideoOverlay
 {
 return new CanadaVideoOverlay();
 }

 protected override function makeAudioOverlay() : AAudioOverlay
 {
 return new CanadaAudioOverlay();
 }

 protected override function makeTwitterOverlay() : ATwitterOverlay
 {
 return new CanadaTwitterOverlay();
 }

CHAPTER 6

152

 protected override function makeFormOverlay() : AFormOverlay
 {
 return new CanadaFormOverlay();
 }
 }
}

Listing 6-18. CoastOverlayLogic reflects the addition of Canada.

package
{
 public class CoastOverlayLogic
 {
 private const WEST_COAST : String = "west_coast";
 private const EAST_COAST : String = "east_coast";
 private const CANADA : String = "canada"

 public function CoastOverlayLogic()
 {
 }

 public function createOverlayPreparation(coast : String) :
 Â AbstractFactoryCoastOverlaySets
 {
 switch(coast)
 {
 case WEST_COAST:
 return new WestCoastOverlaySet();
 break;
 case EAST_COAST:
 return new EastCoastOverlaySet();
 break;
 case CANADA:
 return new CanadaOverlaySet();
 break;
 return null;
 default:
 break;
 }
 }
 }
}

CREATIONAL PATTERNS

153

FAQ
• What distinguishes this from the Factory Method pattern?

The Abstract Factory pattern differs from the Factory Method pattern in that it offers a set
of products to be manufactured. The Factory Method pattern returns only one product.

• This pattern sounds awfully like the Factory Method pattern with extra products.

The diagram does look a lot like the Factory Method pattern. The difference is that a
factory method uses an abstraction with no need for interchangeability in the system, but
rather for extensibility. This lets you add a new product to a subclass and use it in your
application by overriding a hook.

Because the factory method returns a product of the same type, the logic of the factory can
use a conditional statement to return the instance that is required to meet the goals of the
system.

In the Abstract Factory pattern, the factory object can be made up of numerous factory
methods, but this isn’t the important aspect. This pattern focuses on the parameterization
of a series of sets. Factories can be swapped out with other factories of product sets to
meet given criteria.

• It appears that product preparation can extensively elongate the abstract class.

This is true and worth keeping in mind. The preparations should remain small enough to
work with; otherwise, they may be difficult to maintain and likely to change. As you know,
everything can change, so you should be proactive about keeping this code manageable.
But if it begins to become unmanageable, it’s all right—the next pattern can work with the
Abstract Factory pattern for this reason.

Related Patterns
The following patterns are related to the Abstract Method pattern:

• Builder

• Factory

• Template Method

The Builder Pattern
The Builder pattern separates the construction steps from the product to offer flexibility among product
representations. Figure 6-4 shows the class diagram.

CHAPTER 6

154

Figure 6-4. Builder pattern class diagram

This pattern has the following parts:

• Abstract product

• Concrete product

• Abstract builder

• Concrete builder

• Abstract director

• Concrete director

• Client

The pattern’s benefits are as follows:

• Very high level of control over object creation

• Enables varying products from the same algorithms

• Conceals the construction process from the client

A Comprehensive Look
The Builder pattern is concerned with building objects in a manner that promotes interchangeability in the
way a product is represented. Through composition and delegation, a client messages the builder with the
instructions to build or return the product it requires.

The Builder pattern conceals several operations that may be involved in achieving the final representation
of a product expected by the client. This makes the Builder pattern more intricate than its similar Factory
colleagues. A builder can create complex objects that require more than a simple initialization,
configuration, or assembly. Because a concrete builder focuses on the creation of a final product, it offers
a higher level of attention to the assembly of its creation.

CREATIONAL PATTERNS

155

A concrete builder has the methods needed to create such a complex product but uses them only when
messaged. This lets you manipulate the inner workings that may affect the appearance of the product.

The director takes a request from the client and uses it in a sequence of actions between the builder and
itself in an effort to arrive at a final product.

Because the details of the construction are hidden from the client, the final representation of the product
may remain abstract to the system. The implementation of the builder that constructs the product is flexible
because its implementations are separate from that of its superclass.

Because a concrete builder subclasses an abstraction, an additional layer of abstraction can be introduced
into the client, much like in the Abstract Factory pattern. Due to the advanced construction the Builder
pattern offers, many of the products returned are composites: objects composed of one or more like
objects.

Vignette
Burger Kind’s has used the slogan “Your Way Right Away” for years. When you walk up to the counter,
you ask for a cheeseburger, expecting the cook to ask, “How would you like the meat cooked?”
Unfortunately, that doesn’t happen; and before you realize that you have to ask up front for your desired
preparation, the employee behind the counter hands you a packaged meal. Opening it, you find a charred
patty dressed with mayonnaise and mustard. Yuck. These are things you would have asked not to have,
had you known they were standard.

Disgusted with your lunch, you walk over to SubWeight. An employee greets you, much like at Burger
Kind, and asks if they may take your order. Realizing your earlier mistake of keeping silent, you tell them
everything you want up front. “I would like a tuna sandwich toasted on wheat with olives, onions, lettuce,
black pepper, salt, jalapenos, and Swiss cheese,” followed by a “please” to be courteous. The employee
stares at you as if you’re doing something improper. This is your first time at SubWeight, so you’re
unaware of their process.

The workstation shows everything available so that as your sandwich is prepared, you can oversee the
process during which your sandwich is crafted. Genius: they’re sandwich artists—or rather, you are.

It all begins with bread. They have a decent selection to choose from: wraps, wheat, Italian, and more. All
you have to do is say “Foot-long wheat.” Having the base on which to add your ingredient objects, the
employee asks, “What kind of cheese?” And you answer, “Swiss.” This process continues step by step,
allowing you to specify the preparation to your liking. Because SubWeight offers you a say in the assembly
of your sandwich, you can ask three times for more lettuce, before moving on to the next ingredient.

Finally, the employee asks if there will be anything else, signifying the end of your product’s creation. Via a
“No” command, you can have your sandwich returned. Then you turn over delivery to the client: your
stomach.

The AS 3.0 Cast
In AS 3.0, the Builder pattern’s parts are as follows:

CHAPTER 6

156

• Abstract builder: Defines an interface that lets the director have a contract between itself and

the builder. Because the builder object doesn’t assemble itself, the abstract builder shouldn’t

have any implementations declared. And because the abstract builder doesn’t have any

default implementations, it’s also safe to use an interface for the concrete builder. However, if

you have concrete builders that share similar data, an abstract builder is a good idea.

• Concrete builder: Contains the implementations of its defined interface. Although it contains

the implementations to make a product, the builder doesn’t try to build the product itself.

Instead, it takes directions from the named object: the director.

• Abstract director: Contains the instructions to create the final product using the builder object’s

interface. Because this vision may vary among products, the abstract director provides the

flexibility that lets similar directors remain uniform.

• Concrete director: Encapsulates the logic to conceal the steps of product creation from the

client. This separation of details from interface lets you introduce interchangeable logic, from

which new representations of a product may result.

• Abstract product: Exposes the interface that all concrete products of the given genus inherit. In

a few textbooks the abstract product is lacking, because, many times, the product returned is

so specific and unlike other products that the builders create. Your goal isn’t to program to

concretes, but to an interface, and therefore you need either an abstract class or an interface

for the product.

• Concrete product: Extends the abstract product to express itself as a member of the type to be

used by the client. Often this product is a composite that requires many steps to construct.

• Client: The messenger of the builder. It can be any aspect of the application or system that has

prior knowledge of the abstract products, as well as the abstract factory being used.

When It’s Useful
The Builder pattern is useful in the following situations:

• When you’re using third-party APIs

• With factories, to help with complicated preparations

• When you’re constructing composites

Example
The best thing about the Builder pattern is its ability to create numerous representations from a given pool
of resources. This is an amazing behavior to have in RIA development. Imagine purchasing Lego blocks in
bulk on eBay. Depending on how many Legos you have, you may be able to make several different
structures from only six basic shapes.

You can create so many different formations thanks to your imagination. The pieces don’t change, but your
ideas do, and because of this you can vary your representations even though you’re using the same
blocks.

CREATIONAL PATTERNS

157

This pattern is very common in AS 3.0, especially as applications have grown larger and more complex.
Display objects and display object containers become composites and vary from scene to scene. But a
builder isn’t just for composites, and that too makes it special.

The following example uses a recognizable game to simulate the advantage of the Builder design pattern.
The image in Figure 6-5 is the final product created by the collaboration between a director and builder.
Listing 6-19 through Listing 6-24 show the code used. It all begins with an interface.

Figure 6-5. Stage 1-0 of a game

Listing 6-19. AbstractMarioEsqueLevelEditor defines the interface of the builder.

package
{
 public class AbstractMarioEsqueLevelEditor
 {
 private var _bitmap : BitmapData
 private var _backgroundColor : uint
 private var _width : int
 private var _height : int
 private var _pt : Point
 private var _tile : Shape

 public function AbstractMarioEsqueLevelEditor()
 {
 _tile = new Shape()
 _pt = new Point(0 , 0)
 }

 final public function createMap() : void

CHAPTER 6

158

 {
 bitmap = doCreateMap()
 }

 final public function getLevel() : BitmapData
 {
 return _bitmap
 }

 final public function createStone(rect : Rectangle) : void
 {
 addTile(doCreateStone() , rect)
 }

 final public function createSolidBrick(rect : Rectangle) : void
 {
 addTile(doCreateSolidBrick() , rect)
 }

 final public function createBreakableBrick(rect : Rectangle) : void
 {
 addTile(doCreateBreakableBrick() , rect)
 }

 final public function createMoneyBox(rect : Rectangle) : void
 {
 addTile(doCreateMoneyBox() , rect)
 }

 final public function createCloud(rect : Rectangle) : void
 {
 addTile(doCreateCloud() , rect)
 }

 final public function createHill(rect : Rectangle) : void
 {
 addTile(doCreateHill() , rect)
 }

 final public function createBush(rect : Rectangle) : void
 {
 addTile(doCreateBush() , rect)
 }

CREATIONAL PATTERNS

159

 final public function createCastle(rect : Rectangle) : void
 {
 addTile(doCreateCastle() , rect)
 }

 final public function createPipe(rect : Rectangle) : void
 {
 addTile(doCreatePipe() , rect)
 }

 final public function get width() : int
 {
 return _width;
 }

 final public function set width(width : int) : void
 {
 _width = width;
 }

 final public function get height() : int
 {
 return _height;
 }

 final public function set height(height : int) : void
 {
 _height = height;
 }

 final public function get backgroundColor() : uint
 {
 return _backgroundColor;
 }

 final public function set backgroundColor(backgroundColor : uint) : void
 {
 _backgroundColor = backgroundColor;
 }

 final public function get bitmap() : BitmapData
 {
 return _bitmap;
 }

CHAPTER 6

160

 final public function set bitmap(bitmap : BitmapData) : void
 {
 _bitmap = bitmap;
 }

 protected function doCreateMap() : BitmapData
 {
 return new BitmapData(width , height , false , backgroundColor);
 }

 protected function doCreateStone() : DisplayObject
 {
 throw new IllegalOperationError('doCreateStone must be overridden');
 return null;
 }

 protected function doCreateSolidBrick() : DisplayObject
 {
 throw new IllegalOperationError('doCreateSolidBrick must be overridden');
 return null;
 }

 protected function doCreateBreakableBrick() : DisplayObject
 {
 throw new IllegalOperationError('doCreateBreakableBrick must be overridden');
 return null;
 }

 protected function doCreateMoneyBox() : DisplayObject
 {
 throw new IllegalOperationError('doCreateMoneyBox must be overridden');
 return null;
 }

 protected function doCreateCloud() : DisplayObject
 {
 throw new IllegalOperationError('doCreateCloud must be overridden');
 return null;
 }

 protected function doCreateHill() : DisplayObject
 {
 throw new IllegalOperationError('doCreateHill must be overridden');

CREATIONAL PATTERNS

161

 return null;
 }

 protected function doCreateBush() : DisplayObject
 {
 throw new IllegalOperationError('doCreateBush must be overridden');
 return null;
 }

 protected function doCreateCastle() : DisplayObject
 {
 throw new IllegalOperationError('doCreateCastle must be overridden');
 return null;
 }

 protected function doCreatePipe() : DisplayObject
 {
 throw new IllegalOperationError('doCreatePipe must be overridden');
 return null;
 }

 private function addTile(dO : DisplayObject , rect : Rectangle) : void
 {
 var sprite : BitmapData = snapShot(dO);
 _pt.x = rect.x;
 _pt.y = rect.y;
 if (rect.width > 0 || rect.height > 0)
 {
 sprite = tile(sprite , rect);
 }
 bitmap.copyPixels(sprite , sprite.rect , _pt);
 }

 private function snapShot(dO : DisplayObject) : BitmapData
 {
 var snapshot : BitmapData = new BitmapData(dO.width, dO.height, true, 0);
 snapshot.draw(dO);
 return snapshot;
 }

 private function tile(bmpd : BitmapData , rect : Rectangle) : BitmapData
 {
 var _t : Shape = _tile;
 var g : Graphics = _t.graphics;

CHAPTER 6

162

 g.clear();
 g.beginBitmapFill(bmpd , null , true , false);
 g.drawRect(0 , 0 , rect.width , rect.height);
 g.endFill();
 return snapShot(_t);
 }
 }
}

Having provided the abstract class, you proceed to fulfill the specifics of the factory methods involved via
the subclass. You call this MarioLevelEditor (see Listing 6-20).

Listing 6-20. MarioLevelEditor subclasses AbstractMarioEsqueLevelEditor to supply its implementation.

package
{
 public class MarioLevelEditor extends AbstractMarioEsqueLevelEditor
 {
 public function MarioLevelEditor()
 {
 super();
 }

 override protected function doCreateSolidBrick() : DisplayObject
 {
 return new SolidBrick();
 }

 override protected function doCreateBreakableBrick() : DisplayObject
 {
 return new BreakableBrick();
 }

 override protected function doCreateStone() : DisplayObject
 {
 return new Stone();
 }

 override protected function doCreateMoneyBox() : DisplayObject
 {
 return new MoneyBox();
 }

 override protected function doCreateCloud() : DisplayObject
 {
 return new Cloud();

CREATIONAL PATTERNS

163

 }

 override protected function doCreateHill() : DisplayObject
 {
 return new Hill();
 }

 override protected function doCreatePipe() : DisplayObject
 {
 return new Pipe();
 }

 override protected function doCreateBush() : DisplayObject
 {
 return new Shrubs();
 }
 }
}

The interface in Listing 6-19 is extensive and would be a pain to modify in a client, if the interface
changed. To ease the burden this would cause, you create a middleman—the director—that knows about
the given interface exposed by the builder (see Listing 6-21). A director adheres to the interface of an
abstract builder and greatly minimizes the interface that a client must be concerned with. Of course, each
director may change to provide different implementations; therefore you need to provide a superclass to
promote polymorphism while also implementing code common to each subclass.

Listing 6-21. AbstractMarioLevelDirector

package
{
 public class AbstractMarioLevelDirector
 {
 protected var _builder : AbstractMarioEsqueLevelEditor

 public function AbstractMarioLevelDirector(builder :
 Â AbstractMarioEsqueLevelEditor)
 {
 _builder = builder;
 }

 public function getLevel() : BitmapData
 {
 return _builder.getLevel();
 }
 }
}

CHAPTER 6

164

With the abstract director in place, you can begin creating implementations in your subclasses. Each
implementation controls the representation of the product. You do this by deferring all requests to the
passed-in reference of a builder object.

Listing 6-22. LevelOne subclasses AbstractMarioLevelDirector.

package
{
 public class LevelOne extends AbstractMarioLevelDirector
 {
 private const _width : int = 400;
 private const _height : int = 300;
 private var rect : Rectangle = new Rectangle(0 , 0 , 0 , 0);

 public function LevelOne(builder : AbstractMarioEsqueLevelEditor)
 {
 super(builder);
 }

 public override function getLevel() : BitmapData
 {
 _builder.width = _width;
 _builder.height = _height;
 _builder.backgroundColor = 0x0000FF;
 _builder.createMap();
 buildPipes();
 buildFloor();
 buildScenicBushes();
 buildClouds();

 buildMoneyBox();
 buildScenicBricks();
 return _builder.getLevel();
 }

 private function buildScenicBushes() : void
 {
 assignRect(100 , _height - 28 * 2 - 32);
 _builder.createBush(rect);
 }

 private function buildMoneyBox() : void
 {
 assignRect(50 , _height - 51.25 - 95);
 _builder.createMoneyBox(rect);

CREATIONAL PATTERNS

165

 }

 private function buildScenicBricks() : void
 {
 assignRect(50 - 28 , _height - 51.25 - 95);
 _builder.createBreakableBrick(rect);
 assignRect(50 + 28 , _height - 51.25 - 95);
 _builder.createBreakableBrick(rect);
 }

 private function buildPipes() : void
 {
 assignRect(250 , _height - 28 * 2 - 65);
 _builder.createPipe(rect);
 }

 private function buildFloor() : void
 {
 assignRect(0 , _height - 56 , _width , _height - 56);
 _builder.createSolidBrick(rect);
 }

 private function buildClouds() : void
 {
 assignRect(0 , 40);
 _builder.createCloud(rect);
 assignRect(200);
 _builder.createCloud(rect);
 }

 private function assignRect(x:int = 0, y:int = 0, w:int = 0, h:int = 0) : void
 {
 rect.x = x;
 rect.y = y;
 rect.width = w;
 rect.height = h;
 }
 }
}
With the builder and director complete, its time to put them to use, as demonstrated in Listing
6-23.

CHAPTER 6

166

Listing 6-23. DocumentClass instantiates both director and builder to produce your Level

package
{
 public class DocumentClass extends Sprite
 {
 private var _bitmap : Bitmap

 public function DocumentClass()
 {
 var stg : Stage = this.stage;
 stg.scaleMode = StageScaleMode.NO_SCALE;
 stg.align = StageAlign.TOP_LEFT;
 var levelEditor : AbstractMarioEsqueLevelEditor = new MarioLevelEditor();
 var director : AbstractMarioLevelDirector = new StageTwo(levelEditor);
 // LevelOne(levelEditor);
 _bitmap = new Bitmap(director.getLevel());
 addChild(_bitmap);
 }
 }
}

Because the builder can’t build the product without directions from the director, you can create numerous
variations from the same builder resources. Suppose you want to adjust the product representation as
shown in Figure 6-6 (see also Listing 6-24).

Figure 6-6. A different representation of Stage 1-0

CREATIONAL PATTERNS

167

Listing 6-24. StageTwo is a director subclass with a different set of implementations.

package
{
 public class StageTwo extends AbstractMarioLevelDirector
 {
 private const _width : int = 400;
 private const _height : int = 300;
 private var rect : Rectangle = new Rectangle(0 , 0 , 0 , 0);

 public function StageTwo(builder : AbstractMarioEsqueLevelEditor)
 {
 super(builder);
 }

 public override function getLevel() : BitmapData
 {
 _builder.width = _width;
 _builder.height = _height;
 _builder.backgroundColor = 0x0000FF;

 _builder.createMap();
 buildPipes();
 buildFloor();

 buildClouds();
 buildStairs();
 return _builder.getLevel();
 }

 private function buildMoneyBox() : void
 {
 assignRect(50 , _height - 51.25 - 95);
 _builder.createMoneyBox(rect);
 }

 private function buildStairs() : void
 {
 var totalWide : int = _width;
 var floorTall : int = _height - 28 * 2;
 var row : int = 6;
 var col : int = 1;
 while (--row)
 {

CHAPTER 6

168

 var dist : int = totalWide - row * 28;
 assignRect(dist , floorTall - col * 28 , row * 28 , 28);
 _builder.createStone(rect);
 col++;
 }
 }

 private function buildPipes() : void
 {
 assignRect(50 , _height - 28 * 2 - 65);
 _builder.createPipe(rect);
 }

 private function buildFloor() : void
 {
 assignRect(0 , _height - 56 , _width , _height - 56);
 _builder.createSolidBrick(rect);
 }

 private function buildClouds() : void
 {
 assignRect(0 , 40);
 _builder.createCloud(rect);
 assignRect(40 , 40);
 _builder.createCloud(rect);
 assignRect(400 , 30);
 _builder.createCloud(rect);
 }

 private function assignRect(x:int = 0, y:int = 0, w:int = 0, h:int = 0) : void
 {
 rect.x = x;
 rect.y = y;
 rect.width = w;
 rect.height = h;
 }
 }
}

The builder allows variations among internal representations. Each director can use a builder as it sees fit.

CREATIONAL PATTERNS

169

FAQ
• You could use the stage in Flash to do the same thing, probably much faster. What makes this

approach any better?

The example certainly could be created on the stage. The example demonstrates varying
representations, which is far easier to do with graphics than with internal data. The focus of
the example is the sequence of steps the director follows to vary the representation of the
product.

Although you may be able to re-create this example on the stage more quickly, you
wouldn’t be able to do so if there were no graphics involved to place at author-time.

Imagine an RIA that allows a user to create a FLV reel from any number of provided FLVs.
Users can cut and stitch the FLVs into a seamless .flv file that they can download. Using
a builder with the exposed methods to cut and stitch bytes together, you can use the
director to reflect the users’ choices.

There are many additional reasons to use a Builder design pattern.

• The example varies the representation using common assets. Can each concrete builder

change those assets?

This example bundles your assets in one .swc file for simplicity, but the truth is that you
should only use what you know you need. This reduces file sizes and limits excess files.

When you’re using the Builder pattern, each concrete builder can introduce its own assets
by overriding factory methods. If there are many assets that require variation, you can use
abstract factories as well.

• What is another reason to use a builder?

Suppose you were refactoring the code shown in Listing 6-25. This code is very rigid and
shows what often occurs when there is uncertainty about how to uniformly modify the
preparations among a series of objects and their varying attributes. The Builder pattern
would be a great aid in adding uniformity and abstracting the assembly in the code.

Listing 6-25. Logic and preparation tied together

override public function createProduct(string : String) : DisplayObject
 {
 switch(string)
 {
 case STARTUP_SCREEN:
 currentClass = new SystemStartup();
 currentClass.x = (System.SECTION_WIDTH) * .5 - 70 - 4;
 currentClass.y = 103.5 - 70;
 currentClass.nextState = VIDEO_WELCOME;
 return currentClass;
 break;
 case VIDEO_WELCOME:

CHAPTER 6

170

 currentClass = new Introduction();
 currentClass.x = 835 - 5;
 currentClass.y = 55;
 currentClass.nextState = CLEARANCE_SCREEN;
 return currentClass;
 break;
 case DEMONSTRATION_SCREEN:
 currentClass = new Demonstration();
 currentClass.x = 835 - 4;
 currentClass.y = 75;
 currentClass.nextState = NULL_SCREEN;
 return currentClass
 case NULL_SCREEN:
 currentClass = new NullState();
 currentClass.x = (1600 - currentClass.width) * .5 - 4;
 currentClass.y = (600 - currentClass.height) * .5;
 currentClass.nextState = NULL_SCREEN;
 return currentClass;
 break;
 }
 }

Note: Here’s a hint to get you on your way toward refactoring Listing 6-25: use four builders, one
director, and one factory method.

Related Patterns
The following patterns are related to the Builder pattern:

• Factory Method

• Template Method

• Abstract Factory

The Simple Singleton Pattern
The Simple Singleton pattern provides a global reference to an object that requires uniqueness. Figure 6-7
shows the class diagram.

CREATIONAL PATTERNS

171

Figure 6-7. Simple Singleton pattern class diagram

This pattern has the following parts:

• Concrete singleton

• Class member

• Client

The pattern’s benefits are as follows:

• Grants global access to an object

• Maintains access to its unique instance

• Is easy to create

It also has this drawback:

• Can’t be extended (change is a constant)

A Comprehensive Look
Chapter 4 explained that not all object-oriented languages are built equally, and therefore not all patterns
can be implemented equally. For this reason, a design pattern’s intentions must be taken into
consideration when you implement that pattern. Because the Simple Singleton pattern’s intentions can’t be
met in the ActionScript 3.0 language simply by using the static modifier, you can’t, and shouldn’t,
consider the standard implementation of the Simple Singleton an AS 3.0 design pattern.

The intentions of the Simple Singleton design pattern are as follows:

• It ensures that only one instance of an object is in use.

• It must contract an access point that the one instance has acquired.

• The singular instance should have the flexibility to offer change without adding more

namespaces to the system.

But creating a singleton using the static keyword achieves only the first two of these three intentions. This
is why I refer to this implementation as Simple Singleton, because it intends to maintain a global reference
to a given object.

Ensuring global access for an instance requires the instance to be a class member. You learned in
Chapter 2 that in order to access a class member, you must access the value from the Class object itself.
Therefore, it’s safe to assume there are many references to a concrete class strewn throughout the code
of a system that references the member. This nearly guarantees that any change you make to the object
occurs as a modification rather than an extension.

CHAPTER 6

172

The only other remaining solution would be to track down every occurrence of the static reference and
replace it with another static instance. You can see how that might force developers into breaking the
open-closed principle (open for extension, closed for modification). This inflexibility is, again, why I call this
implementation Simple Singleton and say that it isn’t a design pattern in AS 3.0.

Vignette
A southern brand of fried chicken is regarded by locals as the world’s best chicken. This gives the
proprietor of the restaurant an idea. He wants his chicken to be eaten by everyone, not just people in the
local vicinity. Certain that he can’t get the entire world to come to his town, the proprietor decides to bring
his variety of chicken to the world. He wants to be known globally and have his specialty chicken within
reach of any consumer.

Knowing that his chicken will never change, he packages it and ships it to a global supermarket chain.
Anyone who wants a taste of this chicken now has global access to it. The prepackaged chicken, made by
the original chef, ensures great taste each and every time. The packaging helps to ensure this, with its
fancy ability to lock in freshness. And the chef was required to sign an exclusive contract with the
supermarket, ensuring that the chicken will always be available for clients.

The chef’s chicken does so well that he receives letters from around the world asking him to create an
alternate product to promote a healthy diet. The chef works to extend his already famous product, and the
result is grilled chicken.

Grilled chicken provides a much healthier alternative to the original chicken. Excited by the opportunity this
offers the world, the chef wants to supply the new product in place of the original chicken. Unfortunately,
the contract specifies that stores have exclusive rights of the chef’s original recipe, and no substitutions
can be made—the supermarkets are making a tremendous profit.

The chef really wants the world to experience his new chicken variety, and he considers putting the new
chicken in the old packaging. This way, people would experience the chicken, remain happy, and benefit
from the healthier recipe. Unfortunately, this approach would also cause confusion: some people might
receive the original recipe while others got the new recipe, and this might make the product appear
inconsistent.

Unwilling to change a good thing, the chef signs another contract with the supermarket. Instead of
swapping the new product for the previous one, he now offers two products. The chef can take consolation
in knowing that neither product will change.

The AS 3.0 Cast
In AS 3.0, the Simple Singleton pattern’s parts are as follows:

• Concrete instance: The object of a singular instance. All instances can be instantiated and

have their data modified via an object using the expressed interface. The concrete instance

has a unique method that acts as a wrapper around a class member instance.

• Class member Instance: A reference associated with the class and not the object. This

reduces memory allocation given any number of instances of a given class. Although it’s

public, a class member can be accessed in a manner that doesn’t require an instance. You

achieve such a class reference by using the static modifier.

CREATIONAL PATTERNS

173

• Client: The simple singleton’s messenger. The client can be any aspect of the application or

system that has prior knowledge of the abstract product. It also must know the fully qualified

name of the static class and its static method.

Example
The Simple Singleton pattern is regularly used in large-scale projects. What makes this particular object
work is also the reason it’s not a design pattern for AS 3.0. The only way you can get the instance as a
global variable and/or prevent a unique instance from any other instantiation from overwriting such a
reference is to make the reference a class member. As you learned in Chapter 2, class members can only
be accessed via the fully qualified class name.

The convenience of the singleton object explains why it continues to flourish. But as you’ll soon see, and
likely will agree, the Simple Singleton approach may not be as helpful as you think.

A simple singleton is also used as a means of achieving a goal, by providing global reach from one
object’s namespace to another. Generally, it’s used to communicate with a major portion of a shell or
model for things such as sound management or tracking.

The code in Listing 6-26 is an excerpt of a class from an RIA that lets you use a user’s Facebook profile
throughout the application. Currently, the user’s profile is only accessible to the current class. This is
because the RIA was never intended to remember the user’s information. The current class was intended
to let users share the application’s link with their friends while displaying a message to the user who used
their profile.

Listing 6-26. FaceBooklogin

package
{
 public class FaceBookLogin extends EventDispatcher
 {
 protected var _faceBook : IFaceBook;
 protected var _shortProfile : ShortProfileInformation;
 private var _hasProfile : Boolean = false;
 private var _ready : Boolean;

 public function FaceBookLogin(target : IEventDispatcher = null)
 {
 super(target);
 _ready = false;
 _shortProfile = new ShortProfileInformation();
 }

 public function init() : void
 {
 _ready = false;
 // a class that uses my FaceBookGraphAPI;

CHAPTER 6

174

 _faceBook = new FaceBookFacade();

 _faceBook.addEventListener(FacebookEvent.CONNECT , faceBookConnectHandler ,
 Â false , 0 , true);
 }

 public function get facebook() : IFaceBook
 {
 return _faceBook;
 }

 public function get hasProfile() : Boolean
 {
 return _hasProfile;
 }

 public function get shortProfile() : ShortProfileInformation
 {
 return _shortProfile;
 }

 protected function faceBookConnectHandler(event : FacebookEvent) : void
 {
 if (event.success)
 {
 FacebookCall(_faceBook.queryUserInformation()).addEventListener(
 Â FacebookEvent.COMPLETE , userInfoLoaded);

 dispatchEvent(new FacebookEvent(FacebookEvent.CONNECT, false, false));
 }
 }

 protected function userInfoLoaded(event : FacebookEvent) : void
 {
 var aFaceBookCall : FacebookCall = event.target as FacebookCall;
 aFaceBookCall.removeEventListener(FacebookEvent.COMPLETE , userInfoLoaded);

 dispatchEvent(new FacebookEvent(FacebookEvent.COMPLETE , false , false));

 var profile : ProfileInformation = _faceBook.getUserProfile();
 _shortProfile.usrIdentifier = profile.userName;
 _shortProfile.faceBook = true;
 _hasProfile = true;
 }

CREATIONAL PATTERNS

175

 }
}

The Simple Singleton pattern offers a solution to the problem at hand. How can you capture the
information in this class so it remains usable throughout the site, as well as update current text fields with
parts of a user’s profile? A simple singleton lets you acquire user data globally, while ensuring that the
results remain unchanged. To do this, you use a class member to keep a pointer to the memory of the
object’s instantiation. This allows you to obtain all methods via the interface of the object when it’s
retrieved from the class. It’s appropriate to have Facebook information in FaceBookClass, so you create a
static variable to reference the pointer:

public static var _fbReference:FaceBook;
// This class member will hold any subclass of Facebook

The static attribute of the reference enables global access to the class by way of its Class object. You set
the static attribute to a variable rather than a constant so its pointer can be manipulated:

FaceBook.fbReference = new FaceBook();
//this changes the previous pointer to that of a new Facebook initialization.

To limit an object’s ability to modify _fbReference, you declare the static variable as being private in scope,
and use a getter for outside objects to obtain the reference. The problem is that now you can’t subclass
the FaceBook object and set the variable with the extension. So, you set the access modifier to protected,
the better option. This allows your object to use the static reference because it’s in the same hierarchy.
This also means that if another FaceBook object is instantiated, it’s granted appropriate privileges to
overwrite the static reference, because it also has access to that variable.

You need to ensure that the FaceBook instance occurs one time and one time only; otherwise your
information can and will be overwritten. The Simple Singleton pattern offers a solution to needing an
access point that the class checks if an instance exists. If an instance has already been created, that
instance will be the object returned to the client; otherwise a new instance is created, stored in a class
member, and then returned to the client. The conditional statement is shown in Listing 6-27.

Listing 6-27. FaceBook class as a simple singleton

package
{
 public class FaceBook extends FaceBookLogin
 {
 static protected var $_fbInstance : FaceBookLogin;

 public function FaceBookA(target : IEventDispatcher = null)
 {
 super(target);
 }

 static public function getInstance() : FaceBookLogin
 {
 if ($_fbInstance)
 {

CHAPTER 6

176

 $_fbInstance = new FaceBook();
 }
 return $_fbInstance;
 }
 }
}

The getInstance method is declared as a class member, creates a unique instance of the FaceBook class,
and stores it as a class property. If an instance already exists when getInstance is called, the unique
instance is returned to the client. This wrapper ensures the existence of only one instance.

With the creation of your singleton, you can use the instance as a global object. To obtain the reference,
all you have to do is refer to the getInstance class method:

FaceBook.getInstance()
//returns the FaceBook object and stores it to return the same reference every time.

Once this object is created, you can insert the method into the appropriate classes (see Listing 6-28).

Listing 6-28. Class using FaceBook.getInstance

private var _faceBook : FaceBook
...cont

override public function intro() : void
{
 _faceBook = FaceBook.getInstance();
 trace("_faceBook" , _faceBook);

 var _userInfo : ProfileInformation = _faceBook.getUserProfile();
 trace("_userInfo" , _userInfo);

 var obj : Object = _userInfo.fullProfile;

 for (var key:String in obj)
 {
 trace(key + ' ' + obj);
 }
 if (!_faceBook.hasProfile)
 {
 _faceBook.addEventListener(FacebookEvent.COMPLETE , updateTextFields);
 }
 else
 {
 // ... text fields update implementation not shown.
 }

CREATIONAL PATTERNS

177

 // ... truncated code
}

As shown in Listing 6-28, a class can acquire the FaceBook object and then access the user’s profile
information. Otherwise, it can attach an event listener for the moment a user logs in to Facebook.

When you add this to other classes that contain code similar to that in Listing 6-28, the same FaceBook
object is always returned. This is due to the conditional statement in Listing 6-27.

Now, suppose your project manager informs you that you need to modify the application. The FaceBook
feature, which was never intended to be a primary aspect of the application, has become so popular that
the client wants to include the user’s profile image, as well as pluck random updates from their feeds. This
doesn’t require much work, because FaceBookFacade already includes this behavior. You just need to add
another few lines of code to hook into it.

Adhering to the open-closed principle, you create a new subclass of FaceBook called
FaceBookExtendedProfile. FaceBookExtendedProfile gets the user’s avatar and status, and adds them to
the current ProfileInformation (see Listing 6-29).

Listing 6-29. FaceBookExtendedProfile obtains the user’s status and avatar and appends them to
shortProfile.

package
{
 public class FaceBookExtendedProfile extends Facebook
 {
 public function FaceBookExtendedProfile()
 {
 }

 protected override function userInfoLoaded(event : FacebookEvent) : void
 {
 super.userInfoLoaded(event);
 var profile : ProfileInformation = _faceBook.getUserProfile();
 acquireAvatar(profile.userAvatarURL);
 acquireStatus(profile.status);
 }

 protected function acquireStatus(xml : XML) : void
 {
 shortProfile.statusXMLlist = xml..user_status;
 }

 protected function acquireAvatar(AvatarURL : String) : void
 {
 if (AvatarURL.length < 1)
 {
 var bitmapData : BitmapData = new BitmapData(100 , 100 , true , 0);

CHAPTER 6

178

 shortProfile.avatar = bitmapData.clone();
 return
 }

 var loader : Loader = new Loader()
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,onAvatarAcquired);

 var urlRequest : URLRequest = new URLRequest(AvatarURL);
 var ldrContext : LoaderContext = new LoaderContext();
 ldrContext.checkPolicyFile = true;
 loader.load(urlRequest , ldrContext);
 }

 private function onAvatarAcquired(event : Event) : void
 {
 var ldrInfo : LoaderInfo = event.target as LoaderInfo
 ldrInfo.removeEventListener(Event.COMPLETE , onAvatarAcquired);
 var ldrContent : Bitmap = ldrInfo.content as Bitmap;
 _bitmapData = ldrContent.bitmapData;
 _shortProfile.avatar = _bitmapData;
 }
 }
}

The subclass FaceBookExtendedProfile now extends FaceBook. With the updates implemented, you only
need to replace the static variable $_fbInstance with an instance of FaceBookExtendedProfile.

Because FaceBookExtendedProfile extends FaceBook, it has the appropriate privileges to modify the
$_fbInstance reference. You add $_fbInstance=this; to the constructor to swap $_fbInstance with an
instance of your new subclass (see Listing 6-30).

Listing 6-30. Revised FaceBookExtendedProfile

package
{
 public class FaceBookExtendedProfile extends Facebook
 {
 public function FaceBookExtendedProfile()
 {
 super();
 $_fbInstance = this;
 }
 //… cont
 }
}

CREATIONAL PATTERNS

179

With the extension complete, you need to consider how to use it. Because you’re attempting to modify the
pointer of the $_fbInstance, you must instantiate FaceBookExtendedProfile before any calls are made to
FaceBook.getInstance(). Otherwise, the incorrect reference will be returned to the client. The next
dilemma is the confusion of an unsuspecting developer who attempts to modify the FaceBook class without
realizing that the class is being overridden by FaceBookExtendedProfile.

This places you in a predicament with no good options. OOP is about reuse and cohesion, but all you’re
left with are Band-Aid fixes. Given the circumstances, the only thing to do is to copy and paste the new
behaviors of FaceBookExtendedProfile into the old FaceBook class, breaking the open-closed principle.

The issue with a simple singleton, as you’ve seen, is its inability to be subclassed. This is due to
referencing a variable with a concrete Class object. Although use of static members is inflexible, they can
be used in making a reference globally accessible. As this benefit of accessibility is seen as a tremendous
asset, developers use static references all the time in many areas of code. However, these references
make code inflexible when changes are introduced. This is why Simple Singleton isn’t the Singleton design
pattern.

The Singleton Pattern
The Singleton pattern provides a global means to access a unique object while ensuring the extensibility of
that object. Figure 6-8 shows the class diagram.

Figure 6-8. Singleton pattern class diagram

This pattern has the following parts:

• Concrete singleton

• Singleton interface

• Abstract Factory Method pattern

• Abstract product

• Concrete product

CHAPTER 6

180

• Abstract creator

• Concrete creator

• Client

The pattern’s benefits are as follows:

• Grants global access to an object

• Maintains access to its unique instance

• Reduces the need for multiple global variables

• Permits subclasses

It also has this drawback:

• Requires configuration

A Comprehensive Look
The singleton is an object that enables access to a specific location in memory that preserves the integrity
of an OO system. Rather than stitch a series of variables throughout an application, the Singleton pattern
provides an ingenious to create and retrieve an instance.

The Singleton design pattern ensures that a particular object can have exactly one instance and one
instance only, unless specified otherwise. To ensure the single instance, the sole means of instantiating an
object is through the pattern. This prevents the instance from being modified anywhere else in the code.
The added benefit is that the singleton becomes the exclusive access point from which the object can be
acquired for use.

Using the Singleton pattern also provides flexibility through the use of inheritance. Although each object
that uses the Singleton is required to remain a unique instance, the ability to be subclassed can’t be
denied. This would be counterproductive given the open-closed design principle.

Vignette
The proprietor of the world’s best fried chicken, whom you met in the last example, continues to search for
a way to bring his chicken to everyone in the world. The answer comes to him after he wakes from a
terrible dream in which he couldn’t enhance his product without having to enter into new contracts. This
was because he ensured that his products would never change, but he wasn’t the enforcer between his
product and the clients.

With this realization, the chef decides to take charge of ensuring that he is the contract’s access point for
those who want to taste his chicken. This way, he can improve his recipe and ensure that the changes are
made without adding confusion among consumers. His name will become synonymous with slogan “The
ONLY world’s best chicken, and he’ll make sure of that.”

CREATIONAL PATTERNS

181

The AS 3.0 Cast
In AS 3.0, the Singleton pattern’s parts are as follows:

• Abstract creator: Defines the type that is used in its particular factory.

• Concrete creator: A factory subclass that contains the logic necessary to instantiate the

appropriate object in a genus of products expected by the superclass.

• Abstract product: Exposes the interface that all concrete products of the given genus inherit.

• Concrete product: Extends the abstract product to express itself as a member of the type to be

used in the logic of the creator.

• Singleton interface: Exposes the contract by which the client can obtain the unique instance.

The interface possesses a unique method that acts as a wrapper around a class member

instance.

• Concrete singleton: Implements the behaviors and necessary factories to use.

• Class member Instance: A reference associated with the class and not the object. This

reduces memory allocation given any number of instances of a given class. Although public, a

class member can be accessed in a manner that doesn’t require an instance. You get such a

class reference using the static modifier.

• Client: Any aspect of the application or system that has prior knowledge of the abstract

product, as well as the fully qualified name of the singleton class and its static method.

When It’s Useful
The Singleton pattern is useful in these situations:

• When exactly one instance of an object in an application is required

• When you need global access to solve a workflow issue (analytics, managers, etc.)

Example
The Singleton pattern structures code so that while enforcing a unique instance of an object, it lets a
subclass become that unique instance, without requiring modification of existing code. A secondary role of
the Singleton pattern is to reduce the number of global variables in an application by consolidating
namespaces. To achieve such flexibility among unique instances, the structure of the singleton relies on
uniform creation via parameterization. You create varying products by using a unified process: the abstract
factory.

Although FaceBookExtendedProfile and FaceBook from Listing 6-27 and Listing 6-29 have varying
implementations, they don’t have different interfaces. Therefore, although these interfaces don’t exhibit
change, they should be interchangeable in a singleton’s instance. You know that to achieve the singleton’s
global access, you use a static method. And because class methods can only reference class members,
you need to hold the reference as a static member. Any message to your static method must return the
object referenced by the static member _instance. In order to ensure that _instance points to a reference,
you need a conditional statement, which you saw earlier in the discussion of the Simple Singleton pattern.
This gives you global access to an object of a unique instance, intended for use in the application.

CHAPTER 6

182

Listing 6-31 shows the internal mechanism of the FaceBookSingleton instance, which currently lacks an
interface and an object to instantiate. To maintain flexibility, you need to parameterize an object to be
instantiated by the getInstance method, while maintaining anonymity for the object to create. At the same
time, you expose a uniform return type.

Listing 6-31. Internals of the FaceBookSingleton object

package
{
 public class FaceBookSingleton
 {
 static private var $_instance : _____;

 static public function getInstance() : _____;
 {
 if (!$_instance)
 {
 $_instance = new _____;
 }
 return $_instance;
 }
 }
}

You use an the abstract factory to create an interface to create the product. You know the factory must
return a given product and that this product is a subclass of a FaceBook interface.

Figure 6-9. The Singleton making use of the Abstract Factory

Listing 6-32. FaceBook

package
{
 public class FaceBook extends EventDispatcher

CREATIONAL PATTERNS

183

 {
 [Event(name="Connect", type=" FaceBookEvent")]
 [Event(name="Complete", type=" FaceBookEvent")]

 static public const COMPLETE : String = "complete";
 static public const CONNECT : String = "connect";
 protected var _faceBook : iFaceBook;
 protected var _shortProfile : ShortProfileInformation
 protected var _hasProfile : Boolean

 public function Login(target : IEventDispatcher = null)
 {
 _shortProfile = new ShortProfileInformation()
 _hasProfile = false
 }

 public function init() : void
 {
 _ready = false
 _faceBook = new FaceBookFacade()
 // a class that utilizes my FaceBookGraphAPI
 _faceBook.addEventListener(FacebookEvent.CONNECT , faceBookConnectHandler);
 }

 public function get facebook() : IFaceBook
 {
 return _faceBook
 }

 public function get hasProfile() : Boolean
 {
 return _hasProfile
 }

 public function get shortProfile() : ShortProfileInformation
 {
 return shortProfile
 }

 protected function faceBookConnectHandler(event : FacebookEvent) : void
 {
 }
 }
}

CHAPTER 6

184

Using FaceBook as an abstract class allows you to declare your interface. Your past classes become
subclasses of the new abstraction. By abstracting the two classes, you can extract commonalities and
offer default implementations that occur between both concrete classes.

Listing 6-33. FaceBookProfile

package
{
 public class FaceBookProfile extends FaceBook
 {
 public function FaceBookProfile()
 {
 super(null);
 }

 override protected function faceBookConnectHandler(event : FacebookEvent)
 Â: void
 {
 if (event.success)
 {
 FacebookCall(_faceBook.queryUserInformation()).addEventListener(
 Â FacebookEvent.COMPLETE , userInfoLoaded);

 dispatchEvent(new FacebookEvent(FacebookEvent.CONNECT))
 }
 }

 protected function userInfoLoaded(event : FacebookEvent) : void
 {
 var aFaceBookCall : FacebookCall = event.target as FacebookCall;
 aFaceBookCall.removeEventListener(FacebookEvent.COMPLETE , userInfoLoaded);

 dispatchEvent(new FacebookEvent(FacebookEvent.COMPLETE))
 var profile : ProfileInformation = _faceBook.getUserProfile();
 _shortProfile.usrIdentifier = profile.userName;
 _shortProfile.faceBook = true;
 _hasProfile = true
 }
 }
}

Listing 6-34. FaceBookExtendedProfile

package
{
 public class FaceBookExtendedProfile extends Facebook

CREATIONAL PATTERNS

185

 {
 public function FaceBookExtendedProfile()
 {
 }

 protected override function userInfoLoaded(event : FacebookEvent) : void
 {
 super.userInfoLoaded(event)
 var profile : ProfileInformation = _faceBook.getUserProfile();
 acquireAvatar(profile.userAvatarURL)
 acquireStatus(profile.status)
 }

 protected function acquireStatus(xml : XML) : void
 {
 shortProfile.statusXMLlist = xml..user_status
 }

 protected function acquireAvatar(AvatarURL : String) : void
 {
 if (AvatarURL.length < 1)
 {
 var bitmapData : BitmapData = new BitmapData(100 , 100 , true , 0);
 shortProfile.avatar = bitmapData.clone();
 return
 }

 var loader : Loader = new Loader()
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,onAvatarAcquired);

 var urlRequest : URLRequest = new URLRequest(AvatarURL)
 var ldrContext : LoaderContext = new LoaderContext()
 ldrContext.checkPolicyFile = true;
 loader.load(urlRequest , ldrContext)
 }

 private function onAvatarAcquired(event : Event) : void
 {
 var ldrInfo : LoaderInfo = event.target as LoaderInfo
 ldrInfo.removeEventListener(Event.COMPLETE , onAvatarAcquired)
 var ldrContent : Bitmap = ldrInfo.content as Bitmap
 _bitmapData = ldrContent.bitmapData
 _shortProfile.avatar = _bitmapData
 }

CHAPTER 6

186

 }
}

Now that you have your product, you just need to construct the creator and abstract creator that are
passed in to the Singleton. This creates an abstraction among passed-in objects that can be used with the
Singleton pattern.

All you’re concerned with for this application is the appropriate instantiation of your object, so the abstract
creator only has a factory method that returns an instance of FaceBook (see Listing 6-35). And as you
know, with factory methods you should use a method containing the prefix make or create. This example
uses a method called makeUniqueFB (see Listing 6-36 and Listing 6-37).

Listing 6-35. AFaceBookCreator

package
{
 public class AFaceBookCreator
 {
 public function makeUniqueFB() : FaceBook
 {
 }
 }
}

Listing 6-36. FaceBookShortProfileFactory subclasses AFaceBookCreator and retains the knowledge of
the concrete class to instantiate, FaceBook.

package
{
 public class FaceBookShortProfileFactory extends AFaceBookCreator
 {
 public override function makeUniqueFB() : FaceBook
 {
 return new FaceBook()
 }
 }
}

Listing 6-37. FaceBookExtendedProfile subclasses AFaceBookCreator and retains the knowledge of the
concrete class to instantiate, FaceBookExtendedProfile.

package
{
 public class FaceBookExtendedProfile extends AFaceBookCreator
 {
 override public function makeUniqueFB() : FaceBook
 {
 return new FaceBookExtendedProfile()

CREATIONAL PATTERNS

187

 }
 }
}

Finally, you need to enable the factory to be parameterized into a singleton to create the appropriate single
instance (see Listing 6-38).

Listing 6-38. FaceBookSingleton accepts an abstract factory that contains the appropriate product.

package
{
 public class FaceBookSingleton
 {
 static private var $_factory : AFaceBookCreator;
 static private var $_instance : FaceBook;

 static public function getInstance() : FaceBook
 {
 if (!$_instance)
 {
 $_instance = $_factory.makeUniqueFB();
 }
 return $_instance;
 }

 static public function setFactory(FBFactory : AFaceBookCreator) : void
 {
 $_factory = FBFactory;
 }
 }
}

The bolded code in Listing 6-38 adds the behavior required by the Singleton pattern to provide the
flexibility required by an OO application. The appropriate factory is supplied to the singleton before the
getInstance method. After the factory is passed in, the existing code can remain unchanged and continue
to bind itself to the interface of the returned product.

FAQ
• Why is this approach better than using the Simple Singleton pattern?

The immediate answer is the flexibility it offers. In many languages, a static class can’t be
overridden, preventing the use of polymorphism. The Simple Singleton pattern ensures
that only one object instance is unique, as well as the access point to this object, by
inserting this behavior into the object. Doing so gives a class behaviors that let it behave
as a wrapper to itself.

CHAPTER 6

188

By providing its own wrapper to secure itself, the product reduces loose coupling by the
client. This reduces any reusable code to the remnants of objects used for a specific
project.

• Why do other books show the Simple Singleton pattern as the Singleton design pattern?

The answer is a bit complicated. As I stressed in Chapter 4, design patterns use UML to
avoid referring to any specific language. This is because every language is different. Some
OO languages use abstractions, whereas others use interfaces; and some allow methods
to be virtual while others must be static.

The language that interprets each pattern plays a large role in how the pattern appears.
The most important thing is understanding the problem the pattern solves and not using
the model as the only source.

• What makes this approach so flexible?

In short, the pattern’s indirection makes it so flexible. Although this pattern allows unique
instances to remain accessible, extendable, and global, it requires a lot of complexity. This
indirection can be both good and bad.

• Can more than one object be accessed from the singleton?

Yes, as long as it fits the needs of your application and doesn’t overly complicate the code.
The Singleton pattern aims to reduce the number of global variables in an application by
allowing them to be acquired from a single access point.

Related Patterns
The following patterns are related to the Singleton pattern:

• Abstract Factory

• Builder

Summary
It’s very easy to overlook the chance to use a creational pattern and fall back on the new keyword. This is a
“Get it done” mentality; and although I can sympathize with it as a developer, it doesn’t save you any time
on the next project. The quick implementations may be the last nail in the coffin.

This doesn’t mean you should afraid of the keyword new, but consider how important it is for the
declaration to be in the body where it resides. This is the deciding factor when you’re considering whether
your code should use a creational pattern.

Abstraction is crucial. Specifics are always necessary in an application, but their placement is critical. The
design patterns discussed in this chapter rely heavily on abstraction that makes code easier to change.

Key Points
• The new keyword may decrease the flexibility of your code as well as prevent internal reuse.

• The Factory Method pattern relies on inheritance to localize preparation and creational logic.

CREATIONAL PATTERNS

189

• The Abstract Factory pattern bundles families of related or dependent objects.

• The Singleton pattern allows for extension.

• The Builder pattern varies the internal representation of its product.

• A singleton should remain extensible.

• A pattern can become the client of other patterns.

• Simple Factory isn’t the Factory Method pattern or the Singleton pattern—it’s not even a

pattern.

191

Chapter 7

Behavioral Patterns

Each object used in a rich Internet application (RIA) application adds a specialized behavior. It may be
computational or managerial, but regardless of the specifics, the objects aim to facilitate specific goals in a
system.

Code that should be encapsulated is too often hard-coded in a class, due to the ease of maintaining
scope. Time constraints, lack of practice, and unfamiliarity with better techniques are all reasons a
developer may allow non-encapsulated behaviors to add unnecessary lines of code to classes. Doing so
can make a class more difficult to maintain and adjust, and decreases the code’s reusability.

Behavioral patterns abstract the objects that are to be messaged. This loosens the couplings between the
invoker and the implemented behavior, enabling substitutions between them.

Behavioral patterns offer generalizations that make the relationships of invoker and receiver more flexible.
Some behavioral patterns localize an object’s state that a behavior depends on, or is determined by, and
others preserve the scope to which the behavior belongs. A few conceal computations and calculations of
which an object would be unaware. Strictly speaking, behavioral patterns don’t focus on the
encapsulations of behaviors and calculations. They’re concerned with the assignment of those
encapsulations to the objects that require them.

This chapter discusses the following patterns: Strategy, Template Method, Command, Chain of
Responsibility, Iterator, State, Memento, and Observer.

The Strategy Pattern
The Strategy pattern encapsulates a set of algorithms uniformly (sibling subclasses that inherit a common
interface) to achieve interchangeability among them. Figure 7-1 shows the class diagram.

CHAPTER 7

192

Figure 7-1. Strategy pattern class diagram

This pattern has the following parts:

• Abstract strategy

• Concrete strategy

• Abstract context

• Concrete context

• Client

The pattern’s benefits are as follows:

• Algorithms can be used among varying systems

• Algorithms can be more easily maintained

• Algorithms can be interchanged both during development and at runtime

And it has these drawbacks:

• Clients must be aware of the strategies.

• Strategies are more objects to manage.

A Comprehensive Look
The word algorithm may mean something different to a Flash programmer than it does to a computer
science major. The term, which sounds mathematical, is defined as “the sum of any and all techniques
used to arrive at the desired goal.” In fact, an algorithm may lack any mathematical computations.
Essentially, an algorithm represents the actions taken, by any means necessary, to get from point A to
point B.

Because there can be numerous ways to arrive at point B, encapsulating behaviors allows the
implementations to vary freely. And thus the destination doesn’t always have to be the same.

In order to be polymorphic, each algorithm must possess the same hierarchy; and to remain uniform in
their use, the algorithms must expose a shared interface. This way, the data required by the strategy can

BEHAVIORAL PATTERNS

193

be passed into that strategy. It’s the responsibility of the abstract algorithm to create both the abstract
methods and interfaces that each subclass inherits.

The abstract context, on the other hand, requires knowledge of the abstract algorithm in order to properly
arrive at the expected solution and expose the interface to which the client interfaces.

The context and strategy objects must work together to satisfy their needs by providing the appropriate
access. There are two ways for this to occur: the context can pass in data to the strategy, or the context
can pass itself as the data and allow the strategy to use its interface.

The client in this relationship can identify the behavior of the context. This enables various outcomes
without changing the data in the context.

Vignette
Teachers (the client) use various strategies and methods to teach students of varying abilities. They need
to differentiate instruction in order to meet the learning needs of all their students. The concepts in the
curriculum remain the same, but the way they’re demonstrated and lessons implemented differs based on
how a student grasps the information.

For example, when teaching a child how to perform a simple calculation, such as addition, a teacher might
begin with the use of manipulatives (strategy A) that help the student understand the concept through a
hands-on activity. Children use the physical objects rather than numbers on a page. From there, the
teacher puts images of those objects on paper, next to each number in the equation, reinforcing the
concept (strategy B). Finally, the teacher substitutes examples containing only numbers for those
containing numbers and pictures (strategy C).

The AS 3.0 Cast
In AS 3.0, the Strategy pattern’s parts are as follows:

• Abstract strategy: Exposes the interface a given family of subclassed algorithms inherits and

houses any functionality they share. The interface enables the context to retrieve any

necessary data or behaviors that make up this set of algorithms.

• Concrete strategy: A specialized algorithm that performs a varied but specialized

implementation among a set of algorithms.

• Abstract context: Exposes the interface that can be used by the client. In addition, the abstract

context knows which type of behavioral objects can be supplied by the client and retains this

reference to defer requests. The abstract context may optionally provide an additional interface

that a strategy can use to access pertinent data.

• Concrete context: A specialized context, that through the use of composition, works with a

strategy that is submitted by a client, in order to fulfil a behavior.

• Client: Any aspect of the application or system that has prior knowledge of the concrete

strategy to be used by the context, as well as the context the client may message.

When It’s Useful
The Strategy pattern is useful when you want to preserve the reuse of algorithms that make up a behavior.
Such algorithms are validations, expressions, easing formulas, button logic, and network communications.

CHAPTER 7

194

The Strategy pattern eliminates conditionals among an object state in order to target the appropriate
method, via method uniformity.

Example
Often, a web site lets a user contact the company for which the site advertises. Because contact forms
vary, it’s valuable to possess the various validation algorithms as individual strategies.

Suppose you have a form field that contains four text fields, which ask users for their first name, last name,
e-mail address, and e-mail confirmation. These text fields may require various validations depending on
the client or the particular project. For this example, you want to ensure that all required fields are filled in,
that the provided e-mail address is valid, that the confirmation e-mail and the original e-mail match, and
that no text field contains an expletive.

You begin by devising the abstraction shown in Listing 7-1, which all the validations extend. This makes
them uniform and enables polymorphism.

Listing 7-1. AFormValidationBehavior devises the uniformity for a family of algorithms.

package
{
 public class AFormValidationBehavior extends Object
 {
 protected var _formContactForm : IForm

 public function AFormValidationBehavior(form : IForm = null)
 {
 if (form)
 {
 _formContactForm = form
 }
 }

 public function get formContactForm() : IForm
 {
 return _formContactForm;
 }

 public function set formContactForm(formContactForm : IForm) : void
 {
 _formContactForm = formContactForm;
 }

 public function validate() : void
 {
 throw new IllegalOperationError('validate must be overridden')
 }

BEHAVIORAL PATTERNS

195

 }
}

The form requires a means of abstraction to which it can be referred. In this case, you use IForm and
IValidate to reduce the number of excess classes displayed in this code. They contain the getters in the
contact form. An example of this can be seen below in listing 7-2.

Listing 7-2. Abstract form that all validations analyze

package
{
 public class ContactForm extends Sprite implements IForm, IValidate
 {
 protected var _email : FormObject;
 protected var _confirmEmail : FormObject;
 protected var _firstName : FormObject;
 protected var _LastName : FormObject;
 protected var _formCollections : Vector.<FormObject>;
 protected var _analysis : AFormValidationBehavior;

 public function ContactForm()
 {
 _email = new FormObject();
 _confirmEmail = new FormObject();
 _firstName = new FormObject();
 _lastName = new FormObject();

 _formCollections = Vector.<FormObject>([_email ,
 _confirmEmail ,
 _firstName ,
 _lastName]);

 _email.packet.data = "iBen@Spilled-Milk.com";
 _confirmEmail.packet.data = "iBen@Spilled-Milk.com";
 _firstName.packet.data = "Ben";
 _lastName.packet.data = "Smith";
 }

 public function get email() : FormObject
 {
 return _email;
 }

 public function set email(email : FormObject) : void
 {
 _email = email;

mailto:iBen@Spilled-Milk.com
mailto:iBen@Spilled-Milk.com

CHAPTER 7

196

 }

 public function get firstName() : FormObject
 {
 return _firstName;
 }

 public function set firstName(firstName : FormObject) : void
 {
 _firstName = firstName;
 }

 public function get lastName() : FormObject
 {
 return _lastName;
 }

 public function set lastName(lastName : FormObject) : void
 {
 _lastName = lastName;
 }

 public function get analysis() : AFormValidationBehavior
 {
 return _analysis;
 }

 public function set analysis(analysis : AFormValidationBehavior) : void
 {
 _analysis = analysis;
 _analysis.formContactForm = this;
 trace(_analysis);
 }

 public function validate() : void
 {
 _analysis.validate();
 }

 public function get formCollections() : Vector.<FormObject>
 {
 return _formCollections;
 }

BEHAVIORAL PATTERNS

197

 public function get confirmEmail() : FormObject
 {
 return _confirmEmail;
 }

 public function set confirmEmail(confirmEmail : FormObject) : void
 {
 _confirmEmail = confirmEmail;
 }
 }
}

Listing 7-3 through Listing 7-7 show the various algorithms in the form-validation family.

Listing 7-3. Algorithm that validates that all required fields are properly filled

package
{
 public class RequiredValidation extends AFormValidationBehavior
 {
 private static const ERROR : String = "All required fields must be filled in";

 public function RequiredValidation(form : ContactForm = null)
 {
 super(form);
 }

 override public function validate() : void
 {
 for each (var fObj:FormObject in _formContactForm.formCollections)
 {
 var fp : FormPacket = fObj.packet;
 if (fp.isRequired)
 {
 var cleanser : RegExp = /\s{1,}/gi;
 var clone : String = fp.data.replace(cleanser , '');

 if (clone == '' || clone == fp.prompt) ;
 {
 fp.hasErrors = true;
 fp.addError(ERROR);
 trace('error');
 }
 }
 }

CHAPTER 7

198

 }
 }
}

Listing 7-4. Algorithm that validates the provided e-mail address

package
{
 public class EmailValidation extends AFormValidationBehavior
 {
 static protected const Email_Expression : RegExp = Â

 /^[a-z][\w.-]+@\w[\w.-]+\.[\w.-]*[a-z][a-z]$/i

 static protected const Error : String = "A Valid Email is Required"

 public function EmailValidation(form : ContactForm = null)
 {
 super(form);
 }

 override public function validate() : void
 {
 var email : FormObject = this._formContactForm.email
 var emailData : FormPacket = email.packet
 var emailAddy : String = emailData.data

 if (!Email_Expression.test(emailAddy))
 {
 emailData.hasErrors = true
 }
 }
 }
}

Listing 7-5. Algorithm that validates that both the original e-mail address and the confirmation e-mail
match

package
{
 public class ConfirmedEmailValidation extends AFormValidationBehavior
 {
 static protected const ERROR : String = "Emails Must Match"

 public function ConfirmedEmailValidation(form : ContactForm = null)
 {
 super(form);

BEHAVIORAL PATTERNS

199

 }

 override public function validate() : void
 {
 var email : FormObject = this._formContactForm.email
 var emailData : FormPacket = email.packet
 var emailAddy : String = emailData.data

 var confirmEmail : FormObject = this._formContactForm.confirmEmail
 var confirmEmailData : FormPacket = confirmEmail.packet
 var confirmEmailAddy : String = confirmEmailData.data

 var match : Boolean = confirmEmailAddy == emailAddy
 if (!match)
 {
 trace('error')
 emailData.hasErrors = true
 emailData.addError(ERROR)
 }
 }
 }
}

Listing 7-6. The profanity-filter abstract algorithm defines the template method, for which subclasses are
expected to provide an appropriate filter listing.

package
{
 public class AProfanityFilter extends AFormValidationBehavior
 {
 protected static const Error : String = 'Please refrain from using obscenities';
 protected var profanityAr : Vector.<String>

 public function AProfanityFilter(form : ContactForm = null)
 {
 super(form);
 doProfanity()
 }

 protected function doProfanity() : void
 {
 throw new IllegalOperationError('doProfanity must be overridden')
 }

 override public function validate() : void

CHAPTER 7

200

 {
 var field : Vector.<FormObject>= this._formContactForm.formCollections
 for each (var form:FormObject in field)
 {
 var fp : FormPacket = form.packet
 var data : String = fp.data
 if (recourse(data))
 {
 fp.hasErrors = true
 fp.addError(Error)
 }
 }
 }

 protected function recourse(str : String , count : uint = 0) : Boolean
 {
 var tmpAr : Array;
 var expressionString : String = (count < profanityAr.length - 1) ? Â

 '\\b' + profanityAr[count] + '\\b' : profanityAr[count]

 var regExp : RegExp = new RegExp(expressionString , 'gix')
 tmpAr = (regExp.exec(str));
 if (tmpAr != null)
 {
 return true
 }
 else
 {
 if (count < profanityAr.length - 1)
 {
 return recourse(str , ++count)
 }
 }
 return false
 }
 }
}

Listing 7-7. Profanity-filter default algorithm that validates by means of RegExp

package
{
 public class DefaultProfanityFilter extends AProfanityFilter
 {
 public function DefaultProfanityFilter(form : ContactForm = null)

BEHAVIORAL PATTERNS

201

 {
 super(form);
 }

 override protected function doProfanity() : void
 {
 profanityAr = Vector.<String>(['Listing of profanities goes here']);
 }
 }
}

Listing 7-8 shows how each algorithm can be substituted for one another to be used with the contact
form, in order to validate the appropriate fields. Using the interface IValidate, which exposes only two
methods, safeguards the internals.

Listing 7-8. Substitution of algorithms made by the client

var form : IValidate = new ContactForm()

 form.analysis = new RequiredValidation()
 form.validate()

 form.analysis = new EmailValidation()
 form.validate()

 form.analysis = new ConfirmedEmailValidation()
 form.validate()

 form.analysis = new DefaultProfanityFilter()
 form.validate()

Related Patterns
The following patterns are related to the Strategy pattern:

• State

• Template

The Template Method Pattern
The Template Method pattern defines the skeleton of an algorithm in an operation, deferring steps to
subclasses for implementation. Figure 7-2 shows the class diagram.

CHAPTER 7

202

Figure 7-2. Template Method pattern class diagram

This pattern has the following parts:

• Abstract class

• Concrete class

• Client

The pattern’s benefits are as follows:

• Hooks that promote overriding

• Fixed ordering among algorithmic steps

• Specific extension points

A Comprehensive Look
The operations in an abstract class, that define the skeletal composition of the template method, are
similar to the bullet points in a topic outline that emphasize a building block of the topic. These bare-boned
operations outline the skeleton of an algorithm that a subclass elaborates on. Thus these points form the
template, which each subclass needs to model itself to arrive at an end behavior.

Although the subclasses implement specifics, they don’t dictate the order in which the operations are used.
This is left up to the abstraction in an effort to localize and maintain the logic among operations.

The Template Method pattern defines the order of the skeletal operations to create uniformity among its
subclasses. Primitive operations, which are overridden, are often indicated using the prefix do. (You must
prevent subclasses from overriding the template method itself.) The template method increases class
cohesion, and provides the necessary hooks into which subclasses can tap.

Vignette
The phrase “Mother knows best” may not always hold true, but a mother does know how she chooses to
raise her children. She protects and nurtures them, but she also provides structure. If a mother changes

BEHAVIORAL PATTERNS

203

her rules on a daily basis, her children don’t know what path to follow; this is why it’s very important for the
mother to solidify this path, and ensure that her children remain on it.

But a mother can’t be there every second of the day. On occasion, the duties of a mother may be passed
to a babysitter for a few hours. The babysitter isn’t the mother, doesn’t know what’s best for the children,
and has no idea what the parents plan for their children’s future. This is because the babysitter is an
individual and doesn’t have the same concerns as the mother. Plus, watching the children is just a way for
the babysitter to earn a few extra dollars.

To ensure that the babysitter represents the mother’s presence, the mother must enforce guidelines to be
followed while caring for her children. This is accomplished via itemized rules as well as precautionary
actions to be taken if anything goes wrong. These actions are detailed and given due diligence on the part
of the mother, but what isn’t expressed is the means by which these actions are to be carried out.

The AS 3.0 Cast
In AS 3.0, the Template Method pattern’s parts are as follows:

• Abstract class: Exposes the interface and defines the order of operations necessary to fulfill

the obligations of an algorithm. The abstraction must ensure the prevention of its template

method.

• Concrete class: Defines the specific implementations of behaviors specified by its abstraction.

• Client: The messenger of the concrete class, which by messaging may trigger the template

method. This may be the concrete class itself.

When It’s Useful
The Template Method pattern is useful for doing the following:

• Providing uniformity among subclasses

• Preventing alteration of sequences

• Enforcing factory methods

• Providing additional hooks to which subclasses may specialize

Example
You’ve seen how modularity can promote flexibility. While modules remain in a hierarchy, they can be
interchanged, allowing for greater flexibility. Interfaces tie modules together by allowing clients to message
their behaviors using a common signature, but an interface doesn’t achieve uniformity of an algorithm to
be performed. The Template Method localizes the steps of an algorithm so you can make changes in one
place rather than many, thus subclassing the abstraction.

Sections of a web site often use template methods to enforce expected behaviors when a section initiates
or exits. Consider these sections of an ActionScript 3.0 web site: Portfolio, News, About You, Home, and
Contact. Each section is written as its own module, and the modules are tied together by their common
interface.

Often an abstract class known as ABaseClass defines this interface and extends the flash.display.Sprite
object for its interactive properties. ABaseClass’s duties are those of any abstract class: it supplies default

CHAPTER 7

204

behaviors and declares any abstract methods expected to be overwritten by its subclasses. It also creates
the inherited interface used by all subclasses that are messaged by the application framework.

Listing 7-9 shows an abstract class that defines an interface that is implemented by all subclasses.
ABaseSection also implements a few defaults that are shared among the subclasses. The problem
demonstrated in this abstract class is the expectation that subclasses override behaviors, which may
already implement a default behavior.

Listing 7-9. ABaseSection acting as an abstract class among modular site sections

package
{
 public class ABaseSection extends Sprite
 {
 protected var _paused : Boolean;
 protected var _width : Number;
 protected var _height : Number;
 protected var _shell : IShell;

 public function ABaseSection()
 {
 }

 /*
 * Init is the first to be triggered override and load assets
 */
 public function init(shell : IShell) : void
 {
 _shell = shell;
 shell.addEventListener(ShellEvent.EXIT_SECTION , outro);
 }

 /*
 * Pause expects videos, animations, timers, sounds etc... to pause.
 */
 public function pause() : void
 {
 _paused = true;
 }

 /*
 * Unpause expects videos, animations, timers, sounds etc... to resume.
 */
 public function unpause() : void
 {
 _paused = false;

BEHAVIORAL PATTERNS

205

 }

 public function intro() : void
 {
 }

 /*
 * destroy expects memory to be released.
 */
 public function destroy() : void
 {
 shell.removeEventListener(ShellEvent.EXIT_SECTION , outro);
 }

 public function updateLayout(width : Number , height : Number) : void
 {
 _wide = width;
 _height = height;
 }

 protected function outro() : void
 {
 }
 }
}

Any subclass that does as intended and overrides these abstract methods may forget to use the default
implementation of the superclass. The problem is that not only do your subclasses require their own logic
for their section of the web site, but the superclass in this case, also expects them to recognize when they
need to call a superclass method. The dilemma becomes apparent when a subclass extends the
abstraction, as shown in Listing 7-10.

Listing 7-10. Home is a specialized type of section and overrides the intro operation to support its own
code

package
{
 public class Home extends AbstractSection
 {
 public var introCopyAnimation : MovieClip;
 public var background : Bitmap;
 public var backgroundContainer : Sprite;

 public function Home()
 {
 backgroundContainer = new Sprite();

CHAPTER 7

206

 background = new HomeBackground();
 backgroundContainer.addChild(background);
 addChild(backgroundContainer);
 }

 override public function intro() : void
 {
 background.intro();
 introCopyAnimation = new IntroCopyAnimation();
 introCopyAnimation.x = (stage.stageWidth - introCopyAnimation.width) * .5;
 introCopyAnimation.y = 175;
 addChild(introCopyAnimation);

 addEventListener(HomeEvent.ACTIVATE , activate);
 addEventListener(HomeEvent.DEACTIVATE , deactivate);
 background.addEventListener(HomeEvent.NAVIGATION_ACTIVATE , navigate);
 background.addEventListener(HomeEvent.NAVIGATION_DEACTIVATE , navigate);
 background.addEventListener(HomeEvent.NAVIGATE_TO_SECTION , navigate);
 }

 override public function updateLayout(width : Number , height : Number) : void
 {
 if (introCopyAnimation)
 {
 introCopyAnimation.x = (stage.stageWidth - introCopyAnimation.width) * .5;
 introCopyAnimation.y = 175;
 }

 super.updateLayout(width , height);
 BestFit.scaleToFill(background , width , height);
 background.x = (_width - background.width) * .5;
 background.y = (_height - background.height) * .5;
 backgroundContainer.scrollRect = new Rectangle(0 , 0 , width , height);
 }

 override public function destroy() : void
 {
 background.destroy();
 removeEventListener(HomeEvent.ACTIVATE , activate);
 removeEventListener(HomeEvent.DEACTIVATE , deactivate);
 background.removeEventListener(HomeEvent.NAVIGATION_ACTIVATE , navigate);
 background.removeEventListener(HomeEvent.NAVIGATION_DEACTIVATE , navigate);
 background.removeEventListener(HomeEvent.NAVIGATE_TO_SECTION , navigate);
 super.destroy();

BEHAVIORAL PATTERNS

207

 }
 }
}

The reason the Home section will malfunction is because the Home section overrides the parent’s
operation and the requests aren’t properly forwarded to the superclass, which fulfills common behavior
among all classes. This is only one subclass; but what if the developers creating the other sections make
similar mistakes? The sections’ behaviors may be so varied so that the only thing they share is the
interface. Therefore, each class is expected to implement its own logic for the interface. The lack of criteria
to meet the algorithm defined by the abstract class gets in the way of a uniform structure between the
algorithm and the subclasses.

You can handle this by localizing the sequence of steps necessary for an algorithm that lets subclasses
implement the code they require, while focusing only on their behaviors and not on what is expected of
them by the abstract class. The abstract class must possess the appropriate logic related to the
sequences expected of an algorithm, in order to fulfill the appropriate behavior. Adding the skeletal
operations lets each subclass define appropriate behaviors without having to consider the when and the
why.

Additionally, these abstract operations provide hooks (or callback methods), which can be overridden. This
prevents possible effects on the superclass’s default functionality. To preserve the integrity of the entire
algorithm in the superclass, you mark it final so no subclass can override it.

The revised ABaseSection in Listing 7-11 uses the Template Method pattern to maintain the appropriate
structure of the algorithms the interface suggests. The relationship, which previously required subclasses
to defer requests to the superclass, is no longer necessary because the superclass handles this
independently of the subclasses. This is referred to as the Hollywood principle (“don’t call you, we’ll call
you”): the subclass shouldn’t contact the superclass, because the superclass will be in touch with the
subclass.

Listing 7-11. ABaseSection utilizes template methods to devise a consistency among the steps of an
operation.

package
{
 public class ABaseSection extends Sprite
 {
 protected var _paused : Boolean;
 protected var _width : Number;
 protected var _height : Number;
 protected var _shell : IShell;

 public function ABaseSection()
 {
 }

 final public function init(shell : IShell) : void
 {
 _shell = shell;

CHAPTER 7

208

 _shell.addEventListener(ShellEvent.EXIT_SECTION , outro);
 doLoadAssets()
 }

 final public function pause() : void
 {
 _paused = true
 doPauseVideo()
 doPauseAnimations()
 doPauseTimers()
 doPauseSounds()
 }

 final public function unPause() : void
 {
 _paused = false
 doUnPauseVideo()
 doUnPauseAnimations()
 doUnPauseTimers()
 doUnPauseSounds()
 }

 final public function intro() : void
 {
 }

 /*
 * destroy expects memory to be released.
 */
 final public function destroy() : void
 {
 shell.removeEventListener(ShellEvent.EXIT_SECTION , outro)
 doDestroy()
 }

 final public function updateLayout(width : Number , height : Number) : void
 {
 _wide = width
 _height = height
 doUpdateLayout()
 }

 final protected function outro() : void
 {

BEHAVIORAL PATTERNS

209

 doOutro()
 }

 protected function doLoadAssets() : void
 {
 throw new IllegalOperationError('doLoadAssets must be overridden')
 }

 protected function doPauseVideo() : void
 {
 throw new IllegalOperationError('doPauseVideo must be overridden')
 }

 protected function doPauseAnimations() : void
 {
 throw new IllegalOperationError('doPauseAnimations must be overridden')
 }

 protected function doPauseTimers() : void
 {
 throw new IllegalOperationError('doPauseTimers must be overridden')
 }

 protected function doPauseSounds() : void
 {
 throw new IllegalOperationError('doPauseSounds must be overridden')
 }

 protected function doUnPauseVideo() : void
 {
 throw new IllegalOperationError('doUnPauseVideo must be overridden')
 }

 protected function doUnPauseAnimations() : void
 {
 throw new IllegalOperationError('doUnPauseAnimations must be overridden')
 }

 protected function doUnPauseTimers() : void
 {
 throw new IllegalOperationError('doUnPauseTimers must be overridden')
 }

 protected function doUnPauseSounds() : void

CHAPTER 7

210

 {
 throw new IllegalOperationError('doUnPauseSounds must be overridden')
 }

 protected function doDestroy() : void
 {
 throw new IllegalOperationError('doDestroy must be overridden')
 }

 protected function doUpdateLayout() : void
 {
 throw new IllegalOperationError('doUpdateLayout must be overridden')
 }

 protected function doOutro() : void
 {
 throw new IllegalOperationError('doOutro must be overridden')
 }
 }
}

In ActionScript 3.0, you can use the Template Method pattern to improve the structure of your code and
localize uniform behavior. By exposing an interface that can’t be overridden, subclasses are strong armed
to override only protected methods.

FAQ
• Does a Template Method ever contain only one step?

Yes, especially in AS 3.0. This helps protect your data. Because you can’t specify virtual or
abstract modifiers for methods in AS 3.0, it isn’t clear which methods need to be overridden. This
may invite methods marked as protected or public from being overridden. Thus, may encourage
overriding operations among interfaces as they use the public modifier.

Instead, by using the Template Method pattern, you can emphasize the method that should be
overridden. Because this method is no longer part of the interface, it allows better data hiding
because you can mark it protected.

This approach encourages data hiding in the class’s behaviors. The Template Method will help
you to make better use of the private and protected modifiers.

• Is a template method supposed to be declared as final?

Yes. No subclass should be able to modify it, because that would interfere with the intended
sequence that makes up the algorithm. Also, as in the answer to the first question, if you don’t
mark the template method final, you leave the interface open to be overridden.

BEHAVIORAL PATTERNS

211

Related Patterns
The following patterns are related to the Template Method pattern:

• Factory Method

• Strategy

The Command Pattern
The Command pattern encapsulates a request as an object. This abstracts the receiver from being
invoked in the application. Figure 7-3 shows the class diagram.

Figure 7-3. Command pattern class diagram

This pattern has the following parts:

• Abstract command

• Concrete command

• Invoker

• Receiver

• Client

The pattern’s benefits are as follows:

• Decouples the receiver and the invoker, so the invoker has no bindings among another objects

• Enables undo and redo capabilities

CHAPTER 7

212

A Comprehensive Look
Anyone who has used an AS 3.0 tweening engine understands the potential of the callback. It lets you
trigger or message a method on a tween’s completion. In ActionScript 2.0, the most difficult aspect of the
callback was keeping the scope of the object the callback was targeting.

AS 3.0 takes heavy advantage of this pattern in order to achieve method closures, which is why it’s so
important to remove event listeners. AS 3.0 doesn’t offer let you tap into these method closures.

The Command pattern captures a request for a given object within its own encapsulation so the request
can be passed or stored. Thus objects that are destined to be wrapped inside a command object can be
sequenced and queued to be messaged later.

You do this using the Command object, which contains an object, known as a receiver, to message. This
way, you conceal the interface of the receiver to be messaged and the intended invoker. The invoker
doesn’t need to be aware of anything other than the Command object’s interface. The interface of the
Command object is eloquently named execute. This “execute” method, when messaged, defers the request
to its receiver and thus targets the appropriate method.

Concrete Commands are written so that they’re aware of the interfaces to the objects that they’re holding.
When the command method “execute” is messaged, the appropriate interface of the receiver will be
invoked. The interfaces of the receivers intended for messaging vary, so the concrete commands must
properly accommodate them. Thus commands and receivers share parallel hierarchies.

The larger the application, the more interfaces are likely to be used and tightly coupled, which can
potentially decrease the possibility of code reuse. The Command pattern can conceal such interfaces, so
the invoker only knows about the Commander’s particular interface. This provides extremely loose
coupling between the sender and the receiver of the message.

The end result is a highly abstracted relay of message requests and invoked behaviors.

Vignette
Johnny’s mother repeatedly informs her son to quit playing video games, make his bed, and clean his
room. If Johnny refuses his mother’s requests, it’s just a matter of time before the games are unplugged
and he’s grounded. Usually, his mother’s presence and repeated actions invoke his behavior, which is to
turn off the game and do his chores.

One Saturday, his mother has to run some errands. Before leaving, she says, “Johnny, I want to see your
room cleaned and your bed made when I return in two hours.” Johnny replies, ”Yeah, yeah”, and continues
to stare intently at his game.

After a while, a sound from outside causes Johnny to run to the window. Unaware of how much time has
passed, he’s worried that his mother is home. Luckily, it’s the next-door neighbor pulling into the driveway.
The fear of being grounded causes him to panic and his heart to race, and triggers Johnny’s behavior just
as his mother’s presence would. Johnny decides to turn off the console, clean his room, and make his bed.

BEHAVIORAL PATTERNS

213

The AS 3.0 Cast
In AS 3.0, the Command pattern’s parts are as follows:

• Abstract command: Exposes the abstract method execute that all subclasses must implement

appropriately. The abstract command also houses the reference of the receiver to which its

subclasses are bound.

• Concrete command: The encapsulated request. The concrete command specifies the

appropriate method that requires messaging. The concrete command can be either extremely

intelligent or absent of any logic necessary to relay the receiver.

• Abstract receiver: Exposes an interface to which a family of commands can relay messages.

The receiver’s interface creates sets of commands that can be used in an application.

• Concrete receiver: Holds a specific behavior that it’s requested to perform. As long as a class

has an interface, any class can be a receiver.

• Client: The concrete command. The client that uses the Command pattern can be any object

that initializes the appropriate command with a receiver. The client instantiates and initializes

the receiver.

• Invoker: The object that invokes the execute behavior of a concrete command.

When It’s Useful
The Command pattern is useful for the following:

• Queuing requests to execute later

• Parameterizing a class as a receiver to decouple the request from the action

• Implementing undo/redo commands

Example
A sprite is placed on the stage to act as a button. When a mouse rolls over the button, a specified sound
plays. When the mouse moves off the button, the sound stops. The code is shown in Listing 7-12.

Listing 7-12. SoundButton uses a SoundObject to pause and play on hover and rollout.

package
{
 public class SoundButton extends Sprite
 {
 private var _snd : Sound;
 private var _sndChannel : SoundChannel;

 public function SoundButton()
 {
 addEventListener(MouseEvent.MOUSE_OVER , onHover);
 addEventListener(MouseEvent.MOUSE_OUT , onOut);

CHAPTER 7

214

 }

 public function get snd() : Sound
 {
 return _snd;
 }

 public function set snd(sound : Sound) : void
 {
 _snd = sound;
 }

 private function onHover(me : MouseEvent) : void
 {
 _sndChannel = _snd.play();
 }

 private function onOut(me : MouseEvent) : void
 {
 _sndChannel.stop();
 }
 }
}

This simple example works; but if the button needs to do anything other than exchange your sound
reference for another MP3, you have to modify the code. The button was written specifically to operate on
sound. Binding the receiver limits code reuse.

If you extract the actions that occur on the mouse events to the container that holds the SoundSprite, you
give another class information it shouldn’t know. This isn’t good OOP practice, so you leave the code as it
is in the SoundButton.

But now you have a problem: the client makes a last-minute request to have the button play an animation
instead of a sound. The SoundButton class no longer does what you need. With your handy editor, you
copy and paste the SoundButton code into a new class, which you name SWFButton (see Listing 7-13).

Listing 7-13. SWFButton uses the MovieClip type.

package
{
 public class SWFButton extends Sprite
 {
 private var _swf : MovieClip;

 public function SWFButton()
 {
 addEventListener(MouseEvent.MOUSE_OVER , onHover);

BEHAVIORAL PATTERNS

215

 addEventListener(MouseEvent.MOUSE_OUT , onOut);
 }

 public function get swf() : MovieClip
 {
 return _swf;
 }

 public function set swf(mc : MovieClip) : void
 {
 _swf = mc;
 }

 private function onHover(me : MouseEvent) : void
 {
 _swf.play()
 }

 private function onOut(me : MouseEvent) : void
 {
 _swf.stop();
 }
 }
}

Now, when the mouse rolls over the button, you forward the play or stop request to your SWF instance.

The client thinks that although the animation is nice, it doesn’t grab the user’s attention the way the sound
did: they want the animation and the sound to play together. You could perform the same copy-and-paste
routine, writing more duplicate code. Or you can use the Command pattern to decouple the sender of the
request from the receiver, allowing for greater flexibility.

In other words, you conceal the contents you’re messaging—movie clip, sound, both, end so on—in an
object that exposes only one behavior: execute. This frees your button from being bound to any particular
receiver.

To begin, you create an abstract class that represents a given command behavior on a particular receiver
interface. It’s the command’s role to create any necessary logic that may be required, to take the
responsibility off your button class.

The abstract command object needs to know the interface of the object it’s to make the request of, and to
unify any behaviors that can message the intended interface. Your first goal is to refer to Sound and
MovieClip as similar objects that they can play and pause, and to allow both types to create their own
means of pausing and playing (see Listing 7-14 through Listing 7-17).

CHAPTER 7

216

Listing 7-14. IPauseable interface

package
{
 public interface IPauseable
 {
 function pause() : void;

 function resume() : void;
 }
}

Listing 7-15. ExtendedMovieClip can pause and resume.

package
{
 public class ExtendedMovieClip extends MovieClip implements IPauseable
 {
 final public function pause() : void
 {
 this.stop();
 }

 final public function resume() : void
 {
 this.play();
 }
 }
}

Listing 7-16. ExtendedSound can pause and resume.

package
{
 public class ExtendedSound extends Sound implements IPauseable
 {
 private var _sndPosition : Number;
 private var _sndChannel : SoundChannel;

 final public function pause() : void
 {
 _sndPosition.playheadPosition;
 _sndChannel.stop();
 }

 final public function resume() : void

BEHAVIORAL PATTERNS

217

 {
 sndChannel = _snd.play(_sndPosition , 0);
 }
 }
}

Listing 7-17. ExtendedMovieClipAndSound can pause and resume.

package
{
 import flash.display.Sprite;

 public class ExtendedMovieClipAndSound extends Sprite implements IPauseable
 {
 private var _mc : ExtendedMovieClip;
 private var _snd : ExtendedSound;

 final public function pause() : void
 {
 _mc. pause();
 _snd. pause();
 }

 final public function resume() : void
 {
 _mc. resume();
 _snd.resume();
 }
 }
}

Now that you’ve created a common interface, you can specify a type of receiver for our abstract Command
pattern (see Listing 7-18 through Listing 7-23).

Listing 7-18. ICommand interface

package
{
 public interface ICommand
 {
 function execute() : void
 }
}

CHAPTER 7

218

Listing 7-19. AbstractPauseableCommand implements ICommand.

package
{
 public class AbstractPauseableCommand implements ICommand
 {
 protected var _receiver : IPauseable

 public function AbstractPauseableCommand(aReceiver : IPauseable) : void
 {
 _receiver = aReceiver;
 }

 final public function execute() : void
 {
 doExecution();
 }

 final public function set receiver(aReceiver : IPauseable) : void
 {
 _receiver = _aReceiver;
 }

 final public function get receiver() : IPauseable
 {
 return _receiver ;
 }

 protected function doExecution() : void
 {
 throw new IllegalOperationError('doExecution must be overridden');
 }
 }
}

Listing 7-20. PauseCommand extends AbstractPauseableCommand and applies its implementation to the hook
as defined in the superclass.

package
{
 public class PauseCommand extends AbstractPauseableCommand
 {
 override protected function doExecution() : void
 {
 _receiver.pause();

BEHAVIORAL PATTERNS

219

 }
 }
}

Listing 7-21. ResumeCommand extends AbstractPauseableCommand and applies its implementation to the
hook as defined in the superclass.

package
{
 public class ResumeCommand extends AbstractPauseableCommand
 {
 override protected function doExecution() : void
 {
 _receiver.resume();
 }
 }
}

Listing 7-22. ReusableButton uses both commands.

package
{
 public class ReusableButton extends Sprite
 {
 private var _exitCommand : ICommand;
 private var _hoverCommand : ICommand;

 public function ReusableButton()
 {
 addEventListener(MouseEvent.MOUSE_OVER , onHover)
 addEventListener(MouseEvent.MOUSE_OUT , onOut)
 }

 final public function get hoverCommand() : ICommand
 {
 return _hoverCommand;
 }

 final public function set hoverCommand(command : ICommand) : void
 {
 _hoverCommand = command;
 }

 final public function get exitCommand() : ICommand
 {
 return _exitCommand;

CHAPTER 7

220

 }

 final public function set exitCommand(command : ICommand) : void
 {
 _exitCommand = command;
 }

 final private function onHover(me : MouseEvent) : void
 {
 _hoverCommand.execute();
 }

 final private function onOut(me : MouseEvent) : void
 {
 _exitCommand.execute();
 }
 }
}

Listing 7-23. The client uses the commands and the receiver.

package
{
 public class Client extends Sprite
 {
 // ...
 var whateverPauseable : IPauseable
 // ... rBtn is an instance of your ReusableButton
 rBtn.exitCommand = new PauseCommand(whateverPauseable);
 rBtn.hoverCommand = new ResumeCommand(whateverPauseable);
 }
}

As you can see, you pass in the whateverPauseable instance of IPauseable. This may be an
ExtendedSound, an ExtendedMovieClip, or even an ExtendedMovieClipAndSound. The concept that it can be
anything is the source of the command’s power. Without having to bind your ReusableButton to a specific
object that may change, you can increase the longevity of your button in an ever-changing field.

FAQ
• Can reusable buttons be coupled to IPauseable instances?

In this example yes, because you don’t add excessive logic in the concrete commands that wrap
the IPauseable. But imagine if the instance that was being passed in wasn’t intended to pause and
resume on rollover, but rather to adjust the tint of a sprite.

Suggesting that this behavior pauses and resumes would confuse any developer. Instead, you’d
construct more commands in a similar fashion, continuing to reuse ReusableButton.

BEHAVIORAL PATTERNS

221

• Is a command limited to exposing only the ICommand interface?

No, but creating too many varying interfaces for specific commands will slowly bring
ReusableButton back to reusability, similar to that of SoundButton. The more specific the command
interfaces, the more bound to a specific type your code becomes.

Rather than use a MOUSE_OVER command and a MOUSE_OUT command, you can enable your
command to understand a Boolean value passed in to the execute method. A parameter of True
resumes the clip, and False pauses it.

Related Patterns
The following patterns are related to the Command pattern:

• Template Method

• Chain of Responsibility

• Adapter

• Memento

The Chain of Responsibility Pattern
The Chain of Responsibility pattern lets you forward a request to any number of successors required to
fulfill the request. Figure 7-4 shows the class diagram.

Figure 7-4. Chain of Responsibility pattern class diagram

This pattern has the following parts:

• Abstract handler

• Concrete handler

CHAPTER 7

222

• Null handler

• Client

The pattern’s benefits are as follows:

• Enables any number of receivers to respond to a request

• Lets you arrange the order dynamically or statically

• Allows a chain to connect parallel receivers in series, unlike events

• Decouples the messenger from the receiver(s) that handle the request

And it has these drawbacks:

• A message may go unhandled, depending on the assembly and the parameter being

forwarded.

• Appropriate termination is required.

A Comprehensive Look
The Chain of Responsibility pattern links like-typed objects together to relay a message from the client to
each successor in the chain. This decouples the message client from the receiving element meant to
handle the request.

The client possesses no knowledge of who the recipient will be once the message is dispatched. Any
number of receivers may choose to handle the request, but there is an expected handler. This receiver is
said to be an implicit receiver, because it exists and will receive the message (but only the receiver knows
this).

Developers who are familiar with the AS 3.0 event system should be aware of this concept. AS 3.0 passes
around events without knowing who will receive the request. Handling the request may or may not prevent
further forwarding, as also required in the Chain of Responsibility pattern.

Unlike in the AS 3.0 event system, the Chain of Responsibility pattern lets you manipulate the order of the
handlers, as well as the handlers responsible in a chain. The client initiates the message to the first
handler in the chain. From there, the concrete handlers may or may not choose to handle the request but
are expected to forward it further along the chain.

In order to prevent the messaging from continuing, a Null handler must be used, to not only prevent the
request from being passed to an undefined successor, but also ensure the chain isn’t infinite. The Null
handler caps the end of the chain to signify the end not only to the application but also to the developer.

The client remains unaware whether the request was handled, and if so by which handler. This provides a
high degree of flexibility among the various handlers in the chain.

Vignette
Children often play clever games, and one of them is very reminiscent of the Chain of Responsibility
pattern. The game has a few names, such as Operator, Grapevine, and Telephone. The goal of the game
is to pass a message to the next player (the player’s immediate neighbor), and so on, until the message
has been passed from the first receiver of the message to the last available player.

BEHAVIORAL PATTERNS

223

The roles of the players are exactly like those in Chain of Responsibility. The player at the beginning of the
line initiates messaging in the chain and injects the necessary data. Each player in the line acts as a
receiver and may optionally handle the message but will absolutely forward the request.

As the message travels, each player forwards the message they received to the next player. Because
children love to fabricate (some more than others), they may choose to alter the message. Not every
player will distort the message: some will forward the message as received, thus abstracting the details of
which player in the sequence was responsible for what.

The game concludes when the final receiver is reached and the message is compared to the original.
Although this isn’t expected in the Chain of Responsibility pattern, it demonstrates that the messenger is
unaware of what the receivers do with the message.

The AS 3.0 Cast
In AS 3.0, the Chain of Responsibility pattern’s parts are as follows:

• Abstract handler: Defines the interface that all handlers possess and supplies default

behaviors that are common among its subclasses. The abstract handler may or may not,

depending on its implementation, possess a reference of the successor.

• Concrete handler: Has the option to handle the request or continue to propagate it further

down the chain.

• Null handler: Provides a fail-safe link. When dealing with the Chain of Responsibility pattern,

one of the possible drawbacks is that the sequence must come to an end. If this isn’t properly

implemented, an error may occur. Using the Null handler is useful to implement the

appropriate end to the request so a concrete handler that happens to be the last in the line

doesn’t require unnecessary logic.

• Client: Initiates the message and passes it to the first link in the chain. The client has

knowledge of the interface to the abstract handlers.

When It’s Useful
The Chain of Responsibility pattern is useful in the following cases:

• When there may be multiple receivers that can optionally handle the same request

• When you’re creating an event system

• To inject data among a series of objects

Example
Depending on a scenario, you can bubble events and potentially use this approach to decouple objects.
But bubbling events can only go so far. Consider the scenario shown in Figure 7-5.

Figure 7-5. The display list and its contents

CHAPTER 7

224

In Figure 7-5, two sprites reside in parallel in the root of an application. One of those sprites contains a
nested sprite, childSprite_A. As a member of the flash.display.Sprite hierarchy, childSprite_A can
potentially dispatch a MouseEvent when the mouse rolls into the clip’s boundaries. For brevity, this example
doesn’t go into the three phases of the event; you only look at the bubbling phase.

As the event is dispatched, much as in the chain of command, it continues to propagate until one of the
handlers prevents it from continuing. Because MouseEvents can’t be cancelled, Stage acts as the
terminating link; but on the way to Stage, the event passes through Sprite_A and MainTimeline.

Suppose Sprite_B needs to know if an event is dispatched to childSprite_A. Sprite_B can put the
DocumentClass (MainTimeline) in the position of intercepting the propagation. Listing 7-24 shows
DocumentClass.

Listing 7-24. DocumentClass

package
{
 public class DocumentClass extends MovieClip
 {
 const SquareSpriteWidth : int = 58;
 const SquareSpriteHeight : int = 58;

 public function DocumentClass()
 {
 var sprite_A : Sprite = new CSprite();
 sprite_A.name = 'sprite_A';

 var sprite_B : Sprite = new CSprite();
 sprite_B.name = 'sprite_B';
 sprite_B.y = SquareSpriteHeight;

 var child_A : Sprite = new CSprite();
 child_A.name = 'childSprite_A';
 child_A.x = SquareSpriteWidth

 addChild(sprite_B);
 addChild(sprite_A);
 sprite_A.addChild(child_A);

 addEventListener(MouseEvent.MOUSE_OVER , onHover);
 }

 private function onHover(me : MouseEvent) : void
 {
 sprite_B.someMethod();
 }

BEHAVIORAL PATTERNS

225

 }
}

The code in Listing 7-24 demonstrates how a concrete class can listen for an event, and defer the
handling to an object that wasn’t initially part of the propagation chain. Although this approach is effective,
the concrete class requires specifics that don’t pertain to it. This decreases the cohesive quality of your
class, and spreads code that should be localized.

The Chain of Responsibility pattern lets you achieve this level of localization by appending any number of
objects to a chain. To do so, you need a uniform way for Sprite_B to be a part of the chain as a handler.
This will rid DocumentClass of any unnecessary handling.

Further tapping into the built-in event system doesn’t achieve the desired behavior, because you have no
way to modify the event chain without using Sprite_B as the DisplayObjectContainer of Sprite_A. This
means you need to add an additional event listener to childSprite_A, allowing it to become a client of the
message in a new chain (see Listing 7-25 through 7-29).

Listing 7-25. IEventHandler

package
{
 public interface IEventHandler
 {
 function addHandler(IEventHandler) : void;

 function forwardEvent(event : Event) : void;
 }
}

Listing 7-26. AbstractEventHandlerSprite implements IEventHandler.

package
{
 public class AbstractEventHandlerSprite extends Sprite implements IEventHandler
 {
 private var _eventHandler : IEventHandler;
 static protected const WIDTH : int = 58;
 static protected const HEIGHT : int = 58;

 public function AbstractEventHandlerSprite()
 {
 this.graphics.lineStyle(1 , 0xFFFFFF , 1)
 this.graphics.beginFill(0x000000);
 this.graphics.drawRect(0 , 0 , WIDTH , HEIGHT)
 }

 final public function addHandler(eventHandler : IEventHandler) : void
 {

CHAPTER 7

226

 doAddHandler(eventHandler);
 }

 final public function forwardEvent(event : Event) : void
 {
 doHandleEvent(event);
 doForwardEvent(event);
 }

 protected function doAddHandler(eventHandler : IEventHandler) : void
 {
 _eventHandler = eventHandler;
 trace(eventHandler + ' added');
 }

 protected function doHandleEvent(event : Event) : void
 {
 throw new IllegalOperationError('doHandleEvent must be overridden');
 }

 protected function doForwardEvent(event : Event) : void
 {
 _eventHandler.forwardEvent(event);
 }

 public function get wide() : Number
 {
 return WIDTH;
 }

 public function get tall() : Number
 {
 return HEIGHT;
 }
 }
}

Listing 7-27. HandlerSprite is a successor of InitiatorSprite.

package
{
 public class HandlerSprite extends AbstractEventHandlerSprite
 {
 public function HandlerSprite()
 {

BEHAVIORAL PATTERNS

227

 super();
 }

 override protected function doHandleEvent(event : Event) : void
 {
 trace(this.name + ' I received the doHandleEvent');
 }
 }
}

Listing 7-28. InitiatorSprite initiates the message.

package
{
 public class InitiatorSprite extends HandlerSprite
 {
 public function InitiatorSprite()
 {
 super();
 addEventListener(MouseEvent.MOUSE_OVER , onHover , false , 0 , true);
 }

 private function onHover(me : MouseEvent) : void
 {
 this.forwardEvent(me);
 }
 }
}

Listing 7-29. DocumentClass initiates the Handlers and devises their order of succession.

package
{
 public class DocumentClass extends Sprite
 {
 public function DocumentClass()
 {
 var sprite_A : Sprite = new HandlerSprite();
 sprite_A.name = 'sprite_A';

 var sprite_B : AbstractEventHandlerSprite = new HandlerSprite();
 sprite_B.name = 'sprite_B';
 sprite_B.y = sprite_B.tall;

 var child_A : AbstractEventHandlerSprite = new InitiatorSprite();
 child_A.name = 'childSprite_A';

CHAPTER 7

228

 child_A.x = child_A.wide

 addChild(sprite_B);
 addChild(sprite_A);
 sprite_A.addChild(DisplayObject(child_A));

 child_A.addHandler(sprite_B);
 // pass sprite_B as the successor of child_A
 }
 }
}

Currently, when you run this application it appears to work, but it suddenly breaks when you move the
mouse over the nested child. This happens because the forwardEvent method is targeted on Sprite_B,
which doesn’t have a successor. You could add information in the AbstractEventHandler, but I find it’s
easier to follow a chain when a physical object marks the end. This object is the Null handler (see Listing
7-30 and Listing 7-31)). This object’s sole purpose is to prevent your loop from failing, and it’s never
added to Stage, so it’s appropriate that its type is that of Object.

Listing 7-30. NullHandler reveals the end of the chain. The addition of the NullHandles ensures no
conditional statements must be added in order to know when to stop the message from being forwarded.

package
{
 public class NullHandler extends Object implements IEventHandler
 {
 public function NullHandler()
 {
 }

 final public function addHandler(handler : IEventHandler) : void
 {
 return;
 }

 final public function forwardEvent(event : Event) : void
 {
 trace('end of the chain');
 return;
 }
 }
}

Listing 7-31. DocumentClass from Listing 7-29 now makes use of the NullHandler instance

package
{

BEHAVIORAL PATTERNS

229

 public class DocumentClass extends Sprite
 {
 public function DocumentClass()
 {
 //
 child_A.addHandler(sprite_B);
 // pass sprite_B as the successor of child_A;
 sprite_B.addHandler(new NullHandler);
 // pass NullHandler as the successor of sprite_B;

 // .. running process traces:
 // childSprite_A I received the doHandleEvent
 // sprite_B I received the doHandleEvent
 // end of the chain
 }
 }
}

FAQ
• Why do you extend a sprite and implement IEventHandler to form AbstractEventHandlerSprite

rather than implement IEventHandler into both HandlerSprite and InitiatorSprite?

The main reason is to establish a class that holds the default code. This reduces the amount of
code that must be manually written each time you create a flash.display.Sprite handler. I stress
Sprite, because you only use Sprite. The reason to use IEventHandler is given next.

• How can you add a MovieClip as an IEventHandler?

Because this example only uses sprites, you must assume that after doing your due diligence of
OOA and OOD, this application is only intended for sprites. Therefore the code is as simple as
necessary for this application.

When you introduce another handler type from a hierarchy other than sprites, you have two
options, but only one of them uses design patterns and OOP.

First, you can copy and paste the current AbstractEventHandlerSprite code into a new
AbstractEventHandlerMovieClip class. You must make sure you add the IEventHandler
Implementation so your MovieClip and Sprite can be interchangeable to the IEventHandler
interface.

Second, the OOP and design patterns solution uses the Strategy pattern. You must refactor the
code and create a new interface for the abstract classes, but some work is necessary.

Related Patterns
The Composite pattern is related to the Chain of Responsibility pattern.

CHAPTER 7

230

The Iterator Pattern
The Iterator pattern provides sequential access to elements in an aggregate without knowing how the
elements are structured. Figure 7-6 shows the class diagram.

Figure 7-6. Iterator pattern class diagram

This pattern has the following parts:

• Abstract iterator

• Concrete iterator

• Abstract aggregate

• Concrete aggregate

• Client

The pattern’s benefits are as follows:

• Makes elements of a collection accessible to any number of clients

• Separates maintaining a collection from the objects that require the elements

A Comprehensive Look
You want to store objects in list formation, but as it has been mentioned, classes shouldn’t be exposed to
information that doesn’t pertain to them. Therefore, when you think of lists that contain sets of information,
you need to consider them in the context of reducing unnecessary information. Think of how you can use
them, but decrease what isn’t needed.

AS 3.0 provides various lists through the use of arrays, vectors, objects, and dictionaries. When you try to
acquire the elements of an array, the array is often used along with a loop, which should be a localized
behavior to the collection. This gives a class that wants to use the elements the freedom to create the logic

BEHAVIORAL PATTERNS

231

required to obtain said element. This logic, which retrieves the appropriate element, is the behavior of the
object known as an iterator.

The iterator’s responsibility is to maintain the current aggregate and process its successor. There are two
types of iterators: internal and external. You can give the internal iterator an algorithm that it applies to
every element. The external iterator enables a higher level of control by exposing its interface in such a
way that the client can traverse the aggregate. Both have potential benefits and drawbacks. The iterator
must ensure that any modification to the aggregate doesn’t negatively impact operations currently
traversing the collection.

An example of a collection is the following:

var array : Array= [1 , 2 , 3 , 4 , 5]

ActionScript 3.0 provides the internal iterator via for...each...in , every , some , and map loops, as
shown in Listing 7-32 and Listing 7-33.

Listing 7-32. Internal iterator encapsulating the traverse logic from the client

var originalArray : Array= [1 , 2 , 3 , 4 , 5];

for each(var integer : int in originalArray)
{
 trace(integer);
}

//... 1
//... 2
//... 3
//... 4
//... 5

Listing 7-33. Internal iterator traversing a collection and applying an algorithm to each element

//...
var array : Array = [1 , 2 , 3 , 4 , 5];
 array.every(tracer);
//... cont

public function tracer(aggregate : int , index : int , collection : Array) : Boolean
{
 trace(aggregate);
 return true;
}

//... 1
//... 2
//... 3

CHAPTER 7

232

//... 4
//... 5

Although ActionScript is kind enough to provide the internal iterator, it fails to offer an external iterator.
Internal Iterators conceal the operations required to traverse the elements of the collection, but they don’t
let you manually control the traversing. In other words, the iterator traverses all elements in an aggregate
without you being able to control the incrementing of the index.

Vignette
An old-fashioned jukebox offers numerous songs that can be played for money. These days, updated
jukeboxes are designed to give the nostalgic feeling of an old-time jukebox, making it difficult to distinguish
an older model from a newer one. If you’ve never peered inside a jukebox, you may be unaware of how
one works. Does it contain records, MP3s, CDs, or HDDs? You don’t know because the workings of the
machine aren’t the point—you want the music.

To you, it makes no difference how the jukebox plays, only that it does play. Unfortunately, you did not
participate in the collection of songs the jukebox contains. However, you can conveniently move forward
and backward through the collection the jukebox supplies. This way, you can work with the presented
information as you see fit.

The AS 3.0 Cast
In AS 3.0, the Iterator pattern’s parts are as follows:

• Abstract iterator: Exposes the interface used by the concrete iterator that is necessary for

traversing each aggregate

• Concrete iterator: Knows the current position in the aggregate’s traversal and creates the

implementations for achieving the intended behavior of the exposed interface

• Abstract aggregate: Defines the interface for maintaining a collection and provides the factory

method that manufactures an iterator

• Concrete aggregate: Implements the specific details required of the aggregate interface

• Client: Can be any aspect of the application or system that works with the aggregate to either

maintain a collection or obtain the iterator it can traverse

When It’s Useful
The Iterator pattern is useful when you want to do the following:

• Enable a collection to be traversed simultaneously

• Reveal the content of any aggregate in a uniform manner

Example
To create an external iterator, you must provide an interface that a client can use to access the current and
next aggregate. The typical iterator interface exposes the ability to see if the end of the collection has been
reached, the ability to retrieve the successor of the current element, the ability to reset the position, and
the ability to retrieve the current element. You can bundle these four methods into one exposed method,

BEHAVIORAL PATTERNS

233

but I prefer to use all four. These methods are shown in Listing 7-34 and form the minimal behavior of
the iterator. You can create more specialized versions that can iterate in the reverse direction, or even
enable a carousel of elements with no identifiable end.

Listing 7-34. Typical iterator interface

package
{
 public interface IIterator
 {
 function next() : void;

 function hasNext() : Boolean

 function reset() : void

 function currentItem() : *
 }
}

The collection itself, requires the appropriate interface to add and remove elements, as well as reveal the
length of the the collection. The inteface for the Aggregate is labeled IAggregate as depicted in Listing
7-35

Listing 7-35. Interface of the collection

package
{
 public interface IAggregate
 {
 function count() : int;

 function append(item : *) : Boolean;

 function remove(item : *) : Boolean;
 }
}

Lastly, a collection possesses the factory method to return it’s current aggregate as an Iterator to be
traversed. Listing 7-36 reveals the IIterate interface which makes use of the current IAgregate interface.

Listing 7-36. Interface of a factory method for the collection

package
{
 public interface IIterate extends IAggregate

CHAPTER 7

234

 {
 function createIterator(string : String = null) : IIterator;
 }
}

Now that you have the interfaces, you must create the abstractions to which you can add your default
behaviors and abstract methods, and finally provide your abstract class with commonalities required by
your collections.

Because AS 3.0 provides various ways to use collections—vectors, arrays, and so on—you must ensure
that your concrete iterators, and any abstract collection, take this into account. To do so, you construct an
abstract collection that an additional layer of abstract classes will subclass. These subclasses are specific
to the collections you use (see Listing 7-37 through 7-39).

Listing 7-37. Abstract collection

package
{
 public class AbstractCollection implements IIterate
 {
 protected var _iterator : IIterator

 public function AbstractCollection()
 {
 }

 final public function count() : int
 {
 return doCount();
 }

 final public function append(element : *) : Boolean
 {
 return doAppend(element);
 }

 final public function remove(element : *) : Boolean
 {
 return doRemove(element);
 }

 final public function createIterator(string : String = null) : IIterator
 {
 return doCreateIterator(string);
 }

BEHAVIORAL PATTERNS

235

 protected function doCount() : int
 {
 throw new IllegalOperationError(' doCount must be overridden');
 return 0;
 }

 protected function doAppend(element : *) : Boolean
 {
 throw new IllegalOperationError(' doAppend must be overridden');
 return false;
 }

 protected function doRemove(element : *) : Boolean
 {
 throw new IllegalOperationError(' doRemove must be overridden');
 return false;
 }

 protected function doCreateIterator(string : String) : IIterator
 {
 return null;
 }
 }
}

Listing 7-38. Abstract Iterator

package
{
 public class AbstractIterator extends Object implements IIterator
 {
 protected var _cursor : int = 0;

 final public function next() : void
 {
 doNext();
 }

 final public function hasNext() : Boolean
 {
 return doHasNext();
 }

 final public function reset() : void
 {

CHAPTER 7

236

 doReset();
 }

 final public function currentElement() : *
 {
 return doCurrentElement();
 }

 protected function doNext() : void
 {
 throw new IllegalOperationError('doNext must be overridden ');
 }

 protected function doHasNext() : Boolean
 {
 throw new IllegalOperationError('doHasNext must be overridden ');
 return false;
 }

 protected function doReset() : void
 {
 throw new IllegalOperationError('doReset must be overridden ');
 }

 protected function doCurrentElement() : *
 {
 throw new IllegalOperationError('doCurrentElement must be overridden ');
 return null;
 }
 }
}

Listing 7-39. Abstract array collection that all subclasses that use an array can extend

package
{
 public class AbstractArrayCollection extends AbstractCollection
 {
 protected var _collection : Array;

 public function AbstractArrayCollection()
 {
 super();
 _collection = new Array();
 }

BEHAVIORAL PATTERNS

237

 public function each(func : Function) : void
 {
 var tmpIt : IIterator = doCreateIterator(null);
 var _count : int = 0;
 do
 {
 func.call(this , tmpIt.currentElement() , _count , _collection);
 tmpIt.next();
 _count++
 }
 while (tmpIt.hasNext());
 }

 override protected function doCount() : int
 {
 return _collection.length;
 }

 override protected function doAppend(element : *) : Boolean
 {
 _collection[_collection.length] = element;
 return true;
 }

 override protected function doRemove(element : *) : Boolean
 {
 return false;
 }

 override protected function doCreateIterator(string : String) : IIterator
 {
 throw new IllegalOperationError(' doCreateIterator must be overridden');
 }
 }
}

Now that you have the abstract class for arrays defined, you can use your concretes to use the array
collections and return a specific iterator that the collection requires by overriding your factory method.

Next you need to extend the abstract iterator to one that is solely focused on arrays as being the collection
to iterate. Let’s call this iterator ArrayIterator (see Listings 7-40 through 7-43).

CHAPTER 7

238

Listing 7-40. ArrayIterator subclasses AbstractIterator to use arrays

package
{
 public class ArrayIterator extends AbstractIterator
 {
 protected var _collection : Array;

 public function ArrayIterator(collection : Array)
 {
 _collection = collection;
 }

 override protected function doNext() : void
 {
 _cursor++;
 }

 override protected function doHasNext() : Boolean
 {
 return _cursor < _collection.length;
 }

 override protected function doReset() : void
 {
 _cursor = 0;
 }

 override protected function doCurrentElement() : *
 {
 return _collection[_cursor];
 }
 }
}

Listing 7-41. Concrete ArrayCollection overriding the factory method to return an array iterator

package
{
 public class ArrayCollection extends AbstractArrayCollection
 {
 public function ArrayCollection()
 {
 super();
 }

BEHAVIORAL PATTERNS

239

 override protected function doCreateIterator(string : String) : IIterator
 {
 return new ArrayIterator(_collection);
 }
 }
}

Listing 7-42. The DocumentClass demonstrates the use of internal and external iteration of elements
within the ArrayCollection

package
{
 public class DocumentClass extends Sprite
 {
 public function DocumentClass()
 {
 var arrayCollection : AbstractArrayCollection = new ArrayCollection();
 arrayCollection.append(1);
 arrayCollection.append(2);
 arrayCollection.append(3);
 arrayCollection.append(4);
 arrayCollection.append(5);

 var it : IIterator = arrayCollection.createIterator();

 do
 {
 trace(it.currentElement());
 it.next();
 }
 while (it.hasNext());

 arrayCollection.each(test);
 }

 function test(element : int , index : int , arrayCollection : Array) : Boolean
 {
 trace(element , index , arrayCollection);
 return true;
 }
 }
}

CHAPTER 7

240

Listing 7-43. The Iterated results from Listing 7-42

//... The above code traces out the following.
 //Utilizing your External Iterator
//... 1
//... 2
//... 3
//... 4
//... 5
 //Utilizing your ArrayCollection Internal Iterator and passed function Test
//... 1 0 1,2,3,4,5
//... 2 1 1,2,3,4,5
//... 3 2 1,2,3,4,5
//... 4 3 1,2,3,4,5
//... 5 4 1,2,3,4,5

In AS 3.0, there are built-in collections from which a user can choose, and it may be easier for other
developers to use these instead of your new array collection—especially if they’re unfamiliar with the
ArrayCollection class. The good thing about separating the iterator from the collection is that having
created your ArrayIterator, you can use it along with any built-in AS 3.0 collection by instantiating a new
iterator and passing in its appropriate collection (see Listing 7-44).

Listing 7-44. Built-in AS 3.0 array, traversed by instantiating ArrayIterator within the constructor of
DocumentClass

public function DocumentClass()
{
 var ar : Array = [1 , 2 , 3 , 4 , 5 , 6];

 var itr : IIterator = new ArrayIterator(ar);
 do
 {
 trace(itr.currentElement() + ' via AS3.0 Array ');
 itr.next();
 }
 while (itr.hasNext());
}

//... traces
//... 1 via AS3.0 Array
//... 2 via AS3.0 Array
//... 3 via AS3.0 Array
//... 4 via AS3.0 Array
//... 5 via AS3.0 Array
//... 6 via AS3.0 Array

BEHAVIORAL PATTERNS

241

FAQ
• Which object is supposed to possess the algorithm, in Listing 7-33, that is to be used with the

internal iterator?

The answer lies in the question. The algorithm is a strategy that can be instantiated and used by
the internal iterator. This lets you reuse the algorithm with other internal iterators, and allows the
strategy to relieve the client and/or the collection from knowing such specifics.

Related Patterns
The Iterator pattern is related to the following patterns:

• Composite

• Factory Method

• Memento

The State Pattern
The State pattern lets you change an object’s behavior to reflect a change in its state. Figure 7-7 shows
the class diagram.

Figure 7-7. State pattern class diagram

This pattern has the following parts:

• Abstract context

• Abstract state

• Concrete state

• Client

CHAPTER 7

242

The pattern’s benefits are as follows:

• Localizes operations

• Maximizes cohesion

• Reduces if...else... dependencies

And it has these drawbacks:

• The localization of state specifics causes delocalization among behaviors.

• The pattern requires additional classes.

A Comprehensive Look
A state is a specific variable that can possess a value in a program. This value can be simple and appear
insignificant, yet any change to it can determine the operation of a behavior in context.

Consider the effect of destroying a Loader instance in AS 3.0. The means by which you attempt to rid the
system of this instance will vary depending on if the Loader has been used or is currently in use. Consider
the destroyLoader method shown in Listing 7-45.

Listing 7-45. A typical way to destroy a built-in Loader

protected function destroyLoader() : void
{
 loader.contentLoaderInfo.removeEventListener(Event.OPEN , handleOpen)
 loader.contentLoaderInfo.removeEventListener(Event.INIT , handleInit)
 loader.contentLoaderInfo.removeEventListener(Event.COMPLETE , handleLoadComplete);
 loader.contentLoaderInfo.removeEventListener(IOErrorEvent.IO_ERROR , Â
 handleLoadIError);
 if (isLoaded)
 {
 loader.unloadAndStop();
 }
 else
 {
 loader.close();
 loader.unloadAndStop();
 }

 loader = null;
}

As you can see, you destroy the Loader instance with the aid of a conditional statement. You determine if
the Loader is currently loading something, and, if so, you’re required to close the Loader before you
remove any reference to it. This is a pain.

Unfortunately, the Loader class can’t close and unload itself without the client specifying the condition. This
reduces the cohesion of the client and unnecessarily increases the number of lines of code. The issue in

BEHAVIORAL PATTERNS

243

the case of the Loader is the lack of change among its behaviors’ functionality; the behaviors are state
dependent, as demonstrated in Listing 7-45. This is where the State pattern offers a solution.

The State pattern localizes appropriate behaviors in their own encapsulations that implement the
appropriate operations of the given state, thereby reducing the complexities of the messaged object that
the client doesn’t need to know about. This pattern uses two components: a state object and the context
object.

Because the client remains unaware of the state-dependent behaviors of the object it’s messaging, the
messaged object must ensure that the appropriate behaviors reflect the context’s state. The context
defines the interface the client uses, and each request is delegated to an encapsulated behavior known as
the state object. A finite number of state objects represent all possible states of the context. In the Loader
example, the states are Loader.LOADED, Loader.LOADING, and Loader.BARREN.

You have three states, which means you need to create three state objects. All of these states make
implementations of the interface, but it’s mandatory that their behaviors reflect their state. In order to make
them interchangeable and uniform, they stem from an abstraction, which lets the context use the
appropriate implementation at runtime.

What determines the transitions among the states depends entirely on the application. If the application is
linear, the context can create the appropriate logic. If it’s more dynamic and varies at runtime, then you
have more flexibility to allow each state to enable the appropriate transition. (Here, transition refers to the
swapping of state objects; don’t confuse it with animation.)

To enable a state object to trigger the succession of states, it can optionally contain a reference to the
context object. If the state object defines the transition’s successor, the state requires the context to
expose an additional interface that it can use. This allows state-specific operations to transition to an
appropriate state when required. In the Loader example, you have a transition from a loading state to a
loaded state when the image loading has completed.

Vignette
Human emotions often vary without rhyme or reason. Although external factors can influence a response,
no one can predict the resulting behavior. Each person is different, so even if the stimulus remains
constant, the internal changes are often specific to the subject.

A person’s state may not be known, but their behavior and mood reflect their current state of mind. Happy,
sad, and angry moods can be recognized by the behaviors you exhibit.

Of course, even if your moods vary, others can still recognize you and will continue to interact with you as
they always have. This will just get a different response when they do.

The AS 3.0 Cast
In AS 3.0, the State pattern’s parts are as follows:

• Abstract state: Exposes the interface that the state objects inherit.

• Concrete state: Implements the behaviors of the interface that reflect the state appropriately.

• Abstract context: Exposes the interface that clients message, and in turn delegates requests to

the appropriate state object.

CHAPTER 7

244

• Concrete context: Implements the specifics of the logic that states may transition. It also may

contain the factory method that manufactures the appropriate state object.

• Client: Any aspect of the application or system that works with the abstract context. It’s

unaware of the state objects because it never works with them directly.

When It’s Useful
The State pattern is useful in these situations:

• To reduce nested conditional statements that reflect a state

• To localize behavior specific to a state

Example
Suppose you’re creating a simple calculator application whose state can be addition, subtraction,
multiplication, or division. The calculator’s state is set by the client. (It would be wise to use a model in this
case, because the entire application is the calculator; but for brevity, this example uses the client.)

The mode the user chooses adjusts the state of the context. First you need to define the interface of the
calculator context. As always, the abstract class contains any default or necessary references used by the
subclass. You call this abstract class AbstractCalculatorContext (see Listing 7-46).

Listing 7-46. AbstractCalculatorContext defines the abstract operations.

package
{
 public class AbstractCalculatorContext
 {
 protected var _state : AbstractStateObject;

 public function AbstractCalculatorContext()
 {
 }

 final public function addition() : void
 {
 doAddition();
 }

 final public function subtraction() : void
 {
 dosubtraction();
 }

 final public function division() : void
 {
 doDivision();

BEHAVIORAL PATTERNS

245

 }

 final public function multiplication() : void
 {
 doMultiplication();
 }

 final public function setDilineatedValues(values : Vector.<Number>) : void
 {
 doSetDilineatedValues(values);
 }

 protected function doAddition() : void
 {
 throw new IllegalOperationError('doAddition must be overridden');
 }

 protected function dosubtraction() : void
 {
 throw new IllegalOperationError('dosubtraction must be overridden');
 }

 protected function doDivision() : void
 {
 throw new IllegalOperationError('doDivision must be overridden');
 }

 protected function doMultiplication() : void
 {
 throw new IllegalOperationError('doMultiplication must be overridden');
 }

 protected function doSetDilineatedValues(values : Vector.<Number>) : void
 {
 throw new IllegalOperationError('doSetDilineatedValues must be overridden')
 }
 }
}

In order to make the behaviors uniform, you also need to create an abstract state object that defines the
interface used by its subclasses. This abstract class is also known by the calculator abstract class, which
is called AbstractStateObject. (see Listing 7-47).

CHAPTER 7

246

Listing 7-47. AbstractStateObject declares a single abstract method as its interface.

package
{
 public class AbstractStateObject
 {
 public function calculate(values : Vector.<Number>) : void
 {
 throw new IllegalOperationError('calculate must be overridden');
 }
 }
}

As shown in the listing, the calculate interface accepts any number of values, which are acted on by the
appropriate subclass calculations.

Because the user chooses the successor, and not the states themselves, you know it’s a fixed transition,
and the successor can be chosen by the context to determine which calculation to use for the state. This is
shown in Listing 7-48, where the concrete context instantiates the appropriate state object.

Listing 7-48. Calculator context declares succeeding transitions

package
{
 public class CalculatorContext extends AbstractCalculatorContext
 {
 public function CalculatorContext()
 {
 }

 override protected function doAddition() : void
 {
 this._state = new AdditionState();
 }

 override protected function dosubtraction() : void
 {
 this._state = new SubtractionState();
 }

 override protected function doDivision() : void
 {
 this._state = new DivisionState();
 }

 override protected function doMultiplication() : void

BEHAVIORAL PATTERNS

247

 {
 this._state = new MultiplicationState();
 }

 override protected function doSetDilineatedValues(values : Vector.<Number>)Â

 : void
 {
 this._state.calculate(values);
 }
 }
}

CalculatorContext uses a finite number of state objects to adjust the behavior of the calculator. To
provide further flexibility, you can encapsulate the creation process using a factory method that returns the
appropriate AbstractStateObject (see Listing 7-49).

Listing 7-49. CalculatorContext with the declaration of the factory method

package
{
 public class CalculatorContext extends AbstractCalculatorContext
 {
 protected static const Addition_Mode : int = 0;
 protected static const Subtraction_Mode : int = 1;
 protected static const Multiplication_Mode : int = 2;
 protected static const Division_Mode : int = 3;

 public function CalculatorContext()
 {
 }

 override protected function doAddition() : void
 {
 this._state = doCreateAbstractStateObject(Addition_Mode);
 }

 override protected function doSubtraction() : void
 {
 this._state = doCreateAbstractStateObject(Subtraction_Mode);
 }

 override protected function doDivision() : void
 {
 this._state = doCreateAbstractStateObject(Division_Mode);
 }

CHAPTER 7

248

 override protected function doMultiplication() : void
 {
 this._state = doCreateAbstractStateObject(Multiplication_Mode);
 }

 override protected function doSetDilineatedValues(values : Vector.<Number>) Â

 : void
 {
 this._state.calculate(values);
 }

 protected function doCreateAbstractStateObject(EnumType : int) Â

 : AbstractStateObject
 {
 throw new IllegalOperationError('doFactoryMethod must be overridden');
 return null;
 }
 }
}

Listing 7-50. Subclass CalculatorContextStateLogic applies the manufacturing logic.

package
{
 public class CalculatorContextStateLogic extends CalculatorContext
 {
 override protected function doCreateAbstractStateObject(EnumType : int) Â

 : AbstractStateObject
 {
 var product : AbstractStateObject;
 switch(EnumType)
 {
 case 0:
 product = new AdditionState();
 break;
 case 1:
 product = new SubtractionState();
 break;
 case 2:
 product = new MultiplicationState();
 break;
 case 3:
 product = new DivisionState();
 break;
 }

BEHAVIORAL PATTERNS

249

 return product;
 }
 }
}

All that remains is to implement the behaviors that reflect the appropriate state among the interfaces the
client can use. The implementation for the addition state is shown in Listing 7-51.

Listing 7-51. Addition state implementing its behavior in the calculator interface

package
{
 public class AdditionState extends AbstractStateObject
 {
 public function AdditionState()
 {
 }

 override public function calculate(values : Vector.<Number>) : void
 {
 var sum : Number = 0;
 for each (var number:Number in values);
 {
 sum += number;
 }
 trace(sum);
 }
 }
}

Because a change in state can alter the implementation of the behavior, the client doesn’t need to be
concerned with how the calculations are performed. This is handled by the state object that the context
delegates (see Listing 7-52).

Listing 7-52. The client uses the calculator object without worrying about what state it’s in.

package
{
 public class Client extends Sprite
 {
 public function Client()
 {
 var ti_92Plus : AbstractCalculatorContext = new CalculatorContextStateLogic()

 ti_92Plus.addition();
 ti_92Plus.setDilineatedValues(Vector.<Number>([2 , 2]));
 ti_92Plus.setDilineatedValues(Vector.<Number>([3 , 9]));

CHAPTER 7

250

 }
 }
}

FAQ
• Isn’t this pattern a lot like the Strategy pattern?

They appear similar at first glance because they both use varying implementations that are
encapsulated. They’re also interchangeable because they rely on polymorphic structures. The
main distinction between the two is the goal to achieve or the obstacle to overcome.

In the case of the State pattern, the goal is to allow context behaviors to vary and reflect the state
of the context. The Strategy pattern lets a client assign the appropriate context behavior without
modifying the state. The difference is the dependency between the state and behaviors.

Related Patterns
The State pattern is related to the Strategy pattern.

The Memento Pattern
The Memento pattern externalizes the internal state of an object for later state restoration. Figure 7-8
shows the class diagram.

Figure 7-8. Memento pattern class diagram

This pattern has the following parts:

• Memento

• Caretaker

• Originator

• Client

BEHAVIORAL PATTERNS

251

The pattern’s benefits are as follows:

• State reversion

• Increased cohesion

And it has these drawbacks:

• Memory consumption

• Additional classes

• Speed of object initialization, depending on how often mementos are initialized

A Comprehensive Look
Data hiding is a very important principle of OOP; it ensures that no object can change the state of an
object without the object’s consent. This allows the object to regulate its own states. For this reason, a
class may contain extraneous information that pertains to state maintenance, but that decreases the
cohesion among its behaviors. Sometimes an object requires help in concealing such information in order
to maintain its states.

This help is in the form of the memento. The memento externalizes the internal state of an object and
safeguards its contents from anything other than the originator. Otherwise, anything else would break the
principle of data hiding.

The memento can hold any state information the originator allows/requires, but only the originator can
supply and obtain the contents of the memento. Depending on the information held in the memento and on
the number of mementos in use, mementos can be costly in terms of memory; therefore mementos should
remain passive and be created only when necessary.

Mementos aren’t held in the originator because that would be similar to maintaining their mementos, which
is a similar burden. Rather than the originators retaining the memento, they pass the mementos to a
caretaker.

The caretaker retains mementos for safekeeping. It can only store mementos; it can’t view their contents. If
the originator’s state needs to be restored, it obtains the state from the caretaker. The caretaker invokes
the factory method, which prompts the creation of a memento from the originator; and it can do so more
than once if multiple states are required for the application. You can easily do this by using the Façade
pattern (see Chapter 8), or with The Observer Pattern (Discussed at the end of this chapter).

Additionally, a memento may contain incremental changes to create a history of the originator’s changes. If
such changes are linear and can be restored in the same order in the stack, then only the retained state
should be concerned with those changes, not the originator’s current state. This reduces the amount of
memory used.

Mementos can work well with the Command pattern, specifically commands that define both execute and
un-execute. In a scenario that uses such a command, the command may become the caretaker.

Vignette
You can use a string tied around your finger as a means of remembering something. The string signifies
that you need to remember—it doesn’t fulfill the task of stating what it is you have to remember.

CHAPTER 7

252

Everyday life requires focus that often drowns out other aspects of the world, resulting in the need to use
the string. But what is this string for? you may ask yourself, wishing someone could remind you.

The AS 3.0 Cast
In AS 3.0, the Memento pattern’s parts are as follows:

• Originator: Creates and uses a memento. The originator may be any class in the application

that needs to be able to revert its state. The originator implements the IMemento interface or

extends from an abstraction if possible, to expose the necessary interface for the caretaker.

Additionally, the originator must notify the caretaker when a memento is needed for state

reversion.

• Caretaker: Invokes the originator. The caretaker is the messenger of the originator that either

obtains or sets a memento for the originator. The caretaker depends on the originator,

because it has no way of knowing when the originator has updated its state. Additionally, the

caretaker must be informed by the application when restoration to a state is required.

• Memento: A black box. The memento must not reveal its contents to anything other than the

originator, because doing so breaches the concept of data hiding. The memento conceals its

interface either by using custom namespaces or by declaring its definition as internal.

• Client: The messenger of the originator. Well, not necessarily of the originator, but of the class

that implements the IMemento interface, making it an originator. Remember, the originator

doesn’t retain its own state, not because it can’t, but because it has other behaviors it needs to

perform. These behaviors continue to be messaged by the client, which as always can be any

aspect of the application or system. It also notifies the caretaker if a state must be reset or

supplied to the originator.

When It’s Useful
The Memento pattern is useful when an object’s state may need to be restored: user input, drawing
applications, forms, and so on.

Example
Most applications rely heavily on user interactions to engage and captivate an audience. Unlike our
applications (*cough*), humans have flaws and are likely to make mistakes that they want to undo. Rather
than expect your objects to maintain a change in their state, the objects set the changes aside for
safekeeping, until the object requires them back.

Have you ever had to complete a form online that called for you to enter a lot of text? The text fields in AS
3.0 are great for this type of behavior in an application, but they don’t allow the user to undo data entry,
short of using the backspace. The memento can supply this functionality (see Listing 7-53).

Listing 7-53. The IMemento interface defines a narrow interface to obtain and set a memento.

package
{

BEHAVIORAL PATTERNS

253

 public interface IMemento
 {
 function setMemento(memento : Memento) : void

 function makeMomento() : Memento
 }
}

The IMemento interface lets any object possess the interface required to externalize a state (see Listing
7-54 through Listing 7-59).

Listing 7-54. FormField implements IMemento to take advantage of resetting its state

package
{
 public class FormField extends TextField implements IMemento
 {
 use namespace originatorOnly
 public function FormField()

 {
 }

 public function setMemento(memento : Memento) : void
 {
 this.text = memento.string;
 this.setSelection(memento.cursor , memento.cursor);
 }

 final public function makeMemento() : Memento
 {
 var memento : Memento = doMakeMemento();
 memento.string = this.text;
 memento.cursor = this.caretIndex;
 return memento;
 }

 protected function doMakeMemento() : Memento
 {
 throw new IllegalOperationError('doMakeMomento must be overridden');

 return null;
 }
 }
}

CHAPTER 7

254

Listing 7-55. The originatorOnly namespace protects the memento interface from being used beyond
the originator.

package
{
 internal namespace originatorOnly
 {
 }
}

Listing 7-56. The originator is a subclass of FormField and implements the factory logic.

package
{
 public class Originator extends FormField
 {
 use namespace originatorOnly;
 public function Originator()
 {
 super();
 }

 override protected function doMakeMemento() : Memento
 {
 var memento : Memento = new Memento();
 return memento;
 }
 }
}

Listing 7-57. The Memento object should be as minimal as possible, because the bytes add up.

package
{
 public class Memento extends Object
 {
 private var _string : String;
 private var _cursor : int;

 public function Memento()
 {
 trace(getSize(this) + ' bytes');
 }

 originatorOnly function get string() : String
 {

BEHAVIORAL PATTERNS

255

 return _string;
 }

 originatorOnly function set string(str : String) : void
 {
 _string = str;
 }

 originatorOnly function get cursor() : int
 {
 return _cursor;
 }

 originatorOnly function set cursor(cursor : int) : void
 {
 _cursor = cursor;
 }
 }
}

Listing 7-58. The caretaker creates the logic to determine when a new state snapshot is required.

package
{
 public class Caretaker extends Sprite
 {
 public var _stack : Vector.<Memento>;
 private var _originator : Originator;
 private var _backSpaceMonitor : Array = [];

 public function Caretaker(orginator : Originator)
 {
 _originator = orginator;
 _originator.addEventListener(KeyboardEvent.KEY_DOWN , onKeyDown);
 _originator.addEventListener(KeyboardEvent.KEY_UP , onKeyUP);
 _stack = new Vector.<Memento>();
 }

 public function onKeyUP(event : KeyboardEvent) : void
 {
 if (!event.ctrlKey)
 {
 if (event.keyCode == Keyboard.BACKSPACE)
 {
 _backSpaceMonitor[_backSpaceMonitor.length] = true;

CHAPTER 7

256

 }
 if (_backSpaceMonitor.length > 1)
 {
 _backSpaceMonitor.shift();
 return;
 }
 else
 {
 addStack(_originator.makeMemento());
 }
 }
 }

 public function onKeyDown(event : KeyboardEvent) : void
 {
 if (event.ctrlKey && event.keyCode == Keyboard.Z)
 {
 _originator.setMemento(retrieveStack());
 }
 }

 private function addStack(memento : Memento) : void
 {
 _stack[_stack.length] = memento;
 }

 private function retrieveStack() : Memento
 {
 return _stack.pop();
 }
 }
}

Listing 7-59. DocumentClass initializes the originator and the caretaker.

package
{
 public class DocumentClass extends Sprite
 {
 var caretaker : Caretaker;
 var ff : FormField;

 public function DocumentClass()
 {
 stage.align = StageAlign.TOP_LEFT;

BEHAVIORAL PATTERNS

257

 stage.scaleMode = StageScaleMode.NO_SCALE;

 ff = new Originator();
 ff.width = 300;
 ff.height = 500;
 ff.type = TextFieldType.INPUT;
 ff.border = true;
 addChild(ff);

 caretaker = new Caretaker(Originator(ff));
 }
 }
}

In order not to pollute DocumentClass (or any class, for that matter) with listeners, you pass in the originator
to the Caretaker instance. This not only increases the cohesiveness of the containing class, but also
emphasizes that the caretaker must invoke the originator’s factory method to prevent the application from
seeing and possibly modifying the memento.

FAQ
• This example shows how you can retrieve a state when a user presses Ctrl+z, which makes sense

here because caretaker already listens for keypresses being dispatched from originator. But how

would a reset or undo in a drawing application force the caretaker to submit a saved state?

For the reason mentioned, the caretaker doesn’t expose an interface that will do this. If the ability
to reset or step backward is required, the caretaker can optionally implement this functionality to
be triggered by the application. This makes the caretaker dependent on the reset or undo button
as well.

• Does this example use the Façade pattern or the Observer pattern to retrieve the memento?

This question makes a nice transition, because Observer is the next pattern discussed. The
current example uses AS 3.0 event notification for simplification, which isn’t exactly the Observer
pattern, as you soon see.

Related Patterns
The Memento pattern is related to these patterns:

• Command

• Iterator

The Observer Pattern
The Observer pattern establishes a one-to-many type of relationship in which objects dependent on
information can subscribe to a source for direct notifications. Figure 7-9 shows the class diagram.

CHAPTER 7

258

Figure 7-9. Observer pattern class diagram

This pattern has the following parts:

• Abstract subject

• Concrete subject

• Abstract observer

• Concrete observer

• Client

The pattern’s benefits are as follows:

• Synchronizes state-dependent objects

• Uses a one-to-many relationships

• Lets subjects and observers also be observers and subjects

And it has these drawbacks:

• Object lookup speeds can affect performance.

• It may cause redundant notifications.

A Comprehensive Look
The Observer pattern lets an object that is dependent on the state of another object maintain
synchronization when there is a change in state. An object called an observer registers itself with an object
possessing a given state, for reasons known only to the observer. The object with which it’s registered is
known as the subject because it’s the subject whose state is being observed.

The subject not only exposes an interface, allowing observers access to its states, but also informs all of
its observers that a particular value has been updated. This allows the observers to retrieve the updated
information to reflect their own states.

The most important aspects of the Observer pattern are the interfaces of the subject and the observer.
These vary greatly on the extent to which you wish to implement them, and allow them to be dependent on

BEHAVIORAL PATTERNS

259

each other. The simplest subject interface is one that adds and removes an observer. The simplest
observer interface is one that can be notified. This requires the abstract classes of both observer and
subject to have the default behaviors to perform the duties of these interfaces. This couples the
relationship between the two objects.

The alternative is for the subject to declare an interface that allows observers to supply the intended state
to watch, and an interface that lets observers to un-watch all or particular aspects. The observer may also
let the subject be passed in, allowing state retrieval.

The means by which states are retrieved by observers is called a push and pull. The push and pull are two
individual behaviors that obtain data.

• During the push, the subject notifies observers and provides the values each observer

requires, pushing its details onto observers.

• During the pull behavior, the subject notifies the observers. It’s up to the observers to retrieve

the data, pulling it from the subject.

Both procedures have advantages and disadvantages. Pushing requires the subject to be aware of the
interfaces among its observers, but pushing can send information regarding an update of an aspect.
Pulling allows the subject to remain unaware of the dependent objects’ interfaces, but requires each
observer to be intelligent enough to figure out what may have changed.

Vignette
“If a tree falls in the woods and no one’s around, does it make a sound?” The answer, according to
harmonics (physics), is yes; but because no one is there, the sound waves aren’t interpreted, at least not
by human ears. You know the tree falling generates a sound, so perhaps the question should be, “If a tree
falls in the woods and no one’s around, how do you know the tree fell?”

Perhaps this is a question of existentialism, but it’s also the reason for newspapers. You can’t experience
every event firsthand; you need a source for information. Whether your interests are sports, stocks, the
daily funnies, or all of these, you can subscribe to updates.

You may subscribe to the paper out of necessity. Business, local, and weather information pertain to
information that can impact your life. Being a subscriber to these notifications helps you to behave
appropriately.

The benefit of the newspaper is its ability to spread information via a singular channel that can reach the
entire town that the local paper covers. The paper, combined with the media you subscribe to on a regular
basis, including TV and the Internet, demonstrates your need to remain updated and informed.

The AS 3.0 Cast
In AS 3.0, the Observer pattern’s parts are as follows:

• Subject: Implements ISubject. Subjects aren’t merely subjects, but rather are objects that

possess a state that another object needs. The interface inheritance makes a subject a

subject. The subject layers additional behaviors that notify dependent objects about state

manipulations.

CHAPTER 7

260

• Observer: Implements IObserver. Observers become observers by adopting and implementing

the IObserver interface. They may retain a reference to the subject for added control over the

means of obtaining state information from its subject.

• Change manager: Optional object that reduces the couplings among subjects and observers.

Push notifications mean the subject must have knowledge of the observer. Pull notifications

mean observers must have knowledge of the subject. A change manager acts as a mapping

between the two, preventing such couplings.

• Client: Messages subjects and observers. Both subjects and observers are objects with

behaviors of their own that don’t pertain to being a subject or an observer. It just so happens

that the two are dependent on each another. The client in the system continues to message

the two objects as if they were neither subjects nor observers.

When It’s Useful
The Observer pattern is useful when you’re doing the following:

• Devising a model

• Using multiple views to reflect a singular state

Example
AS 3.0 lets you use observers to monitor an aspect of a subject by using the EventDispatcher’s built-in
method addEventListener. The word event denotes an action that can manipulate a particular state. The
EventDispatcher uses the push method, so details of what has changed often appear in the notification.
You can optionally use the pull method by maintaining a reference to the subject that dispatched the
notification.

Twitter is the epitome of the Observer pattern, so this example attempts to simulate the act of following a
particular Twitter user. A subject changes its status at random intervals using Lorem Ipsum (placeholder
text) that is then broadcast to any status-dependent observers. See Listing 7-60 through Listing 7-64.

Listing 7-60. ISubject interface that enables observers to be added to and removed from the subject

package
{
 public interface ISubject
 {
 function addObserver(observer : IObserve , aspect : Function) : Boolean

 function removeObserver(observer : IObserve) : Boolean
 }
}

Listing 7-61. IObserve interface defining an operation to be notified

package
{

BEHAVIORAL PATTERNS

261

 public interface IObserve
 {
 function notify(str : String) : void
 }
}

Listing 7-62. Subject Implements the ISubject interface and updates its status regardless of whether
there are observers.

package
{
 public class Subject extends Object implements ISubject
 {
 static const LoremIspum : String = "Lorem ipsum dolor sit amet, consectetur

 adipiscing elit. Morbi condimentum leo sit amet augue pulvinar non
 dictum neque vehicula. Morbi feugiat diam consectetur sapien porta
 mattis..."

 static const LoremIpsumAr : Array = LoremIspum.split(" ");
 protected var _dict : Dictionary;
 private var timer : Timer;

 public function Subject()
 {
 _dict = new Dictionary(false);
 timer = new Timer(550);
 timer.repeatCount = 1;
 timer.addEventListener(TimerEvent.TIMER_COMPLETE , onComplete);
 timer.start();
 }

 public function removeObserver(observer : IObserve) : Boolean
 {
 _dict[observer] = null;
 delete _dict[observer];
 return true;
 }

 public function addObserver(observer : IObserve , aspect : Function) : Boolean
 {
 _dict[observer] = getTimer();
 return true;
 }

 protected function notifyObservers(Enum : String) : void

CHAPTER 7

262

 {
 for (var observer:* in _dict)
 {
 observer.notify(Enum);
 }
 }

 private function onComplete(event : TimerEvent) : void
 {
 timer.stop();
 timer.delay = Math.random() * 1000;
 timer.reset();
 var startIndex : int;
 var endIndex : int;
 startIndex = Math.random() * LoremIpsumAr.length;
 var pool : int = LoremIpsumAr.length – startIndex;
 endIndex = Math.random() * ((pool < 140) ? pool : 140);
 var status : String = "";
 while (startIndex < endIndex)
 {
 status += LoremIpsumAr[startIndex] + " ";
 startIndex++;
 }

 notifyObservers(status);
 timer.start();
 }
 }
}

Listing 7-63. Observer lacks any behaviors for this example other than those of IObserve

package
{
 public class Observer extends Object implements IObserve
 {
 public function Observer()
 {
 }

 // status updates from the Subject will trace out here
 public function notify(str : String) : void
 {
 trace(str);
 }

BEHAVIORAL PATTERNS

263

 }
}

Listing 7-64. DocumentClass creates the subject with an instance of an observer.

package
{
 public class DocumentClass extends Sprite
 {
 public function DocumentClass()
 {
 var observer : IObserve = new Observer()
 var subject : ISubject = new Subject()

 subject.addObserver(observer , null);
 }
 }
}

This example, although simple, illustrates the essence of the subscriber/notifier method known as the
Observer pattern. The subject, an avid Twitter status updater, makes great use of the one-to-many
principle by giving any and all subscribers an opportunity to be notified of status updates. When an update
occurs, the notification pushes the state to those who depend on it. Of course, the example illustrated a
one-to-one relationship, so let’s rectify that to better demonstrate one to many (see Listing 7-65 through
Listing 7-67).

Listing 7-65. The TwitterUser class becomes the abstract class of both observer and subject so names
can be represented.

package
{
 public class TwitterUser extends Object
 {
 private var _twitterName : String

 public function TwitterUser(userName : String)
 {
 _twitterName = username;
 }

 public function get twitterName() : String
 {
 return _twitterName;
 }

 public function set twitterName(twitterName : String) : void
 {

CHAPTER 7

264

 _twitterName = twitterName;
 }
 }
}

Listing 7-66. Subject and observer both extend TwitterUser

public class Subject extends TwitterUser implements ISubject
public class Object extends TwitterUser implements IObserver

Listing 7-67. Revisiting DocumentClass with many observers monitoring the subject’s status

package
{
 public class DocumentClass extends Sprite
 {
 public function DocumentClass()
 {
 var subject : ISubject = new Subject("FeZEC");

 var observer_1 : IObserve = new Observer("Andrew");
 var observer_2 : IObserve = new Observer("Mike");
 var observer_3 : IObserve = new Observer("Ed");
 var observer_4 : IObserve = new Observer("Lucas");
 var observer_5 : IObserve = new Observer("Edy");

 subject.addObserver(observer_1 , null);
 subject.addObserver(observer_2 , null);
 subject.addObserver(observer_3 , null);
 subject.addObserver(observer_4 , null);
 subject.addObserver(observer_5 , null);
 }
 }
}

FAQ
• Can observers observe more than one subject?

Absolutely. Because a subject maintains a collection of observers, it’s easier for each observer to
do so. The observers just need to tell the subject to add them.

Subjects can also be observers of other subjects. They need to implement the IObserve interface
to be able to register themselves with a subject.

• If AS 3.0 has the Observer pattern built in, why is it important to know about the Observer pattern?

All developers should be aware of the foundations on which they build. This gives you greater
understanding of how to take advantage of the tools at your disposal. The AS 3.0 Observer model

BEHAVIORAL PATTERNS

265

uses the Chain of Responsibility and Composite patterns, which potentially decrease performance.
Knowing about the Observer pattern lets you construct alternatives, such as AS 3.0 signals that
bypass as much of the built-in event notification as possible.

• Isn’t the Chain of Responsibility pattern the event system in AS 3.0?

The Chain of Responsibility pattern in AS 3.0 is responsible for relaying events. EventDispatcher
is responsible for managing and maintaining all subject subscriptions among their observers.

Related Patterns
The Observer pattern is related to these patterns:

• Singleton

Summary
OOD heavily relies on behavioral patterns, because the ultimate goal is to define how objects collaborate
with one another. For this reason, these patterns are often implemented in applications and in the AS 3.0
language itself. This isn’t a coincidence: it’s due to the flexibility they offer.

As you may have noticed, behavioral patterns work very well with one another, and with the patterns you
learned about previously.

Key Points
• The Strategy pattern offers interchangeability among a family of algorithms.

• The Template Method pattern localizes and protects the steps that make up an expected

algorithm.

• The Chain of Responsibility pattern forwards requests in succession to decouple the client

from the receiver.

• The Command pattern encapsulates the request to be carried out, decoupling the invoker from

the request.

• The Memento pattern externalizes an object’s state.

• Iterators can be external or internal.

• The State pattern may appear to change its class.

• Observers use push and pull methods to notify dependent objects about changes.

• Behavioral patterns are concerned with the assignments of behaviors.

267

Chapter 8

Structural Patterns

You have inadvertently witnessed the use of structure among your objects via interface inheritance and
object composition, which allowed objects to possess the ability to obtain new functionality from other
objects. In essence, these enabled an object’s power. Continuing with this thought, the weaker the
structure, or the flimsier the support, the less empowered the objects.

Consider how reusable a Concrete class is without any inherited interface. The structure that utilizes this
object is forced to bind itself to a single implementation and not to that of an interface. Of course, this
would be unwise if change is a possibility. To remedy this scenario, you make use of a simple interface or
abstraction that the Concrete class may subclass. Doing so properly enables polymorphism, abstracts
your references, and offers flexibility among variations of implementations. You achieved greater benefits
from the structuring among two classes rather than the one.

Structural patterns are concerned with the makeup of parts among both classes and objects that help to
strengthen their associations with additional objects. This is what makes them really good at devising new
functionality from already existing objects, sometimes forming compound patterns.

This chapter will cover the Decorator, the Adapter, the Composite, and the Facade.

CHAPTER 8

268

The Decorator Pattern

Technical Overview
Intent: To embellish objects dynamically either visually or behaviorally, as shown in Figure 8-1.

Figure 8-1. Class diagram

Parts

• Abstract Component

• Concrete Component

• Abstract Decorator

• Concrete Decorator

• Client

Benefits

• Expand on an individual object without the use of inheritance.

• Additional behaviors can be added and removed to meet the needs of an application.

• Deconstruct complex objects that attempt to foresee all cases into individual wrappers.

Drawbacks

• Many pieces appear similar, which may cause confusion.

• Decorators may require specific orders.

STRUCTURAL PATTERNS

269

A Comprehensive Look
For quick illustration, the Decorator pattern is the yin among objects if the Strategy pattern is the yang, as
the two have very similar goals. The Decorator pattern devises strategies that embellish the visual aspects
and/or the functional aspects among objects, but in an alternate solution to those of the Strategy pattern.
While strategies are utilized within an object, the strategies utilized with the Decorator pattern surround the
objects they alter. This is why these strategies are known as decorators.

What enables a decorator to remain apart from most delegating objects is its ability to wrap a given type
object and still allow the client to view the decorated object for what it was originally. This type of wrapper
is said to be transparent, as it does not attempt to mask the content from the client. It’s this transparent
ability that allows any number of decorators to decorate an object without impacting the bindings between
the decorated object and the client.

The object that is decorated is referred to as a component. The component that is decorated can be any
object within an application. In fact, even decorators can be components of other decorators. What makes
this possible is polymorphism among an interface.

A decorating object and the component that it will decorate must share an interface. This is what enables
the transparency of the decorator. If many decorators will be utilized to wrap a similar interface, an abstract
decorator class should be used that subclasses can extend. Because the decorator conforms to the
component, the component will remain unaware of the presence of the decorator, which can preserve the
integrity of your objects while still possessing the ability to lace it with new functionality.

Vignette
I’m sure there was a point in time when you purchased a poster that you were excited to hang on your
wall. Perhaps it represented you at the time, or it merely tied the room together. No matter the reason, you
had to have this poster. So eager to adhere it to the wall you may used push pins or even double-sided
tape. These two methods would ultimately ruin your poster. The gravity on the poster would eventually
cause either forms of adhesive to give, thereby tearing the poster. I was always left with the corners torn
around the pushpins, forcing me to add additional holes to the poster.

Being human we learn from our mistakes; now I use frames to mount my posters to the wall. The frames
allow the poster to remain intact and unchanged. Whether the frame is made of plastic, wood, or even tin,
the border that surrounds the poster also adds a subtle touch.

The AS3.0 Cast
Abstract Component – The interface

The abstract component declares the interface as well as any default behaviors and/or
abstract methods that its subclasses will inherit.

Concrete Component – The Concrete Behavior

The concrete component implements the behavior as defined by its superclass.

Abstract Decorator – The Decorating Interface

The abstract decorator must compliment the abstract components interface in order to defer
requests to its contained component. A reference to the abstract component is contained
within.

CHAPTER 8

270

Concrete Decorator – Transparent Wrapper

The concrete decorator implements the behavior as defined by its superclass. It has the
added benefit of intercepting the requests that are forwarded to its contained component. The
concrete decorator can perform additional behaviors before or after deferring requests to that
of its component.

Client – The Messenger of the Component

The client is any aspect of the application that messengers the component. The client knows
of the abstract component and on occasion will know of the decorator.

When It’s Useful
When the addition of behavioral or decorative ornaments are required at runtime.

For creating graphical composites and sounds.

For intercepting requests between a client and component.

When reducing unused complexities of a class to reduce its size.

Demonstration
Sound is a great object for a decorator to enhance, as there are many possible decorative uses that may
vary from application to application. To begin, you will need to define your abstractions for both decorators
and your sound.

You know that decorators must possess the same interface as your components, but I really don’t want to
have decorators subclass sound. Instead let’s devise an interface for a sound object (see Listing 8-1).

Listing 8-1. Interface ISound Exposes the Interface within flash.media.Sound

package
{
 public interface ISound extends IEventDispatcher
 {
 function get bytesLoaded() : uint;

 function get bytesTotal() : int;

 function close() : void;

 function extract(target : ByteArray , length : Number ,
 Â startPosition : Number = -1) : Number;

 function get id3() : ID3Info;

 function get isBuffering() : Boolean;

 function get length() : Number;

STRUCTURAL PATTERNS

271

 function load(stream : URLRequest , context : SoundLoaderContext = null) : void;

 function play(startTime : Number = 0 , loops : int = 0 , sndTransform : Â

SoundTransform = null) : SoundChannel;

 function get url() : String;
 }
}

Once you have your interface extracted, you can then implement that interface into your
AbstractSoundDecorator. This will allow the decorators to possess a similar interface to the Sound
component, as shown in Listing 8-2.

Listing 8-2. AbstractSoundDecorator Implements ISound and Has the Ability to Wrap ISound Objects

package
{
 public class AbstractSoundDecorator implements ISound
 {
 protected static var _channel : SoundChannel;
 protected var _snd : ISound;

 public function AbstractSoundDecorator(snd : ISound) : void
 {
 _snd = snd;
 }

 public function get bytesLoaded() : uint
 {
 return 0;
 }

 public function get bytesTotal() : int
 {
 return 0;
 }

 public function close() : void
 {
 }

 public function extract(target : ByteArray , length : Number ,
 Â startPosition : Number = -1) : Number
 {
 return 0;

CHAPTER 8

272

 }

 public function get id3() : ID3Info
 {
 return null;
 }

 public function get isBuffering() : Boolean
 {
 return false;
 }

 public function get length() : Number
 {
 return 0;
 }

 public function load(stream : URLRequest ,
 Â context : SoundLoaderContext = null) : void
 {
 }

 final public function play(startTime : Number = 0 , loops : int = 0 ,
 Â sndTransform : SoundTransform = null) : SoundChannel
 {
 _channel = doPlay(startTime , loops , sndTransform);
 return _channel;
 }

 public function get url() : String
 {
 return "";
 }

 public function addEventListener(type : String , listener : Function ,
 Â useCapture : Boolean = false , priority : int = 0 ,
 Â useWeakReference : Boolean = false) : void
 {
 }

 public function dispatchEvent(event : Event) : Boolean
 {
 return false;
 }

STRUCTURAL PATTERNS

273

 public function hasEventListener(type : String) : Boolean
 {
 return false;
 }

 public function removeEventListener(type : String , listener : Function ,
 Â useCapture : Boolean = false) : void
 {
 }

 public function willTrigger(type : String) : Boolean
 {
 return false;
 }

 protected function doPlay(startTime : Number = 0 , loops : int = 0 ,
 Â sndTransform : SoundTransform = null) : SoundChannel
 {
 throw new IllegalOperationError('doPlay must be overridden');
 return null;
 }
 }
}

As you can see in Listing 8-2, your wrappers will expect a component of ISound. As you know from
Chapter 3, flash.media.Sound does not contain any reference to ISound within its trait object. Therefore, to
properly allow this, you need to devise an abstraction for your component, which can extend
flash.media.Sound but must implement ISound to achieve this hierarchy, as shown in Listing 8-3.

Listing 8-3. Audible Extends Sound and Implements ISound

package
{
 public class Audible extends Sound implements ISound
 {
 public function Audible(stream : URLRequest = null ,
 Â context : SoundLoaderContext = null)
 {
 super(stream , context);
 }
 }
}

CHAPTER 8

274

There are many decorators that could be used as decorators, including the following:

A decorator that retains the state of the audio.

A decorator that fades the audio on play.

A decorator that fades the audio on stop.

A decorator that can pause and resume a sound.

A decorator that can allow infinite loops.

A decorator that can display the MP3 ID3 tag information.

A decorator that enables multiple channels for overlapping audible sound.

This demonstration will focus on the pause and resume with the addition of infinite looping. But why build
a wrapper that can offer looping when it’s part of the Play method parameters? The answer is simple if you
have tried to implement a pause and resume functionality along with the built-in loop parameters. Sound
objects work with bytes, and when you specify a start time, the sound object plays a trimmed version of the
sound. This has to do with the headers and modifying the bytes to reflect a specific position to play. The
looping then continues to loop the bytes, which it currently possesses, meaning it begins from where it
trimmed the bytes; see Listing 8-4 through 8-6.

Listing 8-4. InfiniteLoopDecorator

public class InfiniteLoopDecorator extends AbstractSoundDecorator
{
 public function InfiniteLoopDecorator(snd : ISound)
 {
 super(snd);
 }

 override protected function doPlay(startTime : Number = 0 , loops : int = 0 ,
 Â sndTransform : SoundTransform = null) : SoundChannel
 {
 removeEvents();
 _channel = _snd.play(startTime , loops);
 _channel.addEventListener(Event.SOUND_COMPLETE , repeat);
 return _channel;
 }

 private function repeat(event : Event) : void
 {
 _channel = play(0 , 0 , null);
 }

 private function removeEvents() : void
 {

STRUCTURAL PATTERNS

275

 if (_channel)
 _channel.removeEventListener(Event.SOUND_COMPLETE , repeat);
 }
 }

Listing 8-5. PauseableAudibleDecorator Extends AbstractSoundDecorator

package
{
 public class PauseableAudibleDecorator extends AbstractSoundDecorator
 Â implements ISoundChannel
 {
 protected var _position : Number = 0;

 public function PauseableAudibleDecorator(snd : ISound)
 {
 super(snd);
 }

 override protected function doPlay(startTime : Number = 0 , loops : int = 0 ,
 Â sndTransform : SoundTransform = null) : SoundChannel
 {
 stop();
 removeEvents();
 _channel = _snd.play(_position , loops , sndTransform);
 _channel.addEventListener(Event.SOUND_COMPLETE , resetPosition);
 return _channel;
 }

 private function removeEvents() : void
 {
 if (_channel)
 _channel.removeEventListener(Event.SOUND_COMPLETE , resetPosition);
 }

 private function resetPosition(event : Event) : void
 {
 _position = 0;
 }

 public function get leftPeak() : Number
 {
 return 0;
 }

CHAPTER 8

276

 public function get position() : Number
 {
 return 0;
 }

 public function get rightPeak() : Number
 {
 return 0;
 }

 public function get soundTransform() : SoundTransform
 {
 return null;
 }

 public function set soundTransform(sndTransform : SoundTransform) : void
 {
 }

 public function stop() : void
 {
 if (_channel)
 {
 _position = _channel.position;
 trace(_position);
 _channel.stop();
 }
 }
 }
}

Listing 8-6. Client Making Use of the Decorators

package
{
 public class Decorator extends Sprite
 {
 private var _isPlaying : Boolean = false;
 var sound : ISound;

 public function Decorator()
 {
 sound = new Audible(new URLRequest("music.mp3"));
 sound = new InfiniteLoopDecorator(sound);
 sound = new PauseableAudibleDecorator(sound);

STRUCTURAL PATTERNS

277

 sound.play()
 stage.addEventListener(MouseEvent.MOUSE_DOWN , onDown);
 }

 private function onDown(event : MouseEvent) : void
 {
 var localsnd : ISound = sound;
 var snd : ISoundChannel = ISoundChannel(localsnd);
 _isPlaying = !_isPlaying;
 if (_isPlaying)
 {
 snd.stop();
 }
 else
 {
 localsnd.play()
 }
 }
 }
}

What makes the decorator a great tool is how it allows you to spare the added behavior from being
implemented directly into your Audio class. This way, if it’s to be used in a future application, which does
not make use of pause and resume, or even the infinite loop, it does not need to bare the excess weight of
such features.

FAQ
• Why might decorators be order-specific?

Decorators provide an alternative to fixed inheritance but must adhere to the rules of
inheritance, as the decorator must mimic the interface of the component it is to wrap.

When a decorator adds a behavior, it may be to perform a specific operation before
passing it on to the component. This is no different than a subclass overriding a
method and calling the operation of the superclass.

The more specific a decorator becomes, the greater the risk of disrupting the order
in which operations were intended.

• If the rules of inheritance apply, does that mean two-three decorators should be the limit?

Yes and no. This depends on the nature of the beast and It’s difficult to determine
without knowing the scenario. More often than not, visual ornaments don’t require a
limit, providing you’re achieving the effect you desire, but this may occur when
modifying functional behavior. Since each decorator is one level away from the
abstract component, it’s not likely to deal with the issues that many layers of
inheritance can cause.

Bear in mind, though, that wrapping many behaviors that don’t run in a proper order
can easily grow cumbersome and have strange effects on your system. The more

CHAPTER 8

278

specific the intercepted behavior, the more complicated the chain may become in
order to remain synchronized.

Related Patterns
Visitor

Adapter

Composite

The Adapter

Technical Overview
Intent: To conform a class interface to one that is expected by a client of the system, as shown in Figure 8-2.

Figure 8-2. Class diagram

Parts

• Target

• Adaptee

• Adapter

• Client

Benefits

• Maintains the original interface of a class and utilizes it where another interface is expected.

• Allows the adaptee to optionally be seen by the client.

Drawbacks

• Adds more classes to an application.

• Adapters are often application-specific.

STRUCTURAL PATTERNS

279

A Comprehensive Look
Over the course of time you may find yourself in a position of wanting to use a specific object that
possesses a certain behavior, but the interface of that object varies from the interface currently supported
by the application. Your first inclination may be to change the method names within the class to match
those required by the client, but this breaks the Open/Closed Principle. This is where adapters are useful.

Adapters possess the ability to alter an interface by means of class or object scope. Most of the time you’ll
be working with object scope to adapt your interfaces; this is due to a feature that AS3.0 lacks called
multiple inheritance, which enables a subclass to inherit from multiple classes. Instead, class adapters
must make use of subclassing the object to adapt and implementing the interface of the target. If the target
lacks a defined interface that can be implemented in the adapter, refactoring should be performed.

The benefits of this will allow for what is known as two-way adapters as your adapter has the ability to be
used by your client as a target and in other areas of your application used as the previously adapted
adaptee.

The alternative to the class adapter is the object adapter, which uses parameterization and delegation
among an interface of the adaptees it’s expecting. Because the object adapter doesn't inherit from the
adaptee, the object does not require any alterations when dealing with descendants of an adaptee class,
whereas class adapters do.

Object adapters specify the interface of the adaptee to which they will be supplied. This occurs most often
at runtime. In order for the adapter to defer the requests of the client to the adaptee, they must possess
the interface of a target that is used by the client. Much like class adapters, object adapters can become
two-way by implementing the adaptee interface.

Both the class and object adapters make the appropriate referrals among the requests by the client to that
of the adaptee.

Vignette
Three years ago my wife and I visited the United Kingdom for her sister’s wedding. Having a lot of work to
catch up on, I brought my laptop along. My planned attempts to get work done were thwarted by lack of
battery life and the incompatibility of my U.S.-compliant plug with the U.K.-compliant wall socket.

The distinct receptacles of the sockets were nothing like my two-pronged cord and reminded me of a child
attempting to push a star-shaped block into the circular hole of his Fisher-Price toy. Luckily this is a well
known issue, so I was able to purchase the appropriate fitting that allowed me to plug my computer into a
power source. One side of the device mimicked the receptacle one would find in America, whereas the
other side was noticeably the male that would fit snugly within the U.K. wall socket. The purchase was
obviously a worthwhile solution at the time, but, as I have yet to travel outside the country since then, I
have not had the reason to use it again.

The AS3.0 Cast
Target Interface – The Intended Interface

The target interface is known by the client and must be the exposed interface of your abstract
adapter.

CHAPTER 8

280

Abstract Adapter – The Narrow Interface

The abstract adapter defines the smallest possible Interface that is required for the adaptee to
be utilized by the client. This makes it easier for a developer to extend it.

Concrete Adapter – Subclass of the Abstract Adapter

The concrete adapter is optional if you make use of the un-typed property. It may also
possess a reference of its own for which the abstract operations are overridden and specified.

Adaptee – An object of the application

The adaptee is can be any object within your application that must overcome constraints of its
interface to be utilized by a client, bound to a varied type.

Client – The Messenger

The client is any aspect of the application that messengers the adapter and/or the adaptee.
The client knows of the target interface, and may also be familiar with the interface of the
adaptee.

When It’s Useful
Frameworks can make great use of the adapters.

When using connecting methods of varied names.

Demonstration
Many applications, both for Web and desktop, have differing distinctions between the uses of
Pause/Resume and Play/Stop. While they may have similar implementations, their indication of their roles
might have distinct meanings.

Consider these terms in the scenario of a game. What nature would you expect from a method labeled
Pause? Certainly you would expect the game to stop while retaining its current state.

Suppose for this demonstration you have a game and are monitoring all objects in use that must be
paused, including tweening animations, movie clips, and sounds. To achieve this feat, you must devise a
system that monitors all objects in your application that have reason to pause. Clearly you don’t require
data to pause; therefore you assign an IPause interface to objects that require it (see Listings 8-7 through
8-9).

Listing 8-7. IPause Defines the Interface Among Objects that Possess the Ability to Advance Their State

public interface IPause
{
 function pause():void;
 function resume():void;
}

Listing 8-8. Abstract Pause Conductor Defines the Interface That Is Collected and Operated On

package
{

STRUCTURAL PATTERNS

281

 public class APauseConductor extends Object
 {
 private var _collection : IIterate;
 private var _iterator : IIterator;

 public function APauseConductor()
 {
 _collection = doCreateCollection();
 }

 final public function addElement(element : IPause) : void
 {
 doAddElement(element);
 }

 final public function removeElement(element : IPause) : void
 {
 doRemoveElement(element);
 }

 final public function pause() : void
 {
 doPause();
 }

 final public function resume() : void
 {
 doResume();
 }

 protected function doRemoveElement(element : IPause) : void
 {
 _collection.remove(element);
 }

 protected function doAddElement(element : IPause) : void
 {
 _collection.append(element);
 }

 protected function doCreateCollection() : IIterate
 {
 throw new IllegalOperationError('doCreateCollection must be overridden');
 return null;

CHAPTER 8

282

 }

 protected function doPause() : void
 {
 _iterator = _collection.createIterator();
 while (_iterator.hasNext())
 {
 var pauseable : IPause = _iterator.currentElement();
 _iterator.next();
 pauseable.pause();
 }
 }

 protected function doResume() : void
 {
 _iterator.reset();
 while (_iterator.hasNext())
 {
 var resumeable : IPause = _iterator.currentElement();
 _iterator.next();
 resumeable.resume();
 }
 }
 }
}

Listing 8-9. Concrete Conductor, Which Implements the Specifics of the Manufactured Object

package
{
 public class IPauseConductor extends APauseConductor
 {
 public function IPauseConductor()
 {
 super();
 }

 override protected function doCreateCollection() : IIterate
 {
 return new DictionaryCollection();
 }
 }
}

Let’s revisit the decorated audio file, since you built it for reuse. It appears that you have the perfect
solution as PauseableAudibleDecorator will properly pause your sounds. The only issue here is that

STRUCTURAL PATTERNS

283

PauseableAudibleDecorator doesn’t possess the proper IPause interface. Obeying the Open/Closed
Principle, your solution is adaptation.

You are confronted with two means by which you can adapt your PauseableAudibleDecorator to possess
the IPause interface class and object adaption. When utilizing class adaptation, you want to inherit the
abilities or your adaptee and expose the interface of the target your client will message.

Listing 8-10. AudibleIPauseAdapter Inherits the PauseableAudibleDecorator’s Interface and Exposes an
Additional Interface of IPause

package
{
 public class AudibleIPauseAdapter extends PauseableAudibleDecorator
 Â implements IPause
 {
 public function AudibleIPauseAdapter(snd : ISound)
 {
 super(snd);
 }

 public function pause() : void
 {
 this.stop();
 }

 public function resume() : void
 {
 this.play();
 }
 }
}

AudibleIPauseAdapter, as seen in Listing 8-10, inherits from AudibleIPauseAdapter and Implements the
interface IPause, which in turn is utilized to defer requests from target to adaptee.

Listing 8-11. DecoratorClass Making Use of the AudbileIPauseAdapter and Passing it into
IPauseConductor

public class DecoratorClass extends Sprite
{
 private var _isPlaying : Boolean = false;
 var sound : ISound;
 var pauseconductor : APauseConductor;

 public function DecoratorClass()
 {
 sound = new Audible(new URLRequest("music.mp3")) ;

CHAPTER 8

284

 sound = new InfiniteLoopDecorator(sound);
 sound = new AudibleIPauseAdapter(sound);
 sound.play();

 pauseconductor = new IPauseConductor();
 pauseconductor.addElement(IPause(sound));
 stage.addEventListener(MouseEvent.MOUSE_DOWN , onDown);
 }

 private function onDown(event : MouseEvent) : void
 {
 _isPlaying = !_isPlaying;
 if (_isPlaying)
 {
 pauseconductor.pause();
 }
 else
 {
 pauseconductor.resume();
 }
 }
}

Because you inherited your decorator, you are not impeded from wrapping your audible with more
decorators, as your adapter is a two-way adapter (see Listing 8-11). Additionally, you managed to do very
little work to make your adapter, due to the inherited nature, although your adapter is limited to its
superclass. This means any other subclasses or decorators will require an adapter as well.

Object adapters, on the other hand, make use of delegation and object parameterization. This allows a
more flexible adapter to be present in an application.

Listing 8-12. IPausePauseableAudioDecorators Accepts Parameters of any PauseableAudibleDecorator
Instance, Including Subclasses

package
{
 public class IPauseAudibles implements IPause
 {
 protected var _pauseableAudio : PauseableAudibleDecorator;

 public function IPauseAudibles(audible : PauseableAudibleDecorator) : void
 {
 _pauseableAudio = audible;
 }

 public function pause() : void
 {

STRUCTURAL PATTERNS

285

 _pauseableAudio.stop()
 }

 public function resume() : void
 {
 _pauseableAudio.play()
 }
 }
}

Listing 8-12 is not a two-way adapter currently but can be by implementing the ISound interface and
delegating all requests to the _pauseableAudio reference. This, of course, requires more code than that of
its counterpart.

Having demonstrated what an adapter does, you can see many of the flaws of their general usage. They
adapt specific objects, while many interfaces will possess stop and play functionality, such as a MovieClip.
The code you already devised to conform stop and play within an adapter is specific to objects of the given
hierarchy—PauseableAudibleDecorator.

This doesn’t mean that adapters are a waste; it just means that you need to devise better ways to make
them adaptable. Even though MovieClip does possess a stop and play method, the compiler won’t allow
its assignment among your typed reference because it’s incompatible, though dynamic binding would allow
for MovieClip to properly use the stop and play methods.

ActionScript 3.0 does allow for you to bypass compile time checking to use such dynamic binding
properties of the language. It’s known as the un-typed property or wildcard annotation and is represented
by an asterisk: *. Any assignment to an un-typed property will never warrant compile time errors as the
reference is recognized to hold any value. They will, on the other hand, be type checked at runtime. This is
not something to be overused as it’s a tightrope walk between dynamically and statically typed checking.

Listing 8-13. StopPlayToPauseResume Utilizes the Wildcard Annotation to Circumvent Providing a Fixed
Type, which Limits its Reuse

public function StopPlayToPauseResume
{
 protected var _stopStart:*
 public function StopPlayToPauseResume(startStop:*)
 {
 _stopStart=startStop
 }

 public function pause() : void
 {
 _stopStart.stop()
 }

 public function resume() : void
 {

CHAPTER 8

286

 _stopStart.play()
 }
}

//…client
var StopPlayToPauseResume:IPause = new StopPlayToPauseResume(mc)
pauseconductor.addElement(MinimalPauseAdaption)

Listing 8-13 demonstrates the ability of reuse among varied types to make use of dynamic binding.
Unfortunately, the wildcard puts the burden on the developers to ensure they maintain an awareness of
what objects are being passed in.

First, you change the name of StopPlayToPauseResume to reflect a base class to which Developers can
subclass. Let’s use AMinimalStopPlayToPauseResume; see Listings 8-14 through 8-17.

Listing 8-14. Reflects the New Name of StopPlayToPauseResume

package
{
 public class AMinimalStopPlayToPauseResume extends Object implements IPause
 {
 // ….cont
 }
}

Listing 8-15. Subclass MChasStartStop Extends AMinimalStopPlayToPauseResume, which will Ensure
the Integrity of all MovieClips at Author-time

package
{
 public class MChasStartStop extends AMinimalStopPlayToPauseResume
 {
 public function MChasStartStop(mc : MovieClip)
 {
 super(mc);
 }
 }
}

Listing 8-16. Subclass AudioDecoratorIPauseAdapter Extends AMinimalStopPlayToPauseResume, which
will Ensure the Integrity of all PauseableAudibleDecorator at Author-time

package
{

 public class AudioDecoratorIPauseAdapter extends AMinimalStopPlayToPauseResume
 {
 public function AudioDecoratorIPauseAdapter(startStop :

STRUCTURAL PATTERNS

287

 Â PauseableAudibleDecorator)
 {
 super(startStop);
 }
 }
}

Listing 8-17. DocumentClass Making Use of Your New Narrow Adaption

package
{
 public class DocumentClass extends Sprite
 {
 private var _isPlaying : Boolean = false;
 var sound : ISound;
 var pauseconductor : APauseConductor;

 public function DocumentClass()
 {
 sound = new Audible(new URLRequest("music.mp3"));
 sound = new InfiniteLoopDecorator(sound);
 sound = new PauseableAudibleDecorator(sound);
 sound.play()

 var mc : MovieClip = new SimpleMCAnimation();
 addChild(mc);

 var mcMinimalPauseAdaption : IPause = new MChasStartStop(mc);
 var soundMinimalPauseAdaption : IPause = new
 Â AudioDecoratorIPauseAdapter(PauseableAudibleDecorator(sound));

 pauseconductor = new IPauseConductor();
 pauseconductor.addElement(soundMinimalPauseAdaption);
 pauseconductor.addElement(mcMinimalPauseAdaption);
 stage.addEventListener(MouseEvent.MOUSE_DOWN , onDown);
 }

 private function onDown(event : MouseEvent) : void
 {
 _isPlaying = !_isPlaying;
 if (_isPlaying)
 {
 pauseconductor.pause();
 }
 else

CHAPTER 8

288

 {
 pauseconductor.resume();
 }
 }
 }
}

FAQ

• You mention that adapters are often application specific. Are they not reusable?

Adapters are never devised in the object-oriented design phase and the reason why
is simple: adapters were unnecessary if all went as planned in the designing stage.

Remember that change is constant and you have to roll with it. The adapter allows
you to roll with it in an elegant way that doesn’t break your system or require a major
overhaul among client or object.

The answer is they are not meant to be reusable as they are devised specifically for
the problem at hand; this is known as the problem domain. Unless another
application suffers the exact fate as this one, you most likely won’t be reusing them.

But hey, that’s a great thing; don’t feel bad.

Related Patterns
Proxy

Bridge

Decorator

STRUCTURAL PATTERNS

289

The Composite

Technical Overview
Intent: To devise a data structure representing a nesting relationship among objects of a part-whole
hierarchy, as shown in Figure 8-3.

Figure 8-3. Class diagram

Parts

• Component

• Leaf

• Composite

• Client

Benefits

• Uniformity among client interactions and the data.

• New components are easy to create and integrate.

Drawbacks

• Limited type enforcements: any object that inherits from components can be added safely even

if they are not meant to work with your system.

• It’s difficult to follow conceptually.

A Comprehensive Look
The Composite pattern is a very convenient pattern to use with ActionScript 3.0 because the foundation of
the display list was built on the idea of the composite. The composite represents a tree structure where

CHAPTER 8

290

each object is aware of any objects nested within. The structure should be as efficient as possible for
traversing, adding and removing elements, ordering, etc.

For efficiency, the client should not be able to distinguish one element from another, meaning
compositions of objects from individual objects. This is important because the composite will forward one
request to each and every component contained within the structure without prejudice.

ActionScript 3.0’s display list refers to these as DisplayObjectContainer and a DisplayObject, whereas
the Composite pattern refers to them as composite and leaf. In XML, such components are referred to as
nodes.

A composite is an element that contains any number of additional composites or leaves. Therefore, it must
define operations that access and manipulate its nested elements.

 A leaf, on the other hand, has no children. This is the main distinction between the two. In order for the
two to appear as indistinguishable from the client as possible, they must both utilize inheritance to which
they both gain a common interface. This enables the client to interact with either uniformly.

This interface is how the clients will see these two components. The component’s interface should account
for as much commonality between the leaf and the composite as possible. This further allows the client to
remain unaware of the object’s true identity. You will be confronted with the decision to compromise either
safety or transparency for optimal conditions when considering who should define the operations of child
management.

Optionally, components may possess references to their parents. This may assist in the traversing
upwards among the structure and supports the addition of the chain of responsibility, which can facilitate
the removal of an element. Otherwise, a composite traverses downwards and outwards towards the
leaf/leaves.

Vignette
There are several divisions of the U.S. military: Army, Marines, Air Force, and Navy. Each division
contains smaller divisions until a specific unit size has been reached. I can’t begin to explain the hierarchy
of each branch. What I do know is the President resides at the top and at the bottom the newest recruits.
Everything in between is looking to pass their demands off to those of lesser rank. This is known as the
chain of command.

The president will never physically tell a new recruit what to do but will pass the message to his immediate
successor until the message has been received by the individuals of a particular division within a military
branch.

While specific branches can be targeted, all branches can be issued the same requests in a time of war.
From the top of the Armed Forces to the lowest on the poles, all will receive the same commands. This will
trigger their specific operations depending on their role within the military.

Such structuring within the Armed Forces allows one message to be carried out similarly and
indiscriminately among high ranking officers and the grunts. This also speeds up the dissemination of
information by simultaneously passing the operation down all channels.

STRUCTURAL PATTERNS

291

The AS3.0 Cast
Abstract Component – The interface

The abstract component defines the operations common to both the leaf and composite; it
also defines the interface that the client will utilize to interact with the structure.

Leaf – An object

The leaf may represent any object within your application providing it possesses no children
that must be traversed.

Composite – An object container

The composite maintains references to its nested elements in addition to the implementations
defined by the component to manage said children.

Client – The Messenger of the Component

The client is any aspect of the application that messages the interface of the component. The
client remains unaware of which element, either leaf or composite, it’s manipulating.

When It’s Useful
Many objects require the same message to perform similar behaviors at the same time, such as objects
that manage or oversee pausing, resuming, destroying, etc.

Demonstration
In previous demonstrations I’ve portrayed the means by which you can pause and resume any object that
possesses the IPause interface. That was an example of a “loose” type composite. You made use of an
individual composition and leaf nodes, which were objects that implemented IPause. I refer to this as
“loose” because your two objects did not derive from a common component other than the built-in object.

Suppose you have a MovieClip that contains a given number of nested MovieClips as well as Sprites. If
you wanted to pause your MovieClip instances, you could define an operation within the main MovieClip
that targets only MovieClips and ensures they stop or play depending on the situation. Such a method is
shown in Listing 8-18.

Listing 8-18. Utilizes Recursion Among any Descendants Within a Found MovieClip in Order to Pause or
Resume Any Instances of MovieClips

public function traverse(mc : MovieClip , bol : Boolean) : void
{
 if (bol)
 {
 mc.play();
 }
 else
 {
 mc.stop();
 }

CHAPTER 8

292

 if (mc.numChildren > 0)
 {
 for (var i : int = 0;i < mc.numChildren;i++)
 {
 var innerds : DisplayObject = mc.getChildAt(i);
 if (innerds is MovieClip)
 {
 traverse(MovieClip(innerds) , bol);
 }
 }
 }
}

Listing 8-18 demonstrates how a MovieClip composite operates on the leaf nodes and continues to
traverse all possible nested composites. As mentioned earlier, because AS3.0’s display list is built around
the Composite, you are able to tap into its ability with a bit of ingenuity.

Dealing with DisplayObjects is very convenient with the Composite pattern, as DisplayObject possesses
many of the necessary commonalities among the more elaborate DisplayObjects such as Sprite,
MovieClip, and Bitmap. You begin this menu system by making your component for all leaf and composite
objects to extend, as shown in Listing 8-19.

Listing 8-19. Component Class

package
{
 public class Component extends Sprite
 {
 private static var _counter : int = 0;
 protected var _parentComposite : Component;
 protected var _identity : int;
 protected var _arCollection : ArrayCollection;

 public function Component()
 {
 _identity = ++_counter;
 }

 final public function addComponent(cmpt : Component) : void
 {
 doVerifyCollection();
 doAddComponent(cmpt);
 }

 final public function removeComponent(cmpt : Component) : void

STRUCTURAL PATTERNS

293

 {
 if (_arCollection) ;
 doRemoveComponent();
 }

 final public function operate() : void
 {
 doOperate();
 }

 final public function get parentComposite() : Component
 {
 return _parentComposite;
 }

 final public function set parentComposite(parentComposite : Component) : void
 {
 _parentComposite = parentComposite;
 }

 public function get identity() : int
 {
 return _identity;
 }

 protected function doOperate() : void
 {
 throw new IllegalOperationError('doOperate must be overridden');
 }

 protected function doAddComponent(cmpt : Component) : void
 {
 throw new IllegalOperationError('doAddComponent must be overridden');
 }

 protected function doRemoveComponent() : void
 {
 throw new IllegalOperationError('doRemoveComponent must be overridden');
 }

 private function doVerifyCollection() : void
 {
 if (!_arCollection)
 _arCollection = new ArrayCollection();

CHAPTER 8

294

 }
 }
}

The component class may look overwhelming, but it’s rather simple. The component class takes
advantage of being the abstract class and declares common attributes and behaviors that will be utilized
by both leaf and composites. The static variable, _counter, is intended to keep track of the number of
components utilized to aid in the removal of the appropriate object. Its assigned value is stored in the
_identity attribute.

To make use of code you have already created, you might recognize our _arCollection from the Iterator
pattern. Because the Composite pattern makes use of structured data, you may optionally rely on a means
to iterate such data, and the Iterator does this very well, as you will see. Lastly, _parentComposite will
maintain the parent composite for every component utilized. This will help you to notify all composites
upwards, which can then notify their components of updates, just like the chain of command (see Listing 8-
20).

Listing 8-20. Leaf Component

package
{
 public class Leaf extends Component
 {
 public function Leaf()
 {
 super();
 }

 override protected function doOperate() : void
 {
 // your operation goes here
 }
 }
}

The leaf component overrides the doOperate method that enables the leaf to handle the operation as
appropriately required.

Listing 8-21. Composite Component

package
{
 public class Composite extends Component
 {
 public function Composite()
 {
 super();

STRUCTURAL PATTERNS

295

 }

 override protected function doAddComponent(cmpt : Component) : void
 {
 cmpt.parentComposite = this;
 _arCollection.append(cmpt);
 addChild(cmpt);
 }

 override protected function doOperate() : void
 {
 var it : IIterator = _arCollection.createIterator();
 while (it.hasNext())
 {
 var cnent : Component = it.currentElement() as Component;
 it.next();
 cnent.operate();
 }
 }
 }
}

In Listing 8-20, the composite component overrides the doAddComponent and ensures the nested child has
the appropriate pointer to its parent composite. The nested component is then added to the display of the
composite as well as composite’s collection of contained children.

In efforts to conserve memory, composites do not instantiate a collection unless an object is being added.
The method addComponent within a component makes use of a template method to ensure a collection
exists before allowing a component to be added. This allows a composite the opportunity to initialize a
collection, if one does not exist. doAddComponent is the hook that composite taps into.

The operate method does not have to be strictly operate and should reflect the proper behavior for which
it’s used. In the case of disposing of objects, you could call the operate method within the dispose
component. The dispose method then just needs to be properly overwritten.

Optionally, any number of methods can be implemented to make use of the Composite pattern. The
Composite pattern makes controlling a large number of objects greatly simplified, as one message is
forwarded to each and every component of any given composite. Along with dispose, you could add
enable, disable, hide, reveal, etc.

In Listing 8-8, APauseConductor from the Adapter pattern made use of a collection among objects, which
implemented the IPauseable object. The conductor is very reminiscent of the composite element, in that it
sends out a message to every collection that it contains. In that particular example, in the adapter, it was to
make use of pausing sound and movie clips. The example shows that both sound and movie clips were
treated equally; however, that may not always be the desire of the developer. You will make use of the
IPause interface, along with the composite pattern, to demonstrate how you can separate pauseable
movies and pauseable sounds, as well as trigger each individually or simultaneously. The structure you
will devise will reflect Figure 8-4.

CHAPTER 8

296

Figure 8-4. The data structure of pauseable objects

You begin by establishing the abstract component, which will contain all necessary default behaviors and
attributes that will be inherited by any Component subclass; see Listing 8-22.

Listing 8-22. Component

package
{
 public class Component extends Object
 {
 private static var _counter : int = 0;
 protected var _parentComposite : Component;
 protected var _identity : int;

 public function Component()
 {
 _counter++;
 }

 public function get identity() : int
 {
 return _identity;
 }

 final public function get parentComposite() : Component
 {
 return _parentComposite;
 }

 final public function set parentComposite(parentComposite : Component) : void
 {

STRUCTURAL PATTERNS

297

 _parentComposite = parentComposite;
 }
 }
}

Next, you need to define the component that is specific to this project and possesses the specific
behaviors required by your application. You’ll call this PauseableComponent, as shown in Listing 8-23.

Listing 8-23. PauseableComponent

package
{
 public class PauseableComponent extends Component
 {
 public function PauseableComponent()
 {
 super();
 }

 final public function pause() : void
 {
 doPause();
 }

 final public function resume() : void
 {
 doResume();
 }

 protected function doResume() : void
 {
 throw new IllegalOperationError('doResume must be overridden');
 }

 protected function doPause() : void
 {
 throw new IllegalOperationError('doPause must be overridden');
 }
 }
}

PauseableComponent declares necessary methods particular to this application, which will also need to be
overridden by any subclasses. You’ll begin with the leaf, which will be labeled PauseableLeaf. Being that
this application will pause both movie clips and sound, you must find a common behavior that you can
specify as the parameter of your leaf; and this will be IPause, as shown in Listing 8-24.

CHAPTER 8

298

Listing 8-24. PauseableLeaf Accepts a Parameter of IPause Objects

package
{
 public class PauseableLeaf extends PauseableComponent
 {
 protected var _iPause : IPause

 public function PauseableLeaf(_pauseable : IPause)
 {
 super();
 _iPause = _pauseable;
 }

 override protected function doResume() : void
 {
 _iPause.resume();
 }

 override protected function doPause() : void
 {
 _iPause.pause();
 }
 }
}

Lastly, you need to devise the composite that you’ll call PauseableComposite. You may have noticed that
neither Component nor PauseableComponent declared the operations for child management. This is because
they will be placed here, in PauseableComposite. All that is left to do now is to assign the appropriate
implementations shown in Listing 8-25.

Listing 8-25. PauseableComposite

package
{
 public class PauseableComposite extends PauseableComponent
 {
 protected var _arCollection : ArrayCollection;

 public function PauseableComposite()
 {
 super();
 }

 public function addComponent(pauseable : PauseableComponent) : void
 {

STRUCTURAL PATTERNS

299

 doVerifyCollection();
 _arCollection.append(pauseable);
 }

 public function removeComponent(pauseable : PauseableComponent) : void
 {
 }

 override protected function doResume() : void
 {
 var it : IIterator = _arCollection.createIterator();
 while (it.hasNext())
 {
 var cnent : PauseableComponent = it.currentElement() as
 Â PauseableComponent;
 it.next();
 cnent.resume();
 }
 }

 override protected function doPause() : void
 {
 var it : IIterator = _arCollection.createIterator()
 while (it.hasNext())
 {
 var cnent : PauseableComponent = it.currentElement() as
 Â PauseableComponent;
 it.next();
 cnent.pause();
 }
 }

 private function doVerifyCollection() : void
 {
 if (!_arCollection)
 _arCollection = new ArrayCollection()
 }
 }
}

It’s important to note that the composite element will always be the first component invoked. In any
Composite pattern structure, the main node of the pattern is expected to be a composite element that
contains any number of components. The message of this composite will continue through any nested
composites and/or leaves until no further components can forward the message. Therefore, strategically,
one could retain references to particular nodes within a data structure to be targeted specifically.

CHAPTER 8

300

Listing 8-26. The DocumentClass that Builds the Data Structure

public class DocumentClass extends Sprite
{
 private var _compositeOfIPauseObjects : PauseableComponent;
 private var _sndComposite : PauseableComponent;
 private var _mcComposite : PauseableComponent;
 private var _isPlaying : Boolean = false;

 public function DocumentClass()
 {
 var sound : ISound = new Audible(new URLRequest("music.mp3"));
 sound = new InfiniteLoopDecorator(sound);
 sound = new PauseableAudibleDecorator(sound);
 sound.play();

 var mc : MovieClip = new SimpleMCAnimation();
 addChild(mc);

 var mcMinimalPauseAdaption : IPause = new MChasStartStop(mc);
 var soundMinimalPauseAdaption : IPause = new
 Â AudioDecoratorIPauseAdapter(PauseableAudibleDecorator(sound));

 var mcLeaf : PauseableLeaf = new PauseableLeaf(mcMinimalPauseAdaption);
 var sndLeaf : PauseableLeaf = new PauseableLeaf(soundMinimalPauseAdaption);

 var pauseableMCComposite : PauseableComposite = new PauseableComposite();
 pauseableMCComposite.addComponent(mcLeaf);

 var pauseableSndComposite : PauseableComposite = new PauseableComposite();
 pauseableSndComposite.addComponent(sndLeaf);

 var iPauseComposites : PauseableComposite = new PauseableComposite();
 iPauseComposites.addComponent(pauseableMCComposite);
 iPauseComposites.addComponent(pauseableSndComposite);

 _compositeOfIPauseObjects = iPauseComposites;
 _sndComposite = pauseableSndComposite;
 _mcComposite = pauseableMCComposite;
 stage.addEventListener(MouseEvent.MOUSE_DOWN , onDown);
 }

 private function onDown(event : MouseEvent) : void
 {
 if (_isPlaying)

STRUCTURAL PATTERNS

301

 {
 _compositeOfIPauseObjects.pause();
 }
 else
 {
 _compositeOfIPauseObjects.resume();
 }
 _isPlaying = !_isPlaying;
 }
}

The code in Listing 8-26 demonstrates the ability to pause all PauseableLeafs contained within the
system. While there are only two leaves, this may not seem like such a large feat, but you are now able to
toggle their ability to pause and resume at once. Optionally, if you were to retain references to
pauseableMCComposite and pauseableSndComposite, you could possess a finer level of control among
which a given IPause collection should pause. Consider how video games pause; often the music
continues to play in the background yet animations pause to bring focus on the pause menu.

Additional methods can be added to further aid such necessity among child management as performed
with XML, although such methods will vary on the data within the structure. It’s quite common to see the
Composite pattern make use of the already built-in functionality of the composite by the display list for
convenience. This does not mean that the Composite pattern does not have its place. On the contrary, it
means you use it all the time, just “loosely.”

When working with data that must be maintained, managed, and simplified by the means of operating on
many at once and indistinguishably, the Composite pattern is a fantastic tool.

Related Patterns
Chain of Responsibility

Iterator

Decorator

Visitor

Flyweight

CHAPTER 8

302

Facade

Technical Overview
Intent: To provide a unified interface to a set of interfaces in a subsystem, as shown in Figure 8-5.

Figure 8-5. Class diagram

Parts

• Facade

• Subsystem Objects

• Client

Benefits

• Conceals the complexities of the subsystems.

• Reveals a simple interface that is more efficient.

• Subsystems can still be utilized even if a façade is in place.

• Loosens the couplings among subsystems and the client.

• Localizes the subsystems that work together.

Drawbacks:

• Additional classes.

A Comprehensive Look
In a computer language, an object is known to possess particular attributes and behaviors, which
accompany it. The behaviors and attributes that it possesses ultimately define how we refer to the object
itself. When I use the words “quack” and “woof” you probably think of a duck and dog. If I say “lore” and
“hock” you might not realize the connection to which they refer because you are unfamiliar with these
parts. We tend to give more focus to the aspects that we interface with or can observe.

STRUCTURAL PATTERNS

303

There is an appropriate name for this: facade. A facade, by its definition, refers to the aspect that is
publicly seen and by the most common vantage point. More accurately, it’s the public entry. In
programming terms, it’s merely the interface that the developers and the client will use.

A facade provides two unique applications. The first is to conceal the inner workings of a complicated
system from the client. This reduces the amount of possible subsystems that need to be referenced and
targeted in an application. Secondly, it can reduce complexities among subsystems and the knowledge
required to use them in collaborations properly by exposing a simplified interface that any developer can
understand.

A facade appropriately delegates the request of the client to the appropriate subsystem.

Vignette
Ones and zeros make up the computer language known as binary language. Very few are able to read
and write in binary, yet nearly everyone is capable of using a computer. Even we developers who
understand that binary language would be helpless if it were not for the graphical user interface (GUI) of
the operating system (OS), let alone our ActionScript editors. Rather than requiring users to understand
binary, memory allocation, and retrieval, the system operators have provided a way to visually and
textually work with the many parts of the computer such as the memory, the processor, etc. Those familiar
enough with the aspects of their OS are often able to take advantage of the built-in language to achieve
the lower level experiences they need.

The AS3.0 Cast
Abstract Facade – The Interface

The abstract facade provides the interface to which all subclasses will implement.
Additionally, the abstract facade defines any factory objects necessary for determining the
appropriate subsystem interfaces for the application.

Concrete Facade – Implements Specifics

The concrete facade specifies the implementations of the interface that facilitate the
forwarding of client requests to any subsystems appropriately. The concrete facade also
implements the logic to manufacture the concrete subsystems.

Concrete Subsystems – Individual Systems

The concrete subsystems may be any object within your application that increases
complications within the orchestration among other objects. The concrete subsystems will
never have any knowledge of the facade.

Client – The Messenger of the Facade

The client may be any aspect of your application that has knowledge of the abstract facade.
On occasion, the client may have limited knowledge among the interface of one or more of
the subsystems within the facade.

When It’s Useful
For devising uniformity among a custom API.

For funneling multiple interfaces into a singular instance.

1

CHAPTER 8

304

Demonstration
A video player is made up of three top-level objects: Video, NetStream, and NetConnection. All three
objects work in collaboration to appropriately deliver a video to the user in a manner that reflects the
choices he or she makes (such decisions may be to pause, replay, etc.); see Listing 8-27.

Listing 8-27. Demonstrating the Assembly among Video, NetStream, and NetConnection

_netConnection = new NetConnection();
_netConnection.addEventListener(

 Â NetStatusEvent.NET_STATUS ,
doHandleConnectStatus);

_netConnection.connect(null);
_netStream = new NetStream(_netConnection);
_netStream.addEventListener(NetStatusEvent.NET_STATUS , doHandleNetStatus);
_netStream.client = this
_vid = new Video()
_vid.attachNetStream(_netStream)
addChild(_vid)

In order to handle such requests, the client needs to be aware of all three objects in order to devise the
appropriate associations and delegate the appropriate behaviors to the proper object. NetStream will
handle the majority of the forwarded behavior, yet Video and NetConnection are required to close a
connection. Let’s add a fourth object to the mix, GUI.

GUI displays the current state of the player and allows the user to control their watching experience. As a
fourth component that the client may need to be aware of, your system can become overly complicated
and cumbersome for another developer to manage.

The facade reduces the intricate knowledge of required subsystems by revealing a singular interface of
high-level operations of which a developer and client must be aware. To enable a loosely coupled
relationship between the facade and the subsystems and even the client, an abstract facade can be
layered and the implementation of an abstract factory should be utilized to instantiate the appropriate
subsystems.

While a video player does not truly have an overly complicated arrangement, your client knows that four
video components should not be necessary. As they are also related among one another, they should be
localized for any necessary maintenance. As an interface will be required for the client to communicate
with your encapsulated objects, this is a good time to devise a video player facade.

You begin with an abstraction of your facade that you will modify as you layer your interface to meet the
requirements of your system; see Listings 8-28 and 8-29.

Listing 8-28. AbstractVideoPlayerFacade is the Abstraction of Your Facade and Provides Default
Functionality Only in This Example

package
{
 public class AbstractVideoPlayerFacade extends Sprite
 {

STRUCTURAL PATTERNS

305

 protected var _vid : Video;
 protected var _ns : NetStream;
 protected var _nc : NetConnection;

 public function AbstractVideoPlayerFacade()
 {
 _nc = doGetNetConnection();
 _nc.connect(null);
 _ns = doGetNetStream();
 _vid = doGetVideo();
 _vid.attachNetStream(_ns);
 addChild(_vid);
 }

 public function playURL(url : String) : void
 {
 _ns.play(url);
 }

 final public function close() : void
 {
 _nc.close();
 _vid.clear();
 }

 protected function doGetVideo() : Video
 {
 throw new IllegalOperationError('doGetVideo must be overridden');
 }

 protected function doGetNetStream() : NetStream
 {
 throw new IllegalOperationError('doGetNetStream must be overridden');
 }

 protected function doGetNetConnection() : NetConnection
 {
 throw new IllegalOperationError('doGetNetConnection must be overridden');
 }
 }
}

CHAPTER 8

306

Listing 8-29. PauseResumeVideoPlayerFacade Extends AbstractVideoPlayerFacade and Implements
the Appropriate Behaviors

package
{
 public class PauseResumeVideoPlayerFacade extends AbstractVideoPlayerFacade
 {
 public function PauseResumeVideoPlayerFacade()
 {
 super();
 }

 public function pause() : void
 {
 _ns.pause();
 }

 public function resume() : void
 {
 _ns.resume();
 }

 override protected function doGetNetConnection() : NetConnection
 {
 return new NetConnection();
 }

 override protected function doGetNetStream() : NetStream
 {
 return new NetStream(_nc);
 }

 override protected function doGetVideo() : Video
 {
 var vid : Video = new Video();
 vid.width = 640;
 vid.height = 320;
 return vid;
 }
 }
}

Thus far, you have introduced four public methods that delegate the appropriate requests to the respective
objects. You can continue to further support necessary interfaces as well as allow visibility among the
objects for low-level operations, which your interface does not account for. Such low-level operations

STRUCTURAL PATTERNS

307

remain the responsibilities of Video, NetStream, and NetConnection. These objects should be extended
and implement the appropriate behavior that your application requires.

The facade Is merely the interface and the necessary operations to properly defer the clients’ requests to
the appropriate objects. This enhances the cohesion of the client and localizes the objects that make up
the video player; see Listing 8-30.

Listing 8-30. Client Use the Facade, Unaware of the Subsystems Involved

vid = new PauseResumeVideoPlayerFacade();
 addChild(vid);
 vid.playURL("superfad_preguntas.flv");

vid.pause();
vid.play();

FAQ

• The facade sounds like an interface to me. How is it different from an interface?

It’s actually good that it does resemble an interface to you because that is what the
facade wants you to believe. The facade acts as an interface to an object so that the
client does not need to be aware of the many objects and their interfaces that,
without the facade there to conceal them, it would.

The major difference is that a facade intends to make it easier to use the many
subsystems to which it coordinates, but should advanced developers require the
ability to make use of the objects without the use of a facade, they can do just that.

Related Patterns
Abstract Factory

Mediator

CHAPTER 8

308

Chapter Summary
Structural patterns shed light on ways to enable an extension of requirements by utilizing additive support.
This is accomplished either with inheritance or composition to devise new associations.

The concept of adding allows objects to remain more cohesive, more reusable, and increases flexibility,
and additionally, to use larger objects.

Key Points
• The Decorator pattern offers added embellishment among like interfaces.

• The Adapter pattern adapts an already existing object to a similar interface.

• The Composite delivers one message from the client to all composed Components.

• The Facade reduces the intricacies of object collaborations from a client.

309

Chapter 9

Q&A

The previous chapters on design patterns have covered an enormous amount, and now you get an
opportunity to use that information. This chapter provides a quiz consisting of 25 questions, to provide you
with immediate feedback on your understanding of the material. These questions pertain to design
patterns (creational, behavioral and structural) as covered in this book.

You won’t be scored or judged on your answers, so do your best to use this chapter as a way to further
understand and practice using design patterns.

Notes: 1. For formatting reasons, the quiz questions don’t include packages. External definitions must
always have a package keyword. 2. Some questions are straightforward, and others require you to supply
the implementations for incomplete listings.

Design Pattern Quiz
1. The common prefixes make, create, and get reflect which specific design pattern?

2. Primitive operations, which are prefixed with do, are used by which pattern?

3. Separate the instantiation from its assembly to promote flexibility in Listing 9-1.

Listing 9-1. AbstractClass

public class AbstractClass extends Sprite
{
 public function AbstractClass()
 {

CHAPTER 9

310

 var someMovieClip : MovieClip = new ConcreteMovieClip();
 someMovieClip.y = 25;
 someMovieClip.x = 40;
 someMovieClip.play();
 addChild(someMovieClip);
 }
}

Listing 9-2. AbstractClass

Listing 9-3. FactoryMethodClass.as

Q&A

311

4. Design a decorator that enhances a bitmap with a scrollRect that can scroll to reveal concealed
areas of the image using the mouse. The bitmap interface is IBitmap in Listing 9-4.

Listing 9-4. IBitmap

public interface IBitmap
{
 function get bitmapData() : BitmapData;
 function set bitmapData(value : BitmapData) : void;
 function get pixelSnapping() : String;
 function set pixelSnapping(value : String) : void;
 function get smoothing() : Boolean;
 function set smoothing(value : Boolean) : void;
}

Listing 9-5. DecoratorAbstract.as

CHAPTER 9

312

Listing 9-6. MouseScrollingDecorator.as

 protected var _viewport : Rectangle;

 protected var _pixelsPerWide : int;

 protected var _pixelsPerTall : int;

 private var _rectTall : int = 400;

 private var _rectWide : int = 400;

Q&A

313

5. Explain how you can subclass a method and provide it with an implementation without disturbing the
algorithm in which the implementation is required.

6. Explain the benefits of an Iterator in an aggregate.

7. Define a component interface that favors transparency over safety in all of its components.

Listing 9-7. IComponent.as

CHAPTER 9

314

8. This pattern ensures state synchronization. ____________________

9. Mushroomy Kingdom uses the latest console platform and its power to revisit stage 1-1 with dreamy
textures. Table 9-1 lists the names that reference the linked images of the .fla.

Table 9-1. Stage 1-1 concretes revisited

New stone floor tile: StoneFlooring

New money box tile: MoneMone

New brick tile: WhiteStone

New pipe tile: IndustrialPlumbing
Cloud: AlphaCloud

Hill terrain: HillSide

Using the AbstractMarioLevelDirector and the AbstractMarioEsqueLevelEditor code and the reference
names from Table 9-1, write the implementations to populate this scene. The dimensions aren’t important.

Listing 9-8. AbstractMarioEsqueLevelEditor.as

public class AbstractMarioEsqueLevelEditor
{
 private var _bitmapD : BitmapData;
 private var _backgroundColor : uint;
 private var _width : int;
 private var _height : int;
 private var _pt : Point;
 private var _tile : Shape;

 public function AbstractMarioEsqueLevelEditor()
 {
 _tile = new Shape();
 _pt = new Point(0 , 0);
 }

 final public function createMap() : void
 {
 bitmap = doCreateMap();
 }

 final public function getLevel() : BitmapData
 {
 return _bitmapD;
 }

Q&A

315

 final public function createStone(rect : Rectangle) : void
 {
 addTile(doCreateStone() , rect);
 }

 final public function createSolidBrick(rect : Rectangle) : void
 {
 addTile(doCreateSolidBrick() , rect);
 }

 final public function createBreakableBrick(rect : Rectangle) : void
 {
 addTile(doCreateBreakableBrick() , rect);
 }

 final public function createMoneyBox(rect : Rectangle) : void
 {
 addTile(doCreateMoneyBox() , rect);
 }

 final public function createCloud(rect : Rectangle) : void
 {
 addTile(doCreateCloud() , rect);
 }

 final public function createHill(rect : Rectangle) : void
 {
 addTile(doCreateHill() , rect);
 }

 final public function createBush(rect : Rectangle) : void
 {
 addTile(doCreateBush() , rect);
 }

 final public function creatCastle(rect : Rectangle) : void
 {
 addTile(doCreatCastle() , rect);
 }

 final public function createPipe(rect : Rectangle) : void
 {
 addTile(doCreatePipe() , rect);
 }

CHAPTER 9

316

 final public function get width() : int
 {
 return _width;
 }

 final public function set width(width : int) : void
 {
 _width = width;
 }

 final public function get height() : int
 {
 return _height;
 }

 final public function set height(height : int) : void
 {
 _height = height;
 }

 final public function get backgroundColor() : uint
 {
 return _backgroundColor;
 }

 final public function set backgroundColor(backgroundColor : uint) : void
 {
 _backgroundColor = backgroundColor;
 }

 final public function get bitmap() : BitmapData
 {
 return _bitmapD;
 }

 final public function set bitmap(bitmap : BitmapData) : void
 {
 _bitmapD = bitmap;
 }

 protected function doCreateMap() : BitmapData
 {
 return new BitmapData(width , height , false , backgroundColor);

Q&A

317

 }

 protected function doCreateSolidBrick() : DisplayObject
 {
 throw new IllegalOperationError('doCreateSolidBrick must be overridden');
 return null;
 }

 protected function doCreateBreakableBrick() : DisplayObject
 {
 throw new IllegalOperationError('doCreateBreakableBrick must be overridden');
 return null;
 }

 protected function doCreateMoneyBox() : DisplayObject
 {
 throw new IllegalOperationError('doCreateMoneyBox must be overridden');
 return null;
 }

 protected function doCreateCloud() : DisplayObject
 {
 throw new IllegalOperationError('doCreateCloud must be overridden');
 return null;
 }

 protected function doCreateHill() : DisplayObject
 {
 throw new IllegalOperationError('doCreateHill must be overridden');
 return null;
 }

 protected function doCreatePipe() : DisplayObject
 {
 throw new IllegalOperationError('doCreatePipe must be overridden');
 return null;
 }

 private function addTile(dO : DisplayObject , rect : Rectangle) : void
 {
 var sprite : BitmapData = snapShot(dO);
 _pt.x = rect.x;
 _pt.y = rect.y;
 if (rect.width > 0 || rect.height > 0) ;

CHAPTER 9

318

 {
 sprite = tile(sprite , rect);
 }
 bitmap.copyPixels(sprite , sprite.rect , _pt);
 }

 private function snapShot(dO : DisplayObject) : BitmapData
 {
 var snapshot : BitmapData = new BitmapData(dO.width , dO.height , true , 0);
 snapshot.draw(dO);
 return snapshot;
 }

 private function tile(bmpd : BitmapData , rect : Rectangle) : BitmapData
 {
 var _t : Shape = _tile;
 var g : Graphics = _t.graphics;
 g.clear();
 g.beginBitmapFill(bmpd , null , true , false);
 g.drawRect(0 , 0 , rect.width , rect.height);
 g.endFill();
 return snapShot(_t);
 }
}

Listing 9-9. QuizLevelEditor.as

Q&A

319

Listing 9-10. AbstractMarioLevelDirector.as

public class AbstractMarioLevelDirector
{
 protected const _width : int = 400;
 protected const _height : int = 300;
 protected const _bgColor : uint = 0xacccff;
 protected var _builder : AbstractMarioEsqueLevelEditor;

CHAPTER 9

320

 public function AbstractMarioLevelDirector(builder:AbstractMarioEsqueLevelEditor);
 {
 _builder = builder;
 }
 public function getLevel() : BitmapData
 {
 return _builder.getLevel();
 }
}

Listing 9-11. QuizLevelDirector.as

Q&A

321

CHAPTER 9

322

10. Explain why it’s unwise to use a Simple Singleton in an application.

11. The following code is from an unrevealed class.

Listing 9-12. Unrevealed class

...cont
public function makeFastFoodSandwich(menu_number : int) : ValueMeal
{
 switch(menu_number)
 {
 case 1:
 return new DoubleStack();
 break;
 case 2 :
 return new ChickenSandwich();
 break;
 case 3:
 return new ChickenNuggets();

Q&A

323

 break;
 case 4:
 return new Frosty();
 break;
 }
}
...cont

The code in Listing 9-12 uses the Factory Method pattern? True False

12. Twitter is the epitome of which design pattern? ____________________

13. Having parallel hierarchies means you use fewer classes than when using orthogonal hierarchies.
True False

14. These three patterns can optionally intercept a request before passing it on.

15. Show a loose composite that stops all MovieClips in the DisplayList.
//traverse(this.stage);

CHAPTER 9

324

16. Re-create the display list from AS 3.0 as a composite.

Listing 9-13. IComponent.as (DisplayObject) interface

Listing 9-14. IComposite.as (DisplayObjectContainer) interface

Q&A

325

Listing 9-15. Leaf.as (DisplayObject)

 public class Leaf implements __________________
 {
 }

17. What are the two most significant differences between the State pattern and the Strategy pattern?

18. Suppose a loader uses the following states: Closed, OpeningConnection, Loading, and Loaded.
Given the interface of ILoader shown in Listing 9-16, assemble a loader using only the State
pattern, ensuring that the loader can load a new request at any given point in time, as well as be
destroyed, without using any conditional statements.

Listing 9-16. Loader interface

public interface ILoader
{
 function close();

 function load(request : URLRequest , context : LoaderContext = null) : void;

 function loadBytes(bytes : ByteArray , context : LoaderContext = null) : void;

 function get content() : DisplayObject;

 function get contentLoaderInfo() : LoaderInfo;

 function get ldr() : Loader;

 function dispose() : void;
}

Listing 9-17. AbstractLoadersContext.as

public class AbstractLoadersContext extends Sprite implements ILoader

{

 private var _ldr : Loader

CHAPTER 9

326

 protected var _stateLoader : ALoaderStateObject

 public function AbstractLoadersContext()

 {

 addChild(_ldr = new Loader());

 _stateLoader = createState(this)

 }

Q&A

327

Listing 9-18. LoadersContext.as

CHAPTER 9

328

Listing 9-19. ALoaderStateObject.as extends Object

Q&A

329

Listing 9-20. EmptyLoaderStateObject.as extends ALoaderStateObject

CHAPTER 9

330

Listing 9-21. OpeningConnectionStateObject.as extends ALoaderStateObject

Q&A

331

Listing 9-22. LoadingStateObject.as extends ALoaderStateObject

CHAPTER 9

332

Q&A

333

Listing 9-23. LoadedStateObject.as extends ALoaderStateObject

CHAPTER 9

334

19. Write an AbstractShape class and its subclasses, Square and Circle, so they can be drawn and
cleared. Additionally, construct an AbstractCommand class that can execute and un-do said executed
code. There are two possible solutions; write both.

Listing 9-24. IGraphics.as interface

Listing 9-25. AbstractShape.as constants WIDE and TALL are both 20 pixels. FILL_COLOR is yellow.

 protected const WIDE : int = 20;

 protected const TALL : int = 20;

 private const FILL_COLOR : uint = 0xfff000;

Q&A

335

Listing 9-26. CircleShape.as

Listing 9-27. SquareShape.as

CHAPTER 9

336

Listing 9-28. AbstractShapeCommand.as

Listing 9-29. ShapeCommandDraw.as

Q&A

337

Listing 9-30. ShapeCommandUndo.as

Listing 9-31. AbstractShapeUndoCommand.as

Listing 9-32. ShapeCommandWithUndo.as

CHAPTER 9

338

20. The Execute method accompanies which design pattern?

21. Explain the advantage of the Abstract Factory pattern over the Factory Method pattern.

22. In ActionScript 3.0, what are the three design patterns used in the EventSystem to carry out events of
DisplayObjects?

23. Three objects make up an image loader in an application: a loader, an image mask, and a description
box. Using these three objects, the sequence must occur in the following order:

An image loads.

The mask transitions to reveal the image.

Text appears, giving a description.

Demonstrate how the Chain of Responsibility pattern can properly compliment the output of the
following client code in Listing 9-33.

Listing 9-33. DocumentClass using the Chain of Responsibility pattern to accomplish its sequence

 public function DocumentClass()
 {
 var img : AbstractView = new ImageView()

 var mask : AbstractView = new MaskView()
 img.addHandler(mask)

 var tf : AbstractView = new TextFieldView()
 mask.addHandler(tf)

 tf.addHandler(IHandler(new NullHandler()))
 }

Q&A

339

 //... [object ImageView] target hit;
 //... [object MaskView] target hit;

 //... [object TextFieldView] target hit;
 //... [object NullHandler] target hit: end of Chain;

Listing 9-34. IHandler interface

Listing 9-35. AbstractView

CHAPTER 9

340

Listing 9-36. ImageView.as loads the following image: www.spilled-milk.com/000.jpg.

 ldr.load(new URLRequest("http://www.spilled-milk.com/000.jpg"))

Listing 9-37. MaskView

http://www.spilled-milk.com/000.jpg
http://www.spilled-milk.com/000.jpg

Q&A

341

Listing 9-38. DescriptionView

24. What pattern decouples multiple subsystems from client messaging by funneling those
implementations into a simpler interface? ___________________

25. Choose the appropriate associations.

Model Composite pattern

View Subject pattern

Controller Observer pattern

 Strategy pattern

CHAPTER 9

342

Answers to Design Patterns Quiz
1. The common prefixes make, create, and get reflect which specific design pattern?

The Factory Method pattern

2. Primitive operations, which are prefixed with do, are used by which pattern?

The Template Method pattern

3. Separate the instantiation from its assembly to promote flexibility in Listing 9-1.

Listing 9-1. AbstractClass

public class AbstractClass extends Sprite
{
 public function AbstractClass()
 {
 var someMovieClip : MovieClip = new ConcreteMovieClip();
 someMovieClip.y = 25;
 someMovieClip.x = 40;
 someMovieClip.play();
 addChild(someMovieClip);
 }
}

Listing 9-2. AbstractClass

public class AbstractClass extends Sprite

{

 public function AbstractClass ()

 {

 var mc : MovieClip = createMovie()

 mc.y = 25;

 mc.x = 40;

 mc.play();

 addChild(mc);

 }

 protected function createMovie() : MovieClip

 {

 throw new IllegalOperationError('createMovie must be overridden');

 return null;

 }

Q&A

343

}

Listing 9-3. FactoryMethodClass.as

 public class FactoryMethodClass extends AbstractClass

 {

 override protected function createMovie() : MovieClip

 {

 return new ConcreteMovieClip();

 }

 }

4. Design a decorator that enhances a bitmap with a scrollRect that can scroll to reveal concealed
areas of the image using the mouse. The bitmap interface is IBitmap in Listing 9-4.

Listing 9-4. IBitmap

public interface IBitmap
{
 function get bitmapData() : BitmapData;
 function set bitmapData(value : BitmapData) : void;
 function get pixelSnapping() : String;
 function set pixelSnapping(value : String) : void;
 function get smoothing() : Boolean;
 function set smoothing(value : Boolean) : void;
}

Listing 9-5. DecoratorAbstract.as

public class DecoratorAbstract extends Sprite implements IBitmap

{

 protected var _decoratee : Bitmap

 public function DecoratorAbstract(decoratee : Bitmap) : void

 {

 _decoratee = decoratee

 addChild(decoratee)

 }

 public function get bitmapData() : BitmapData

CHAPTER 9

344

 {

 return _decoratee.bitmapData;

 }

 public function set bitmapData(value : BitmapData) : void

 {

 _decoratee.bitmapData = value;

 }

 public function get pixelSnapping() : String

 {

 return _decoratee.pixelSnapping;

 }

 public function set pixelSnapping(value : String) : void

 {

 _decoratee.pixelSnapping = value;

 }

 public function get smoothing() : Boolean

 {

 return _decoratee.smoothing;

 }

 public function set smoothing(value : Boolean) : void

 {

 _decoratee.smoothing = value;

 }

}

Listing 9-6. MouseScrollingDecorator.as

public class MouseScrollingDecorator extends DecoratorAbstract

{

 protected var _viewport : Rectangle;

 protected var _pixelsPerWide : int;

 protected var _pixelsPerTall : int;

 private var _rectTall : int = 400;

Q&A

345

 private var _rectWide : int = 400;

 public function MouseScrollingDecorator(bitmap : Bitmap)

 {

 super(bitmap);

 addEventListener(MouseEvent.MOUSE_MOVE , onMovement);

 _decoratee.scrollRect = new Rectangle(0 , 0 , _rectWide , _rectTall);

 _pixelsPerWide = bitmap.width / _rectWide;

 _pixelsPerTall = bitmap.height / _rectTall;

 cacheAsBitmap = true;

 }

 private function onMovement(event : MouseEvent) : void

 {

 var localRect : Rectangle = this._decoratee.scrollRect;

 localRect.x = event.localX * _pixelsPerWide;

 localRect.y = event.localY;

 _decoratee.scrollRect = localRect;

 }

}

5. Explain how you can subclass a method and provide it with an implementation without disturbing the
algorithm in which the implementation is required.

The Template Method pattern offers the solution by marking the as final the method that defines the
primitive operations that make up an algorithm. The primitive operations reveal hooks for which a subclass
can provide implementations, while protecting the default implementation of the superclass.

6. Explain the benefits of an Iterator and an aggregate.

Using an iterator along with an aggregate conceals the logic that necessitates element retrieval from the
aggregate, which would otherwise pollute a client with unnecessary details.

7 . Define a component interface that favors transparency over safety in all of its components and leaves.

Listing 9-7. IComponent.as

public interface IComponent

{

 function addComponent(cmpt : Component) : void;

 function removeComponent(cmpt : Component) : void;

CHAPTER 9

346

 function operation() : void;

}

8. This pattern ensures state synchronization. The Observer pattern

9. Mushroomy Kingdom uses the latest console platform and its power to revisit stage 1-1 with dreamy
textures. Table 9-1 lists the names that reference the linked images of the .fla.

Table 9-1. Stage 1-1 concretes revisited

New stone floor tile: StoneFlooring

New money box tile: MoneMone

New brick tile: WhiteStone

New pipe tile: IndustrialPlumbing

Cloud: AlphaCloud
Hill terrain: HillSide

Using the AbstractMarioLevelDirector.as and the AbstractMarioEsqueLevelEditor.as code and the
reference names from Table 9-1, write the implementations to populate this scene. The dimensions aren’t
important.

Listing 9-8. AbstractMarioEsqueLevelEditor.as

public class AbstractMarioEsqueLevelEditor
{
 private var _bitmapD : BitmapData;
 private var _backgroundColor : uint;
 private var _width : int;
 private var _height : int;
 private var _pt : Point;
 private var _tile : Shape;

 public function AbstractMarioEsqueLevelEditor()
 {
 _tile = new Shape();
 _pt = new Point(0 , 0);
 }

 final public function createMap() : void
 {
 bitmap = doCreateMap();
 }

 final public function getLevel() : BitmapData
 {
 return _bitmapD;

Q&A

347

 }

 final public function createStone(rect : Rectangle) : void
 {
 addTile(doCreateStone() , rect);
 }

 final public function createSolidBrick(rect : Rectangle) : void
 {
 addTile(doCreateSolidBrick() , rect);
 }

 final public function createBreakableBrick(rect : Rectangle) : void
 {
 addTile(doCreateBreakableBrick() , rect);
 }

 final public function createMoneyBox(rect : Rectangle) : void
 {
 addTile(doCreateMoneyBox() , rect);
 }

 final public function createCloud(rect : Rectangle) : void
 {
 addTile(doCreateCloud() , rect);
 }

 final public function createHill(rect : Rectangle) : void
 {
 addTile(doCreateHill() , rect);
 }

 final public function createBush(rect : Rectangle) : void
 {
 addTile(doCreateBush() , rect);
 }

 final public function creatCastle(rect : Rectangle) : void
 {
 addTile(doCreatCastle() , rect);
 }

 final public function createPipe(rect : Rectangle) : void
 {

CHAPTER 9

348

 addTile(doCreatePipe() , rect);
 }

 final public function get width() : int
 {
 return _width;
 }

 final public function set width(width : int) : void
 {
 _width = width;
 }

 final public function get height() : int
 {
 return _height;
 }

 final public function set height(height : int) : void
 {
 _height = height;
 }

 final public function get backgroundColor() : uint
 {
 return _backgroundColor;
 }

 final public function set backgroundColor(backgroundColor : uint) : void
 {
 _backgroundColor = backgroundColor;
 }

 final public function get bitmap() : BitmapData
 {
 return _bitmapD;
 }

 final public function set bitmap(bitmap : BitmapData) : void
 {
 _bitmapD = bitmap;
 }

 protected function doCreateMap() : BitmapData

Q&A

349

 {
 return new BitmapData(width , height , false , backgroundColor);
 }

 protected function doCreateSolidBrick() : DisplayObject
 {
 throw new IllegalOperationError('doCreateSolidBrick must be overridden');
 return null;
 }

 protected function doCreateBreakableBrick() : DisplayObject
 {
 throw new IllegalOperationError('doCreateBreakableBrick must be Â

overridden');
 return null;
 }

 protected function doCreateMoneyBox() : DisplayObject
 {
 throw new IllegalOperationError('doCreateMoneyBox must be overridden');
 return null;
 }

 protected function doCreateCloud() : DisplayObject
 {
 throw new IllegalOperationError('doCreateCloud must be overridden');
 return null;
 }

 protected function doCreateHill() : DisplayObject
 {
 throw new IllegalOperationError('doCreateHill must be overridden');
 return null;
 }

 protected function doCreatePipe() : DisplayObject
 {
 throw new IllegalOperationError('doCreatePipe must be overridden');
 return null;
 }

 private function addTile(dO : DisplayObject , rect : Rectangle) : void
 {
 var sprite : BitmapData = snapShot(dO);

CHAPTER 9

350

 _pt.x = rect.x;
 _pt.y = rect.y;
 if (rect.width > 0 || rect.height > 0) ;
 {
 sprite = tile(sprite , rect);
 }
 bitmap.copyPixels(sprite , sprite.rect , _pt);
 }

 private function snapShot(dO : DisplayObject) : BitmapData
 {
 var snapshot : BitmapData = new BitmapData(dO.width, dO.height , true , 0);
 snapshot.draw(dO);
 return snapshot;
 }

 private function tile(bmpd : BitmapData , rect : Rectangle) : BitmapData
 {
 var _t : Shape = _tile;
 var g : Graphics = _t.graphics;
 g.clear();
 g.beginBitmapFill(bmpd , null , true , false);
 g.drawRect(0 , 0 , rect.width , rect.height);
 g.endFill();
 return snapShot(_t);
 }
}

Listing 9-9. QuizLevelEditor.as

public class QuizLevelEditor extends AbstractMarioEsqueLevelEditor

{

 public function QuizLevelEditor()

 {

 super();

 }

 override protected function doCreateMap() : BitmapData

 {

 return new BitmapData(width , height , false , backgroundColor);

 }

Q&A

351

 override protected function doCreateSolidBrick() : DisplayObject

 {

 return new StoneFlooring();

 }

 override protected function doCreateBreakableBrick() : DisplayObject

 {

 return new WhiteStone();

 }

 override protected function doCreateMoneyBox() : DisplayObject

 {

 return new MoneMone();

 }

 override protected function doCreateCloud() : DisplayObject

 {

 return new AlphaClouds();

 }

 override protected function doCreateHill() : DisplayObject

 {

 return new HillSide();

 }

 override protected function doCreatePipe() : DisplayObject

 {

 return new IndustrialPlumbing();

 }

}

Listing 9-10. AbstractMarioLevelDirector.as

public class AbstractMarioLevelDirector
{
 protected const _width : int = 400;
 protected const _height : int = 300;
 protected const _bgColor : uint = 0xacccff;
 protected var _builder : AbstractMarioEsqueLevelEditor;

CHAPTER 9

352

 public function AbstractMarioLevelDirector(builder :
 Â AbstractMarioEsqueLevelEditor);
 {
 _builder = builder;
 }

 public function getLevel() : BitmapData
 {
 return _builder.getLevel();
 }
}

Listing 9-11. QuizLevelDirector.as

public class QuizLevelDirector extends AbstractMarioLevelDirector

{

 private var rect : Rectangle = new Rectangle(0 , 0 , 0 , 0)

 public function QuizLevelDirector(builder : AbstractMarioEsqueLevelEditor)

 {

 super(builder);

 }

 override public function getLevel() : BitmapData

 {

 _builder.width = _width;

 _builder.height = _height;

 _builder.backgroundColor = _bgColor;

 _builder.createMap();

 buildScenicTerrain();

 buildScenicClouds();

 buildScenicBricks();

 buildFloor();

 buildPipes();

 buildMoneyBox();

 return _builder.getLevel();

 }

Q&A

353

 private function buildMoneyBox() : void

 {

 assignRect(210 , 40);

 _builder.createMoneyBox(rect);

 assignRect(80 , 130);

 _builder.createMoneyBox(rect);

 assignRect(180 , 130);

 _builder.createMoneyBox(rect);

 assignRect(230 , 130);

 _builder.createMoneyBox(rect);

 }

 private function buildScenicBricks() : void

 {

 assignRect(155 , 130 , 120 , 23);

 _builder.createBreakableBrick(rect);

 }

 private function buildPipes() : void

 {

 assignRect(330 , _height - 15 * 2 - 65);

 _builder.createPipe(rect);

 }

 private function buildFloor() : void

 {

 assignRect(0 , _height - 56 , _width , _height - 56);

 _builder.createSolidBrick(rect);

 }

 private function buildScenicTerrain() : void

 {

 assignRect(0 , 90 , _width , _height - 56);

 _builder.createHill(rect);

 }

 private function buildScenicClouds() : void

CHAPTER 9

354

 {

 assignRect(0 , 0 , _width , 1);

 _builder.createCloud(rect);

 }

 private function assignRect(x : int=0, y : int=0, w : int=0, h : int=0) : void

 {

 rect.x = x;

 rect.y = y;

 rect.width = w;

 rect.height = h;

 }

}

10. Explain why it’s unwise to use a Simple Singleton in an application.

Using a Simple Singleton in AS 3.0 is a bad idea because it doesn’t give you the ability to extend the static
instance. Additionally, the Simple Singleton tightly couples code with a static reference, which makes it
difficult, or slower, to reuse code in the future.

11. The following code is from an unrevealed class.

Listing 9-12. UnRevealed class

...cont
public function makeFastFoodSandwich(menu_number : int) : ValueMeal
{

 switch(menu_number)
 {
 case 1:
 return new DoubleStack();
 break;
 case 2 :
 return new ChickenSandwich();
 break;
 case 3:
 return new ChickenNuggets();

 break;
 case 4:
 return new Frosty();
 break;
 }
 }
...cont

Q&A

355

The code in Listing 9-12 is a factory method. True False

12. Twitter is the epitome of which design pattern? The Observer pattern

13. Having parallel hierarchies means you use fewer classes than when using orthogonal hierarchies.
True False

Quite the contrary. Any time you have parallel hierarchies, you multiply your system by the number of
parallel hierarchies.

14. These three patterns can optionally intercept a request before passing it on.

Decorator pattern

Chain of Responsibility pattern

Adapter pattern

15. Show a loose composite that stops all MovieClips in the DisplayList.

 //traverse(this.stage)

 public function traverse(mc : DisplayObjectContainer) : void

 {

 if (mc is MovieClip) ;

 {

 MovieClip(mc).stop();

 }

 if (mc.numChildren > 0) ;

 {

 for (var i : int = 0;i < mc.numChildren;i++) ;

 {

 var innards : DisplayObject = mc.getChildAt(i);

 if (innards is MovieClip) ;

 {

 traverse(MovieClip(innards));

 }

 }

 }

 }

CHAPTER 9

356

16. Re-create the display list from AS 3.0 as a composite.

Listing 9-13. IComponent.as (DisplayObject) interface

public interface IComponent

{

 function get parentComposite() : Component

 function set parentComposite(parentComposite : Component) : void

}

Listing 9-14. IComposite.as (DisplayObjectContainer) interface

public interface IComposite

{

 function addChild(child : DisplayObject) : DisplayObject;

 function addChildAt(child : DisplayObject , index : int) : DisplayObject;

 function getChildAt(index : int) : DisplayObject;

 function getChildByName(name : String) : DisplayObject;

 function getChildIndex(child : DisplayObject) : int;

 function removeChild(child : DisplayObject) : DisplayObject;

 function removeChildAt(index : int) : DisplayObject;

 function setChildIndex(child : DisplayObject , index : int) : void;

 function swapChildren(child1 : DisplayObject , child2 : DisplayObject) : void

 function swapChildrenAt(index1 : int , index2 : int) : void;

}

Listing 9-15. Leaf.as (DisplayObject)

public class Leaf implements IComponent
{
}

Q&A

357

17. What are the two most significant differences between the State pattern and the Strategy pattern?

1. The Strategy pattern requires the client to change behaviors, whereas the State pattern conceals the
behaviors from the client for uniformity. (The state changes itself; the strategy is changed by the client).

2. The change in behaviors in the Strategy pattern reflects the needs of the client, whereas the change in

behaviors in the State pattern reflects the change in the context’s state.

18. Suppose a loader uses the following states: Closed, OpeningConnection, Loading, and Loaded.
Given the interface of ILoader shown in Listing 9-16, assemble a loader using only the State
pattern, ensuring that the loader can load a new request at any given point in time, as well as be
destroyed, without using any conditional statements.

Listing 9-16. Loader interface

public interface ILoader
{
 function close();

 function load(request : URLRequest , context : LoaderContext = null) : void;

 function loadBytes(bytes : ByteArray , context : LoaderContext = null) : void;

 function get content() : DisplayObject;

 function get contentLoaderInfo() : LoaderInfo;

 function get ldr() : Loader;

 function dispose() : void;
}

Listing 9-17. AbstractLoadersContext.as

public class AbstractLoadersContext extends Sprite implements ILoader

{

 private var _ldr : Loader

 protected var _stateLoader : ALoaderStateObject

 public function AbstractLoadersContext()

 {

 addChild(_ldr = new Loader());

 _stateLoader = createState(this)

 }

CHAPTER 9

358

 public function changeState(state : ALoaderStateObject) : void

 {

 _stateLoader.dispose();

 _stateLoader = state

 }

 public function close() : void

 {

 _stateLoader.close()

 }

 public function get content() : DisplayObject

 {

 return _stateLoader.content

 }

 public function get contentLoaderInfo() : LoaderInfo

 {

 return _stateLoader.contentLoaderInfo

 }

 public function load(request:URLRequest, context:LoaderContext = null) : void

 {

 _stateLoader.load(request , context)

 }

 public function loadBytes(bytes:ByteArray, context:LoaderContext =null) : void

 {

 _stateLoader.loadBytes(bytes , context)

 }

 public function get ldr() : Loader

 {

 return _ldr;

 }

 public function dispose() : void

Q&A

359

 {

 _stateLoader.dispose();

 }

 protected function createState(abstractLoadersContext : AbstractLoadersContext)

 ➥: ALoaderStateObject
 {
 throw new IllegalOperationError('createState must be overridden')

 return null;

 }

}

Listing 9-18. LoadersContext.as

public class LoadersContext extends AbstractLoadersContext

{

 public function LoadersContext()

 {

 super();

 }

 override protected function createState(abstractLoadersContext :

 ➥AbstractLoadersContext) : ALoaderStateObject
 {

 return EmptyLoaderStateObject(abstractLoadersContext);

 }

}

Explanat ion: LoadersContext uses a factory method, whereas the StateObjects don’t, because
LoadersContext declares the initial StateObject. This is subject to change more than the
StateObjects because the individual states typically have a particular successor.

Listing 9-19. ALoaderStateObject.as extends Object

public class ALoaderStateObject extends Object

{

 protected var _ldrContext : LoadersContext

 protected var _ldr : Loader

 public function ALoaderStateObject(context : LoadersContext)

 {

CHAPTER 9

360

 _ldrContext = context

 _ldr = context.ldr

 }

 public function close() : void

 {

 }

 public function get content() : DisplayObject

 {

 return null

 }

 public function get contentLoaderInfo() : LoaderInfo

 {

 return null

 }

 public function load(request:URLRequest , context:LoaderContext = null) : void

 {

 }

 public function loadBytes(bytes:ByteArray, context:LoaderContext =null) : void

 {

 }

 public function unload() : void

 {

 }

 public function unloadAndStop(gc : Boolean = true) : void

 {

 }

 public function get ldr() : Loader

 {

 return _ldr;

Q&A

361

 }

 public function set ldr(ldr : Loader) : void

 {

 _ldr = ldr;

 }

 public function dispose() : void

 {

 throw new IllegalOperationError('dispose must be overridden');

 }

}

Listing 9-20. EmptyLoaderStateObject.as extends ALoaderStateObject

public class EmptyLoaderStateObject extends ALoaderStateObject

{

 public function EmptyLoaderStateObject(context : LoadersContext)

 {

 super(context);

 }

 override public function get contentLoaderInfo() : LoaderInfo

 {

 return _ldr.loaderInfo;

 }

 override public function load(request:URLRequest,context:LoaderContext=null):void

 {

 _ldr.load(request , context);

 _ldrContext.changeState(new OpeningConnectionStateObject(_ldrContext));

 }

 override public function loadBytes(bytes:ByteArray,context:LoaderContext=null):void

 {

 _ldr.loadBytes(bytes , context);

 _ldrContext.changeState(new OpeningConnectionStateObject(_ldrContext));

 }

CHAPTER 9

362

 override public function dispose() : void

 {

 _ldr = null;

 _ldrContext = null;

 }

}

Listing 9-21. OpeningConnectionStateObject.as extends ALoaderStateObject

public class OpeningConnectionStateObject extends ALoaderStateObject

{

 public function OpeningConnectionStateObject(context : LoadersContext)

 {

 super(context);

 _ldr.contentLoaderInfo.addEventListener(Event.OPEN , onConnectionOpen);

 }

 private function onConnectionOpen(event : Event) : void

 {

 _ldrContext.changeState(new LoadingStateObject(_ldrContext));

 }

 override public function get contentLoaderInfo() : LoaderInfo

 {

 return ldr.loaderInfo

 }

 override public function dispose() : void

 {

 _ldr.contentLoaderInfo.removeEventListener(Event.OPEN , onConnectionOpen);

 _ldr = null;

 _ldrContext = null;

 }

}

Q&A

363

Listing 9-22. LoadingStateObject.as extends ALoaderStateObject

public class LoadingStateObject extends ALoaderStateObject

{

 public function LoadingStateObject(context : LoadersContext)

 {

 super(context);

 _ldr.contentLoaderInfo.addEventListener(Event.COMPLETE , onComplete);

 }

 private function onComplete(event : Event) : void

 {

 _ldrContext.changeState(new LoadedStateObject(_ldrContext));

 }

 override public function close() : void

 {

 _ldr.close();

 }

 override public function get contentLoaderInfo() : LoaderInfo

 {

 return ldr.loaderInfo;

 }

 override public function load(request:URLRequest, context:LoaderContext):void

 {

 close();

 _ldr.load(request , context);

 _ldrContext.changeState(new OpeningConnectionStateObject(_ldrContext));

 }

 override public function loadBytes(bytes:ByteArray,context:LoaderContext):void

 {

 close();

 _ldr.loadBytes(bytes , context);

CHAPTER 9

364

 _ldrContext.changeState(new OpeningConnectionStateObject(_ldrContext));

 }

 override public function dispose() : void

 {

 _ldr.contentLoaderInfo.removeEventListener(Event.COMPLETE , onComplete);

 _ldr = null;

 _ldrContext = null;

 }

}

Listing 9-23. LoadedStateObject.as extends ALoaderStateObject

public class LoadedStateObject extends ALoaderStateObject

{

 public function LoadedStateObject(context : LoadersContext)

 {

 super(context);

 }

 override public function close() : void

 {

 _ldr.unloadAndStop();

 _ldr.unload();

 }

 override public function get contentLoaderInfo() : LoaderInfo

 {

 return _ldr.loaderInfo;

 }

 override public function load(request:URLRequest,context:LoaderContext=null):void

 {

 close();

 _ldr.load(request , context);

 _ldrContext.changeState(new OpeningConnectionStateObject(_ldrContext));

 }

Q&A

365

 override public function loadBytes(bytes:ByteArray,context:LoaderContext=null):void

 {

 close();

 _ldr.loadBytes(bytes , context);

 _ldrContext.changeState(new OpeningConnectionStateObject(_ldrContext));

 }

 override public function dispose() : void

 {

 _ldr = null;

 _ldrContext = null;

 }

}

19. Write an AbstractShape class and its subclasses, Square and Circle, so they can be drawn and
cleared. Additionally, construct an AbstractCommand class that can execute and unexecute code.
There are two possible solutions; write both.

Listing 9-24. IGraphics.as interface

public interface IGraphics

{

 function draw() : void

 function clear() : void

 function get parent() : DisplayObjectContainer

}

Listing 9-25. AbstractShape.as constants WIDE and TALL are both 20 pixels. FILL_COLOR is yellow.

public class AbstractShape extends Shape implements IGraphics

{

 protected const WIDE : int = 20;

 protected const TALL : int = 20;

 private const FILL_COLOR : uint = 0xfff000;

 final public function draw() : void

 {

 addColor();

 doDraw();

 endFill();

CHAPTER 9

366

 }

 final public function clear() : void

 {

 this.graphics.clear();

 }

 protected function doDraw() : void

 {

 throw new IllegalOperationError('doDraw must be overridden');

 }

 private function addColor() : void

 {

 this.graphics.beginFill(FILL_COLOR , 1);

 }

 private function endFill() : void

 {

 this.graphics.endFill();

 }

}

Listing 9-26. CircleShape.as

public class CircleShape extends AbstractShape

{

 override protected function doDraw() : void

 {

 var radius : Number = Math.sqrt(WIDE * WIDE + TALL * TALL);

 this.graphics.drawCircle(0 , 0 , radius);

 }

}

Listing 9-27. SquareShape.as

public class SquareShape extends AbstractShape

{

Q&A

367

 override protected function doDraw() : void

 {

 this.graphics.drawRect(0,0,WIDE,TALL);

 }

}

Listing 9-28. AbstractShapeCommand.as

public class AbstractShapeCommand

{

 protected var _receiver : IGraphics;

 public function AbstractShapeCommand(rcvr : IGraphics)

 {

 _receiver = rcvr;

 }

 final public function execute() : void

 {

 doExecute();

 }

 protected function doExecute() : void

 {

 throw new IllegalOperationError('doExecute must be overridden');

 }

}

Listing 9-29. ShapeCommandDraw.as

public class ShapeCommandDraw extends AbstractShapeCommand

{

 override protected function doExecute() : void

 {

 _receiver.draw();

 }

}

CHAPTER 9

368

Listing 9-30. ShapeCommandUndo.as

public class ShapeCommandUndo extends AbstractShapeCommand

{

 override protected function doExecute() : void

 {

 _receiver.clear();

 _receiver.parent.removeChild(DisplayObject(_receiver));

 }

}

Listing 9-31. AbstractShapeUndoCommand.as

public class AbstractShapeUndoCommand extends AbstractShapeCommand

{

 public function undo() : void

 {

 doUndo();

 }

 protected function doUndo() : void

 {

 throw new IllegalOperationError('doUndo must be overridden');

 }

}

Listing 9-32. ShapeCommandWithUndo.as

public class ShapeCommandWithUndo extends AbstractShapeUndoCommand

{

 override protected function doExecute() : void

 {

 _receiver.draw();

 }

 override protected function doUndo() : void

 {

 _receiver.clear();

 _receiver.parent.removeChild(DisplayObject(_receiver));

Q&A

369

 }

}

20. The Execute method accompanies which design pattern?

The Command pattern

21. Explain the advantage of the Abstract Factory pattern over the Factory Method pattern

Unlike a factory method, an abstract factory is an object that manufactures products. This allows the abstract
factory to be parameterized among other objects to which the manufacturing request can be delegated.

22. In ActionScript 3.0, what are the three design patterns used in the EventSystem to carry out events of
DisplayObjects?

Composite pattern

Chain of Responsibility pattern

Observer pattern

23. Three objects make up an image loader in an application: a loader, an image mask, and a description
box. Using these three objects, the sequence must occur in the following order:

a. An image loads.

b. The mask transitions to reveal the image.

c. Text appears, giving a description.

Demonstrate how the Chain of Responsibility pattern can properly compliment the output of the
following client code in Listing 9-33.

Listing 9-33. DocumentClass using the Chain of Responsibility pattern to accomplish its sequence

 public function DocumentClass()
 {
 var img : AbstractView = new ImageView();

 var mask : AbstractView = new MaskView();
 img.addHandler(mask);

 var tf : AbstractView = new TextFieldView();
 mask.addHandler(tf);

 tf.addHandler(IHandler(new NullHandler()));
 }
 //... [object ImageView] target hit;
 //... [object MaskView] target hit;

 //... [object TextFieldView] target hit;
 //... [object NullHandler] target hit: end of Chain;

CHAPTER 9

370

Listing 9-34. IHandler interface

public interface IHandler

{

 function addHandler(successor : IHandler) : void;

 function forward() : void;

}

Listing 9-35. AbstractView

public class AbstractView extends Sprite implements IHandler

{

 protected var _handler : IHandler;

 public function AbstractView()

 {

 }

 public function addHandler(successor : IHandler) : void

 {

 _handler = successor;

 }

 final public function forward() : void

 {

 doForward();

 _handler.forward();

 }

 protected function doForward() : void

 {

 trace(this + ' target hit');

 }

}

Listing 9-36. ImageView.as loads the following image: www.spilled-milk.com/000.jpg.

public class ImageView extends AbstractView

{

http://www.spilled-milk.com/000.jpg

Q&A

371

 protected var ldr : Loader

 public function ImageView()

 {

 super();

 ldr = new Loader();

 ldr.contentLoaderInfo.addEventListener(Event.COMPLETE , onImageLoad) ;

 ldr.load(new URLRequest("http://www.spilled-milk.com/000.jpg"));

 addChild(ldr)

 }

 public function onImageLoad(event : Event) : void

 {

 forward();

 }

}

Listing 9-37. MaskView

public class MaskView extends AbstractView

{

 public function MaskView()

 {

 super();

 }

}

Listing 9-38. TextFieldView

public class TextFieldView extends AbstractView

{

 public function TextFieldView()

 {

 super();

 }

}

24. What pattern decouples multiple subsystems from client messaging by funneling those
implementations into a simpler interface? The façade pattern

http://www.spilled-milk.com/000.jpg

CHAPTER 9

372

25. Choose the appropriate associations:

Model Composite pattern

View Subject pattern

Controller Observer pattern

 Strategy pattern

373

Chapter 10

MVC: A Compound Pattern

I have tried to take few shortcuts with the demonstrations of patterns to help reinforce previous patterns
even as I teach you new ones. While this absolutely bloated the code, and perhaps increased the difficulty,
I refused to pull any punches. The justification as to why I did not rely on simple and unrealistic demos was
so you could see how they are truly used in the real world. Also, I believe that simplification can often
dilute a necessary impact. I wanted to demonstrate that patterns are often utilized with other patterns and
are not always individual solutions.

I covered 15 of the 23 original Gang of Four design patterns, and these 15 were not chosen at random.
They are the most utilized design patterns in the ActionScript 3.0 language by professionals within the
interactive industry. This does not mean you should choose to stop at these 15. Design patterns are time-
tested solutions to recurring programmatic dilemmas. The more you know, and, more importantly, the
more you understand, the better.

OOP teaches four principles: encapsulation, data-hiding, polymorphism, and inheritance. While these are
great guidelines to follow, it’s often difficult to follow them to the letter, especially without having the proper
tools to do so. OOP is a style of coding based on a thought process and nothing more.

Design patterns, on the other hand, are solutions that other object-oriented programmers have devised to
fulfill aspects of object collaborations and object-oriented thought, thus further empowering OOP, which
would otherwise cripple flexible code.

By making use of the tools you have just learned and by adding them to your programming repertoire, you
can devise more separations among structures, adding to more reusable and more flexible code that may
not have been possible before. One well-known pattern that illustrates this concept is the Model View
Controller, or MVC.

OOP encourages the breakdown of complex problems into smaller, more manageable objects. This
practice offers greater flexibility among objects utilized but also allows a problem to be solved
incrementally. This can decrease an often overwhelming dilemma into smaller, more manageable hurdles
to solve. Smaller issues are less cumbersome to get through as they often focus on fewer details.

CHAPTER 10

374

In programming, the problem at hand is referred to as the problem domain (see Figure 10-1). The term
domain refers to boundaries that encompass all details critical to the issue.

Figure 10-1. A localized problem that requires a solution.

Each attempt to break this problem down into smaller, more manageable issues represents a subdivision
of the problem domain—in addition to being a problem domain within itself. While it may be unnecessary,
the subdivisions can continuously be broken down into even smaller problems (see Figure 10-2).

Figure 10-2. Deconstructing an overall problem domain into that of four smaller problem domains

As each subsection focuses on a particular aspect of a problem, each subdivision can be referred to as a
problem domain, respectively (see Figure 10-3).

Figure 10-3. Any problem domain can continue to be made more granular.

It’s often necessary to break down a larger issue into several smaller ones. This allows the mind to more
easily comprehend the tasks necessary to solve such a problem. Of course, the more pieces of a puzzle,
the more complicated it can become.

I have covered an extensive amount of solutions that you can now make use of to further the flexibility and
communication between such granular objects.

MVC: A COMPOUND PATTERN

375

As the Internet has expanded and computers have become much more powerful, the focus among
applications has homed in on user experience and how the user interacts with the application. A means to
incorporate the user and the application at one point in time was a problem to solve. Nowadays we can
implement a design pattern that bridges the gap between the user and the application. This design pattern
is known as the MVC.

The MVC: Model View Controller
Technical Overview

Intent: To provide users control over data as seen from multiple perspectives (see Figure 10-4).

Figure 10-4. Class Diagram

Parts
• Model

• View

• Controller

• Client

Benefits
• Increases cohesion of each aspect.

• Localizes a logic domain that can be easily maintained.

• Enables the Model’s independence from the UI.

CHAPTER 10

376

Drawbacks
• The MVC is complex.

• Compounded drawbacks among the patterns that it contains.

• Changes among the interface of one component may affect another.

A Comprehensive Look
The Model View Controller, or MVC, is made up of three aspects, as the name suggests: the Model, the
View, and the Controller. Trygve Reenskaug conceived its origins for the main purpose of allowing users to
manipulate complex data sets via multiple presentations.

The first aspect of the MVC, being the Model, localizes the set of data, or states, and behaviors required in
fulfilling the logic of the problem domain. This is referred to as the logic domain. The model, or logic
domain, possesses the appropriate methods by which its data can be retrieved and mutated accordingly.

The participation of the Model can be that of either an active or passive role. As a passive participant, the
model remains absent of any further duties, which pushes the onus of any change in state onto that of the
Controller. As an active participant, the Model adopts the role of publisher/notifier, in which Views as well
as Controllers can receive notifications of change in states via subscription, achieved with the Observer
pattern (Chapter 8).

The View in the MVC represents a graphical representation of any number of particular aspects possessed
by the Model. As one view may visually reflect only one chosen aspect of the model, there is no limit to the
amount of views that can be used along with a Model.

As far as the role of the View, visual representation among the Model’s internal representation is its only
focus. The absence of logic necessary to a problem domain within a View is what allows all visuals to be
interchangeable among other Views.

The Controller in the MVC is the mediator between the user’s input and the logic domain. The role of the
Controller is to provide the user the means to interact with the Model, as it possesses appropriate bindings
among the Model’s interface. To achieve flexibility, a controller is assigned to a View often by way of the
Strategy pattern (Chapter 7).

If the Model is not an active participant, the Controller must provide notification to the view it pertains to, so
that it can properly remain synchronized with the Model. A View should only be notified after all states are
properly assigned to the Model.

The MVC is a challenging pattern to grasp, as there are many variations regarding the particulars among
the three objects that make up the triad. One reason for this is that the MVC is a compound pattern. In
short, this means the MVC makes use of multiple design patterns already discussed to enable the three
aspects to make use of one another. The most important understanding among the MVC is the separation
among the three aspects, which provides distinct boundaries among the three components. This
separation aims to ensure that relevant behaviors, or logic pertinent to each domain, remain intact when
substituting or layering aspects of the triad.

The three components are:

1. The presentation, known as the View.

2. The system’s interface, logic, structure, or state,

MVC: A COMPOUND PATTERN

377

3. (or all the above) known as the Model.

4. The interpreter among a user’s input to the system, known as the Controller.

Typically, the MVC makes use of the Observer, Strategy, Composite, and Façade design patterns, and, at
its most granular state, is made up of 1:1:1 ratio.

The AS3.0 Cast
Abstract Model – The Interface

Because a Model is totally independent from Views and Controllers, they can be interchanged
among various Views and Controllers. Therefore, a proper interface is required so that the
data can be retrieved accordingly.

Concrete Model – The Logic Domain

It localizes and maintains the logic, state, and structure within a scope. The amount of data
varies for the particular problem domain.

Abstract View – The Views Abstract Class

The Abstract View separates the associations between the Model utilized from the visual
representations. Additionally, and optionally, the Abstract View can be the manufacturer of the
expected Controller that will be used along with the View.

Concrete View – Implements Specifics

The Concrete View contains the necessary logic to instantiate the appropriate Controller.

Abstract Controller – The Abstract Class of the Controller

The Abstract Controller can be used to devise a common interface to which all Concrete
Controllers can extend, allowing each to be substituted via the Strategy pattern. The Abstract
Controller can also retain references to the View and Model, which it will make use of and
supply any default behaviors that may be necessary.

Concrete Controller – Implements Specifics

The Concrete Controller implements the necessary means to bridge a user and the
application. This means handling the aspects of the user interactions and interpreting those
into requests of the Model.

Client – The Messenger of the Model

The client is most often the Controller, as it is the catalyst for any updates among itself and
views. These requests may be triggered by a user’s actions directly or indirectly.

When It’s Useful
When form and function are bound too greatly to one another and deter reusability.

Demonstration
Trygve would be displeased if I did not mention that the most important aspect of the MVC is the user. The
MVC’s purpose is to bridge the gap between the user’s mind and the computer.

CHAPTER 10

378

The Model mirrors the user’s mental model, which is the user’s understandings/expectations imparted on
the system. Consider your computer: regardless of its operating software, while it reads and writes bytes, it
allows you (the user) to impart your vision into the confines of the computer and control how it presents
stored bytes back to you. This would be the big-picture problem domain. As this example would be a
rather huge demonstration, I will minimize the scale to that of a simpler problem domain.

For this demonstration, I will show you how to use the MVC to mirror the mental model of a user and how
they interact with the icons on their desktop. (specifically the icon position and the icon name). You will be
creating a model that holds relevant information of a folder/file within your application, such as the name
and coordinates. It’s important to remember that the problem domain under the microscope is a particular
magnification of the big-picture problem domain, and therefore must be constructed with that in mind.

I begin with the Model; for this demonstration it will be the simplest of the three aspects.

The Model
The Model for this demonstration must allow the user to bestow their interpretation of how they choose to
interact with their data, in a way that appears as if the user is manipulating the actual data itself. In a
sense, the Model must represent the decisions of the user as if it were an extension of their mind.

For the purpose of allowing a user to manipulate the position of an icon on their desktop, as well as the file
name, the Model must properly possess the ability to retain the location as well as identification of an icon.

While your application will not be saving the user’s information, it’s not out of the realm of possibilities, just
out of scope for this demonstration. What it will be doing instead is maintaining the data, which can be
possibly broadcast to any object.

In order to provide a means of notification, you will make use of the Observer pattern. To separate the role
of “subject” from the role of Model, you’ll begin with an abstract class known as AbstractModel, which will
possess knowledge of possible observers that it will inform upon updates. You can achieve this behavior
with the use of the ISubject interface; see Listings 10-1 and 10-2.

Listing 10-1. ISubject Exposes Two Methods, which Allow Observers to Register and Unregister from
Notifications

public interface ISubject
{

 function addObserver(observer : IObserve , aspect : Function) : Â

 Boolean
 function removeObserver(observer : IObserve) : Boolean
}

Listing 10-2. AbstractModel Implements ISubject, which Allows the Addition and Removal of Observers

public class AbstractModel extends EventDispatcher implements ISubject
{
 protected var dict : Dictionary;

MVC: A COMPOUND PATTERN

379

 public function AbstractModel(target : IEventDispatcher = null)
 {
 super(target);
 dict = new Dictionary(false);
 }

 public function addObserver(observer : IObserve , aspect : Function) : Â

Boolean
 {
 dict[observer] = aspect;
 return true;
 }

 public function removeObserver(observer : IObserve) : Boolean
 {
 dict[observer] = null;
 delete dict[observer];

return true;
 }

 protected function notify() : void
 {
 throw new IllegalOperationError('notify must be overridden');
 }
}

By extending AbstractModel, you can layer data specifics and dictate how the notification process occurs.
Knowing that the Model retains the identity of each folder and its location, you can add the appropriate
properties. While folders and documents will both posses similar attributes, you create a Model that is
generic for both, as shown in Listing 10-3.

Listing 10-3. ConfigModel Subclasses AbstractModel and Supplies Additional Properties for UI Elements

public class ConfigModel extends AbstractModel
{
 private var _name : String;
 private var _xPos : int;
 private var _yPos : int;

 public function ConfigModel(target:IEventDispatcher=null)
 {
 super(target);
 }

 public function get name() : String
 {

CHAPTER 10

380

 return _name;
 }

 public function set name(name : String) : void
 {
 _name = name;
 }

 public function get xPos() : int
 {
 return _xPos;
 }

 public function set xPos(xPos : int) : void
 {
 _xPos = xPos;
 }

 public function get yPos() : int
 {
 return _yPos;
 }

 public function set yPos(yPos : int) : void
 {
 _yPos = yPos;
 }
}

The View
Next, you will focus on the View. A View will retain a reference to both its Model and the Controller to
which the View relies. When using any number of Controllers along with a particular View, the View can
rely on the Strategy pattern as a way to supply and partition the logic. Very often, a View and Controller
are built at the same time with each other in mind and therefore can be added to the View via the Factory
method. This particular demonstration makes use of the latter of the choices.

There are many possible icons that a user can interact with on a computer. In an effort to generalize these
icons and to standardize their uniformity, you’ll devise an appropriate abstraction.

AbstractView is the abstract class, which retains both the Model of the problem domain. As you know,
your views will be subscribing to the model as observers, so it will implement the IObserve interface; see
Listings 10-4 and 10-5.

MVC: A COMPOUND PATTERN

381

Listing 10-4. IObserve Exposes an Interface, which Enables a Subject to Pass In Notifications

 public interface IObserve
 {
 function notify(str:String):void
 }

Listing 10-5. AbstractView Extends IObserve in Order to Remain in Synch with the State of the Model

public class AbstractView extends Sprite implements IObserve
{
 protected var _mdl : AbstractModel

 public function AbstractView(mdl : AbstractModel=null)
 {
 if(mdl)
 this.mdl = mdl;

 }

 public function notify(str : String) : void
 {
 }

 public function get mdl() : AbstractModel
 {
 return _mdl;
 }

 public function set mdl(mdl : AbstractModel) : void
 {
 _mdl = mdl;
 _mdl.addObserver(this,null)
 }

 }

Having devised an abstraction that concerns itself mainly with the subscribing and unsubscribing, you now
must add the abstract layer that focuses on the roles of a view. The role of the view must retain a
reference to the model and its controller. AbstractFileSystemView will extend AbstractView and declare
the Factory method that manufactures the View’s Controller. This will allow varied views to be more easily
created and implemented; see Listing 10-6.

CHAPTER 10

382

Listing 10-6. AbstractFileSystemView is the Superclass of each File View Component

public class AbstractFileSystemView extends AbstractView
{

 protected var _strategy : AbstractController;

 public function AbstractFileSystemView(mdl : ConfigModel)
 {
 super(mdl);

 }

 protected function createDefaultController() : AbstractController
 {
 throw new IllegalOperationError('createDefaultController Â

must be overridden');
 return null;
 }
}

Two possible views a user can expect are a folder and a file. As you might think, a folder makes use of
composition whereas a file remains a leaf component. With this in mind, your MVC could make perfect use
of the Composite pattern. In order to accomplish this, your abstraction must be properly layered with
aspects of a component from the Composite pattern. The component possesses the appropriate
references (such as image icon, textfield, and the parenting composite) that both file and folder require.
This allows them to be indistinguishable from one another. You’ll devise yet another extension of
AbstractFileSystemView, which will become your component (see Listing 10-7).

Listing 10-7. OSComponent Extends AbstractFileSystemView and Layers Added References

public class OSComponent extends AbstractFileSystemView
{
 protected var _fileName : String;
 protected var _field : DisplayField;
 protected var _representation : Bitmap;
 protected var _parentComposite : OSComponent;
 static protected const PADDING : int = 4;

 public function OSComponent(mdl : ConfigModel)
 {
 super(mdl);
 }

 protected function dispatch(event : MouseEvent) : void
 {

MVC: A COMPOUND PATTERN

383

 event.stopPropagation();
 dispatchEvent(event);
 }

 public function open() : void
 {
 }

 public function close() : void
 {
 }

 public function get field() : DisplayField
 {
 return _field;
 }
}

Lastly, you add one additional layer to the OSComponent class that will contain the specifics of a Leaf within
your application (see Listing 10-8).

Listing 10-8. LeafView Extends OSComponent and Supplies the Concretes Among Each Factory Method

public class LeafView extends OSComponent
{
 [Embed(source="/Users/FeZEC/workspace/CreationalPatterns/Â

 bin/Tree_defaultLeafIcon.png")]
 private var embeddedClass : Class;

 public function LeafView(mdl : ConfigModel = null)
 {
 super(mdl);
 _representation = createIcon();
 _field = createDisplayField();
 addChild(_representation);
 _field.y = this.height + PADDING;
 _field.x = (this.width - _field.textWidth) * .5;
 _field.addEventListener(MouseEvent.MOUSE_DOWN , dispatch);
 _field.addEventListener(MouseEvent.MOUSE_UP , dispatch);
 addChild(_field);
 _strategy = createDefaultController();
 }

 protected function createDisplayField() : DisplayField
 {

CHAPTER 10

384

return new DisplayField();
}

protected function createIcon() : Bitmap
{

return new embeddedClass() as Bitmap;
}

override protected function createDefaultController() : AbstractController
{

return new ComponentRenamerController (_mdl , this);
}

}

DisplayField is a textfield that possesses two additional operations: rename and display. These two
methods toggle between the dynamic and input type of the textfield to allow for file/folder renaming (see
Listing 10-9).

Listing 10-9. DisplayField is Responsible for Displaying a File/Folder Name

public class DisplayField extends TextField
{

public function DisplayField()
{

super();
autoSize = TextFieldAutoSize.CENTER;
height = 10;
width = 1;
embedFonts = false;
display();

}

public function rename() : void
{

var end : int = this.text.indexOf('.');
type = TextFieldType.INPUT;
selectable = true;
setSelection(-1 , (end > -1) ? end : text.length);
border = true;

}

public function display() : void
{

type = TextFieldType.DYNAMIC;

MVC: A COMPOUND PATTERN

385

 selectable = false;
 border = false;
 }
}

The Controller
The final aspect of the triad is the Controller. As a Controller may require interchangeability among a
system, it requires a superclass from which all similar Controllers extend. Because the Controller receives
the input of a user, the Controller is expected to make changes within the Model for the view, coordinate
changes of a View, or both. This depends on how you choose to use each aspect to communicate. Either
way, a Controller must retain references of View and Model; therefore you can supply a superclass known
as AbstractController, which will retain these references (see Listing 10-10).

Listing 10-10. AbstractController is the Superclass of all Controllers

public class AbstractController extends Object
{
 protected var _mdl : AbstractModel;
 protected var _view : AbstractFileSystemView;

 public function AbstractController(mdl : AbstractModel=null , Â

 view : AbstractFileSystemView =null)
 {
 _mdl = mdl;
 _view = view;
 }

 public function get mdl() : AbstractModel
 {
 return _mdl;
 }

 public function set mdl(mdl : AbstractModel) : void
 {
 _mdl = mdl;
 }

 public function get view() : AbstractFileSystemView
 {
 return _view;
 }

 public function set view(view : AbstractFileSystemView) : void
 {

CHAPTER 10

386

 _view = view;
 }
}

What makes the Controller necessary is how each Controller handles the user’s input relative to a
View/Model. To demonstrate how a Controller coordinates changes with the View as well as the Model,
you will devise a ComponentRenamerController, which makes use of the DisplayField within each View.
Much like that of PC/Mac, a folder/file can be renamed if a user double clicks on the field within a particular
range of milliseconds. ComponentRenamerController reflects that behavior on each View (see Listing 10-
11).

Listing 10-11. ComponentRenamerController Allows for the Renaming of Each View in Your Problem
Domain

public class ComponentRenamerController extends AbstractController
{
 protected var _display : DisplayField;
 protected var _timer : int;
 protected const MAX_DURATION : int = 1000;

 public function ComponentRenamerController(mdl : AbstractModel , Â

 view : OSComponent)
 {
 super(mdl , view);
 _timer = 0;
 _display = view.field;
 _display.addEventListener(MouseEvent.CLICK , onMouseClick);
 _display.addEventListener(FocusEvent.FOCUS_OUT , onOut);
 _display.addEventListener(KeyboardEvent.KEY_DOWN , onPossibleEnter);
 }

 private function onPossibleEnter(event : KeyboardEvent) : void
 {
 switch(event.keyCode)
 {
 case Keyboard.ENTER:
 commit();
 break;
 }
 }

 protected function onOut(event : FocusEvent) : void
 {
 commit();
 }

MVC: A COMPOUND PATTERN

387

 protected function commit() : void
 {
 _display.display();
 ConfigModel(_mdl).name = _display.text;

 Mouse.cursor = MouseCursor.ARROW;
 }

 private function onMouseClick(event : MouseEvent) : void
 {
 var currentTimer : int = getTimer();
 if ((currentTimer - _timer) < MAX_DURATION)
 {
 _display.rename();
 }
 _timer = currentTimer;
 }
}

With your currently implemented code, you can make use of the DocumentClass to test the functionality of
your use case scenario. You’ll use the DocumentClass to instantiate your Model, and to it you will supply
defaults for each piece of data, which could represent the default settings. The Model of another problem
domain will supply this data, but for now you can simply add the Data here to witness its effects (see
Listing 10-12). Next, a View is instantiated and the Model is supplied as a parameter.

Listing 10-12. DocumentClass Supplies Data to a Model, then Associates the Model with a View

public class DocumentClass extends Sprite
{
 public function DocumentClass()
 {
 stage.scaleMode = StageScaleMode.EXACT_FIT;
 stage.align = StageAlign.TOP_LEFT;
 mouseEnabled = false;

 var cm : ConfigModel = new ConfigModel();
 cm.name = "Default_Text.txt";
 cm.xPos = Math.random() * this.stage.stageWidth;
 cm.yPos = Math.random() * this.stage.stageHeight;
 addChild(new LeafView(cm));
 }
}

Once the application is running, by clicking down on the mouse twice slowly within one second on the
display field, the display field of the presentation will turn into an input field, allowing the user to change the

CHAPTER 10

388

given name of the component. As the user is able to manipulate the text within the field, the Model only
requires updating the currently stored filename to that chosen by the user.

Since the Model is unaware of either View or Controller, the task of updating the Model falls on the
Controller.

This demonstration should arouse specifics points regarding the Model/View/Controller Pattern.

The first noteworthy point is that this particular MVC demonstration has made no use of the Strategy
pattern or, arguably, the Observer pattern. I say “arguably” because you did add the ability into the code. It
did, on the other hand, make use of the Template method and the Factory method. As a Compound
pattern, the MVC is most concerned with the boundaries of presentation and structure. What this should
illustrate is that the utilized patterns are not what make the MVC, but rather the Model, View, and
Controller objects itself. Don’t feel limited to the patterns that must be utilized along with them.

The second point worthy of noting is the tight boundaries among the three aspects. Not one allowed its
code to bleed into a domain to which it did not belong, which allows for easier interchanging among
aspects.

During the implementation of a given aspect, you may be compelled to write View-specific logic within the
Model, or vice versa. Keeping the boundaries tight allows you the ability to achieve multiple views between
a Model, vary Controllers among a system, etc.

FAQ

• Q: If this was a 1:1:1 MVC; is it safe to say that any aspect may overwhelm other aspects?

• A: Absolutely. The 1:1:1 MVC is the simplest form of the MVC. Just because the name of the

pattern suggests 1 Model, 1 View, and 1 Controller, remember that the name is focusing on

the boundaries of these aspects and nothing more. Your application may make use of several

Views, 1 Model and 12 Controllers. Another possibility is that 1 Controller may need to

coordinate 13 views. You get the picture.

389

Chapter 11

Object-Oriented Design… A Revisit

In Chapter 4, I made use of object-oriented analysis to reveal some of the many objects that you will be
working with to achieve a successful solution for the Outerlite micro site. If you recall, the chapter
concluded without commencing the second phase of the inception process, known as object-oriented
design. While you were able to properly analyze your system without any knowledge of design patterns,
lacking such information is not practical when determining a proper design.

It was imperative to end that chapter without delving into specifics until you had a better understanding of
how these objects can communicate. This can help you maximize your abilities to build an architecture that
is well constructed. Only now, with more tools in your toolbox, are you ready to continue with the object-
oriented design phase.

Recap
Object-oriented analysis makes use of understanding a problem domain to reveal various objects that are
required to solve such a problem. By assessing user flow and client requirements, you are able to gain
further insight into added objects and how they will be utilized within your system. The multiple passes of a
system during analysis allows for a problem domain to be broken into many smaller problem domains,
making it easier to grasp and work with.

Analysis does not always reveal all of the objects that will be used in an application. Many objects may be
discarded and additional objects may be required to facilitate existing objects and their associations. What
analysis does well is reveal aspects of the big picture in the form of smaller problem domains.

During the object-oriented design phase, your goal will be to finalize all required objects, evaluate their
behaviors within their system, and, lastly, to determine their collaborations within the system. You’ll begin
with the initially devised list of found objects from the OOA phase of Chapter 4.

CHAPTER 11

390

Initially Identified Objects
1. Shell

a. Site Loader

2. Site

a. Blurb

b. Navigation

1. Product

2. Scenic

3. Footer

c. Scenario Image XML

d. Scenic Gallery

1. Scenario XML

2. Image Pre-loader

3. Photo

4. Information Call out

i. Info photo

a. Information XML

b. Progress Bar

c. Scenic Description

e. Product Image XML

f. Product Gallery

1. Product XML

2. Interior Navigation

i. Buy Now

ii. Previous

iii. Next

3. Image Pre-loader

4. Product Image

OBJECT-ORIENTED DESIGN… A REVISIT

391

5. Specs

i. Description

ii. Available colors

iii. Available sizes

iv. Buttons

g. Footer

1. Contact Us

2. Store Locator

3. Mailing List

4. Privacy Policy

5. Terms & Conditions

6. Buttons

As the list shows, there are many objects required for each particular problem. While your thorough
analysis revealed these objects, you may have duplicates that would be unnecessary in OOP. It’s wise to
note that not every duplicate will share a common name, and, likewise, not all objects that have a duplicate
name will possess a similar behavior.

In order to properly reveal duplicates in your system, which would be irrelevant, you must properly
establish appropriate names for each object that reflect their distinct behaviors in the system. Of course,
as of this moment you have not documented any behaviors and therefore will need to do so as well.

Candidate Classes
While the list of objects you found from your object-oriented analysis is not incredibly extensive, this will
not always be the case. Depending on the project, you may find yourself working with hundreds of objects.
When working with such an extensive number of objects, it becomes difficult to envision so many
theoretical objects. For this reason, it’s very convenient to work with what is known as class
responsibility/collaborations cards (CRC cards, for short). Unfortunately, CRC cards are not something you
can purchase; you actually produce your own utilizing index cards.

The convenience of a CRC card is that you can work with something that is tangible and can be
manipulated. Since the time required to create them is minimal, should an object no longer be required by
your application, you can easily throw a card away.

Ultimately, a CRC card represents a class, and, as the name suggests, the CRC models the class’s name,
responsibility, and its collaborations with other objects. The standard outline of a typical CRC card can be
seen in Figure 11-1.

CHAPTER 11

392

Figure 11-1. CRC card

For the moment, you’re not as concerned with a class’s collaborations as you are with its responsibilities
and class name. Eventually, you’ll come back to its collaborations. The boundaries of the card represent
the class’s encapsulation, where its attributes and behaviors safely reside. The reverse side of the card is
available to write in any available interface to which its collaborations of the system can message.

Making use of the CRC card and the currently identified objects, you can elaborate on the responsibilities
of each object. Spend a moment to conceive an appropriate name to reflect such behaviors. Figures 11-2
through 11-17 show the CRC cards for your objects.

Figure 11-2. Shell object from the identified objects

Figure 11-3. Loader object from the identified objects

Figure 11-4. Site object from the identified objects

Figure 11-5. Blurb object from the identified objects

OBJECT-ORIENTED DESIGN… A REVISIT

393

Figure 11-6. Product object from the identified objects

Figure 11-7. Added object of the Product Navigation

Figure 11-8. Product Gallery object from the identified objects

Figure 11-9. Image Preloader object from the identified objects

Figure 11-10. Product Image object from the identified objects

Figure 11-11. Description object from the identified objects

CHAPTER 11

394

Figure 11-12. Available Colors object from the identified objects

Figure 11-13. Interior Navigation object from the identified objects

Figure 11-14. Scenic Navigation object from the identified objects

Figure 11-15. Added object required by ScenicNavigation

Figure 11-16. Information Call Out object from the identified objects

Figure 11-17 Footer object from the identified objects

These CRC cards represent the defined class names and responsibilities of each object, without regard to
buttons such as “Contact Us” and “Store Locator” for brevity. Assigning appropriate names and behaviors
assists in the realization that each object can act as its own problem domain, revealing new objects.

OBJECT-ORIENTED DESIGN… A REVISIT

395

Elimination Phase
Chapter 4 made use of an iterative process to analyze your main problem. However, that is not the sole
means of determining objects within a system. Various texts suggest writing a story about the entire user
flow of the site, extracting all nouns as possible objects and all verbs as possible methods among the
objects. Once all objects have been considered, the process of elimination begins. I’m not as much a fan
of this process as I am of the Spiral Method, as I believe repetition is beneficial to the thought process.

Due to your due diligence in the analysis phase, you are fortunate that you don’t have many immediate
objects that should be eliminated. You do, however, possess on your list objects that will be required as
data but not to be used as classes within your application. The objects up for elimination are the following:
Scenario Image XML, Scenario XML, Product Image XML, and Product XML.

With the removal of these XML files, you are left with only candidate classes for which you will devise
appropriate collaborations.

Collaborations
All classes are written to fulfill a responsibility. Occasionally, a class is capable of fulfilling such
responsibility on its own. In more elaborate systems, classes are written to communicate with other
classes and/or objects to fulfill a single responsibility required by a client. It can then be said that each
class/object collaborates to fulfill a single responsibility and may require several classes or objects to do
so.

Finding collaborations is rather simple, as you already know the responsibilities of each object. What is left
is to conceive which objects, if any, are required to aid each other in fulfilling such responsibilities.

As an example, let’s assign the appropriate collaborations, if any, to your Shell object, as shown in Figure
11-18.

Figure 11-18. Scenic Navigation object from the identified objects

It is hard to dispute how SiteLoader will assist the responsibility of Shell, but it’s more difficult at a glance to
see how Outerlite does; yet the two do in fact collaborate. To better reveal appropriate collaborations, you
can make use of class diagrams to demonstrate the associations among the collaborative objects. Making
use of the collaborations aspect of the CRC card is yet another step in ensuring that all objects will fulfill a
role within an application. If no objects collaborate with an object, and the same object requires no
collaborators of its own, then the object does not belong within your system. See Figures 11-19 through
11-28.

CHAPTER 11

396

Figure 11-19. Loader object from the identified objects

Figure 11-20. Site object from the identified objects

Figure 11-21. Blurb object from the identified objects

Figure 11-22. Product object from the identified objects

Figure 11-23. Added object of the Product Navigation

OBJECT-ORIENTED DESIGN… A REVISIT

397

Figure 11-24. Product Gallery object from the identified objects

Figure 11-25. Image Preloader object from the identified objects

Figure 11-26. Product Image object from the identified objects

Figure 11-27. Description object from the identified objects

Figure 11-28. Available Colors object from the identified objects

The ColorPallette’s responsibility reveals the need for a new object, ColorSample. ColorSample will be
responsible for representing a singe color to be presented by the ColorPallette. Figure 11-29 makes note
of ColorSample’s responsibilities and collaborators. Figures 11-30 through 11-34 show other
relationships.

CHAPTER 11

398

Figure 11-29. Inclusion of a necessary object ColorSample

Figure 11-30. Interior Navigation object from the identified objects

Figure 11-31. Scenic Navigation object from the identified objects

Figure 11-32. Added object required by ScenicNavigation

Figure 11-33. Information Call Out object from the identified objects

OBJECT-ORIENTED DESIGN… A REVISIT

399

Figure 11-34. Footer object from the identified objects

Understanding such collaborations and their associations will further your understanding of how objects
connect within the system. There are five main associations: Is a part of, Has-a, Is-a, Knows of, and
Depends upon. As you may recall from Chapter 4, I covered each association except for Depends upon,
which is a concept you might remember from the Observer pattern (Chapter 8).

Diagramming
You can make use of the Unified Modeling Language (UML) to further elaborate on your collaborations.
Remember that there are various diagrams that can assist in describing object collaborations, but this
book is only concerned with class diagrams.

Figures 11-35 through 11-37 illustrate your associated objects with the use of UML. One thing to note is
the addition of the AbstractView object to which all objects extend. Its purpose will provide default
behavior and allow polymorphism among all views.

Figure 11-35. High-level diagram of your object collaborations

CHAPTER 11

400

Figure 11-36. Magnified image of your product collaborations

Figure 11-37. Magnified image of your scenic collaborations

These objects that you have devised are used as both visual representation of a user’s actions, as well as
visual elements with which a user can interact, making them a user interface. To bridge the gap between
the user and the application, you know that you can utilize the MVC. Due to the dependencies of these
objects and the actions of a user, you can funnel all requests into a localized model to which all
subscribing views can respond accordingly. Figure 11-38 represents the inclusion of the Model View
Controller to your application.

OBJECT-ORIENTED DESIGN… A REVISIT

401

Figure 11-38. Collaborations managed with the MVC pattern

As discussed in Chapter 10, the Controller and the Views work together to maintain the synchronizations
among the model. Each View will possess a Controller, which will be responsible for interpreting user
interactions and translating them to meaningful input among the model, where state dependent views and
controllers can remain synchronized upon notifications from the model. AbstractView, as the superclass to
each visual element, allows a Model and Controller to be present.

One dependency that will not be able to be fulfilled by the Model will be the linear succession of the
ProductSubNavigation. You know that ProductSubNavigation will allow users to continue to browse the
Outerlite product line in a linear fashion with regards to the currently viewed product. It should be apparent
that you need to maintain a chosen index by the user to continue to iterate successively either forwards or
backwards within a collection, but such data is not a client requirement but rather a design requirement
and therefore likely to change.

Therefore, the ProductSubNavigationController will be responsible for translating the index of a collection
in a manner that reflects the appropriate direction as chosen by the View, as well as updating the Model
with the updated index. You can use an iterator to make use of such functionality. As the user has two
ways to navigate the collection, the index of the iterator must remain synchronized to the currently selected
index. It will also be the role of the ProductSubNavigationController to ensure this.

The ProductNavigationController is responsible for populating the ProductThumbs from the
ProductCollection. As a user may expect the order of their sequence to be the expected order of the
ProductSubNavigation, it will be wise to make use of the same iterator to maintain consistency among the
ProductCollection. Therefore, it will be the responsibility of the ProductNavigationController to populate
the products with the assistance of an iterator (see Figure 11-39).

CHAPTER 11

402

Figure 11-39. ProductSubNavigationController and ProductNavigationController instantiating an Iterator
among the ProductCollection

It may also be useful to utilize an iterator to populate the scenic navigation. Of course, with an iterator you
have to have a collection, which is something you don’t currently have with your list of objects. Therefore,
you have to take this into account, which also means you will need to devise a way to obtain these
collections (see Figures 11-40 through 11-43).

Figure 11-40. ProductCollection added to your objects

Figure 11-41. ScenicCollection added to your objects

OBJECT-ORIENTED DESIGN… A REVISIT

403

Figure 11-42. ProductIterator added to your objects

Figure 11-43. ScenicCollection added to your objects

With any inclusion of a new object, it’s best to devise their collaborations, if any. Likewise, if they are
collaborators of any other objects within the system, such collaborations should be noted.

As you may recall, you had four XML files in the original list, which you removed from your objects, but
they will still be utilized once you determine whether you load them in as one XML file or two. Your model
will maintain these collections along with the current index where the appropriate data can be obtained.

The Creative Direction
At this moment the implementation phase is almost in sight. There is just one last thing that needs to be
done: you need to know the design vision. You have, up to this point, constructed the framework of your
application and separated the functionality from the form. Therefore, you are now ready to sprinkle in the
details that are the most likely to change and close the chapter on object-oriented analysis and design until
your next project.

Implementation
As you can witness from the class diagrams, your application is taking form right before your eyes. You
can just about see the big picture of how everything will work together. However, an application does not
run on schematics, but rather code. So where does all of this conceptualizing, diagramming, analyzing,
and designing get you? It allows you to become familiar with the ins and outs of the application as if you’d
been using it for years, even before the application has been constructed. This can only come from proper
analysis and design. Having an understanding of the objects, structure, collaborations etc, allows you to
truly have an intimate understanding of the code before a single line is written. This is the reason you can
take charge as a team leader or be involved with any such changes that arise.

Before you can begin writing code, there’s one last area that must be conceived. This area is the methods,
which allow for such collaborations among your objects. What methods must an object possess? What are
the return types that are utilized? Such signatures need to be considered.

CHAPTER 11

404

At this point, you need to take your prior knowledge and all you have learned from this book and apply it
here. It is from here that you need to travel on your own.

Chapter Summary
Object-oriented design, object-oriented analysis, and implementation are three entirely separate phases.
You may often be tempted to condense all phases into one in haste, but as they say “haste makes waste.”
The goal of object-oriented design is to ensure that all objects during implementation are necessary, not
redundant—and reusable as well. It also adds more structure in a team environment when each member
needs to divide and conquer. Only proper design can come from proper analysis, and only proper
implementation can come from proper design. Also, any changes during the phase of implementation can
be better combated, as you have already determined the structure for the entire application.

1

405

Chapter 12

Getting Real

I’ve covered an immense amount of intense information, and if you’ve made it this far, I applaud you. If
you’ve made it this far feeling more confident in your understandings of design patterns and how they tie
into OOP, then I can say my job is nearly complete. I stress “nearly” because I would be doing you a
disservice if I did not cover the aspects that make up real world scenarios, which can impair your
programming decisions.

Writing this textbook offered me the ability to provide custom examples to exemplify a particular need for a
specific pattern. These custom examples also enhance your ability to understand how and why a particular
pattern could solve a particular dilemma you need to overcome. Not every problem you will face will be as
simple; in fact, some problems will require a great involvement in OOA&D to reveal the appropriate
collaborations. While this may seem legitimate and necessary to you, this will be viewed as a luxury to a
company. This is not the half of it; there will be many other obstacles that stand in your OO path.

Object-Oriented Obstacles: O3
The industry of RIA is very cutthroat in more ways than one. Clients are unforgiving, projects are
expensive, many project managers and designers have a technical disconnect, and development is often
the last phase of a project. While many agencies believe they want developers who are object oriented,
what they really want is for a project to be completed. For this and many reasons I will soon cover,
practicing proper OO techniques can be quite a challenge for an aspiring developer.

Always a Student
Programming is not the simplest career, let’s be honest. We may know our material but the subject area is
always changing and evolving. There is always something to learn, and therefore we are always students.
As developers, our learning may be initialized by our eagerness to know more, but often the origin of
learning can arrive with a new project. The realm of what a client can for is seemingly endless. This is
because they are looking for what hasn’t been done—and what sells. A new task may involve motion,
audio, data visualization, etc.

CHAPTER 12

406

Business is Business
Agencies may be bidding against one another to acquire business and will find ways to trim areas to win
that business. These areas are budget and time. Depending on company size and/or structure, the
developer does not necessarily determine the deadlines, and they may not even get a say. The pressure
of a deadline then starts to make an impact as time designated for OO/AD and object-oriented thoughts
diminishes. Rapid prototypes, or step-by-steps, could be required of the developer, and these take away
from the opportunity to utilize OOP and design patterns.

You may want to resort to a third party and be more lackadaisical with your code to beat the deadline.
Unfortunately, the third party code may not be up to your standards, and your rushed code may not be
anything that can be reused; but, at this point, getting the job done would be the most satisfying.

Now, taking precedence over OOP skill is business. OOP sounds great, but it doesn’t sell.

Varied Priorities
Ideally, it would be great if all developers on a project shared the same vision. Working with five people
building reusable code would create a large stockpile quickly. It would also make the utilization of OOP
more feasible given time constraints. However, not all programmers share the same vision, and those that
don’t may be on your team.

Object-Oriented Solutions
Luckily, every cloud has a silver lining and knowing the pitfalls of OOP can provide insight to combat such
obstacles.

Software
As mentioned in Chapter 3, an editor can greatly improve your coding abilities with its built-in features. The
faster you are able to code or navigate between your folders/files, the more time you have to pause and
think. Many editors provide the ease necessary to navigate OO code and therefore should be given due
diligence when searching for a solution to purchase.

While paper is always the fastest way to devise object collaborations, it does decrease the amount of time
you may have to physically implement code. Rather than delay the progressing of implementation on a
tight deadline, kill two birds with one stone with such applications like UML4AS.

UML4AS is a unified modeling tool for the ActionScript 3.0 language that allows the modeling of UML while
generating the ActionScript classes for you. The UML4AS is free and works along with the Eclipse IDE as
a plug-in. This is great because Flash Builder/Flex and FDT both make use of the Eclipse platform. You
can download the plug-in at www.uml4as.com/.

http://www.uml4as.com/

GETTING REAL

407

Figure 12-1. A screen grab of UML4AS in action

Dedication
Perseverance is the best advice I can give towards thwarting O3. If you truly want to be better at anything,
constant use is the best solution. Familiarity will ultimately reduce hesitancy and any reluctance towards
injecting patterns into a project with a deadline. Utilization of OOP and design patterns will be the only
solution for building a library for of reusable code.

Remember to stick with it. You can’t expect to learn OOP and design patterns any other way. Consistently
read books, practice, and experiment. Even while you’re learning something new for a project, perhaps
even a new language, you will still get to take knowledge of design patterns with you. The knowledge of
design patterns can be brought to other object-oriented languages.

User Groups
When people in your environment do not have the same interests, it is difficult to find support and
reinforcement. User groups are a great option to finding others with similar interests, common goals, and a
system of support. You may also find someone from a local user group willing to speak to your company or
agency. They may be able to provide an informative presentation or productive workshops for quick tips
and tricks. It can also increase the possibility of welcoming new thinking.

409

Index

1:1:1 MVC pattern, 388

A
ABaseClass, 203
ABaseSection class, 204, 207
abstract adapters, 280
abstract components, interface

 of Composite pattern, 291
 of Decorator pattern, 269

abstract decorators, decorating interface, 269
abstract facades, of Facade pattern, 303
abstract factory pattern, 143–144

 example of, 146–151
 illustrated, 144–145
 parts in, 145
 when useful, 146

AbstractCalculatorContext class, 244
AbstractClass, 309–310, 342
AbstractCommand class, 334, 365
AbstractController class, 385
AbstractEventHandlerMovieClip class, 229
AbstractFactoryCoastOverlaySets, 147, 149,

151–152
AbstractLoadersContext.as class, 325, 357
AbstractMarioEsqueLevelEditor class, 157,

162–164, 166–167, 346
AbstractMarioLevelDirector class, 163–164,

166–167, 319, 351
AbstractModel class, 378–379

AbstractOverlayFactory, 140–142
AbstractShape class, 334, 365
AbstractShapeCommand.as class, 336, 367
AbstractShapeUndoCommand.as class, 337,

368
AbstractSoundDecorator, 271, 274–275
AbstractStateObject class, 245, 247
AbstractView class, 339, 370, 380–381, 401
ActionScript (AS), 1, 13–14
adaptees, object of application, 280
Adapter pattern, 278–288

 comprehensive look at, 279
 demonstration, 280–288
 FAQ, 288
 parts of, 279–280

 abstract adapter, 280
 adaptee, 280
 client, 280
 concrete adapter, 280
 target interface, 279

 related patterns, 288
 technical overview, 278
 vignette, 279
 when to use, 280

addComponent, 292, 295, 298, 300
addEventListener method, 260
AFaceBookCreator, 186–187
aggregation, 71
algorithms, and internal iterator, 241
ALoaderStateObject.as class, 328, 359
AMinimalStopPlayToPauseResume, 286

INDEX

410

analysis, object-oriented. See OOA
answers, to quizzes, 89–103, 114–125, 342–372
APauseConductor, 281–283, 287, 295
application domain, 38–42

 Class object, 40–42
 getDefinition() method, 40–41
 getDefinitionByName() method, 41–42

 LoaderContext object, 39
ApplicationDomain class, 38, 40, 42, 113, 123,

125
applications, of Adapter pattern, 280
ARGBToRGB method, 121
ArrayCollection class, 240
ArrayIterator class, 237, 240
AS (ActionScript), 1, 13–14
association, 70–71
AudibleIPauseAdapter, 283–284
Audio class, 277
average class, 7, 11
average interface, 10–11

B
behavioral patterns, 191–265

 Chain of Responsibility, 221–229
 comprehensive look at, 222
 example, 223–229
 IEventHandler handler with, 229
 movie clips, 229
 parts of, 223
 related patterns, 229
 and Sprite handler, 229
 vignette, 222–223
 when to use, 223

 Command, 211–221
 comprehensive look at, 212
 coupling reusable buttons to

IPauseable instances, 220–221
 example, 213–220
 parts of, 213
 related patterns, 221
 using specific command interfaces,

220–221
 vignette, 212
 when to use, 213

 Iterator, 230–241
 algorithm and internal iterator, 241
 comprehensive look at, 230–232
 example, 232–240

 parts of, 232
 related patterns, 241
 vignette, 232
 when to use, 232

 key points, 240–265
 Memento, 250–257

 comprehensive look at, 251
 example, 252–257
 parts of, 252
 related patterns, 257
 reset and undo buttons with, 257
 retrieving mementos, 257
 vignette, 251–252
 when to use, 252

 Observer, 257–265
 Chain of Responsibility pattern vs.,

264–265
 comprehensive look at, 258–259
 example, 260–264
 need for developers to understand,

264–265
 observing more than one subject with,

264–265
 parts of, 259
 related patterns, 265
 vignette, 259
 when to use, 260

 State, 241–250
 comprehensive look at, 242–243
 example, 244–249
 parts of, 243
 related patterns, 250
 vs. Strategy pattern, 250
 vignette, 243
 when to use, 244

 Strategy, 191–201
 comprehensive look at, 192–193
 example, 194–201
 parts of, 193
 related patterns, 201
 vignette, 193
 when to use, 193–194

 Template Method, 201–211
 comprehensive look at, 202
 containing one step, 210
 declaring as final, 210
 example, 203–210
 parts of, 203
 related patterns, 211

INDEX

411

 vignette, 202–203
 when to use, 203

BitmapData type, 127–128, 157, 159–161, 164,
167, 177, 185

BitmapDataByteArray, 127–128
builder pattern, 153–155

 example of, 156–168
 illustrated, 155
 parts in, 155–156
 when useful, 156

business considerations, for OOA and OOD,
406

buttons
 reset and undo, with Memento pattern, 257
 reusable, coupling to IPauseable instances,

220–221
ByteArray, 127–128

C
calculate interface, 243
CalculatorContext class, 247
candidate classes, 391–394
Caretaker instance, 257
case scenarios, 52
case studies, 50–64

 breaking system into sum of parts, 58–63
 footer, 61–63
 performance, 59–60
 product gallery, 58–59
 scenic gallery, 60–61

 case scenario, 52
 description of, 50–51
 flow chart, 54–55
 ignoring visual messaging, 52
 layering, 56
 OOA

 repeating, 57
 wrapping up, 63–64

 performance, 56
 requirements from features, 53–54

casting, 43–44
catalogs, of design patterns, 67–68

 pattern identification, 68
 selecting patterns, 68

Chain of Responsibility pattern, 221–229
 comprehensive look at, 222
 example, 223–229
 IEventHandler handler with, 229
 movie clips, 229
 vs. Observer pattern, 264–265

 parts of, 223
 related patterns, 229
 and Sprite handler, 229
 vignette, 222–223
 when to use, 223

change, 22–23
childSprite_A class, 224
Circle class, 30–31
CircleShape.as class, 335, 366
class A, 112, 114, 116, 124
class B, 112, 114, 116
class diagrams, 70–73

 aggregation, 71
 association, 70–71
 classes, 70
 composition, 72
 generalization, 72
 interfaces, 72–73
 relationships, 70

class directive, 27
Class object, 40–42, 171, 175, 179

 getDefinition() method, 40–41
 getDefinitionByName() method, 41–42

classes, 70
 candidate, 391–394
 opening custom namespaces within, 21–22
 parts of, 15–20

clients, messenger
 of Adapter pattern, 280
 of component, 270–291
 of facade, 303

CoastOverlayLogic, 150, 152
collaborations, 395–399
ColorConverter class, 85, 110, 120–121
command interfaces, using specific, 220–221
Command pattern, 211–221

 comprehensive look at, 212
 coupling reusable buttons to IPauseable

instances, 220–221
 example, 213–220
 parts of, 213
 related patterns, 221
 using specific command interfaces,

220–221
 vignette, 212
 when to use, 213

commonDisplayObjectPrep, 148–149
compile-time type checking, 42–43
Complex class, 30

INDEX

412

Composite pattern, 289–301
 comprehensive look at, 289–290
 demonstration, 291–301
 parts of, 291
 related patterns, 301
 technical overview, 289
 vignette, 290
 when to use, 291

composites, object container, 291
composition, 72
concrete adapters, subclass of abstract adapter,

280
concrete behavior, of Decorator pattern, 269
Concrete class, 267
concrete components, concrete behavior, 269
concrete decorators, transparent wrapper, 270
concrete facades, implements specifics, 303
concrete subsystems, individual systems, 303
configuration constants, 44–46
constants, configuration, 44–46
constructors, 19–20
ContainerClip class, 37
containers, of Composite pattern, 291
Controllers, 385–388
createOverlay, 130–133, 138–142, 146
creational patterns, 127–189

 abstract factory pattern, 143–144
 example of, 146–151
 illustrated, 144–145
 parts in, 145
 when useful, 146

 builder pattern, 153–155
 example of, 156–168
 illustrated, 155
 parts in, 155–156
 when useful, 156

 factory method pattern, 133–135
 example of, 136–142
 illustrated, 135
 parts in, 136
 when useful, 136

 overview, 188–189
 and parameterization, 128–129
 simple factory

 example of, 130–133
 overview, 129

 simple singleton pattern, 170–172
 example of, 173–179
 illustrated, 172
 parts in, 172–173

 singleton pattern, 179–180
 example of, 181–187
 illustrated, 180
 parts in, 181
 when useful, 181

creative direction, of OOD, 403
currentDomain class, 40, 125
currentDomain. getDefinitionByName method,

124
custom namespaces class, 14, 17

D
data hiding, 11–13
decision-making, 49–65

 case study, 50–64
 breaking system into sum of parts,

58–63
 case scenario, 52
 description of, 50–51
 flow chart, 54–55
 ignoring visual messaging, 52
 layering, 56
 OOA, 57, 63–64
 performance, 56
 requirements from features, 53–54

 key points, 65
 OOA, 49–50
 OOD, 64–65

decorating interfaces, of Decorator pattern, 269
Decorator pattern, 268–278

 comprehensive look at, 269
 demonstration, 270–278
 parts of, 269–270

 abstract component, 269
 abstract decorator, 269
 client, 270
 concrete component, 269
 concrete decorator, 270

 related patterns, 278
 technical overview, 268
 vignette, 269
 when to use, 270

DecoratorAbstract.as class, 311, 343
dedication, solutions to Object-Oriented

Obstacles, 407
definitions, external, 14–15
describeType method, 37
describeType(obj:Object):xml method, 111
DescriptionView class, 341
design, object oriented. See OOD

INDEX

413

design patterns, 67–74
 catalog of, 67–68
 key points, 73
 pattern quiz, 309–372
 reading, 69–73

 class diagram, 70–73
 UML, 69–70

destroy method, 35
destroyLoader method, 242
developers, need to understand Observer

pattern, 264–265
diagramming, 399–403
diagrams, class. See class diagrams
DisplayField method, 384, 386
DisplayList class, 355
DisplayObject, 290, 292
DisplayObject (IComponent.as) interface, 324,

356
DisplayObject (Leaf.as) class, 325
DisplayObjectContainer class, 17, 290
DisplayObjectContainer (IComposite.as)

interface, 324
DisplayObjects class, 292, 369
Disposable pattern, 33–36
dispose method, 35, 103
doAddComponent, 292–293, 295
DocumentClass, 40–41, 166, 224, 239, 256,

263, 338, 369, 387
doOperate, 293–295
dynamic class, 16
dynamic language, restricting, 43

E
editors, 46–47
elimination phase, of OOD, 395
EmptyLoaderStateObject.as class, 329, 361
encapsulation, 5–6
EventDispatcher class, 17
EventSystem class, 369
execute method, 213, 221, 338, 369
ExtendedMovieClip class, 220
ExtendedSound class, 220
external definitions, 14–15
externalSwf.swf class, 40

F
Facade pattern, 302–308

 comprehensive look at, 302–303
 demonstration, 304–307
 FAQ, 307
 parts of, 303
 related patterns, 307
 technical overview, 302
 vignette, 303
 when to use, 303

FaceBook class, 175–176, 179
FaceBook interface, 182
FaceBook object, 175–177
FaceBookClass, 175
FaceBookExtendedProfile, 177–179, 181,

184–186
FaceBookFacade, 174, 177, 183
FaceBook.fbReference = new FaceBook()

method, 175
FaceBook.getInstance() method, 176, 179
FaceBookProfile, 184
FaceBookSingleton, 182, 187
Factory class, 129
Factory method, 380–381, 388
factory method pattern, 133–135, 342

 example of, 136–142
 illustrated, 135
 parts in, 136
 when useful, 136

FactoryMethodClass.as class, 310, 343
FAQs (frequently asked questions)

 Adapter pattern, 288
 Decorator pattern, 277–278
 Facade pattern, 307

features, requirements from, 53–54
Felidae class, 99
final class, 13, 16
flash.media.Sound, 270, 273
flash.system.ApplicationDomain class, 38
flow charts, 54–55
Foo class, 16
footers, 61–63
FormField class, 253–254
forwardEvent method, 228
frequently asked questions. See FAQs

INDEX

414

G
galleries

 product, 58–59
 scenic, 60–61

Garbage Collection, 28–36
 Disposable pattern, 33–36
 mark and sweep approach, 32–33
 memory management, 28–32

generalization, 72
get values method, 85
getDefinition() method, 40–41, 113, 124
getDefinitionByName() method, 40–42, 86, 101,

123
getInstance, 175–176, 182, 187
getMemberNames() method, 35
getSize method, 29–30, 32
graphical user interface (GUI), 303–304
grayscaleAverage, 6
GrayScaleHalftone class, 71
GrayscaleImage, 127–128
GUI (graphical user interface), 303–304

H
hiding data, 11–13

I, J
IBitmap interface, 343
ICommand interface, 221
IComponent.as class, 313, 345
IComponent.as (DisplayObject) interface, 324,

356
IComposite.as (DisplayObjectContainer)

interface, 324
identifiers, namespace, 20
IEventDispatcher Interface, 22
IEventHandler class, 229
IEventHandler handler, with Chain of

Responsibility pattern, 229
IEventHandler interface, 229
IForm class, 195
IGraphics.as interface, 334
IHandler interface, 339, 370
ILoader interface, 325, 357
ImageView.as class, 340, 370
IMemento interface, 252
implements class, 16
inheritance, 7–11

intended interfaces, of Adapter pattern, 279
InteractiveObject class, 17
interface class, 16, 22
interface declaration, 72
interfaces, 22, 72–73

 average interface, 10–11
 calculate interface, 243
 of Composite pattern, 291
 decorating, of Decorator pattern, 269
 of Decorator pattern, 269
 of Facade pattern, 303
 FaceBook interface, 182
 GUI, 303–304
 IBitmap interface, 343
 ICommand interface, 221
 IComponent.as (DisplayObject) interface,

324, 356
 IComposite.as (DisplayObjectContainer)

interface, 324
 IEventDispatcher Interface, 22
 IEventHandler interface, 229
 IGraphics.as interface, 334
 IHandler interface, 339, 370
 ILoader interface, 325, 357
 IMemento interface, 252
 intended, of Adapter pattern, 279
 IPause interface, 280–281, 283–284, 287,

291, 297–298, 300–301
 ISound interface, 270–271, 273–276, 283,

285, 287, 300
 ISpeak interface, 91
 ISubject interface, 261
 IValidate interface, 201
 narrow, of Adapter pattern, 280
 Singleton interface, 179, 181
 Sprite interface, 118
 target, intended interface, 279

internal class, 11, 13, 16–17, 20
internal iterators, algorithms and, 241
IObserve class, 262
IObserver class, 260
IPause interface, 280–281, 283–284, 287, 291,

297–298, 300–301
IPauseable class, 220
IPauseable instances, coupling reusable buttons

to, 220–221
IPauseable object, 295
ISound interface, 270–271, 273–276, 283, 285,

287, 300

INDEX

415

ISpeak interface, 91
ISubject class, 259
ISubject interface, 261
Iterator pattern, 230–241

 algorithm and internal iterator, 241
 comprehensive look at, 230–232
 example, 232–240
 parts of, 232
 related patterns, 241
 vignette, 232
 when to use, 232

IValidate class, 195
IValidate interface, 201

L
layering, 56
leaf object, of Composite pattern, 291
Leaf.as (DisplayObject) class, 325
LevelOne, 164, 166
LoadedStateObject.as class, 333, 364
Loader class, 113, 242–243
LoaderContext object, 39
LoaderContext.applicationDomain class, 39
LoadersContext.as class, 327, 359
LoadingStateObject.as class, 331, 363
localName class, 36

M
MainTimeline class, 224
makeOverlay, 141–142
makeUniqueFB, 186–187
MarioLevelEditor, 162, 166
mark and sweep approach, 32–33
MaskView class, 340, 371
Memento pattern, 250–257

 comprehensive look at, 251
 example, 252–257
 parts of, 252
 related patterns, 257
 reset and undo buttons with, 257
 retrieving mementos, 257
 vignette, 251–252
 when to use, 252

mementos, retrieving, 257
memory, management of, 28–32
messenger of component

 of Composite pattern, 291
 of Decorator pattern, 270

messenger of facade, of Facade pattern, 303
messengers, of Adapter pattern, 280
Model View Controller pattern. See MVC pattern
models, 378–380
MouseScrollingDecorator.as class, 312, 344
movie clips, 229
MovieClip class, 15–17, 31–32, 37, 80, 94, 215,

229
MovieClipExtension class, 31–32
MovieClips class, 323, 355
MVC (Model View Controller) pattern, 373–388

 Controller, 385–388
 Model, 378–380
 technical overview, 375–378

 benefits of MVC pattern, 375
 comprehensive look at MVC pattern,

376–378
 drawbacks to MVC pattern, 376
 parts of MVC pattern, 375

 View, 380–385

N
namespaces, custom, 20–22

 applying, 21
 declaring identifier, 20
 opening within class, 21–22

narrow interfaces, of Adapter pattern, 280
NetConnection, 304–307
NetStream, 304–307
Number class, 30

O
Object class, 7, 13, 16–17, 19
object containers, of Composite pattern, 291
object-oriented analysis. See OOA
object-oriented design. See OOD
Object-Oriented Obstacles, 405–407

 business considerations, 406
 constant learning involved, 405
 solutions to, 406–407

 dedication, 407
 software, 406
 user groups, 407

 varied priorities, 406
Object-Oriented Programming. See OOP

INDEX

416

Observer pattern, 257–265
 Chain of Responsibility pattern vs.,

264–265
 comprehensive look at, 258–259
 example, 260–264
 need for developers to understand,

264–265
 observing more than one subject with,

264–265
 parts of, 259
 related patterns, 265
 vignette, 259
 when to use, 260

OOA (object-oriented analysis), 49–50
 initially identified objects from, 390–391
 repeating, 57
 wrapping up, 63–64

OOD (object-oriented design), 64–65, 389–404
 candidate classes, 391–394
 collaborations, 395–399
 creative direction, 403
 diagramming, 399–403
 elimination phase, 395
 implementation, 403–404
 initially identified objects from analysis,

390–391
 recap of, 389

OOP (Object-Oriented Programming), 1–25
 ActionScript as object-oriented language,

13–14
 change, 22–23
 custom namespaces, 20–22

 applying, 21
 declaring identifier, 20
 opening within class, 21–22

 data hiding, 11–13
 defining external definitions, 14–15
 encapsulation, 5–6
 general terms and definitions, 23–24
 inheritance, 7–11
 interfaces, 22
 key points, 24–25
 parts of classes, 15–20
 polymorphism, 6–7

OpeningConnectionStateObject.as class, 330,
362

OSComponent class, 383
OverlayFactory, 131–132, 136, 138–140
OverlayPreparation, 136, 139

P
package class, 14
package flash.display class, 15
parameterization, and creational patterns,

128–129
parts

 in abstract factory pattern, 145
 in builder pattern, 155–156
 in factory method pattern, 136
 in simple singleton pattern, 172–173
 in singleton pattern, 181

patterns
 1:1:1 MVC pattern, 388
 abstract factory pattern, 143–144

 example of, 146–151
 illustrated, 144–145
 parts in, 145
 when useful, 146

 Adapter pattern, 278–288
 applications, 280
 comprehensive look at, 279
 demonstration, 280–288
 FAQ, 288
 messengers, 280
 narrow interfaces, 280
 parts of, 279–280
 related patterns, 288
 technical overview, 278
 vignette, 279
 when to use, 280

 behavioral patterns, 191–265
 Chain of Responsibility, 221–229
 Command, 211–221
 Iterator, 230–241
 key points, 240–265
 Memento, 250–257
 Observer, 257–265
 State, 241–250
 Strategy, 191–201
 Template Method, 201–211

 builder pattern, 153–155
 example of, 156–168
 illustrated, 155
 parts in, 155–156
 when useful, 156

 catalogs, of design patterns, 67–68
 pattern identification, 68
 selecting patterns, 68

INDEX

417

Chain of Responsibility pattern, 221–229
 comprehensive look at, 222
 example, 223–229
 IEventHandler handler with, 229
 movie clips, 229
 vs. Observer pattern, 264–265
 parts of, 223
 related patterns, 229
 and Sprite handler, 229
 vignette, 222–223
 when to use, 223

 Command pattern, 211–221
 comprehensive look at, 212
 coupling reusable buttons to

IPauseable instances, 220–221
 example, 213–220
 parts of, 213
 related patterns, 221
 using specific command interfaces,

220–221
 vignette, 212
 when to use, 213

 Composite pattern, 289–301
 comprehensive look at, 289–290
 containers, 291
 demonstration, 291–301
 leaf object, 291
 object containers, 291
 parts of, 291
 related patterns, 301
 technical overview, 289
 vignette, 290
 when to use, 291

 creational patterns, 127–189
 abstract factory pattern, 143–144
 builder pattern, 153–155
 factory method pattern, 133–135
 overview, 188–189
 and parameterization, 128–129
 simple factory, 129–133
 simple singleton pattern, 170–172
 singleton pattern, 179–180

 Decorator pattern, 268–278
 comprehensive look at, 269
 concrete behavior, 269
 decorating interfaces, 269
 demonstration, 270–278
 parts of, 269–270
 related patterns, 278

 technical overview, 268
 transparent wrappers, 270
 vignette, 269
 when to use, 270

 design patterns, 67–74
 catalog of, 67–68
 key points, 73
 pattern quiz, 309–372
 reading, 69–73

 Disposable pattern, 33–36
 Facade pattern, 302–308

 comprehensive look at, 302–303
 demonstration, 304–307
 FAQ, 307
 messenger of facade, 303
 parts of, 303
 related patterns, 307
 technical overview, 302
 vignette, 303
 when to use, 303

 factory method pattern, 133–135, 342
 example of, 136–142
 illustrated, 135
 parts in, 136
 when useful, 136

 identification of, 68
 IEventHandler handler, with Chain of

Responsibility pattern, 229
 intended interfaces, of Adapter pattern, 279
 Iterator pattern, 230–241

 algorithm and internal iterator, 241
 comprehensive look at, 230–232
 example, 232–240
 parts of, 232
 related patterns, 241
 vignette, 232
 when to use, 232

 Memento pattern, 250–257
 comprehensive look at, 251
 example, 252–257
 parts of, 252
 related patterns, 257
 reset and undo buttons with, 257
 retrieving mementos, 257
 vignette, 251–252
 when to use, 252

 Model View Controller pattern. See MVC
pattern

INDEX

418

MVC pattern, 373–388
 Controller, 385–388
 Model, 378–380
 technical overview, 375–378
 View, 380–385

 Observer pattern, 257–265
 Chain of Responsibility pattern vs.,

264–265
 comprehensive look at, 258–259
 developers, need to understand,

264–265
 example, 260–264
 need for developers to understand,

264–265
 observing more than one subject with,

264–265
 parts of, 259
 related patterns, 265
 vignette, 259
 when to use, 260

 parameterization, and creational patterns,
128–129

 selecting, 68
 simple singleton pattern, 170–172

 example of, 173–179
 illustrated, 172
 parts in, 172–173

 singleton pattern, 179–180
 example of, 181–187
 illustrated, 180
 parts in, 181
 when useful, 181

 Sprite handler, Chain of Responsibility
pattern and, 229

 State pattern, 241–250
 comprehensive look at, 242–243
 example, 244–249
 parts of, 243
 related patterns, 250
 vs. Strategy pattern, 250
 vignette, 243
 when to use, 244

 Strategy pattern, 191–201
 comprehensive look at, 192–193
 example, 194–201
 parts of, 193
 related patterns, 201
 State pattern vs., 250
 vignette, 193
 when to use, 193–194

 structural patterns, 267–308
 Adapter, 278–288
 Composite, 289–301
 Decorator, 268–278
 Facade, 302–308
 key points, 307–308

 Template Method pattern, 201–211, 342
 comprehensive look at, 202
 containing one step, 210
 declaring as final, 210
 example, 203–210
 parts of, 203
 related patterns, 211
 vignette, 202–203
 when to use, 203

PauseableAudibleDecorator, 275–276,
282–287, 300

PauseableComponent, 297–300
PauseableComposite, 298, 300
PauseableLeaf, 297–298, 300
pauseableMCComposite, 300–301
performance, 56–60
Play method, 274
polymorphism, 6–7
Primitive class, 30
private class, 11, 13, 17, 20
product galleries, 58–59
ProductCollection class, 401
ProductThumbs class, 401
ProfileInformation, 174, 176–177, 184–185
protected class, 11, 13, 16–17, 20, 103
protected method, 123
public class, 11, 13, 16–17, 20, 22, 103
public methods, 115, 123

Q
Q&A (Questions & Answers), 75–125, 309–372

 answers to quizzes, 89–103, 114–125
 design pattern quiz, 309–372
 quizzes, 75–88, 104–113

QName class, 35
Questions & Answers. See Q&A
QuizLevelDirector.as class, 320, 352
QuizLevelEditor.as class, 318, 350
quizzes. See Q&A

INDEX

419

R
ReferenceError class, 37
relationships, 70
remove() method, 86, 101
requirements, from features, 53–54
reset button, and undo button, 257
returnByteArray, 127–128
reusable buttons, coupling to IPauseable

instances, 220–221
ReusableButton class, 220
rgbAverage method, 4, 6
RIAs (rich Internet applications), 13
runtime type checking, 42

S
sampler class, 29
scenic galleries, 60–61
Shape class, 30
ShapeCommandDraw.as class, 336, 367
ShapeCommandUndo.as class, 337, 368
ShapeCommandWithUndo.as class, 337, 368
shortProfile, 173–174, 177–178, 183–185
simple factory

 example of, 130–133
 overview, 129

simple singleton pattern, 170–172
 example of, 173–179
 illustrated, 172
 parts in, 172–173

Singleton interface, 179, 181
singleton pattern, 179–180

 example of, 181–187
 illustrated, 180
 parts in, 181
 when useful, 181

software, solutions to Object-Oriented
Obstacles, 406

someMethod(obj:Object):void method, 114
Sound class, 215
SoundButton class, 214, 221
SoundObject class, 213
SoundSprite class, 214
SOW (statement of work), 52
SpecificallyGivenName class, 38
Sprite class, 17, 229
Sprite handler, Chain of Responsibility pattern

and, 229

Sprite interface, 118
Sprite_A class, 225
Sprite_B class, 224–225, 228
SquareShape.as class, 335, 366
stage instances, manually declared, 37–38
State pattern, 241–250

 comprehensive look at, 242–243
 example, 244–249
 parts of, 243
 related patterns, 250
 vs. Strategy pattern, 250
 vignette, 243
 when to use, 244

statement of work (SOW), 52
static class, 17
StopPlayToPauseResume, 285–286
Strategy pattern, 191–201

 comprehensive look at, 192–193
 example, 194–201
 parts of, 193
 related patterns, 201
 State pattern vs., 250
 vignette, 193
 when to use, 193–194

String class, 30
strong typing, 42–43

 restricting dynamic language, 43
 type checking

 compile-time, 42–43
 runtime, 42

structural patterns, 267–308
 Adapter, 278–288

 comprehensive look at, 279
 demonstration, 280–288
 FAQ, 288
 parts of, 279–280
 related patterns, 288
 technical overview, 278
 vignette, 279
 when to use, 280

 Composite, 289–301
 comprehensive look at, 289–290
 demonstration, 291–301
 parts of, 291
 related patterns, 301
 technical overview, 289
 vignette, 290
 when to use, 291

INDEX

420

 Decorator, 268–278
 comprehensive look at, 269
 demonstration, 270–278
 parts of, 269–270
 related patterns, 278
 technical overview, 268
 vignette, 269
 when to use, 270

 Facade, 302–308
 comprehensive look at, 302–303
 demonstration, 304–307
 FAQ, 307
 parts of, 303
 related patterns, 307
 technical overview, 302
 vignette, 303
 when to use, 303

 key points, 307–308
super class, 11
super.superMethod() method, 123
.swf class, 38

T
target interfaces, intended interface, of Adapter

pattern, 279
Template method, 388
Template Method pattern, 201–211, 342

 comprehensive look at, 202
 containing one step, 210
 declaring as final, 210
 example, 203–210
 parts of, 203
 related patterns, 211
 vignette, 202–203
 when to use, 203

TestClip class, 37
TextFieldView class, 371
toARGB method, 110, 120
traits object, 28
transparent wrappers, of Decorator pattern, 270
type checking

 compile-time, 42–43
 runtime, 42

typing, strong, 42–43
 restricting dynamic language, 43
 type checking, 42–43

U
UML (Unified Modeling Language), 69–70
undo button, reset button and, 257
Unified Modeling Language (UML), 69–70
UnRevealed class, 354
use namespace method, 22
user groups, solutions to Object-Oriented

Obstacles, 407
utils.color.type class, 85, 99

V
variable $_fbInstance, 178
views, 380–385
visual messaging, ignoring, 52

W, X, Y, Z
wrappers, transparent, of Decorator pattern, 270

AdvancED ActionScript 3.0:
Design Patterns

Ben Smith

ii

AdvancED ActionScript 3.0: Design Patterns
Copyright © 2011 by Ben Smith

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system,

without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3614-6
SBN-13 (electronic): 978-1-4302-3616-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logos, or image, we use the names, logos, or images only in an

editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Distributed to the book trade worldwide by Springer Science+Business Media LLC., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-

sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk

Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any

person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits
President and Publisher:

Paul Manning

Lead Editor:
Ben Renow-Clarke

Technical Reviewers:
Koen De Weggheleire and Peter Elst

Editorial Board:
Steve Anglin, Mark Beckner, Ewan Buckingham,

Gary Cornell, Jonathan Gennick, Jonathan Hassell,
Michelle Lowman, Matthew Moodie,

Jeff Olson, Jeffrey Pepper, Frank Pohlmann,
Douglas Pundick, Ben Renow-Clarke,

Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor:
Anita Castro

Copy Editor:
Tiffany Taylor and Mary Behr

Compositor:
Bronkella Publishing

Indexer:
BIM Indexing & Proofreading Services

Artist:
SPI Global

Cover Image Artist:
Corné van Dooren

Cover Designer:
Anna Ishchenko

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.friendsofed.com

CONTENTS

iii

In loving memory of my cat Buttercup, who passed during the writing of this book.

To my wife, for her tolerance of the late evenings as well as for her constant encouragement—I thank you
always.

—Ben Smith

CONTENTS

iv

Contents at a Glance

About the Author .. x
About the Technical Reviewer .. xi
About the the Cover Image Artist .. xii
Acknowledgments ... xiii
Introduction .. xiv

Chapter 1: Object-Oriented Programming ... 1	

Chapter 2: ActionScript 3.0: The Facts Behind the Basics 27	

Chapter 3: Decision-Making and Planning ... 49	

Chapter 4: Intro to Design Patterns .. 67	

Chapter 5: Q&A ... 75	

Chapter 6: Creational Patterns .. 127	

Chapter 7: Behavioral Patterns ... 191	

Chapter 8: Structural Patterns ... 267	

Chapter 9: Q&A ... 309	

Chapter 10: MVC: A Compound Pattern ... 373	

Chapter 11: Object-Oriented Design… A Revisit ... 389	

Chapter 12: Getting Real .. 405	

Index .. 409	

CONTENTS

v

Contents

About the Author . .. x
About the Technical Reviewer . .. xi
About the the Cover Image Artist . .. xii
Acknowledgments xiii

Introduction . .. xiv

Chapter 1: Object-Oriented Programming .. 1
	 Encapsulation 5	

Polymorphism 6	
Inheritance . .. 7	
Data Hiding 11	
ActionScript as an Object-Oriented Language .. 13	
Defining an External Definition 14	
Parts of a Class . .. 15	

The Constructor . .. 19

	 Custom Namespaces 20	
Declaring the Namespace Identifier .. 20

	 Applying a custom namespace . .. 21	
Opening a namespace within a class .. 21	

Constructing an Interface 22	
Change 22	
General Terms and Definitions 23	
Summary . .. 24	
Key Points . .. 24	

Chapter 2: ActionScript 3.0: The Facts Behind the Basics 27
	 ActionScript 3.0 . .. 27	

The Traits Object . .. 28	
Garbage Collection 28	

Memory Management . .. 28

	 Mark and Sweep 32	
Implementing a Disposable Pattern .. 33	

CONTENTS

vi

Manually Declared Stage instances ... 37	
Application Domain .. 38	

The LoaderContext ... 39	
The Class Object .. 40	

Strong Typing ... 42	
Runtime Type Checking ... 42	
Compile-Time Type Checking .. 42	
Restricting a Dynamic Language ... 43	

Casting ... 43	
Configuration Constants ... 44	
ActionScript Editors .. 46	
Summary .. 47	
Key Points .. 47	

Chapter 3: Decision-Making and Planning ... 49	
Object-Oriented Analysis (OOA) .. 49	
Case Study ... 50	

The Kick-Off .. 50	
Turning Off the Volume .. 52	
Use Case Scenario ... 52	
Requirements from the Features .. 53	
Flow Chart .. 54	
Performance ... 56	
Layering .. 56	
Analysis Continued ... 57	
The Breakup ... 58	
Wrapping Up the Analysis .. 63	

Object Oriented Design (OOD) .. 64	
Summary .. 64	
Key Points .. 65	

Chapter 4: Intro to Design Patterns .. 67	
Design Patterns Catalog .. 67	

Selecting Patterns .. 68	
Pattern Identification ... 68	

CONTENTS

vii

Reading a Design Pattern .. 69	
UML .. 69	
The Class Diagram ... 70	

Chapter Summary .. 73	
Key Points .. 73	
Upcoming Chapters .. 73	

Chapter 5: Q&A ... 75	
Quiz 1 ... 75	
Answers to Quiz 1 .. 89	
Quiz 2 ... 104	
Answers to Quiz 2 .. 114	

Chapter 6: Creational Patterns .. 127	
That Which Must Not Be Named .. 128	
The Simple Factory .. 129	

A Comprehensive Look .. 129	
Example .. 130	
FAQ .. 133	

The Factory Method Pattern ... 133	
A Comprehensive Look .. 134	
Vignette .. 135	
The AS 3.0 Cast ... 136	
When It’s Useful ... 136	
Example .. 136	
FAQ .. 142	
Related Patterns ... 143	

The Abstract Factory Pattern ... 143	
A Comprehensive Look .. 144	
Vignette .. 144	
The AS 3.0 Cast ... 145	
When It’s Useful ... 146	
Example .. 146	
FAQ .. 153	
Related Patterns ... 153	

CONTENTS

viii

The Builder Pattern .. 153	
A Comprehensive Look .. 154	
Vignette .. 155	
The AS 3.0 Cast ... 155	
When It’s Useful ... 156	
Example .. 156	
FAQ .. 169	
Related Patterns ... 170	

The Simple Singleton Pattern ... 170	
A Comprehensive Look .. 171	
Vignette .. 172	
The AS 3.0 Cast ... 172	
Example .. 173	

The Singleton Pattern ... 179	
A Comprehensive Look .. 180	
Vignette .. 180	
The AS 3.0 Cast ... 181	
When It’s Useful ... 181	
Example .. 181	
FAQ .. 187	
Related Patterns ... 188	

Summary .. 188	
Key Points .. 188	

Chapter 7: Behavioral Patterns ... 191	
The Strategy Pattern .. 191	
The Template Method Pattern .. 201	
The Command Pattern ... 211	
The Chain of Responsibility Pattern ... 221	
The Iterator Pattern .. 230	
The State Pattern ... 241	
The Memento Pattern ... 250	
The Observer Pattern ... 257	

Summary .. 265	
Key Points .. 265	

CONTENTS

ix

Chapter 8: Structural Patterns ... 267	
The Decorator Pattern .. 268	
The Adapter .. 278	
The Composite ... 289	
Facade .. 302	

Chapter Summary .. 308	
Key Points .. 308	

Chapter 9: Q&A ... 309	
Design Pattern Quiz ... 309	
Answers to Design Patterns Quiz ... 342	

Chapter 10: MVC: A Compound Pattern ... 373	
The MVC: Model View Controller ... 375	

Technical Overview .. 375	
The Model ... 378	
The View ... 380	
The Controller ... 385	

Chapter 11: Object-Oriented Design… A Revisit ... 389	
Recap ... 389	
Initially Identified Objects .. 390	
Candidate Classes ... 391	
Elimination Phase ... 395	
Collaborations .. 395	
Diagramming .. 399	
The Creative Direction .. 403	
Implementation ... 403	
Chapter Summary .. 404	

Chapter 12: Getting Real .. 405	
Object-Oriented Obstacles: O3 ... 405	
Object-Oriented Solutions .. 406

Index .. 409

CONTENTS

x

About the Author

Ben Smith is an accomplished Flash developer with years of experience
creating advanced rich Internet applications (RIAs) for well-known digital
agencies. He is an Adobe Community Professional and has contributed
articles to both InsideRIA and the Adobe developer community. Ben began
his career in Connecticut and spent several years working in New York and
Florida. Ben is currently back in New York where he both works and resides.
He is passionate about higher learning, which he believes comes from
experimentation and experience. With more than 10,000 hours of experience
with Flash, he does not consider himself a master of Flash, but a student of
what Flash requires him to know.	

CONTENTS

xi

About the Technical Reviewer

Koen De Weggheleire is a faculty member of the Technical University of West-
Flanders in Belgium (HOWEST) where he teaches multiscreen Flash Platform
Solutions (Flash, Flex, AIR) with a smile. As Adobe Community Professional for the
Flash Platform, Koen is heavily addicted to the community and inspires the community
by his blog at www.newmovieclip.com/ and by speaking at several (inter)national
industry events (Adobe MAX, FITC, 360 Flex, Flashbelt, Flash On The Beach, Flash
on Tap). He coordinates the yearly Belgian multimedia conference Multi-Mania
(www.multi-mania.be/) where 2,000 people from around the world come together to
learn from industry experts and to share knowledge. Koen also is co-author of
Foundation Flex for Developers (friends of Ed, 2007), Flash CS4 AIR Development
(friends of ED, 2009) and the Adobe AIR Cookbook (O’Reilly, 2009).

When he’s not doing any of the above activities, you can find Koen at his company HappyBanana, together
with Wouter Verweirder, doing Flash Platform consultancy on advanced, award-winning, rich multiscreen
applications. When Koen is not talking ActionScript, you can find him producing music, collecting goodies,
eating pizza, or renovating his 100 year old house.

http://www.newmovieclip.com/
http://www.multi-mania.be/

CONTENTS

xii

About the Cover Image Artist

Corné van Dooren designed the front cover image for this book. After taking a brief hiatus
from friends of ED to create a new design for the Foundation series, he worked at
combining technological and organic forms, the results of which now appear on this and
other book covers.

Corné spent his childhood drawing on everything at hand and then began exploring the
infinite world of multimedia—and his journey of discovery hasn’t stopped since. His mantra
has always been, “The only limit to multimedia is the imagination”—a saying that keeps him

constantly moving forward.

Corné works for many international clients, writes features for multimedia magazines, reviews and tests
software, authors multimedia studies, and works on many other friends of ED books. You can see more of
his work at and contact him through his website at www.cornevandooren.com.

http://www.cornevandooren.com

CONTENTS

xiii

Acknowledgments

I'm happy to acknowledge the work of Professor Trygve Reenskaug for his conception of the Model View
Controller. A friend and pioneer of design patterns, I thank you for your wisdom.

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	About the Cover Image Artist
	Acknowledgments
	Introduction

	Object-Oriented Programming
	Encapsulation
	Polymorphism
	Inheritance
	Data Hiding
	ActionScript as an Object-Oriented Language
	Defining an External Definition
	Parts of a Class
	The Constructor

	Custom Namespaces
	Declaring the Namespace Identifier
	Applying a custom namespace
	Opening a namespace within a class

	Constructing an Interface
	Change
	General Terms and Definitions
	Summary
	Key Points

	ActionScript 3.0
	The Traits Object
	Garbage Collection
	Memory Management
	Mark and Sweep
	Implementing a Disposable Pattern

	Manually Declared Stage instances
	Application Domain
	The LoaderContext
	The Class Object

	Strong Typing
	Runtime Type Checking
	Compile-Time Type Checking
	Restricting a Dynamic Language

	Casting
	Configuration Constants
	ActionScript Editors
	Summary
	Key Points

	Decision-Making and Planning
	Object-Oriented Analysis (OOA)
	Case Study
	The Kick-Off
	Turning Off the Volume
	Use Case Scenario
	Requirements from the Features
	Flow Chart
	Performance
	Layering
	Analysis Continued
	The Breakup
	Wrapping Up the Analysis

	Object Oriented Design (OOD)
	Summary
	Key Points
	Chapter 4

	Design Patterns Catalog
	Selecting Patterns
	Pattern Identification

	Reading a Design Pattern
	UML
	The Class Diagram

	Chapter Summary
	Key Points
	Upcoming Chapters

	Q&A
	Quiz 1
	Answers to Quiz 1
	Quiz 2
	Answer to Quiz 2

	Creational Patterns
	That Which Must Not Be Named
	The Simple Factory
	A Comprehensive Look
	Example
	FAQ

	The Factory Method Pattern
	A Comprehensive Look
	Vignette
	The AS 3.0 Cast
	When It’s Useful
	Example
	FAQ
	Related Patterns

	The Abstract Factory Pattern
	A Comprehensive Look
	Vignette
	The AS 3.0 Cast
	When It’s Useful
	Example
	FAQ
	Related Patterns

	The Builder Pattern
	A Comprehensive Look
	Vignette
	The AS 3.0 Cast
	When It’s Useful
	Example
	FAQ
	Related Patterns

	The Simple Singleton Pattern
	A Comprehensive Look
	Vignette
	The AS 3.0 Cast
	Example

	The Singleton Pattern
	A Comprehensive Look
	Vignette
	The AS 3.0 Cast
	When It’s Useful
	Example
	FAQ
	Related Patterns

	Summary
	Key Points

	Behavioral Patterns
	The Strategy Pattern
	The Template Method Pattern
	The Command Pattern
	The Chain of Responsibility Pattern
	The Iterator Pattern
	The State Pattern
	The Memento Pattern
	The Observer Pattern
	Summary
	Key Points

	Structural Patterns
	The Decorator Pattern
	The Adapter
	The Composite
	Facade
	Chapter Summary
	Key Points

	Q&A
	Design Pattern Quiz
	Answers to Design Patterns Quiz

	MVC: A Compound Pattern
	The MVC: Model View Controller
	Technical Overview
	The Model
	The View
	The Controller

	Object-Oriented Design… A Revisit
	Recap
	Initially Identified Objects
	Candidate Classes
	Elimination Phase
	Collaborations
	Diagramming
	The Creative Direction
	Implementation
	Chapter Summary

	Getting Real
	Object-Oriented Obstacles
	Object-Oriented Solutions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I, J, K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W, X, Y, Z

