

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page i

About the First Edition of
Snort Intrusion Detection

Overall, I found "Snort 2.0" enlightening. The authors have a powerful
understanding of the workings of Snort, and apply it in novel ways.

—Richard Bejtlich, Top 500 Amazon Reviewer

Would I recommend this book to someone already running Snort?
Yes! Would I recommend this book to someone considering

deploying an IDS? Heck yes! If you attempt to deploy Snort on a pro
duction network without reading this book you should be instantly

teleported out of your organization and into the "welcome to
Walmart" greeter position at the nearest bigbox store of the world's

largest corporation.
—Stephen Northcutt, Director, SANs Institute

First, Brian Caswell knows more about Snort than anyone on the
planet and it shows here. Secondly, the book is over 500 pages long,
and is full of configuration examples. It is the ONE Snort book you
need if you're actually running a corporate IDS. This pig flies. Highly

recommended.
—A Reader from Austin, TX

This book has proven to be a breath of fresh air. It provides detailed
product specifics and is a reliable roadmap to actually rolling out an

IDS. And I really appreciate the CD with Snort and the other IDS
utilities. The author team is well connected with Snort.org and they

obviously had cart blanche in writing this book.
—A Reader from Chestnut Hill, MA

"An awesome book by Snort gurus! This is an incredible book by the
guys from snort.org and Sourcefire—this book is just great and

covers everything I could ever have thought to ask about Snort 2.0.
—A Syngress customer

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page ii

Register for Free Membership to

solutions@ s y n g r e s s . c o m

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder’s Configuring ISA
Server 2000, Brian Caswell and Jay Beale’s Snort 2.0 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we’ve been able to provide readers a real time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

■	 Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

■	 A comprehensive FAQ page that consolidates all of the key
points of this book into an easy to search web page, pro
viding you with the concise, easy to access data you need to
perform your job.

■	 A “From the Author” Forum that allows the authors of this
book to post timely updates links to related sites, or addi
tional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there is anything else we can do to make your
job easier.

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page iii

I

Snort 2.1
Intrusion Detection

SECOND EDITION OF
THE NTERNATIONAL

BESTSELLER!

S e c o n d
E d i t i o n

with
Raven Alder • Jacob Babbin •Jay Beale

Featuring the Snort

Andrew R. Baker
Brian Caswell

Foreword by Stephen Northcutt

Adam Doxtater • James C. Foster
Toby Kohlenberg •Michael Rash

Development Team

Mike Poor

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page iv

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or produc
tion (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to
state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Snort™ and the Snort™ pig logo are trademarks of Sourcefire, Inc.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,”“Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc. “Syngress:The
Definition of a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is
to Think Like One™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned
in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 TCVGH39764
002 POFG398HB5
003 8NJH2GAWW2
004 HJIRTCV764
005 CVQ23MZX43
006 VB544DM78X
007 HJJ3EDC7NB
008 2WMKEE329N
009 62T7NC9MW5
010 IM6TGH62N5

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Snort 2.1 Intrusion Detection, Second Edition

Copyright © 2004 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be repro
duced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0
ISBN: 1-931836-04-3

Acquisitions Editor: Christine Kloiber Cover Designer: Michael Kavish
Technical Editors: Jay Beale, Brian Caswell, Copy Editor: Beth Roberts
Toby Kohlenberg, and Mike Poor Indexer: Nara Wood

Page Layout and Art: Patricia Lupien
Distributed by O’Reilly & Associates in the United States and Canada.

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page v

Acknowledgments

We would like to acknowledge the following people for their kindness and support in

making this book possible.

A special thanks to Marty Roesch and the rest of the Snort developers for all their

efforts to maintain Snort: Erek Adams, Andrew R. Baker, Brian Caswell, Roman D.,

Chris Green, Jed Haile, Jeremy Hewlett, Jeff Nathan, Marc Norton, Chris Reid, Daniel

Roelker, Dragos Ruiu, JP Vossen, Daniel Wittenberg, and Fyodor Yarochkin.

Syngress books are now distributed in the United States and Canada by O’Reilly &

Associates, Inc.The enthusiasm and work ethic at ORA is incredible and we would

like to thank everyone there for their time and efforts to bring Syngress books to

market:Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike Leonard, Donna Selenko,

Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol Matsutaro, Lynn Schwartz, Steve

Hazelwood, Mark Wilson, Rick Brown, Leslie Becker, Jill Lothrop,Tim Hinton, Kyle

Hart, Sara Winge, C. J. Rayhill, Peter Pardo, Leslie Crandell, Valerie Dow, Regina

Aggio, Pascal Honscher, Preston Paull, Susan Thompson, Bruce Stewart, Laura Schmier,

Sue Willing, Mark Jacobsen, Betsy Waliszewski, Dawn Mann, Kathryn Barrett, John

Chodacki, and Rob Bullington.

The incredibly hard working team at Elsevier Science, including Jonathan Bunkell, Ian

Seager, Duncan Enright, David Burton, Rosanna Ramacciotti, Robert Fairbrother,

Miguel Sanchez, Klaus Beran, Emma Wyatt, Rosie Moss, Chris Hossack, and Krista

Leppiko, for making certain that our vision remains worldwide in scope.

David Buckland, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan,

Pang Ai Hua, and Joseph Chan of STP Distributors for the enthusiasm with which

they receive our books.

Kwon Sung June at Acorn Publishing for his support.

David Scott,Tricia Wilden, Marilla Burgess, Annette Scott, Geoff Ebbs, Hedley Partis,

Bec Lowe, and Mark Langley of Woodslane for distributing our books throughout

Australia, New Zealand, Papua New Guinea, Fiji Tonga, Solomon Islands, and the

Cook Islands.

Winston Lim of Global Publishing for his help and support with distribution of

Syngress books in the Philippines.

v

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page vi

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page vii

Series Editor, Technical Editor
and Contributor

Jay Beale is a security specialist focused on host lockdown and
security audits. He is the Lead Developer of the Bastille project,
which creates a hardening script for Linux, HP-UX, and Mac OS
X, a member of the Honeynet Project, and the Linux technical lead
in the Center for Internet Security. A frequent conference speaker
and trainer, Jay speaks and trains at the Black Hat and LinuxWorld
conferences, among others. A senior research scientist with the
George Washington University Cyber Security Policy and Research
Institute, Jay makes his living as a security consultant through the
MD-based firm Intelguardians, LLC, where he works on security
architecture reviews, threat mitigation and penetration tests against
Unix and Windows targets.

Jay wrote the Center for Internet Security’s Unix host security
tool, currently in use worldwide by organizations from the Fortune
500 to the Department of Defense. He leads the Center’s Linux
Security benchmark team and, as a core participant in the non
profit Center’s Unix teams, is working with private enterprises and
US agencies to develop Unix security standards for industry and
government.

Aside from his CIS work, Jay has written a number of articles and
book chapters on operating system security. He is a columnist for
Information Security Magazine and previously wrote a number of
articles for SecurityPortal.com and SecurityFocus.com. He co
authored the Syngress international best-seller Snort 2.0 Intrusion
Detection (ISBN: 1-931836-74-4) and serves as the series and technical
editor of the Syngress Open Source Security series. He is also co
author of Stealing the Network: How to Own a Continent (Syngress
ISBN: 1-931836-05-1). Jay’s long-term writing goals include finishing
a Linux hardening book focused on Bastille called, Locking Down
Linux. Formerly, Jay served as the Security Team Director for
MandrakeSoft, helping set company strategy, design security products,
and pushing security into the third largest retail Linux distribution.

vii

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page viii

Technical Editors

and Contributors

Brian Caswell is a member of the Snort core team, where he is
the primary author for the world’s most widely used intrusion
detection rulesets. He is a member of the Shmoo group, an interna
tional not-for-profit, non-milindustrial independent private think
tank. He was also a technical editor for Snort 2.0 Intrusion Detection
(Syngress, ISBN: 1-931836-74-4). Currently, Brian is a Research
Engineer within the Vulnerability Research Team for Sourcefire, a
provider of one of the world’s most advanced and flexible Intrusion
Management solutions. Before Sourcefire, Brian was the IDS team
leader and all around supergeek for MITRE, a government spon
sored think tank. Not only can Brian do IDS, he was a Pokémon
Master Trainer for both Nintendo and Wizards of the Coast,
working throughout the infamous Pokémon Training League tours.
In his free time, Brian likes to teach his young son Patrick to write
perl, reverse engineer network protocols, and autocross at the local
SCCA events.

Toby Kohlenberg is a Senior Information Security Specialist for
Intel Corporation. He does penetration testing, incident response,
malware analysis, architecture design and review, intrusion analysis, and
various other things that paranoid geeks are likely to spend time
dealing with. In the last two years he has been responsible for devel
oping security architectures for world-wide deployments of IDS tech
nologies, secure WLANs, Windows 2000/Active Directory, as well as
implementing and training a security operations center. He is also a
handler for the Internet Storm Center, which provides plenty of
opportunity to practice his analysis skills. He holds the CISSP, GCFW,
GCIH, and GCIA certifications. He currently resides in Oregon with
his wife and daughters, where he enjoys the 9 months of the year that
it rains much more than the 3 months where it’s too hot.

viii

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page ix

Mike Poor is a Founder and Senior Security Analyst for the DC
firm Intelgardians Network Intelligence. In his recent past life he
has worked for Sourcefire, as a research engineer, and for the SANS
Institute as a member of the technical staff. As a consultant, Mike
conducts penetration tests, vulnerability assessments, security audits
and architecture reviews. His primary job focus however is in intru
sion detection, response, and mitigation. Mike currently holds both
GSEC and GCIA certifications and is an expert in network engi
neering and systems, network and web administration. Mike is an
Incident Handler for the Internet Storm Center.

Contributors

Raven Alder is a Senior Security Engineer for True North
Solutions, a consulting firm specializing in network security design
and implementation. She specializes in scalable enterprise-level secu
rity, with an emphasis on defense in depth. She designs large-scale
firewall and IDS systems, and then performs vulnerability assess
ments and penetration tests to make sure they are performing opti
mally. In her copious spare time, she teaches network security for
LinuxChix.org and checks cryptographic vulnerabilities for the
Open Source Vulnerability Database. Raven lives in the Washington
DC area.

Jacob Babbin works as a contractor with a government agency
filling the role of Intrusion Detection Team Lead. He has worked in
both private industry as a security professional and in government
space in a variety of IT security roles. He is a speaker at several IT
security conferences and is a frequent assistant in SANS Security
Essentials Bootcamp, Incident Handling and Forensics courses. He
lives in Virginia.

ix

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page x

Andrew R. Baker is a Senior Software Engineer for Sourcefire,
Inc. His work experience includes the development and use of
intrusion detection systems, security event correlation, as well as
vulnerability scanning software, network intrusion analysis and net
work infrastructure management. Andrew has been involved in the
Snort project since 2000. He is the primary developer for Barnyard,
which he started working on in 2001 to address performance prob
lems with the existing output plugins. He currently also serves as
the mailing list administrator for the Snort project. Andrew has
instructed and developed material for the SANS Institute, known
for providing information security training and GIAC certifications.
He has a bachelors of science in computer science is from the
University of Alabama at Birmingham and he is presently attending
the R.H. Smith School of Business at the University of Maryland,
where he is completing his MBA.

Adam Doxtater (CUSA, MCSE) is a computer engineer for MGM
MIRAGE in Las Vegas, NV. Prior to MGM MIRAGE, he was
employed as a computer consultant in the greater Las Vegas area. With
over 8 years of network administration, he is a very capable and
diverse individual. Adam has contributed to the Open Sound System
digital audio architecture, allowing it to be ported to a larger
UNIX/Linux audience. His Linux-related efforts and columns have
been featured in such magazines as eWeek and Network World
Fusion, as well as on Web sites such as Slashdot, Linux.com,
NewsForge.com, and LinuxWorld.com. Adam is responsible for the
launch of the MadPenguin.org Linux portal, which is currently in the
top 100,000 sites on the Internet. In the year since its inception, Mad
Penguin has become one of the highest-ranking Linux sites, and gath
ered an impressive and dedicated following. Over the past two and a
half years, Adam has contributed to several Syngress books, including
Snort 2.0 Intrusion Detection (ISBN: 1-931836-74-4) and is truly
thankful for the opportunity to reach an audience of that magnitude.
Adam owes his accomplishments to his wife, Cristy, and daughter,
Amber Michelle. He would also like to thank his entire family for
providing the support necessary to make it through some of the
hardest times he has ever endured.

x

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page xi

James C. Foster, is the Deputy Director, Global Security
Development for Computer Sciences Corporation where he is
leading the task of developing and delivering managed, educational,
informational, consulting, and outsourcing security services. Prior to
joining CSC, Foster was the Director of Research and Development
for Foundstone Inc. and was responsible for all aspects of product
and corporate R&D including corporate strategy and international
market expansion. Preceding Foundstone, Foster was a Senior
Advisor and Research Scientist with Guardent Inc. (acquired by
Verisign in 2004 for $135 Million) and an adjunct author at
Information Security Magazine (acquired for an undisclosed amount
by TechTarget in 2003.) He is commonly asked to comment on
pertinent security issues and has been sited in USAToday,
Information Security Magazine, Baseline, Computer World, Secure
Computing, and the MIT Technologist. James has co-authored or
contributed to Snort 2.0 Intrusion Detection (Syngress, ISBN:
1931836744), Hacking the Code:ASP.NET Web Application Security
(Syngress, ISBN: 1-932266-65-8), and Special Ops Host and Network
Security for Microsoft, Unix, and Oracle (Syngress, ISBN: 1931836698)
as well as Hacking Exposed, Fourth Edition, Advanced Intrusion
Detection, Anti-Hacker Toolkit Second Edition, and Anti-Spam Toolkit.
James has attended Yale, Harvard, and the University of Maryland
and has an AS, BS, MBA and is currently a Fellow at the University
of Pennsylvania’s Wharton School of Business.

Michael Rash works as a Security Research Engineer in
Columbia, MD for Enterasys Networks, Inc. He is a frequent con
tributor to Open Source endeavors such as Bastille-Linux and the
Netfilter Project, and has written security articles for publications
such as Sys Admin Magazine, the Linux Journal, and Information
Security Magazine. Michael is the author of Fwsnort and PSAD;
two open source security tools designed to blur the boundaries
between Iptables firewalls and the Snort Intrusion Detection
System. He holds a master’s degree in applied mathematics with a
concentration in computer security from the University of
Maryland, and resides in Maryland with his wife, Katie.

xi

295_Snort2e_FM.qxd 5/5/04 6:54 PM Page xii

About the CD

The CD-ROM accompanying this book is an archive of many open-source
security tools including Snort, Nmap, Nessus, Ethereal,Tcpdump, Ettercap,
Nikto, Psad, Iptables, Ebtables, ACID, Barnyard, libnet, and libpcap. Most files
are included as a gzip-compressed tar archive, but in some cases .zip compressed
files for use on Windows systems are included. Although the latest version of
each piece of software at the time of this writing was placed on the CD-ROM,
it should be noted that many of the open source projects contained therein
have active development cycles and so newer software versions may have been
released since publication. An excellent place to find links to the latest releases
of each piece of software is by checking on www.freshmeat.net.

Chapter 3 contains the Snort-2.1.2 intrusion detection system, along with
an archive of the latest Snort rules. Chapter 5 contains a smorgasbord of tools
for offense (Nmap, Nikto, and Nessus), and packet analysis (Ethereal and
Tcpdump). Chapter 6 is an archive of the latest release of Ettercap, which defi
nitely falls into the offense category with its capability of performing “man in
the middle” attacks on a LAN. Chapters 7 and 8 provide copies of ACID
(Analysis Console for Intrusion Databases), Barnyard, and swatch. Chapters 9
and 10 contain copies of the IDS testing/evasion tools Stick and Snot. Chapter
12 is an archive of three active response systems, Snortsam, Fwsnort, and
Snort_inline, which automate the process of responding to attacks in real time.

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xiii

Contents

Foreword .xxix

Chapter 1 Intrusion Detection Systems1
Introducing Intrusion Detection Systems2

What Is an Intrusion? .2
Legal Definitions .3
Scanning vs. Compromise .5
Viruses and Worms—SQL Slammer6
Live Attacks—Sendmail Buffer Overflow9

How an IDS Works .9
What the IDS Is Watching 9
How the IDS Watches Your Network 20
How the IDS Takes the Data It Gathers and Finds

Intrusion Attempts .22
What the IDS Does When It Finds an Attack Attempt 25

Answering Common IDS Questions 27
Why Are Intrusion Detection Systems Important? . . .28
Why Doesn’t My Firewall Serve as an IDS? 28
Why Are Attackers Interested in Me?28

Automated Scanning/Attacking Doesn’t Care Who

You Are .29

Desirable Resources Make You a Target29
Political or Emotional Motivations30

Where Does an IDS Fit with the Rest of My

Security Plan? .31

Where Should I Be Looking for Intrusions?31
Operating System Security—Backdoors and Trojans 32

Physical Security .32
Application Security and Data Integrity 34

xiii

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xiv

xiv Contents

Correlation of All These Sources35
What Will an IDS Do for Me?35

Continuously Watch Packets on Your Network

and Understand Them 35

Read Hundreds of Megs of Logs Daily and Look

for Specific Issues .36

Create Tremendous Amounts of Data No Matter

How Well You Tune It .36

Create So Much Data that If You Don’t Tune It,

You Might as Well Not Have It 37

Find Subtle Trends in Large Amounts of Data that

Might Not Otherwise Be Noticed37

Supplement Your Other Protection Mechanisms . . .37
Act as a Force Multiplier Competent System/

Network Administrator 38
Let You Know When It Looks Like You Are

Under Attack .38
What Won’t an IDS Do for Me?39

Replace the Need for Someone Who Is

Knowledgeable about Security 39

Catch Every Attack that Occurs 39
Prevent Attacks from Occurring 40
Prevent Attacks from Succeeding Automatically

(in Most Cases) .41
Replace Your Other Protection Mechanisms 42

What Else Can Be Done with Intrusion Detection? . . .42
Fitting Snort into Your Security Architecture42

Viruses, Worms, and Snort .43
Known Exploit Tools and Snort 43
Writing Your Own Signatures with Snort 44
Using an IDS to Monitor Your Company Policy44

Analyzing Your IDS Design and Investment44
False Positives versus False Negatives 45
Fooling an IDS .45

IDS Evasion Techniques .45
Return on Investment—Is It Worth It? 47

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xv

Contents xv

Defining IDS Terminology .48
Intrusion Prevention Systems (HIPS and NIPS) 48
Gateway IDS .48
Network Node IDS .48
Protocol Analysis .49
Target-Based IDS .49

Summary .50
Solutions Fast Track .50
Frequently Asked Questions .52

Chapter 2 Introducing Snort 2.153
Introduction .54
What Is Snort? .55
Understanding Snort’s System Requirements57

Hardware .58
Operating System .60
Other Software .61

Exploring Snort’s Features .62
Packet Decoder .63
The Preprocessors .64

Example: HTTPInspect .65
Example: flow-portscan .66

The Detection Engine .67
Flow-Portscan as Example Feature 67
Rules and Matching .67
Thresholding and Suppression69

The Alerting and Logging Components70
Output Plug-Ins .72
Unified Output .72

Using Snort on Your Network .73
Using Snort as a Packet Sniffer and Logger 74
Using Snort as a NIDS .85
Snort and Your Network Architecture86

Snort and Switched Networks87
Pitfalls When Running Snort87

False Alerts .88
Upgrading Snort .88

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xvi

xvi Contents

Considering System Security While Using Snort89
Snort Is Susceptible to Attacks90

Detecting a Snort System on the Network90
Attacking Snort .91
Attacking the Underlying System92

Securing Your Snort System .92
Summary .94
Solutions Fast Track .94
Frequently Asked Questions .96

Chapter 3 Installing Snort .99
Introduction .100
Making the Right Choices .101

Linux over OpenBSD? .103
Stripping Linux .104

Stripping out the Candy106
A Brief Word about Linux Distributions108

Debian .108
Slackware .108
Gentoo .109

A Word about Hardened/Specialized Linux

Distributions .110

Preparing for the Installation .112
Installing pcap .112

Installing libpcap from Source113
Look Ma! No GUI! .117
Installing libpcap from RPM122
Installing libpcre .123
Installing MySQL .124
Installing from RPM .124
Installing from Source .126

Installing Snort .127
A Brief Word about Sentinix GNU/Linux128

Installing Snort from Source129
Enabling Features via configure131

Installing Snort from RPM .132
Installing Snort Using apt .134

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xvii

Contents xvii

Configuring Snort IDS .138
Customizing Your Installation: Editing the snort.conf

File .138
Installation on the MS Windows Platform140
Command-Line Switches147

Installing on OpenBSD .150
Option 1: Using OpenBSD Ports152
Option 2: Using Prepackaged OpenBSD Ports155
Option 3: Installing Snort from Source157

Installing Bleeding-Edge Versions of Snort159
Summary .161
Solutions Fast Track .161
Frequently Asked Questions .163

Chapter 4 Inner Workings .165
Introduction .166

The Life of a Packet Inside Snort166
Decoders .166

The Detection Engine .167
The Old Detection Engine168
The New Detection Engine169
Tagging .171
Thresholding .172
Suppression .173
Logging .173

Adding New Functionality .173
What Is a Detection Plug-In?174
Writing Your Own Detection Plug-In174

Copyright and License .174
Includes .175
Data Structures .175
Functions .176
Setup .176
Initialization .176
Parser .178
Detection Function .179
What Do I Add to the Rest of the System?180

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xviii

xviii Contents

Testing .180
Summary .182
Solutions Fast Track .182
Frequently Asked Questions .183

Chapter 5 Playing by the Rules185
Introduction .186
Dissecting Rules .187

Matching Ports .187
Matching Simple Strings .187
Using Preprocessor Output .188

Using Variables .188
Snort Configuration .191

Understanding Rule Headers .195
Rule Actions .196

When Should You Use a Pass Rule?197
Custom Rules Actions .197
Using Activate and Dynamic Rules197

Rule Options .198
Rule Content .199

ASCII Content .199
Including Binary Content199
The depth Option .200
The offset Option .201
The nocase Option .201
The session Option .201
Uniform Resource Identifier Content201
The stateless Option .202
Regular Expressions .202
Flow Control .203

IP Options .204
Fragmentation Bits .204
Equivalent Source and Destination IP Option205
IP Protocol Options .205
ID Option .206
Type of Service Option .206
Time-To-Live Option .206

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xix

Contents xix

TCP Options .206
Sequence Number Options206
TCP Flags Option .207
TCP ACK Option .208

ICMP Options .208
ID .208
Sequence .209
The icode Option .209
The itype Option .209

Meta-Data Options .209
Snort ID Options .209
Rule Revision Number .210
Severity Identifier Option210
Classification Identifier Option210
External References .212

Miscellaneous Rule Options212
Messages .212
Logging .213
TAG .213
dsize .213
RPC .214
Real-Time Countermeasures 214

Writing Good Rules .215
What Makes a Good Rule?216
Action Events .216
Ensuring Proper Content .217
Merging Subnet Masks .220
What Makes a Bad Rule? .223
The Evolution of a Rule: From Start to Finish224

Summary .226
Solutions Fast Track .226
Frequently Asked Questions .228

Chapter 6 Preprocessors .231
Introduction .232
What Is a Preprocessor? .233
Preprocessor Options for Reassembling Packets234

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xx

xx Contents

The stream4 Preprocessor .235
TCP Statefulness .235
Session Reassembly .244
Stream4’s Output .247

Frag2—Fragment Reassembly and Attack Detection . .248
Configuring Frag2 .249
Frag2 Output .250

Flow .251
Configuring Flow .251
Frag2 Output .254

Preprocessor Options for Decoding and Normalizing

Protocols .254

Telnet Negotiation .254
Telnet Negotiation Output 255

HTTP Normalization .256
Configuring the HTTP Normalization Preprocessor 260

HTTP Decode’s Output262

rpc_decode .262
Configuring rpc_decode263
rpc_decode Output .265

Preprocessor Options for Nonrule or Anomaly-Based

Detection .265

Portscan .265
Configuring the Portscan Preprocessor267

Back Orifice .268
Configuring the Back Orifice Preprocessor268

General Nonrule-Based Detection 269
Experimental Preprocessors .269

arpspoof .269
ASN1_decode .270
Fnord .271
preprocessor fnordPreprocessor

fnordportscan2 and conversation271
Configuring the portscan2 Preprocessor272
Configuring the conversation Preprocessor273

perfmonitor .274

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxi

Contents xxi

Writing Your Own Preprocessor 275
Reassembling Packets .275
Decoding Protocols .276
Nonrule or Anomaly-Based Detection276
Setting Up My Preprocessor277
What Am I Given by Snort?280

Examining the Argument Parsing Code293
Getting the Preprocessor’s Data Back into Snort . . .300

Adding the Preprocessor into Snort300
Summary .303
Solutions Fast Track .304
Frequently Asked Questions .307

Chapter 7 Implementing Snort Output Plug-Ins311
Introduction .312
What Is an Output Plug-In? .312

Key Components of an Output Plug-In314
Exploring Output Plug-In Options315

Default Logging .316
SNMP Traps .321
XML Logging .322
Syslog .322
SMB Alerting .326
PCAP Logging .326
Snortdb .327
MySQL versus PostgreSQL333
Unified Logs .338

Why Should I Use Unified Logs?338
What Do I Do with These Unified Files?339

Writing Your Own Output Plug-In342
Why Should I Write an Output Plug-In?343
Setting Up Your Output Plug-In345
Creating Snort’s W3C Output Plug-In348

myPluginSetup (AlertW3CSetup)349
myPluginInit (AlertW3CInit)349
myPluginAlert (AlertW3C)350
myPluginCleanExit (AlertW3CCleanExit)350

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxii

xxii Contents

myPluginRestart (AlertW3CRestart)350
Running and Testing the Snort W3C Output

Plug-in .367
Dealing with Snort Output367

Tackling Common Output Plug-In Problems371
Summary .373
Solutions Fast Track .374
Frequently Asked Questions .376

Chapter 8 Dealing with the Data379
Introduction .380
What Is Intrusion Analysis? .380

Snort Alerts .381
Snort Packet Data .382
Examine the Rule .383
Validate the Traffic .383
Attack Mechanism .383
Intrusion Data Correlation384
Following Up on the Analysis Results385

Intrusion Analysis Tools .386
Database Front Ends .386

ACID .386
Installing ACID .387

Prerequisites for Installing ACID 388
Configuring ACID .394
Using ACID .398

Querying the Database .400
Alert Groups .402
Graphical Features of ACID404
Managing Alert Databases406

SGUIL .407
Installing SGUIL .409
Step 1: Create the SGUIL Database409
Step 2: Installing Sguild, the Server410
Step 3: Install a SGUIL Client413
Step 4: Install the Sensor Scripts413
Step 5: Install Xscriptd .416

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxiii

Contents xxiii

Using SGUIL .416
Summary Scripts .418

snort_stat.pl .419
Using SnortSnarf .422

Installing SnortSnarf .422
Configuring Snort to Work with SnortSnarf424
Basic Usage of SnortSnarf425
Swatch .428

Analyzing Snort IDS Events .431
Begin the Analysis by Examining the Alert message . . .431
Validate the Traffic .431
Identify the Attack Mechanism433
Correlations .433

Conclusions .434
Summary .435
Solutions Fast Track .436
Frequently Asked Questions .438

Chapter 9 Keeping Everything Up to Date441
Introduction .442
Updating Snort .444

Production Choices .444
Compiled Builds vs. Source Builds 2444
Patching Snort 3 .445

Updating Rules .447
How Can Updating Be Easy?448

Using Variables .448
Using the Local Rules File449
Removing Rules from the Ruleset 450
Using Oinkmaster .451
Using IDSCenter to Merge with Your Existing Rules 455

The Importance of Documentation 456
Why a Security Team Should Be Concerned with

Rule Documentation .457
Testing Snort and the Rules .457

Testing within Organizations 459
Small Organizations .459

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxiv

xxiv Contents

Large Organizations .461
Watching for Updates .462

The Importance of Security Mailing Lists and Web Sites 462

Chain-of-Command and Outside Management for

CIRT Organizations .463
Use in Events-of-Interest, 0-Day, and Other

Short-Term Use .464
Short-Term Rules .464
Policy Enforcement Rules464
Forensics Rules .465

Summary .466
Solutions Fast Track .466
Frequently Asked Questions .469

Chapter 10 Optimizing Snort471
Introduction .472
How Do I Choose the Hardware to Use?472

What Constitutes “Good” Hardware?474
Processors .474
RAM Requirements .475
Storage Medium .476
Network Interface Card .477

How Do I Test My Hardware?477
How Do I Choose the Operating System to Use?479

What Makes a “Good” OS for an NIDS?480
What OS Should I Use? .484
How Do I Test My OS Choice?485

Speeding Up Snort .486
The Initial Decision .487
Deciding Which Rules to Enable488
Notes on Pattern Matching490
Configuring Preprocessors for Speed490
Using Generic Variables .492
Choosing an Output Plug-In492

Benchmarking Your Deployment494
Benchmark Characteristics .494

Attributes of a Good Benchmark495

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxv

Contents xxv

Attributes of a Poor Benchmark495
What Options Are Available for Benchmarking?496

IDS Informer .496
IDS Wakeup .501
Sneeze .502
TCPReplay .504
THC’s Netdude .513
Other Packet-Generation Tools 517
Additional Options .519

Stress Testing the Pig! .520
Stress Tests .520
Individual Snort Rule Tests .521
Berkeley Packet Filter Tests .521

Tuning Your Rules .522
Summary .523
Solutions Fast Track .524
Frequently Asked Questions .526

Chapter 11 Mucking Around with Barnyard529
Introduction .530
What Is Barnyard? .531
Understanding the Snort Unified Files532

Unified Alert Records .532
Unified Log Records .535
Unified Stream-Stat Records 536

Installing Barnyard .537
Downloading .538
Building and Installing .539

Configuring Barnyard .541
The Barnyard Command-Line Options541
The Configuration File .546

Configuration Directives547
Output Plug-In Directives549

Understanding the Output Plug-Ins549
alert_fast .550
alert_csv .551
alert_syslog .554

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxvi

xxvi Contents

alert_syslog2 .556
log_dump .561
log_pcap .564
acid_db .565
sguil .567

Running Barnyard in Batch-Processing Mode567
Processing a Single File .568
Using the Dry Run Option569
Processing Multiple Files .571

Using the Continual-Processing Mode572
The Basics of Continual-Processing Mode 572
Running in the Background574
Enabling Bookmark Support574
Only Processing New Events575
Archiving Processed Files .575
Running Multiple Barnyard Processes576
Signal Handling .577

Deploying Barnyard .577
Remote Syslog Alerting .578
Database Logging .580
Extracting Data .581
Real-Time Console Alerting583

Writing a New Output Plug-In584
Implementing the Plug-In .585

Setting Up the Source Files585
Writing the Functions .587
Adding the Plug-In to op_plugbase.c593

Finishing Up .594
Updating Makefile.am .594
Building Barnyard .595

Real-Time Console Alerting Redux595
Secret Capabilities of Barnyard .596
Summary .598
Solutions Fast Track .598
Frequently Asked Questions .602

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxvii

Contents xxvii

Chapter 12 Active Response605
Introduction .606
Active Response vs. Intrusion Prevention607

Active Response Based on Layers608
Altering Network Traffic Based on IDS Alerts609

Snortsam .610
Fwsnort .610
Snort_inline .610
Attack and Response .611

Snortsam .619
Installation .619
Architecture .621

Snort Output Plug-In .621
Blocking Agent .622

Snortsam in Action .624
WWWBoard passwd.txt Access Attack626
NFS mountd Overflow Attack633

Fwsnort .636
Installation .637
Configuration .639
Execution .640
WWWBoard passwd.txt Access Attack (Revisited) . . .643
NFS mountd Overflow Attack (Revisited)650

Snort_inline .653
Installation .655
Configuration .657
Architecture .659
Web Server Attack .660
NFS mountd Overflow Attack663

Summary .667
Solutions Fast Track .668
Frequently Asked Questions .669

Chapter 13 Advanced Snort671
Introduction .672
Network Operations .672

Flow Preprocessor Family .673

295_Snort2e_TOC.qxd 5/5/04 7:10 PM Page xxviii

xxviii Contents

Perfmon Preprocessor .675
Unusual Network Traffic .679

Forensics/Incident Handling .680
Logging and Filtering .681
Traffic Reconstruction .682
Interacting with Law Enforcement685

Snort and Honeynets .686
Snort-Inline .686

Countermeasures and Logging688
Really Cool Stuff .689

Behavioral Tracking .689
Patch/IAVA Verifications692
Policy Enforcement .692

Summary .696
Solutions Fast Track .697
Frequently Asked Questions .699

Index .701

295_Snort2e_Fore.qxd 5/5/04 6:41 PM Page xxix

Foreword

Snort, Information Security Magazine’s pick for Open Source Product of the
year 2003, is one of the best examples of the IT community working together
to build a capability. Please notice I did not say a tool, but rather, a capability.
Snort’s extensible architecture and open source distribution has long made it an
ideal choice for intrusion detection. Snort is amazingly flexible with its plug-in
architecture and all its supporting tools such as: ACID, barnyard, and swatch.
Snort runs on a large number of hardware platforms and OS configurations,
and is one of the most widely ported pieces of security software in the world.
Analysts with expensive commercial intrusion detection systems still turn to
Snort to fill in the gaps.

The creator of Snort, Marty Roesch, originally envisioned Snort as a
lightweight intrusion detection system, and it was initially designed as a net
work packet sniffer.You can run Snort without specifying a ruleset and view all
of the traffic traversing a network on the same network segment. As Snort has
continually grown, with enhancements from Marty, as well as with a lot of
community-contributed code, it has become a full-featured, real-time IP traffic
analysis and packet logging system. And though this is a book about Snort, not
about intrusion detection per se, you will learn about all the parts of Snort
from how to write a rule to becoming familiar with the numerous auxiliary
tools used. For example, Barnyard, Andrew Baker’s contribution to Snort, solves
one of the hardest problems in intrusion detection:You want the data the IDS
collects to end up in a database to facilitate advanced analysis, but databases are
slow. If you are running Snort on a busy network a slow database will eventu
ally lead to dropping packets and that is a bad thing, but Barnyard addresses this
problem. In short, you will benefit from this book whether you are already
running Snort or if you are a beginner.

The years of support for the Snort rule set are an incredible gift to the
community.The ruleset and processor bring Snort to life.The Snort rule lan
guage is easy to learn and flexible, while the powerful rules and supports enable
an advanced analysis capability of all network traffic.You will learn to write
rules to determine how to handle any packet you are interested in; you can
ignore packets, record them, cause Snort to send an alert, you can do whatever
needs to be done.The rule set allows you to specify a number of logging or

xxix

295_Snort2e_Fore.qxd 5/5/04 6:41 PM Page xxx

xxx Foreword

alerting methods, Syslog, plain text or XML files are common, but there are a
number of additional options. As a new exploit begins to make its way around
the Internet, you can be sure that in a matter of hours a new rule specific to
the exploit will be published. In fact, the authoring team is a veritable who’s
who of the intrusion detection community. Brian Caswell, and also James C.
Foster have contributed countless hours to making the rule set the lingua franca
for intrusion detection. A number of commercial IDS systems can either use
Snort rules directly or have a translation function and the Tiny personal firewall
uses them as well. Perhaps you have heard of the infamous Gartner Inc. report
claming “Intrusion Detection is Dead” and suggesting we all switch to intrusion
prevention devices. Amazingly, several of the IPSes I have examined run a
subset of the Snort rule set. IDS is not dead: the Snort community is very
much alive, kicking and producing.

These folks and the rest of the writing and edit team including: Raven
Alder, Jake Babbin, Jay Beale, Adam Doxtater, Toby Kohlenberg, Mike Poor
and Michael Rash bring extraordinary capability to the community which is
reflected in the book.The authors of this Snort 2.1 Intrusion Detection, Second
Edition have produced a book with a simple focus, to teach you how to use
Snort, from the basics of getting started to advanced rule configuration, they
cover all aspects of using Snort, including basic installation, preprocessor config
uration, and optimization of your Snort system. I hope you can begin to see
why I say Snort is one of the best examples of the IT community working
together to build a capability. I am very thankful to have a front row seat to
watch the enormously talented security analysts of the Snort community con
tinue to refine and improve the capability of the tools we use.While you are
reading though the book, I would encourage you to keep an eye out for the
little nuggets that can only come from in-the-trenches experience. My hope is
that you will do far more than simply read a book. I would challenge you to
make this a step and become an active participant in the defensive information
community. Master the material in this book, get your Snort tuned up and run
ning, write a filter and share it, participate in the Snort mailing list, SANS
Incidents list, or Security Focus IDS list. I will be looking for you to be part of
the author team for Snort 3.0.

— Stephen Northcutt
Director of Training and Certification,

The SANS Institute

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 1

Chapter 1

Intrusion
Detection Systems

Solutions in this Chapter:

■	 Introducing Intrusion Detection Systems

■	 Answering Common IDS Questions

■	 Fitting Snort into Your Security
Architecture

■	 Determining Your IDS Design and
Configuration

■	 Defining IDS Terminology

�	Summary

�	Solutions Fast Track

�	Frequently Asked Questions

1

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 2

2 Chapter 1 • Intrusion Detection Systems

Introducing Intrusion Detection Systems
It’s three o’clock in the morning, and Andy Attacker is hard at work. With the
results from the latest round of portscans at hand, Andy targets the servers that
appear vulnerable. Service by service, Andy fires off exploits, attempting to over
flow buffers and overwrite pointers, aiming at taking over other peoples’ servers.
Some of these attempts are successful. Encouraged, Andy quickly installs rootkits
on the compromised machines, opening backdoor access mechanisms, securing
the machines enough to lock other attackers out, and consolidating control.
Once that is accomplished, Andy begins the next round of scan-and-exploit,
from the newly compromised machines.

It’s three o’clock in the morning, and a shrill insistent beeping rouses Jennifer
Sysadmin from her bed. Blearily, she finds her pager on the nightstand and stares
at the message it displays. A customized message alerts her to a Secure Shell over
flow attempt… outbound from one of her servers. She is startled into wakeful-
ness.Throwing back the covers and grumbling about the tendency of network
malefactors to attack during prime sleeping hours, she grabs her cell phone and
heads purposefully for the nearest computer.

It’s three o’clock in the morning, and across town, Bob Sysadmin is sleeping
peacefully. No pager or cell phone disturbs his rest.

Is Bob’s security that much better than Jennifer’s, so that he can sleep soundly
while she cusses and does damage control? Or has he also been compromised
and just doesn’t know it yet? With only this information, we don’t know. And if
he doesn’t have an Intrusion Detection System (IDS), neither does Bob. IDSs are
a weapon in the arsenal of system administrators, network administrators, and
security professionals, allowing real-time reporting of suspicious and malicious
system and network activity. While they are not perfect and will not show you
every possible attack, IDSs can provide much-needed intelligence about what’s
really going on on your hosts and your network.

What Is an Intrusion?
To understand what “intrusion detection” does, it is first necessary to understand
what an intrusion is. Webster’s dictionary defines an intrusion as “the act of
thrusting in, or of entering into a place or state without invitation, right, or wel
come.” For our purposes, an intrusion is simply unauthorized system or network
activity on one of your computers or networks.This can take the form of a legit
imate user of a system trying to escalate his privileges and gain greater access to

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 3

3 Intrusion Detection Systems • Chapter 1

the system than he has been allowed, a remote and unauthenticated user trying
to compromise a running service in order to create an account on a system, a
virus running rampant through your e-mail system, or many other similar sce
narios. Intrusions can come from the deliberately malicious Andy Attackers of the
world, or from the terribly clueless Archibald Endusers of the world, who will
click on every e-mail attachment sent to them, despite repeated admonitions not
to do so. Intrusions can come from a total stranger three continents away, from a
disgruntled ex-employee across town, or from your own trusted staff.

OINK!
Detecting malicious activity when it comes from your own employees or
users is one of the most important purposes for IDSs in many environ
ments. In fact, a properly implemented IDS that is watched by someone
besides your system administrators may be one of the few methods that
can actually catch a system administrator when she is doing something
malicious. This is one of the main reasons why you should have network
security personnel analyzing IDS events and system administrators man
aging systems.

Legal Definitions
Legally, there are not clear and universal standards for what constitutes an intru-
sion.There are federal laws about computer crime in many countries, such as the
United States and Australia, but none in others.There are various state laws, and
regional statutes in place, but not everywhere. Jurisdiction for computer crime
cases can be unclear, especially when the laws of the attacker’s location are vastly
different from the laws in place in the compromised machine’s region.To add to
this confusion even if an intrusion is clearly within the legal definitions, many
law enforcement agencies will not spend time working on it unless there is a
clear dollar cost that is greater than some fixed amount. Some agencies use
US$10,000 for their guideline, while others use US$100,000—this number varies
from place to place.

Another legal concern when using IDSs is privacy.Technically, an IDS is a
full content wiretap. In the United States, full content wiretaps are regulated by
federal laws, including Title III of the Omnibus Crime Control and Safe Streets
Act of 1968 (Title III), 18 U.S.C. §§ 2510–2522 and the Electronic

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 4

4 Chapter 1 • Intrusion Detection Systems

Communications Privacy Act of 1986.They are also subject to less stringent laws
governing Pen Registers or Trap and Trace situations, such as the Pen Register,
Trap and Trace Statue “Provider Exception,” 18 U.S.C. § 2511(2)(h).These gen
erally involve tapping the characteristics and patterns of traffic without exam
ining the data payload. Under these laws, intercepting network data may be
illegal, particularly if it is not done by the network operator in the pursuit of his
normal duties or in direct support of an ongoing criminal investigation of a
computer trespasser. We strongly advise that you consult your legal department
about your particular jurisdiction’s laws and the ramifications of deploying an
IDS on your network.

Some enterprises rely on the status of their data as “protected trade secrets”
under local common uniform trade secrets statutes. Such laws usually require the
data to not be known to the public at large, and for some efforts to have been
made to secure the data.Therefore, if you’re relying on such laws to save you
when your data is stolen, you may be in for a nasty shock if the court deems
your security measures insufficient. However, the U.S. Economic Espionage Act
of 1996 (viewable at www.cybercrime.gov/eea.html) can make such activity a
federal crime.

The type and scope of the activity can affect this as well. In computer secu
rity forums, there are often arguments about whether portscanning is legal.The
answer depends on your jurisdiction. In 1998, Norway ruled that portscanning
was not illegal. Michigan law, however, states that unauthorized use or access of a
computer is illegal unless you have reason to think the system is designed for
public access. Lawyers are still arguing about whether portscanning is “unautho
rized use.” In some jurisdictions, login banners explicitly prohibiting access are
required to prove that a given use of the system was unauthorized. Privacy
expectations can play into the equation, too—if the user has an expectation that
her system activity may be private, logging and prosecuting her for that activity
may be difficult even if it is obviously malicious.

The best practices solution to this legal morass is usually to secure your sys
tems as much as possible, clearly label all accessible services with login banners
stating the terms of use, and know your local and federal computer crime laws, if
there are any.That will help you protect your systems and identify what is con
sidered an intrusion in your jurisdiction.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 5

5 Intrusion Detection Systems • Chapter 1

Scanning vs. Compromise
When watching network activity, one of the first things that usually jumps out is
scanning activity; specifically, lots of scanning activity. Whether it’s scanning for par
ticular vulnerabilities or just scanning for open ports, this type of activity is very
common on the unfiltered Internet, and on many private networks. Many IDSs are
configured to flag scanning activity, and it’s not uncommon to see the bulk of your
alerts be caused by some form of scanning. While scanning is not necessarily mali
cious activity in and of itself, and may have legitimate causes (a local system admin
istrator checking his own network for vulnerabilities prior to patching, for
example, or a third-party company hired to perform a security audit of your sys
tems), very often scanning is the prelude to an attempted attack. As such, many
administrators want to be alerted when they are being scanned.Tracking scanning
activity can also be useful for correlation in case of later attack.

Many popular network scanning tools are free, and freely available. A quick
Google search will turn up everything from the ping and File Transfer Protocol
(FTP) “Grim’s Ping” to the full-featured portscanner Nmap, from the commer
cially available SolarWinds scanner to the vulnerability scanner Nessus. Since
scanning tools are so easily accessible, it’s not that surprising that they are so
widely used.

However, it is important to realize that scanning is not an attempted compro
mise in and of itself, and should not be treated with the same level of escalated
response that an actual attempted attack would merit.There are people who just
scan systems out of curiosity and do not intend to attack them. A fellow that we
met at a security conference once confided that before he engages in online
financial transactions with any business, he scans all the company’s machines that
he can find.That’s his way of determining whether he feels he trusts their secu
rity enough to trust them with his money.

It’s also important to note that scanning activity is nearly constant. On the
Wild West of the modern Internet, all sorts of automated programs are scanning
large ranges of addresses, all the time. Some of them might be yours. Network
monitoring tools, worms and viruses, automated optimization applications, script
kiddies, and more are constantly probing your machines and your network. If
you don’t make a deliberate effort to filter it out, seeing this traffic on the
Internet is a fact of life.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 6

6 Chapter 1 • Intrusion Detection Systems

OINK!
While it is important to know when your network is being scanned, you
don’t want to make the mistake of spending your valuable time tracking
down every fool who appears to be scanning your network. One of the
best things you can do with information about scans is to track the
source IPs that are scanning you and then use them to correlate against
alerts for higher priority events or look for repeat scanners. We talk
about correlation methods and data analysis in depth in Chapter 8,
“Dealing with the Data.”

Viruses and Worms—SQL Slammer
Now that we’ve discussed scanning activity, let’s get into a little more detail about
some of the actual attempted compromises out there. Another very common
type of traffic that you’ll see triggering your IDSs is automated worms. Worms
and viruses are often good candidates for IDSs, because they have repeatable and
consistently identifiable behavior. Even polymorphic worms and viruses that
attempt many attack vectors will have some network behavior in common, some
traffic pattern that can be matched and detected by your IDS. As an example, let’s
look at the SQL Slammer worm.

On January 25, 2003, the SQL Slammer worm was released into the wild.
Also known as Sapphire, the worm exploits a weakness in the Microsoft
Structured Query Language (SQL) server. It sends a 376-byte User Datagram
Protocol (UDP) packet to port 1434, overflows a buffer on the SQL server, and
gains SYSTEM privileges, the highest possible level of compromise on a
Windows operating system. Once it has successfully compromised a host, it starts
scanning other IP addresses to further spread.

OINK!
Worms that use multiple attack paths are an excellent example of the
value of correlation. The individual alerts from CodeRed or Nimda are
common enough, but when they are seen together (as they would be
from CodeRed or Nimda), they are a very distinct fingerprint for that
worm. As mentioned before, we discuss correlation more in Chapter 8.

It is also worth noting that SQL Slammer is a perfect example of a
situation where an “active response” IDS would not be able to prevent

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 7

7 Intrusion Detection Systems • Chapter 1

infection, but an inline IDS would. The pluses and minuses of “active
response” vs. inline IDS are discussed in Chapter 12, “Active Response.”

From the moment of its release, it is estimated that the worm spread world
wide in approximately 10 minutes. Massive amounts of network bandwidth were
chewed up by the worm’s scanning and propagation attempts. Many systems
were compromised. Five of the 13 root Domain Name servers that provide name
service to the Internet were knocked down by the worm.You can read the
Microsoft advisory about the worm at www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/alerts/slammer.asp, and the Computer
Emergency Response Team Coordination Center’s (CERT-CC) advisory about
the worm at www.cert.org/advisories/CA-2003-04.html.

OINK!
The CERT/CC is a center of Internet security expertise located at the
Software Engineering Institute, a federally funded research and develop
ment center operated by Carnegie-Mellon University.

So, what’s a good candidate rule for catching this with an IDS? Obviously,
this is just the type of activity that you want to detect on your network. One
thing common among every Slammer-infected host is the exploit payload it
sends out. And indeed, that’s exactly what the Snort IDS signature for the rule
matches against. Here’s the Snort signature that matches this activity:

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Worm propagation

attempt"; content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1 01|";

content:"sock"; content:"send"; reference:bugtraq,5310; classtype:misc-

attack; reference:bugtraq,5311;

reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2003; rev:2;)

We’ll get into much greater detail about Snort rules and their construction in
Chapter 5, “Playing by the Rules,” but you can see that the alert is labeled as an
attempt at worm propagation, and that it matches UDP traffic headed to our
network $HOME_NET on port 1434 with a specific payload. Using this signa
ture, we can detect and enumerate how many attack attempts we saw, and what
hosts on our network they were attempting to reach. Massive automated attacks

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 8

8 Chapter 1 • Intrusion Detection Systems

like this one usually engender a coordinated response from the security commu-
nity—IDS programmers writing new signatures, antivirus vendors writing checks
and fixes, backbone providers tracking the traffic and mitigating its effect by fil
tering as requested and as needed.This signature can help us track infection
attempts by the worm on our network, and make sure that our systems under
attack remain secure. Coordinating responses between companies and defenders
is one of the few ways we can keep up with the attackers. A large number of
organizations are dedicated to helping responders deal with attacks and share
information.

OINK!
Here are some of the many organizations chartered to help mitigate
attacks:

■	 The Forum of Incident Response and Security Teams, also known
as FIRST, is a cluster of security professionals at various organiza
tions. Membership is restricted to eligible teams with a clear
charter and organizational scope, sponsored by an existing
team, and capable of conducting secure communications with
PGP.

■	 Information Sharing and Analysis Centers, or ISACs, were char
tered in the United States in 1998 under the PDD 63, Protecting
America’s Critical Infrastructure policy. ISACs cover areas as
diverse as electricity, financial services, drinking water, and sur
face transportation, but the most relevant ISAC for network
security is the Information Technology ISAC, online at www.it-
isac.org/.

■	 The Distributed Intrusion Detection System Dshield correlates
firewall logs and reports of network attacks worldwide. Anyone
can join, or submit his or her logfiles for analysis anonymously.
Membership is free.

■	 Many commercial offerings will outsource your network security,
firewall and IDS administration, log analysis, and attack correla
tion for you. Some providers will correlate data between their
customers to increase the likelihood of detecting loud and active
attackers, others will not. Specifics of the offered services
depend on the vendor.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 9

9 Intrusion Detection Systems • Chapter 1

Live Attacks—Sendmail Buffer Overflow
We have seen what an IDS can do to let you know about an automated attack.
However, what about attacks that are driven by a person, one single attempt at
overflowing a network service rather than a virtual flood of packets? Snort can
help with that, too. Let’s look at an exploitable vulnerability, the Wingate POP3
buffer overflow.

The vulnerability is a remotely exploitable buffer overflow in the Wingate
implementation of the POP3 daemon. After the USER command is sent, a suffi
ciently large amount of data following “USER” will overrun the buffer and may
possibly lead to executing whatever exploit code is inserted. Normal use of the
POP3 daemon would just supply a username after the USER command, and a
normal username is unlikely to be very long. Now, let’s look at the Snort rule
that detects this attempted exploit:

alert tcp $EXTERNAL_NET any -> $HOME_NET 110 (msg:"POP3 USER overflow

attempt"; flow:to_server,established; content:"USER"; nocase;

isdataat:50,relative; pcre:"/^USER\s[^\n]{50,}/smi"; reference:bugtraq,789;

reference:cve,CVE-1999-0494; reference:nessus,10311; classtype:attempted-

admin; sid:1866; rev:7;)

This rule looks for data with the content USER followed by more than 50
bytes of data, where those 50 bytes of data after USER don’t contain a newline
character.This should match the pattern of data we’d see in a real attempt at
overflowing this buffer, and should not match legitimate user logins.

Again, we describe Snort rules and how to configure them to alert optimally
for your network in much more detail in later chapters.

How an IDS Works
Now that we have looked at some of the capabilities of an IDS as far as alerting
on malicious traffic, it’s time to take a closer look at what exactly IDSs can keep
an eye on, what data sources they use to do this monitoring, how they separate
attack traffic from normal traffic, and some possible responses to seeing malicious
traffic.

What the IDS Is Watching
Let’s start by looking at what your IDS is able to see.This is going to depend
greatly on what type of IDS it is, and where it’s placed in your network. IDSs are
classified by their functionality, loosely grouped into the following three categories:

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 10

10 Chapter 1 • Intrusion Detection Systems

■ Network-Based Intrusion Detection System (NIDS)

■ Host-Based Intrusion Detection System (HIDS)

■ Distributed Intrusion Detection System (DIDS)

Network IDS
The NIDS derives its name from the fact that it monitors an entire network seg
ment, or subnet.This is done by changing the mode on the NIDS’ network
interface card (NIC). Normally, a NIC operates in nonpromiscuous mode, lis
tening only for packets destined for its own media access control (MAC) address.
Other packets are not forwarded up the stack for analysis; they are ignored.To
monitor all traffic on the subnet, not just those packets addressed to the NIDS
machine itself, the NIDS must accept all packets and forward them up the stack.
This is known as promiscuous mode.

In promiscuous mode, the NIDS can eavesdrop on all communications
on the network segment. However, that’s not all that is necessary to ensure that
your NIDS is capable of listening to all traffic on the subnet.The network device
immediately upstream of your NIDS must also be configured to send all packets
on the subnet to your NIDS. If that device is a hub, all packets are automatically
sent since all ports on a hub receive all traffic flowing through the hub. However,
if that device is a switch, you may have to put the port on the switch into a
monitoring mode, turning it into a span port. After setting up your NIDS, it is
advisable to run a sniffing tool on the interface, to ensure that you can see all
traffic on the subnet.

The advantage of a NIDS is that it has no impact on the systems or networks
it is monitoring. It doesn’t add any load to the hosts, and an attacker who com
promises one of the systems being watched can’t touch the NIDS and may not
even know it is there. One downside of the monitoring is maxing out your span
ports that you are allotted on a given network, and maxing out the bandwidth
on the span itself. If you have 20 100MB ports spanning to one port, you begin
filling up backplane… once that 5GB or 11GB backplane is saturated, you are in
a world of hurt.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 11

11 Intrusion Detection Systems • Chapter 1

When setting up or debugging a NIDS, it is vital to ensure that you are
seeing all the traffic for the subnet to which you are connected. Snort is

command line with the –i switch, Snort will listen on a particular inter
face. Make sure you see traffic from and to other machines on the net
work, not just the broadcast traffic and the traffic to the local machine.

In addition to Snort, several other programs are perfectly good

serves the same function for Windows, although it usually will have to be
installed on the system.

Tools & Traps…

Network Sniffing Tools

capable of functioning as a fine packet sniffer. When invoked from the

packet sniffers. Ethereal, available from www.ethereal.com, is a cross-
platform packet sniffer. Tcpdump (www.tcpdump.com) is present on
many Unix systems already, and Windump (http://windump.polito.it)

In view of emerging privacy regulations, monitoring network communi
cations is a responsibility that must be considered carefully. Make sure that you
are familiar with your local legal requirements for such activity.

In Figure 1.1, we see a network using three NIDS.The units have been
placed on strategic network segments and can monitor network traffic for all
devices on the segment.This configuration represents a standard perimeter secu
rity network topology where the screened subnets housing the public servers are
protected by NIDSs. When a public server is compromised on a screened subnet,
the server can become a launching platform for additional exploits. Careful mon
itoring is necessary to prevent further damage.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 12

12 Chapter 1 • Intrusion Detection Systems

Figure 1.1 NIDS Network

INTERNET

Mail DNS

NIDS

NIDS NIDS
Firewall

Server
Web

Server
Web

Server

The internal host systems are protected by an additional NIDS to mitigate
exposure to internal compromise.The use of multiple NIDS within a network is
an example of a defense-in-depth security architecture.

OINK!
In case you missed it, let’s say that again—privacy regulations can be a
dangerous trap. Even if you have your users sign an Acceptable Use
Policy that stipulates you have the right to watch them, there may still
be situations where they can claim an assumption of privacy. Be sure to
get approval from your management (if you are the one deploying the
IDS), or your Human Resources department (if your company has one),
or as a last resort, talk to your lawyer and make sure you aren’t violating
any laws. If you do this incorrectly, you may find that you are being
prosecuted instead of the person you were trying to monitor! The
PATRIOT Act, despite its many critics, does appear to grant the service
provider and system administrators the ability to monitor the use of
their networks and systems for the purpose of identifying misuse.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 13

13 Intrusion Detection Systems • Chapter 1

Careful consideration must be paid to who sees the data, and to the
process of keeping that data secure. Finally, remember that any legal
advice given in this book is not offered by a lawyer—you should check it
with your own before depending on it.

Host-Based IDS
Host-based IDSs, or HIDSs, differ from NIDSs in two ways. First, an installed
HIDS protects only the system on which it resides, not the entire subnet, and
second, the network card of a system with a HIDS installed normally operates in
nonpromiscuous mode.This can be an advantage in some cases—not all NICs
are capable of promiscuous mode, although most modern NICs are. In addition,
promiscuous mode can be CPU intensive for a slow host machine.

Another advantage of HIDS is the ability to tailor the ruleset to be very spe
cific to the particular host system. For example, there is no need to configure mul
tiple rules designed to detect Network File System (NFS) exploits on a host that is
not using the NFS. Being able to fine-tune your ruleset will enhance performance
and decrease false positives (or true positives that you simply don’t care about).The
major advantage of a HIDS, however, lies in its capability to detect specific changes
to the files and operating system of its host. It can monitor file sizes and checksums
to ensure that crucial system files are not maliciously modified without someone
noticing. It can intercept rogue system calls that may be an attempt at exploiting a
local vulnerability. Moreover, it can watch traffic within a system that never crosses
the network, and therefore would never be seen by the NIDS.

There are a few downsides to electing to use a HIDS.You’ll have to choose
one that is tailored to your operating system. If you have many different oper
ating systems on your network and want to use the same vendor for all your
HIDSs, you may have to do a little shopping to find the right vendor that sup
ports all of your operating systems. A HIDS will add load to the host on which it
is configured, as the HIDS process(es) will consume resources.This is usually not
a problem on an individual’s desktop, but can become one on a busy network
server. Make sure you are familiar with the details of any HIDS that you choose
and how it operates—some HIDSs will watch file accesses, usage times, process
loads, and/or system calls, while others may also watch network activity from the
point of view of that host. Know what features you want in your HIDS, and
make sure that the HIDS you select will support those features on all the plat
forms you need.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 14

14 Chapter 1 • Intrusion Detection Systems

In addition, maintaining a large network of systems with many HIDS
deployed can be very challenging.The HIDS solution alone does not always scale
well, and without centralized management, you may be a very busy system
administrator indeed trying to keep up with all those alerts.

Figure 1.2 depicts a network using a HIDS on specific servers and host com
puters. As previously mentioned, the ruleset for the HIDS on the mail server is
customized to protect it from mail server exploits, while the Web server rules are
tailored for Web exploits. During installation, individual host machines can be
configured with a common set of rules. New rules can be loaded periodically to
account for new vulnerabilities.

Figure 1.2 HIDS Network

INTERNET

Mail DNS

Firewall

HIDS HIDS

Server
Web
Server

Web
Server

HIDS HIDS HIDS HIDS

Distributed IDS
A Distributed Intrusion Detection System, or DIDS, is a combination of NIDS
sensors, HIDS sensors, or both, distributed across your enterprise, and all
reporting to a central correlation system. Attack logs are generated on the sensors
and uploaded (either periodically or continuously) to the central server station
where they can be stored in a central database. New attack signatures are created

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 15

15 Intrusion Detection Systems • Chapter 1

or downloaded to the management station as they become available, and can
then be downloaded to the sensors on an as-needed basis.The different kinds of
sensors may or may not be managed by the same server, and the management
servers are frequently separate from the servers that collect the logs.The rules for
each sensor can be tailored to meet its individual needs, suiting the network or
the host that each sensor monitors. Alerts can be forwarded to a messaging
system located on the correlation system station and used to notify the IDS
administrator.

In Figure 1.3, we see a DIDS system comprised of four sensors and a central
ized management station. Sensors NIDS 1 and NIDS 2 are operating in stealth
promiscuous mode and are protecting the public servers. Sensors NIDS 3 and
NIDS 4 are protecting the host systems in the trusted computing base.

Figure 1.3 DIDS Network

INTERNET

Mail DNS

NIDS 1 Firewall

Server
Web

Server
Web

Server

NIDS 2

NIDS 4NIDS 3

Private management Private management
Network NIDS Network

MANAGEMENT
STATION

The network transactions between sensor and manager can be on a private
network, as depicted, or the network traffic can use the existing infrastructure.
When using the existing network for management data, the additional security

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 16

16 Chapter 1 • Intrusion Detection Systems

afforded by encryption, or VPN technology, is highly recommended. Sending all
the security information about your network across it in cleartext is just asking
clever attackers to intercept those communications. At best, they can tell when they
are triggering your IDS, and can tailor their behavior to avoid detection. At worst,
they could intercept and change your alerting mechanism, hopelessly corrupting
your data and any chance you might have of relying on it for analysis and/or pros
ecution. Another issue to keep in mind if you choose to have your DIDS commu
nicate over your normal network is that if your company network is ever flooded
or disabled by malicious traffic (as happened to many networks as a result of SQL
Slammer), your IDS sensors won’t be able to communicate with the correlation or
management servers, which significantly reduces their usefulness.

OINK!
We’ll refer to “stealth mode” for NIDS on occasion. This means that the
NIDS is not visible to the network it is monitoring. This is generally done
by not giving an IP address to the NIC that is being used for monitoring,
and by using a device known as a “Tap” that only allows the receipt of
traffic, not sending it. This method of watching network traffic is key to
preventing attackers from knowing about your NIDS.

One of the main advantages of analyzing events using DIDs is to be able to
observe system-wide, or even Internet-wide incidents from the 50,000-foot view.
What might look like an isolated portscan to a class C subnet could look like a
global worm propagating to a system like Dshield.

A friend of this book’s editors, and frequent contributor to Dshield, is
responsible for performing intrusion detection on two class Cs on opposite ends
of a class B. He will watch a scan come through the lower class C, and return
minutes later on the higher class C. DIDSs can be fairly complex to design, and
require a talented hand to tune them and correlate and manage the data that is
generated by all the sensors.The scope and functionality of the system varies
greatly from implementation to implementation.The individual sensors can be
NIDS, HIDS, or a combination thereof.The sensor can function in promiscuous
mode or nonpromiscuous mode.

Now that we are familiar with how different types of IDSs can be deployed,
let’s look at the information they can gather.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 17

17 Intrusion Detection Systems • Chapter 1

Application-Specific Information
All three types of IDSs are able to watch at least some application-specific infor-
mation.This can vary from the traffic that goes to and from your Web server to
the internal data structures of your custom-coded application. (Of course, for a
custom application, you’d have to have custom IDS rules to match its traffic.) As
application traffic goes over the wire across your network, the NIDS will be able
to detect it. If it’s sent in cleartext like Telnet or HyperText Transfer Protocol
(HTTP) traffic, the NIDS should have no problem matching against it. For
example, look at this signature, looking for access to a vulnerable PHP:

”

PHP and Shifting Acronyms

the acronym came to mean nothing, and then to the current recursive
acronym “PHP: Hypertext as described at

Hypertext Preprocessor (PHP) application “Proxy2.de Advanced Poll 2.0.2.

Tools & Traps…

At its inception, PHP stood for “Personal Home Page.” It was, according
to the PHP history at www.cknow.com/ckinfo/acro_p/php_1.shtml, a
wrapper for Web pages around Perl. Over time, as the functionality of PHP
shifted into a full-blown server-side scripting language for Web servers,

Preprocessor,”
www.php.net/manual/en/faq.general.php.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-PHP

Advanced Poll admin_tpl_misc_new.php access"; flow:to_server,established;

uricontent:"/admin_tpl_misc_new.php"; nocase; reference:bugtraq,8890;

classtype:web-application-activity; sid:2299; rev:2;)

Even if the traffic is sent in binary format, if there is a known payload or a
consistent part of the packet (that is unique to avoid false positives) that the
NIDS can match against, signature-based rule matching may be possible.
Encrypted application traffic that is sent with sufficiently good cryptography,
though, may be outside the scope of what most NIDSs are capable of detecting.
Writing a good NIDS rule for traffic encrypted with a good random seed (for
example, the same input string results in a different output every time it is
encrypted) would be difficult.To learn more about rules and writing them for
Snort, see Chapter 5 for an in-depth discussion.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 18

18 Chapter 1 • Intrusion Detection Systems

Encrypted traffic is where host-based IDSs shine. Application traffic that
crosses the network in an encrypted format is usually decrypted at each end
point. Consequently, traffic that was previously randomized gibberish becomes
sensible patterns on the host, and can be matched against with signatures.

What types of things does one look for in application-specific information?
Attempts to exploit input fields by entering too much data, known overflows or
underflows exploiting lack of input validation, and attempted SQL injection are
only a few possibilities. Of course, the signatures will vary greatly depending on
the application that’s being protected.

OINK!
Even though we just said that HIDSs shine when it comes to looking
inside encrypted data because they are on the host that is sending or
receiving the data (and as a result are more likely to see the information
before it is encrypted or after it is decrypted), that isn’t completely true.
It is important to remember that they are only better if they are actually
seeing the unencrypted data. That means that if the encryption is occur
ring at the application layer (for example, your Web browser or an SSH
client or e-mail client is doing the encryption) and your HIDS is seeing
the network traffic as it leaves or enters your system, after the encryp
tion has taken place or before the decryption has taken place, then it
doesn’t matter that it is a HIDS; it still can’t see through the encryption
and is just as blind as any NIDS would be.

Host-Specific Information
While most HIDSs don’t actually watch everything that happens on a host, they
are capable of seeing all the behavior of a given host, from file creation and
access to system calls to local network activity to the loopback interface. It is
very common for HIDSs to create a database of the state of the system (file sizes,
permissions, access times) when they are installed, and then monitor for devia
tions from that baseline. In fact, for many types of HIDSs the tuning process
requires installing the HIDS software and then progressing with normal system
activity to establish a baseline of what is changed when, and by whom.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 19

19 Intrusion Detection Systems • Chapter 1

Subnet-Specific Information
Most networks have common patterns to their traffic flows. If you know that
one machine on your network is a mail server, you will not be surprised to see
Simple Mail Transfer Protocol (SMTP) traffic going to and coming from it. If
you are used to seeing a network-monitoring device ping every device on your
network every five minutes, that traffic is acceptable even though the same
behavior from another device on your network would be worrisome. Over time,
a good NIDS should be tuned to recognize the expected behavior of the subnet
on which it resides, permitting traffic that is known to be expected and accept
able, and sending alerts for similar traffic from unauthorized hosts.The worksta
tion of your authorized pen-tester may scan your network, while the workstation
of your new intern may not.

OINK!
The NIDS deployment described in the previous paragraph is frequently
referred to as a policy-based IDS. It is most effective in environments
where you have strict control over what type of traffic is acceptable. As
a result, it is very common in military deployments or for companies that
exercise extremely tight control over their networks and systems. If you
have a very dynamic or extremely complex environment, it may be
harder to implement a strict policy-based IDS approach. We discuss this
approach in more detail later in this chapter and in Chapter 12.

Another worthwhile and often overlooked component of the subnet traffic is
the Layer 2 protocol mapping that can be done. Most IDSs overlook Address
Resolution Protocol (ARP) traffic, used to map MAC addresses to IP addresses
on the local network. It is possible for attackers to spoof traffic by changing their
MAC address or forging an IP address that is not theirs and then trying to inter
cept the return traffic.This type of tomfoolery may be viewable at the subnet
level, depending on your network topology. If your NIDS is not on the same
local subnet on which the Layer 2 attacks are happening, it will not detect them
correctly. When network traffic crosses a router, the MAC address changes. Since
we’re checking for the ports and locations of MAC addresses, we cannot afford
to have them change before examination or the data becomes unreliable.
Therefore, if you want to capture Layer 2 data with your NIDS, ensure that your

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 20

20 Chapter 1 • Intrusion Detection Systems

NIDS is on the same local subnet as all the machines you want to monitor,
before any routers become involved in the data stream.

Distributed IDS
All of the information can be collected and correlated with a DIDS, but the scale
is much greater. Instead of getting the local-network view of your subnet and its
machines, you get a view of the activity across your entire enterprise.You can
pick out data patterns that would have been baffling or inconsequential at a
smaller scale, and what seems to have been an automated backup of one server
turns out to be a coordinated (malicious) replication of data network-wide, when
you look at the big picture. Looking at traffic from the DIDS level allows you to
see large-scale data flows and overall trends more clearly.The downside is that
you must have the tools to effectively comprehend the amount of data you are
collecting; otherwise, the subtle attacks that you had hoped to discover will be
lost in the general noise from your environment.

How the IDS Watches Your Network
Without an effective method of collecting data to analyze, there really isn’t any
purpose to an IDS. Luckily, there are several possible ways for your IDS to collect
data to analyze.The following are the most common methods of collecting data for
your IDS to analyze. Each has its own strengths and weaknesses, and all are best
suited for different tasks.There are several possible sources of data for your IDS.

Packet Sniffing
Any IDS that looks at network traffic performs packet sniffing. As we mentioned,
NIDSs operate by setting an interface into promiscuous mode and packet-
sniffing on that interface. By doing so, they capture each packet that crosses the
wire on the local subnet.They will not see packets that cross a TCP/IP stack
internal to a machine, but they will potentially see everything on the local wire.
However, many HIDSs that perform analysis of network traffic also use similar
techniques without the use of promiscuous mode, to collect traffic specific to the
host on which they reside. Packet sniffing is a classic way of doing intrusion
detection, and there are equally classic techniques of IDS evasion that can be
used against packet sniffing IDS; for example, fragmentation attacks, which split
the attack payload among several packets. We discuss evasion techniques and pro
vide some key references later in this chapter. We strongly encourage you to read
them and then keep them in mind when listening to vendors talk about never

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 21

21 Intrusion Detection Systems • Chapter 1

missing an attack.The IDS response to this was to create the capability for the
IDS to reassemble packets and then match against the assembled packet.The
attacker response was to change the way the packets are fragmented, causing
some data to overwrite itself.Then, IDS techniques were created for that, and so
on, and so on. In case you hadn’t guessed, Snort uses packet sniffing.

Log Parsing
Another excellent source of security data is from system log files. Many IDS sys
tems can pull data from the system logs and alert if they see anything anomalous.
In fact, some of the original IDS implementations used log monitoring as their
data collection method. Some attacks are blatant in the footprints they leave in
your system logs; the Secure Shell CRC32 overflow, for example, can leave

sshd[3698]: fatal: Local: crc32 compensation attack: network attack

detected

in your logs.

OINK!
Dr. Tina Bird has done quite a bit of work in log analysis of intrusion
attempts; you can read the results of her research at
www.loganalysis.org.

System Call Monitoring
HIDSs are capable of setting themselves up as resident in the operating system’s
kernel, and watching (or in some cases intercepting) potentially malicious system
calls. A system call is a request that a program makes of the operating system
kernel. If the HIDS thinks that the system call might be malicious, such as
requesting a change of one’s user ID to that of the root user, it can create an alert
or, in the case of some HIDSs such as the Linux Intrusion Detection System
(LIDS), disallow the system call unless specifically overridden.

Filesystem Watching
Another very common tactic of HIDSs is to keep an eye on the sizes and
attributes of crucial files in a filesystem. If your operating system kernel suddenly

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 22

22 Chapter 1 • Intrusion Detection Systems

changes size and none of your system administrators knows anything about it,
this is probably something to check into. If you find yourself with world-writable
directories or you find that your common system binaries have changed, it’s pos
sible that they have been Trojaned. Watching the filesystem like this helps alert
administrators to possible malicious activity; if not before the fact, at least as soon
after as possible.Tripwire is perhaps the best-known example of a tool to mon
itor files for changes, but there are many others that do the same thing, including
the open-source tool Advanced Intrusion Detection Environment (AIDE).

How the IDS Takes the Data
It Gathers and Finds Intrusion Attempts
Any IDS is going to collect a vast amount of data—networks are busy, servers are
buzzing, there is data transfer constantly going on, processes constantly being run,
and a general low hum of electronic noise on your network.To be effective, an
IDS must have at least one (and possibly several) algorithm for determining what
traffic is worth the attention of your administrators.There are several strategies,
but at the most basic level there are two tactical options.

Known Good versus Known Bad
Network traffic can be identified and classified in several fashions.You can seek
to have your traffic conform to a given security policy, dictated by the particular
needs of your enterprise or your network. Some administrators choose to only
allow traffic that they know to be good, while others choose to only block traffic
that they know to be bad. Most often, policy-based approaches will center on a
known-good approach.To make the best decision for your enterprise, consider
what types of traffic you are likely to see, how much staffing you have to deal
with the alerts, and how paranoid you want to be.

Do you want to identify the known acceptable traffic on your network, and
flag on everything else, or do you want to identify the known attacks and let
everything else go by without comment? That’s the basic conundrum of IDS
strategy; firewall administrators are no doubt familiar with the dilemma.The
known-good strategy will be orders of magnitude more work, as you try to sort
through all the traffic on your network, determining what is supposed to be hap
pening and what is dodgy.You’ll immediately be faced with a large amount of false
positives spewed forth by a frantically busy IDS, and will have to slowly winnow
them down to a manageable level as you identify the known-good traffic on your
network. In addition, unless nothing ever changes on your network, you will have

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 23

23 Intrusion Detection Systems • Chapter 1

to constantly tune and retune the IDS to adjust to the normal changes that happen
over time in almost any environment.There are automated tools for defining
“normal,” where “normal” is expected to be an acceptable approximation of
“good.” However, such tools suffer from issues of false positives in complex or
highly dynamic environments.They can also be tricked into deciding that some
thing is “normal” if the new activity occurs in small enough amounts over a long
enough period of time. (Think of the story of boiling a frog—if you drop a frog in
boiling water it jumps out. If you put a frog in cool water and slowly raise the
temperature, it won’t notice and will simply be cooked.)

However, following a strategy of only alerting on known or suspected mali
cious traffic will result in much lower alert volume. In addition, because the rules
can be very specific about what the definition is of something bad, when an alert
does go off (assuming the rules are well written), you can be fairly confident that
the “bad” activity was actually seen.This means that the person monitoring the
IDS doesn’t have to be as skilled (because he doesn’t have to be able to trou
bleshoot the IDS), which can be a significant issue. However, this approach car
ries the strong likelihood of missing attack traffic that doesn’t happen to match
your rules or algorithms, and if you write more flexible rules, the number of false
positives will go up. In some scenarios, such as with Archibald Enduser’s home
box, where Archibald doesn’t know a lot about intrusion detection and doesn’t
have the time or inclination to learn, this may be the better solution. However, if
you want to increase your likelihood of catching a given attack, and you have the
resources available to monitor and maintain the IDS, you might want to consider
the other approach.Your choice of strategy is a cost/benefit analysis; weigh the
time and resources that you are willing to devote to IDSs with the importance of
catching the maximum number of attacks.

OINK!
In reality, most well-planned IDS implementations use a combination of
both approaches. Where you can tightly define allowed traffic, use a
“known-good” approach. Where you have to be a little more permissive
or the environment changes too frequently to define, use “known-bad.”
Use each where it makes sense and you’ll be a much happier intrusion
analyst.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 24

24 Chapter 1 • Intrusion Detection Systems

Technologies for Implementing Your Strategy
IDSs differentiate attack traffic from innocuous network and system activity in sev
eral ways. Some primarily use a technique called rule-based (a.k.a signature-based)
analysis, matching a known pattern to activity seen on the system or network. We
have seen examples of Snort rules already, looking for packet content on the net
work and matching it to a series of predefined rules.The same thing can be done
when looking at entries in log files or sets of system calls.This is very similar to the
way many antivirus programs use virus signatures to recognize and block infected
files, programs, or active Web content from entering a computer system (and why
you have to constantly update your anti-virus software). Signature detection is the
most widely used approach in commercial IDS technology today, since it is easily
demonstrable, effective, and very customizable with limited training or experience.
As new attacks are developed and seen in the wild, new signatures can be written
to match and alert against the new forms of attack.

A more complex version of rule-based analysis is protocol analysis. Instead of
writing a relatively simple rule that defines something about a specific event (good
or bad), protocol analysis attempts to define every possible acceptable behavior for
a specific kind of activity. For example, when our computer wants to set up a TCP
connection, it sends a SYN packet.The acceptable responses are either RST/ACK
or SYN/ACK. Anything else would be a violation of the protocol.This approach
allows a little more flexibility in defining what “bad” is. Instead of saying, “If you
see a string of greater than 500 bytes, filled with a specific character, it is an attack
of this type,” you can say, “At this point in the connection, you should not see
strings greater than 500 bytes. If you do, it is an attack. If you see more than 500
bytes at some other point in the connection, it is okay.”The problem is that while
protocols are tightly and clearly defined, not all vendors choose to pay attention to
everything in the protocol definition. As a result, you may find that your protocol
analysis-based IDS is correctly complaining about something that is not allowed in
the RFC (Request For Comments—the documents used to define most Internet
protocols. For a full list, see www.rfc-editor.org) but is completely normal for
applications from a specific vendor. In addition, it is tremendously time consuming
and complex to write a good protocol model, and to implement it in an efficient
enough fashion that it can be used to watch high-speed networks.This takes years
of experience.This means that most vendors tend to be very unwilling to share
their protocol models openly, even with customers. Consequently, troubleshooting
false positives for protocol analysis IDS, or getting a false positive fixed can be a
long process while you wait for your vendor. Another approach is called anomaly

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 25

25 Intrusion Detection Systems • Chapter 1

detection. It uses learned or predefined concepts about “normal” and “abnormal”
system activity (called heuristics) to distinguish anomalies from normal system
behavior and to monitor, report on, or block anomalies as they occur. Some
anomaly detection IDSs come with predefined standards for what normal network
traffic should look like, and others watch the traffic on your network (or activities
on your systems) and use a learning algorithm to develop a baseline profile from
that.These profiles are baselines of normal activity and can be constructed using
statistical sampling, a rule-based approach, or neural networks, to name just a few
of the methods.

Literally hundreds of vendors offer various forms of commercial IDS imple
mentations. Because of the simplicity of implementation, the majority of imple
mentations are primarily signature based, with fewer protocol analysis solutions
and only limited anomaly-based detection capabilities present in certain specific
products or solutions.

OINK!
While most effective IDS deployments combine network- and host-based
IDS implementations, very few vendors have been able to successfully
offer both kinds of IDSs or IDSs that combine multiple technological
approaches The products end up doing everything in a barely acceptable
fashion but nothing tremendously well. This may actually be changing
due to the large number of acquisitions that we’ve seen in the IDS space
in recent years. The vendors who are left may actually have the resources
to dedicate to each separate area of focus, or they may just manage to
do a miserable job in all the areas—which is what we’ve seen so often
after acquisitions in the past.

What the IDS Does When It Finds an Attack Attempt
Most modern IDSs include some limited automatic response capabilities, but
these usually concentrate on automated traffic filtering, blocking, or disconnects
as a last resort. Although some systems claim to be able to launch counterstrikes
against attacks, best practices indicate that automated identification and back-
trace facilities are the most useful aspects (and the ones least likely to get you
sued) that such facilities provide and are therefore those most likely to be used.
There are different and highly configurable approaches to what the IDS actually

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 26

26 Chapter 1 • Intrusion Detection Systems

does when it detects an intrusion attempt. Although Chapter 12 will get into this
in more detail, it is worth discussing briefly the merits of active IDS response
(sometimes mistakenly known as IPS, or Intrusion Prevention Systems) versus the
more traditional passive detection and alerting.

Passive Response
Traditionally, IDSs will watch the activity, and can be configured to log to a file
and/or send alerts to the administrator(s).These alerts can take many forms—
Simple Network Management Protocol (SNMP) traps, outgoing e-mails, pages
or text messages to the system administrator, even automated phone calls. Most
administrators configure the IDS to alert them in various ways depending on the
severity of the perceived attack and the frequency of its occurrence.You don’t
want to be paged 10 times an hour for something that seems dire at first but
turns out to be a false positive every time. However, you do want to be notified
for an alert indicating a serious compromise, especially if it doesn’t false-positive
very often.

Traditional IDSs stop there.They are usually set up with a management inter
face entirely separate from their listening tap on the network, so that they don’t
betray their presence on the tap by sending alerts all the time. Very often, the lis
tening tap doesn’t even have an IP address, and is a stealth interface configured
not to respond to any traffic.

Active Response
IDSs with Active response capabilities and IPSs (the two are different, see
Chapter 12 for an explanation of why) emulate all the behavior of traditional
passive IDSs as far as detection goes. However, when they see an attempted
attack, they can be configured to take proactive measures against it rather than
just alerting the administrator and waiting for him to take action.They can be
placed inline and drop traffic they see as malicious, they can spoof Transmission
Control Protocol (TCP) resets to either the source or destination systems (or
both) to abruptly terminate a TCP session that they see attack traffic coming
through, or they can send Internet Control Message Protocol (ICMP)
Unreachable messages to the source system in an effort to convince it that the
target system is unreachable; some reconfigure firewalls or routers between the
targets and the attackers to block the traffic. Some systems will do nameserver
lookups or traceroutes on the attacking system in an attempt to gather informa-

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 27

27 Intrusion Detection Systems • Chapter 1

tion about it. Some will even portscan the attacking system back, and give you a
report of its likely operating system and possible vulnerabilities.

The appeal of active response is that you don’t have to have a system admin
istrator watching the wire in real time.The peril is that the consequences of a
misconfiguration become much graver. We have set up brand new IDSs with
prevention capabilities before, only to watch them listen to the network traffic,
decide that our DNS server was portscanning the network, and block all access
to it. Without name service, many network applications come to a screeching
halt. IPSs should be checked for whitelisting capabilities beforehand in order to
avoid just such scenarios. It would also be advisable to check the legalities in
your jurisdiction if you’re planning to have your system automatically trace or
scan “attacking” systems.

Inline IDS
Another common configuration debate is whether your IDS should sit on a tap
on your switched network, or sit inline between you and the Internet.There are
advantages and disadvantages to both configurations. If you intend to have your
IDS act as an IPS, setting it inline might be something you would strongly want
to consider. Prevention is far more effective when the IDS is capable of simply
dropping traffic that it has determined should not be allowed through. When
your IDS is not inline, you can send ICMP unreachables or TCP Resets to both
source and destination, but you have to hope that the devices themselves behave
properly.You’re not controlling the network segment between them, so there is
only so much you can do. With an inline IDS, far more control is in your hands.
Chapter 12 discusses this issue in greater detail.

There are two prime worries with this type of configuration—false positives
have even more disastrous consequences than with your average IPS, and perfor
mance can be a significant concern. Since all of your network traffic is going
through this one box, a single point of failure is often worrisome from a redun
dancy and performance point of view.

Answering Common IDS Questions
Let’s look at some of the major questions that people often have when consid
ering an IDS for their network. It’s important to understand the function of an
IDS within your overall security design, the differences between an IDS and your
other security devices, and what an IDS can and cannot do for you in terms of
enhancing the security of your network.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 28

28 Chapter 1 • Intrusion Detection Systems

Why Are Intrusion
Detection Systems Important?
IDSs provide an integral audit component of a robust security design and policy.
They let you know when you’re being scanned and when you’re being attacked.
They provide more information than you could get just by checking your server
and firewall logs.You can see the attacks that fail and the attacks that succeed, and
get real-time notification of attempted attacks.You can watch your own network
traffic and become aware of misconfigurations as well as malicious attacks earlier
than you may have noticed without an IDS.They are not the be-all, end-all solu
tion to every security woe, but they are a valuable tool in the hands of a skilled
security administrator.

Why Doesn’t My Firewall Serve as an IDS?
While some integrated appliances out there claim to be both a firewall and an
IDS, and we are probably going to see more of those in the future, a firewall’s
function is to filter packets, not to alert on potentially malicious traffic. Firewalls
are primarily designed to deny or allow traffic to access the network, not to alert
administrators of malevolent activity. Many firewalls are only network-level
packet filters, allowing or denying traffic based purely on the source and destina
tion IP address and port.This doesn’t begin to touch the complexity of the
traffic analysis that an IDS handles. We discuss this in depth in Chapter 12, but
the simple analogy is that you don’t trust the locks on your doors to also act as
cameras, so why should your locks on your network (the firewalls) be expected
to be cameras (the IDS)?

Why Are Attackers Interested in Me?
Put simply, because you’re there. While attackers certainly do look for high-value
targets (targets that have something they specifically want), any system connected
to the Internet these days is a potential target. While many attackers will go for
juicy-looking targets and other low-hanging fruit, not being the most tempting
target out there doesn’t mean you are safe.You don’t want to be just a little bit
more secure than the next guy… in today’s digital environment, you want to be
actually safe. Many managers make the mistake of thinking that the attacker
wants the company’s data. In most cases, the attacker wants to steal bandwidth,
not secrets.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 29

29 Intrusion Detection Systems • Chapter 1

Automated Scanning/

Attacking Doesn’t Care Who You Are

Many attackers scan (or even attack without scanning) entire class B subnets at a
time. For those of you who don’t do exponential math in your head, that’s 65,536
machines at a time. Many script kiddies aren’t looking for any particular machine;
they just want as many compromised “zombie” machines as possible.Therefore,
they will launch their automated scans, and attempt to exploit all machines that
they see as vulnerable, regardless of who they are.You@example.com is treated just
the same as you@whitehouse.gov or you@google.com. And that’s more considera
tion than you’ll get from many of the automated worms and viruses, which will
happily scan random subnets and all the machines on them without any cog
nizance whatsoever of what machines are on those networks and whether they
should be doing that after all.

So why do these attackers want so many random machines that may or may
not be valuable to them? They want something you have, whether that’s band
width, clock cycles of your CPU, or data.

Desirable Resources Make You a Target
The more you have, the more others will want it. If even Archibald Enduser is a
target, larger machines and corporate networks are that much more so. But what
are these miscreants hoping to do with your computer?

Bandwidth
Well-connected computers are valued in the underground for several purposes.
One of the most popular is to launch distributed denial-of-service attacks
(DDoS), using your bandwidth to send attack traffic to people whom they don’t
like. Of course, this will make your legitimate use of your computer and its net
work a lot slower, but they don’t really care about that. Bandwidth can also be
used for for-profit spambots, hijacking your computer to churn out ads for
generic Viagra and plastic surgery, or for hosting high-volume warez servers of
pirated software, movies, porn, and music.

Disk Space
Disk space is usually a concern for attackers planning on setting up warez servers
to share out pirated software, movies, porn, and music.The more disk space you
have, the more attractive your server will be to use for such purposes.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 30

30 Chapter 1 • Intrusion Detection Systems

Valuable Information
If your machine has any type of sensitive information on it, it is possible that the
attackers are after that. Whether it’s a targeted attack to attempt to steal your
secret corporate plans to build Isengard 2.0, or some attacker who got lucky, cor
porate espionage or information selling is not unfeasible. Look at the scandal
involving partisan information theft in the U.S. Congress in 2004, for just one
example.

OINK!
Because there is a profit to be made from stealing information, these
attackers are frequently the best funded and most highly skilled of the
threats you or any company you work for are likely to face. Case in
point: Six months prior to Slammer, there was another worm that
exploited a weakness in Microsoft’s SQL server. The worm, known as SQL
Snake, took advantage of the fact that many SQL server installations had
a default SA (admin) password that was blank. The person who released
the worm is said to have stolen hundreds of databases, and was offering
them for sale.

Political or Emotional Motivations
Some attackers are motivated by political gain, or some sort of a feeling of
revenge upon someone they don’t like.The DDoS attacks generated by the
MyDoom worm variants in early 2004 are an example of this, targeting sco.com
and Microsoft.com, and reportedly passing over domains like google.com and
Berkeley.edu. Internet Relay Chat (IRC) servers are well known in the security
community for drawing fire—when Internet flamewars break out, DDoS attacks
are often the result.There’s a well-known ongoing series of cyber hostilities
between Indian and Pakistani hackers, for example, with viruses flying back and
forth and defacements proclaiming political causes and the superiority or inferi
ority of one nationality over the other. Since the September 11 terrorist attacks
on the United States, there have been reported acts of technical jihad, with
American hackers attacking sites they perceive as affiliated with al Qaeda, and
vice versa.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 31

31 Intrusion Detection Systems • Chapter 1

Where Does an IDS Fit with
the Rest of My Security Plan?
Alongside a good security policy, incident response plan, firewall architecture,
virus checkers, and all the other features of a modern security plan for enterprise
networks, an IDS can play a vital role in securing your enterprise.Your IDS can
be an early warning of network trouble, often picking up malicious activity
before any of your other layers of defense.Your IDS can provide necessary logs
and proof of activity, should you ever need to go to court regarding a network
intrusion.Your IDS can alert your system administrators and security staff to
problems in time for them to take effective action, and it can be a useful tool in
enforcing enterprise IT policy and flagging violations. Last but certainly not
least, it can provide a warning that your other security measures may have failed
in time to fix them. Many companies and organizations put a NIDS sensor on
each side of their firewall and then tune the sensor on the protected side to send
high-priority alerts if any traffic is seen that should not have gotten through the
firewall.

Where Should I Be Looking for Intrusions?
A good security policy addresses multiple layers of security, protecting your
enterprise assets in many ways.This philosophy is called “defense in depth,” and is
central to mounting an effective defense against the multiple threats facing a
modern enterprise. If attackers can’t get past your firewall, they may call the help
desk and try to bluff them into giving away account credentials. If they can’t get
in to your headquarters by walking on in, they may send your vice president an
e-mail with a backdoor disguised as a holiday card.The creative ways in which
attackers can approach your network are limited only by their imaginations.
Unfortunately, this means that the most correct answer to this question is, “you
should be looking everywhere.” However, when talking strictly about IDS place
ment, you should be watching every point where your network connects to
another network (Internet connections, DMZs, modem banks, VPN gateways,
and so forth), and any server that is important enough that you would be upset if
it were compromised. If you would like to know more about some of the alter
nate ways that attackers use to get into companies, Kevin Mitnick’s recent book
The Art of Deception describes some of the various nontraditional ways that secu
rity can be subverted.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 32

32 Chapter 1 • Intrusion Detection Systems

Operating System Security—Backdoors and Trojans
This is the classic sort of thing that most people think of when they consider
network security—Trojans, backdoors, compromises of individual boxes through
weaknesses of software or configurations. In addition to good system administra
tion practices like keeping up to date on your patching and turning off services
that you don’t need by default, you should consider a regular scan or vulnera
bility assessment of your own network.This will help you detect unknown lis
tening services or unapproved configurations.You should have standard,
documented, hardened configuration templates so that when a new machine is
attached to your network, it’s not going to be the gateway through which a
thousand preventable compromises pour. IDSs can help greatly in watching for
this type of traffic.

OINK!
There has been an interesting development from a couple of vendors
(well… two so far) who are now offering software that supposedly can
identify vulnerabilities on systems just by passively watching their net
work traffic. If it works, this would allow you to have your IDS sensor
actually perform some amount of vulnerability monitoring and analysis.
One of the biggest complaints many companies have with vulnerability
scanning is the risk of having it crash a server or the added load on the
network. This approach has the advantage of not ever touching the
servers and not adding any load to the network at all. At publication
time, the two vendors we know of who offer this are Tenable Security
and Sourcefire.

Physical Security
Good security practices look at more than just your network connectivity.
Physical attacks and approaches are alive and well. Can someone walk in to your
enterprise, pick up a laptop with valuable data on it, and stroll out the door
undetected? Don’t laugh! This happens more often than you might imagine. It
happened recently to an airline; two men dressed as technicians went in to an
office and walked out with two of the company’s mainframe computers. We can
only speculate as to what they wanted or have done with the information they

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 33

33 Intrusion Detection Systems • Chapter 1

got, since they haven’t been caught. It is highly doubtful that they were just
doing it for the thrill. If so, you need to give some thought to your physical
security model as well as your network security. Are your servers located in a
separate space with some type of access control for your staff? Any network secu
rity consultant will tell you that physical access to a device is extremely dan
gerous. In most cases, all you have to do is reboot the machine and set the BIOS
to boot from a CD-ROM.There are security toolkits small enough to fit on a
credit card-sized CD-ROM that contain all the forensics tools you’d need to dis
cover almost any type of information about the servers’ hard drives and data, and
plenty that will change things at will.These toolkits are operating-system
agnostic; a bootable Linux CD can reset your Administrator password for a
Windows machine, for example. Even more dangerous, bootable USB drives are
becoming common now, which counters the remove-all-disk-and-CDROM-
drives defense.

■ FIRE
security and forensics tools at the time of writing (version 0.4).
FIRE is designed to provide an environment to do vulnerability
assessment, data forensics, virus scanning, and incident

people of variable morality in physical vulnerability assessment
scenarios. Anything you can do with this tool, an attacker can
also do. Available online at http://fire.dmzs.com/.

■ Knoppix A full-featured Linux environment including graph
ical user interface (GUI), OpenOffice, the Gimp, Abiword, and
Mozilla. Less obviously useful to the attacker or the security
administrator than FIRE, but offers the capability to look at
office documents on the local machine right there from your
own operating system, edit, and leave without having had to
log in or access the system through legitimate means.

Tools & Traps…

Bootable CD Toolkits

A portable CD-ROM based Linux distribution with 196

response from a bootable CD-ROM. Tremendously useful to
the security administrator, FIRE is also extremely useful to

Available online at www.knoppix.net.
Continued

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 34

34 Chapter 1 • Intrusion Detection Systems

■ Linux-BBC

ROM cut to the form factor of a mini-business card. Small
enough to slip into anyone’s wallet unnoticed, the Linux-BBC

bbc.org.
■ Need

to change the Administrator password (or any other password)
on a Windows system? Don’t have a login currently? Go to
http://home.eunet.no/~pnordah/ntpasswd/bootdisk.html and
download this toolkit. In less than 10 minutes, you can change
the password, boot back to Windows, and log in with your
new password.

Well known in the Linux community, the Linux
Bootable Business Card (BBC) is a Linux distribution on CD

supports large IDE disks, BitTorrent, and The Coroner’s Toolkit,
a software forensics package. Available online at www.lnx-

Offline NT Password & Registry Editor, Bootdisk/CD

Keeping your servers away from miscreants and attackers isn’t the limit of
physical security, though. Guarding against someone running off with a laptop
containing sensitive data, ensuring that if someone sets fire to your main data
center that you have an offsite backup of all your important information, and
training your staff to be aware of social engineering attempts and what to do in
case of an attempted security breach are all important facets of physical security.

Application Security and Data Integrity
Are you sure that your data has not been tampered with? How do you know
that the source code in your central CVS repository is the same as the source
code that was there last night? How can you prove that the figures in your
banking database are true and accurate rather than jimmied? Provable authentica
tion of the integrity of your data is crucial to the modern enterprise, and there
are highly motivated attackers out there just waiting to get their hands on your
resources. From the attempted backdooring of the Linux source code tree in
November 2003 to the wireless hack of an Israeli post office’s network, leading
to the alleged theft of 80,000 credit card numbers, we can see that attackers have
every reason to want to take advantage of vulnerable applications. If you don’t
have some way of verifying that your data is unmodified or that your transactions
are secure, you will be in very bad shape indeed in the event of a successful
intrusion, or even a potentially successful one. Saying “I don’t know” when asked
about data integrity is rarely good enough for the customers.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 35

35 Intrusion Detection Systems • Chapter 1

Correlation of All These Sources
Although Chapter 10, “Optimizing Snort,” addresses this issue in depth, it is
worth mentioning that correlating your security information from multiple
sources is much more likely to help you reconstruct what happened when ana
lyzing intrusion attempts. Data from your firewalls and routers can back up the
alerts seen by your IDS. Overlapping sources can cover for each other in case of
the failure of one system, and when you can correlate alerts from multiple
sources, you can have a much higher confidence that you aren’t dealing with a
false positive. Logs of keycard swipes can help you determine who (or at the
least, whose access credentials) was in a given area at the time in question, net
work access credentials can help you determine who logged in, and security
cameras can help you verify whether the person at the keyboard was the person
whose password you have on file.

What Will an IDS Do for Me?
An IDS can be a valuable addition to your security toolkit. It can give you
unprecedented insight into what’s really going on in your network, and alert you
to new trouble or attacks before you otherwise would have seen them. It can
help you monitor and enforce your company’s security policies, gain deeper
insight into trends in your system and network usage, and plan better for future
budgeting and purchases through seeing where your blind spots and problems
are. It can notify your administrators of a likely system compromise, or even of a
failed attempt. And it never gets tired, never needs a coffee break, and doesn’t
demand a raise every time you yell at it.

Continuously Watch Packets on
Your Network and Understand Them
We have yet to meet the system administrator or security engineer who is
capable of this for more than five minutes, and that’s on a slow network connec
tion and generally reading hex, not binary. An IDS is perfectly capable of tire
lessly matching packet after packet to its known signatures, and comparing their
payloads without needing to translate into a human-readable form. Its algorithms
are normally at least several orders of magnitude faster than a human attempting
to perform the same job, and generally less prone to mistakes.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 36

36 Chapter 1 • Intrusion Detection Systems

Read Hundreds of Megs of
Logs Daily and Look for Specific Issues
An IDS can significantly speed up the amount of log files that you can parse on
a daily basis. When you are responsible for the security of a large environment,
the volume of log files that you’ll find yourself accumulating is truly astounding
(think terabytes for a large group of systems and an active high-speed network).
Going over them all by hand becomes increasingly impossible the bigger your
network grows. A log-parsing IDS provides a sane and sensible way to look for
particular issues and signatures in your log files, giving you a better idea of what’s
going on with all your various devices.

Create Tremendous Amounts of
Data No Matter How Well You Tune It
Even the most precisely tuned IDS is going to have voluminous output. Although
it seems almost a contradiction to say so, anomalous network and system events are
happening all the time. Users are becoming root. Commands are being sent over
Web interfaces. Administrator passwords are being changed, packets with bad com
binations of TCP flags are being sent, applications are abusing protocols in ways
that only the most twisted and tortured of minds could come up with, and auto
mated worms and viruses continue in their blind quest for self-propagation. Each
of these events can trigger an IDS alert. And when you have a few thousand of
them a day, well, managing your alerts becomes a major challenge.

Very often, IDS administrators are faced with the daily prospect of having to
sort through a few thousand (or a few hundred thousand) alerts, many of which
are known issues, but not tuned out because someone eventually intends to get
around to correcting them. Some are just difficult to tune out by their very
nature—many operating systems and applications send packets that just should
not be! However, you can’t spend your time tuning out every individual system
on the Internet that might be running one of those operating systems, and you
don’t want to junk the signature entirely for fear of missing the actual stealthy
portscans that might be network reconnaissance. When you decide to set up an
IDS, be prepared for some situations akin to this to occur. No matter how well
you tune, you will get data—and lots of it. Some of it will be false positives.
Writing good rules and correlating your data can decrease the false positives and
even the number of true positives that need to be looked at individually, but you
still end up with lots of data.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 37

37 Intrusion Detection Systems • Chapter 1

Create So Much Data that If You Don’t
Tune It,You Might as Well Not Have It
One of our special frustrations as security geeks is encountering situations where
a company has invested a fortune in the latest cutting-edge IDSs, sparing no
expense, and then has hired one person with no security background whatsoever
to monitor and administer them all.The poor administrator has no idea how to
tune an IDS, and still less idea of how to deal with the barrage of alerts she’s
being hammered with.The pointy-haired boss’s inevitable conclusion to this sce
nario is that all IDSs are worthless. After all, they paid for the best, didn’t they?

Tuning the false positives out of your IDS is crucial. Having knowledgeable
administrators involved in the design and placement of the sensors and then in
the tuning of the ruleset is essential. If you don’t know your network well
enough to winnow out the known issues and the definite false positives, you’ll be
awash in a sea of portscans and informational alerts, with no easy way of wading
through all that data to find the relatively few blatant attacks and/or subtle
system compromises. Every IDS out of the box will generate massive amounts of
false positives, and an unknowledgeable security geek might as well not have one.

Find Subtle Trends in Large Amounts of
Data that Might Not Otherwise Be Noticed
One of the benefits of having such a massive base of data is the ability to look at
trends in the alerts or packet flows. Are you getting more scans for an unusual
port today than you were yesterday? Has it been steadily on the rise recently?
Perhaps a new tool or exploit out there targets that port. Have you been seeing
more failed logins to various servers on your network? Perhaps someone is
walking around and trying to guess passwords.The ability to see the big picture
in the reams of data may be enhanced by an IDS, particularly an IDS with corre
lation capabilities.

Supplement Your Other Protection Mechanisms
An IDS can act as confirmation or backup for your other network security sys-
tems.This goes back to the principle of defense in depth. If you are seeing
exploit traffic aimed at your Web proxy and you’re not sure if your proxy sani
tizes the traffic before passing it on to your end user, check your IDS. See if it’s
alerting on the traffic both before and after the proxy. If you know that someone
with Administrator access used Remote Desktop to connect to the Exchange

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 38

38 Chapter 1 • Intrusion Detection Systems

server right before it broke yesterday, check your IDS logs to see if you have a
record of who accessed that server, from where, and (if you have both HIDSs and
NIDSs) what sort of traffic he sent.The absence of an IDS alert should not be
used as proof positive that everything is okay. As we said earlier, IDSs will not
catch every attack. Even if they have a signature for it, a sufficiently high volume
of traffic will cause the IDS to drop packets. However, the presence of an alert
can be used as a backup and support to other network security systems and logs.

Act as a Force Multiplier
Competent System/Network Administrator
Using an IDS, good security geeks will be able to go through far more logs and
far more network data than they could without one. While an IDS will not
replace additional skilled help, it can make each competent geek more effective
than he would have been without the additional tools. When investigating an
intrusion attempt, it is greatly helpful to be able to say, “What other alerts did this
source IP or user generate? What other alerts were associated with this destina
tion IP?” Being able to quickly put your fingers on other relevant data can help
administrators understand the kind and scope of their issue far more quickly than
if they had to do all the log parsing and searching by hand.

OINK!
What Is a Force Multiplier? A force multiplier is something that increases
the amount of result you get back for the force exerted. Look at any
book on mechanical engineering (The Way Things Work is a good one)
for examples.

Let You Know When It
Looks Like You Are Under Attack
With the myriad alerting capabilities of most IDSs out there, there are a plethora
of ways to notify your on-call or on-duty system administrators when it appears
that an attack is ongoing.This time saved can be an invaluable asset to an inci
dent response team. It can make the difference between pulling one compro
mised system off the network before it has a chance to branch out and launch

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 39

39 Intrusion Detection Systems • Chapter 1

attacks at others, or dealing with a massive enterprise-wide security breach that
will take endless hours of labor to address.

What Won’t an IDS Do for Me?
An IDS is not the be-all and end-all solution to all your security woes. It will
not replace your system administrator, make that guy on IRC who doesn’t like
you go away, or answer that e-mail that you’ve been avoiding. It will not secure
the physical perimeter of your site, magically detect every possible malicious bit
flipped on your network, or tell you when one of your employees is thinking
about selling you out to the competition.To get the most out of an IDS, it is
important to understand its capabilities and limitations, and to design your secu
rity policy accordingly.

Replace the Need for Someone
Who Is Knowledgeable about Security
Even the best IDS is only as good as its programming. It will do what you tell it
to do faithfully, it will alert as you tell it to alert and, if an IPS, will respond as
you tell it to respond. However, it can’t tell you what to do in a new and
unprecedented situation. It can’t write its own signatures for new attacks, and it
can’t deal with an intelligent, flexible, adaptive attacker who takes an approach
outside of its specifications. It cannot determine what your security policy should
be. It cannot make informed recommendations for your network based on the
latest industry developments. In short, it cannot replace a skilled security geek.

Catch Every Attack that Occurs
New attacks are being developed all the time. Even as we write this, even as you
read this, attackers are out there trying to figure out new ways to break into sys
tems. Sometimes these are new ways to exploit old vulnerabilities, but other
times they are totally new approaches.Your IDS is not configured to handle all
possible attacks, simply because some of them haven’t been invented yet.You can
only protect against the type of attacks of which you are aware. And even some
of the attacks that are known are not guarded against by all IDSs.Your IDS will
help you see the attacks and potential attacks that are out there, but it won’t
catch everything.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 40

40 Chapter 1 • Intrusion Detection Systems

Damage & Defense…

Evasion, and Denial of Service: Eluding Network Intrusion Detection,”
describing ways to evade detection by most of the IDSs then available

tion included testing the timeouts on IDSs, checking reassembly of frag
mented packets (overwriting the same data with different content),
simulating delays and packet loss in network programs, and randomiza
tion of IP parameters to evade operating system fingerprinting. Although
this made many people in the intrusion detection community sit up and
pay attention, it was nothing compared to the stir when Dug Song
released first fragrouter and later fragroute, tools that implemented most

Snort since Snort version 1.9, but there are still many IDSs that may miss
them, and some of the attacks are simply hard to address from a network
perspective. One approach currently getting a lot of attention is target-
based IDSs, which combine a knowledge of your network, operating sys
tems, and configuration with live detection of attacks. The aim of
target-based IDSs is to present the administrator with alerts with a tighter
focus, drastically cutting the number of false positives and centering anal

IDSs in at http://infosecuritymag.
techtarget.com/ss/0,295796,sid6_iss306_art540,00.html—target-based
IDS reviews were featured in their cover story in January 2004.

fragroute and the Newsham/Ptacek Paper
In 1998, Tim Newsham and Tom Ptacek wrote a paper entitled, “Insertion,

(www.insecure.org/stf/secnet_ids/secnet_ids.pdf). The techniques in ques

of these attacks (www.monkey.org/~dugsong/fragroute/). The theory was
now reality. Many of these attacks are addressed and now detected by

ysis on the most likely real alerts. You can read more about target-based
Information Security Magazine

Prevent Attacks from Occurring
No IDS out there is going to magically make attackers stop attacking you.Your
defenses may prevent these attacks from succeeding, but the attackers will keep
trying to break down your digital walls. No matter how good your IDS is, it will
not change human nature or the inclination of malicious attackers to try to own
your network.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 41

41 Intrusion Detection Systems • Chapter 1

When you are choosing and installing a NIDS, it is instructive to consider
what you will not see as well as what you will see. If traffic is encrypted, you will
still be able to see the IP headers and transport layer protocol headers, but you
will not be able to decode the contents of the packet without breaking that
encryption.You can watch how much traffic is sent, and from whom to whom,
and how often, but you won’t be able to see what they’re saying. Depending on
the type of NIDS you have deployed, this may or may not put a cramp in your
style. Signature-based IDSs that depend on traffic being sent in cleartext may not
alert if the traffic is encrypted. Protocol analysis may still work for encrypted
traffic, but may break if the traffic is sent on an unexpected port.Traffic pattern
analysis is likely to be your best bet when dealing with encryption.

OINK!
It should be obvious that your NIDS won’t be able to see inside your net
work traffic if it is encrypted (unless you use special tools and change
how you do encryption). What might not be quite as obvious is that
even most HIDSs that look at network traffic (a.k.a Network Node IDS or
NNIDS) won’t be able to see inside encrypted traffic either. The reason
for this is simply that almost all HIDSs watch network traffic as it is
coming in to or going out of your system, somewhere around Layer 2 on
the network stack (just before the traffic goes to the hardware from the
OS). Currently, the majority of encryption is being done at the applica
tion layer (Layer 7) by applications such as your Web browser or SSH.
This means that the traffic is still encrypted when the IDS sees it entering
or leaving the system. This is unfortunately something that most vendors
forget to mention when talking about the benefits of their products.

This is becoming more and more of a problem, as more and more
environments begin using encryption in more and more of their network
communications. Fortunately, IDS vendors are aware of this and are
working on solutions. We hope they’ll be good ones.

Prevent Attacks from
Succeeding Automatically (in Most Cases)
With the exception of some IPSs, in most cases, by the time the IDS has seen
the attack attempt cross the wire, it has either succeeded or it has not. In the case

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 42

42 Chapter 1 • Intrusion Detection Systems

of an e-mail with a viral payload, for example, it’s possible that the IPS would
trigger on the subject line and have time to send a reset-kill and end the mail
transfer before the entire message, complete with virus, could be delivered.
However, in many other cases, attack and success of the exploit follow hard on
each other’s heels, and there just simply isn’t enough time for the IDS or IPS to
jump in there between the last no-operation command and the execution of the
shell code.

Replace Your Other Protection Mechanisms
While there are many all-in-one security products out there, don’t be fooled into
thinking that any one security product can do the job of a different type of secu
rity product. Just because you have an IDS doesn’t mean that you can junk your
firewall.The presence of a VPN does not mean that you don’t need to patch
your systems, either.The process of securing your network is aided by redun
dancy and layers of reinforced security. An IDS will not by itself be the only
security device you’ll ever need or want.

What Else Can Be
Done with Intrusion Detection?
These are only some of the possible uses for an IDS. Many HIDSs allow you to
audit and monitor use of shared resources.They provide enhanced capabilities of
determining who is using shared network resources, provide benchmarking and
resource utilization statistics for monitoring server functions, and can match sub
ject lines or content of e-mail to be able to alert on and/or get rid of mails with
known malware content.The possibilities are endless, and as flexible as your
ruleset and IDS implementation.

Fitting Snort into
Your Security Architecture
Since you’re holding this book, we assume that you have or are interested in
having Snort in your network. Snort is a very flexible network IDS, offering a
multitude of rules already authored as well as the ability to write your own.
There are several mailing lists where people trade new Snort rules that they’ve
written in response to the latest attacks, and offer commentary on the rules and
the new incidents they see on their networks. Snort is very full-featured, with

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 43

43 Intrusion Detection Systems • Chapter 1

many preprocessors to parse different types of data, a bevy of keywords to allow
matching of the content, port, protocol, and more, portscan detection, buffer
length detection, and many other features—and since it’s open source, you can
add any functionality you like.There are also many other add-ons to support log
ging alerts in database formats, management and automated downloads of new
rules, distribution of rules to sensors without clobbering the local rulesets, a Web
interface for Snort sensor management, and others. Although all these features are
explored at much greater length in later chapters, let’s take a quick tour of Snort’s
usefulness in an enterprise network.

Viruses, Worms, and Snort
Within days if not hours of the release of a new worm, Snort signatures are being
written for it.Those signatures are often incorporated into the main Snort ruleset,
so that all Snort users can benefit from them. Signatures for SQL Slammer were
out on the NANOG mailing list within hours of the initial detection of the worm
(www.merit.edu/mail.archives/nanog/2003-01/msg00775.html). Signatures for the
MyDoom.A worm were out within a day of the initial detects by antivirus labs.
This type of quick responsiveness allows Snort users to update their rulesets when
a new attack comes out, and begin detection and remediation of their vulnerabili
ties sooner. In fact, if you use some of the add-ons that are available for Snort, you
can actually detect signs of worm propagation before signatures are available.

Known Exploit Tools and Snort
Snort has many signatures that are tailored to let you know when a known exploit
tool is being used against your network. Some of these tools are marked by their
self-advertising in the packet payloads, like the SolarWinds ICMP and SNMP
scanner. Here’s the Snort signature (www.snort.org/snort-db/sid.html?sid=1918):

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN SolarWinds IP scan

attempt"; content:"SolarWinds.Net"; itype:8; icode:0; classtype:network-

scan; sid:1918; rev:3;)

Note the “SolarWinds.Net” content in the ICMP echo packet. In this case,
that’s the fingerprint of the tool. However, not all known exploit tools are quite so
self-advertising. Consider this signature, for a Trin00 attacker client attempting to
connect to the Trin00 master server on the default port with the default password:

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 44

44 Chapter 1 • Intrusion Detection Systems

alert tcp $EXTERNAL_NET any -> $HOME_NET 27665 (msg:"DDOS Trin00 Attacker

to Master default startup password"; flow:established,to_server;

content:"betaalmostdone"; reference:arachnids,197; classtype:attempted-dos;

sid:233; rev:3;)

Although many of the Snort signatures are written as generically as possible
to allow you to see the attack no matter which tool was used to generate it, the
rule authors won’t hesitate to write a rule for a particular tool as well if one
should flag itself in a clear fashion.

Writing Your Own Signatures with Snort
It should now be obvious that one of the greatest strengths of Snort is the ability
to write customized rules for your network and the traffic you see.The syntax is
precise and flexible, allowing you to match all sorts of different network traffic.
Chapter 5 in this book covers writing rules for Snort, and additional information
can be found online at www.snort.org/.

Using an IDS to Monitor Your Company Policy
A common use of customized Snort rules is to monitor traffic that, while not
actively malicious, is restricted or frowned upon by company policy. Some enter
prises write rules to alert them when their users access a Web page with content
matching particular keywords, or a site with unauthorized software, or other
policy violations. Snort actually comes with a set of rules for traffic that is likely
to be pornography.You can even write your own Snort rules to match any type
of network traffic, letting you know when someone has shut down the mail
server and started up the Quake server.

Analyzing Your IDS
Design and Investment
Once you have decided which type(s) of IDSs you want to deploy and where
you’d like to place them in your network, it’s time to give some thoughtful con
sideration to how you might improve your design. Are you likely to be inundated
with false alerts, or miss alerts you would like to see? Could a real attack slip by
in the midst of a storm of false positives?

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 45

45 Intrusion Detection Systems • Chapter 1

False Positives versus False Negatives
When trying to establish an IDS policy, one expects to be inundated with false
positives; at least until some IDS tuning has been done to get them down to a
manageable roar. More concerning, however, is the possibility of false negatives,
those attacks that the IDS misses. It is all too easy to be lulled into a false sense of
security—seeing many alerts every day often gives us the impression that since
we’re seeing so many potential attacks, surely we must be seeing them all.
However, skilled attackers can scan and code their exploits specifically to be
stealthy and not detected.There are a variety of techniques available for doing
this, which we will discuss.

Fooling an IDS
The Ptacek & Newsham paper previously mentioned discusses many individual
techniques for fooling a NIDS, but in general, there are two main approaches.
One approach is to give it so much data that it chokes on it, either missing
packets or drowning the administrator in so many alerts that she never sees the
real attack.The other general approach is to frame your attack in such a way that
it won’t match the signatures or algorithms that the IDS is using to pull out the
attacks from the network background noise.The former technique is what the
tools Stick and Snot depend on, as well as Nmap’s decoy scan.The latter tech
nique is what the stealth Nmap scans and tools like Dug Song’s fragrouter or
Rain Forest Puppy’s Whiskeruse.

IDS Evasion Techniques
First, let’s look at the noisy way. Stick and Snot (see the sidebar) are tools
designed to generate as many alerts as possible on your IDS.They do this by gen
erating alerts from a ruleset that is likely similar to the ruleset your IDS is using
to match traffic. Some miscreants hope to slip in some attack traffic while you’re
distracted by all the false positives, or while your IDS is dropping packets. Others
just like the idea of killing your IDS.

If the attacker used Stick or Snot to cover his tracks and then launched a
TCP attack, this could be easily compensated for by only having Snort alert on
established TCP sessions. However, this would be an ideal time for the attacker to
launch a UDP-based attack—Remote Procedure Call (RPC), DNS, something
like that.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 46

46 Chapter 1 • Intrusion Detection Systems

For maximum stealth, the attacker could even spoof the source; that doesn’t
matter in connectionless UDP.There is some likelihood that the attack packets
would get dropped if the network links were too oversaturated with the
Stick/Snot output, but it is likely that the actual attack packets would not be
picked up by the IDS, either because it’s only listening to established TCP ses
sions and our attack is UDP or ICMP, or because the IDS is still listening to all
connections but is mobbed with false positives.

Notes from the Underground…

Stick, Snot, and Snort
Stick, Snot, and Snort are tools billed as “IDS Killers,” designed to over
load your IDS to the point it becomes unusable.

■ Stick
gram based on an old version of the Snort ruleset, designed to
spew out so many alert-triggering packets per second that it
would force IDSs to come to a grinding halt. It was very effec
tive for its time, but Snort now has measures in place to adjust
to and compensate for this style of attack.

■ Snot
index.html) that takes a Snort ruleset as argument and gener
ates a series of packets that will trigger that ruleset. Cross-
platform and flexible, Snot allows script kiddies all over the
world to annoy to their IDS administrators.

If your Snort installation is being harried by these tools or similar
ones, you can limit your Snort alerts to noticing established TCP sessions
only with the snort –z est
stream4 preprocessor must be configured. Also keep in mind that this will
limit you from seeing all other nonstateful TCP alerts, so you will be

“Installing Snort.”

(www.eurocompton.net/stick/projects8.html) is a C pro

is another similar tool (www.stolenshoes.net/sniph/

arguments. For this to work, however, the

missing UDP, ICMP, and ARP-based alerts. However, your IDS will still be
up and running. We go into depth on configuring snort in Chapter 3,

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 47

47 Intrusion Detection Systems • Chapter 1

Nmap offers a noisy scan that generates a whole bunch of fake packets as
alternate “sources,” using the –D “decoy” option.To the target, it looks like they
are being scanned by all the decoy machines at once, and your real scan is
masked among the fake ones.

Now, the quiet way.These are the attackers you really need to worry about.
We have already described fragroute and Dug Song’s evasive techniques as laid
out in the original Newsham-Ptacek paper, but Nmap also offers options for
stealth.There is the idle scan, the FTP bounce attack, timing-based attacks like a
very slow scan stretched out over days, fragmentation and reassembly based
attacks,TCP flag combination attacks, and even an idle scan off an unwitting
zombie host.To read details about the packet construction behind all these
attacks, refer to the Nmap man page at www.insecure.org/nmap/data/
nmap_manpage.html.

Return on Investment—Is It Worth It?
At the end of the day, the deciding factor for many businesses is what the
expected return on investment is. Is there truly going to be enough enhance
ment to your network security that it’s worth installing, configuring, and main
taining an IDS? Security is often referred to as an economic sinkhole for
businesses; they spend money on it, but if all goes well, they rarely see returns.
Instead, the returns are in costs saved rather than in products made. Because of
this, many CEOs are reluctant to spend the money necessary for expensive sys
tems or solutions, more so if they’ve already spent money on an IDS and have
seen few positive results from it but many false positives.

If you are considering adding an IDS to your network, consider it as a busi
ness case. How much money does your company lose if there is an intrusion?
What are the odds of that intrusion happening? How much will it cost to install
and maintain an IDS? How much will the IDS offset or mitigate the risks of that
intrusion? How will an IDS affect your organization legally? Earlier in the
chapter, we discussed the possible implications of wiretap and privacy laws on a
company’s use of an IDS. However, an IDS can also assist in compliance with
corporate accounting laws such as the Sarbanes-Oxley requirements, and in
establishing an audit trail in the event of a compromise. Sections 302 and 304 of
the Sarbanes-Oxley requirements place the responsibility on a corporation to
establish internal controls within their network. An IDS can be a demonstrable
part of these controls. When combined with a third-party penetration test of
your network security, this can go a long way toward validating your own data

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 48

48 Chapter 1 • Intrusion Detection Systems

with an external audit, complete with trail. Some locations now require compa
nies to notify customers when their data has been compromised; the State of
California is one such place. Having an IDS can allow you to detect compromise
attempts more reliably. Being able to go to your CEO with strong numbers, legal
backing, and business precedent will be far more impressive than “uh, I guess we
need one of those, everyone else seems to have one.”

Defining IDS Terminology
Being able to understand the differences between different types of IDSs and
their features is crucial when trying to design a security architecture. Let’s look at
some of the most common terminology in the IDS field, and make sure we
understand all the options available.

Intrusion Prevention Systems (HIPS and NIPS)
An IDS that not only detects possible attack, but also responds to prevent the
attack from being successful.This response can be anything from creating firewall
rules to black-hole the attacker, to killing the offending process (when dealing
with a Host IPS), to dropping the offending traffic (when dealing with a
Network IPS).

Gateway IDS
An IDS that sits at the bottleneck between your network and the Internet (or
whatever peering upstream you may be connected to). Also known as an inline
IDS, all traffic must pass through this gateway to leave your local network.This
may also function as an IPS if it includes the capability to make decisions about
whether traffic should be allowed.

Network Node IDS
The method of intrusion detection where one establishes a baseline of “normal”
network traffic, and then looks for deviations from that norm and flags them as
possible attack traffic.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 49

49 Intrusion Detection Systems • Chapter 1

Protocol Analysis
The method of intrusion detection where one looks at the flow of data within
the specifications of each protocol, looking for anomalies and possible malicious
traffic based on the expected protocol behavior.

Target-Based IDS
A new flavor of IDSs specifically aimed at what is actually on the network.They
are designed to have fewer false positives and only alert on attacks that are rele
vant to your network and the specific services running on your network.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 50

50 Chapter 1 • Intrusion Detection Systems

Summary
IDSs can serve many purposes in a defense-in-depth architecture. In addition to
identifying attacks and suspicious activity, you can use IDS data to identify secu
rity vulnerabilities and weaknesses.

IDSs can audit and enforce security policy. For example, if your security
policy prohibits the use of file-sharing applications such as Kazaa, Gnutella, or
messaging services such as Internet Relay Chat (IRC) or Instant Messenger, you
could configure your IDS to detect and report this breach of policy.

IDSs are an invaluable source of evidence. Logs from an IDS can become an
important part of computer forensics and incident-handling efforts. Detection
systems are used to detect insider attacks by monitoring traffic from Trojans or
malicious code and can be used as incident management tools to track an attack.

Correlation of data, whether from a HIDS or NIDS or DIDS, is probably the
best way to approach intrusion detection data. While an IDS can be a valuable
contributor to a security architecture, it is by no means enough in and of itself to
protect a network.

A NIDS can be used to record and correlate malicious network activities.
The NIDS is stealthy and can be implemented to passively monitor or to react to
an intrusion.The HIDS plays a vital role in a defense-in-depth posture; it repre
sents the last bastion of hope in an attack. If the attacker has bypassed all of the
perimeter defenses, the HIDS might be the only thing preventing total compro-
mise.The HIDS resides on the host machine and is responsible for packet inspec
tion to and from that host only. It can monitor encrypted traffic at the host level,
and is useful for correlating attacks that are detected by different network sensors.
Used in this manner it can determine whether the attack was successful.The logs
from a HIDS can be a vital resource in reconstructing an attack or determining
the severity of an incident.

Solutions Fast Track

Introducing Intrusion Detection Systems

� An intrusion is an unauthorized access, use, or attack on your network
or computers.

� IDSs work by watching network and system activity, and comparing that
to known signatures or against algorithms to separate legitimate activity
from suspicious activity.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 51

51 Intrusion Detection Systems • Chapter 1

� IDSs can then log the attack and respond in a number of ways.The
most common response is to alert the system administrators through
SNMP traps, text messages, phone calls, or pages.

Answering Common IDS Questions

� Attackers are interested in everyone connected to the Internet these
days; it’s not necessarily personal.

� An IDS can alert you to network traffic and system activity of which
you may not have been aware. It can increase the effectiveness of a good
system administrator, and provide him with additional data.

� An IDS will not replace your existing security staff, or make people stop
attacking you.

Fitting Snort into Your Security Policy

� Snort is a network IDS with sophisticated pattern-matching capabilities
that are used to uniquely describe attack traffic.

� Snort signatures for the latest viruses, worms, and other new
vulnerabilities are usually written and released within hours or days of
the new attacks’ debut.

� You can write your own Snort signatures to match company policy vio
lation, new or unique traffic, or anything else.

Analyzing IDS Design and Architecture

� IDSs can be configured to just detect and alert, or to respond as well.

� Possible responses include dropping the traffic, spoofing ICMP or TCP
Reset packets, or identifying and tracing back toward the attack source.

� IDSs are not perfect or foolproof—they can be tricked or eluded.They
are valuable contributors to a security policy, but not enough all by
themselves to enforce it.

www.syngress.com

295_Snort_2e_01.qxd 5/4/04 4:50 PM Page 52

52 Chapter 1 • Intrusion Detection Systems

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Why doesn’t my firewall serve as an IDS?

A: Firewalls are designed primarily to pass, drop, or reject traffic, not to alert on
suspicious traffic. IDSs are designed to let you know when suspicious activity
is occurring.The two functions are different and conflict in key issues. We
discuss this further in Chapter 12.

Q: Can IDSs gather data from anywhere besides sniffing on a network?

A: Yes, some IDSs can also gather data from log parsing, watching system calls,
or monitoring a filesystem.

Q: What can an IDS do for me that my system administrator can’t?

A: Parse a few hundred million packets or log entries (or more) a day in binary.
Most administrators get tired after a while.

Q: What can my system administrator do for me that my IDS can’t?

A: Bring creative thinking and an understanding of the significance of this net
work activity to the analysis.

Q: Will I have to spend time tuning my IDS?

A: Yes. If you don’t want to be drowning in false positives, it really is best to
tune your IDS to fit its environment.

Q: Does physical security still matter if I have the best network security in the
world?

A: Absolutely. If we can walk in to your office and walk out with your server,
you’ve still been rooted.

Q: Why should I bother writing my own signatures, when Snort has so many
already?

A: You certainly don’t have to, but you might want to add functionality that’s
not present in the extant ruleset, like rules tailored to your enterprise policy
or to detect attacks targeting specific proprietary applications.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 53

Chapter 2

Introducing
Snort 2.1

Solutions in this Chapter:

■	 What Is Snort?

■	 Understanding Snort’s System
Requirements

■	 Exploring Snort’s Features

■	 Using Snort on Your Network

■	 Considering System Security While Using
Snort

�	Summary

�	Solutions Fast Track

�	Frequently Asked Questions

53

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 54

54 Chapter 2 • Introducing Snort 2.1

Introduction
It’s 9:30 A.M., and Bob Sysadmin has just walked out of his boss’s office, shaking
his head ruefully. When he arrived at work that morning, it was to face an angry
Web development team whose beautiful and elegantly designed index page had
been replaced with the crude legend, “Y0U H4\/3 B33N 0WN3D BY AG3NT
D3L3T3! l@m3 security, d00d. greetz to m4g3, p1><1e, and the V0R!” Bob was
initially shocked, and then profusely apologetic. Dialing up his boss on the cell
phone, he ran for the server room to yank out the Ethernet cable of the compro
mised machine and get the computer emergency response team involved. Perhaps
now, he thought grimly, his budget request for an Intrusion Detection System
(IDS) wouldn’t seem so “unnecessary.”

Bob’s meeting with his boss was somewhat rocky. Fortunately, Bob was able
to calmly counter the angry management “How did this happen? Someone’s
head is going to roll!” bluster with a clear explanation of the weaknesses in their
network defenses, and the budgetary and managerial reasons why they hadn’t
been strengthened. He pointed out their staffing shortages, the lack of defense in
depth, and the critical lack of information about ongoing attacks. Although the
meeting started badly, by the end of it, Bob’s boss was asking thoughtful ques
tions and framing a productive response to the compromise. Bob began to hope
that, with management support, he might be able to make a real difference in his
company’s network security.

It’s 9:30 A.M., and across town, Jennifer Sysadmin has just finished briefing
her boss about the intrusions that occurred the night before. Although she was
dismayed by the initial compromise, she was able to respond almost immediately
thanks to the IDS alert sent to her pager. After determining that the attacks were
successful against one of her boxes, she immediately yanked the compromised
system off the network, took disk images and live data for forensics, and analyzed
the extent of the compromise. By the time the developers and management
showed up to work in the morning, she had the last-known good backup
restored to the system, locked down the hole that the attacker had used to com
promise the server, and tasked her junior system administrators with making sure
that all their systems were up to date on their security patches, just to be safe.
She prepared a report for her managers about which vulnerabilities in the Web
server’s code were exploited, and what the response of her security team was.
She’s also scheduling a vulnerability scan of her network for that weekend, when
normal network usage will be light, to make sure that she and her team have not

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 55

55 Introducing Snort 2.1 • Chapter 2

missed any potentially damaging holes in their defense. Logging in to her work
station, she downloads the latest Snort ruleset and applies it to her sensors,
making sure that they are using the very latest definitions of network attack sig
natures. Running a few quick probes from her pen-testing box to make sure the
new signatures are alerting on the sensors properly, she grins, stretches, and gets
up. It’s definitely time for a morning cup of coffee.

It’s 9:30 A.M., and Andy Attacker is sound asleep. After his successful evening
breaking in to other peoples’ systems, he has a few dozen new zombie machines
for his botnet, just waiting for his command to launch a distributed denial-of-
service (DDoS) attack against anyone he decides he doesn’t like. He’s defaced a
few Web pages, garnered a few new root accounts with his new Solaris exploit,
and is planning to spend tomorrow night trading movies and media files from
“his” brand new servers. Happy dreams of exploits that never fail, servers that
never go down, and sysadmins who never catch on, fill his head.

Had Andy been a somewhat more sophisticated attacker, it’s entirely possible
that Bob Sysadmin and his team of Web developers wouldn’t have had any idea
that their server had been compromised. Often, it’s only attackers out to promote
a cause or gain a reputation in their community who bother with defacing a site.
There are also attackers who are much more subtle about their assault, hiding
their success rather than advertising it, and quietly using your resources for their
own purposes. Without the capability to look in depth at system and network
activity, you may be blind to these sorts of attempts.This is the very reason why
many system administrators, security engineers, and Chief Information Officers
(CIOs) are interested in IDSs like Snort.

What Is Snort?
Snort is a modern security application with three main functions: it can serve as
a packet sniffer, a packet logger, or a Network-based Intrusion Detection System
(NIDS).There are also many add-on programs to Snort to provide different ways
of recording and managing Snort logfiles, fetching and maintaining current Snort
rulesets, and alerting to let your admins know when potentially malicious traffic
has been seen. Although not part of the core Snort suite, the add-ons provide a
rich variety of features to the security administrator. As you will see, there are
many ways to use Snort as part of your company’s security design.

Normally, Snort only speaks TCP/IP. Although, with custom extensions,
Snort can be made to support other network protocol suites, such as Novell’s

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 56

56 Chapter 2 • Introducing Snort 2.1

IPX,TCP/IP is the common-tongue protocol of the Internet.Therefore, our
coverage of Snort’s analysis and alerting on TCP/IP protocols does not mean
we’re ignoring the other protocols out there; it’s simply that Snort does not
address them in the main code train.

OINK!
Lead Snort developer Martin Roesch, commonly known as Marty in the
Snort community, chose a name for Snort based on its role as a “sniffer
and more.” The combination of the Snort name, the pig mascot, and
programmers’ senses of humor ensures that many Snort add-on and ref
erences are pig or farm related. There is also the underground rumor
that Marty chose the name Snort because he already had too many pro
grams named a.out.

When designing the early versions of Snort (and to a lesser degree, its prede
cessor APE), Marty considered several features essential. He wanted an application
that would be portable, working on many different operating systems. He wanted
packet output in hex dump format and in ASCII, and he wanted all different
types of packets to be displayed in a consistent format. Snort does all of these
things, plus signature-based rule matching and alerting.

There are many resources available online for the Snort enthusiast, including
mailing lists for Snort development, writing signatures, general Snort discussion,
Snort announcements, and even tracking of CVS changes. All of these are avail
able online at www.snort.org/lists.html.There are also Web pages for Snort
enthusiasts in a given area, such as www.my-snort.org, a site promoting the use
of Snort in Malaysia, and Snort user groups in localities from Munich, Germany
to Japan.

There are also commercial solutions and products using Snort technology. By
far the most famous is Sourcefire (www.sourcefire.com); a detailed discussion of
Sourcefire is outside the scope of this book.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 57

57 Introducing Snort 2.1 • Chapter 2

Understanding Snort’s
System Requirements
To a large degree, determining what type of hardware and software configuration
you will need to run an optimal Snort installation is a matter of understanding
your network. First, you have questions of scale. Roughly speaking, the bigger
your network is, the better machines you’ll need to serve as your Snort sensor(s).
Snort will need to be able to keep up with your network, have enough disk
space to log its alerts, and have a fast enough processor and enough memory to
be able to handle the normal amount of traffic you see, with some wiggle room
built in for intense attacks and traffic spikes. While a number of optimizations
can be done to speed Snort up significantly, these are the basic issues that you
need to consider. For an in-depth discussion of how to optimize snort, see
Chapter 10, “Optimizing Snort.”

OINK!
Questions of scale you should consider when designing a Snort system
for your network:

■	 Do you run a small home network, a small business network, a
large enterprise, or an Internet service provider (ISP)?

■	 How much traffic do you normally see within your network?
■	 How much traffic goes from your network to the outside world,

and vice versa?
■	 Where will the alerts be stored?
■	 How long do you want to store the alerts for?
■	 Do you want to store packets related to the alerts as well?

In addition, you will have questions of management.You want to be sure
your system administrators will be familiar with the operating system on which
you choose to run Snort, that your method of generating alerts will not overrun
either the capabilities of your machines or your administrators, and that the sen
sors and any other add-ons you may choose will be able to be managed in a
secure and scalable fashion.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 58

58 Chapter 2 • Introducing Snort 2.1

OINK!
Questions of management you should consider when designing a Snort
system for your network:

■	 Who is going to be responsible for monitoring the Snort sys
tems? What is that person’s skill set? With which operating sys
tems and management tools is that person familiar?

■	 Have you defined a procedure to follow when a Snort alert that
looks like it might be serious occurs? Who is responsible for fol
lowing up on the alert?

■	 How are you going to patch your Snort systems? Who is respon
sible for maintaining and for testing them after maintenance to
ensure proper operation?

With these questions in mind, let’s look at the various options available in
designing a Snort system.

Hardware
Hardware requirements play an essential role in designing a good security system.
For Snort, there aren’t hard and fast guidelines like “you must have a 2-gigahertz
or faster processor to run this system.”The speed, storage space, and amount of
memory you’ll want on a Snort sensor are going to vary widely, depending on
how much traffic you expect your sensor to see, how many rules you want
enabled, the forms of output and alerting you choose, and how busy your net
work segments are.

“But argh!” we can hear you saying. “What if I don’t know all that?” In that
case, you’ll have to do what you normally do for any new system: get an idea of its
requirements, make your best guess, and watch your system carefully for the first
few weeks to try to correct any errors you might have made. When in doubt, it’s
generally better to allocate extra resources—far better a sensor that’s more than
capable of handling the load you throw at it than a sensor that’s positively
drowning because you vastly underestimated. For example, it’s probably not a good
idea to try to build your Snort sensor on the oldest piece of hardware you have. It
is actually very common to purchase a high-end system to act as your sensor and
then move it over to more general-purpose use when it becomes insufficient for
monitoring.You will almost certainly want a reasonably fast processor, a relatively
large and fast hard drive, and two good quality network interface cards (NICs). As
we said before, this is discussed in depth in Chapter 10, but these are the general
issues to consider.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 59

59 Introducing Snort 2.1 • Chapter 2

Let’s take a closer look at these unique requirements of Snort. What type of
resources is it likely to want? First, you’ll need at least one NIC. It is strongly
recommended that you have two NICs on your Snort system, one configured
without an IP address to silently listen to the network traffic, and the other to
manage the sensor, send alerts, and handle other normal TCP/IP activity.

Some people recommend cutting the transmit wires of the Ethernet cable
that connects the silent listening interface to your hub or switch, on the sensor
side.This way, the sensing interface is much harder to detect, and cannot acciden
tally betray its presence by replying to an Address Resolution Protocol (ARP)
packet or other such network tomfoolery. (We’ll get into more details about
detecting a sensing interface at the end of the chapter, when we discuss attacking
Snort.) However, many NICs have trouble maintaining the link state without
both transmit and receive signals. Solutions for this vary, from dead-ending the
transmit pair into a hub with no other connections, to splicing the wires back
into themselves, as suggested in Patrick Gray’s 2002 paper “One Way Cable
Preparation Guide” (http://weaponofmassdestruction.us/~monoxyde/
OneWayCable.pdf).These solutions can be quite complicated; it is up to you to
determine whether the decreased risk of detection is worth the extra effort for
your system.

One common configuration for switched networks is to set the port on your
switch that is connected to your sensor to spanning mode.This ensures that all
traffic sent out any other port on this switch is also sent to the spanning port.
However, even spanning ports will sometimes fail to send errors or VLAN infor
mation to the spanned port. Depending on your security model, this may be data
you want to see.To deal with these cases, often a company will buy specialized
Ethernet taps, hardware designed to allow silent NIDS sniffing by performing port
mirroring in hardware rather than in software and directing all data, errors, VLAN
information and all, to the connected NIDS interface.This is especially helpful
because if the tap loses power, the network connection through it will stay up.

You will want your NICs to be capable of dealing with the full possible
capabilities of your network. If your network is a mixture of 10 Mbps and 100
Mbps systems, you want your Snort sensor to have two 100 Mbps NICs. If some
devices on your network are half duplex and others are full duplex, you want the
NICs of your Snort sensor to be full duplex. If your NICs on your Snort sensor
are below par, they won’t be able to keep up with the other devices on your net
work, and you’ll miss traffic, and therefore will miss potential attacks.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 60

60 Chapter 2 • Introducing Snort 2.1

In addition, you want to make sure that the port that is connected to your
sensing interface will be able to see all the traffic—we’ll be dealing with this
more in the section Snort and Your Network Architecture later in this chapter.

Snort can generate many alerts. If you’re logging your alerts locally, you’ll
need some serious disk space to be able to deal with these alerts. For a large
enterprise, this can run in the range of 10GB for the partition that Snort alerts to
(usually /var, but you can change this if so desired). For a home or small business
use, this can be considerably smaller. If you choose to log your Snort alerts to a
remote database, remember to make sure that that machine also has the requisite
disk space.Your disk space needs will change, depending on how often you clear
out older alerts, and how well tuned your Snort ruleset is. A default install is usu
ally going to be far busier than a Snort install with known false positives tuned
out. Performance and conservation of hardware resources are just more reasons to
keep your Snort sensors well tuned.

Operating System
By design, Snort is portable, running on many different modern operating sys
tems. Currently, there are releases of Snort 2.1 available for x86-architecture
Linux, FreeBSD, NetBSD, OpenBSD, and Windows. Other systems supported
include Sparc-architecture Solaris, MacOS X and MkLinux, and PA-RISC HP
UX. If your favorite operating system isn’t on that list, Snort’s source code is
available under a GPL license, and you can port the code to the operating system
of your choice.

A common question is, “yes, yes, but which one is the best?”There are two
factors to consider when choosing the operating system on which Snort will
run: which operating systems you or your system administrators are most familiar
with and comfortable working with, and the performance of the operating
system itself

OINK!
Choice of operating systems tends to be a hot-button issue among
system administrators, often approaching or exceeding politics or reli
gion as a potentially inflammatory topic. You’re the one who’s going to
have to administer your Snort installation, so choose an operating
system that you can work with happily.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 61

61 Introducing Snort 2.1 • Chapter 2

If, through some strange twist of fate, you are equally skilled at all operating
systems, or you truly do want to choose your OS based on performance only,
TCP/IP stack performance is going to be a big factor in your OS’s performance.
(Speed of disk access may also matter—for that, you’ll have to look at both the
underlying hardware and the OS drivers to address it.) You might want to look at
the TCP/IP stack system benchmarks at http://bulk.fefe.de/scalability/; there are
some fairly in-depth and varied tests there. As of the time of this writing, Linux
2.6 came out on top for overall performance, but FreeBSD and NetBSD also
made quite impressive showings. We discuss installing Snort on different oper
ating systems in Chapter 3, “Installing Snort,” and provide detailed information
on Linux, Windows, and OpenBSD.

Other Software
In addition to the basic operating system, if you intend to compile Snort from
source code, you will need the tools to do so. Make sure you have the following
installed:

■ autoconf and automake

■ gcc

■ lex and yacc, or the GNU equivalents flex and bison

■ libpcap

Most of these are downloadable from your nearest GNU mirror
(www.gnu.org/order/ftp.html), but libpcap is available at www.tcpdump.org.

You might also want to install Snort add-ons or management tools, such as
the popular Analysis Console for Intrusion Detection (ACID) Web interface,
which requires the Apache Web server (Secure Socket Layer support is highly
recommended), PHP, and a database for the alerts such as MySQL or
PostgreSQL. Some popular Snort add-ons include:

■ ACID

■ Oinkmaster

■ SnortSnarf

■ SnortReport

There are many more options available; check www.snort.org for a more
exhaustive listing.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 62

62 Chapter 2 • Introducing Snort 2.1

Additionally, you will probably want some method of remote management of
your Snort sensor—requiring physical access to the box to make any configura
tion changes quickly becomes tiresome in all but the most paranoid or the
smallest environments.To this end, you might want to consider a SSH server, or a
Terminal server, depending on your chosen operating system.

OINK!
While you do need a compiler (gcc) and tools like autoconf and yacc to
install Snort, they should not be on a production IDS sensor! Your sen
sors should be built to survive a hostile environment, which means
removing software that may be useful to an attacker (such as a com
piler). You also want to make sure you add tools to help protect the
sensor. Things like a file integrity checker (for example, AIDE or Tripwire)
and a log-monitoring tool (for example, logwatcher or swatch) should
be part of every default IDS install.

Exploring Snort’s Features
Let’s take a more in-depth look under the hood of Snort. While we discuss Snort’s
internals in depth later in the book (Chapters 4, 6, and 7), it is necessary to have a
general understanding before we talk about using Snort. When a packet arrives at
its NIC, how does it decode and display it? How does it decide whether that par
ticular packet is worth alerting on, or whether it’s part of some treacherous data
flow that deserves attention, or whether the packet and everything it’s a part of is
harmless normal traffic that should be allowed to pass without alerting? Snort uses
an ordered set of behaviors to determine what traffic matches its rules and should
be alerted on. Much of this behavior is customizable.

Incoming data is decoded first by the packet decoder. If you are using Snort
solely as a packet sniffer, the decoded data will be formatted for the console dis
play and shown. If you’re using Snort as a packet logger, the data will be put into
either ASCII format in a directory tree or a binary file, whichever one you speci
fied on the command line, and saved to disk. If you are using Snort as a NIDS,
the processing is somewhat more complicated.

When using Snort as a NIDS, after the incoming packets are parsed by the
packet decoders, the data is then sent through any preprocessors that you may

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 63

63 Introducing Snort 2.1 • Chapter 2

have enabled in your snort.conf file.That data is passed to the detection engine,
which matches it against the rules in any ruleset enabled in your snort.conf file.
Matches are sent to the alerting and logging components, to be passed through
whatever output plug-ins you have selected, and they will log the data or gen
erate alerts as they have been configured to do.

Packet Decoder
The packets enter through the NIC and are decoded off the wire by the packet
decoder, which determines which protocol is in use for a given packet and
matches the data against allowable behavior for packets of their protocol.The
packet decoder can generate alerts of its own based on malformed protocol
headers, overly long packets, unusual or incorrect TCP options that are set in the
headers, and other such behavior.You can enable or disable more verbose alerting
for all of these fields in your snort.conf. Here’s the default configuration for a
FreeBSD installation of Snort 2.1 as far as packet decoding:

Configure the snort decoder

============================

Snort's decoder will alert on lots of things such as header

truncation or options of unusual length or infrequently used tcp options

#

Stop generic decode events:

config disable_decode_alerts

#

Stop Alerts on experimental TCP options

config disable_tcpopt_experimental_alerts

#

Stop Alerts on obsolete TCP options

config disable_tcpopt_obsolete_alerts

#

Stop Alerts on T/TCP alerts

In snort 2.0.1 and above, this only alerts when the a TCP option is

detected that shows T/TCP being actively used on the network. If this is

normal behavior for your network, disable the next option.

config disable_tcpopt_ttcp_alerts

#

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 64

64 Chapter 2 • Introducing Snort 2.1

Stop Alerts on all other TCPOption type events:

config disable_tcpopt_alerts

#

Stop Alerts on invalid ip options

config disable_ipopt_alerts

After the packets are matched against the decoder, they are then sent to the
preprocessors, if any have been defined in your snort.conf file.

The Preprocessors
Preprocessors are plug-ins to Snort that allow you to parse incoming data in dif
ferent ways that may be useful. If you run Snort without any preprocessors speci
fied in your snort.conf configuration file, you will only look at each individual
packet as it comes in over the wire.This is probably going to lead to you missing
some attacks, since many modern attacks depend on things like overwriting data
in overlapping fragments, deliberate IDS evasion techniques like putting part of a
malicious application request in one packet and the rest in another packet, and
other such practices.

Data hits the preprocessors after it has been parsed by the packet decoder.
Snort 2.1 offers a wide variety of preprocessors, configurable to detect portscans
(the portscan and portscan2 preprocessors), reassemble TCP fragments (the frag2
preprocessor), track streams of data to look for stealth or evasive activity (the
stream4 preprocessor), and many more options. At the time of this writing, there
are 10 preprocessors described in the Snort manual for Snort 2.1 (available at
www.snort.org/docs/snort_manual/node17.html), as well as several more experi
mental preprocessors, such as arpspoof, designed to detect ARP spoofing on a
network segment.

OINK!
It is important to remember that the preprocessors get the packets
before the detection engine. This means that even if you set up a pass
rule for specific traffic, it won’t prevent the preprocessor from alerting
on that traffic. This is because the packet won’t be compared to the pass
rule until after it has gone through the preprocessors.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 65

65 Introducing Snort 2.1 • Chapter 2

To get a better idea of how a preprocessor functions, let’s take a more
detailed look at one. Although there are many different preprocessors available for
Snort, let’s look at one that is new in Snort 2.1, HTTPInspect. For a detailed dis
cussion of all the preprocessors, see Chapter 6, “Preprocessors.”

Example: HTTPInspect
In Snort 2.1, HTTPInspect replaces http_decode as the preprocessor responsible
for decoding HTTP traffic and detecting application layer attacks attempting to
exploit features of HTTP design or implementation. It will look inside the data
buffer of packets, search for HTTP traffic, and attempt to perform data normal
ization of any HTTP traffic that it does find. HTTPInspect will recognize both
server and client traffic.

In versions of Snort up to 2.1.1, HTTPInspect does not maintain state itself.
If another preprocessor is performing stateful data stream reassembly,
HTTPInspect will catch more data, but it will only look at each individual
packet, not perform stream reassembly for the entire HTTP session.

HTTPInspect has two configuration sections, a global section and a server
section.The global section allows you to give it mapping files for IIS Unicode
mapping, configure alerting for proxy servers with proxy_alert (to tell you if your
users are attempting to circumvent your proxy servers or using unauthorized
proxy servers), or configure detection of HTTP traffic on nonauthorized ports
with detect_anomalous_traffic. Here’s the global section of the HTTPInspect
preprocessor configuration from our snort.conf:

http_inspect: normalize and detect HTTP traffic and protocol anomalies

#

lots of options available here. See doc/README.http_inspect.

unicode.map should be wherever your snort.conf lives, or given

a full path to where snort can find it.

preprocessor http_inspect: global \

iis_unicode_map unicode.map 1252

You also have a server configuration section for the HTTPInspect prepro
cessor, allowing you to set different HTTP server profiles for different known
servers, configure the types of attacks and normalization necessary based on the
server’s flavor (IIS servers are vulnerable to different classes of HTTP attacks than
Apache servers are, for example, so there are different files and configurations you
can set depending on what type of HTTP servers you have), and which ports to

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 66

66 Chapter 2 • Introducing Snort 2.1

attempt decoding HTTP traffic on. Here’s the server section of the
HTTPInspect preprocessor configuration from our snort.conf:

preprocessor http_inspect_server: server default \

profile all \

ports { 80 8080 }

An important note with HTTPInspect is to realize that it will not “see
inside” encrypted SSL traffic, and so it should not be configured to attempt
decoding on HTTPS traffic, as you may generate false positives and will not gen
erate real hits.

Each of Snort’s preprocessors behaves similarly, taking data from the packet
decoder and applying its own rules to try to find anomalous behavior patterns and
network alerts. After the data is returned from the preprocessors, it is passed to the
detection engine. Let’s look at another preprocessor, flow-portscan, which will
show us how flow data can be reorganized and matched for known data patterns.

Example: flow-portscan
flow-portscan is a good example of how one preprocessor can depend on
another. For flow-portscan to work, the flow preprocessor must be enabled.
Flow-portscan takes the data that the flow preprocessor has already parsed into
data flows, and looks for portscans of one host to many other hosts, or one host
to many ports on one other host. It replaces the portscan and portscan2 prepro
cessors, which are depreciated and will soon be removed from Snort.

In operation, the flow-portscan preprocessor receives data flows from the
flow preprocessor. If the data flow is a new one (determined by comparing
source and destination IP addresses, the protocol in use, and the destination port),
flow-portscan determines whether the destination IP is in the watched network,
identifies the “talkers” and “scanners” by traffic patterns and frequency, and incre
ments counters for each hit. If the traffic count is greater than the designated
threshold, and less than the ignore limit, an alert is generated

You can pass several options to the flow-portscan preprocessor to help tune it
more precisely to your needs.The src-ignore-net and dst-ignore-net parameters are
particularly valuable if you have known scanners or problematic networks that
you want to ignore.The server-watchnet parameter will tell you which network
you want to be watching.You can tweak the alert-mode or the output-mode to
your liking and adapt it to your local alerting system. Here’s one sample configu-
ration—you can find much more detail online in the Snort manual at

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 67

67 Introducing Snort 2.1 • Chapter 2

www.snort.org/docs/snort_manual/node17.html#SEC-
TION00386000000000000000:

preprocessor flow-portscan: server-watchnet [192.168.1.0/24] \

unique-memcap 5000000 \

unique-rows 50000 \

tcp-penalties on \

server-scanner-limit 50 \

alert-mode all \

output-mode msg \

server-learning-time 3600

The Detection Engine
The detection engine is probably what most people think of when they think of
Snort’s functionality as a NIDS. It’s the component of Snort that takes data from
the packet decoder and preprocessors (if any are enabled) and compares it against
the rules in your snort.conf. How does it do this? In what order are rules
matched? If you want to make sure that your pass rule is more important than
your alert rules, how do you turn that on?

Flow-Portscan as Example Feature
First, the detection engine will try to determine what rulesets it ought to be
matching against for a given piece of data. It classifies this first by protocol—
TCP, UDP, ICMP, or IP—and then by identifying characteristics within the pro
tocol. For TCP and UDP, this is source and destination port number. For ICMP,
it’s the ICMP type. For plain old IP packets, it’s what non-TCP/UDP/ICMP
transport protocol is in use.

Once the relevant ruleset has been determined, the detection engine then
follows procedures based on which rule in the relevant ruleset is unique.

Rules and Matching
It used to be the case that Snort was a first-match-out IDS—the first rule that
matched a packet in a file was the one that fired. By default, Snort will only fire
once on any given piece of data, unlike other IDSs that will generate multiple
alerts on the same packet. However, Snort now includes the capability to per
form multiple matching against a given event, and to generate multiple alerts

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 68

68 Chapter 2 • Introducing Snort 2.1

against the same packet. Since the introduction of Snort 2.1.3 Release Candidate
1, there is now a choice for how you want to order your rule matching. Since
this is designed to address an IDS-evading vulnerability, let’s take a closer look at
the vulnerability and the response from the Snort team.

After the introduction of Snort 2.0, data was matched against a fast pat
tern matcher. If several signatures matched a given event, Snort implemented a
two-phase system for determining which rule would fire in case of multiple
matches.

The first phase of rule matching was a setwise pattern match. Put simply,
this means that the most exact content match to a given piece of data will win.
Therefore, if you have a rule that alerts on a packet with the content “test-cgi,”
and a rule that alerts on the content “test-cgi/vulnerable-script,” the second rule
will be the one that fires.The longest match will win.

If there is a rule with content, and a rule with no content, the rule with con
tent wins. If there are two rules with no content, the more specific rule will win
if it specifies a destination port where the other has “any”; if it specifies an ICMP
type where the other has “any,” it will win.The rule with the longest content
match will win.

However, this opened up the possibility to mask an attack by causing Snort
to trip on a long content match signature that didn’t look like a big problem,
while not tripping on a higher priority alert that had a shorter content match.
Snort has addressed this problem in two ways: by implementing multiple matches
so that Snort now matches against the longest content match in any given group
(rather than the longest content match overall), and by allowing you to set Snort
rule filtering by event priority rather than by the length of the content match.
These modifications enhance Snort’s speed, performance, and security.

In general, “alert” rules will fire before “pass” rules.This is a design decision,
so that a badly written pass rule won’t accidentally invalidate a large chunk of
“alert” rules. However, if you would rather have this behavior reversed, you can
specify the –o option to Snort on the command line, making the order “pass,”
“alert,” “log” instead.This is a good thing to do, as pass rules won’t have any
effect if you don’t have them evaluated first. As you will see in Chapter 5,
“Playing by the Rules,” pass rules can be a very powerful tool when you have a
rule that you don’t want to turn off but that is consistently generating false posi
tives on a specific kind of traffic.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 69

69 Introducing Snort 2.1 • Chapter 2

Snort rule writing is a fine art, and we’ll be investigating that in detail in
Chapter 5. For now, let’s look at one of the new keywords available in Snort
2.1—Perl Compatible Regular Expressions, or PCRE.

Example: PCRE
PCRE is an excellent example of some of the powerful new features in recent
versions of Snort.The introduction of the pcre keyword to Snort rules allows you
to match data with Perl-compatible regular expressions within the payload of the
packet.This can make it much easier to look for data patterns in potentially
polymorphic malicious code, particularly since many Snort rule writers are
already familiar with Perl.This is especially helpful, since some servers are looser
than others about things such as case sensitivity. For example, let’s say that we
wanted to look for root logins over any cleartext protocol. We could construct a
Snort rule like the following:

alert tcp any any -> any [21:1023] (pcre:"/ROOT/i";)

to let us know when we see ROOT, root, or any other variation of upper- and
lowercase characters crossing the network destined for TCP ports 21 through 1023.

OINK!
While PCRE is very powerful, it is also an excellent way to overload your
sensor by forcing it to perform overly complex pattern matches. Before
you put a rule that uses PCRE into your production IDS network, be sure
to test it carefully to make sure it won’t overwhelm the system on which
your sensor is running.

Thresholding and Suppression
Snort also has the capability to alert if there have been a certain number of
instances of a given data set within a set time period.This is called thresholding,
and is covered in greater detail in Chapter 5.You can choose to either alert on
the first X number of alerts of a given event, or alert every Y instances of a given
event, to keep one bursty instance from filling up your logs and distracting you
from other alerts that may also require your attention.You can define these
events based on a Snort signature ID (SID).You can also define these events

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 70

70 Chapter 2 • Introducing Snort 2.1

based on no SID, and limit how many alerts you’ll get from a given source to a
given destination, and many other combinations.

You can also use event suppression to keep a given event from firing on a
rule, without having to remove that rule from the rulebase. Event suppression
happens before event thresholding, so suppressed events will not be counted in
threshold values. Event suppression is usually used to ignore known events from
known subnets.

The Alerting and Logging Components
Finally, after the rules have been matched against the data, we have the alerting
and logging components.The logging mechanism in Snort will archive the
packets that triggered Snort rules, while the alerting mechanism is used to notify
the analyst that a rule has fired. Like the preprocessors, these functions are called
from your snort.conf file, where you can specify which alerting and logging
components you want to enable.You have determined which data is worth
alerting on, but you have a wide variety of choices as to how to send these alerts,
and where and how to log your packet data.You can send alerts through SMB
pop-up windows to a Windows workstation, record/log them to a logfile, across
a network connection through UNIX sockets, or via SNMP traps.The alerts can
also be stored in an SQL database such as MySQL or PostgreSQL. Some third-
party systems will page a system administrator with IDS alerts, or even send them
to a cell phone via SMS text messages.

Useful Add-Ons to Snort
There are many additional programs available to help you get the most
out of your Snort alerts, and to help you parse the data in a way that’s
right for you and your network. Here are a few of our favorites:

■ The Analysis Console for Intrusion Detection (ACID), found

front end to Snort log analysis.

Tools & Traps…

online at www.andrew.cmu.edu/~rdanyliw/snort/
snortacid.html, is a PHP-based log parser, search engine, and

Continued

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 71

71 Introducing Snort 2.1 • Chapter 2

■ SGUIL (Snort GUI for Lamerz) is another analysis interface (pay
no attention to the name; it is an excellent interface) that is

the Data.”
■

to help you keep your Snort rules up to date and comment
out the unwanted rules after each update.

■

sensors. It presents you with a graphical user interface (GUI)

■

giving you a birds’ eye view of what’s been happening

■ IDSCenter is a Snort management front end that runs on

include policy management, rule updates, and an integrated

■

■ Snortplot.php will give you a graphic rendering of the attacks

■ Swatch, http://swatch.sourceforge.net, is a real-time syslog
monitor and e-mail alert program.

■ Razorback,

GNOME/X11-based real-time log analysis program for Linux.
■

Snort log file, and is downloadable from

available. We discuss it in depth in Chapter 8, “Dealing with

Oinkmaster, http://oinkmaster.sf.net/oinkmaster/, is a Perl script

IDS Policy Manager is a console program for Windows 2000
and Windows XP, aimed at the administrator of many Snort

for Snort rule and policy management. You can find it online
at www.activeworx.com.

Snortalog, available at http://jeremy.chartier.free.fr/snortalog/,
is a Perl program that will summarize your Snort logs for you,

recently.

Windows NT, Windows XP, and Windows 2000. Its features

log viewer. Check out their Web page at
www.engagesecurity.com/products/idscenter.

SnortSnarf is a Perl program that takes Snort logs and pro
duces an HTML summary report of recent happenings. You can
find it at www.silicondefense.com/software/snortsnarf.

on your network. You can download the program from their
Web site at
www.snort.org/dl/contrib/data_analysis/snortplot.pl.

www.intersectalliance.com/projects/RazorBack/index.html, is a

Incident.pl is a Perl script that creates incident reports from a

www.cse.fau.edu/~valankar/incident.

Continued

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 72

72 Chapter 2 • Introducing Snort 2.1

■ PigSentry is a personal favorite of one of our authors due to its
interesting approach in analyzing Snort logs. It uses statistical
analysis to notice when there is a sudden spike in the different
types of alerts you are seeing. It is definitely worth a look:
www.proetus.com/products/pigsentry/.

Output Plug-Ins
All of these alerting and logging components, like the preprocessors, are plug-ins,
programmed according to Snort’s API.You can select the output plug-ins appro
priate for your environment. If you have administrators staffing a Security
Operations Center 24/7/365, and they are using Windows workstations on a
network with a secured line to your Snort sensors, it might make sense to send
SMB pop-ups for critical security breaches. For example, one of our Snort sen
sors logs via the syslog facility of the local machine, using the alert_syslog output
plug-in. Output plug-ins are covered in exhaustive detail in Chapter 7,
“Understanding the Output Options,” but for a quick overview, here’s the sec
tion from our snort.conf file:

alert_syslog: log alerts to syslog

—————————————————

Use one or more syslog facilities as arguments. Win32 can also optionally

specify a particular hostname/port. Under Win32, the default hostname is

'127.0.0.1', and the default port is 514.

#

[Unix flavours should use this format...]

output alert_syslog: LOG_AUTH LOG_ALERT

This configuration tells Snort to use the alert_syslog output plug-in, logging
authentication information and alerts to the syslog facility on the local machine.
If you would rather log to the syslog facility of a remote machine, you could
configure its IP address and the port your syslog daemon was running on here
instead.

Unified Output
The unified output format is designed for optimized performance, and is com
patible with Barnyard, the Snort fast output system. It writes two files: the alert
file, with the essential data about each alert (port, event ID, protocol, and so

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 73

73 Introducing Snort 2.1 • Chapter 2

forth), and the log file, which contains the full dump of the packets plus the
event ID so that you can correlate the alert to the packet dump in the log file.
The unified output format is recommended for very busy sensors, allowing the
Snort core to focus on matching rules and data while a separate module handles
more complicated and slower logging. Barnyard runs as a “niced process” on a
UNIX machine, meaning that it will only use system resources as they become
available.This allows Snort to hog system memory and CPU cycles, lessening the
risk of dropping packets. Here’s an out-take from snort.conf showing how uni
fied output should be configured:

unified: Snort unified binary format alerting and logging

——————————————————————————————

The unified output plugin provides two new formats for logging

and generating alerts from Snort, the "unified" format. The

unified format is a straight binary format for logging data

out of Snort that is designed to be fast and efficient. Used

with barnyard (the new alert/log processor), most of the overhead

for logging and alerting to various slow storage mechanisms

such as databases or the network can now be avoided.

#

Check out the spo_unified.h file for the data formats.

#

Two arguments are supported.

filename - base filename to write to (current time_t is appended)

limit - maximum size of spool file in MB (default: 128)

#

output alert_unified: snort.alert

output log_unified: snort.log

We cover unified alert output in much more detail in Chapter 11, “Mucking
Around with Barnyard.”

Using Snort on Your Network
Now that you understand the basics of Snort’s design and features, it’s time to
determine how Snort can be useful to your network. By far, the most popular
use of Snort is to deploy it as a NIDS.You can have one Snort sensor if your
network is small or you only have one crucial network segment of assets you

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 74

74 Chapter 2 • Introducing Snort 2.1

want to monitor.You can have multiple Snort sensors deployed in key locations
around your enterprise, providing redundancy and multiple possible viewpoints
on a stream of attack traffic. Deciding where you want Snort sensors on your
network and what rulesets you want them to have is a fine art. Generally, you’ll
want the Snort sensors in your more protected network segments (inside your
firewall, monitoring your most valuable assets, and so forth) to have larger rule-
sets.The traffic that they’ll be seeing should be more filtered and less publicly
accessible than a Snort sensor outside your firewall sniffing all Internet traffic to
your site would see.Therefore, you can enable rules and alerts inside your firewall
that would simply generate too much data if you enabled the same behaviors on
an outside sensor.

You can also use Snort as a packet sniffer and logger to debug ongoing net
work problems. We find that few things are more helpful in determining what’s
really going on than to look at the actual traffic flowing across the wire. Snort’s
capabilities as a packet sniffer are immensely helpful to the protocol-savvy system
administrator.

When you want to capture network traffic for later use and analysis, Snort’s
packet logging capabilities really come in handy. Users debugging connectivity
failures, protocol designers and network programmers testing their applications,
and system administrators keeping an eye on the state of their network can all
use Snort’s packet logging features. When we have our pen-testing hat on, we
often begin an internal assessment of a client’s network vulnerabilities by simply
sniffing their network traffic and looking for possible avenues of attack. Let’s take
a more in-depth look at how one uses Snort.

Using Snort as a Packet Sniffer and Logger
Like many other security tools, you can use the power of a packet sniffer either
for good or for evil. System administrators can use them to check connectivity,
watch data flows and make sure they are proceeding as they should, verify that
the negotiation of secured protocols like SSL are within the designed security
parameters, and debug problematic applications. Vulnerability assessors can use
them to check your network for known vulnerable applications and servers.
Attackers can use them to footprint your network, determining the IP addresses
of your DNS, Web, and mail servers, watch traffic for passwords and other
authentication information, and build a network map that they can then use to
try to chart their path of compromise. Like any other tool, the right or wrong
intent of the wielder will guide its use.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 75

75 Introducing Snort 2.1 • Chapter 2

Snort can be invoked from the command line as a packet sniffer, to see live
network traffic as it flies by. In addition, you can log this traffic in three ways:

■	 You can log Snort’s sniffed traffic to a SQL database, such as MySQL or
PostgreSQL.

■	 You can log it in ASCII text output to a tree of directories and files,
with each file named after the “foreign” IP address.

■	 You can log your packets in tcpdump binary format. By default, the file
name will be based on the starting timestamp plus “snort.log,” but you
may change the default log name by using different switches on the
command line.This option is significantly faster than logging in text
format, and in addition to the performance increase, allows interoper
ability with other security programs that read packets in binary format,
such as Ethereal or tcpdump.

The Dangers of Logging in ASCII
When using ASCII mode, it’s easy to be overwhelmed. If your network is
busy or you have any filesystem constraints, logging in ASCII can be prob-
lematic. One full portscan of your system (to all 65,535 ports) by just one
IP address can leave you with a directory full of hundreds of thousands of

an amazing rate here, and all from one attacker’s portscan.

Tools & Traps…

items. Now, imagine this if the attacker spoofs or obfuscates his source,
with hundreds of directories. You’re chewing up inodes and disk space at

The following is an example of Snort being invoked from the command line
as just a packet sniffer on a FreeBSD system. No logging is being done, just dis
playing the logged packets to your console.The chosen switches for this type of
invocation of Snort are –d, to show the application data in the packet when log
ging to console; –e, to show the link layer headers in the packet, and –v for ver
bose mode, logging to the console rather than to a file.The –v option is required
to use Snort as a packet sniffer.

root@djinni ~$ snort -dev

Running in packet dump mode

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 76

76 Chapter 2 • Introducing Snort 2.1

Log directory = /var/log/snort

Initializing Network Interface dc0

—== Initializing Snort ==—

Initializing Output Plugins!

Decoding Ethernet on interface dc0

—== Initialization Complete ==—

-*> Snort! <*

Version 2.1.0 (Build 9)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

03/11-12:44:45.424271 0:A0:CC:29:1D:13 -> 0:20:6F:3:7:CC type:0x800 len:0x8A

66.80.146.8:2200 -> 69.138.225.137:1289 TCP TTL:64 TOS:0x10 ID:5527 IpLen:20

DgmLen:124 DF

AP Seq: 0xF3315EEE Ack: 0x5FAFDF2 Win: 0xE4B4 TcpLen: 20

E9 A2 19 CE 3A 0A C7 AA 75 EA 13 1D 02 6D 3C 12:...u....m<.

AA 96 1D F8 8E 73 C5 D1 B2 33 41 D4 88 DC A2 53s...3A....S

CB 93 79 5E 1B FC 3A 5B 82 1E 92 3F 60 EA 22 31 ..y^..:[...?`."1

19 1B 8C 25 1A 88 00 0C 14 55 E8 F0 DD E0 08 4D ...%.....U.....M

DA 61 D5 47 71 55 30 47 8E BA 7B 75 5C E4 AA 98 .a.GqU0G..{u\...

EB 1C C5 6B ...k

=+

03/11-12:44:45.424551 0:A0:CC:29:1D:13 -> 0:20:6F:3:7:CC type:0x800 len:0x7A

66.80.146.8:2200 -> 69.138.225.137:1289 TCP TTL:64 TOS:0x10 ID:5528 IpLen:20

DgmLen:108 DF

AP Seq: 0xF3315F42 Ack: 0x5FAFDF2 Win: 0xE4B4 TcpLen: 20

6B 7F 8A 73 1A AA 5F 93 11 30 E9 EF 54 EF 97 3E k..s.._..0..T..>

F0 95 88 D8 00 E1 84 54 33 D8 43 57 B2 B5 4B B0T3.CW..K.

E8 BE CC 20 43 CF 24 CC 0B E4 A9 70 03 3A C3 5F ... C.$....p.:._

3E D7 80 A0 16 28 2A 41 D3 40 26 7C 13 8D 95 87 >....(*A.@&|....

4C 86 99 99 L...

=+

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 77

77 Introducing Snort 2.1 • Chapter 2

Here you can see the beginnings of the steady stream of packets that Snort
generates. After you press Ctrl-C to stop Snort sniffing packets, it will print out a
summary of all the traffic that it’s detected, like so:

===

Snort analyzed 485 out of 485 packets, dropping 0(0.000%) packets

Breakdown by protocol: Action Stats:

TCP: 41 (8.454%) ALERTS: 0

UDP: 0 (0.000%) LOGGED: 0

ICMP: 0 (0.000%) PASSED: 0

ARP: 0 (0.000%)

EAPOL: 0 (0.000%)

IPv6: 0 (0.000%)

IPX: 0 (0.000%)

OTHER: 0 (0.000%)

DISCARD: 0 (0.000%)

===

Wireless Stats:

Breakdown by type:

Management Packets: 0 (0.000%)

Control Packets: 0 (0.000%)

Data Packets: 0 (0.000%)

===

Fragmentation Stats:

Fragmented IP Packets : 0 (0.000%)

Fragment Trackers : 0

Rebuilt IP Packets : 0

Frag elements used : 0

Discarded(incomplete) : 0

Discarded(timeout) : 0

Frag2 memory faults : 0

===

TCP Stream Reassembly Stats:

TCP Packets Used: 0 (0.000%)

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 78

78 Chapter 2 • Introducing Snort 2.1

Stream Trackers : 0

Stream flushes : 0

Segments used : 0

Stream4 Memory Faults : 0

===

Snort exiting

As you can see, this contains plenty of useful data for the analyst. Snort’s
format for the headers of the packets that it analyzes is much like that of tcp
dump or other similar network sniffers.The fields are as follows:

{date}-{time} {source-hw-address} -> {dest-hw-address} {type} {length}

{source-ip-address:port} -> {destination-ip-address:port} {protocol} {TTL}

{TOS} {ID} {IP-length} {datagram-length} {payload-length}

{hex-dump} {ASCII-dump}

Here’s an example just like that:

03/11-12:44:45.424551 0:A0:CC:29:1D:13 -> 0:20:6F:3:7:CC type:0x800 len:0x7A

66.80.146.8:2200 -> 69.138.225.137:1289 TCP TTL:64 TOS:0x10 ID:5528 IpLen:20

DgmLen:108 DF

AP Seq: 0xF3315F42 Ack: 0x5FAFDF2 Win: 0xE4B4 TcpLen: 20

E9 A2 19 CE 3A 0A C7 AA 75 EA 13 1D 02 6D 3C 12:...u....m<.

AA 96 1D F8 8E 73 C5 D1 B2 33 41 D4 88 DC A2 53s...3A....S

CB 93 79 5E 1B FC 3A 5B 82 1E 92 3F 60 EA 22 31 ..y^..:[...?`."1

19 1B 8C 25 1A 88 00 0C 14 55 E8 F0 DD E0 08 4D ...%.....U.....M

DA 61 D5 47 71 55 30 47 8E BA 7B 75 5C E4 AA 98 .a.GqU0G..{u\...

EB 1C C5 6B ...k

OINK!

One critical distinction between the output of Snort and tcpdump is that
when tcpdump shows the hex output of a packet, it shows it from the
beginning of the IP packet (or the beginning of the Ethernet datagram if
you choose). Snort only shows you the hex dump of the actual packet
payload; from the end of the Layer 4 protocol header to the end of the
packet.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 79

79 Introducing Snort 2.1 • Chapter 2

If you run Snort as a packet sniffer without the –d and –e flags, however, the
data that you get is far less robust. Here’s an example from the same server, of a
similar packet captured with Snort –v only:

root@djinni ~$ snort -v

Running in packet dump mode

Log directory = /var/log/snort

Initializing Network Interface dc0

—== Initializing Snort ==—

Initializing Output Plugins!

Decoding Ethernet on interface dc0

—== Initialization Complete ==—

-*> Snort! <*

Version 2.1.0 (Build 9)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

03/13-19:48:46.057711 66.80.146.8:2200 -> 208.54.141.106:1116

TCP TTL:64 TOS:0x10 ID:59410 IpLen:20 DgmLen:716 DF

AP Seq: 0x79D6D6E3 Ack: 0x280D58B4 Win: 0xE420 TcpLen: 20

Trying to invoke Snort from the command line as a packet sniffer without
the –v option will fail. If you don’t specify the –v option, Snort will assume that
you are trying to invoke it to read previously collected logs instead, and will look
in its default locations ~/.snortrc and /root/.snortrc for a rules file. If it doesn’t
find one, it will exit with an error (“Uh, you need to tell me to do some
thing…” in Snort 2.1), as shown here:

root@djinni ~$ snort -de

-*> Snort! <*

Version 2.1.0 (Build 9)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

USAGE: snort [-options] <filter options>

Options:

-A Set alert mode: fast, full, console, or none (alert file

alerts only)

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 80

80 Chapter 2 • Introducing Snort 2.1

-b

-c <rules>

-C

-d

-D

-e

-f

-F <bpf>

-g <gname>

initialization

-h <hn>

-i <if>

-I

-k <mode>

-l <ld>

-L <file>

-m <umask>

-n <cnt>

-N

-o

-O

-p

-P <snap>

-q

-r <tf>

-R <id>

-s

-S <n=v>

-t <dir>

-T

-u <uname>

initialization

-U

-v

-V

-w

www.syngress.com

"unsock" enables UNIX socket logging (experimental).

Log packets in tcpdump format (much faster!)

Use Rules File <rules>

Print out payloads with character data only (no hex)

Dump the Application Layer

Run Snort in background (daemon) mode

Display the second layer header info

Turn off fflush() calls after binary log writes

Read BPF filters from file <bpf>

Run snort gid as <gname> group (or gid) after

Home network = <hn>

Listen on interface <if>

Add Interface name to alert output

Checksum mode (all,noip,notcp,noudp,noicmp,none)

Log to directory <ld>

Log to this tcpdump file

Set umask = <umask>

Exit after receiving <cnt> packets

Turn off logging (alerts still work)

Change the rule testing order to Pass|Alert|Log

Obfuscate the logged IP addresses

Disable promiscuous mode sniffing

Set explicit snaplen of packet (default: 1514)

Quiet. Don't show banner and status report

Read and process tcpdump file <tf>

Include 'id' in snort_intf<id>.pid file name

Log alert messages to syslog

Set rules file variable n equal to value v

Chroots process to <dir> after initialization

Test and report on the current Snort configuration

Run snort uid as <uname> user (or uid) after

Use UTC for timestamps

Be verbose

Show version number

Dump 802.11 management and control frames

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 81

81 Introducing Snort 2.1 • Chapter 2

-X Dump the raw packet data starting at the link layer

-y Include year in timestamp in the alert and log files

-z Set assurance mode, match on established sesions (for

TCP)

-? Show this information

<Filter Options> are standard BPF options, as seen in TCPDump

Uh, you need to tell me to do something...

: No such file or directory

If it does find a configuration file in one of the appropriate directories, it will
start functioning based on the configuration in that file.

root@djinni ~$ snort -de

Running in IDS mode with inferred config file: /usr/local/etc/snort.conf

Log directory = /var/log/snort

Initializing Network Interface dc0

--== Initializing Snort ==-

Initializing Output Plugins!

Decoding Ethernet on interface dc0

Initializing Preprocessors!

Initializing Plug-ins!

Parsing Rules file /usr/local/etc/snort.conf

+++

Initializing rule chains...

No arguments to frag2 directive, setting defaults to:

Fragment timeout: 60 seconds

Fragment memory cap: 4194304 bytes

Fragment min_ttl: 0

Fragment ttl_limit: 5

Fragment Problems: 0

Self preservation threshold: 500

Self preservation period: 90

Suspend threshold: 1000

Suspend period: 30

Stream4 config:

Stateful inspection: ACTIVE

Session statistics: INACTIVE

Session timeout: 30 seconds

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 82

82 Chapter 2 • Introducing Snort 2.1

Session memory cap: 8388608 bytes

State alerts: INACTIVE

Evasion alerts: INACTIVE

Scan alerts: INACTIVE

Log Flushed Streams: INACTIVE

MinTTL: 1

TTL Limit: 5

Async Link: 0

State Protection: 0

Self preservation threshold: 50

Self preservation period: 90

Suspend threshold: 200

Suspend period: 30

Stream4_reassemble config:

Server reassembly: INACTIVE

Client reassembly: ACTIVE

Reassembler alerts: ACTIVE

Zero out flushed packets: INACTIVE

flush_data_diff_size: 500

Ports: 21 23 25 53 80 110 111 143 513 1433

Emergency Ports: 21 23 25 53 80 110 111 143 513 1433

HttpInspect Config:

GLOBAL CONFIG

Max Pipeline Requests: 0

Inspection Type: STATELESS

Detect Proxy Usage: NO

IIS Unicode Map Filename: /usr/local/etc/unicode.map

IIS Unicode Map Codepage: 1252

DEFAULT SERVER CONFIG:

Ports: 80 8080

Flow Depth: 300

Max Chunk Length: 500000

Inspect Pipeline Requests: YES

URI Discovery Strict Mode: NO

Allow Proxy Usage: NO

Disable Alerting: NO

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 83

83 Introducing Snort 2.1 • Chapter 2

Oversize Dir Length: 0

Only inspect URI: NO

Ascii: YES alert: NO

Double Decoding: YES alert: YES

%U Encoding: YES alert: YES

Bare Byte: YES alert: YES

Base36: OFF

UTF 8: OFF

IIS Unicode: YES alert: YES

Multiple Slash: YES alert: NO

IIS Backslash: YES alert: NO

Directory: YES alert: NO

Apache WhiteSpace: YES alert: YES

IIS Delimiter: YES alert: YES

IIS Unicode Map: GLOBAL IIS UNICODE MAP CONFIG

Non-RFC Compliant Characters: 0x00

rpc_decode arguments:

Ports to decode RPC on: 111 32771

alert_fragments: INACTIVE

alert_large_fragments: ACTIVE

alert_incomplete: ACTIVE

alert_multiple_requests: ACTIVE

telnet_decode arguments:

Ports to decode telnet on: 21 23 25 119

1578 Snort rules read...

1578 Option Chains linked into 148 Chain Headers

0 Dynamic rules

+++

+-----------------------[thresholding-config]------------------------------

| memory-cap : 1048576 bytes

+-----------------------[thresholding-global]------------------------------

| none

+-----------------------[thresholding-local]-------------------------------

| gen-id=1 sig-id=2275 type=Threshold tracking=dst count=5

seconds=60

| gen-id=1 sig-id=2274 type=Threshold tracking=dst count=5

seconds=60

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 84

84 Chapter 2 • Introducing Snort 2.1

| gen-id=1 sig-id=2273 type=Threshold tracking=dst count=5

seconds=60

+-----------------------[suppression]-------------------------------------

Rule application order: ->activation->dynamic->alert->pass->log

--== Initialization Complete ==-

-*> Snort! <*

Version 2.1.0 (Build 9)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

You can also log your packets to a directory tree in ASCII format using the
–l option. Since Snort chooses the filenames for the directories based on the
“foreign” IP address, you will have to tell it what your “home” network is using
the –h switch. For example, if we wanted to save our logfiles to the directory
/home/snortlogs/kobayashi, and our home network was 10.1.1.0/24, we’d use
the command:

root@djinni ~$ snort -dev –l /home/snortlogs/kobayahsi –h 10.1.1.0/24

What if you would rather log your packets in binary format? Not hard.
Instead of using –dev as command line options to Snort, use –b for binary
format. If you want to change the name of the default logfile from
/var/log/snort/snort.log.[timestamp], use the –L option as well, like so:

root@djinni ~$ snort -b –L /home/snortlogs/FunnyTrafficCapture-03112004

Logging in binary format is much faster than logging in ASCII format, since
it saves the processor of your Snort system from having to convert packets from
binary to ASCII before displaying or storing them. However, when you want to
look at your collected packets, you can’t just open up a file in your favorite text
editor the way you can with ASCII output. Instead, you’ll have to use special
commands to display them.You can parse the data back out using Snort’s fil
tering options, or you can look at it using another packet sniffer such as Ethereal
or tcpdump. We personally like the graphical display of Ethereal, if you’re
working on a system with a GUI.

To use Snort’s filtering options to look at a binary file of sniffed capture data,
invoke Snort from the command line with the –r switch in addition. If you want
to filter the packets based on packet type, you can specify “tcp,” “udp,” or “icmp”
at the end of that line.

root@djinni ~$ snort -devr SheHackedMe tcp

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 85

85 Introducing Snort 2.1 • Chapter 2

That will only display the packets in that file that match your selected pro
tocol. If you want finer and more granular control of your filtering options,
Snort is also compatible with the Berkeley Packet Filter (BPF) format. In the fol
lowing example, we use the filter BerkeleyPacketFilterFile, which contains our
BPF, to filter the saved binary file SheHackedMe. If desired, you can also just put
the BPF options on the command line directly rather than saving them to a file
and calling the file.

root@djinni ~$ snort –devr SheHackedMe –F BerkeleyPacketFilterFile

Filtering packets with the BPF format is a very efficient way to filter, since
BPF filtering happens at the kernel level, which means that it happens before Snort
even sees the packet. Most commonly, BPF filters are used to weed out the types
of data that you don’t want to see, clearing away known data flows to see the
exceptional ones. It’s easier to get a complete picture of what’s happening on one’s
network by starting to look at everything and then weeding out things that you
don’t want to see; you’re less likely to miss traffic flows that you didn’t expect.

If you want to read packets from the file “SheHackedMe” and ignore all
traffic to one IP address, 10.1.1.17, you could construct the following rule:

root@djinni ~$ snort –devr SheHackedMe not host 10.1.1.17

If you want to ignore all traffic from the 10.1.1.0 network to destination port
80:

root@djinni ~$ snort -devr SheHackedMe src net 10.1.1 and dst port 80

If you want to ignore all traffic coming from host 10.1.1.20 on port 22:

root@djinni ~$ snort -devr SheHackedMe not host 10.1.1.20 and src port 22

Using Snort as a NIDS
Snort is most commonly used as a NIDS. It’s lightweight, fast, effective, and has a
large rulebase constantly under development by the community of Snort signa
ture writers. It is very common to see Snort signatures for new attacks published
on mailing lists scant hours after the attack is first detected.To invoke Snort as a
NIDS, all you have to do is add the location of your Snort configuration file to
your preferred packet logging rule mentioned previously, like so:

root@djinni ~$ snort –dev –c /usr/local/etc/snort.conf

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 86

86 Chapter 2 • Introducing Snort 2.1

The snort.conf configuration file (or whatever name you choose to give it)
will specify what rules are to be invoked, and can define many other options as
well. We’ll get into an extensive explanation of Snort rules in Chapter 5.

Snort and Your Network Architecture
When using Snort as a NIDS, choosing where to place it in your network is
critical.You’ll want to make sure that you put your sensors in a location where
they will be able to see all network traffic. Putting your sensor at the end of a
long daisy chain of switches and hubs and then expecting it to see all traffic for
the network is simply unrealistic.

Some sensor deployment strategy questions you should ask include:

■	 What critical assets am I trying to protect?

■	 How is my network designed? Do I have a hub-and-spoke topology
(one central site to which everything connects), a ring topology (each
site connected to two others, forming a large circle), a mesh topology
(many sites interconnected to each other), or something else?

■	 Where could I place my sensors so that they would see all the traffic on
their network segment?

■	 Do I want to see traffic outside my firewall before it’s filtered, inside my
firewall after filtering has happened, or both?

■	 Do I use hubs, switches, or both on my network?

■	 Do I have asymmetric routing anywhere? (This may prevent you from
seeing both sides of a network connection.)

Awareness of your network topology is essential when planning sensor
deployment. For your sensors to do you the most good, they have to be able to
see all the traffic on their network segment.Traffic that you don’t see could con
tain attacks that you’ll never see.To accomplish this, identify possible sources of
problems and address them before you start deploying your sensors.

In general, it’s a good idea to place your sensors’ sensing interfaces off con
catenation points. If you want to see traffic outside your firewall, connect the
outside interface of your firewall to a hub, and connect your Snort sensor’s
sensing interface to that same hub. If you want to see traffic on the inside of your
firewall, place the sensing interface of your sensor on a hub shared with the
inside interface of the firewall. It’s often a good decision to place a Snort sensor

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 87

87 Introducing Snort 2.1 • Chapter 2

on the root switch of a tree topology, as close to a concatenation point of traffic
(like a firewall or gateway server) as you can get.

If you are using asymmetric routing in your network, make sure that you
have Snort sensors listening on both the path of incoming traffic and the path of
outgoing traffic.This will help ensure that you see all the traffic in both direc
tions, giving you maximal sensor coverage. Since Snort tracks data flows and
keeps track of state, you do want one sensor to see both the incoming and out
going flows of data. Otherwise, you will lose all that flow data and the possible
attack detection and correlation that goes with it.

Snort and Switched Networks
There are special considerations that need to be addressed when using Snort in
switched networks. Since the essential function of switches is to send packets to the
port on which the destination machine resides, once they’ve discovered where that
port is, there is a real danger that placing your Snort sensor on a switched network
might mean that you won’t be seeing all the traffic on that network.

Some small switches and most enterprise switches can be configured to put a
given port in promiscuous mode, sending all packets on the network to that port
as well as to their ultimate destination. It is essential to enable this feature on the
port to which your Snort sensor’s sensing interface is connected. If the switch
port and the Snort sensing interface port are not both set in promiscuous mode,
you will miss packets. Moreover, if the switch is too busy, you will miss packets.
That’s one of the big problems with SPAN ports. In addition, in a switched net
work it is even more important to ensure that your Snort sensor is connected to
the root switch of the network segment.

If you are running a switch with virtual local area networks (VLANs), you
will also want to ensure that the port to which your Snort sensor is connected
can see the traffic on all VLANs. On some switches, setting the Snort sensor’s
port to span all traffic on the switch is enough; on others, you might have to set
that port as a member of every VLAN on the switch.You can also create a
VLAN for that port that includes all other VLANs. Consult your vendor docu
mentation to determine the requirements of your particular switch.

Pitfalls When Running Snort
As with any other system, there are a few common errors to be wary of when
administering a Snort system. Here’s a quick guide to the most common pitfalls,
and tips on avoiding them when administering your Snort system.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 88

88 Chapter 2 • Introducing Snort 2.1

False Alerts
If you looked at the alert output from a default installation of Snort, your initial
reaction might be “The sky is falling! The sky is falling!” When alert piles on
alert, you may well wonder how your network ever survived in the first place
with all this problem traffic flying about.

OINK!
The usefulness of a NIDS is directly related to how well you tune it. By
default, Snort will alert on almost everything that might possibly be a
problem. Since Snort doesn’t magically know your network design,
topology, and policy, this is the safest bet for a default—it doesn’t turn
off any alert that you might want to see. However, to get the most out
of your NIDS, tuning out the false positives is essential.

Some unfortunate administrators start by configuring Snort to alert to all the
defaults, and then set up paging themselves whenever Snort alerts.That usually
doesn’t last long! Because Snort’s signatures are usually written to detect the most
general case of a vulnerability, they may overlap with other legitimate traffic and
cause false positives. Snort ID (FOO!) is a rule written to detect the use of
nc.exe, a TCP/IP tool that can be used to shovel shells back from a compromised
host or do all sorts of other protocol tricks. Here’s the rule:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC

nc.exe attempt"; flow:to_server,established; content:"nc.exe"; nocase;

classtype:web-application-activity; sid:1062; rev:5;)

As we can see, this will detect any instance of the string “nc.exe” crossing the
network, including invocations of winvnc.exe, the Windows Virtual Network
Computing client.This can generate false alerts, and a pass rule for winvnc.exe
should be written.

Upgrading Snort
Whether you’re upgrading the core Snort engine or just installing some new
rules, you want to make sure that your Snort sensor functions just as well as or
better than before. Before performing an upgrade on any system, including
Snort, it’s a good idea to back up your existing log files, configuration files, and

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 89

89 Introducing Snort 2.1 • Chapter 2

any rules you have written or customized. Some upgrades can overwrite existing
files, and if you’ve spent months perfecting and fine-tuning your ruleset, it can be
an incredible headache to realize that you’ve accidentally blown away all your
hard work.

When performing an upgrade on Snort, look at the release notes that come
with the package to see what has changed. Keep a sharp eye out in particular for
changes in either the ruleset syntax or in the logging format syntax—these will
be important for you to adjust, and if you have other programs or plug-ins that
depend on these, they may also need upgrading or adjusting. In addition, you
might want to take advantage of some of the new features, move away from use
of older, replaced, or depreciated features, or tweak your configuration to adjust
to the different version. If you have added new rules to your ruleset, you might
want to take a look at them and decide whether you want to enable or disable
them, and for what machines.

If you’re performing an upgrade on the underlying operating system, it’s gen
erally a good idea to test the functionality of Snort after you’re done, just to
make sure that nothing broke. Realizing “hey, my sensor broke” three weeks after
the fact isn’t going to win you any points when your boss asks for IDS logs
during that time period to ID a security breach.

Considering System
Security While Using Snort
As with any other system that you intend to attach to your network, it is crucial to
consider the security of your Snort system. Can it be hacked? Will it need to be
patched? What known attacks are available and are being used in the wild against
Snort systems? What type of threat could it pose to your network if an attacker
managed to compromise the system? These are important questions for any system,
but are doubly important when you’re considering one of your security devices.

When designing the security policy for your network, it is always wise to
take a defense in depth approach. Of course, you want to protect all of your sys
tems to the best of your ability. However, it’s also wise to plan so that no one
system is a single point of failure. All your systems are susceptible to attack. A
robust plan of defense will consider the security of each individual system,
including your Snort systems, and make sure that no one machine would be a
single point of failure.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 90

90 Chapter 2 • Introducing Snort 2.1

Snort Is Susceptible to Attacks
There are two basic approaches that attackers will take when targeting a Snort
system.They will either try to target Snort itself, or they will attack other ser
vices or operating system features on the underlying system.

Detecting a Snort System on the Network
Most people configure their Snort sensor with (at least) two NICs, one for
silently listening to the network, and one for managing the sensor and sending
alerts. Often, the two NICs are connected to entirely different networks. It is a
common assumption that the listening NIC is a “stealth interface,” and cannot be
detected by attackers on the local network.This is not always the case.

Stealth interfaces are usually configured without an IP address. However, this
does not mean that they don’t respond to network traffic. Specially crafted ARP
packets can often be used to detect promiscuous interfaces, as the system
responds erroneously to an ARP request.There are programs available to detect
promiscuous interfaces using similar tactics, such as Antisniff (formerly located at
www.l0pht.com/antisniff/, no longer available there, archived at www.packet-
stormsecurity.org/sniffers/antisniff/) or Neped (formerly located at www.apos-
tols.org/projectz/neped/ and now archived at
http://packetstorm.linuxsecurity.com/UNIX/IDS/neped.c). Stealth interfaces
can also sometimes be discoverable through stupidly verbose DNS listings (yes, it
does happen), or in how they respond to incorrectly addressed packets (this is
one of the common problems with using active response or an Intrusion
Prevention System (IPS)—they alert attackers to their existence).

Your Snort system may also be discovered by attackers if they see your alert
traffic go flying by.This is bad for several reasons. One, if they can see your alert
traffic, either they are exceedingly skilled, or you’re sending it across your network
without encrypting it. Either of these possibilities is bad news for you. Any sensitive
security information that you need to transmit should be protected. Use encryp
tion, use a separate physical network, or take some type of countermeasure to
ensure that this will not happen.Two, if they can see your alert traffic, they can
easily map out what type of ruleset your IDS has, and take steps to avoid triggering
it.This will make their activity this much harder to detect. For multiple reasons,
this data is gold to attackers—they can then be told exactly where the vulnerable
systems are on your network, gain a wealth of information about your defenses and
resources, determine what your IDS sees and what it doesn’t, and watch you

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 91

91 Introducing Snort 2.1 • Chapter 2

watching them. We have actually seen this happen on a network we were helping
to secure; it’s not as rare as you might think. Smart attackers are out there.

There are effective countermeasures that one can take to this type of activity.
First, to make sure that your sensing interface cannot respond to probes for promis
cuous interfaces, a hardware solution is ideal. Make an Ethernet cable with the
receive wires intact, but the transmit wires cut, and then use that to sniff your net
work. With no physical way of transmitting an electrical signal down the wire, your
sensing interface will now be unable to give away its presence by transmitting an
unfortunate response. Second, to avoid having your sensor management or alert
traffic sniffed, consider your methods of management. We recommend SSH for
remote management of Snort sensors. It’s a common protocol that won’t give away
what type of a device you’re managing, it’s encrypted so that your traffic will not
be easily viewable to others sniffing the network, and you have your choice of
well-tested cryptographic protocols with which to protect your data.

Attacking Snort
There are two classes of attacks against Snort.The first is designed to make Snort
ineffective as an IDS. Programs like Stick and Snot, discussed in the last chapter,
can be used to attempt to overwhelm Snort with noisy garbage alerts, perhaps
distracting you from a real attack hidden somewhere in all that junk. Denial-of-
service (DoS) attacks against Snort, such as the ICMP header size DoS
(www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0115), are also in
this category.The second category of attacks is designed to use Snort as an
exploitable network service, aiming to execute code or gain privileges on the
Snort host itself.

The remote vulnerabilities that have been found in Snort—namely the buffer
overflow in the RPC preprocessor and the integer overflow in the stream
reassembler—have been found in Snort’s complex preprocessors. Both of these
can lead to remote execution of arbitrary code. No code is perfect, not even
code for a security application, but it’s a good thing that these problems were
found and reported.That way, they can be fixed. Make sure you keep up on your
security mailing lists and patching, so that when a problem is found, you will be
alerted and your systems can be fixed.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 92

92 Chapter 2 • Introducing Snort 2.1

OINK!
Using tools like StackGuard (which adds buffer overflow protection
when used to compile a program) or SubDomain (which provides a type
of “virtual” chroot jail), both from Immunix (www.immunix.com), can
also help prevent your sensor from being compromised and are worth
considering seriously.

Attacking the Underlying System
Attacking the underlying system is often a far easier approach to attacking a Snort
system—even though many attackers who succeed in this fashion don’t know what
they’re getting.There can be weaknesses in the underlying operating system itself,
such as a kernel vulnerability that allows a user with a local account to gain root
privileges, such as the Linux do_brk() vulnerability (www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0961).There can be holes in the way in
which the operating system functions when networking, allowing a remote unau
thenticated attacker to gain the maximum possible privileges. An example of this is
the ASN.1 parsing vulnerability eEye discovered in Microsoft operating systems
(www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0818).

There can also be vulnerabilities in other software installed on the sensor.
Your SSH server or Terminal server that you installed for remote access, your
Apache installation that serves out your ACID console Web pages, your log
parser, all those lovely plug-ins and add-ons are software that has to be main
tained and watched for vulnerabilities, just like anything else.

Securing Your Snort System
When it comes down to it, securing your Snort system can be approached like
securing most other systems; following the best practices of good system admin-
istration.Turn off any unnecessary network services. Harden the underlying
operating system as best you can; there are many excellent guides out there to
locking down your operating system of choice. Make sure you keep up on the
news about patches and security fixes for your OS and for all the software that
you’ve installed on it. Many vendors provide low-traffic announcement mailing
lists targeted at users who want to improve their security and stay abreast of
patches.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 93

93 Introducing Snort 2.1 • Chapter 2

Damage & Defense…

Security Tips for Savvy Sysadmins

■ There are mailing lists available for almost every operating
system out there that cover new vulnerabilities and new

priate mailing list(s) for your operating system of choice. In
addition, there are mailing lists that are cross-platform, aimed
at security and bugfixes. Bugtraq

mend that you subscribe.
■ Lock down your host. Use tools like the Bastille hardening

samhna.de/samhain/). Remove compilers from the system to
make it harder for potential attackers to compile exploits.

■ Proactively harden your operating system with tools like

system to harden your kernel.
■ Monitor your logfiles with tools like swatch

patches. We recommend that you find and join the appro

(www.securityfocus.com/popups/forums/bugtraq/intro.shtml)
and Full Disclosure (http://lists.netsys.com/mailman/listinfo/full-
disclosure) are two of the most popular. Again, we recom

scripts (www.bastille-linux.org/) and a host-based IDS like
Tripwire (www.tripwire.org/) or Samhain (http://la-

StackGuard, FormatGuard, and SubDomain (all available from
www.immunix.org/). If possible, add patches like the grsecurity

(www.oit.ucsb.edu/~eta/swatch/) and logparser (www.log-
parser.com/).

Make sure that any traffic that crosses your network with IDS information
(alerts, a Web management console, ad so forth) is encrypted, so that it’s not vis
ible to the casual sniffer. Run vulnerability assessments against your entire net
work, including your IDS sensors, on a regular basis. In the end, securing your
Snort system comes down to being a good system administrator.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 94

94 Chapter 2 • Introducing Snort 2.1

Summary
This chapter provided a practical introduction to the open-source IDS Snort. We
investigated the different requirements of installing Snort, from hardware require
ments like speedy NICs to operating systems. We covered the architecture and
design of Snort, and the different plug-ins that you can choose to customize how
your data is processed, from the packet decoder through the preprocessors into
the detection engine, and out again through the output plug-ins of your choice.

We investigated the design aspects of placing Snort sensors on your network,
from choosing the location based on what type of data you want to see, to
working with switched networks and making sure that all your network traffic is
viewable to the sensor. We discussed security considerations of configuring a
sensor, such as the pros and cons of a receive-only Ethernet cable.

Finally, we discussed some common pitfalls of administering Snort systems—
the need for security vigilance, patching both Snort and your underlying oper
ating system when necessary, checking README files and changelogs when
upgrading Snort, and good practices of system administration.

Solutions Fast Track

What Is Snort?

� Snort is a packet sniffer.

� Snort is a packet logger.

� Snort is a Network Intrusion Detection System (NIDS).

Understanding Snort’s System Requirements

� Snort can run on almost any modern operating system.

� Snort will need a reasonably fast processor and a fairly large and fast
hard drive.

� Snort will need NICs capable of the best performance found on your
network.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 95

95 Introducing Snort 2.1 • Chapter 2

Exploring Snort’s Features

� Snort’s internals consist of a packet decoder, preprocessors, the detection
engine, and alert and logging plug-ins.

� Many of these components are add-on plug-ins, contributing to Snort’s
modular and customizable design.

� There are also many third-party programs available for management, log
parsing, summarizing, and reporting.

Using Snort in Your Network

� Invoke Snort with the –dev options from the command line to use it as
a packet sniffer.

� To log packets, use –b for a binary format and –L to specify the
filename, or –l to specify logging in ASCII format to a directory tree.
The –h option specifies your home network.

� To make Snort function as a NIDS, use the 0 option to specify your
configuration file.

Considering System Security While Using Snort

� Remember that Snort, like any other system on your network, can be
attacked.

� Disable unnecessary services and make sure that your Snort system is
hardened, according to best practices for your chosen operating system.

� Keep an eye out for new security patches for Snort, your underlying
operating system, or any other add-on programs you have installed.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 96

96 Chapter 2 • Introducing Snort 2.1

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Can I run Snort on any operating system?

A: There are versions of Snort available for most major operating systems.
Check with your vendor and with snort.org. Even if it turns out that you
run a less popular OS that nobody has ported Snort to yet, the source code is
available, so you are free to port Snort to a new platform yourself, or hire
someone to do it for you.

Q: What are the recommended hardware specs for Snort?

A: There are no hard and fast guidelines, since the needs of Snort depend
directly on the size, busyness, and security policy of your network.You should
probably get a reasonably large and fast hard drive, though, as well as two fast
network interface cards (NICs) and a decent processor.Your choke point in
performance is likely to be I/O, so focusing your resources on performance
there will pay off. Since hard drives are often the slowest part of a system, and
you’ll likely be writing a lot of data to disk, you really want to invest there.

Q: Will Snort reassemble fragmented TCP packets before analysis?

A: Yes, if you have the frag2 preprocessor enabled in your snort.conf.

Q: Can Snort detect “stealth mode” portscans?

A: Yes, if you have the stream4 preprocessor enabled in your snort.conf.

Q: Will Snort produce logs that I can read?

A: You can configure Snort to log in many different formats, including ASCII
text, binary, syslog, CSV files, or directly to a database. Choose the logging
format that’s right for you.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 97

97 Introducing Snort 2.1 • Chapter 2

Q: I have a switched network. Can I still use Snort?

A: Yes, if you place your Snort sensor on the root switch on your network and
configure the port connected to its sensing interface to be a promiscuous
(spanning) port.

Q: Is my Snort sensor invulnerable?

A: No, just like any other system on your network, it will need to be patched,
administered, and maintained. Otherwise, you’ll run the risk of compromise.

Q: What can I do to secure my Snort system?

A: Encrypt your alert and management traffic or run it over a separate network,
and keep up on your patching for Snort, the underlying operating system,
and any other add-ons that you have installed.

www.syngress.com

295_Snort2e_02.qxd 5/4/04 4:55 PM Page 98

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 99

Chapter 3

Installing Snort

Solutions in this Chapter:

■ Making the Right Choices

■ A Brief Word on Linux Distributions

■ Preparing for the Installation

■ Installing Snort

� Summary

� Solutions Fast Track

� Frequently Asked Questions

99

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 100

100 Chapter 3 • Installing Snort

Introduction
In this chapter, we will cover all of the steps necessary to successfully install a func
tioning Snort Intrusion Detection System (IDS). We will be discussing how to
install Snort on three different operating systems: Linux, OpenBSD, and Windows.
Due to the overwhelming number of Linux distributions available today, installa
tion instructions can vary from distribution to distribution, and a complete discus
sion of how to install Snort on all, or even most of, the available Linux
distributions would be a book of its own. For this reason, we will cover the infor
mation specific to installation on the SUSE Linux 9.1 (the latest release as of the
writing of this book) platform for the Linux portions of the documentation. We
have chosen SUSE Linux because it is one of the most commonly used Linux dis
tributions in the world, and serves as a good starting point on which to base fur
ther installations. Most of what we cover here should apply to most other popular
distributions without a huge amount of modification; if the instructions do vary, it
will be minimal. We will go into a bit more detail later in this introduction. As a
side note, if you would like to acquire SUSE Linux to use as a test bed for the
exercises in this book, you can download it from their FTP site free of charge at
ftp://ftp.suse.com/pub/suse/i386/, or one of their many mirrors found at
www.suse.com/us/private/download/ftp/int_mirrors.html. Alternately, you can
purchase SUSE from software vendors such as CompUSA or the online SUSE
store at http://store.suse.com/. Support for the product is widespread, so if you
need assistance, you won’t need to look far.The SUSE company site has links to
official documentation, but you can also find support from sites such as Mad
Penguin™ (www.madpenguin.org) or Linux Questions (www.linuxquestions.org).
These types of Web sites specialize in supporting the Linux user community no
matter what flavor of Linux they may be running. SUSE Linux is supported by
both and they are excellent resources.

Let’s take a moment to introduce you to the way we approached this chapter.
We know that not everyone is a Linux, Windows, or BSD guru, and we do not
expect you to understand everything (we don’t even understand everything).
Inasmuch, we tried to approach almost every subject as if we were learning it for
the first time. We’ve made the step-by-step instructions for each install easy to
find and to read, even though some of this information may be redundant for
those of you who are already comfortable with the terminology and procedures
outlined in this chapter. Our only assumption is that you do have a reasonable
understanding of the operating system (OS) and the basic operation of whichever

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 101

Installing Snort • Chapter 3 101

OS you choose to use. Inasmuch, this chapter will serve as an excellent skimming
reference for the more advanced crowd.The only time we get wordy with the
procedures is when there is either a potential pitfall to be aware of, or a side note
that might be helpful. We keep all of our lengthy descriptions and discussions
outside of the documentation.

As with any other common package installation, it is best to start with a solid
OS installation. Please make sure that your OS is up to date with all the neces
sary patches and that you have secured it to minimize the chances of compro
mise. For this installation, you must first verify that your networking setup on the
target machine is up to date and functioning properly.

The packages you will need for installing Snort IDS are available free of
charge on the Internet at their respective Web sites. We have also included the
latest release (as of press time) of each package on the CD-ROM that accompa
nies this book to save you some effort when it comes time to build the pro
grams. If you would like to download the latest version of the software before
beginning, feel free to do so; just make sure to substitute package names when
necessary. For example, if we reference the file snort-2.1.1.tar.gz and you have
snort-2.1.3.tar.gz, use your filename because it’s newer.You can also find a
README file on the accompanying CD-ROM in the snort-2.1.1 folder, which
has the same list for your convenience.

Making the Right Choices
What is the best operating system for running Snort? This question has been
debated loudly and frequently ever since Snort was first released, and it doesn’t
show any signs of having a definitive answer any time soon. However, for our
purposes, the answer is simple. Most of us have definite software biases when it
comes to the computers we use, abuse, and support. In fact, in surveying the
authors of this book, we found at least four different preferences on what OS to
use for a Snort sensor. However, when it comes down to the wire, what would
you recommend for any given circumstance? If client A needs a desktop system
to surf the Internet with AOL, listen to favorite CDs, and write letters to Santa,
would you recommend the same software as you would Client B, who is a CAD
designer? The right answer to that question is a definitive “no,” but if it wasn’t
what you were thinking, bear with us for a moment.

The one thing that we all agree upon is that it is critical to use the right tool
for the job at hand. When it comes to operating systems, there is rarely one right

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 102

102 Chapter 3 • Installing Snort

tool for the job; therefore, the question really comes down to the operating
system with which you are most comfortable. Finding the most suitable OS for
an IDS is no different from choosing the right platform for any other applica
tion. First, you find out what operating systems the application will run on, and
then you decide which of those operating systems you are most comfortable
with. Whatever the answer is, that is the right tool. In this case, since Snort will
run on almost anything with a processor (we have even heard reports of people
implementing Snort on network interface cards (NICs) with embedded proces
sors), it really becomes a question of what OS you are able to secure and manage
most effectively. After all, in most cases you will be responsible for maintaining
the machines you build. If you are comfortable with Windows for instance, use
it. If you prefer Linux, by all means, take advantage of it. Honestly, any of the
operating systems supported by Snort will do the job just fine.

For the purposes of this book, we are going to focus primarily on installing
Snort on Linux; however, we are also going to go into detail on OpenBSD
(OBSD) and Windows 2000.

In the case of this book, we focus on using Linux for this job for several rea-
sons.The first is cost. Linux is “free” (as in beer and as in speech), which can be a
significant advantage if you are trying to control your costs or just experimenting
with Snort.The second is that Linux can be made into an extremely stable plat
form. Speed is another factor. While OpenBSD is a favorite among security pro
fessionals, Linux has some definite advantages, the main one being support for
multiple processors. While there has been multiprocessor support for OpenBSD
for some time now, it is not officially part of the distribution. As far as processing
speed, Linux uses turbopacket, a ring buffer, to process network traffic.This
enables the Linux kernel to accept more packets faster than the traditional BSD
bit bucket method. Linux has a very low overhead compared with some other
operating systems.This is definitely more evident when the OS is stripped of its
GUI (graphical user interface) and other extras that are not needed to run an
IDS system.This is important, but only when you are comfortable enough to do
so. A graphical interface may be a necessary evil for new users, but (both for
security and performance reasons) should by no means be viewed as a standard
part of building an IDS sensor.The Windows operating system, for example,
cannot be stripped down to the nuts and bolts because everything you see when
you load the OS for the first time is what you get.You’re pretty much stuck with
it, but Snort still runs very reliably on that platform.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 103

Installing Snort • Chapter 3 103

As we’ve stated, Linux will be our focus, but go with the OS with which you
are comfortable. Nobody will think any less of you for going with another oper
ating system because you are comfortable supporting it, and it can get the job
done.

OINK!
When choosing an operating system to use for a large-scale deployment,
it is important to consider some additional requirements:

■ Ability to remove unnecessary parts of the operating system.
This is necessary for both security and stability purposes.

■	 Ability to remotely manage the system easily and securely.
■	 Cost of deploying the sensors-hardware as well as software

licensing

For these reasons, you will find that most large Snort installations
use BSD or Linux, even in companies where the only desktop OS is
Windows. In fact, you can find a number of bootable CD-based Linux
distributions that have Snort already installed and can be easily turned
into a hardened sensor. We’ll discuss some of these distributions later in
the chapter.

Linux over OpenBSD?
Why would we opt for more coverage of Linux over OBSD for the purpose of
this book? To sum it up in a single word: support. Even though support for
OBSD on the Internet is sufficient for some, it may not be enough for the “rest
of us.” One of the strongest selling points of Linux in this respect is the massive
amount of support available for it... free and commercial can be found in so
many places online that it boggles the mind.This is becoming more evident
every day, so much in fact that a simple search for something on Google that you
might think would have absolutely nothing to do with Linux can turn up results
that would surprise you with their relevance to the open-source operating
system. As an example, let’s take a look at the following search terms on Google:

■	 “linux” AND “snort” 303,000 Web results, 21,300 newsgroup results

■	 “windows” AND “snort” 181,000 Web results, 13,200 newsgroup
results

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 104

104 Chapter 3 • Installing Snort

■	 “openbsd” AND “snort” 38,700 Web results, 2,190 newsgroup
results

The results speak for themselves. Linux tops OBSD, and even Windows, in
regard to general support of Snort.This is obviously a generalized search, but we
feel confident that more granular searches will produce similar results. It’s almost
like the perpetual motion of Linux. People use it because of its overwhelming
support, and due to that, the support grows exponentially larger. While OBSD is
an excellent choice for an operating system to be used for IDS, support for it is
limited compared to that of Linux (or even Windows). With the ever-changing
trends in the technology world, this can very easily change overnight, so the next
time we look at another Snort version (perhaps 3.0 even), OBSD or another
BSD variant could very well be in the spotlight.

Stripping Linux
No matter what OS you choose, the first things you need to do is strip out all
the unnecessary pieces and harden the system to prevent your IDS from being
compromised. Since we are going to focus on Linux, we will spend a little time
talking about stripping Linux. After all, one of the biggest advantages of running
this cutting-edge OS is that you can build it into anything you like, and better
yet, you can fine-tune it to be some of the fastest running software on the
planet.This is one of the critical reasons why you should choose an OS with
which you are familiar—you must know enough about it to effectively optimize
and harden it.

■	 Compiler options One of the first things we’ll cover is the gcc com
piler and its options, notably CHOST, CFLAGS, and CXXFLAGS.
These are basically environment variables that are used by the software
building process to tell the compiler the type of optimizations with
which the software will be built. Most of you know and love this pro
cess as ./configure && make. Most of the Linux systems today are com
piled for the i486 processor type, but many (such as Mandrake Linux)
are compiled by default for i686. If your system is running an AMD
(American Micro Devices) Athlon, for example, it will perform better if
the software running on it is compiled for that architecture.

■	 Kernel tuning The Linux kernel is the core operating system upon
which everything else in the system relies. Without the Linux kernel,
there would be no Linux. Basically, the kernel stores information about

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 105

Installing Snort • Chapter 3 105

supported devices that can be connected to the system and controls how
they can interact with it. While having more devices supported at the
kernel level ensures that the system will be more automated (or plug and
play) at handling new devices, it also adds to the overhead of the soft
ware. Each device driver compiled into the running kernel, depending
on whether it was compiled directly in or added as a module, adds to its
overall size. A good general rule of thumb is, the bigger the kernel gets,
the slower it will be.

The most efficient and secure kernel is that which only has support for the
devices that are physically connected to it. As we said previously, most distribu
tions have room for improvement in terms of kernel efficiency. Why? The simple
answer is that they ship with almost all devices supported by Linux added to the
system. One of the first steps you should take when building a high-performance
Linux system is to enter your kernel configuration and remove all device driver
support that you are not currently using. If you need to add a device, you can
always compile it in later.

■	 Software and services Last, but definitely not least is the area of soft
ware and system services. Another good Linux rule of thumb is to build
the system with the least amount of applications and libraries to get the
job done. If you need more, you can add them later.This helps to elimi
nate conflicts later down the road as well. Chalk it up to keeping your
systems secure, organized, and clean. For example, there is absolutely no
reason to have OpenOffice or XMMS (tools commonly used on Linux
desktops) loaded on an IDS.

On the subject of system services, it is good to maintain a similar mindset.
Disable every service that has no purpose of running on your system. For
example, most modern Linux distributions come with gpm (the service that pro
vides the capability to use a mouse on a command line) loaded and running by
default. While this may be right for some, it isn’t right for us. Disable it. Unless
you need it, there is no reason to have mouse support at the console.The same
rule might hold true for Apache (httpd) and other services. As we said, it all
depends on your setup and particular needs.

■	 Additional items There are several other areas to look at when con
centrating on overall system performance; for example, the hard drive(s)
and major file systems.There are a few ways to glean more performance

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 106

106 Chapter 3 • Installing Snort

out of them by using built-in tools such as hdparm.The file systems also
have native performance-enhancing capabilities that can be called out in
/etc/fstab by way of options. For example, Linux has the noatime
option available for its file systems, which disables the “last accessed”
time/date stamp functionality. In the case of files that receive heavy I/O,
this option can reduce the overhead associated with time/date stamping
considerably. Performance will increase as a result. See your file system’s
documentation for further details. Virtual consoles (the consoles that are
available when using CTRL+ALT+F1 – F6; F7 is usually reserved for X
Windows) also consume system resources. Each available console uses
RAM... whether it is in use or not.These consoles are controlled via the
/etc/inittab file. A sample file is shown here:

c1:1235:respawn:/sbin/agetty 38400 tty1 linux

c2:1235:respawn:/sbin/agetty 38400 tty2 linux

c3:1235:respawn:/sbin/agetty 38400 tty3 linux

c4:1235:respawn:/sbin/agetty 38400 tty4 linux

c5:1235:respawn:/sbin/agetty 38400 tty5 linux

c6:12345:respawn:/sbin/agetty 38400 tty6 linux

To disable virtual consoles, simply comment out the lines containing the
consoles you will not need, or delete them entirely.You can add them back easily
later if necessary. Usually, one or two consoles are needed on a Linux system. Any
more is simply overkill and a waste of resources.You’ll be happy you did it.

Stripping out the Candy
Although it’s your choice to run an IDS with X Windows loaded, it isn’t necessary
or even a good idea. When you install Linux, you are given the option of what and
what not to install. It is best to do the work during the installation rather than later
to maximize efficiency, but it can be done at your leisure if you are short on time
during installation. As we stated earlier, running your systems is completely prefer
ential. Some people want or need X Windows to configure their systems, while
others do not. Either way is fine, but bear in mind that your system will be far
more efficient if it runs only the minimum it needs for Snort IDS.

The beauty of SUSE Linux is that you use the same interface (YaST—Yet
Another Setup Tool) for installing the system as when you administer the system
during normal operation, so it is very consistent. Red Hat is similar in its
package management utility.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 107

Installing Snort • Chapter 3 107

Using YaST, eliminate these categories for your IDS deployments:

■ Graphical Base System

■ KDE Desktop Environments

■ All of KDE

■ GNOME System

■ Help and Support Documentation

■ Office Applications

■ Games

■ Multimedia

■ KDE Development

■ GNOME Development

Having removed these items, the system should be fairly slim, but if you have
the time and ability, it is advisable to get even more granular with the system.
Remove everything that is not crucial to your operation. For example, certain
libraries, games, documentation, applications, and so forth can all be removed to
make the system as lean as possible. No need to have BitchX and Emacs on a
machine that will most likely never have a user sit in front of it.

Most major Linux distributors (especially SUSE, Red Hat, and Mandrake)
ship their products with an insane amount of applications loaded by default…
even if you don’t see their categories selected in their respective Install/Remove
Software applications, chances are they still have some residuals left on the drive.
With YaST, you can drill down into the different categories and identify applica-
tions/packages you don’t need. One of the great attributes of YaST is the capa
bility to get package descriptions, even from the command-line interface.This
feature allows you to identify programs that you might not normally know by
name. Linux developers have a knack for devising arcane names for their cre-
ations.Things such as ifnteuro (European fonts for X Windows), fribidi (free
implementation of bidi), and tclx (extended Tcl) are a few that come to mind.
Would you normally look for these packages? Probably not.That’s where YaST
comes in handy. It will obviously take some serious time to filter through all of
the packages (spanning five CDs), but if you have the time, it’s well worth it.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 108

108 Chapter 3 • Installing Snort

A Brief Word about Linux Distributions
As stated earlier, we will be focusing for the most part on the SUSE Linux 9.1
platform for all of our examples and walk-throughs. Some of you might not use
SUSE as your preferred distribution, so we would like to stop and acknowledge a
few of the more prevalent versions out there and some variations you will find in
the documentation you are about to read. We are going to look at just a few of
the distributions not based on the Red Hat Package Manager (RPM) manage
ment system.The following distributions rely on either source-based distribution,
or proprietary methods of package management. Other releases that use RPM as
their system of choice include SUSE, Mandrake,Turbolinux, and Conectiva.

Debian
Debian GNU/Linux (currently in stable version 3.0) has been around forever
and is considered one of the more secure and stable versions of Linux available.
apt-get, the package management system on Debian, is regarded by its devotees
as being second to none in terms of ease of use.The apt-get syntax goes some
thing like this:

■	 apt-get install packagename (where packagename is the name of the
software package) installs new packages.These packages can come from
the Debian CD, an NFS share, or straight from the Debian mirrors on
the Internet, and download and install in one simple step.

■	 apt-get remove packagename uninstalls packages already installed on the
machine.

Slackware
Slackware Linux (currently in stable version 9.1) is a favorite among hardcore
Linux users, and understandably so.The distribution follows the “less is more”
way of thinking.There is no GUI installer during the installation, and no need
less applications loaded (unless you tell it that you want them, of course).The
support base for it is huge, and the system itself is stable, fast, and secure.
Slackware Linux also has a package management system based on the compile-
from-source tarball model. (A tarball is a compressed set of files similar to a zip
file created in Windows using WinZip or PKZip. See the sidebar Notes from the
Underground for more information.) Its packages can be easily identified by their

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 109

Installing Snort • Chapter 3 109

.tgz extension. A built-in utility called pkgtool allows for easy package manage
ment, or you can simply add/remove/edit packages right from the command
line. For example:

■	 installpkg packagename will install the package you choose onto your
system.

■	 removepkg packagename will uninstall the package of your choice.

■	 upgradepkg oldpackage%newpackage is the quick-and-dirty way to
upgrade your packages on-the-fly.

One other thing we would like to point out about the Slackware distro is the
rpm2targz utility.This program converts RPM files to a format usable on a
system without RPMs.The syntax for rpm2targz is:

rpm2targz packagename.rpm.

Gentoo
Gentoo Linux (currently in stable version 2004.1) is a distribution unlike any
other available today.The only thing close that we are aware of is the Linux From
Scratch (LFS) project.The idea behind Gentoo Linux is to provide users with a
minimally provisioned CD that you boot to and connect to the Internet to
download the rest of the distribution. Gentoo then builds the entire OS to be
optimized for your specific hardware. For package management, Gentoo uses the
emerge system. emerge works much like apt-get, but is slower because it builds
and compiles each package optimized for your system.The way in which emerge
works is fairly straightforward: it downloads the source code for the software
package you request, compiles it, and installs it into the running system. As we
said, it’s a close cousin of apt-get, and the only noticeable difference is that apt-
get doesn’t compile the software it downloads. emerge, like apt-get, pulls its soft
ware index from the Portage tree.The Portage tree is basically a database
containing information about every package ready to run on Gentoo Linux.To
give you an idea of how emerge works, including syntax, we have included an
example shown next. In this example, we will download and install the Snort
package (sounds like a proper choice considering the material we are going over,
doesn’t it?).

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 110

110 Chapter 3 • Installing Snort

First, we will find out if Snort is available in the Portage tree by querying it
with the following syntax:

emerge –p snort

This tells emerge that we want to pretend to install Snort (you guessed it…
–p means pretend). emerge will then present us with a list of software that will
be downloaded to satisfy Snort and its dependencies. It will look something like
this (this is not actual output… it’s fictitious, but you get the idea):

Calculating dependencies......... done!

[ebuild U] sys-libs/lib-1.1.3-r2 to /

[ebuild U] sys-libs/glib_not-1.2.9 to /

[ebuild N] snort-libs/fakelibs-1-a2 to /

[ebuild N] snort-base/snort-2.1.1 to /

If we are satisfied with the output, simply enter the command emerge snort,
and Gentoo will gladly install Snort for you.To uninstall a package, the com
mand is unmerge snort. Enough said—emerge is that simple, and an excellent
package tool.

A Word about Hardened/
Specialized Linux Distributions
Let’s take a moment to look at a few of the more popular secure, or ”hardened,”
Linux distributions.These releases come designed for use in a variety of security-
oriented roles such as intrusion detection, firewalling, or simply as a high-quality
security-enhanced server distribution generally with specific applications added
or modifications made to the system to improve its capability to avoid compro
mise. Linux distributions such as Trinux and Phlak, for example, come ready to
perform almost any network security testing possible. In contrast, Immunix and
Trustix are hardened using a combination of applications and kernel modifica
tions to make it much harder to compromise the system. One significant advan
tage of distributions like Immunix is that they can decrease the likelihood that a
vulnerability will impact the version of software you are using, and as a result,
decrease the frequency with which you must patch your sensors.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 111

Installing Snort • Chapter 3 111

OINK!
Shadow Sensor/OS is an interesting case in that it is specifically built to
act as an IDS sensor. If you are planning a large-scale deployment of IDS,
we strongly recommend you take a look at it as an example of how to
efficiently manage your IDS sensors.

Each distribution has its own attributes, so we encourage you to read all
about them before downloading and using them.

■	 Shadow Sensor/OS www.whitehats.ca/main/members/
Seeker/seeker_shadow_IDS/seeker_shadow_ids.html

■	 Trustix www.trustix.net

■	 SELinux www.nsa.gov/selinux

■	 Immunix www.immunix.org

■	 Knoppix STbD www.knoppix-std.org/

■	 Engarde Linux www.guardiandigital.com/products/software/
community

■	 Trinux http://trinux.sourceforge.net

■	 PHLAK www.phlak.org

OINK!
No matter how secure you believe your operating system to be, whether
out of the box or after a recent upgrade, it is only as secure as you allow
it to be. To be as secure as possible, it is critical that you constantly mon
itor security updates/patches and errata for your Linux distro. Some dis
tributions come with tools that will do this for you automatically. In the
case of SUSE Linux, using the YaST Online Update tool (YOU) combined
with the susewatcher applet will help to make sure that the system is
doing its part to keep itself updated. Red Hat also has a similar tool for
its Red Hat Network called up2date. Even with tools like this, it is impor
tant that you be involved with the process, actively monitoring security
warnings, and applying patches if they are not available via automatic
updates yet. The job of keeping a computer system secure never ends...
it is a process that you absolutely cannot ignore. This is really a universal

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 112

112 Chapter 3 • Installing Snort

standard, free of any restrictions... the same rules apply to every piece of
computer software in existence.

Preparing for the Installation
Before you can install Snort 2.1, you need to ensure that you have everything
you need to make sure the system is ready for the installation. Snort will not
install and function properly if the environment is not hospitable.

Installing pcap
libpcap is a packet capture library for Linux systems. What is unique about this
library is that it can capture packets destined for the local hosts, and can also pick
up packets destined for other hosts on the network.This, in essence, means that
you can place a machine in a strategic location on your network and have it ana
lyze the packets that travel through (for a quick example, see Figures 3.1 and
3.2). Snort requires this library to function, and it is best to download the newest
version of it every time you install or upgrade Snort.The benefits of getting the
newest release are twofold: you will realize increased stability and speed running
the program. Even if your system already has a version of pcap (such as Red Hat
Linux) you should follow this advice.

OINK!
Some operating systems (such as Red Hat) include a modified pcap
library. It is usually worth the effort to install the latest version of libpcap
every time you install a new version of Snort. Installing the latest stable
release version of libpcap provides two major benefits: increased stability
and speed.

The current version of libpcap can be found at www.tcpdump.org. We have
included libpcap 0.8.3 (current release at the time of writing this book) on the
CD-ROM accompanying this book.

www.syngress.com

Installing libpcap from Source
Installing libpcap from the source tarball is relatively simple, especially for those
familiar with compiling source code.The only thing you really need to make
sure of is that you have chosen to install development tools into your original

www.syngress.com

Installing Snort • Chapter 3 113

Figure 3.1 Snort IDS Monitoring Internal Traffic

Firewall

Switch

Internal Network

Snort IDS

Router

Internet

In this example, the Snort
IDS machine is placed
outside of the LAN between
the router and the firewall.

Figure 3.2 Snort IDS Monitoring External Traffic

Firewall

Switch

Internal Network

Snort IDS

Router

Internet

In this example, the Snort
IDS machine is placed inside
the LAN between on an
internal switch

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 113

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 114

114 Chapter 3 • Installing Snort

OS install.These tools should include the following, and probably more
depending on your distribution of choice. However, in most cases, the task of
installing from source is as simple as running the configure script, then typing
make, and once that has completed, make install. As noted previously, we are
going to be using SUSE Linux 9.1 for the purpose of demonstration.You should
note that as of version 9.1, libpcap 0.8.1 is already loaded, but it is recommended
to follow the procedure here to update it to 0.8.3. Make sure to check the tcp
dump Web site frequently for updates.

■	 gcc The GNU cc and gcc C compilers.This is the core of your devel
opment tools; nothing else functions without it.

■	 automake The GNU utility for creating makefiles on-the-fly.

■	 autoconf The GNU utility for configuring source code on-the-fly.

■	 binutils GNU binary utilities.

■	 make The GNU tool for making life easier for the individual com
piling the code. It automates much of the process by using the makefile.

OINK!
Remember that while these tools are necessary to compile an applica
tion, they are not necessary on an IDS sensor that has been deployed.
We strongly recommend that you prepare a binary package (or use one
available from Snort.org or your OS vendor) to install on your sensors
instead of compiling code on them directly. The documentation for RPM
and any of the other package managers we mentioned includes instruc
tions on how to do this. If you do choose to compile software on your
IDS sensor, be sure to remove the compiler and all associated tools after
you have finished compiling and installing the software.

In SUSE Linux, you can add these tools by performing the following:

1. As root, open the panel menu and select System | YaST (Figure 3.3).

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 115

Installing Snort • Chapter 3 115

Figure 3.3 Selecting the YaST Utility from the Panel Menu

2.	 The YaST tool will open. Click on the Install and Remove
Software icon, and in the Filters drop down list at the top left, change
it from Search to Selections.

3.	 Select the C/C++ Compiler and Tools category, and then select the
following packages from the list to the right (Figure 3.4):

■	 autoconf

■	 automake

■	 bison

■	 flex

■	 gcc/gcc++

■	 gettext

■	 glibc-devellibstdc++-devellibtoolmake

■	 texinfo

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 116

116 Chapter 3 • Installing Snort

OINK!
As noted previously, very few, if any, of these applications are necessary
on an IDS sensor. They should only be installed on the system you use to
actually compile and test Snort before pushing it out (as a binary
package like RPM) to your actual sensors.

Figure 3.4 The Package Management System

4.	 Click Accept in the bottom-right corner of the window.

5.	 The OS will calculate the required packages and dependencies, and
depending on your setup might prompt you for action. Manually resolve
any software conflict that you may have, and click the OK Try Again
button. When all dependencies are satisfied, the system will continue to
install your software, prompting for installation media as required, and
then will exit after the work is completed.

Now that your system is complete with all of the tools necessary for package
compilation, we will continue with the configuration and build stages. Again, if
you have any experience compiling software on Linux, you will be able to get
through this section fairly quickly. We will be following the common configure

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 117

Installing Snort • Chapter 3 117

| make | make install format for building the package into the system. For
those who are new at this, don’t be afraid; this is pretty simple as long as your
system has the tools described in the last section.

Look Ma! No GUI!
In the best interest of “stripping” the OS of all the undesirables, no good IDS
book would be complete without walking the reader through software installa
tions in an X Windowless environment.The following instructions will show you
how to perform the same steps noted previously in a GUI-free environment:

1.	 From the command-line interface (CLI), log in as root and issue the fol
lowing command from the prompt: /sbin/yast. Note: /sbin/yast
launches the curses version of YaST, while /sbin/yast2 is X11-based.

2.	 When YaST loads, tab over and down to the Install and Remove
Software selection and press Enter.

3.	 When the system finishes calculating dependencies, tab over to the
Filter button and press the down arrow until Selections is highlighted.
Press Enter.

4.	 Highlight C/C++ Compiler and Tools, tab down to OK, and press
Enter.

5.	 Only select the tools noted here from the list (this is accomplished by
using the up/down arrows to highlight your choice and pressing the
plus or minus keys to select/deselect items):

■	 autoconf

■	 automake

■	 bison

■	 flex

■	 gcc/gcc++

■	 gettext

■	 glibc-devel

■	 libstdc++-devel

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 118

118 Chapter 3 • Installing Snort

■	 libtool

■	 make

6.	 Once you have made all of your selections, tab down to accept and press
Enter.

7.	 Resolve any dependencies that might arise and continue with the
installation.

Notes from the Underground…

Configure, Make, Make Install Defined
Most of you might already be familiar with this time-tested method of
software installation on Linux, but we think it might be a good idea for
those new to the scene to cover the definition. At first glance, Linux can
be slightly intimidating, but first impressions are not always accurate.
Although this might seem like a long process just to install a piece of soft
ware, it really is worth the effort. Unlike shrink-wrapped software, com
piling from source code is almost always better because it is being made
specifically for your system. Prepackaged software is always built for the

lowest

compile software on Linux, it is being made by you, and for you. Each

a ton of it, but we just wanted to point out the benefits of doing it the

Most software developed for Linux is distributed in what is known as
a tarball. A tarball is nothing more than a compressed file containing

can come in several formats; the most popular end with the extensions

algorithm that was used to create the file. Depending on the source, the

lowest common denominator, so if the programmer’s target
machine is a 100MHz Pentium, that is what you get … software built to
run on a 100MHz Pentium. If you have a 2GHz processor, you will not be
taking advantage of all of the optimizations for your processor. When you

machine you compile it on will have its own unique setup. We are not
saying that all prepackaged software is bad, because it’s not. We have run

Linux way. You’ll thank us for it later.

other files and/or directory structures. We like to equate it to a zip file cre
ated with WinZip (for those of us familiar with the Windows OS). Tarballs

tgz, tar.gz, or tar.bz2. Each extension signifies a specific compression

extensions might differ, but they are all capable of being extracted by
Continued

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 119

Installing Snort • Chapter 3 119

modern versions of the tar program. tar is a console program designed to

with almost every Linux distro, but you can get the latest version at that
address as well.

When you receive a tarball, the first step is to extract it into a tem
porary directory where you can work with it. /tmp is usually a good place
to accomplish this task. Once the tarball is extracted, verify that the
archive created a new directory (they usually do) with its contents. In

case, locate a file named configure. The configure file is always located in
the “root” (this directory is usually named after the package name) direc
tory of the files you just extracted. This is the main directory you will be

these three commands successively:

■ ./configure The configure file is a script that contains code
designed to essentially “figure out” the machine on which it is
running. It looks at environment variables, dependencies, and

screen when it is running, you will see a lot of questions and

checking to make sure that everything is where it is supposed
to be. The configure script is responsible for generating the
makefile, which will become important in the next step. If you
see any errors here, you will need to tend to them before con
tinuing. Most issues will be cleared up by installing whatever
dependency the configure script was missing. When all depen
dencies are fulfilled, you can run configure again.

■ make The make command is a part of almost every

configure make will use the makefile
created by the configure script in the last step. The primary
function of make is to compile the code to be used during the
final install. It accomplishes this by reading and executing the
code in the makefile in a specific order determined by the con
figure script. The makefile is similar in layout to an initializa
tion file in that it has “headings” or categories for each step of
the make process. One of these headings is install, which is
used in the next step by make install. Again, it is important to
note any errors during the compilation process to make sure
you take care of them before continuing.

create and extract compressed archives. You can read more about tar and
its features at www.gnu.org/software/tar/. It comes as a standard package

some cases, it might extract into your current working directory. In any

working from to install your software package. You will almost always use

verifies what software, if any, is missing. If you watch the

answers flying by. This is exactly what is going on. It is

UNIX/Linux installation in existence today. It is not a script like
is, but an actual utility.

Continued

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 120

120 Chapter 3 • Installing Snort

■ make install This is the final step of the installation process.
What make install does is fairly simple: it reads the information
from the install section of the makefile and distributes the exe
cutables and other files created by make to the proper locations
in the machine’s directory structure. Once this step is complete
(without error), the software is installed and ready to use.

Now when you are ready to tackle your next big software installa
tion, you will be armed with the knowledge of what all of the syntax and

think it is essential for you to be able to understand the meaning behind
what you’re doing, and not just going through the motions presented via
documentation.

commands actually mean. We have always found this to be helpful, and

OINK!

For those of you who are using a Linux distribution that uses RPMs,
there is an excellent tool called Checkinstall (http://asic-
linux.com.mx/~izto/checkinstall/) that will watch the results of the “make
install” process, then generate an RPM from the results of running make,
and install it into the RPM database on your system. You can even have
it store a copy of the RPM for use on other systems if you’d like. This is
an excellent way to get the benefits of installing from source while still
having the ease of management that RPM provides

Simply issue the following commands at the prompt:

1.	 As the root user, open a terminal using the panel menu by selecting
System Tools | Terminal, or by using Ctrl+Alt+F2 to open a new
full-screen console. (You can alternately choose any key from F1
through F6 for opening full-screen consoles, but for this exercise, we
will use the F2 key.)

2.	 If your system does not have automount enabled, mount the accompa
nying CD-ROM by entering the command mount /dev/cdrom /
mnt/cdrom and pressing Enter.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 121

Installing Snort • Chapter 3 121

OINK!
The location of your CD-ROM drive might differ depending on your setup
and/or Linux distribution. Please check the documentation that came with
your OS. For example, SUSE Linux uses the /media directory instead of the
standard /mount like most other distributions. If you have a CD-RW drive,
your device might be named cdrecorder instead of cdrom. Please be aware
of these differences and substitute where necessary.

3.	 Change the working directory to the location of the package on the
CD-ROM by typing cd /mnt/cdrom/Snort-2.1.1/Linux/PCAP
and pressing Enter.

4.	 Copy libpcap-0.8.3.tar.gz to your /tmp directory by typing cp
libpcap-0.8.3.tar.gz /tmp/libpcap-0.8.3.tar.gz and press Enter.

5.	 Change directories to /tmp, extract the contents of the file by typing
cd /tmp && tar –zxvf libpcap-0.8.3.tar.gz, and press Enter.This
will create a new directory in /tmp called libpcap-0.8.3.

Let’s take a moment to define the variables we used for the tar com
mand in the last statement: z, x, v, and f as options.

■	 The z option specifies that the file needs to be processed through
the gzip filter.You can tell if an archive was created with gzip by the
.gz extension.

■	 The x option dictates that you want the contents of the archive to
be extracted. By default, this action will extract the contents into the
current working directory unless otherwise specified.

■	 The v option stands for verbose, which means that tar will display all
files it processes on the screen.This is a personal preference and is
not critical to the extraction operation.

■	 The f option specifies the file that tar will process. In our current
example, this would be libpcap-0.8.3.tar.gz. Sometimes, it might
be necessary to specify a full path if the file you want to work with
is located in another directory.

6.	 Change directories to the new folder by typing cd libpcap-0.8.3 and
pressing Enter.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 122

122 Chapter 3 • Installing Snort

7.	 At the command prompt, type ./configure and press Enter.This will
run the configure script for libpcap (see Figure 3.5).

Figure 3.5 Running the configure Script

8.	 When the configure script has completed its operation, you should be
returned to a prompt. Make sure you have no errors on screen.
Everything should look okay if you installed your development tools
from earlier in the chapter. At the prompt, type make and press Enter.

9.	 The make command will also bring you back out to a prompt when it
has completed its work. Again, you need to check the output that make
has displayed on screen to verify that the operation was trouble-free. At
the prompt, type make install and press Enter.

10.	 After make finishes the installation of the software, you will be returned
to the command prompt—and with luck, free of error.

Installing libpcap from RPM
You can also install libpcap from an RPM package if your distribution supports
it. At the time of writing, www.rpmfind.net returned 63 results (spanning 11
Linux distributions including SUSE) when presented with a query for libpcap.
Frankly, we believe that this is the best place to find custom-compiled RPMs for

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 123

Installing Snort • Chapter 3 123

your distribution of choice. We have included RPMs for the following distribu
tions on the accompanying CD-ROM.They are located in the /Snort-
2.1.1/Linux/pcap/rpms directory.

■	 Conectiva Version 6.2 (RPM and SRPM)

■	 Mandrake Version 6.2 (RPM), version 7.1 (RPM and SRPM)

■	 Red Hat (7.2, 7.3, 8.0) Version 6.2 (RPM only)

■	 SuSE Linux Version 7.1 (RPM only. Version 9.1 comes with the
0.8.1 RPM on CD.)

The procedures involved in installation via RPM are, more often than not,
much easier than an installation that uses source code—if there are no depen
dency problems.The RPM system, while an excellent package management tool,
is fraught with problems regarding dependencies. It understands and reports what
the specific package requires to install, but is not yet capable of acquiring and
installing the packages necessary to fulfill its requirements.

If you are not familiar with the term, dependencies are packages and/or
libraries required by other packages.The Linux operating system is built on
dependencies, which you can visualize as an upside-down tree structure. At the
top of the tree are your basic user-installed programs, such as Snort. Snort
depends on libpcap to operate, and libpcap requires other libraries to function.

Installing libpcre
The next package that will need to be installed on a SUSE Linux system is the
PCRE (www.pcre.org) library package (from the developers site: “The PCRE
library is a set of functions that implement regular expression pattern matching
using the same syntax and semantics as Perl 5”). Because of recent enhancements
to the Snort rule language, Snort requires it to function. In fact, Snort won’t
compile without it. For a detailed discussion of the benefits of the PCRE func
tions and the Snort rule language in general, see Chapter 5, “Playing by the
Rules.” Depending on your setup, you might already have this installed.To install
it on SUSE Linux, perform the following:

1.	 Download the latest PCRE package from ftp://ftp.sourceforge.net/pub/
sourceforge/p/pc/pcre/ (the Windows port can be found at
http://gnuwin32.sourceforge.net/packages/pcre.htm) and extract it to
your home directory.The current version as of the writing of this book
is 4.3.This will create a directory called pcre-4.3.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 124

124 Chapter 3 • Installing Snort

2.	 Change directories into it and issue the following commands to build
the software:

./configure

make

make install

Now you are ready to continue with the rest of the installation.

Installing MySQL
Snort 2.1.1 can be used in conjunction with a number of different database
packages; as with choice of OS, choice of database is highly personal. In this case,
we will use MySQL as the example although it is equally easy to make Snort
work with PostgreSQL, Oracle, or MS SQL Server.

OINK!
There are a number of reasons not to place your database directly on
the IDS sensor itself. Some of the most important ones are speed (run
ning the database may take precious resources from the IDS) and secu
rity. We strongly recommend that you use Barnyard to take the Snort
logs and load them into a database. For more on Barnyard, see Chapter
11, “Mucking Around with Barnyard.”

First, you will need to make sure that MySQL is not already installed on your
system. From the command line, enter the following command:

rpm -qa | grep MySQL

That command should return you to an empty prompt. If it doesn’t, you can
skip the installation steps that follow—you already have it installed.

Installing from RPM
SUSE Linux 9.1 comes with MySQL v4.0.18, and it can be easily loaded from
the YaST Install and Remove Software application.To install MySQL server, (from
the GUI, simply launch the K menu and go launch SYSTEM > YAST >
INSTALL AND REMOVE SOFTWARE) launch /sbin/yast from the com
mand line (see Figure 3.6).

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 125

Installing Snort • Chapter 3 125

Figure 3.6 Search for MySQL

1.	 When the program launches, tab over the Install and Remove
Software, and press Enter.

2.	 Highlight the Filters button and press the down arrow until Search is
selected. Press Enter.Type mysql in the text box, tab down to the OK
button, and press Enter (see Figure 3.7).

3.	 In the next screen, arrow down to highlight mysql, and press either the
Space bar or the Plus (+) key on it. If you’ve done this correctly, there
will be a plus sign next to the entry. Other dependencies will also be
selected by the system automatically (in most cases, mysql-client).

4.	 Tab down to the Accept button and press Enter.

5.	 The system will prompt you to accept the changes.Tab down to OK
and press Enter.

6.	 SUSE will then ask you to insert a CD or multiple CDs depending on
your setup and version. SUSE Pro 9.1 will only ask for CD 3. Insert the
required media, tab down to the OK button, and press Enter.

7.	 The system will continue the installation as requested.There will be no
more prompts and you will be returned back to the YaST main screen
when it’s done.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 126

126 Chapter 3 • Installing Snort

8. Tab down to the Quit button and press Enter.

Figure 3.7 Install MySQL

Installing from Source
First, we need to download the MySQL archive (which can be found at
www.mysql.com/downloads/mysql-4.0.html).The current stable version as of
the writing of this book is 4.0.18.The only package you should have to down
load is the standard package. Download it to a place that is easily remembered,
such as your home directory. In the case of this documentation, we will assume
this location is /root.The first step after downloading it will be to extract it.
Enter the following line at the command prompt:

tar zxvf /root/mysql-standard-4.0.18-pc-linux-i686.tar.gz

This will extract the MySQL source code into the /root directory.The next
step will be to build the package and install it to the system. Enter the following
at the prompt:

./configure –prefix=/usr/local/mysql –localstatedir=/usr/local/mysql/data

–enable-large-files-without-debug –with-mysqld-user=mysql –disable-

maintainer-mode

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 127

Installing Snort • Chapter 3 127

If all goes well, this command will complete without error.The next thing to
do is build and install it.To do this, enter the following:

make && make install

Your software should now be installed successfully. Now you need to create
the mysql group by entering this command at the prompt:

/usr/sbin/groupadd mysql

Now create the mysql user (who belongs to the group we just created) to
run the service:

/usr/sbin/useradd -g mysql mysql

The next thing we will do is install the database files and adjust file permis
sions. (Note: Each of the following lines need to be entered individually.)

./scripts/mysql_install_db

chown root:mysql /usr/local/mysql -R

chown mysql:mysql /usr/local/mysql/data -R

Next, we need to edit /etc/ld.so.conf and add the following:

/usr/local/mysql/lib/mysql

The last thing that needs to be done is to set the root password for MySQL
(the YOUR_PASSWORD_HERE string is a placeholder here and should be
changed to the password you want to use):

/usr/local/mysql/bin/mysqladmin -u root password YOUR_PASSWORD_HERE

Installing Snort
Now we can get into the actual installation of Snort. So far, we have covered the
basics of Linux package management, including RPM installs, source compila
tion, and installing libpcap, so this next section should be fairly easy for us to get
through.The installation of Snort is painless, so we can save all of our energy for
the setup, configuration, and rules management.

First, you need to get Snort. Whether you choose to get it from the Web site
at www.snort.org or on the accompanying CD-ROM is entirely up to you.The
version on the CD-ROM is 2.1.1, so we will use it in our example install.This is
the most current stable version available at press time. Please note that we
strongly recommend going to www.snort.org and downloading the newest stable

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 128

128 Chapter 3 • Installing Snort

release, as you will benefit from new functionality, bug fixes, stability, and speed
enhancements.This software is constantly changing, growing, and getting better
every day.

A Brief Word about Sentinix GNU/Linux
It was not until recently that we came across a wonderful Linux distribution
called SENTINIX. What is it? The description from their Web site (www.sen-
tinix.org) sums it up fairly well:

“SENTINIX is a GNU/Linux distribution designed for monitoring,
intrusion detection, penetration testing, auditing,
statistics/graphing, and anti-spam. It’s completely free; free to use,
free to modify, and free to distribute. SENTINIX includes the fol
lowing software, installed and preconfigured; Nagios, Nagat, Snort,
SnortCenter, ACID, Cacti, RRDTool, Nessus, Postfix, MailScanner,
SpamAssassin, openMosix, MySQL, Apache, PHP, Perl, Python, and
lots more.”

With this Linux distribution, other than the obvious abundance of security
and scanning software, was the Web-based configuration. Basically, you can build
the server, load the operating system, tuck it away in a rack somewhere, and sit at
your desk to configure it through a Web browser.The developers have done an
excellent job making Snort friendlier to use via the SnortCenter Web interface
(see Figure 3.8).This is well worth a look if you are serious about intrusion
detection and need the convenience of a Web-based console.

Figure 3.8 SENTINIX Snort Console

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 129

Installing Snort • Chapter 3 129

OINK!
All of the components of SENTINIX Linux can be downloaded individually
from the Internet free of charge, so if you don’t want the entire distribu
tion you can simply download and install the packages you want on an
existing Linux or Windows installation. The distribution is built entirely
from open-source software, so it is completely legal and recommended.

The installation was devoid of a GUI, but it was so simple almost anyone
with a bit of Linux experience wouldn’t have any problems understanding how
to get everything running.The configuration of all the scanners (including Snort)
have already been done for you—all you have to do is power it on.This is not to
say that you cannot go into the system via a Web browser and configure your
own rules, and so forth... this is very easy to do.The software will also generate
reports, issue alerts, and generally make your IDS life a little easier.You have to
admit, we can all use a little lift from time to time, especially when it comes to
working with computer systems.

Installing Snort from Source
There is something to be said about installing software from source code. In our
opinion, it is the easiest and best way to install a properly functioning software
package. In this section, we will be installing the Snort 2.1.1 package from a
source tarball located on the accompanying CD-ROM.To install Snort, simply
follow these simple steps:

1.	 As root, browse to the /Snort-2.1.1/Linux/src folder located in the
Chapter 3 directory (03) on the CD-ROM.

2.	 Copy the tarball to the /tmp directory by typing cp snort-

2.1.1.tar.gz /tmp at the command line.

3.	 Change directories to /tmp by typing cd /tmp at the command line.

4.	 Extract the tar archive by issuing the command tar –zxvf snort-
2.1.1.tar.gz.

5.	 Change directories into the newly created Snort directory by typing cd
snort-2.1.1.

6.	 At the command line, type ./configure to configure the package.You
should see text start to scroll by (similar to the example in Figure 3.9).

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 130

130 Chapter 3 • Installing Snort

Figure 3.9 Running the Snort configure Script

7.	 Next, type make at the command line.This will create the makefile.

OINK!
This might take some time depending on the speed of the target
machine.

8.	 As the final step in the build process, type make install at the com
mand prompt.This action will deliver the package and its files to where
they belong in the system.The Snort install is now officially complete.
We can now move on to basic customization.

OINK!
This must be done as root, or Snort won’t be able to install properly.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 131

Installing Snort • Chapter 3 131

Enabling Features via configure
During the build process (more specifically, during the configure script portion),
we can pass options to the installer to customize it to whatever specific situation
or needs we might have.These were harvested from the /docs/INSTALL file in
the Snort 2.1.1 tarball (which is on the accompanying CD-ROM, so if you ever
need to reference them, you can find them there).

■	 --enable-debug Enable debugging options (bug reports and developers
only).

■	 --with-snmp Enable SNMP alerting code.

■	 --enable-smbalerts Enable the SMB alerting code, which is somewhat
unsafe because it executes a popen() call from within the program (which
runs at root privs).You’ve been warned, so use it with caution!

■	 --enable-flexresp Enable the “Flexible Response” code, which allows
you to cancel hostile connections on IP-level when a rule matches.
When you enable this feature, you also need the libnet-library that can
be found at www.packetfactory.net/libnet. See README.FLEXRESP
for details.This function is in stable release 1.1.2.1 as this book goes to
press.

■	 --with-mysql=DIR Support for MySQL; turn this on if you want to
use ACID with MySQL.

■	 --with-odbc=DIR Support for ODBC databases; turn this on if you
want to use ACID with a nonlisted DB.

■	 --with-postgresql=DIR Support for PostgreSQL databases; turn this on
if you want to use ACID with PostgreSQL.

■	 --with-oracle=DIR Support for Oracle databases; turn this on if you
want to use ACID with Oracle.

■	 --with-openssl=DIR Support for OpenSSL (used by the XML output
plug-in).

■	 --with-libpq-includes=DIR Set the include directories for PostgresSQL
database support to DIR.

■	 --with-libpq-libraries=DIR Set the library directories for PostgresSQL
database support to DIR. Setting both of these values enables the
Postgres output plug-in module.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 132

132 Chapter 3 • Installing Snort

■	 --with-libpcap-includes=DIR If the configuration script can’t find the
libpcap include files on its own, the path can be set manually with this
switch.

■	 --with-libpcap-libraries=DIR If the configuration script can’t find the
libpcap library files on its own, the path can be set manually with this
switch.

Installing Snort from RPM
Depending on your distribution and release number, there might not be RPMs
available. In most cases, you can probably find contributed source RPMs from a
Web site such as www.rpmfind.net, and then you can build your own. We rec
ommend building your own because all systems are inherently different and have
their own file system structure and environments. We will cover installation via
RPM and source RPM in this section.This should seem pretty easy to you in
comparison to installation by tar archives.

Let’s start with the RPM installation.The installation is simple. All you have
to do is browse to the /Snort-2.1.1/Linux/RPM folder on the accompanying
CD-ROM and do one of two things:

■	 In console mode At a console prompt, just enter the command rpm
–Uvh snort-2.1.1-snort.i386.rpm.This will complete the installation
routine for you. Note that we used the –U (upgrade) option versus –i
(install)—it will install with either. We are always concerned that if we
use –i, the installer will not upgrade files properly (if there are any files
to upgrade to newer versions), but if we use the –U flag, it will do a
more thorough job of installing the software. What we’re trying to say is
that you can install the software simply by typing rpm –i snort-2.1.1-
1snort.i386.rpm.

■	 Inside X Windows If you are using KDE, GNOME, or one of the
many X Windows systems out there, this set of instructions is for you.
Inside the /Snort-2.1.1/Linux/RPM folder on the accompanying CD
ROM, double-click the snort-2.1.1-1snort.i386.rpm file. Under SUSE
Linux, konqueror will load an HTML document with the package name,
description, and an option to install via YaST. All you have to do is click
Install package with YaST and the YaST will launch. If you are not
logged in as root, you will be prompted for the root password. Enter it

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 133

Installing Snort • Chapter 3 133

and click OK.YaST will install the package for you and silently exit.
Depending on your system setup, you might be promoted to insert CDs
to satisfy any dependencies. As stated earlier, depending on your distribu
tion, instructions might vary; so make sure to consult the documentation
or man files that came with your distribution. Most of the RPM-based
distributions are not much different from what we have witnessed here.
Another point that is distribution dependent is that you might not get a
confirmation that the package was successfully installed onto the system.
In true UNIX/Linux fashion, some distributions do not waste time dis
playing unnecessary information to the screen.The only time you might
ever hear Linux speak is when something went dreadfully wrong (and we
all hope that day never comes).

OINK!
SUSE Linux 9.1 comes with Snort 2.1.1 on CD 5. It is obviously a “pre
compiled by SUSE” version, so it is completely optional to use as your
installation method. The Snort log analyzer 5n0r7 is also included in this
package.

Now we will look at the source RPM (or SRPM) as a means of a more solid
installation.This is one of the more preferable methods used to install packages if
you use RPM-based distributions such as SUSE Linux or Red Hat Linux, and
the SRPMs are readily available to you. Usually, sites such as www.freshrpms.net
and www.rpmfind.net will have these available for most packages and almost all
RPM-based distros.

Recompiling a source RPM is not as daunting as it might sound. RPM takes
care of all the minute details involved in a recompile and rebuild. Let’s start with
the SRPM located in the /Snort-2.1.1/Linux/srpm folder on the accompa
nying CD-ROM. It is the most current version of Snort and is ready for
rebuilding into your system. Depending on the version of RPM you are using,
the syntax can vary slightly.The first example we will give you will run on RPM
version 4.1 or higher (SUSE Linux 9.0 and newer meet this requirement). At a
console prompt, all you have to do is navigate to the /Snort-
2.1.1/Linux/srpm folder and enter rpmbuild --rebuild snort-2.1.1-
1snort.src.rpm.This will prompt RPM to rebuild the file into a regular RPM
specifically designed for your system.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 134

134 Chapter 3 • Installing Snort

The second example is for versions earlier than 4.1. For these systems, just
enter rpm --rebuild snort-2.1.1-1snort.src.rpm.This command will do
exactly the same thing as in the previous example, but in a slightly different
syntax. Both versions will place the completed RPM package in a subfolder
under the /usr/src/ directory. On most SUSE Linux systems, the completed
builds are located under /usr/src/packages/RPMS/i586. (Depending on
your package’s architecture, the directory can vary; for example, i386, i486, and so
on. If you don’t know which directory the finished package is in, simple enter
the /usr/src/packages/RPMS directory, issue a find -name *.rpm, and
Linux will tell you exactly where your package is.This will save you from having
to dig through every directory to find it.)

OINK!
The only drawback to building a package from an SRPM is that all of the
package’s dependencies must be met, even though you are not actually
installing the program. In the case of Snort, you must have MySQL,
PostgreSQL, and UCD-SNMP installed (including devels and libraries). The
reason for this is simple: with Snort, the developers have coded the soft
ware to support a variety of databases. When you attempt to rebuild the
SRPM, it looks for all of the various dependencies required for all
database systems it was built to run with. This is true even if you don’t
ever intend to use all of the options. The fact of the matter is that they
are present and must be rebuilt into the final package for it to function
properly. If you do not satisfy all of the program’s dependencies, the
rebuild will fail. One good thing is that it will explain what components
it is missing to allow you to install them and try the rebuild again.

Installing Snort Using apt
For those of you who might be running Debian (or one of its many variants
such as Libranet, Knoppix, Mepis, and so forth), this section is for you. If you
don’t have the time or ambition to install Snort from source, Debian has the apt-
get package management system we mentioned earlier.The main advantages to
apt-get are the speed at which it installs and the huge software arsenal you have
at your disposal. Debian has 8000+ applications available upon request in its
online repositories.This is a staggering amount of resources at your disposal (see
Figure 3.10).

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 135

Installing Snort • Chapter 3 135

To begin the installation, log in as root and enter the following command:

apt-get install snort

The output will look something like this:

Reading Package Lists... Done

Building Dependency Tree... Done

The following extra packages will be installed:

snort-common snort-rules-default

Recommended packages:

snort-doc

The following NEW packages will be installed:

snort snort-common snort-rules-default

0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.

424 not fully installed or removed.

Need to get 434kB of archives.

After unpacking 1610kB of additional disk space will be used.

Do you want to continue? [Y/n]

Figure 3.10 Using apt-get to Install Snort

What has happened up until this point is that apt searched through its reposi
tories online for the package you requested, found everything it depends on to
run, and presented you with the changes that need to occur to properly install
Snort IDS. If you accept the changes, you only need to press Y at the prompt.

The next steps involve answering a few questions from the installer. No need
to worry, they are pretty basic. We will walk through them one by one to make
sure you have everything working correctly the first time.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 136

136 Chapter 3 • Installing Snort

As you can see in Figure 3.11, the first prompt is asking which interface, or
network card, Snort should listen on. Generally, this will most likely be eth0,
which is the first interface on a Linux system. In some cases, as in a multihomed
machine (a computer with more than one network interface) for example, cir
cumstances might deem it necessary to listen on eth1 or higher.This would be
the case if the machine was on two network segments and you needed to listen
on the segment attached to eth1. When you have entered the proper device
name, tab down to OK and press Enter.

Figure 3.11 apt Snort Install—Choosing the Interface

The next prompt you will see concerns what Snort will consider the local
network, or subnet. Enter it and choose OK to continue. Please note that that
entry is in the CIDR (Classless Inter-Domain Routing) format (see Figure 3.12).

Figure 3.12 Choosing the Network

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 137

Installing Snort • Chapter 3 137

The next prompt asks you what account should receive the daily statistics
mailings. In most scenarios, this account will most likely be root, but it can be
anyone you choose (se Figure 3.13).

Figure 3.13 Whom to Alert

When this last question has been answered, the installation will continue.
When it is complete (and providing there were no errors), you should be pre
sented with the following output:

Setting up snort-common (2.0.2-2) ...

Setting up python2.3-docutils (0.3+cvs20030901-2) ...

Setting up snort-rules-default (2.0.2-2) ...

Setting up python-docutils (0.3+cvs20030901-2) ...

Setting up snort (2.0.2-2) ...

Stopping Network Intrusion Detection System: snort.

Starting Network Intrusion Detection System: snort.

Localhost:~#

At this stage, Snort is running on your system, providing no errors were
encountered.You can easily run ps -A to see all of your processes running on
the system. Snort should be near the bottom of the list, as it is organized by PID
(Process ID)...oldest to newest.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 138

138 Chapter 3 • Installing Snort

Configuring Snort IDS
Next, we will take a brief look at Snort configuration options. We already
touched on build time configure options in the Installing Snort from Source section
earlier, but we need to take a moment to look at the Snort configuration file.

Customizing Your
Installation: Editing the snort.conf File
The first order of business after completing the Snort install is to customize it to
your needs. We are going to begin with the snort.conf file located in the
/etc/snort directory.This file contains the configuration settings that Snort will
use every time it is invoked.This configuration file is lengthy, but the sample file
that the developers provided us is complete with basic instructions on syntax and
use. Although it is thorough in its descriptions, we would still like to cover a few
basic settings that will allow Snort to function properly.

First, we will need to change the var HOME_NET variable in the snort.conf
file.This variable signifies the internal network address of your LAN. In most
textbook cases, this value will be an entire subnet or list of subnets, but it can
also be in the form of a single IP address. In this example, we are going to use
the subnet of our internal network card. In this case, it will be 192.168.0.0/24,
which means that the address space of 192.168.0.–192.168.0.254 will be repre
sented, using a subnet mask of 255.255.255.0 (see Figure 3.14).

Figure 3.14 Editing the snort.conf File in gedit

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 139

Installing Snort • Chapter 3 139

The next variable we need to look at is var EXTERNAL_NET.You can set
this to whatever subnet your external network adapter is answering requests (or
in this case, listening) on. In this example, we will use var EXTERNAL_NET
any.This tells Snort to listen for all addresses on the external network. In our
opinion, this value should be left at the default state of any.

OINK!
If you aren’t familiar with subnet masks, we strongly recommend that
you read any basic text on TCP/IP networking. Having said that, the most
common netmasks are /32 or /24. /32 is shorthand for the netmask
255.255.255.255 and specifies a single IP address. /24 is shorthand for
the netmask 255.255.255.0 and specifies a full subnet (256 IP
addresses).

If you scroll down further into the config file, you will see a section dedi
cated to server-specific variables.These variables will look similar to var
HTTP_PORTS 80 or var ORACLE_PORTS 1521.These variables (or vars)
specify specific ports on which Snort should watch for attacks.The only down
side to the current implementation is that you either have to list ports in succes
sion (for example, 80:82, which means 80 through 82 inclusive) or on separate
lines. Work is underway to add support for port lists.

Other areas of initial interest should include the preprocessors, output plug-
in, and ruleset sections. Preprocesses are the filters that Snort puts the incoming
data stream through before it actually processes the data. In the example
snort.conf file, notice that IP defragmentation is turned on.This helps to detect
fragmentation and denial-of-service (DoS) attacks.You can also enable other pre
processors in this section to fit your particular scenario. We cover the preproces
sors in depth in Chapter 6, “Preprocessors.”

The output plug-ins section defines whether Snort will use various logging
and alert features, and tells it what format to use to dump the data. Output plug-
ins are covered in Chapter 7, “Implementing Snort Output Plug-ins.”The ruleset
section defines what the system will consider “suspicious” activity. Based on this
alone, you should visit www.snort.org frequently to download the latest rulesets to
ensure that your IDS is doing the job you want it to do—without an up-to-date
ruleset, you machine will be nothing more than an expensive paperweight. It is
also a good practice to comment out rules that do not apply to your organiza-

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 140

140 Chapter 3 • Installing Snort

tion and/or needs. Unnecessary and extra rules can lead to false positive alerts
from the system.Techniques for managing the rules (automating updates, han
dling customized rules, and so forth) are covered in Chapter 9, “Keeping
Everything Up to Date.”

Also make note that you can alter the path to your rulesets here as well, by
changing the include $RULE_PATH/rule.rules line to reflect the location of your
updated rules.

The final step in this section is to verify that Snort will actually run without
error.To accomplish this, we will run Snort with a generic configuration/ruleset
and no options.To do this, open a terminal window, type snort –v, and verify
that the program loads without error.You will see a screen similar to the one in
Figure 3.15. All we are doing here is running Snort in verbose mode (hence the
–v flag). Since everything looks good, let’s move on to the next section.

Figure 3.15 Running Snort with the Verbose Option Enabled

Installation on the MS Windows Platform
All you Microsoft users were probably wondering when we were going to get to
the section designated for you. Well, we are here. Sorry for the delay. Please keep
in mind that we have not pushed the Microsoft portion to the end for any
reason other than for the simple fact that it is an easier task installing on this
system than on its Linux counterparts.This is going to be much shorter in terms
of installation steps. Configuration should be a breeze as well. As a personal

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 141

Installing Snort • Chapter 3 141

opinion, we always recommend installing on Linux (rather than Windows) if you
have the resources to do so—for reasons of stability and pure speed. Linux is also
far superior at performing network-related tasks.

Let’s get started with the installation. First, we’ll need to install the packet
capture library for Windows, WinPcap, which is on the accompanying CD-
ROM.You can find it under the Snort-2.1.1/Win32/winpcap3.0 directory, or
you can also install it from the GUI that is included on the CD-ROM.The
installation is very simple and should go smoothly. Here is how to install
WinPcap manually by browsing the CD-ROM:

1.	 Browse to the Snort-2.1.1/Win32/winpcap3.0 folder on the
CD-ROM.

2.	 Double-click WinPcap.exe to launch the installer.

3.	 The installer will present you with a Welcome dialog as in Figure 3.16.
Click Next.

Figure 3.16 The Snort Installer Welcome Screen

4. The next dialog is a simple notification that lets you know that the
installation completed successfully (see Figure 3.17). Click OK.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 142

142 Chapter 3 • Installing Snort

Figure 3.17 Confirming a Successful WinPcap Installation

5.	 The next screen is another confirmation that the installation finished on
your computer (see Figure 3.18). Click Finish.

Figure 3.18 Completing the WinPcap Install

Congratulations! The WinPcap installation was a success. Although not noted
during the installation, we recommend rebooting the machine for any changes to
take effect, as Windows always seems to need a little extra coaxing. If you ever
need to uninstall WinPcap, it places an entry in the Add/Remove Programs applet
in the Windows Control Panel. Simply remove it from there if something goes
wrong.

The latest version of Snort (as of press time) is included on the accompa
nying CD-ROM.You are also encouraged to visit www.snort.org to download
the latest and greatest version. For this exercise, we will be installing from the
CD-ROM.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 143

Installing Snort • Chapter 3 143

1.	 To begin, navigate to the Snort-2.1.1/Win32 folder on your CD
ROM and double-click the Snort-2.1.1.exe file.This will start the
installer. Optionally, you can also start the installer through the graphical
interface we have provided (this will start automatically when the CD
ROM is inserted into the drive).

2.	 Once the installer launches, you will be presented with the GNU
General Public License (GPL). We strongly recommend reading this in
its entirety if you have the patience and the time. It is a wonderful piece
of literature and has remained unchanged since its inception in 1991.
This is the license under which most open-source software is dis
tributed, including Linux. When you have finished reading the license,
click I Accept (see Figure 3.19).

Figure 3.19 The GNU GPL Agreement for Snort

3.	 The next screen to appear is the Installation Options dialog (see Figure
3.20). Here, you will be able to select optional components to fit your
unique situation. As the software states, if you choose the SQL option,
make sure that the SQL client software is already installed on the target
machine. Click Next when you are ready to continue.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 144

144 Chapter 3 • Installing Snort

Figure 3.20 Snort 2.1 Installation Options Window

4.	 Next, you are presented with the screen shown in Figure 3.21.This
window presents you with a list of components to install. Again, you can
choose what you would like to install here to fit your needs. Please note
that it is important to make sure Snort is one of your choices—it might
make for an interesting installation without it.Your component options
are as follows:

■	 Snort Installs Snort, configuration files, and rules.

■	 Documentation Installs the Snort documentation.

■	 Contrib Copies additional user-contributed add-on modules and
tools.

5.	 Click Next when you are satisfied with your choices.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 145

Installing Snort • Chapter 3 145

Figure 3.21 Choosing Components for Your Snort Install

6.	 Next, you are prompted with an installation location (see Figure 3.22).
The default is fine unless you’re feeling creative. Click Install.

Figure 3.22 Installation Location Window

7.	 The installer will start copying files to your hard drive. It doesn’t take
long, so don’t go anywhere. When it is complete, you will be presented
with a screen like the one shown in Figure 3.23.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 146

146 Chapter 3 • Installing Snort

Figure 3.23 Your Snort Installation Is Now Complete

8.	 The installation is now complete. Just click OK and Close and consider
Snort ready to use! Optionally, you can click Show Details to view the
output of the installer (see Figure 3.24).This is especially helpful if some
thing goes wrong. Common failures on Windows include WinPCap
upgrades (old versions should be removed completely and then upgraded
to the newest release; never simply upgrade, because it will break), and
dependency failures such as MySQL database support.The most effective
means to ensure a glitch-free install is to make sure your operating system
is completely up to date and working solidly before installing Snort and its
dependencies/requirements. Although this may seem like common sense,
it can and has been overlooked by many.

Figure 3.24 Installation Complete Screen with the Show Details
Option Activated

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 147

Installing Snort • Chapter 3 147

Command-Line Switches
When invoked from a command line, Snort has several runtime options that can
be invoked by using switches.These options control everything from logging,
alerts, and scan modes to networking options and system settings.The following
is a complete listing of the Snort 2.1 command-line options:

■	 --A <alert> Set <alert> mode to full, fast, or none. Full mode does
normal “classic Snort” style alerts to the alert file. Fast mode just writes
the timestamp, message, IPs, and ports to the file. None turns off
alerting.There is experimental support for UnixSock alerts that allow
alerting to a separate process. Use the unsock argument to activate this
feature.

■	 --b Log packets in tcpdump format. All packets are logged in their
native binary state to a tcpdump formatted log file called “snort.log.”
This option results in much faster operation of the program since it
doesn’t have to spend time in the packet binary->text converters. Snort
can keep up pretty well with 100Mbps networks in “–b” mode.

■	 --c <cf> Use configuration file <cf>.This is the rules file that tells
the system what to log, alert on, or pass!

■	 --C Dump the ASCII characters in packet payloads only, no hexdump.

■	 --d Dump the application-layer data.

■	 --D Run Snort in daemon mode. Alerts are sent to

/var/log/snort/alert unless otherwise specified.

■	 --e Display/log the Layer 2 packet header data.

■	 --F <bpf> Read BPF filters from file <bpf>. Handy for those of you
running Snort as a SHADOW replacement or with a love of super
complex BPF filters.

■	 --g <gname> Run Snort as group ID <gname> after initialization. As
a security measure, this switch allows Snort to drop root privileges after
its initialization phase has completed.

■	 --G Ghetto backward-compatibility switch, prints cross reference info
in the 1.7 format. Available modes are basic and url.

■	 --h <hn> Set the “home network” to <hn>, which is a class C IP
address something like 192.168.1.0 or whatever. If you use this switch,

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 148

148 Chapter 3 • Installing Snort

traffic coming from external networks will be formatted with the direc
tional arrow of the packet dump pointing right for incoming external
traffic, and left for outgoing internal traffic. Kind of silly, but it looks nice.

■	 --i <if> Sniff on network interface <if>.

■	 --I Add the interface name to alert printouts (first interface only).

■	 --k <checksum mode> Set <checksum mode> to all, noip, notcp,
noudp, noicmp, or none. Setting this switch modifies the checksum veri
fication subsystem of Snort to tune for maximum performance. For
example, in many situations, Snort is behind a router or firewall that
doesn’t allow packets with bad checksums to pass, in which case it
wouldn’t make sense to have Snort re-verify checksums that have
already been checked.Turning off specific checksum verification sub
systems can improve performance by reducing the amount of time
required to inspect a packet.

■	 --l <ld> Log packets to directory <ld>. Sets up a hierarchical direc
tory structure with the log directory as the base starting directory, and
the IP address of the remote peer generating traffic as the directory in
which packets from that address are stored. If you do not use the –l
switch, the default logging directory is /var/log/snort.

■	 --L <fn> Set the binary output file’s filename to <fn>.

■	 --m <mask> Set the umask for all of Snort’s output files to the
indicated mask.

■	 --M <wkstn> Send WinPopup messages to the list of workstations
contained in the <wkstn> file.This option requires Samba to be resi
dent and in the path of the machine running Snort.The workstation file
is simple: each line of the file contains the SMB name of the box to
send the message to (no \\s needed).

■	 --n <num> Exit after processing <num> packets.

■	 --N Turn off logging. Alerts still function normally.

■	 --o Change the order in which the rules are applied to packets. Instead
of being applied in the standard Alert->Pass->Log order, this will apply
them in Pass->Alert->Log order, allowing people to avoid having to
make huge BPF command-line arguments to filter their alert rules.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 149

Installing Snort • Chapter 3 149

■	 --O Obfuscate the IP addresses when in ASCII packet dump mode.This
switch changes the IP addresses that get printed to the screen/log file to
“xxx.xxx.xxx.xxx”. If the homenet address switch is set (–h), only
addresses on the homenet will be obfuscated, while non-homenet IPs will
be left visible. Perfect for posting to your favorite security mailing list!

■	 --p Turn off promiscuous mode sniffing. Useful for places where
promiscuous mode sniffing can screw up your host severely.

■	 --P <snaplen> Set the snaplen of Snort to <snaplen>.This filters
how much of each packet gets into Snort;, the default is the MTU for
the interface on which Snort is currently listening.

■	 --q Quiet. Don’t show banner and status report.

■	 --r <tf> Read the tcpdump-generated file <tf>.This will cause Snort
to read and process the file fed to it.This is useful if, for example, you
have a bunch of Shadow files that you want to process for content, or
even if you have a bunch of reassembled packet fragments that have
been written into a tcpdump formatted file.

■	 --s Log alert messages to the syslog. On Linux boxes, they will appear
in /var/log/secure; /var/log/messages on many other platforms.You can
change the logging facility by using the syslog output plug-in, at which
point the –s switch should not be used (command-line alert/log
switches override any config file output variables).

■	 --S <n=v> Set variable name “n” to value “v”.This is useful for set
ting the value of a defined variable name in a Snort rules file to a com-
mand-line specified value. For example, if you define a HOME_NET
variable name inside a Snort rules file, you can set this value from its
predefined value at the command line.

■	 --t <chroot> Changes Snort’s root directory to <chroot> after ini
tialization. Please note that all log/alert filenames are relevant to chroot
directory, if chroot is used.

■	 --T Snort will start up in self-test mode, checking all the supplied
command-line switches and rules files that are handed to it and indi
cating that everything is ready to proceed.This is a good switch to use if
daemon mode is going to be used; it verifies that the Snort configura
tion that is about to be used is valid and won’t fail at runtime.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 150

150 Chapter 3 • Installing Snort

■	 --u <uname> Change the UID Snort runs under to <uname> after
initialization.

■	 --U Turn on UTC timestamps.

■	 --v Be verbose. Prints packets out to the console.There is one big
problem with verbose mode: it’s still rather slow. If you are doing IDS
work with Snort, don’t use the –v switch; you will drop packets (not
many, but some).

■	 --V Show the version number and exit.

■	 --X Dump the raw packet data starting at the link layer.

■	 --y Turn on the year field in packet timestamps.

■	 --z Set the assurance mode for Snort alerts. If the argument is set to
“all,” all alerts come out of Snort as normal. If it is set to “est” and the
stream4 preprocessor is performing stateful inspection (its default
mode), alerts will only be generated for TCP packets that are part of an
established session, greatly reducing the noise generated by tools like
stick and making Snort more useful in general.

■	 --? Show the usage summary and exit.

Installing on OpenBSD
There are three recommended ways of installing Snort on a current OpenBSD
system.The following examples detail the steps for an OpenBSD 3.5 or later
system. All three methods require “root” permissions.You can install Snort on
OpenBSD via ports, packages, or as Marty intended it to be, from source.

The first thing to do is lock down your OpenBSD system. “Lock it down?
But I thought OpenBSD was secure?” you might ask. Well, OpenBSD is an
operating system built with security in mind.That does not mean that it is abso
lutely secure out of the box.You will want to follow a similar process to locking
down any UNIX system: turn off unnecessary services, remove unnecessary
packages, and so forth.To disable services under OpenBSD, you must remove the
flags in /etc/rc.conf, and if necessary, comment out unwanted services from
/etc/inetd.conf. For example, with OpenBSD 3.4, the following services were
enabled by default:

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 151

Installing Snort • Chapter 3 151

localhost:

tcp 587

tcp 25

0.0.0.0

tcp 22

tcp 37

tcp 13

tcp 113

OINK!
For more information on locking down OpenBSD, check out the fol
lowing books:

■	 Absolute OpenBSD, UNIX for the Practical Paranoid, by Michael
W. Lucas

■	 Secure Architectures with OpenBSD, by Brandon Palmer and
Jose Nazario.

When installing OpenBSD for a Snort sensor, we recommend following the
UNIX philosophy of creating individual partitions for each of your mount points
(especially for /var where your logs will be kept). Once partitioned, it’s time to
choose the main categories of software to install, called filesets in OpenBSD. As
you can see in the following output, we have selected all the filesets except
games and the X windowing system files. Many people will argue against
installing a compiler on your sensor, but they will leave the package management
system on the box. If you want to skip adding a compiler to the system, you will
have to have an additional system that is identical to your sensor, in order to
build binaries on.

_[X] bsd

[X] bsd.rd

[X] base35.tgz

[X] etc35.tgz

[X] misc35.tgz

[X] comp35.tgz

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 152

152 Chapter 3 • Installing Snort

[X] man35.tgz

[] game35.tgz

]] xbase35.tgz

[] xshare35.tgz

[] xfont35.tgz

[] xserv35.tgz

Option 1: Using OpenBSD Ports
The OpenBDS ports system is a method for installing software that has been
prepared to compile on OpenBSD, which comes directly from FreeBSD.The
ports tree is located in /usr/ports and is divided into categories for ease of
finding the software you need.

In this instance, we want to install Snort from the /usr/ports/net/snort direc
tory. Once in the /usr/ports/net/snort directory, simply type make as root, or
use sudo make to start the build. If a readable copy of the snort gzipped source
tar archive, snort-2.0.0p1.tgz for OpenBSD 3.5, is not available in /usr/ports/dis-
tfiles, a network connection is required to auto fetch it.

The following example shows all the required steps to manually download
the source archive into the required target directory:

OpenBSDhost# cd /usr/ports/distfiles

OpenBSDhost# ftp ftp://ftp.openbsd.org/pub/OpenBSD/distfiles/

Connected to ftp.openbsd.org.

220 delirium.entangle.org FTP server (Version 6.5/OpenBSD) ready.

331 Guest login ok, send your email address as password.

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

200 Type set to I.

250 CWD command successful.

ftp> ls snort-2*

229 Entering Extended Passive Mode (|||58185|)

150 Opening ASCII mode data connection for '/bin/ls’.

-r--r--r-- 1 0 0 1556540 Apr 21 07:23 snort-2.0.0.tar.gz

226 Transfer complete.

ftp> mget snort-2*

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 153

Installing Snort • Chapter 3 153

mget snort-2.0.0.tar.gz? y

229 Entering Extended Passive Mode (|||62387|)

150 Opening BINARY mode data connection for 'snort-2.0.0.tar.gz’ (1556540

bytes).

100% |**| 1520 KB 00:00

226 Transfer complete.

1556540 bytes received in 0.19 seconds (7.63 MB/s)

ftp> quit

221 Goodbye.

OpenBSDhost# cd /usr/ports/net/snort

OpenBSDhost# make

===> Checking files for snort-2.0.0p1

`/usr/ports/distfiles/snort-2.0.0.tar.gz’ is up to date.

>> Checksum OK for snort-2.0.0.tar.gz. (sha1)

===> Extracting for snort-2.0.0p1

===> Patching for snort-2.0.0p1

===> Configuring for snort-2.0.0p1

<snip>

===> Building for snort-2.0.0p1

<snip>

Making all in doc

Making all in etc

Making all in rules

Making all in templates

Making all in contrib

After the make command in /usr/ports/net/snort completes, the package can
be installed with either make install as root, or with sudo make install as shown in
the following:

OpenBSDhost# make install

===> Faking installation for snort-2.0.0p1

Making install in src

Making install in win32

Making install in output-plugins

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 154

154 Chapter 3 • Installing Snort

Making install in detection-plugins

Making install in preprocessors

Making install in parser

/bin/sh /usr/ports/net/snort/w-snort-2.0.0p1/snort-2.0.0/mkinstalldirs

/usr/ports/net/snort/w-snort-2.0.0p1/fake-i386/usr/local/bin

install -c -s -o root -g bin -m 555 snort /usr/ports/net/snort/w-snort-

2.0.0p1/fake-i386/usr/local/bin/snort

Making install in doc

Making install in etc

Making install in rules

Making install in templates

Making install in contrib

/bin/sh /usr/ports/net/snort/w-snort-2.0.0p1/snort-2.0.0/mkinstalldirs

/usr/ports/net/snort/w-snort-2.0.0p1/fake-i386/usr/local/man/man8

install -c -o root -g bin -m 444 /usr/ports/net/snort/w-snort-

2.0.0p1/snort-2.0.0/snort.8 /usr/ports/net/snort/w-snort-2.0.0p1/fake-

i386/usr/local/man/man8/snort.8

install -d -o root -g bin -m 755 /usr/ports/net/snort/w-snort-2.0.0p1/fake-

i386/usr/local/share/examples/snort

install -c -o root -g bin -m 444 /usr/ports/net/snort/w-snort-

2.0.0p1/snort-2.0.0/etc/snort.conf /usr/ports/net/snort/w-snort-

2.0.0p1/fake-i386/usr/local/share/examples/snort

install -c -o root -g bin -m 444 /usr/ports/net/snort/w-snort-

2.0.0p1/snort-2.0.0/etc/sid-msg.map /usr/ports/net/snort/w-snort-

2.0.0p1/fake-i386/usr/local/share/examples/snort

install -c -o root -g bin -m 444 /usr/ports/net/snort/w-snort-

2.0.0p1/snort-2.0.0/etc/classification.config /usr/ports/net/snort/w-snort-

2.0.0p1/fake-i386/usr/local/share/examples/snort

install -c -o root -g bin -m 444 /usr/ports/net/snort/w-snort-

2.0.0p1/snort-2.0.0/etc/reference.config /usr/ports/net/snort/w-snort-

2.0.0p1/fake-i386/usr/local/share/examples/snort

install -c -o root -g bin -m 444 /usr/ports/net/snort/w-snort-

2.0.0p1/snort-2.0.0/rules/*.rules /usr/ports/net/snort/w-snort-2.0.0p1/fake-

i386/usr/local/share/examples/snort

===> Building package for snort-2.0.0p1

Creating package /usr/ports/packages/i386/all/snort-2.0.0p1.tgz

Creating gzip’d tar ball in '/usr/ports/packages/i386/all/snort-

2.0.0p1.tgz’

Link to /usr/ports/packages/i386/ftp/snort-2.0.0p1.tgz

Link to /usr/ports/packages/i386/cdrom/snort-2.0.0p1.tgz

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 155

--

Installing Snort • Chapter 3 155

===> Installing snort-2.0.0p1 from /usr/ports/packages/i386/all/snort-

2.0.0p1.tgz

Adding /usr/ports/packages/i386/all/snort-2.0.0p1.tgz

The Snort rule examples have been installed in

/usr/local/share/examples/snort

OpenBSDhost#

If for some reason, Snort needs to be removed, simply use the pkg_delete or
make deinstall command:

OpenBSDhost# pkg_delete snort-2.0.0p1

Deleting snort-2.0.0p1

OpenBSDhost#

OR

OpenBSDhost# cd /usr/ports/net/snort

OpenBSDhost# make deinstall

===> Deinstalling for snort-2.0.0p1

Deleting snort-2.0.0p1

OpenBSDhost#

Option 2: Using Prepackaged OpenBSD Ports
To save time and trouble, OpenBSD maintains precompiled binary distributions
of every package for each released version of OpenBSD and its associated ports
tree. Installing Snort is as simple as downloading and installing a package.The
target directory does not matter, but /tmp is suggested.

OpenBSDhost# cd /tmp

OpenBSDhost# ftp ftp://ftp.openbsd.org/pub/OpenBSD/3.5/packages/i386/

Connected to ftp.openbsd.org.

220 ftp.openbsd.org FTP server (Version 6.5/OpenBSD) ready.

331 Guest login ok, send your email address as password.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 156

156 Chapter 3 • Installing Snort

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

200 Type set to I.

250 CWD command successful.

ftp> ls snort*

229 Entering Extended Passive Mode (|||60873|)

150 Opening ASCII mode data connection for '/bin/ls’.

-r--r--r-- 1 0 0 233876 Apr 9 20:59 snort-2.0.0p1.tgz

226 Transfer complete.

ftp> mget snort*

mget snort-2.0.0p1.tgz? y

229 Entering Extended Passive Mode (|||60947|)

150 Opening BINARY mode data connection for 'snort-2.0.0p1.tgz' (233876

bytes).

100% |**| 228 KB 00:00

226 Transfer complete.

233876 bytes received in 0.19 seconds (1.17 MB/s)

ftp> quit

221 Goodbye.

OpenBSDhost# pkg_add snort-2.0.0p1.tgz

Adding snort-2.0.0p1.tgz

The Snort rule examples have been installed in

/usr/local/share/examples/snort

OpenBSDhost#

The quickest way is to install the Snort package from remote, although most
OpenBSD users are too untrusting to do so:

OpenBSDhost# pkg_add -v

ftp://ftp.openbsd.org/pub/OpenBSD/3.5/packages/i386/snort-2.0.0p1.tgz

Adding ftp://ftp.openbsd.org/pub/OpenBSD/3.5/packages/i386/snort-2.0.0p1.tgz

extracting /usr/local/bin/snort

extracting /usr/local/man/man8/snort.8

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 157

--

Installing Snort • Chapter 3 157

<snip>

The Snort rule examples have been installed in

/usr/local/share/examples/snort

OpenBSDhost#

If for some reason Snort needs to be removed, simply use the pkg_delete com
mand:

OpenBSDhost# pkg_delete snort-2.0.0p1

Deleting snort-2.0.0p1

OpenBSDhost#

Option 3: Installing Snort from Source
Of course, most IDS admins will want to run the latest stable version of Snort
that might not be automatically supported by OpenBSD’s ports tree. In this case,
download Snort source code from www.snort.org, decompress and extract the
tarball, configure, make, and make install.

1. Download the version you want from www.snort.org/dl/. In this case,
the snort-2.1.2.tar.gz archive is saved to the ~src directory.

2. Extract the archive:

OpenBSDhost# cd ~/src

OpenBSDhost# tar -xzf snort-2.1.2.tar.gz

OpenBSDhost# cd snort-2.1.2

OpenBSDhost#

3. Configure the build:

OpenBSDhost# ./configure

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

<snip>

checking for a BSD-compatible install... /usr/bin/install -c

configure: creating ./config.status

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 158

158 Chapter 3 • Installing Snort

config.status: creating Makefile

config.status: creating src/Makefile

<snip>

OpenBSDhost#

4. Make the build:

OpenBSDhost# make

make all-recursive

Making all in src

Making all in sfutil

<snip>

Making all in doc

Making all in etc

Making all in rules

Making all in templates

Making all in contrib

OpenBSDhost#

5. Install the build:

OpenBSDhost# sudo make install

Making install in src

Making install in sfutil

Making install in win32

Making install in output-plugins

Making install in detection-plugins

Making install in preprocessors

Making install in flow

Making install in portscan

Making install in int-snort

Making install in HttpInspect

Making install in include

Making install in utils

Making install in user_interface

Making install in session_inspection

Making install in mode_inspection

Making install in anomaly_detection

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 159

Installing Snort • Chapter 3 159

Making install in event_output

Making install in server

Making install in client

Making install in normalization

Making install in parser

/bin/sh ../mkinstalldirs /usr/local/bin

/usr/bin/install -c snort /usr/local/bin/snort

Making install in doc

Making install in etc

Making install in rules

Making install in templates

Making install in contrib

/bin/sh ./mkinstalldirs /usr/local/man/man8

/usr/bin/install -c -m 644 ./snort.8 /usr/local/man/man8/snort.8

OpenBSDhost#

Done.

As you can see, OpenBSD has its own nuances and particularities, but overall
it is a fantastic operating system. If you are building a 100MB sensor, OpenBSD
is a great choice, as long as you are comfortable performing the required mainte
nance and administration. Remember that just because OpenBSD “is” more
secure than most Unices, doesn’t mean that you won’t have to lock it down.

Installing Bleeding-Edge Versions of Snort
If you are one of those types who like to live life to the fullest, you might want
to go out and get the latest version of the software directly from the developers,
and they are always happy to provide you with what you need and crave. For this
reason, they make their daily Concurrent Version System (CVS) (see the fol
lowing Tools & Traps sidebar) snapshots available for download.You can find them
at www.snort.org/dl/snapshots if you would like to try them out. Keep in mind
that CVS builds are the equivalent to beta builds and must be approached as
such.They can contain bugs, and there is not a reasonable amount of support for
that type of installation.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 160

160 Chapter 3 • Installing Snort

The CVS
CVS is a versioning system that allows many developers to work on the

project in a CVS tree.

for browsing as well, which is a nice feature if you need to quickly get
some information or code from a CVS tree. Here are a couple of GUI appli
cations for CVS:

■ If you would like a CVS front-end app for Linux, VisualCVS

checking out.
■ If you would like a CVS application for Windows, WinCVS

Tools & Traps….

same project simultaneously, while keeping track of what changes have
been made, who made them, and most importantly, what versions exist
and keeping them separated. You will generally find many versions of a

CVSs exist on many Web sites for almost every open-source pro
ject. For example, SourceForge (www.sourceforge.net) has CVS reposito
ries for all of the projects it contains. To browse most CVS trees, you will
need a CVS client application. However, SourceForge has a Web interface

(www.scentech.ch/products/visualcvs) is a client worth

(www.wincvs.org) is a pretty good client.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 161

Installing Snort • Chapter 3 161

Summary
In this chapter, we covered the basics of package management, including RPM and
source code packages. We also covered complete installs of the pcap libraries for
Linux and Windows systems, Snort IDS for Linux and Windows.You are now
armed with the knowledge and software necessary to continue with this book.

As stated several times in this chapter, it is important to keep your Snort
installation up to date.This includes the packet capture libraries and the Snort
system itself.You should also visit the Snort site frequently for updated rulesets.
Computer security is a fast-paced sector, and it is necessary to keep on top of
things so that your systems are not easily compromised.

We also strongly recommend that you keep your OS up to date as well, espe
cially when it comes to security updates and patches. Windows makes this easy
through the Windows Update interface. SUSE has the option for YaST Online
Update (YOU), which, in our opinion, is an excellent utility to keep your Linux
system up to speed.

All of these parts will come together to form a solid IDS that will serve you
well for years to come.

Solutions Fast Track

Making the Right Choices

� The best operating system for your Snort IDS deployment(s) is a highly
personal decision.The most common choices are Linux, OBSD, and
Microsoft Windows. All run Snort well.

� Graphical tools such as X Windows, desktop environments (such as
KDE and GNOME), many applications, and many other libraries/tools
are unnecessary to include in an IDS.

� Linux can be an excellent choice over systems such as OBSD for
reasons of support, both free and commercial offerings.

� Operating system considerations for a large-scale deployment should
include security concerns, hardware/software cost, ability to strip the
operating system of unnecessary parts, and remote management
capabilities.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 162

162 Chapter 3 • Installing Snort

A Brief Word about Linux Distributions

� A number of specialized Linux distributions provide much better
security or optimization for acting as an IDS sensor, if you are deploying
Snort in a production environment (as opposed to doing it for research
or your own education). We strongly recommend that you look at one
of them.

� Debian GNU/Linux (currently in stable version 3.0) has been around
forever and is known to many as the most stable distro of Linux
available.

� Slackware Linux (currently in stable version 9.1) is a favorite among
hardcore Linux users, and understandably so.The support base for it is
huge, and the system itself is stable, fast, and secure.

� Gentoo Linux (currently in stable version 2004.1) is an interesting
distribution unlike any other available today.The only thing close that
we are aware of is the Linux From Scratch (LFS) project.The idea behind
Gentoo Linux is to provide users with a minimal (45.3MB according to
their FTP mirrors) CD that you boot to and connect to the Internet to
download the rest of the distribution.

� As with any other common package installation, it is best to start with a
solid OS installation. Please make sure that your OS is current and error
free.

Preparing for the Installation

� libpcap is a packet-capture library for Linux systems. Windows uses
WinPcap.

� Always install the newest version of libpcap before installing Snort.

� libpcap is a necessary requirement before you attempt to install Snort IDS.

Installing Snort

� Snort is available through online downloads and is included on the
accompanying CD-ROM.

� You can use CVS to get the latest, bleeding-edge version of Snort.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 163

Installing Snort • Chapter 3 163

� Snort is available for UNIX, Linux, and Windows systems.

� Snort can be downloaded as a tarball (or tar archive), which contains the
source code.

� Installation is accomplished with the ./configure, make, make install routine.

� After Snort is installed, you must edit the snort.conf configuration file.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: What operating systems will Snort run on?

A: Snort will run on many flavors of UNIX, Linux, and Microsoft Windows.

Q: Does Snort have any software requirements and/or dependencies?

A: Yes. First, you must have the pcap packet-capture libraries installed.You will
also need to have some form of database available to you if you intend to use
Snort’s database integration features.

Q: With which major databases will Snort work?

A: Snort will work well with MySQL, PostgreSQL, and Microsoft SQL, but it
will also work with almost any database, especially if you use Barnyard to
interact with it.

Q: How can I get Snort?

A: You can get Snort on the CD-ROM that comes with this book, download
binaries online at www.snort.org, or get the latest version from their CVS tree.

Q: Does Snort act as a firewall for my network?

A: No. Snort is an IDS, designed to detect a wide variety of network intrusions
(for example, DoS attacks) defined in the rulesets and alert when it finds any
thing. It does not block any type of attack or intrusion.

www.syngress.com

295_Snort2e_03.qxd 5/5/04 2:55 PM Page 164

164 Chapter 3 • Installing Snort

Q: Can I specify the ports to which Snort should pay particular attention?

A: Yes.You can add rules to specifically watch whatever kind of traffic you’d
like.To change the ports used by existing rules that have variables, you need
to edit the snort.conf file and add or modify lines similar to var
HTTP_PORTS 80 for each port you need to monitor. Alternately, you can
stack multiple ports in one line in the form var HTTP_PORTS 80:82.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 165

Chapter 4

Inner Workings

Solutions in this Chapter:

� The Life of a Packet Inside Snort

� The Detection Engine

� Writing Your Own Detection Plug-In

� Summary

� Solutions Fast Track

� Frequently Asked Questions

165

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 166

166 Chapter 4 • Inner Workings

Introduction
In this chapter, we will be discussing the life of a packet inside Snort—the hows,
whys, and whats of Snort’s inner workings. First, we’ll look at how packets get
into Snort.Then, we’ll look at how Snort decodes packets. Next, we’ll look at
how Snort detects attacks. We will discuss preprocessors and output plug-ins;
however, these are covered in more detail in Chapters 6 and 7, respectively.

The Life of a Packet Inside Snort
The life of a packet inside Snort is rather simple. Snort uses pcap for reading
packets. Snort tells pcap to use the callback function ProcessPacket whenever it
reads a packet. ProcessPacket calls the decoder, which decodes each of the network
layers (we’ll discuss the decoder in a bit). After decoding, what happens next
depends on how Snort was started. In IDS mode, Snort calls the detection
engine. In packet-logging mode, Snort calls the output plug-ins, the same output
plug-ins used by Snort when it generates an alert.

Decoders
Currently, Snort’s decoder is pretty simple. Based on the libpcap link layer, Snort
calls different functions to handle decoding the link layer. Snort supports a
number of link layers: Ethernet, 802.11,Token Ring, FDDI, Cisco HDLC, SLIP,
PPP, and OpenBSD’s PF.

Each link-layer decoder function sets various pointers into the packet structure.
Then, based on information it decoded, it sets up pointers into the packet structure
for where the next layer starts, and calls the next layer’s decoder. Each layer has a
hard-coded list of layers it supports underneath it. As such, it is relatively easy to
add decoders to handle new packet-based protocols. More complex protocols, such
as TCP, are decoded in the preprocessors. We’ll talk about that in a bit.

Since most networks on which Snort is deployed are Ethernet, we’ve
included a function call graph (see Figure 4.1) when Snort decodes an Ethernet
packet.This graph skips a few details, but it should be enough to get the gist of
what is going on inside Snort.The incoming packet is passed to the DecodeEthPkt
function.Then, by overlaying the Ethernet structure on top of the packet data,
the source and destination MAC addresses and the type of the next layer
(ether_type) are made available.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 167

Inner Workings • Chapter 4 167

OINK!
See the packet structure, defined in src/decode.h, for all of the possible
information that is pulled out at each layer.

Based on the value of ether_type, the next decoder is called.
Figure 4.1 shows how standard Ethernet packets are decoded. If the value of

ether_type is 2048 (ETHERNET_TYPE_IP, also defined in src/decode.h), then
Snort knows the next layer is IP and should call DecodeIP.This goes on until
there are no more layers to decode. In the standard Ethernet case, decoding TCP
packets is pretty simple. Incoming packets feed into DecodeEthPkt, which calls
DecodeIP, which calls DecodeTCP.

Figure 4.1 Processing an Ethernet Packet
Incoming

Pcap

DecodeEthPkt
Ethernet

DecodeIP
IP

DecodeARP
ARP

DecodeVlan
802.1Q

DecodeIPV6
IPV6

DecodeIPX
IPX

DecodePPPoEPkt

DecodeTCP
TCP

DecodeTCPOptions
TCP Options

DecodeIPOptions
IP Options

DecodeUDP
UDP

DecodeICMP
ICMP

DecodeIPOnly
Embedded IP

PPP Ov er Ethernet

Of course, we left out a few things, like error checking, data validation, and a
ton of other steps, but you have the basics.

The Detection Engine
After all the decoders are finished, Snort calls Preprocess. Actually, this is a mis
nomer, since this function calls both the preprocessors and the detection engine.
Snort preprocessors can do many things, including advanced decoding, protocol

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 168

168 Chapter 4 • Inner Workings

normalization, and attack detection. Since preprocessors are covered in greater
detail in Chapter 6, we won’t discuss how preprocessors work and what prepro
cessors do here. For now, it is enough to remember that preprocessors are basi
cally really advanced decoders that can also set off alerts. Again, see Chapter 6 for
more information on how preprocessors work.

In the Preprocess function, all of the preprocessors are called in the order in
which they were defined in the Snort configuration file. After all of the prepro
cessors are called, Preprocess checks the value of the global do_detect flag, making
sure that none of the preprocessors wanted us to skip the detection phase on the
current packet.There are a few reasons why a preprocessor might want to skip
the detection phase, although the primary reason is that the traffic was deter
mined to be broken in some fashion, and it would be a waste of time to further
process the packet.

After that, the Detect function is called. Detect, Snort’s detection engine, is
where the rules are evaluated, the meat of Snort’s IDS capabilities. Before Snort
2.0, the detection engine was simple and relatively easy to understand. Snort 2.0
included a much more advanced detection engine, with multipattern matching
algorithms at the core. Understanding the current detection engine is much
easier once you understand how the old detection engine worked.

The Old Detection Engine
The old detection engine is a three-dimensional linked list of rule headers, rules,
and the detection functions.

The rules are in a linked list of the rule header data, called RuleTreeNodes
(RTN). Off each RTN is a linked list of rules that share the same rule header
data, called OptTreeNodes (OTN). Attached to each OTN is a linked list of
detection functions, called OptFpList. When the detection engine gets a packet,
it walks the RTN linked list. If the RTN matches, the detection engine walks
the OTN linked list for that RTN.The detection engine checks each of the
functions in the OTN’s OptFpList. If all of the functions in the OTN match, an
alert is triggered. Figure 4.2 illustrates the three-dimensional linked list.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 169

Inner Workings • Chapter 4 169

Figure 4.2 Snort’s RTN and OTN Structure

Source IP
Destination IP

Source Port
Destination Port

... etc
Option List (O TN)

Source IP
Destination IP

Source Port
Destination Port

... etc
Option List (O TN)

Rule 1
detection fucntion list

Meta Data
... etc

Rule 2
detection fucntion list

Meta Data
... etc

OptFpListNode

OptFpListNode
uricontent

/cgi-bin/phf

Rule 3
detection fucntion list

Meta Data
... etc

RT N

next R TN

RT N

next R TN

OT N

next O TN

OT N

next O TN

flo w
to_serv er,established

next detection function

next detection function

OT N

next O TN

When an alert is triggered, the detection engine logs an alert with the
packet, and starts the whole process over again with the next packet.

The New Detection Engine
The old detection engine was simple to implement and made adding new detec
tion capabilities trivial. However, the old detection engine is not very efficient.
The language is very flexible, but performance of the engine is roughly linear to
the number of rules loaded.

In the last three years, we have more than doubled the number of rules ship
ping with Snort. When the Snort project started tracking unique rule IDs, we
had just over 1000 unique rules. At last count, we have nearly 2500 rules. With
the old detection engine, this massive increase in rules would have slowed Snort
to a crawl.

A new detection had to be developed to take Snort to the next level in
speed. SourceFire, the company Marty started built on Snort, put forward tons of
resources in order to make Snort a gigabit-capable IDS.The first change required
to make Snort gigabit capable was to speed up the detection engine.

SourceFire developers Marc Norton and Dan Roelker spent quite a bit of
time building a new detection engine that allowed the use of a multipattern
search algorithm at its core to allow the detection engine to check multiple rules

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 170

170 Chapter 4 • Inner Workings

in parallel. With this new detection engine and with a tuned ruleset, Snort is
capable of performing IDS on gigabit networks.

The new detection engine uses a setwise methodology for analyzing snort
rules.The detection engine builds four rule groups:TCP, UDP, ICMP, and IP.
When processing a packet, the new detection engine first checks the protocol. If
the protocol is TCP, UDP, or ICMP, the detection engine checks the ruleset for
that protocol; otherwise, it checks the IP ruleset.

Each ruleset is comprised of a rule-group based on the longest content from
every rule on each port. For ICMP packets, the rule-group is based on the
ICMP type specified in each ICMP rule.

For each packet that comes in, the detection engine calls prmFindRuleGroup,
which returns the appropriate rule-group based on the packet submitted.
prmFindRuleGroup returns the appropriate rule group based on source and desti
nation ports in the packet, and passes the rule-group matching function
(fpEvalHeaderSW).

When checking TCP packets, the detection engine first checks stream
inserted packets. Snort’s stream re-assembly preprocessor (stream4) reassembles
streams by injecting “pseudo” packets that are the combination of packets in the
current stream. (See Chapter 6 for more information on what stream4 does and
how it works.)

Once inside fpEvalHeaderSW, the detection engine first checks any rules
with uricontents. For each URI marked in the rule by the http_inspect prepro
cessor, the detection engine calls the setwise pattern engine. Every pattern that is
matched, the detection engine calls otnx_match, which is walks the OTN
exactly the same as the old detection engine. After checking each of the uricon
tents rules, then the regular content rules are checked in the same manor.Then
all of the rules without content.

Each rule that successfully fires is added to a queue of events. After a speci
fied number of events are added to the event queue, it gets complicated. Each
rule that is successfully fired is added to one of many queues, based on the rule
type: alert, pass, or log. After each queue is full, the detection engine stops pro
cessing rules.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 171

Inner Workings • Chapter 4 171

OINK!
Preprocessor alerts are also fed into this alert queue, but since prepro
cessor alerts do not have content length, they come after any rules that
are fired.

Now comes the fun part. After each queue is full or the detection engine has
no more rules to check, Snort goes through each of the rule types in the config
ured order. (See Chapter 5 for how to configure rule type order.) Then, based on
the action, the configured number of alerts are generated. For example, if the
configured alert type order is ”pass, alert, log,” and there are any pass rules, then
the traffic is passed and no alerts are logged. If there are no pass rules, then the
first three events are logged ordered by the longest content or priority. By
default, the detection engine orders the rules to fire based on longest content.
We’ll talk more about logging in a little bit.

OINK!
Event queuing is a new feature as of Snort 2.1.3 RC1. For more informa
tion on event queuing, read doc/README.event_queue that comes with
the Snort source for versions 2.1.3 and later.

Tagging
One of the most useful features of Snort happens after the detection phase on
any packets that did not trigger alerts. Rule writers can add the tag rule option, a
post-detection rule option, to log a specific amount of data from the session or
host after the rule fires.

By logging additional traffic, analysts will have a far better chance at under
standing what caused the alert and any potential consequences from the alert. In
many cases, using the tag keyword is the only way to know if an exploit attempt
was successful.

The tag option syntax is:

tag: <type>, <count>, <metric>, [direction]

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 172

172 Chapter 4 • Inner Workings

The supported tag types are session and host. Session logs packets in the ses
sion that set off the rule. Host logs traffic from the host that set off the rule. By
adding the parameter src, traffic from the source IP address is logged. Conversely,
by adding the parameter dst, traffic from the destination IP address is logged.

The option metric is which type of counter to use. Snort supports two met
rics: seconds and packets.The option count represents how many of the specified
metrics Snort should log after the alert is fired.

The following rule looks for the start of any session on port 23 (usually
Telnet) and any packets that occur on that specific session for the next 10 sec
onds after the rule is triggered.

alert tcp any any -> any 23 (flags:S; tag:session,10,seconds;)

Thresholding
After an alert is fired, but before Snort calls the output plugins, there are two
additional steps that Snort goes through. First is thresholding. After each alert is
generated, the detection engine goes through the thresholding portion of the
detection engine. With thresholding, rule writers can limit the number of events
that are triggered by rules.There are three types of thresholding configuration
available: limiting, thresholding, or both. Limit does just as you would think; it
limits the number of events that can be fired by the rule. By limiting a noisy rule
to fire a specific number of times, rule writers can prevent a denial-of-service
(DoS) attack on their analysts.This feature is very useful when handling worms
that can generate millions of alerts per hour. Without thresholding, worms could
cause analysts to become overloaded and miss important events.

By adding the following line to snort.conf, any source IP address can only
generate one alert of each rule per 60 seconds.

threshold gen_id 1, sig_id 0, type limit, track by_src, count 1, seconds 60

Threshold says that a specific number of alerts must go off before a rule is
fired.Threshold allows rule writers to write rules that look for brute-force
attempts. By specifying a threshold of count 3 on a rule that looks for a login
failure attempt, the first three login failures will not be logged. Any additional
login attempts will set off an alert.

By adding the following threshold option to a login failure rule, the rule will
only fire after the same destination IP address triggers the same rule five times
within 60 seconds.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 173

Inner Workings • Chapter 4 173

threshold:type threshold, track by_dst, count 5, seconds 60;

The thresholding type both is a combination of limit and threshold, requiring
a specified number of alerts to go off before triggering, but only logging a spe
cific number of alerts.

For more information on thresholding, read the Thresholding section in the
Snort users’ manual (docs/snort_manual.pdf).

Suppression
After the detection engine alerts on the rules, and after thresholding, but before
logging, there is one last step to go through: suppression. Suppression prevents
rules from firing on a specific network segment without removing the rules from
the ruleset. By using suppression, rulesets can be quickly tuned for a specific
environment without disabling rules that may be useful in general, but analysts
have deemed acceptable when targeting specific IP addresses.

By adding the following suppression line to snort.conf, the rule sid:1852,
which happens to be “WEB-MISC robots.txt access,” will not fire if the destina
tion IP address is 10.1.1.1:

suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.1

Logging
After all of the appropriate rules have fired, and suppression and thresholding
have been handled, if any alerts are generated, we call the output plug-ins.
Output plug-ins are discussed in detail in Chapter 7.

Adding New Functionality
For most people, extending Snort means one of three things: adding an output
mechanism for their specific uses, adding a complex protocol decoder, or adding
detection plug-ins for a new method of detection.The output plug-ins are cov
ered in detail in Chapter 7, and preprocessors are covered in Chapter 6. In this
chapter, we will cover how to write detection plug-ins. Detection plug-ins can
be as simple or as complex as you want, but generally, detection plug-ins are
developed for a single purpose and are relatively easy to implement.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 174

174 Chapter 4 • Inner Workings

What Is a Detection Plug-In?
Before discussing how to write a detection plug-in, we should define detection
plug-ins. Detection plug-ins are simple keyword value pair rule options that
make up the meat of Snort rules. In general, the detection plug-ins are simple
checks that check a specific value in a specific location of packets.There are four
classes of rule options: meta-data, payload, non-payload, and post-detection.

There are many plug-ins available with Snort.The Snort project documents
how these are used. In addition to Chapter 5, where we talk about writing rules,
more information on detection plug-ins is available in the Snort users’ manual,
available within Snort’s distribution (doc/snort_manual.pdf) or on the Snort
Web site (www.snort.org/docs/snort_manual/).

Writing Your Own Detection Plug-In
Let’s walk through what you need to write your own detection plug-in. First, we
should define what we want to look for and why. For our example plug-in, we
are going to implement a plug-in that checks the value of the TCP urgent
number. Snort comes with multiple templates for adding new functionality, but
for this example, we’ll start from scratch. If you want to write a new plug-in, you
should follow the templates available with the Snort source, in the templates
directory.

Copyright and License
Since we are adding new functionality to Snort for other people to use, we need
to follow Snort’s GPL license. At the same time, we want to let everyone know
who owns the code. We wrote the example, so we’ll assign the copyright to us. If
you are going to add functionality for work, you should probably check with
your legal department first.

/*

** Copyright (C) 2004 Brian Caswell <bmc@shmoo.com>

**

** This program is free software; you can redistribute it and/or modify

** it under the terms of the GNU General Public License as published by

** the Free Software Foundation; either version 2 of the License, or

** (at your option) any later version.

**

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 175

Inner Workings • Chapter 4 175

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

** GNU General Public License for more details.

**

** You should have received a copy of the GNU General Public License

** along with this program; if not, write to the Free Software

** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,

USA.

*/

Includes
We need to include a number of header files.These give us access to other func
tions and data in the rest of Snort. At this point, we also add the extern for
errno, which we will use later.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include "rules.h"

#include "decode.h"

#include "plugbase.h"

#include "parser.h"

#include "debug.h"

#include "util.h"

#include "plugin_enum.h"

#include <errno.h>

#include <ctype.h>

extern int errno;

Data Structures
We need to store our configuration parameters for each instance of our detection
plug-in.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 176

176 Chapter 4 • Inner Workings

typedef struct _TcpUrgData

{

u_int16_t urg;

} TcpUrgData;

Functions
We will end up with four functions: a setup function, an initialization function, a
parser, and a detection function. We’ll go through each of these functions in turn.
All of these functions should be prototyped in the .c file except the setup func
tion, since the setup function gets called by the parser.

void TcpUrgInit(char *, OptTreeNode *, int);

void TcpUrgParse(char *, TcpUrgData *, OptTreeNode *);

int TcpUrgCheck(Packet *, struct _OptTreeNode *, OptFpList *);

Setup
Setup registers our plug-in name with the parser. Whenever the parser parses a
rule that uses our plug-in (tcpurg), it calls our initialization function, which
should set up the data structures for the plug-in for that rule. As this function is
called by the parser, we need to put the function prototype in our include file
(sp_tcp_urg.h).

in sp_tcp_urg.h

void setuptcpurg(void);

in sp_tcp_urg.c

void setuptcpurg(void)

{

RegisterPlugin("tcpurg", tcpurginit);

}

Initialization
The plug-in init function (tcpurginit), allocates the structures for storage of our
plug-in, validates that the plug-in is acceptable for the protocol, calls the parser

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 177

Inner Workings • Chapter 4 177

function, and if the parser is successful, adds the function to the otn’s function
pointer list and stores the plug-in data.

void TcpUrgInit(char *data, OptTreeNode *otn, int protocol)

{

TcpUrgData *urg_data;

OptFpList *fpl;

/*

* this plugin is only useful for TCP packets... so make sure we are

* looking at a tcp rule.

*/

if(protocol != IPPROTO_TCP)

{

FatalError("%s (%d): TCP URG on non-TCP rule\n", file_name,

file_line);

}

/*

* allocate the data structure for tcp_urg

*/

urg_data = (TcpUrgData *) SnortAlloc(sizeof(TcpUrgData));

if(urg_data == NULL)

{

FatalError("%s (%d): Unable to allocate urg_data node\n",

file_name, file_line);

}

/*

* call the parser

*/

TcpUrgParse(data, urg_data, otn);

/*

* add the function to the parser

*/

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 178

178 Chapter 4 • Inner Workings

fpl = AddOptFuncToList(TcpUrgCheck, otn);

/*

* attach the data to the context node so that we can call each

instance

* individually

*/

fpl->context = (void *) urg_data;

return;

}

Parser
The parser function is rather trivial. We should strip off any whitespace, and then
pass the data to strtol, storing that in our data structure created by the init func
tion.

void TcpUrgParse(char *data, TcpUrgData *urg_data, OptTreeNode *otn)

{

/* get rid of any whitespace */

while(isspace((int)*data))

{

data++;

}

/*

* strtol sets errno if its invalid... check errno

*/

errno = 0;

urg_data->urg = (u_int16_t) strtol(data, (char **)NULL, 10);

/*

* check to see if we failed

*/

if (errno)

{

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 179

Inner Workings • Chapter 4 179

FatalError("%s (%d): invalid urg value : %s\n", file_name,

file_line,

data);

}

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "urg set to %d\n", urg_data-

>urg););

}

Detection Function
The last function we need to write is the detection function.This function is the
meat of the detection plug-in. In our plug-in, we make sure we have a TCP
header, and then check if the value of the urg pointer is what was specified in
our rule. If the values are the same, we return the value of the next function on
the function pointer list. If the values are not the same, then our plug-in failed, so
we return 0.

int TcpUrgCheck(Packet *p, struct _OptTreeNode *otn, OptFpList *fp_list)

{

TcpUrgData *urg_data;

/*

* make sure we have a tcp header

*/

if(!p->tcph)

return 0;

/* get my data */

urg_data = (TcpUrgData *) fp_list->context;

/*

* if the urg value is the same, then call the next function on the list

*/

if (urg_data->urg == p->tcph->th_urp) {

return fp_list->next->OptTestFunc(p, otn, fp_list->next);

}

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 180

180 Chapter 4 • Inner Workings

/*

* otherwise return 0

*/

return 0;

}

What Do I Add to the Rest of the System?
The major portion of the detection plug-in is finished. We need to add a hook
into the plug-in system to call our setup function.

In plugbase.c, we need to add our header file that has our setup function
prototype.To do this, we add the line:

#include "detection-plugins/sp_tcp_urg.h"

with the rest of the plug-ins includes (look for the comment ”built-in detection
plugins“ in src/plugbase.c to see where you should put this code).

Then, in the initplugins function (in plugbase.c), we need to call our setup
function. Add the line:

setuptcpurg();

The only thing left to do is to add our code to Snort’s makefiles so our code
gets compiled and linked into the Snort binary.To do this, we need to add our
files (sp_tcp_urg.c and sp_tcp_urg.h) to the libspd_a_sources variable in src/detec-
tion-plugins/Makefile.am.

Testing
Now that we have our plug-in developed, we need to test it.To do this, we need
to write a rule that uses the plug-in. A good rule for this would be to look for
the tcp urg flag with an urgent pointer of 0. Our rule would look like this:

alert tcp any any -> any any (flags:u+; tcp_urg:0;)

To test this rule, try the -a cmg command-line option, which dumps the alert
and the decoded packet to standard out. Included on the CD-ROM is a pcap file
with an urg flag, with the tcp urgent pointer value of 0.

snort -c our.rule -l /tmp -a cmg -r ~/urg.pcap -q

If we run Snort with our rule and our pcap, we should get this output:

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 181

Inner Workings • Chapter 4 181

bmc@owned:~/snort$ src/snort -c /tmp/rule -r ~/urg.pcap -l /tmp/ -a cmg -q

02/07-18:02:42.413956 [priority: 0] {tcp} 192.168.1.241:8080 ->

192.168.1.244:34243

02/07-18:02:42.413956 0:c:29:e2:ca:1f -> 0:3:d:10:32:8a type:0x800 len:0x3a

192.168.1.241:8080 -> 192.168.1.244:34243 tcp ttl:128 tos:0x0 id:56323

iplen:20 dgmlen:44 df

u*** seq: 0x304a9 ack: 0xf01c7623 win: 0x2238 tcplen: 24 urgptr:

0x0

tcp options (1) => mss: 1460

=+

run time for packet processing was 0.266 seconds

bmc@owned:~/snort$

We should also test that our plug-in works in the “failure” case. We should
also test the same pcap with a rule with a different value for the tcp_urg, so we
will try the plug-in:

alert tcp any any -> any any (flags:u+; tcp_urg:10;)

Our output with the same pcap should be:

bmc@owned:~/snort$ src/snort -c /tmp/rule -r ~/urg.pcap -l /tmp/ -a cmg -q

run time for packet processing was 0.45 seconds

bmc@owned:~/snort$

Now that we have given you an understanding of the detection engine and
showed you how to write your own detection plug-in, you should have enough
knowledge to be a dangerous Snort developer.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 182

182 Chapter 4 • Inner Workings

Summary
This chapter provided a high level overview to understanding how packets are
processed through Snort. We explained the different steps Snort takes to decode
packets for later processing. We discussed how rules are processed, including the
old simple detection and how that compares to the current detection engine. We
also investigated what happens after rules are triggered. Finally, we wrote a
custom detection plug-in from beginning to end, including how we should test
our plug-in

Solutions Fast Track

The Life of a Packet Inside Snort

� The decoder is a directed graph of functions that is easy to extend.

� The decoder only handles basic protocols, advanced protocols such as
TCP reassembly are handled by preprocessors.

The Detection Engine

� The old detection engine is based off of a three-dimensional linked list
of rule headers, rules, and rule nodes.

� The new detection engine is based off of the old detection engine, but
with multi-pattern inspection inserted before the linked list of functions.

� The detection engine queues alerts and then tries to pick the alerts with
the highest value to log.

� Additional data can be logged after alerts are triggered for forensic value.

� Thresholding allows rule writers to look for brute force attempts.

� Thresholding and suppression allow for quick rule tuning without
disabling rules.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 183

Inner Workings • Chapter 4 183

Writing Your Own Detection Plug-in

� Detection plug-ins require at least four functions, a setup function, an
initialization function, a parser function, and the detection function.

� When writing detection plug-ins, you should make sure it works in the
successful case as well as in the unsuccessful case.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: If I change the order of the rules in my configuration file, why does that not
change the order alerts are generated? It used too.

A: With Snort 2.0.0, the new detection engine uses a multi-pattern matching
engine to speed up Snort. Since 2.1.3, Snort will log multiple events per
packet, alerting on the rules with the longest content first.

Q: What do I need to do to get my plug-in registered within Snort?

A: You need to add your plug-in’s setup function inside InitPlugins in plugbase.c
and your plug-in’s include file near the top of plugbase.c.

Q: How can I limit the number of events a rule triggers?

A: By adding a “threshold” of the type “limit” configuration, you can limit the
number of times a rule fires.

Q: If I plan on distributing my code, what license should I use?

A: GPL, same as Snort.

www.syngress.com

295_Snort2e_04.qxd 5/5/04 1:00 PM Page 184

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 185

Chapter 5

Playing by the Rules

Solutions in this Chapter:

■ Dissecting Rules

■ Using Variables

■ Understanding Rule Headers

■ Exploring Rule Options

■ Writing Good Rules

� Summary

� Solutions Fast Track

� Frequently Asked Questions

185

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 186

186 Chapter 5 • Playing by the Rules

Introduction
One of the most highly praised functions of Snort is the capability for the users
to write their own rules. In addition to the large rulebase that Snort comes with
by default, IDS administrators can take advantage of the capability to develop a
rule themselves. Instead of having to depend on an outside agency, vendor, or
administrator for updates when a new attack comes out or a new exploit vector
is discovered, Snort administrators can write their own rules for the anomalous
traffic they see, and compare notes with the large Snort rule-writing community
on the Internet.This allows for unprecedented capabilities in update speed and
customization. In this chapter, we’ll cover what a rule is, the structure of a rule,
writing good rules, and the life cycle of a Snort rule.

So, what is a rule? Simply put, a rule is a set of instructions designed to pick
out network traffic that matches a specified pattern, and then takes a chosen
action when it sees traffic that matches. A rule consists of a rule header and a
rule body, the former to describe the traffic on a packet level and the latter to fill
in additional details such as content, references, and documentation.

What can you do with Snort rules? You can examine your network and ana
lyze the traffic patterns.You can allow known traffic that normally matches one
of the other rules to go unremarked, or you can log the traffic, or you can gen
erate alerts.You can even cause other rules to spring into action if one rule is
matched. Rules are useful for matching traffic flows, particular combinations of
ports and IP addresses, particular contents of packets, protocol options, and much
more. Allowing this type of granularity gives Snort administrators a powerful tool
indeed, allowing them to fine-tune a vast array of options to pick out the exact
type of traffic they want.

What can’t you do with a rule? In short, anything that you cannot create a pat-
tern-matching syntax for, or for which there is no alert type, cannot be done with
a rule. I can’t write a rule to tell me when Amy Administrator is surfing porn at
work because she’s investigating a network abuse case and when she is surfing porn
for her own enjoyment.The traffic patterns on the network are going to look
fairly similar, a fact that has caused a good deal of explaining by network adminis
trators. I can’t write a rule that will tell me if Omar is accessing the network after
hours, since Snort doesn’t give me a native facility to alert only between 5 P.M. and
8 A.M. And I can’t write a rule that will tell me “if I’m being hacked,” because that
requirement is so incredibly general that it would be impossible to come up with
one traffic pattern that would match the general case.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 187

Playing by the Rules • Chapter 5 187

Before we dive into rule creation and writing our own Snort rules, then, let’s
take a look at some existing rules and how they work.

Dissecting Rules
Each Snort rule tries to match some pattern in the network data to pick out a
particular attack or class of attacks. Let’s take a look at some of the various tactics
used to sift through all the packets out there and come up with a particular type
of traffic.

Matching Ports
Snort can match source ports, destination ports, or both against known malicious
code. For example, let’s look at this rule, designed to catch a UDP bomb attack:

alert udp any 19 <> any 7 (msg:"DOS UDP echo+chargen bomb";

reference:cve,CAN-1999-0635; reference:cve,CVE-1999-0103;

classtype:attempted-dos; sid:271; rev:3;)

The UDP echo+chargen bomb rule is an alert rule designed to trigger when
it sees UDP packets going from any IP address to any other IP address, from port
19 to port 7.The effect of this type of packet is to create a huge amount of
traffic between the two, creating a denial-of-service (DoS) condition. In situa
tions like this, even though we can see that there’s a lot more to this rule (mes
sages, references, classifications, and tracking information for the rule), the ports
of the suspicious traffic are the relevant characteristics for identification.

Matching Simple Strings
For a good example of simple string matching, let’s look at the wwwboard
password rule:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI

/wwwboard/passwd.txt access"; flow:to_server,established;

uricontent:"/wwwboard/passwd.txt"; nocase; reference:arachnids,463;

reference:cve,CVE-1999-0953; reference:nessus,10321; reference:bugtraq,649;

classtype:attempted-recon; sid:807; rev:7;)

This is a network reconnaissance attack. By checking for the presence of a
password file in a default location, the attacker can crack the file (if present) and
try to use the same password elsewhere on your network, potentially gaining
authentication credentials that she should not possess. How do we detect this

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 188

188 Chapter 5 • Playing by the Rules

type of attack? Here, looking at the source and destination ports isn’t going to
help us much. Most Web traffic is going to flow over a number of defined
HTTP ports, usually 80, 8080, and 443.The source port is most often any high
TCP port, so filtering on that isn’t going to help us much either. However,
looking at the content of the packet will. Here, with the string matching uricon
tent, we can pick out only traffic that matches the simple string
“/wwwboard/passwd.txt”, which will be in the HTTP request of almost anyone
trying this kind of attack.

Using Preprocessor Output
It’s also possible to use preprocessor output when writing your Snort rules. Let’s
take a look at this example, which depends on the output of the flow prepro
cessor to be maximally effective:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"P2P BitTorrent announce

request"; flow:to_server,established; content:"GET"; offset:0; depth:4;

content:"/announce"; distance:1; content:"info_hash="; offset:4;

content:"event=started"; offset:4; classtype:policy-violation; sid:2180;

rev:1;)

You can see that “flow:to_server,established” is called—this rule is taking the
output of the flow preprocessor and using it as a criterion to match against.
Rules are not always so blatantly dependent upon preprocessor output, but often
benefit by it—Web rules are often more easily matched against after the packets
have been run through the http_decode preprocessor’s data normalizing process,
for example, even if the preprocessor itself is not explicitly called in the rule.

Using Variables
Snort provides users the capability to define custom variables for use within the
rulesets. Defining variables is straightforward, as they use a one-to-one substitu
tion method.The syntax for this command is:

var <desired_variable_name> <variable_value>

These variables should be included in the rules file and can be used in place
of IP addresses and networks.This first example instruction is used to define a
single IP address; it defines the variable DNS_SERVER to be the address
10.1.1.2.

var DNS_SERVER 10.1.1.2

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 189

Playing by the Rules • Chapter 5 189

The next example rule is used to define a network address. It defines the
variable INTERNAL_NET to be the class B network 10.2.0.0.

var INTERNAL_NET 10.20.0.0/16

The following example differs from the first two, because it is used to define
multiple network addresses. It sets the variable INTERNAL_NETS to include a
class B, class C, and single IP address.

var INTERNAL_NETS [10.1.0.0/16, 10.2.1.0/24, 10.1.1.8]

Defining and using variables in the rules is an excellent method for creating
portable rules and rulesets for your organization.

The Snort engine currently lets you take variables to the next level of sophis
tication by defining dynamic variables. Dynamic variables might be based on
another variable that can be set in other parts of the configuration file, or addi
tional include files. When declaring dynamic variables such as
desired_variable_name, you would reference a previously declared variable, variable.
The following are examples of dynamic variables being declared:

var EXTERNAL_WEB $DMZ_WEB

var 2PHP $INTRANET_WEBS

In the case that variable has not been defined or is illegitimate, desired_vari-
able_name would inherit the static_default_address value. In the case that you do
not want to include a backup static route, you might include an error message to
display when the included variable is undefined.

As you can see in the following rule examples, the second section of the
variable definition is separated by a colon, “:”.The area preceding the colon is
used for defining the initial variable to be used, whereas the area following the
colon is used to notify the engine of what to do if the variable is undefined.
Examples of the allowed formats are as follows:

var <desired_variable_name> $<variable:static_default_address>

var <desired_variable_name> $<variable:?Error: the variable was undefined>

This next rule defines a single dynamic IP address. Specifically, it defines the
variable DNS_SERVER to have a single dynamic IP address of variable
ORG_DNS_SERVER. If ORG_DNS_SERVER is undefined, then
DNS_SERVER will have the value of 10.1.1.2.

var DNS_SERVER $(ORG_DNS_SERVER:10.1.1.2)

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 190

190 Chapter 5 • Playing by the Rules

This next example uses undefined variables. It depicts a user who has selected
to configure the system to print out an error message instead of statically
assigning a variable.

var ENTIRE_INTERNAL_COMPANY $(INTERNAL_NETS:?Gabe, you forgot to define

INTERNAL_NETS)

As a general note, using print statements is an excellent method for debug
ging your rules and rulesets. Print statements can be used when debugging your
Snort configuration and are specified with question marks.The text that follows
the questions as seen in the previous example would be printed if the
$INTERNAL_NETS variable had not been previously defined within one of
the Snort configuration files.

Defining multiple addresses within a dynamic variable is just as easy as
defining a single address or network. First, you must predefine a variable to
encompass multiple systems, and then simply reference that variable from the
dynamic variable format. In following our two-step example, the first task defines
a multiple address variable, while the second task defines the dynamic variable
BOSTON_ZONE to equal the value of the multi-address variable DMZ.

var DMZ [10.1.1.1, 10.1.1.2, 10.1.1.3]

Snort incorporates numerous methods for controlling engine-related config
urations to ensure that the engine and rules are tailored for each environment.
Most of these configuration choices can be made in one of two ways.The first
would be to directly specify the desired configuration option via the command
line when executing Snort.The second method (and a more efficient and man
ageable method for enterprise environments) is defining Snort configurations in
a configuration file and just telling Snort to use that configuration file when
starting. Snort grabs that configuration file and reads all of the configuration
options and values individually, just as if they were specified via the command
line. It is highly recommended that you create and use configuration files when
deploying Snort sensors in your environment, unless you are merely testing rules
and engine capabilities.

Instructions for Snort configuration have a specific format, consisting of
identifying the desired configuration and its corresponding value.The values
might vary; however, the format leaves no room for error.The format for
defining Snort instructions is config <instruction>:<value>. The config variable
informs Snort that you are about to provide an instruction to configure Snort in
a specific manner.The instruction is the desired configuration you want to make
with the value of value.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 191

Playing by the Rules • Chapter 5 191

Snort Configuration
Snort includes a robust set of instructions that you can specify to tweak each
sensor installation for its respective environment and threat base.The following
section describes each of the available instructions that can be used when
defining Snort configurations via configuration files or the command line when
there is a matching command-line option. Not all options can be set from the
command line.The alert_with_interface_name feature allows you to append the
interface name that received the packet onto the alert notice.This is especially
helpful when your Snort engine is located on a multihomed system, or has mul
tiple network interface cards (NICs) connecting the system to multiple networks
simultaneously.The appropriate interface name value for this instruction is the
corresponding system name of the network card.The command-line operator is
–I. A common example would be eth0.

■	 alertfile The alert file instruction allows you to designate the file to be
used to store all of the Snort triggered alerts. It is a helpful instruction
that can allow you to make backups of the file on a routine basis or use
it as input for correlation applications.There is no command-line oper
ator for this instruction. An example value is local_alerts.log.

■	 bpf_file The Berkeley Packet Filter (BPF) file instruction allows you to
designate a file for Snort to use containing the BPF-formatted filters.
The command-line operator is –F, and any filename would be an
appropriate value for this instruction.

■	 checksum_mode The checksum mode allows Snort to designate the types
of packets that will be checked for proper packet checksums. No corre
sponding command-line operator exists, and the values are limited to all,
none, noicmp, noip, notcp, and noudp. As you might have gleaned, you
can directly specify to use all or none of the packets, or identify proto
cols to disregard.

■	 chroot Similar to the UNIX command chroot, Snort’s modified chroot
instruction can be used to specify the new desired Snort home direc
tory. By default, Snort’s root directory is that in which the Snort exe
cutable resides.The command-line operator for this instruction is –t.

■	 classification Defining Snort rule’s classification schemas are covered
later in this chapter. Additional information on this option can be found
later in the chapter.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 192

192 Chapter 5 • Playing by the Rules

■	 daemon The daemon instruction allows you to fork the Snort process
just as you would fork any other system-level process.To terminate pro
cesses that have been forked, you would merely use the kill command.
The command line operator is –D for the daemon instruction.

■	 decode_arp A valuable feature within Snort is that it permits you to
decode and analyze multiple types of protocols.The decode ARP
instruction enables ARP decoding on the engine.The command line
operator is –a. No corresponding value is required.

■	 decode_data_link Similar to the ARP decoding instruction, the Data
Link Decoding instruction decodes data link layer packet data to be
included in the analysis engines, alerts, and logs.The command-line
operator for the decoding data link layer instruction is –e, and no corre
sponding value is required.

■	 disable_decode_alerts This instruction allows you to disregard the alerts
generated during Snort’s decoding phase.The disabling decode alerts
instruction does not require any corresponding value and has no corre
sponding command-line operator.

■	 dump_chars_only In the case that you only want to retrieve characters,
you can use the dump characters only instruction using the command-
line operator –C.This instruction doesn’t need an appended value and
should be used with caution because it disregards anything that is not a
character.

■	 dump_payload The dumping payload instruction can also be executed
via the command-line operator –d.The feature allows you to dump all
of the application layer data from the captured packets.This instruction
does not require any corresponding value.

■	 dump_payload_verbose The dumping verbose payload data instruction
has the command-line operator –v and is the same as the dump_payload
instruction, except that the verbose instruction dumps the entire packet
starting at the data link layer.

■	 interface Interface declaration is an essential feature for multihomed
enterprise IDSs. Multihomed systems, or systems including multiple net
work cards, can be connected to multiple networks simultaneously and
thus potentially require that you use different sets of rules for different
interfaces.The command-line operator –i requires as a value the name
of the NIC.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 193

Playing by the Rules • Chapter 5 193

■	 logdir Setting the Snort log directory is beneficial for customizing
installations for multiple environments. It allows you to define the direc
tory for outputting Snort logs.The command-line operator is –l and it
takes as an argument the desired log directory. A suitable example would
be C:/Snort/logs.

■	 min_ttl The minimum Time-To-Live (TTL) instruction permits you to
define sensor-wide TTL values. If a packet did not meet the defined
minimum requirement, that packet would be dropped and no further
rule analysis would occur on that packet. No equivalent command-line
operator exists.The value is equal to the number of hops you want to
declare. For example, in Snort if you defined the minimum TTL as 3,
then any packet with a TTL value less than 3 would be ignored. As an
additional note, configuring the minimum TTL to equal 1 would pass
or accept almost all legitimate network-based traffic.This rule can assist
in dropping locally generated traffic.

■	 no_promisc Snort allows you to directly disable promiscuous mode on
your NIC; however, this function should be used with care because you
will not receive all of the packets destined for other systems when you
execute this command. Promiscuous mode enables your card to capture
all packets on the wire.The command-line operator is –p and it does
not require a corresponding value.

■	 nolog This instruction allows you to disable all Snort logging, but does
not affect the other rule action types such as alert, activate, pass, or
dynamic.This configuration instruction is rarely used, because in just
about all cases you will want to log certain potentially malicious packets.
The instruction does not take any parameters and has a command-line
equivalent of –N.

■	 obfuscate The obfuscate instruction allows you to obfuscate IP addresses
for alert and logging action events.You do not have to provide addi
tional values since it will affect the entire sensor.The command-line
operator is –O.

■	 order You can change the order for passing or ignoring specified packets
using the order instruction with a corresponding command-line oper
ator of –o.This allows you to modify the hierarchy for rules analyzed by
the sensor’s defined rulesets.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 194

194 Chapter 5 • Playing by the Rules

■	 pkt_count Snort provides you with the capability of exiting or shutting
down after a specified number of packets has been captured. For
example, if you are conducting benchmarks or stress tests, this instruc
tion is extremely helpful in identifying the transmission rate and level of
bandwidth consumption.To use this instruction, you only need to pro
vide it the desired total number of packets that you want to analyze via
the command-line operator –n.

■	 quiet One method to minimize user and system interaction is to enable
the quiet instruction.The quiet instruction disables two main categories
of system contact: banners and status reports. Enabling this instruction
potentially alleviates a great deal of system clutter, and the command
line operator is –q.

■	 reference_net The reference net is analogous to the system’s home net
work and can be set with the reference net instruction.You can set your
default home network with this instruction and its corresponding com
mand line operator –h.To define the network, you only need to provide
the desired network address as the value.

■	 set_gid The Snort group can be modified with the set group ID
instruction.This instruction is a bit outdated and rarely used since it was
created to mimic the UNIX user and group schemas. It does have a
command-line operator, –g.

■	 set_uid The command-line operator to set or change the Snort user ID
is –u. Along with the set group ID function, the set user ID instruction
is also outdated and seldom used, since scenarios in which you would
want to modify the Snort user during sensor configuration are “few are
far between.”

■	 show_year Including the year field in the timestamp is defined within
the show year instruction. It is rarely used in Snort because in most
cases, logging packets by year is not necessary and impractical.The cor
responding command-line operator –y requires no additional values
during configuration.

■	 stateful The stateful instruction allows you to analyze a stream of
packets or traffic sessions. Stateful inspection is implemented in Snort
via preprocessor plug-ins, specifically the stream4 preprocessor option.
There is no corresponding command-line operator for this command.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 195

Playing by the Rules • Chapter 5 195

Please refer to Chapter 6, “Preprocessors,” for more information on how
to use the stateful option and Snort preprocessors.

■	 umask The umask option permits you to inform Snort to umask
during runtime.The command-line option for this command is –m, and
if you want to specify this in the config file, the syntax is config umask:
VALUE.

■	 utc Snort allows you to decide which type of time reference can be
associated with the captured packets and action events. By default, the
local system time is referenced; however, you can choose to use the
Coordinated Universal Time (UTC) as the reference point.The com
mand line operator is –U and it does not require any additional parame
ters for successful implementation, as the decision inherits to all of the
corresponding events.

■	 verbose In most cases, more information is better than less when refer
ring to logging potential malicious activity.The verbose instruction
informs the system to log all of the packets in detail from the link layer
to STDOUT. No additional parameters are necessary with the com-
mand-line operator –v.

Understanding Rule Headers
Snort rule headers are usually considered the main portion of the signature, since
they identify the action to be taken when the rule is flagged, packet-level infor
mation such as which protocol is in use, source and destination ports, IP
addresses, and networks (see Figure 5.1).The data contents in the rule, or the
body, has the potential to be somewhat small in comparison.The rule header can
be divided into four main categories:

■	 Rule action

■	 Protocol

■	 Source information

■	 Destination information

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 196

196 Chapter 5 • Playing by the Rules

Figure 5.1 A Snort Rule Header
Rule Header

Rule Action Protocol Source Destination

Rule Body

Rule Actions
Once you have matched the data that you want, now what? Now you get to
decide what to do with it. By default, Snort has five actions from which to
choose:

■	 You can create an alert with the alert keyword, using whatever alerting
mechanism is most appropriate for your network, and then log the
packet.

■	 You can opt to just log the packet without generating an alert with the
log keyword.

■	 You can ignore the packet with the pass keyword.

■	 You can create an alert and then enable a dynamic rule with the activate
keyword.

■	 Rules with the dynamic keyword for their action are ignored until an
“activate” rule activates them.Then they are treated as rules with the log
keyword.

How do you know which keyword is right for any given situation? For pre
fabricated rules, Snort comes with some fairly sensible defaults, although you can
of course tweak these to suit your particular network. Deciding whether to log
or alert (and, if you’ve chosen to alert, how to alert) is a harder case, and essen
tially depends on how much you want to be notified about this data.This is usu-

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 197

Playing by the Rules • Chapter 5 197

ally but not always directly related to the perceived severity of the alert.The
alert’s frequency also has something to do with it—nobody wants to be paged
every five seconds. However, frequency is more easily alterable by deft tuning;
severity is not so easily changed.

How do you know whether you should write an alert rule for the data that
you do want to see, or a pass rule for the data that you don’t? Here are some
suggestions that should guide you in that decision.

When Should You Use a Pass Rule?
Sometimes, the class of data that you want to ignore is much more easily summa
rized than the data you want to see. Say, for example, that you have a known
number of Tivoli servers on your network, and they generate bunches of high-
port to high-port traffic that’s triggering many different alerts, depending on the
content of the payload. In cases like these, it might be easier to write a pass rule
for the servers that you know display this behavior than it would be to find and
enumerate and write an alert rule for every other server on your network that
might be doing the same thing. Weeding out the false positives is easier than cre
ating a rule that will encompass all the activity that you do want to see, and
therefore you should use a pass rule for the known traffic rather than writing
alert rules for all the other traffic.

In general, pass rules are excellent for cases where you don’t want to see
alerts of a given kind from a known quantity of people or servers, but you do
want to see them if they turn up anywhere else on your network. When the false
positives outnumber the true positives, it’s time for a pass rule.

Custom Rules Actions
It is also possible to create customized actions for your rules, if none of the
default five keywords suits your needs. In Chapter 3, “Installing Snort,” we cover
the requirements for creating such customized actions.The actions must them
selves be defined before you attempt to use them in rules.

Using Activate and Dynamic Rules
Activate and dynamic rules allow Snort to activate a separate rule when another
rule is triggered for a specified number of packets. Activate rules work just like
normal rules, except they have a required rule option “activates”, which specifies a
unique number that will tell Snort which dynamic rule to enable. Dynamic rules
work just like log rules except they have a “activated_by” rule option that tells

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 198

198 Chapter 5 • Playing by the Rules

snort which rule should activate this rule and a “count” rule option that specifies
how many packets Snort will process before deactivating the dymanic rule.
Generally, dynamic rules are used to log additional information on a session. This
functionality is better expressed with aa “tag” option, described in chapter 4.The
following example logs the next 5 bytes on port 143 after the first rule is fired:

activate tcp any any -> any 143 (content:"|E8C0FFFFFF|/bin"; activates: 1;)

dynamic tcp any any -> any 143 (activated_by:1; count:5;)

OINK!
Activate and Dynamic rules are being phased out in favor of tagging. In
future versions of snort, activate/dynamic will be completely replaced by
improved tagging functionality. For information on tagging, read
Chapter 4.

Rule Options
First, let it be known that Snort rules do not require the body field to be com
plete rule definitions.The body of the rule is an excellent addition that extends
the breadth of rule definition beyond simply logging or alerting based on packet
source and destination. With this said, we don’t want to disregard the importance
of the rule body, because it can be considered the “meat and potatoes” for rules
identifying complex attack sequences.The body format is broken down into sec
tions separated by semicolons. Each section defines an option trailed by the
desired option value.The rule options that can be included range from protocol
specifics and fielding, including IP, ICMP, and TCP. Other applicable options
include messages that print out as reference points for the system administrator,
keywords to search on, Snort IDs to use as a filing system for Snort rules, and
case-insensitivity options.

The rule options are separated by semicolons within the main body of the
Snort rule:

alert tcp any any -> any 12345 (msg:" Test Message";)

As you can see, the rule’s body (in bold) is confined by the parentheses. In
this case, the body of the message contains two content values.The first value is a

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 199

Playing by the Rules • Chapter 5 199

message to display when the alert is triggered, and the second is the nocase
option, which allows you to specify case-insensitive specific rules. In addition to
the Snort specific rules and body syntax, Snort also allows you to write “pre
analysis” packet filters in BPF format. We discuss BPF-formatted rules in more
detail later in the chapter.

Rule Content
When writing Snort rules, the most powerful and important set of options that
you can include within the body of the rule revolves around analyzing the pay
load of the packet.You can analyze payloads via binary and ASCII values in addi
tion to specifying multiple other types of options that assist in identifying
potentially malicious packet content.

ASCII Content
Similar to the method for including binary content strings in the body, ASCII
content strings are included with quotations without the pipe characters. In this
case, you should only include one string per rule. Later in this section, we discuss
how to include lists of multiple strings to match on in a single rule.The format
for using this option is the same as the binary content option content:
“STRING”, and you can negate the string with the exclamation point. In the
following rule, the rule searches for the bad string malicious string /etc/passwd and
displays the following message string:

alert tcp any any -> any any (content: "malicious string /etc/passwd";

msg:"Searching for ASCI Garbage!";)

OINK!
If you want to use the colon, pipe character, or quotation mark, you
must first escape the character within encapsulating quotes.

Including Binary Content
To include binary content within your content string, you merely need to
encapsulate the HEX equivalent data between pipe characters (|). Binary data
can be easily captured and incorporated into rules using network sniffers such as

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 200

200 Chapter 5 • Playing by the Rules

tcpdump, Ethereal, as well as Snort in packet sniffing mode raw data strings.
Snort implements the Boyer-Moore pattern searching and matching algorithm to
identify included content strings from captured packets.You can use the negation
operator—exclamation point—to specify content that you do not want to match
on.The format for using this option is content: “STRING”;.The following rule
shows the proper syntax for including binary/HEX data into the rule:

alert tcp any any -> any any (content: "|0000 0101 EFFF|";

msg:"Searching for Garbage";)

ASCII and Binary Content Rules
In addition to adding ASCII and binary content individually, you have the capa
bility to combine the two types of strings in a single rule. Combining strings is
not a complicated task, but you must remember to use the same rules for
including ASCII and binary strings in the rule. Including mixed content is dif
ferent from including multiple strings in a single rule. In the following rule, the
content string is broken up into a binary, then ASCII, and then back to binary.
The rule will interpret the content string as a single string, and then use that
single instance of the string for packet matching.

alert tcp any any -> any any (content: "|0101 FFFF|/etc/passwd|E234|";

msg:"Searching for Ascii and Binary stuff!";)

The depth Option
The depth content option modifier allows you to statically set the number of bytes
that the rule should analyze when searching for the defined content string.To
minimize CPU cycles and optimize speed for your sensor, you should use this
option in conjunction with your content option.The format for the command is
depth: <NUMBER_OF_BYTES>;.

OINK!
The average server header in HTTP 1.0 can be obtained in the first 200
bytes of a packet.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 201

Playing by the Rules • Chapter 5 201

The offset Option
The offset option content modifier informs the Snort engine to begin searching for
the supplied content string at the offset byte. It is especially useful when you
know that you are searching for a specific string that might be included as a
subset of other strings. For example, if you know that you can write a rule based
on a specific Web server version and you also know that the Web server version
appears in the response header from a Web server, it might be best to use an
offset of 0. It is important to note that this one of the most important options to
use, and one of the most dangerous because, if set improperly, you could miss an
attack.The format for setting the content modifier is offset:
<NUMBER_OF_BYTES>;.

The nocase Option
You have the capability to disregard text case within rule content by using the
nocase option. For this option to work, you must have previously defined a con
tent string within the rule. In this example, the rule will trigger on any TCP
packet destined for the Telnet service with the word administrator in the payload
of the packet.This rule example is helpful if you are attempting to sniff pertinent
authentication credentials. As you might have gleaned from the example, the
format to use this option is nocase;.

alert tcp any any -> any 23 (content: "administrator"; nocase;)

The session Option
The session option is one of the most useful options if you use Snort in an attack
capability. It allows you to grab clear-text data from protocol sessions and output
that data to the screen. As you can imagine, the capability to log and view only
usernames, passwords, and executed commands is extremely useful.This rule gen
erates an alert and then prints the entire FTP session transmission to standard
output.

alert tcp any any -> any 21 (content: "FTP Session Data"; session:

printable;)

Uniform Resource Identifier Content
The Uniform Resource Identifier (URI) content option allows you to analyze
traffic from the requesting system. Instead of matching the rule body and content

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 202

202 Chapter 5 • Playing by the Rules

strings against the entire packet, you can specify it to only match the rule’s con
tent string(s) in the URI section of a request instead of the packet’s payload.The
format of the URI content option is uricontent: “STRING”;. Here is the correct
option syntax:

log tcp any any -> any 80 (content: "Logging PHF"; uricontent:"/cgi-

bin/phf";)

The stateless Option
In early versions of Snort, the capability to allow rules to analyze stateless data
was provided in the stateless option.The latest versions of Snort, post versions 1.8,
have included this functionality in the flow option.The format for the stateless
option is stateless;. Reference the section Flow Control in this chapter for more
information on stateless rules and including stateless content.

Regular Expressions
Full regular-expression support has been available in Snort since 2.1.0. Brian
Caswell and Michael Pomraning wrote prototype plug-ins that used the Perl
Compatible Regular Expression (PCRE) library for Snort.
After some merging of the two prototypes, pcre support was added to Snort.
There are many resources online for learning how to write regular expressions,
so we won’t go into that here.There are a few important things to remember
when using pcre.The pcre plug-in does not make use of the multipattern
matching engine discussed in later chapters. Be sure to use a content option as
well as a pcre option if possible to allow Snort to be as efficient as possible by
using the multipattern match engine.

There are a few Snort-specific regular expression modifier options for pcre:

■ R Relative match (same as distance:0;)

■ U URI match (same as uricontent)

■ B Do not use the decoded buffers (same as rawbytes)

The syntax of the pcre plug-in is:

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUB]";

alert tcp any any -> any 23 (content:"snort"; pcre:"/\s+\d+\.\d+.\d+/R";)

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 203

Playing by the Rules • Chapter 5 203

For more information on PCRE, check out the PCRE homepage at
www.pcre.org.

Flow Control
The flow option, first introduced in Snort version 1.9, allows users to define the
packet’s direction in reference to client-server communication streams. It dramat
ically increases the functionality of Snort because you do not have to define
packet direction at the IP layer.The flow functionality works in coordination
with Snort’s TCP reassembly module and allows rules to distinguish packet con
tent and direction in regard to client-server architecture. One of the most notable
benefits for this feature is allowing rules to be written on potential client attack
data streams toward the server, and then analyzing the server’s response to see if
an attack was successful.The data in Table 5.1 represents the flow configuration
options with a brief corresponding description. All of the current options sup
ported in Snort’s flow control are based on the TCP protocol and reassembling
TCP sessions.

Table 5.1 Flow Options

Option Instructions Brief Description

to_server Passes true on packets sent to the server.
from_server Passes true on packets sent from the server.
to_client Passes true on packets sent to the client.
from_client Passes true on packets sent from the client.
only_stream Only activates on reconstructed packets or packets

within an established stream.
no_stream This instruction is the opposite of the previous

example and does not pass packets that are recon
structed or within an established stream.

established The established instruction will activate on packets
that are part of an established TCP connection or ses
sion.

The flow control options are used in a manner similar to that of other
common Snort configuration instructions. Within the body of the rule, define
flow: <OPTION>, where OPTION is one of the Option Instructions in Table
5.1.The following example Snort rule will flag on TCP packets sent from the

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 204

204 Chapter 5 • Playing by the Rules

client in a TCP stream transmitting toward the server with a confirmed attack
string overflow.

alert tcp any any -> $DMZ_WEBS 80 (msg:"Client Attacking Server Example";

flow:from_client; content:"/cgi-

bin/handler/something;cat\t/etc/group|?data=Download";)

Conversely, the following example flags on packets sent from a server with a
potential string that can be found when a UNIX password file is viewed. With
this rule, flagging packets only from servers will minimize false positives.

alert tcp $DMZ any -> $EXTERNAL any (msg: "Server Potentially Sending

Sensitive Info"; flow:from server; content:"root:: ";)

IP Options
The IP options are key in identifying numerous IP-based types of attacks in
addition to other types of more complex attacks. Many of the IP options are
used in writing rules to identify network device attacks, attempts to map a net
work, and protocol-based denial-of-service (DoS) attacks.

Fragmentation Bits
Generic fragmentation rules should be applied within your environment to pro
tect against the more complex types of attacks.The fragment bit option allows you
to analyze the fragment and reserved bits within an IP header.You have three
available flags within the fragmentation bits option that you can specify:

■	 D “Don’t Fragment”

■	 M “More Fragments”

■	 R “Reserved Bit”

The preceding flags were included by the Snort development team with the
corresponding naming convention logic. In addition to the bit flags, there are five
operator flags:

As with the other Snort options that implement that operator flags, the
asterisk stands as an all wildcard.

■	 ! The exclamation point is used for negation.

■	 + The addition sign for a specified bit flag plus either of the other bits
that are implemented.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 205

Playing by the Rules • Chapter 5 205

■ – The minus sign for any bit.

■ , , , The format for this option is fragbits: <BIT VALUE>;.

Equivalent Source and Destination IP Option
The feature to check equivalent IP addresses was a late addition and only serves
one purpose: to identify forged, or spoofed, packets. Sending packets with the
same source and destination used to be a common method for testing packet
filter firewalls.The technique is outdated as commercial vendors ensure that their
products do not build in this flaw.The format for this rule is sameip;.

This rule checks for a equivalent source and destination IP address within an
IP packet and should be included in all enterprise rulesets:

alert ip any any -> any any (msg:" Same Source and Destination IP Address";

sameip;)

IP Protocol Options
Snort allows you to specify IP options within a packet upon which you would
like to match or negate a packet. Due to the nature of the IP options and a
development flaw within Snort, you can only include one option in a rule.This
is not critical, because IP options are not commonly used within commercial
network applications.The format to use this option in the configuration file is
ipopts: <IP_OPTION>;.Table 5.2 lists the IP options available within Snort.

Table 5.2 Snort IP Options

IP Options Brief Overview

eol Used to specify the end of an IP list
lsrr IP loose source routing
nop Used when there is no IP option set
rr Record route
satid The IP stream identifier
sec The IP security option, also known as IPSec
ssrr IP strict source routing
ts The timestamp field

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 206

206 Chapter 5 • Playing by the Rules

ID Option
The ID option permits you to identify static IP ID values within an analyzed
packet. Conventionally, it has little use, but is another of the options added
within Snort in case it ever becomes tremendously essential in identifying a type
of attack.The format to use the IP ID option is ID: “VALUE”.

Type of Service Option
Initially, the Type-of-Service (TOS) option was added for future use and to com
plete the IP rule API. However, multiple attacks were released in the summer of
2002 relating to malicious use of the IP TOS field. In most cases, the TOS field
value is zero, and in the case of some old Cisco equipment, the incoming TOS
field must be set to zero.The format to use the TOS option is tos: “VALUE”;.
The following rule alerts on external traffic bound for Cisco devices with the
TOS field not set to zero:

alert tcp $EXTERNAL any -> $CISCO any (msg:" Cisco TOS Example"; tos:!"0";)

Time-To-Live Option
The Time-To-Live (TTL) option’s core value comes in identifying network-
mapping queries via tools such as traceroute, tracert, and netroute. It compares
the defined value to that of the analyzed packets in search for a direct match.The
format to use this option is TTL: “VALUE”.TTL also supports >, <, and =.

TCP Options
There are three TCP-specific options that you can use within the body of your
Snort rules. Each triggers upon a different static value within the TCP header of
a packet.The sequence and ACK options are rarely used, but the TCP flags option
is considered a value-add for numerous rules.

Sequence Number Options
The sequence number option is used to check for static TCP sequence numbers
within analyzed packets, and therefore is rarely used. Static communication pro
grams and flooding tools are two of the rare example programs that can be iden
tified by guessable sequence numbers. According to Marty Roesch, “it was added
for the sake of completeness.”The format to use this option is:

seq: <sequence_number_value>;.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 207

Playing by the Rules • Chapter 5 207

TCP Flags Option
The TCP flags option is comprehensive; it allows you to determine if each
potential flag is set, unset, or used in combination with another flag.The
alphanumeric flags are used to determine what specific flags are set within the
packets, while the special characters such as the addition, asterisk, and exclama
tion mark are used as wild cards and as a negate option, respectively. In addition
to the flags, you can use the reserved bit options to detect atypical network
activity such as multiple types of fingerprinting techniques.Table 5.3 lists all of
the TCP flags currently available within Snort.

Table 5.3 Snort TCP Flags

TCP Flags Brief Flag Description

A The option to check if the ACK flag is set.
F The option to check if the FIN flag is set.
P The option to check if the PSH flag is set.
R The option to check if the RST flag is set.
S The option to check if the SYN flag is set.
U The option to check if the URG flag is set.
0 A unique option to detect if no TCP flag has been set within

the packet.
1 The 1 option determines if the reserved bit 1 is set within

the packet.
2 The 2 option determines if the reserved bit 2 is set within

the packet.
+ The addition sign is used to determine if a specific flag is

set and followed by other TCP flags. Ex: A+ triggers on any
packet with the ACK flag set in addition to other flags.

* The asterisk is a wild card character that you can use to
specify any flag that matches on any specified flags. Ex: *AS
triggers on all packets that have the ACK or SYN flag set.

! Likewise to most negation commands, this checks to see if
the packet does not have the specified flag set. Ex: !S trig
gers on all packets that do not have the SYN flag set.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 208

208 Chapter 5 • Playing by the Rules

TCP flags and options can be combined within the body to create a more
powerful and accurate rule.The format to use this option is flags:
<TCP_VALUE(s)>;.

TCP ACK Option
The TCP ACK option within Snort is used to determine if the ACK field has
been set to a NON-TRUE value. In nearly all implementations of the TCP stack
and protocol, the field is TRUE upon transmission of a valid TCP ACK packet.
One noted exception does exist: the NMAP tool sets the field to FALSE or zero
for TCP packets that it transmits during a NMAP TCP ping scan.Therefore, this
option could help potential malicious NMAP-generated traffic.The format to
use this option is ack: <ACK_NUMERICAL_VALUE>.

OINK!
Additional information on NMAP and NMAP TCP ping scans can be
found at www.insecure.org/nmap.

ICMP Options
Snort has four different ICMP-related options that can be used in the body of
the rule for creating specific attack signatures. Each option has distinct techniques
for triggering on precise fields within an ICMP packet, including ICMP code,
type, ID, and values. It is important to understand that the following options only
add value when used in ICMP designed rules, not TCP- or UDP-based rules.

ID

Different from the IP ID option and field, the ICMP ID option triggers upon a
specific field value within an ICMP ECHO packet. According to the Snort
development team (www.snort.org), the option was written to identify rogue
applications that use ICMP as the means of transporting communication. An
example of this would be a chat client that sends data in the payload field of the
ICMP packet. In multiple cases, these chat clients do not randomize or even use
dynamic ICMP IDs, therefore allowing them to be easily identified with Snort
rules. In addition to rogue ICMP programs, the option can be used to identify

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 209

Playing by the Rules • Chapter 5 209

any type of program using static ICMP IDs.The format to use this option is
icmp_id: value.

Sequence
Similar to the ICMP ID option, the motivation behind developing this option
was to identify static ICMP communication programs. Refer to the previous
description for more detailed information.The format to use this option is
icmp_seq: value.

The icode Option
The icode option allows you to specify a single value for the ICMP code value of
the packet.There are two general options for configuring the icode option within
the rule.The first is to set the specific option you would like to trigger if an
identical icode value is analyzed in the packet.The second option is to set an
invalid code value for ICMP packets. If you define an invalid code value, then
the rule will trigger when another invalid ICMP code value is analyzed.
Identifying invalid ICMP options is helpful in identifying spoof, flood obfusca
tion, and DoS attacks.The format to use the option is icode: value.

The itype Option
The itype option examines the value of the itype field within the ICMP packet.
Similar to the icode option, you can set an incorrect itype value to trigger upon
the detection of invalid ICMP type values. Additionally, the itype option can also
be set to trigger upon other specific options.The format to use the option is
icode: value.

Meta-Data Options
Snort has several options that can be used to further identify, provide corre
sponding documentation, and categorize Snort’s set of rules.These options
should not be confused with threat detection options, as they serve to simply
enhance the reporting and configuration features within Snort.

Snort ID Options
The Snort ID option was included to serve as a method to categorize, distin
guish, and identify single Snort ID rules.The simple schema allows manual and
automated systems to use specific rules.The format is sid: <ID_VALUE>;.Table
5.4 lists the ranges that can be used as Snort ID values.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 210

210 Chapter 5 • Playing by the Rules

Table 5.4 Snort ID Ranges

Range Values Usage Overview

Less than 100
100 to 1,000,000

Greater than 1,000,000

Reserved for future use
For use by Snort within the www.snort.org dis
tribution ruleset
For use by custom Snort rules

Rule Revision Number
The Snort rule revision number is used in the case that edits are done to an
original rule. Organizations most commonly use this when grammatical and
technical revisions are made to a rule.The format to use this option is rev:
<REVISION_NUMBER>;.The following is an example of a rule with the rule
revision set to 2:

alert tcp any any -> any 79 (rev:2; msg:" Revision";)

Severity Identifier Option
The severity identifier option allows you to manually override the default rule pri
ority set by the rule’s classification.You can increase or decrease the priority of
the rule using the format priority: <PRIORITY_VALUE>;. For example, the fol
lowing rule has a priority of 1 because it triggers when UDP traffic is sent to the
fictitious worm backdoor on port 21974:

alert udp any any -> $INTERNAL 21974 (priority:1; msg: "Bad Worm Backdoor";)

Classification Identifier Option
The classification identifier option permits you to set a class attack-type or meaningful
categorization for the rule. Rule classifications have classification IDs, corre
sponding priorities, and documentation.The classtypes have corresponding values,
1 being the most severe.The format for the option is classtype:
<NAME_OF_CLASSIFICATION>;.Tables 5.5, 5.6, and 5.7 list the default
classtype IDs that are available within Snort, along with their corresponding pri
ority and description. It is important to note that there are only three classtype
severities initially defined, but the engine allows you to create additional priorities.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 211

Playing by the Rules • Chapter 5	 211

Table 5.5 Critical Classifications (Priority 1)

Classtype Brief Description

attempted-admin Attempted administrator privilege gain
attempted-user Attempted user privilege gain
shellcode-detect Executable code was detected
successful-admin Successful administrator privilege gain
successful-user Successful user privilege gain
trojan-activity A network Trojan was detected
unsuccessful-user Unsuccessful user privilege gain
web-application-attack Web application attack

Table 5.6 Intermediate Classifications (Priority 2)

Classtype 	Brief Description

attempted-dos
attempted-recon
bad-unknown
denial-of-service
misc-attack
non-standard-protocol
rpc-portmap-decode
successful-dos
successful-recon-largescale
successful-recon-limited
suspicious-filename-detect
suspicious-login

system-call-detect

Attempted DoS
Attempted information leak
Potentially bad traffic
Detection of DoS attack
Miscellaneous attack
Detection of a nonstandard protocol or event
Decode of an RPD query
Denial of service
Large-scale information leak
Information leak
A suspicious filename was detected
An attempted login using a suspicious user-
name was detected
A system call was detected

unusual-client-port-connection A client was using an unusual port
web-application-activity	 Access to a potentially vulnerable Web appli

cation

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 212

212 Chapter 5 • Playing by the Rules

Table 5.7 Low-Risk Classifications (Priority 3)

Classtype Brief Description

icmp-event Generic ICMP event
misc-activity Miscellaneous activity
network-scan Detection of a network scan
not-suspicious Not suspicious traffic
protocol-command-decode Generic protocol command decode
string-detect A suspicious string was detected
unknown Unknown traffic

External References
Another excellent resource you have within the body of the rule to categorize
and provide relevant information about the rule is the external reference option.
The external reference IDs can be modified via the provided plug-in to specify
systems and their corresponding URLs, which might provide additional informa
tion to output plug-ins.

The format to use a single instance of the command is reference: <SYSTEM>,
<ID VALUE>;. Multiple instances of the command can be chained together, as
long as a semicolon separates each reference call.The following is an example of
a rule using multiple instances of the reference command:

log tcp any any -> any 12345 (reference:CVE, CAN-2002-1010; reference:URL,

www.poc2.com; msg:" NetBus";)

Miscellaneous Rule Options
In addition to the protocol-specific rule options, options geared for enhanced
reporting and categorization, and content identifiers, some options clearly have
no adequate parent category.These options range from technical anomalies to
logging-related features as explained in the following option descriptions.

Messages
One of the most commonly used and beneficial rule options is the message
option. It is the primary method to inform Snort administrators of the potential
vulnerabilities, threats, and attacks that were identified.This option provides you

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 213

Playing by the Rules • Chapter 5 213

the capability to include the specified message with the generated alerts, logs, and
dumps.The message text is defined by quotes “” to allow the interpreter to dis
tinguish message characters such as the parenthesis “)” and semicolon “;” from
rule body characters.The format to use this option is msg: “EXAMPLE ATTACK
MESSAGE”;.The following has a bold message of “Finger”:

alert tcp $EXTERNAL any -> $INTERNAL 79 (msg:" Finger";)

Logging
The logging capabilities of Snort can be viewed as a significant advantage over
many of Snort’s competitor IDSs.The logging option informs Snort that all corre
sponding packets related to that specific instance of the rule are to be logged to
the specified file. Organized logging permits Snort to subdivide rule logs based
on perceived tool usage, attack types, source locations, and destinations.The
format to use this option is:

logto: "PATH/FILE.extension";

TAG
In addition to the logging option, the tag option permits you to log additional
packets relevant to a triggered rule.This provides you the capability to define
rules that analyze and log traffic from a specific source or traffic, related to a
complex attack.The option allows you to specify whether you want to log traffic
from the source (host) or attack (session).You also have the capability to specify
whether you want to log traffic measured on a time (seconds) or packet (packets)
scale. If you select to use the session preference, then the rule will only log
packets from the session of the original attack.The format to use this option is:
tag:<HOST/SESSION>, <HOW MANY>, <SECONDS/PACKETS>,<SRC/DES>;

Here, the packet tags 100 packets from any host that attempts to connect to
an internal system’s Telnet service:

alert tcp any any -> $HOME 21 (tag:host, 100, packets; msg:" Tagging Telnet

to Gain Authentication Credentials and Executed Commands";)

dsize
The dsize option allows you to specify the length or length range for a packet’s
payload.You can use greater than and less than signs to specify ranges for payload

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 214

214 Chapter 5 • Playing by the Rules

length, and the <> sign means “in between.” For example, <100 is for packets
with payload size smaller than 100 bytes, while 1<>99 specifies packets with a
payload range of 1 to 99 bytes.The format for the option is:

dsize: (<,>, or nothing) length (<> length);

OINK!
The dsize option is ineffective in measuring the payload size of recon
structed packets. Snort 1.9 and later automatically does not alert on
rules with dsize when examining reconstructed packets.

RPC

The rpc option allows you to determine RPC services that are accessed remotely.
For this option to be properly implemented, you need to ensure that the rule
uses the UDP protocol in coordination with a destination port of 111, also
known as the Portmapper port.The rpc option takes three parameters: the appli
cation number, the procedure, and the RPC version.

The asterisk is available as a wildcard to use in replacement for the procedure
and version fields in the case that you do not require a specific value.The official
format for the command is:

rpc: <APPLICATION>, <PROCEDURE>, <VERSION>;.

alert udp $EXT any -> $HOME 111 (rpc: 100023, *, *; msg:" RPC Statmon

Connection";)

Real-Time Countermeasures
Snort allows you to configure your sensor in such a way that you can dynami
cally kill specific connections and block Web sites. For these features to add the
most value, the sensor should both analyze traffic and be a hop in the transmis
sion route as if your sensor was on a firewall. Snort will send the responses on
the wire based on the source and destination of the system even if you are not
one of the hops; however, there is no guarantee that the connection will be
killed if your system is slow.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 215

Playing by the Rules • Chapter 5 215

The active response option, resp, allows Snort to automatically kill protocol
connections based on rules that are triggered. It is the most powerful protocol-
based body option currently implemented in Snort.The format to use the active
response modifier is resp: MODIFIER, MODIFIER2, MODIFIER3, etc;.

The following TCP-based modifiers are the current options that you can
specify in the Snort response strings:

■	 rst_all Resets both transmitting and receiving TCP connections.

■	 rst_rcv Resets receiving TCP connections.

■	 rst_send Resets transmitting TCP connections.

■	 strings:icmp_all Resets both transmitting and receiving ICMP connec
tions.

■	 icmp_host Transmit ICMP host unreachable to transmitting client.

■	 icmp_net Transmit ICMP network unreachable to transmitting client.

■	 icmp_port Transmit ICMP port unreachable to transmitting client.

It is important to use the proper corresponding protocol modifier along with
the protocol of the defined rule. Adverse network effects might occur if these
options are used inappropriately, such as network and client DoS loops.The fol
lowing has a rule to send an ICMP Host Unreachable response to the initiating
client:

alert icmp $EXT any -> $DMZ any (resp: icmp_host;msg:" In-Bound ICMP";)

Writing Good Rules
If you’re going to write your own rules to customize and enhance your Snort
installation, it’s important to make them as powerful and accurate as you can. In
this section, we’ll examine what makes a rule into a good rule, how to analyze
your rules and improve them by comparison to the data that you’re seeing on
your network, and how to determine what the proper action is for different
rules. We’ll also look at the life cycle of a rule, from the first discovery of the
exploit through its development into a fully mature and tested rule.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 216

216 Chapter 5 • Playing by the Rules

What Makes a Good Rule?
How can we differentiate a good rule from a bad rule? A good rule is specific,
precise, and clear. It alerts on relevant data that is a threat to your network, and
alerts in an appropriate way. It provides your network analysts with the informa
tion they need to decide whether to take action on this alert or to ignore it. It
minimizes false positives and false negatives, and contains an accurate description
of the attack traffic and referents for further research should that be desired.
If you put 10 programmers in a room and ask them all to solve the same
problem, it is almost certain that each solution will be different and vary in
degrees of efficiency and accurateness. Creating Snort rules is no different.
Numerous methods might exist for identifying malicious attacks, yet far fewer
methods exist for efficiently and precisely identifying the attacks.To minimize
false positives and false negatives, it is essential to review the body of your Snort
rules; specifically, the content attack signatures.

Even though content bugs are a headache, manually parsing and reviewing
critical events can be even more of a hassle and extreme resource strain.
Therefore, it is important to configure your rules with the appropriate action
event.Too many high-risk or critical events decrease the effectiveness of an alert.
In addition to the rule content, it is also important to tweak the rules for effi
ciency purposes. First-rate rules should be effective, quick, and manageable.

Action Events
Configuring your sensor rules is extremely important. As subsets of configuring
your rules, it is just as important to ensure proper rule content as it is to define
the proper action events for your rules. Defining action events might be another
difficult task for configuring the sensor because you only have two main choices:
logging and alerting.The first step in determining the appropriate action event is
to see into which category the rule fits.The following questions will help you
define the category:

■ Does the attack affect mission-critical systems?

■ Does the attack provide unauthorized access to mission-critical data?

■ Does the attack directly compromise a system?

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 217

Playing by the Rules • Chapter 5 217

If the answer to any of these questions is “yes,” then in most cases you would
classify the rule action as Alert. Otherwise, it might only be necessary to log the
data and parse through it later. In general, you should log your data when:

■	 The logs provide evidentiary data that can be used for identifying or
prosecuting an intruder.

■	 The logs provide additional medium to high-risk attack information.

Considering these criteria when defining action events can take some getting
used to, but the process and standards for your network should quickly become
second nature.

Ensuring Proper Content
Snort as an IDS is only as good as the quality of the rules you implement during
runtime. Systems with inaccurate rules, or rules that are prone to false positives
and false negatives do little good in the realm of enterprise network manage
ment. Inaccurate rules mean that far more human resources are going to be
unnecessarily spent on incident analysis, trying to separate the actual threats from
the false alarms. Meaningful and productive rulesets are an aid to the analysts and
make their job far easier.

There are numerous ways to write and test rules, but the most helpful tool to
aid in the creation of Snort rules is a packet sniffer. Our personal favorite,
Ethereal, is free to download and use. In addition, multiple versions of Ethereal
are available from www.ethereal.org; for multiple operating systems, including
Linux and Windows.

Ethereal can be used to capture and identify the exact packets sent across the
wire during a network-based attack. In the case that you want to create a Snort
rule for a particular type of attack, you would want to recreate the sequence in a
test or controlled environment and ensure that the sniffer has proper access to
packets.Then, capture the packets sent to the target from the attacking system
and the corresponding packets sent back to the attacker from a successfully com
promised system. Capturing both packet streams would potentially allow the
Snort sensor to use an activate rule to determine when an attack attempted and,
better yet, when an attack was successful.

The Ethereal Network Analyzer interface on a Win32 system is pictured in
Figure 5.2; the UNIX interface is similar.The top window displays the IP packet
headers; specifically, the source and destination IP addresses, timestamp, payload
protocol (if any), and info or the payload portion of the captured packet.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 218

218 Chapter 5 • Playing by the Rules

Figure 5.2 The Ethereal Sniffer

As an example in analyzing packets with Ethereal, we have included the
packets for a Google search and response in Figure 5.3.The highlighted packet in
the top window shows the headers for our Google search, while the middle
window has more detail for specific packet fields. In addition, in the middle
window we highlighted the Google HTTP GET request, and subsequently,
Ethereal automatically highlighted the corresponding binary information in the
bottom window.The information captured should be plenty to create a Snort
rule. In this case, let’s imagine that you want to create a rule to trigger when
your employees search Google’s site given the provided information.You could
simply use the “GET /search?” string as the content, as seen in the bottom
middle and bottom window of Figure 5.3. Source, destination, and any other rule
instructions can be used at your discretion.The following rule is an example that
would trigger if an internal system sent a Google search on port 80:

alert tcp $INTERNAL any -> any 80 (msg:"Google Search Query";

flow:from_client; content:"GET /search?";)

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 219

Playing by the Rules • Chapter 5 219

Figure 5.3 Analyzing a Google Search

You should now feel somewhat comfortable using and analyzing packets with
Ethereal. We realize that packet analysis is a very complicated task, and time and
experience is the only way to improve your skills.The attack in Figure 5.4 is a
popular %3F Web Directory Traversal attack. Similar to the previous example, the
attack packet is highlighted in the top window, and the payload portion of the
attack is highlighted in the middle and bottom windows.The %3F is not a crit
ical attack, but does serve as an example for analyzing an attack and including
content.The following is an example of a Snort rule that can be written to
trigger such an attack.The rule uses the uricontent instruction instead of the con
tent instruction, since the entire attack can be identified within the URI; this also
helps to increase the accuracy of the rule.

alert tcp $EXTERNAL any -> $DMZ 80 (msg:"%3F Directory Traversal Attack";

flow:to_server; uricontent:"%3F";)

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 220

220 Chapter 5 • Playing by the Rules

Figure 5.4 Analyzing a Web-Based Attack

After the Snort rules have been written and verified with a test interpreta
tion, it is highly recommended that you test your rules against real-world attacks.
The best solution for testing your rule’s content is to run the attacks from the
perspective of an external attacker to verify that the rules are correctly identi
fying the attacks. Unfortunately, running the individual attacks for each exploit is
not a scalable solution in and of itself. Chapter 10, “Optimizing Snort,” has details
on tools that can be used to help with testing your Network-based Intrusion
Detection System (NIDS) setup, but beware that no currently available tool has
mock attacks for all “critical” network-based attacks.

Merging Subnet Masks
Declaring subnets via subnet masks in variable declarations and rule definitions
has the potential to consume unnecessary CPU resources. One quick method of
maximizing Snort’s potential to ensure efficient multinetwork usage is to merge
subnet masks. In general, merging subnet masks is a manual task because they
must be predefined and declared outside of the Snort program. Additionally, a
good amount of human thought needs to go into the definition process of
deciding what networks should be included within any given rule or set of rules.

Table 5.8 lists examples of single networks and addresses with the proper cor
responding CIDR addresses along with the one merged subnet. Previously in the
Assigning Source and Destination IP Addresses to Rules section,Table 5.1 detailed

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 221

Playing by the Rules • Chapter 5 221

examples of using CIDR addresses instead of the corresponding subnet masks.
Table 5.8 has examples of the corresponding network addresses and subnet masks
that go along with each CIDR address.The first three examples are examples of
merging network subnet masks, while the last two examples merge individual IP
addresses with CIDR addresses.

Table 5.8 Combining Subnet Masks (Good Examples)

Merged Subnet Mask Subnets to Be Merged

10.1.0.0/22
10.1.0.0/21

10.1.8.0/22

198.30.1.0/30

198.30.1.0/29

10.1.0.0/24, 10.1.1.0/24, 10.1.2.0/24, 10.1.3.0/24
10.1.0.0/24, 10.1.1.0/24, 10.1.2.0/24,
10.1.3.0/24, 10.1.4.0/24, 10.1.5.0/24,
10.1.6.0/24, 10.1.7.0/24
10.1.8.0/24, 10.1.9.0/24, 10.1.10.0/24,
10.1.11.0/24
198.30.1.1/32, 198.30.1.2/32, 198.30.1.3/32
(single IP addresses)
198.30.1.1/32, 198.30.1.2/32, 198.30.1.3/32,
198.30.1.4/32, 198.30.1.5/32, 198.30.1.6/32,
198.30.1.7/32 (single IP addresses)

Fortunately, there is a tremendous amount of information on MAC and IP
addresses. If you are interested in learning more about defining and referencing
network addresses, Steven’s TCP/IP Illustrated is the godfather of the books on
the TCP/IP stacks.

The examples in Table 5.9 represent merged or combined subnet masks that
are incorrectly defined.The first row shows a common example that users make.
Namely, the subnets that you are looking to merge must be numerically sequen
tial to one another. Notice that the four subnets that are “Subnets to Be
Merged” define only class C address spaces.The second example might be the
trickiest of them all. At first glance, it might appear that nothing is wrong, but
the merged subnet mask 198.0.0.0/20 if redefined with the /21 CIDR address
would read 198.0.0.0/21 and 198.1.0.0/21.The first class B address would be
198.0 instead of 198.1.The error in the last example should be obvious by the
fact that the two IP addresses that are to be merged are random and separated by
100 other addresses—a blatant error.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 222

222 Chapter 5 • Playing by the Rules

Table 5.9 Combining Subnet Masks (Bad Examples)

Merged Subnet Mask Subnets to Be Merged

10.1.0.0/22 10.1.0.0/24, 10.1.2.0/24, 10.1.4.0/24, 10.1.6.0/24
198.0.0.0/20 198.1.0.0/21, 198.2.0.0/21
10.100.80.0/31 10.100.80.1/32, 10.100.80.101/32

Merging subnet masks can save CPU resources and enhance the performance
of Snort’s traffic parsing engine. As a rule of thumb, you should always combine
or merge subnet masks when possible, but it is imperative that only the correct
addresses be included in the defined ranges.

OINK!
If you want to remove specific addresses from a merged subnet mask,
you can always implement a BPF to pass on desired addresses and
ranges, since the BPF engine analyzes packets before the Snort rule-
parsing engine.

Automating Aggregating with Aggregate
Aggregate is a straightforward tool that can be used on most UNIX and
Linux platforms to help merge or “aggregate” multiple subnets. The pro
gram receives subnets that you want to merge via standard input (STDIN)

numerous small or less popular versions of the tool, but the most popular
and stable version can be downloaded from http://http.us.debian.org/. At
the Debian site, you will be able to download and read the detailed usage
README.

Tools & Traps…

and will pump the merged subnet to standard out (STDOUT.) There are

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 223

Playing by the Rules • Chapter 5 223

What Makes a Bad Rule?
We have talked about many things you can do right when writing Snort rules,
and given lists of criteria you should bear in mind. Now let’s take a look at what
you can do to screw it up. A rule that is either overly general, alerting on many
false positive events, or overly specific, missing essential attacks that it should have
been designed to catch, is a bad rule. Let’s take a look at an example of a current
rule from the exploit.rules file in the current Snort distribution, and see how it
could have been written badly.

alert tcp any any -> any 6666:7000 (msg:"EXPLOIT CHAT IRC Ettercap parse

overflow attempt"; flow:to_server,established; content:"PRIVMSG"; nocase;

content:"nickserv"; nocase; content:"IDENTIFY"; nocase;

isdataat:100,relative;

pcre:"/^PRIVMSG\s+nickserv\s+IDENTIFY\s[^\n]{100}/smi";

reference:url,www.bugtraq.org/dev/GOBBLES-12.txt; classtype:misc-attack;

sid:1382; rev:9;)

This rule in its current correct format alerts on established TCP sessions
going to ports between 6666 and 7000, containing “PRIVMSG”, “nickserv”, and
“IDENTIFY”, all not case sensitive, containing data 100 bytes into the payload
of the packet, and which matches the Perl-compatible regular expression given. It
gives references for further research, has a unique Snort ID, and tracks the revi
sion of the rule itself. So what could we have done to screw it up?

For starters, we could have left out the PCRE expression and the require
ment for data to be 100 bytes into the packet.This would have made the rule a
lot less specific, and probably would have filled our logs with false positive events
if we had anyone using IRC on our network. Alternatively, we could have tried
to specify what that additional data payload was, which might have been good
for catching a particular version or flavor of this exploit, but would have been
too specific (either to platform or to kiddie version) to catch most instances of
this particular overflow. We could have left out the informative URL, so that a
system administrator who wasn’t familiar with the Ettercap parse overflow
wouldn’t have known what it was or what one did about it. At times, insufficient
documentation can be just as horrible as insufficient alerting data. If your net
work analysts or sysadmins don’t know what to do with the alerts you’re gener
ating and don’t know where to go for further information, they won’t be able to
use the data very effectively to defend your network.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 224

224 Chapter 5 • Playing by the Rules

The Evolution of a Rule: From Start to Finish
Now that we’ve looked at the characteristics that define a good rule and
explained the basics of rule writing, let’s show how a rule is developed, written,
tested, and implemented. Examining the process from start to finish will be
helpful when you go to write your own rules.

Usually, the development of a rule starts with the knowledge of a new vul
nerability. Perhaps you see a post to the Full Disclosure or Bugtraq mailing lists,
detailing a new hole in a popular software package. Sometimes, proof-of-concept
exploit code is attached to these messages, but often it’s not. Or perhaps you see
an unusual new data pattern on one of your honeypots, a file left in a user’s
directory called exploit_exploit_yeah_baby.c. Or perhaps you read a news article
online about a popular Web site whose machines were successfully attacked by a
previously unknown vulnerability. Whichever way it happens, you are now aware
of the existence of a new vulnerability.

The next step after becoming aware of the new vulnerability is being able to
understand it. If you have exploit code in hand, this is very helpful in analyzing
the attack and understanding what it looks like as it crosses the network.To be
able to write a good rule for your new attack, you want to be able to pick out a
unique and comprehensive pattern of data. If you have exploit code, you can read
the code as well as compiling it and running it on test systems in your laboratory.
Make sure that you are capturing all network traffic including Layer 2 packets
when you start running your tests.

Code analysis can help when determining what attack traffic looks like, but
packet analysis is also highly valuable. As you capture the attack traffic, pay partic
ular attention to the traffic on the layer of the exploit. If it’s a TCP RST spoofing
attack, you want to look at the transport layer traffic. If it’s a Web server overflow,
you’ll want to be looking at application layer traffic. What you want to do is find a
distinct pattern to the attack traffic that is not present in normal traffic of that sort.
Buffer overflow attacks will often have a long series of padding characters before
the shellcode in the payload. SQL injection attacks will often contain quote marks
in an HTTP POST request. While it is important to remember not to write the
rule so generally that you will also be alerting on a large number of normal traffic
packets, it is also important to remember not to write the rule too specifically.You
don’t want to match only one of a million possible variants of an attack. If I code
my rule for SQL injection to look for strings including 0=0, I’ll miss the ones that
inject 1=1 after the quote mark instead, and it will only take a minimally savvy
attacker to elude my detection rule.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 225

Playing by the Rules • Chapter 5 225

After you have come up with the unique characteristics of your attack traffic,
try your hand at writing the rule.Your first attempt may not be immediately suc
cessful, but try to combine as many unique characteristics of the attack as you
can into the rule, without getting so specific that you miss other attacks of the
kind.Test your rule, first in your lab, and then on your network (assuming that
the lab test was successful). If you can, replay live network traffic in your lab for
testing; this is a great way to sanity-check yourself against real data without
threatening the stability of your production network.That rule that was testing
for seemingly spurious HTTP requests with “open” in the name may drown
your sensors in data if you have Lotus Notes servers with Web access turned on.
Just think of all the things that match “open”… “OpenDocument,” “OpenPage,”
and so on. If you hadn’t sanity checked your rule for a lack of false positives
before going live on your actual network, the consequences could have been a
lot worse.

After you have tested your rule somewhat, tune it as much as possible. Look
for other people’s packet logs and signatures and exploit code for the same or a
very similar vulnerability. Check and make sure that your rule catches as many
different instances of the exploit as possible. Write documentation to explain
what it is that your rule is looking for, the vulnerability that it guards against, and
why you chose the packet characteristics that you did to describe it. Good docu
mentation is a gateway to understanding; make sure that you flesh out your docs
before submitting your rule to avoid others duplicating your work.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 226

226 Chapter 5 • Playing by the Rules

Summary
This chapter provided a road map to understanding and composing your own
Snort rules. We explained what the different components of a Snort rule are and
how it worked by pattern matching against a body of network data. We showed
some examples of how that could be done, by looking at particular source and
destination ports, matching on content strings in the packet, or using prepro
cessor output to filter the data set further. We examined the types of things that
could and could not be used in Snort rules, and showed several examples of
working rules.

We examined the myriad options of rule composition, and considered the
many different possible variables to focus on when writing a rule. We also investi
gated what makes for a good Snort rule, and how to write good rules as opposed
to just writing functional rules. Finally, we discussed the life cycle of a Snort rule,
from the initial discovery of the exploit through network traffic and malware anal
ysis through rule development, testing, implementation, and documentation.

Solutions Fast Track

Dissecting Rules

� Rules can pattern-match against many different parts of a packet,
including source and destination IP address, source and destination port,
protocol options, packet content, or data flows.

� A rule clearly shows the types of traffic that it will match, so that the
analyst can better understand what is a false positive and what is not.

� By looking at a rule, even an unfamiliar rule, you can quickly gain an
understanding of why Snort is behaving in a certain way when traffic
matches that rule.

Using Variables

� You can define variables to represent important structural components
to your network.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 227

Playing by the Rules • Chapter 5 227

� The variables you define don’t have to be just the ones that come in the
Snort configuration file.You can invent your own variables, too.

� Variables don’t have to contain just one match. A variable can present a
variety of options, any of which may match.

Understanding Rule Headers

� A rule header will tell you what type of action is to be taken on that
rule, what protocol the rule matches, and what source and destination
IP addresses and ports are matched against.

� There are five default actions that can be taken for any given rule: alert,
log, pass, activate, and dynamic.

� If you are unsure what the right action is for a rule, look at comparable
rules, or try the more conservative option and see how that affects your
output.

Exploring Rule Options

� Rule options include the capability to do content matching, one of the
most useful tools in rule writing.

� You can also match against TCP options such as sequence numbers, flags
set, or the Time-To-Live fields.

� Meta-data is also included under the rule options, allowing you to track
revisions, Snort identifiers, CAN and CVE numbers, and informative
URLs.

Writing Good Rules

� A good rule is a rule that is specific enough to not generate a whole lot
of false positives, but not so specific that it misses actual attack traffic.

� A good rule will generate alerts on real security events of its type, in a
way appropriate to your staff and security plan.

� A good rule will be clear and well documented.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 228

228 Chapter 5 • Playing by the Rules

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Can I write a rule to match any type of data I want?

A: As long as you can describe that data by pattern matching against network
traffic, and describe the action you want to take, yes.

Q: Why should I bother to write rules? Don’t I have some already?

A: Snort does ship with a well-written rulebase, but you might want to cus
tomize the ruleset for your particular environment, add rules for new attacks
as they come out, or change rules that you find to be too active.

Q: I want a rule to alert on communications between some of my servers and
not others. Can I do this?

A: Yes.You can define a variable for the servers that you want the rule to alert
on and write an alert rule only for those, or you can write a pass rule for the
servers that you don’t want to see alerts for, whichever is easier for you.

Q: I’m getting all sorts of unexpected results from the rule I wrote. What’s
wrong?

A: To debug a rule, look at the traffic that you want to alert on, and look at the
rule that you have written.Try to find as many common factors in the traffic
you want to alert on as you can.This will allow you to write a more granular
rule that will have fewer false positives.

Q: I want to write a rule to detect certain kinds of traffic, but I don’t have the
faintest idea of where to start. What should I do?

A: Get a packet sniffer and take a look at the traffic that you want to detect.
Pick out its unique characteristics, whether it’s content, source and destina
tion characteristics,TCP options, or something else. Write your rule around
those characteristics.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 229

Playing by the Rules • Chapter 5 229

Q: Do I have to write a rule myself for every new attack that comes down the
pike?

A: Probably not, although you can if you want to. Many security mailing lists
and Web sites will share Snort rules to detect new attacks as the attacks are
seen in the wild.You can use these rules, or wait for rules to be added to the
default Snort ruleset and just update your ruleset.

Q: How do I know if other people’s rules are any good?

A: You can look at them yourself and compare them to reports of the exploit,
packet captures, and the traffic on your network to determine their effective
ness.

Q: I want to match content strings, but can I do that without having to write a
rule for every possible case of capitalization?

A: Yes, use the nocase option.

www.syngress.com

295_Snort2e_05.qxd 5/5/04 3:47 PM Page 230

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 231

Chapter 6

Preprocessors

Solutions in this Chapter:

■	 What Is a Preprocessor?

■	 Preprocessor Options for Reassembling
Packets

■	 Preprocessor Options for Decoding and
Normalizing Protocols

■	 Preprocessor Options for Nonrule or
Anomaly-Based Detection

■	 Experimental Preprocessors

■	 Writing Your Own Preprocessor

�	Summary

�	Solutions Fast Track

�	Frequently Asked Questions

231

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 232

232 Chapter 6 • Preprocessors

Introduction
Snort’s detection capabilities originated with, and have evolved around, detecting
attacks by matching packet data against well-defined patterns.Those well-defined
patterns, or rules, are an evolution of signatures. Signatures are basically specifica
tions of attacks via number and string matching against particular parts of the
packet. For example, a packet directed to port 80 containing cmd.exe is generally
a good sign of a hacker attacking a Windows-based Web server. An Intrusion
Detection System (IDS) can detect this attack fairly well by checking destination
port number,TCP flags (look for the ACK flag set, with the SYN flag off), and
doing a simple string match against the data portion of the TCP segment. Rules
are much like this, but bring an added flexibility and intelligence, allowing things
such as compound statements, as in “trigger if you match this and don’t match
that,” rules activated by a match on another rule, and finer specification of how
to search for a pattern.This pattern-matching core might seem overly simple, but
it is this simplicity that makes Snort one of the fastest Network-based IDSs
(NIDSs) available. Snort can keep up with fast and heavily loaded networks
because it generally has a well-defined amount of work to do for each packet
that it must examine.

There was great demand for Snort to move beyond its rule-matching design.
For example, one requested feature was protocol anomaly detection, where Snort
could detect that a packet’s data doesn’t obey the rules of the protocol to which
it belongs.This is generally not a capability possible within a straight
signature/rule-based NIDS. Snort implements features such as protocol anomaly
checking via preprocessors. Preprocessors handle packet data after Snort’s decoder
has parsed the packet into fields, but before the detection mechanism starts doing
rule comparison.They can add a tremendous amount of functionality on top of
Snort’s rule-matching core.

OINK!
Actually, Snort does do some anomaly detection in its packet decoders
as well, but we leave this for other chapters.

Now, there is a cost to adding preprocessors. Snort’s extreme speed is derived
from its simple rule-matching base—it will definitely lose some capability to

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 233

Preprocessors • Chapter 6 233

keep up with fast or loaded networks each time a preprocessor is added.The
degree of loss might or might not be perceptible, depending on the nature of the
preprocessor. Due to a forward-thinking design decision by creator Marty
Roesch to implement preprocessors as modular “plug-ins,” one can decide
exactly which preprocessors are active on a host-by-host basis. Each preprocessor
is activated only by its specification in the snort.conf configuration file—if you
leave it out, it doesn’t impact performance. One can even leave a preprocessor
out of the codebase—that’s much of the point of implementing preprocessors as
plug-ins. Each plug-in is implemented as a separate code chunk in its own inde
pendent source file.This has added benefits in addition to speed. First, it allows
Marty and the rest of Snort’s developers to be less conservative about accepting
new preprocessor code—if a new preprocessor plug-in is too slow or not stable
as the time approaches for a release, the code can be easily deactivated by default
so that people who want the preprocessor’s feature anyway can have it, without
requiring all other Snort users to take the same plunge. Further, it allows multiple
developers to work on preprocessing and detection code simultaneously much
more easily, without stepping on each other’s toes.

In this chapter, we’ll examine what role preprocessors have in relation to
rules, how you can use and tune Snort’s existing preprocessors, and how you can
build a preprocessor of your own. We’ll accomplish the latter by reading through
the Telnet negotiation preprocessor code together, carefully discussing how it
functions and how it connects into Snort, with an eye toward showing you how
to build your own preprocessor.

What Is a Preprocessor?
Signature/rule-matching IDSs are extremely popular for their speed. If we’re just
inspecting each packet and performing number and string matches against simple
patterns, we have a nimble program capable of keeping up with fast, fairly loaded
networks.This form of IDS does have weaknesses, though. If its attack patterns
are too general, you’ll spend too much time analyzing “false positives.” If those
patterns are too specific, you’ll miss attacks—these misses are called “false nega
tives.” Much of the trouble in getting traditional rules right stems from too little
expressibility in the signature language, or the inability of the IDS to understand
protocols more fully. Some IDSs counter these weaknesses by using a completely
different model.They might use protocol anomaly detection, where they alert on
packets that don’t fit normal use of the packet’s protocols. Some signature/rule-

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 234

234 Chapter 6 • Preprocessors

based IDSs might also keep additional state on a connection. For example, we
don’t want our cmd.exe rule from earlier to flag on packets that aren’t part of an
established TCP session. Preprocessors let Snort do things such as anomaly detec
tion and state keeping on a user-configurable basis.

You’ll find preprocessors extremely useful.They make rules easier to write,
lower false positive/negative counts, and give a rule-matching IDS the capability
to exceed its traditionally simple detection model while maintaining perfor
mance. In the next section, we’ll examine each of the major purposes for which
preprocessors are used, including:

■ Reassembling packets

■ Decoding protocols

■ Nonrule or anomaly-based detection

One thing to take note of in each preprocessor is how the rest of Snort ben
efits from the preprocessor’s work. For example, the stream4 preprocessor doesn’t
modify any of the packets it examines; instead, it builds an “uber packet” of all
the data in the stream, and passes that through the other preprocessors and detec
tion engine separately. Conversely, the rpc_decode preprocessor modifies packets
individually, destroying their original form and replacing them with packets free
of multifragmented RPC messages. It’s not important to fully understand these
functions yet—we’ll explore these later in the chapter. Just pay attention to what
the preprocessors do with their data!

Preprocessor Options
for Reassembling Packets
Snort has two preprocessor plug-ins that assist rule-matching by combining data
spread across multiple packets:

■ stream4

■ frag2

Both stream4 and frag2 are covered in additional detail in the sections that
follow.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 235

Preprocessors • Chapter 6 235

The stream4 Preprocessor
stream4, contained in spp_stream4.c, was announced in 2001 by Marty Roesch
to improve Snort’s handling of TCP sessions for selected traffic.

OINK!
Snort’s own FAQ discusses stream4 by quoting Marty Roesch’s introduc
tory announcement—that announcement is not just historically useful, it
gives hard detail on what the plug-in does.

At the time, as quoted in www.snort.org/docs/faq.html#3.14, Martin wrote:

I implemented stream4 out of the desire to have more robust
stream reassembly capabilities and the desire to defeat the latest
“stateless attacks” that have been coming out against Snort (c.f.
stick and snot). stream4 is written with the intent to let Snort be
able to handle performing stream reassembly for “enterprise class”
users, people who need to track and reassemble more than 256
streams simultaneously. I’ve optimized the code fairly extensively to
be robust, stable, and fast. The testing and calculations I’ve per
formed lead me to be fairly confident that stream4 can provide full
stream reassembly for several thousand simultaneous connections
and stateful inspection for upwards of 64,000 simultaneous ses
sions.

stream4 has two goals, which we’ll now explore:

■ TCP statefulness

■ Session reassembly

TCP Statefulness
To understand what statefulness is, we need to review the TCP protocol.TCP
introduces the concept of a “session” to Internet communications. A session has a
clear beginning and end, with a good deal of error correction introduced in
between.The two sides of the session, the client and server to keep things simple,
set things up with a series of three packets, before anyone sends any data.This
series of packets is shown in Figure 6.1.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 236

236 Chapter 6 • Preprocessors

Figure 6.1 TCP Session Initiation
Party 1 Party 2

FIN Flag Set/ ACK Flag Set

FIN Flag Set/ ACK Flag Set

FIN Flag Set/ ACK Flag Off

Packet 1

Packet 2

Packet 3

All further data packets have just the ACK flag set. While SYN is short for
“synchronize,” you can think of it as a request to start one of the directions of
dataflow. ACK is short for “acknowledge,” as it acknowledges the packets that a
side has received so far. Each of these flag settings comes with a “sequence
number,” which serves to identify the packets sent and received. For a more thor
ough discussion of TCP, which you should definitely be familiar with if you’re
doing intrusion detection, refer to Chapters 18 and 19 (at the least) of W.
Richard Stevens’ TCP/IP Illustrated,Volume 1.

When the parties are finished communicating, they tear down the session
with the sequence of packets shown in Figure 6.2.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 237

Preprocessors • Chapter 6 237

Figure 6.2 TCP Session Termination

Client Server

Packet 1

FIN Flag Set/ ACK Flag Off

FIN Flag Set/ ACK Flag Set

FIN Flag Off/ ACK Flag Set

FIN Flag Off/ ACK Flag Set

Packet 2

Packet 3

Packet 4

The reason we’ve switched from client/server descriptions to Party1/Party2
descriptions is because either party to the connection can initiate the disconnec
tion. For example, the server usually sends that first packet with the FIN flag set
to close down a Telnet session—it generally does this in response to a normal
user “logout.” FIN is actually short for “finish” and notifies the other party that
the sender has no more data to send in that direction.

Stateless devices only look at one packet at a time—they have no memory of
the previous packets.This means that their only way of gauging the status of a
session is to look at the combination of flags. For example, they assume that any
packet with the SYN flag unset and the ACK flag set is part of an existing con-
nection.This is a huge weakness for a firewall! A number of portscanning tools
take advantage of this particular weakness in stateless firewalls by sending probe
packets with only the ACK flag set to portscan a machine, instead of the normal
connection-initiating packets with the SYN flag on and the ACK flag off.The
tools do this because a probe packet with only the ACK flag set looks like part of
an existing connection that the firewall previously allowed through. Since the
firewall has no memory of whether there actually was a connection that this

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 238

238 Chapter 6 • Preprocessors

could be a part of, it often must let the probe packets pass. Stateful devices, how
ever, remember what handshaking packets have been sent and can thus keep
track of the state of the connection.

While statelessness is a major weakness in firewalls, it carries nowhere near
the same severity in IDSs. Most often, stateless IDSs simply spend unnecessary
resources checking rules against invalid packets.They also generate more false
positives. Generally, this hasn’t been an extreme problem. In fact, Snort‘s devel
opers didn’t add stateful monitoring until Coretez Giovanni released the stick
tool. stick attempts to overwhelm stateless IDSs with a large number of false alert
packets. By constructing these alert packets from the IDS’s own ruleset, it
attempts to guarantee that every packet will trigger an alert on a default ruleset.
stick doesn’t try to initiate connections with the normal TCP three-way hand
shake; this would slow things down tremendously and make it a much less effec
tive tool. Because of this, a stateful device, which knows that each of the false
alert packets is falsely claiming to be part of an established connection, can
quickly disregard those packets and not spend computational or human resources
on their response.

Snort is stateless in general. In 2001, Marty Roesch wrote the stream4 pre
processor, spp_stream4.c, to add optional statefulness to Snort. stream4 brings
flexibility, too, allowing Snort to maintain state only on user-defined ports.This
provides fine control over the additional resource drag.This statefulness allows
Snort to alert on packets that falsely masquerade as part of an established connec
tion, including those produced by tools like stick.The -z est flag tells Snort to
not perform resource-intensive rule-matching on any packets that aren’t part of
an established connection.

stream4 also gives Snort the capability to accurately alert on traffic based on
what part of the connection it’s in, using the flow keyword. As of Snort 1.9, you
can use the flow keyword in a Snort rule to indicate state of the connection and
direction of the traffic. For example, you might only want to alert when a packet
is actually part of a server response to a previous client request.The flow keyword
actually brings a great deal of functionality to bear, as you saw in Chapter 5,
“Playing by the Rules.”

Configuring stream4 for Stateful Inspection
The stream4 preprocessor is activated simply by keeping/adding a line to
snort.conf like this:

preprocessor stream4

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 239

Preprocessors • Chapter 6 239

This activates stream4 and configures it as if you’d specified timeout 30,
memcap 8388608.You might want to configure the preprocessor, though, in
which case you’d add a colon “:” to the end of the line and list parameters to the
right, delimited by commas. For example:

preprocessor stream4: detect_scans, disable_evasion_alerts

stream4’s stateful inspection component takes the following parameters,
which we’ll explore in turn:

■	 detect_scans The detect_scans parameter, which defaults to off if not pre
sent, tells stream4 to alert on portscans that don’t use the normal TCP
handshake that we reviewed earlier in this chapter. Attackers use these
scan types to avoid having their scans logged by some network devices
or hosts. For example, while Linux’s xinetd or UNIX’s TCP Wrappers
will log any full connections (those that make it through the initial
three-way handshake) that violate its access control lists (ACLs), neither
of these log incoming packets with only the FIN flag set. Conversely, a
TCP-aware host must respond to a FIN-packet with an RST (reset) if
the port probed is closed, and with nothing if the port probed is open.
Tools such as nmap send these “stealth” scans to scan machines while
avoiding having their activities logged by the target operating system.
Snort will alert on these packets if you include this parameter.

■	 detect_state_problems The detect_state_problems parameter, which defaults
to off if not present, tells stream4 to alert on problems in how TCP is
keeping state.This might catch attacks or probes that Snort doesn’t oth
erwise look for, by watching for anomalies or abuses of the state mecha
nisms in TCP. Snort’s developers note that this option tends to create a
great deal of noise because there are a number of operating systems or
products that implement TCP badly. Unfortunately, as noted in the code
at the time of this book’s publication, Microsoft’s operating systems tend
to trigger these alerts normally (they frequently write data outside of the
negotiated TCP Window size).You’ll have to be careful with this option
on a Microsoft-based or highly heterogeneous network.This option also
causes Snort to alert when one side resends data that has already been
ACK’d, or data with an ACK number that’s smaller than one of our pre
vious ACKs for the connection.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 240

240 Chapter 6 • Preprocessors

In network intrusion detection, noise, generally in the form of false posi
tives, is something that experienced practitioners avoid at all costs in most

information available about every packet entering, leaving, or running

in chasing down every alert that you either end up ignoring the IDS or

choosing the lesser of two evils.
In choosing the parameters for preprocessors, you might choose to

deactivate protocol-anomaly alerting like detect_state_problems from the
start, to avoid the false positives. If you have more time to set things up,
you’ll probably benefit more in the long run by turning options like this
on and then deactivating the ones that produce too much nonattack
related noise. This “operator learning period” is somewhat like the
learning period that statistical IDSs have—these types of IDSs spend time
first analyzing what type of network traffic you normally send and then
alert on the deviations. (In the case of you and Snort, there’s a human
being, who doesn’t have the same memory for protocol details, but has
much more intelligence.) Don’t underestimate the importance of this
learning period: tuning your IDS for your environment will make it a much
more accurate tool that alerts when you’re being attacked, without
wasting nearly as much of your time with false positives.

Tools & Traps…

False Positives

environments. When you first start out, you might be eager to get all the

through your network. This is a lofty goal, but it requires so much labor

tuning the IDS to alert less often. Unfortunately, it might feel like you’re

■	 disable_evasion_alerts The disable_evasion_alerts setting, which also defaults
to off, disables alerts written into stream4 to handle particular situations
where the attacker tries to fake out stream reassembly. For example, he
might send a packet and a slightly different “retransmission” of the
packet, hoping that the stream reassembly engine will throw away the
first and keep the second, while the destination host keeps the second
and drops the first. In another case, an attacker might send a broken
RST packet that the host will ignore, hoping that the IDS will wrongly
interpret the packet and stop watching the stream. Finally, he might send

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 241

Preprocessors • Chapter 6 241

data in the SYN packet (the first in the connection), hoping that the
IDS will not log this unexpected data.You generally should leave this
option off (thus keeping evasion alerts active) unless you get too many
false positives. One example where you’d get a copious amount of false
positives would be if you have some device on your network that actu
ally does regularly send data in the SYN packet! Take care to thoroughly
investigate these false positives before disabling these types of alerts,
though—they might be the only warning you have that an attacker is
playing games with your IDS.

■	 ttl_limit The ttl_limit parameter sets a maximum difference that will be
tolerated between packets in the same session. Packets in the same session
should generally have about the same number of routers to traverse on
their way between the two hosts. Even when they take different paths,
they should intuitively have about the same number of hops to go
through. If the number of hops changes too drastically, it might be a sign
of someone trying to evade detection. For example, an attacker might
insert packets into the stream that will make it to the IDS, but will expire
before they reach the destination.This causes the IDS to see a different
picture of the reassembled stream than the destination host does. It’s diffi
cult to choose a safe value for this parameter, although 10 is probably a
safe bet. Much of this will depend on how dynamic your ISP’s routing is,
and how dynamic the routing is to your standard destinations.

■	 keepstats The keepstats option keeps statistics on each session, which it can
then log in either machine format, which is a simple flat text file, or in
binary format, which is a unified binary output easily readable by tools
such as Barnyard.This option defaults to off—you can activate it by
listing keepstats and following it with either machine or binary as follows:

preprocessor stream4: min_ttl 28, keepstats binary

■	 noinspect The noinspect option, which obviously defaults to off, tells the
preprocessor to deactivate stateful inspection on all ports except those
on which you’re doing active reassembly. Setting this option basically
tells stream4’s stateful inspection function to limit itself to the ports that
are listed in stream4_reassemble’s ports option. We’ll look at that option
soon.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 242

242 Chapter 6 • Preprocessors

■	 timeout The timeout option, which defaults to 30 seconds even if not
present, sets an idle time after which stream4 can stop watching the ses
sion. If Snort doesn’t receive a packet belonging to a particular session
for a full timeout period, it prunes the session from its table and frees up
the memory in use.This is especially necessary for sessions in which the
two communicating hosts do not complete the normal three-way tear-
down we looked at earlier in this chapter. We don’t want those sessions
continuing to consume resources well after the hosts have stopped com-
municating.Thirty seconds is aggressively low for many organizations—
it was chosen as a default to make sure that Snort could still function on
minimal hardware.

■	 log_flushed_streams The log_flushed_streams option, which defaults to off,
tells stream4 to log the uber-packet that it builds from the stream out to
disk whenever that uber-packet causes an alert.This is good data to
have, but it leads to some strange-looking packet logs.

■	 memcap The memcap option is described in more detail in the section
that follows.

The memcap option, which defaults to 8,388,608 bytes even if not present,
sets a maximum number of memory (in bytes) that stream4 will consume to do
state-keeping and session reassembly. If stream4 runs out of memory, it prunes
inactive sessions. Again, this is probably an over-aggressive default value intended
to keep Snort working on minimal hardware. Systems with over 64MB of RAM
could definitely increase this number easily. In an enterprise environment with
capable hardware, one would probably set this to 512MB, or 536,870,912. If you
want to fine-tune this number, try a setting and send a signal a USR1 signal to
Snort, like this:

ps –ef | grep snort

killall -USR1 <PID>

Snort’s output looks like this:

==

Snort analyzed 3 out of 3 packets, dropping 0(0.000%) packets

Breakdown by protocol: 	 Action Stats:

TCP: 3 (100.000%) ALERTS: 0

UDP: 0 (0.000%) LOGGED: 0

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 243

Preprocessors • Chapter 6 243

ICMP: 0 (0.000%) PASSED: 0

ARP: 0 (0.000%)

EAPOL: 0 (0.000%)

IPv6: 0 (0.000%)

IPX: 0 (0.000%)

OTHER: 0 (0.000%)

DISCARD: 0 (0.000%)

==

Wireless Stats:

Breakdown by type:

Management Packets: 0 (0.000%)

Control Packets: 0 (0.000%)

Data Packets: 0 (0.000%)

==

Fragmentation Stats:

Fragmented IP Packets: 0 (0.000%)

Fragment Trackers: 0

Rebuilt IP Packets: 0

Frag elements used: 0

Discarded(incomplete): 0

Discarded(timeout): 0

Frag2 memory faults: 0

==

TCP Stream Reassembly Stats:

TCP Packets Used: 3 (100.000%)

Stream Trackers: 1

Stream flushes: 0

Segments used: 0

Stream4 Memory Faults: 0

==

Look at the final line of output that reads Stream4 Memory Faults: 0. A
memory fault is a situation where the plug-in ran out of allocated memory and
had to start pruning inactive or less-active streams. If this number is consistently
greater than zero, you’ll want to increase its allotment of memory. If the system
itself is too low on memory, you might want to increase the physical RAM on
the system.You can use a tool such as top to check the system’s general memory

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 244

244 Chapter 6 • Preprocessors

usage, including its use of swap, or virtual memory. Swapping refers to the system
emulating additional RAM by using a portion of the hard disk as a second
memory medium, writing less-used data out to hard disk to free up memory.You
don’t want Snort’s data being written out to disk this way because it takes the
operating system a very long time to read that data back in, relatively speaking.
RAM chips are much faster than hard disks! Be sure to configure this parameter
carefully to avoid much swapping.

The stream4 preprocessor’s session reassembly is configured through the pre
processor stream4_reassemble directive. Programmers will note that this is strange,
since most preprocessor directives seem to correspond directly to a unique
spp_preprocessor-name.c file.This is easily explained: preprocessor directives cor
respond to unique preprocessor functions, which usually come one to a file
(these directives correspond directly to a unique preprocessor initialization func
tion). stream4, being an extremely long and complex preprocessor, easily breaks
the one-function-to-a-file convention without causing complaints.

Session Reassembly
Keeping a memory of the past packets in a TCP connection also allows Snort to
catch attacks that span multiple packets. While UDP requires that all data in a
message be contained in a single packet,TCP has no such requirement.TCP is
used for, among other applications, highly interactive applications such as Telnet,
rlogin, and SSH, each of which allows a user to interact with a remote host. As a
result, a user’s input might easily be spread across several packets—which is the
case with Telnet. As we can see from the following few packets in a Telnet ses
sion, each keypress gets its own packet.This is a partial packet capture of a user
typing the word jay.

03/13-17:58:02.520000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62253 IpLen:20 DgmLen:53 DF

AP Seq: 0x15807E79 Ack: 0x695B2295 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008200 557061363

6A j

=+

03/13-17:58:02.530000 xxx.xxx.xxx.xxx:23 -> xxx.xxx.xxx.xxx:36922

TCP TTL:237 TOS:0x0 ID:53311 IpLen:20 DgmLen:53 DF

AP Seq: 0x695B2295 Ack: 0x15807E7A Win: 0x2798 TcpLen: 32

TCP Options (3) => NOP NOP TS: 557064184 25008200

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 245

Preprocessors • Chapter 6 245

6A j

=+

03/13-17:58:02.530000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62254 IpLen:20 DgmLen:52 DF

A* Seq: 0x15807E7A Ack: 0x695B2296 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008201 557064184

=+

03/13-17:58:06.390000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62255 IpLen:20 DgmLen:53 DF

AP Seq: 0x15807E7A Ack: 0x695B2296 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008587 557064184

61 a

=+

03/13-17:58:06.410000 xxx.xxx.xxx.xxx:23 -> xxx.xxx.xxx.xxx:36922

TCP TTL:237 TOS:0x0 ID:53312 IpLen:20 DgmLen:53 DF

AP Seq: 0x695B2296 Ack: 0x15807E7B Win: 0x2798 TcpLen: 32

TCP Options (3) => NOP NOP TS: 557064572 25008587

61 a

=+

03/13-17:58:06.410000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62256 IpLen:20 DgmLen:52 DF

A* Seq: 0x15807E7B Ack: 0x695B2297 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008589 557064572

=+

Many attacks will definitely be spread across several packets and will thus be
undetectable to a nonsession-reassembling rule-matching IDS—that’s the whole
reason for stream reassembly.The user could type “company going broke sell
stocks now,” and if you are looking for “sell stocks” but the packets come across
as “s”, “e”,“l”,“l”,“.”,“s”,“t”,“o”,“c”,“k”,“s” (one letter per packet), then
without reassembly of the stream, you wouldn’t catch that.The stream4 prepro
cessor reassembles the TCP stream so that Snort can try rule matches against the
whole of the flowing data. Although this is over-simplifying somewhat, it does
this by combining all the data in a stream into a large uber-packet that can then
be passed through the other preprocessors and then the detection engine.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 246

246 Chapter 6 • Preprocessors

Notes from the Underground…

stream4—A Reaction to stick
Marty Roesch created stream4 at least partly in response to the stick tool.
stick attempted to confuse IDS operators by sending a huge number of
false positives to the IDS, in order to hide the actual attack among the

false positive packets from the patterns in Snort’s own ruleset—in

almost every packet that it generates will not be a correct part of a proper

of stick’s false positives.
–z command-line option, which, when given as

–z est, instructs Snort to keep state on all TCP traffic and alert only on
traffic where the connection is either fully established by a three-way
handshake, or at least where the server side has sent something back
other than an RST or FIN. This defeats stick-style attacks by allowing Snort
to ignore traffic that looks like part of a connection but isn’t in its state
table.

noise. stick’s creator, Coretez Giovanni, even designed it to construct the

essence, stick is a simple rule-to-packet converter. It can quickly construct
packets and doesn’t need to understand much about them. However,

TCP connection. This weakness allows a stateful device to easily ignore all

Specifically, Snort’s

Configuring stream4 for Session Reassembly
The stream4 preprocessor’s other major function is session reassembly.
Remember, Snort uses this to match rules across the many packets making up a
session.You configure this part of stream4 by using a directive such as:

preprocessor stream4_reassemble: both ports 21 23 25 53 80 143 110 111 513

We’ll examine the following options, which are set after the colon on the
preprocessor directive line:

■	 clientonly / serveronly / or both The first option tells stream4 how much
of the stream it should reassemble. It can simply do reassembly on the
client side (traffic going to HOME_NET), when you set the clientonly
option, reassembly only on the server side (traffic coming from
HOME_NET), when you set the serveronly option, or all traffic, when
you set both.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 247

Preprocessors • Chapter 6 247

■	 noalerts This option instructs stream4 not to alert on
anomalous/problem events in reassembly, such as traffic insertion. For
example, the reassembly code in Snort might alert if someone uses a
traffic interception/insertion tool such as hunt to insert traffic into
Telnet sessions.This option is often necessary on heterogeneous net
works with particular versions of Windows.

■	 ports This option indicates exactly which ports stream4 should perform
reassembly on. Reassembly is resource-expensive, especially on
memory—you might not choose to do this on most ports.You can set
this parameter to a space-delimited set of port numbers; “all” to
reassemble on all ports, or “default” to listen on the default port list of
“21 23 25 53 80 143 110 111 513.”

If you don’t specify any arguments for stream4_reassemble, this signifies
“clientonly ports default.”

stream4’s Output
stream4’s stream reassembly watches the entire session and assembles an uber
packet, built from all the data in the TCP session that it’s following. When the
session ends, it flushes that data back into the other preprocessor functions and
thus into the detection engine.This means that you might see an alert twice—
the first alert would be from the original packet, and the second would be for
the uber-packet built from that packet’s TCP session. stream4 also flushes the
current stream if it’s forced by memory exhaustion to prune the stream—this is
configured via the memcap parameter discussed previously. Finally, stream4 also
flushes the stream when it has collected a particular amount of data.This amount
is chosen randomly on a stream-by-stream basis—if it wasn’t a random amount,
an attacker could use Snort’s reassembly against it by placing the attack data just
far enough into the stream to make sure that part of it was flushed into one
uber-packet while the remainder was pushed into the next uber-packet.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 248

248 Chapter 6 • Preprocessors

frag2—Fragment
Reassembly and Attack Detection
A number of attacks use fragmentation to thwart rule-matching. Let’s review
fragmentation so we can understand what this preprocessor accomplishes.

Fragmentation is a normal part of the Internet Protocol (IP). In essence, each
type of networking hardware has a different Maximum Transfer Unit (MTU), a
number that quantifies how much data can be transferred in a single “chunk” on
the medium. For example, Ethernet’s MTU is 1500 bytes, and it calls its data
chunks “frames.”The sending IP stack in a communication generally puts as
much data in a packet as it can, basically using the MTU of the outgoing net
work as a maximum size for the outgoing chunk. If the IP packet, as it goes
through a router from one network to the next, is too large for the MTU of the
next network, it gets broken into fragments.These fragments basically look like
IP packets in their own right and can traverse the network.They are reassembled
when they reach their destination.

Unfortunately, fragmented packets pose a difficulty to NIDSs. Remember,
IDSs based on signature matching work by matching individual packets, not col
lections of them, against attack patterns. An attacker can use a tool such as Dug
Song’s fragroute (http://naughty.monkey.org/~dugsong/fragroute) to break a
packet into multiple fragment packets in the hope that no single fragment packet
will match the pattern for his attack. Snort’s frag2 preprocessor, in spp_frag2.c,
addresses this type of attack, by reassembling fragmented packets before they go
through the detection engine. In essence, it rebuilds each packet from the pieces
and passes the full packet through for detection once the process is finished.

frag2 is also useful in detecting fragment-based denial-of-service (DoS)
attacks.These attacks will often send a series of well-designed fragments to take
advantage of a host’s particular IP stack vulnerabilities. For example, some
machines will reboot, halt, or otherwise react negatively when they receive a
fragment that has its offset configured to overwrite a previous fragment’s data.
Remember, fragments are supposed to be nonoverlapping parts of the packet—
overlapping fragments is just the type of seemingly impossible condition that
causes a host to hang.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 249

Preprocessors • Chapter 6 249

Configuring frag2
You can configure frag2 by adding parameters after a colon on the preprocessor
frag2 directive:

preprocessor frag2: timeout 60, memcap 4194304

Let’s review the parameters that frag2 accepts.You’ll notice that some of the
parameters listed here are also in stream4 and have basically the same meaning.

■	 timeout The timeout parameter instructs frag2 to stop trying to rebuild a
fragmented packet if it hasn’t received a fragment in the set number of
seconds.The default 30 seconds is almost certainly overly aggressive. A
better default is probably 60 to 90 seconds. Sites that expect an attacker
might either use high-latency links or intentionally slow down his attack
should consider setting a number even a bit higher.

■	 memcap The memcap parameter limits the amount of memory that Snort
can use to store partially rebuilt packets. When frag2 has used all of this
memory, it will begin to aggressively prune partially rebuilt packets out
of its fragment table.The 4MB default might be overly aggressive, espe
cially on a heavily loaded external network interface. It’s probably
extremely over-aggressive for a host on the other end of a low-MTU
link.You can determine a good setting for this as you did when setting
memcap on the stream4 preprocessor. Send Snort a SIGUSR1 signal
and read the number of “frag2 memory faults” under the
“Fragmentation Stats” heading.

■	 min_ttl The min_ttl parameter sets a minimal IP Time-To-Live (TTL)
that packets must have in order to be reassembled by Snort. If the TTL
of a packet is too low to make it to its destination, you generally don’t
have to worry about it carrying a payload-based attack.The destination
host won’t receive the packet; thus, a payload-based attack won’t harm
that host.That’s not to say that packets that don’t reach the host can’t
have a negative effect! If an attacker sends a huge number of packets that
die on the router just before the destination host, that destination host
will almost certainly find the associated network connection over-satu-
rated and thus useless. Attackers have often used fragment-based attacks
to perform DoS attacks.The min_ttl parameter simply prevents frag2
from devoting resources to packets that won’t reach their destination.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 250

250 Chapter 6 • Preprocessors

You should set this parameter to the minimum number of hops between
the IDS’s network and the hosts you’re monitoring.

■	 ttl_limit The ttl_limit parameter sets a maximum difference that will be
tolerated between fragments of the same packet. Fragments of the same
packet should generally have about the same number of routers to tra
verse on their way between the two hosts. Even when they take dif
ferent paths, they should intuitively have about the same number of
hops to go through. If the number of hops changes too drastically, it
might be a sign of someone trying to evade detection. For example, an
attacker might insert fragments into the stream that will make it to the
IDS, but will expire before they reach the destination.This causes the
IDS to see a different picture of the rebuilt packet than the destination
host does. It’s difficult to choose a safe value for this parameter, although
10 is probably a safe bet. Much of this will depend on how dynamic
your ISP’s routing is and how dynamic the routing is to your standard
destinations.

■	 detect_state_problems The detect_state_problems parameter activates alerting
on anomalies detected in reassembling fragments.This will trigger on
several conditions. If a packet has more than one fragment identifying
itself as the first fragment (via a fragment offset of zero and the more
fragments flag set), this will trigger. It will also trigger if fragments
overlap or if a fragment arrives for a packet that is already fully rebuilt.
Finally, it will trigger if a nonfirst fragment has IP options set. IP options
should only be set in the first fragment.This option does not control
whether frag2 alerts on rebuilt packets that are too large, as in the Ping
of Death—this alerting is always active.

frag2 Output
frag2 rebuilds a packet from all the fragments it receives and then pushes the
rebuilt packet through the normal path taken by a packet that has just left the
decoder.The packet is logged and/or run through the preprocessor and detection
mechanisms. As with the stream4 preprocessor, it’s possible that a Snort rule will
alert both on a fragment and on that fragment’s rebuilt packet.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 251

Preprocessors • Chapter 6 251

flow
The Flow module has a larger purpose, that is, to “start unifying the state keeping
mechanisms of Snort into a single place.” From the end-user perspective, this pri
marily serves to provide the prerequisite functionality for two other modules: the
flowbits detection plugin and the flow-portscan preprocessor.

The flowbits detection plug-in allows the flowbits rule option to maintain a
sort of “state of detection” within a given directional side of a given TCP session.
This allows rules to trigger only if a previous rule has already triggered on that
flow.You can read more about how to use that rule functionality in the Snort
User’s manual or on the Syngress website for this book.The flow preprocessor is
a pre-requisite to that detection functionality, as it is doing the state-keeping
required for the flowbits detection plugin to accomplish this. The flow prepro
cessor also provides the framework for the experimental flow-portscan prepro-
cessor.This preprocessor will be retired soon, though, according to the Snort
developers.

While the conversation preprocessor and its dependent portscan2 prepro
cessor are replaced by flow and flow-portscan, these preprocessors have been kept
in the 2.1 source tree so far.

Configuring flow
You can configure flow by adding parameters after a colon on the preprocessor
flow directive:

preprocessor flow: stats_interval 0 hash 2

Let’s review the parameters that flow accepts.

■	 memcap The memcap parameter limits the amount of memory that Snort
can use to store its table of flows (information for each direction in each
communication). When flow has consumed this, it will begin to aggres
sively prune table entries.The default value here is 10,485,760, or
10MB.

■	 rows The rows parameter specifies how many rows are placed in the
flow hash table. Increasing this number increases the number of flows
that the preprocessor can track. Within the context of the flow-portscan
preprocessor, you might have used this option to keep track of a greater
number of portscanning sources. The default value is 4048.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 252

252 Chapter 6 • Preprocessors

■	 stats_interval The stats_interval parameter specifies how often, in seconds,
you’d like Snort to dump statistics information to stdout. Setting this to
0, as most people will choose when not tuning flow, disables the stat
dumping functionality.The default is 0.

■	 hash The hash parameter specifies a hash method. Using the value 1
indicates hashing by byte, which would thus have wider set of keys,
while the default value 2 indicates hashing by integer, which would have
a narrower set. Using a narrower set of hash keys makes this faster.

Flow Output
Flow keeps internal table data that other preprocessors consult. It provides the
state-of-detection data for the flowbits rules directive, as well as the state data
required by the flow-portscan preprocessor.

Preprocessor Options for
Decoding and Normalizing Protocols
Rule-based pattern matching can often fail on protocols for which data can be
represented in many different ways. For example, Web servers accept many dif
ferent ways of writing a URL. IIS, for example, will accept backslash “\” charac
ters in place of forward-slash “/” characters in URLs. Another example is Telnet,
where an inline protocol negotiation can interrupt data that might be matched.
Two characters in a pattern might be separated in the data stream by 4 bytes of
Telnet negotiation codes. In each of these cases, you can define a single “right,”
or canonical, way to write the data that you’re matching. We can change all of
the URLs to match the way that rule writers expect to see them. We can remove
all negotiation codes from Telnet data.These types of preprocessors might even
be used to convert binary protocols into text-based representations or some other
form that makes them easier to run through the detection engine. At the time of
this book’s publication, there exist decoding/normalization plug-ins for only the
Telnet, HTTP, and RPC protocols.

Telnet Negotiation
The Telnet protocol features an inline negotiation protocol to signal what fea
tures the client and server can offer each other.The client and server intersperse
this negotiation data with the normal payload data. Unfortunately, it’s usually the

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 253

Preprocessors • Chapter 6 253

payload data that we want to match our rules against. Snort solves the resulting
problem with the telnet_negotiation preprocessor, in spp_telnet_negotiation.c,
which removes all Telnet negotiation codes, leaving the detection engine to
simply perform matches against the remaining session data. Later in this chapter,
we’ll examine the implementation of the Telnet negotiation preprocessor, to
better understand how preprocessors work and how you can build your own
preprocessor.

Configuring the telnet_negotiation Preprocessor
You can activate the telnet_negotiation processor with a “preprocessor
telnet_decode” line in snort.conf. While at the time of this book’s publication,
Snort’s documentation and configuration file don’t mention it, the telnet_negotia-
tion preprocessor does allow you to specify a set of ports that should be filtered for
Telnet negotiation codes.To accept the defaults, which are “21 23 25 119,” simply
activate the preprocessor in the Snort configuration file with a line like this:

preprocessor telnet_decode

To specify an alternate set of ports, add a colon and a space-delimited list of
ports:

preprocessor telnet_decode: 23 25

telnet_negotiation Output
The telnet_negotiation preprocessor does not modify the original packet, as you
might think it would.This is specifically because some rules will want to detect
attacks or problems in the raw Telnet protocol, including the negotiation codes.
Snort allows you to do this by specifying “rawbytes” after the content option you
would like to set to look at the original packet.You might do this if an attack
used a particular negotiation code sequence, say, to attack a buffer overflow in
option subnegotiation.This preprocessor instead outputs the normalized Telnet
data into a separate data structure associated with the packet, and then flags that
packet as having an alternate decoding of the data. Rules that don’t use rawbytes
match against the alternate data, while rules using rawbytes match against the
unaltered original data. (By the way, this mechanism is currently only used by the
Telnet negotiation plug-in.) The other two protocol-decoding plug-ins that we’ll
discuss, which do HTTP and RPC normalization do not use the rawbytes
mechanism to ensure that a rule can reference the nondecoded version of the
packet. As you’ll see, the HTTP normalization plug-in leaves the packet alone

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 254

254 Chapter 6 • Preprocessors

and simply writes the URIs it discovers into a separate data structure that Snort
can read, while the RPC plug-in destructively modifies Snort’s only copy of the
packet.

HTTP Normalization
HTTP has become one of the most widely and diversely used protocols on the
Internet. Over time, researchers have found that Web servers will often take a
number of different expressions of the same URL as equivalent. For example, an
IIS Web server will see these two URLs as the same:

http://www.example.com/foo/bar/iis.html

http://www.example.com/foo\bar\iis.html

Unfortunately, a pattern-matcher such as Snort will only match the pattern
“foo/bar” against the first of these two. An attacker can use this “flexibility” in
the Web server to attempt to hide his probes and attacks from the NIDS.
Unfortunately, there are at least a few more IDS evasion techniques available to
an attacker. For example, IIS accepts Unicode (UTF-8) encoding for the URL,
as well as straight hexadecimal encoding.

Daniel Roelker, a Snort developer and IDS researcher with Sourcefire Inc.,
has written a brief yet comprehensive whitepaper describing the general process
of HTTP-specific IDS evasion, exploring the primary techniques in use, entitled,
“HTTP IDS Evasions Revisited.”The paper, available from www.idsresearch.org,
builds on Rain Forest Puppy’s original work and describes the following tech-
niques.These techniques generally only work against IIS, although a few work
against Apache, as we note in their description.Your mileage may vary on other
Web servers.The following presents only a summary of the paper, which we def
initely recommend you read.

Hex Encoding (IIS and Apache)
Hex encoding is the simplest of the URL obfuscation techniques.The attacker
simply replaces a character with its ASCII equivalent in hexadecimal, prefaced by
a percent sign.The letter “A” becomes “%41”.

Double Percent Hex Encoding
This is the first of many obfuscation techniques that are built on standard hex
encoding simply by taking advantage of the fact that Microsoft IIS will decode a
URL in two passes (double decoding).The attacker encodes the first percent sign

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 255

Preprocessors • Chapter 6 255

in hex, such that “%2541” becomes “%41” on the first pass, and “A” on the
second pass. We’ve used bold to show the effect of the first decoding step.

First Nibble Hex Encoding
A “nibble” is 4 bits. When you’re looking at an 8-bit byte expressed as a two-
hexadecimal digit number, each digit represents a nibble. In first nibble hex
encoding, the first hexadecimal digit is expressed as a hexadecimal number itself,
such that “%%341” becomes “%41” on its first pass and “A” on its second pass.

Second Nibble Hex Encoding
Second nibble hex encoding is just like first nibble hex encoding (see previous
paragraph), except that the second hexadecimal digit is encoded as its own hex
adecimal number, such that “%4%31” becomes “%41” and thus “A” on its second
pass.

Double Nibble Hex Encoding
Double nibble hex encoding simply encodes both hexadecimal digits as their
own hexadecimal number, combining the work done in the last two examples.
Now we start with “%%34%31”, which becomes “%41” on its first pass and “A”
on its second pass.

UTF-8 Encoding
UTF-8 encoding is where things get even less predictable. UTF-8 is a variable-
length encoding for characters.The leading bits specify how many bytes the
character’s definition will consume—this number ranges between 2 and 8.The
rest of the encoding specifies a number, or “Unicode code point,” which is a key
to that page.You can think of this as an extremely generalized version of ASCII,
made to account for many alphabets that range greatly in size.

The first problem that this encoding brings is that for an IDS to correctly
understand how a Unicode-encoded byte will be interpreted by the destination
server, the IDS must use the exact Unicode code page used by that server.The
second problem is that UTF-8 can encode a single code point in more than one
way.The letter A might be encoded as %C1%81, %E0%81%81, or a number of
other ways.The third problem is that, even within the minimum 2-byte encod
ings, UTF-8 code pages can have repetitions.That is, the character-to-UTF-8
mapping is not one-to-one.This can vary with code pages as well.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 256

256 Chapter 6 • Preprocessors

UTF-8 Barebyte Encoding
Microsoft’s IIS will also accept sets of potentially non-ASCII bytes in the data
stream, recognize them as UTF-8, and translate them.Therefore, the IDS must
not only handle the UTF-8 encoding as in the preceding section, but must also
handle UTF-8 encodings that are not escaped with a %.

Microsoft %U Encoding
Microsoft also supports their own 2-byte encoding scheme for Unicode. If the
code point is 2 bytes, it can be written simply as those 2 bytes, preprended with a
“%U”. Under this scheme, A can be written as “%U0041”.

Mismatch Encoding
Mismatch encoding describes a system where Microsoft IIS’s double decode is
used to combine the techniques discussed previously. For example, we can
encode the “U” in the “%U” encoding in hexadecimal, such that the previous
example is encoded as “%%550041”, which becomes “%U0041” on the first
decode and “A” on the second.

Request Pipelining
Request pipelining simply describes the HTTP 1.1-compliant situation where
multiple URIs can be placed in a single packet. An IDS must be able to identify
this situation and apply rules against the packet with each URL, all the while
canonicalizing each.

Parameter Evasion Using
POST and Content-Encoding
This technique involves separating the parameters from the URI by using an
HTTP POST command in place of the GET command expected by the IDS
rule.This is furthered by requesting an encoding on the parameters, like base64,
via the Content-Encoding header option.

Each of these techniques can be used to evade rule-based IDSs by varying a
known attack away from its corresponding rule’s description. Snort includes a
preprocessor, which we’ll introduce in the next section, to canonicalize or nor
malize the data, so that rules can properly identify it as an attack.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 257

Preprocessors • Chapter 6 257

HTTP-Specific IDS Evasion Tools
These IDS evasion ideas were first explored by Rain Forest Puppy’s Whisker
tool, an HTTP-specific vulnerability scanner. While deprecated in 2003 in favor
of Sullo’s Nikto, Whisker lives on in tools like Nikto, which use libwhisker, a
library encompassing Whisker’s IDS evasion and server test technology. Rain
Forest Puppy’s libwhisker site can be found at www.wiretrip.net/rfp/lw.asp, while
Nikto can be found at www.cirt.net/code/nikto.shtml.

IDSResearch.org also includes tools that can produce evasion-focused URI
variants, including Roelker’s URL Encoder command-line tool as well as the
HttpChameleon Windows GUI-based tool, which he developed in collaboration
with Marc Norton, another Sourcefire developer. While tools like Whisker and
Nikto focus on vulnerability scanning and include IDS evasion technology,
HttpChameleon and URL Encoder focus entirely on IDS evasion, allowing a
tester to try custom URLs with a wider scope of evasion techniques to find areas
to correct in IDSs.

Damage & Defense…

seem to make the number of possibilities infinite, except that the

unwieldy number of ways to write a URI.

http://archives.neohapsis.com/archives/sf/ids/2001-q1/0055.html. If this is

acter URI could be expressed in 8.16 ∑ 1024, or about 8 septillion (8 bil
lion trillion), possibilities. This is before you even bring in ./ or foo/../bar
expansions!

How Many Ways Can I Write a URI?
There are many ways to write a URI. For example, you can add “./”’s to a
URL—“./” means “the current directory.” As a result, you can add as many
of these as you like anywhere in the URL where a “/” appears. This would

receiving Web server is almost certainly going to limit the length of the
URL that it can receive and act on. In any case, there’s definitely an

A post to the SecurityFocus IDS mailing list by Blaine Kubesh, of Cisco
Systems’ IDS Development Team, claims that IIS would accept more than
1,300 encodings for the letter A. The post can be found at

representative of each ASCII character, there are 1300n different ways to
write an n-character URI. To get a feel for this number, a short eight-char-

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 258

258 Chapter 6 • Preprocessors

We’ve looked at techniques for obfuscating a URI and considered the mas
sive number of different possible ways to do so for a fixed URI.There is no
decent way to do rule-matching attack detection unless we can canonicalize the
URIs.This situation screams out for a preprocessor!

Using the http_inspect Preprocessor
The Snort developers initially answered this scream with the http_decode pre
processor. Roelker’s http_inspect replaced this preprocessor so as to counter all of
the evasion techniques—it’s a tremendous leap forward over http_decode’s more
primitive functionality. Outside of canonicalizing URIs, http_inspect also detects
previously unknown Web servers or proxies, allowing better understanding of
what HTTP activity is taking place on the network.

To activate this preprocessor, look to the http_inspect lines in your Snort
configuration file:

preprocessor http_inspect: global \

iis_unicode_map unicode.map 1252

preprocessor http_inspect_server: server default \

profile all ports { 80 8080 8180 } oversize_dir_length 500

Relative to the http_decode preprocessor, or even most of the other prepro
cessors, the new http_inspect has a very large number of configuration options.
Let’s look at these.

Configuring the http_inspect Preprocessor
The http_inspect preprocessor has three types of configuration lines in the
snort.conf configuration file.The more general “global” line, which uses the
http_inspect directive, defines overarching behavior for the preprocessor.The
other two types of lines, which use the http_inspect_server directive, further
describe how http_inspect should normalize or react to traffic. Most of the lines
of this latter type will describe the specific behavior for a specific server, while
one line will describe a default behavior for when snort.conf hasn’t described
that server in advance.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 259

Preprocessors • Chapter 6 259

Configuring the http_inspect Global Line
The http_inspect “global” line, which defines the general behavior for
http_inspect, looks like this:

preprocessor http_inspect: global \

iis_unicode_map unicode.map 1252

First, it defines a Unicode map file; that is, a file that defines what Unicode
code page is normally in use on your IIS servers.This map file varies primarily
with alphabet and should be stored in the same directory as snort.conf. If you’re
using a US-based Microsoft IIS server, you can use the map file that ships with
Snort. Otherwise, you should generate a map yourself by running the ms_uni-
code_generator.c program in the Snort.org contrib. directory.The number that
follows the filename of the map specifies the map number. With the United
States, you should be able to leave these two options alone.

Next, the optional detect_anomalous_servers option, if present, tells the prepro
cessor to inspect traffic on non-HTTP defined ports (those not defined in the
snort.conf variable HTTP_PORTS) and alert when it finds HTTP traffic.This
allows you to detect new or rogue servers speaking HTTP.

Finally, the also optional proxy_alert option, if present, instructs the prepro
cessor to alert on any proxy usage that doesn’t go through already-defined
proxies.This is used with the allow_proxy_use and http_inspect_server directives,
which define a known proxy whitelist.

Configuring the http_inspect_server Lines
The http_inspect_server lines define http_inspect’s behavior for normalizing and
alerting on anomalous traffic to servers. We first define a default behavior, for
servers not listed here:

preprocessor http_inspect_server: server default \

profile all ports { 80 8080 8180 } oversize_dir_length 500

and then define behavior for specific servers, like this:

preprocessor http_inspect_server: server 192.168.1.5 \

profile apache ports { 80 } oversize_dir_length 600

preprocessor http_inspect_server: server 192.168.4.6 \

profile ports { 80 8080 } flow_depth 0 ascii no double_decode yes \

non_rf_char { 0x00 } chunk_length 500000 non_strict no_alerts

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 260

260 Chapter 6 • Preprocessors

There are a very large number of configuration options for an
http_inspect_server line, as you’ll see here.The first three directives are required,
while the others are optional.

■	 server <default | IP address> As explained here, the value default indi
cates that this line sets the default preprocessor behavior for servers
which do not have their own lines.The only other permissible value is
an IP address, which indicates that the line applies to a server at that IP.

■	 profile <all|apache|iis> This optionally fixes the way the preprocessor
normalizes and alerts on traffic to fit known the behavior of Apache or
IIS servers. Choose all to apply a profile that works to encapsulate a

Damage & Defense…

Setting a profile for a given server implies a new set of default settings for
the following options. See the online Snort User’s Guide to learn exactly

up-to-date list as well.

more generic behavior.

HTTP Server Profiles?

what settings are changed. Additionally, you may consult the Syngress
website for this book (www.syngress.com/solutions), which will keep an

■	 port { port1 [port2 .. portN] } The port directive tells the preprocessor
what ports to decode on the HTTP server. An SSL port like 443 is a
bad idea, since we can’t decrypt the SSL traffic.

■	 iis_unicode_map <map filename> codemap <number> This specifies the
Unicode mapping to use. United States users can use the default file
that ships with Snort, while users in other locales should use the
ms_unicode_generator program from snort.org’s contrib. directory.

■	 flow_depth <bytes> This directive tells the preprocessor to read only the
first bytes bytes of traffic from server to client. Based on the facts that
server responses make up 90-95% of all HTTP traffic by volume and
that client requests usually contain the attacks we have rules for,

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 261

Preprocessors • Chapter 6 261

reducing the amount of server response data examined produces a size
able speed increase with little reduction in utility. 300 is a good default,
though you could reduce to 150. Reducing below 5 bytes (H-T-T-P-/)
reduces the ability to detect rogue servers or proxies.

■	 inspect_uri_only Also a performance optimization, this directive tells the
preprocessor to examine only the URI portion of the client HTTP
request.This reduces the set of HTTP rules that work effectively only
somewhat, while providing a reasonable performance benefit. While
we’d recommend the flow_depth optimization, we don’t recommend this
one unless you’ve considered its impact on your ruleset.

■	 no_pipeline_req When this option is present, the preprocessor will not
look for multiple URI’s in a packet, thus missing evasion attacks that
place a rule-matching URI after another URI to hide it.

■	 non_strict When this option is present, the preprocessor will interpret a
GET /foo.html bar URL as valid, even though the spec requires that
the second string after the GET should begin with “HTTP/”. This
should definitely be activated on Apache, which handles this “sloppy”
URI method.

■	 allow_proxy_use Use this option to tell the preprocessor that this host is
a valid proxy.This is necessary when the proxy_alert keyword is in use
globally, in order to define a whitelist of known proxy servers.

■	 non_rfc_char { byte1 [byte2 … byteN] } This option specifies non-RFC
characters that should generate alerts when present in a URI.

■	 chunk_length <bytes> This option tells the preprocessor to alert when it
finds an abnormally large chunk size.This was added to catch the
Apache chunk encoding exploits, but may also alert on traffic that’s
being tunneled over HTTP, which may use large chunks.

■	 oversize_dir_length <characters> This option tells the preprocessor to alert
when it finds a directory name that is longer than characters characters.

■	 no_alerts This directive, when present, deactivates all alerting in the
Http_Inspect preprocessor, such that it just normalizes URI’s, but does
not alert on anomalous encoding as it does so.

The following configuration options look like encoding normalization
options, but they’re actually alerting options.The preprocessor will normalize the

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 262

262 Chapter 6 • Preprocessors

encodings in question either way – setting these to yes means that it will gen
erate an alert as it does so.

■	 ascii <yes|no> Setting this option causes the preprocessor to alert when
it finds ASCII values expressed in hex, like “A” expressed as “%41”.
Given that this is normal behavior for HTTP and within the protocol
spec, we don’t recommend setting this option – it will produce too
many false positives for most environments.

■	 utf_8 <yes|no> Setting this option causes the preprocessor to alert
when it finds ASCII values expressed in UTF-8. Again, given that this
is normal behavior for HTTP and within the protocol spec, we don’t
recommend setting this option – it will produce too many false positives
for most environments.

■	 u_encode <yes|no> Setting this option to “yes” causes the preprocessor
to alert when it sees a character encoded in the Microsoft %U format.
You should always set this to yes, as no clients normally use this
encoding.

■	 bare_byte <yes|no> When set to “yes,” Snort will generate an alert
when it finds UTF-8 values without a preceding percent sign. Again,
there are no legitimate clients that behave this way, so set this to “yes.”

■	 base36 <yes|no> When set to yes, the preprocessor will alert on
base36-encoded characters.

■	 iis_unicode <yes|no> When set to yes, the preprocessor alerts on the
usage of IIS Unicode.

■	 double_decode <yes|no> This option causes the preprocessor to alert
when it finds encoded ASCII remaining after its first conversion pass.
These indicate an evasion attempt that take advantage of IIS’s double
decode.

■	 multi_slash <yes|no> This option tells the preprocessor to alert when it
finds multiple slashes in a row, like “foo///bar”.This tends to have a
low, but unfortunately non-zero, false positive rate.

■	 iis_backslash <yes|no> This option tells the preprocessor to alert when
it finds backslashes in a URI, like http://example.com/foo\bar.html. It
should always be safe to leave this on, unless you suspect your users will
use backslashes.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 263

Preprocessors • Chapter 6 263

■	 directory <yes|no> This options tells the preprocessor to alert when it
finds /../ or /./ (directory traversals or self-referential directories, respec-
tively).This too tends to have a low, but unfortunately non-zero, false
positive rate.

■	 apache_whitespace <yes|no> Apache allows tab characters to be used
instead of space characters.You can alert on this, though it may have a
small, but non-zero, false-positive rate.

The Http_Inspect module offers a good number of features, as you’ve seen.
This functionality brings anomaly detection to Snort, which started out as a strict
pattern-matching IDS.

HTTP_ Inspect Output
The HTTP_Inspect preprocessor writes normalized URLs into a global data
structure that can be read by Snort’s detection engine. It then runs its own
instance of the detection engine.This modified behavior was necessary to allow
the preprocessor to attempt to match patterns on a packet with multiple URLs.
The original packet is not altered by this process.This global data structure is
checked against the uricontent rule directive.

rpc_decode
Applications such as Network File Sharing (NFS) and Network Information
System (NIS) ride on Sun’s Remote Procedure Call (RPC) protocol. RPC isn’t a
transport-layer protocol; in fact, it rides on top of TCP or UDP. Instead, it’s an
abstraction mechanism that allows a program on one host to call a program on
another host.You can learn more about RPC by reading RFC1831, “RPC:
Remote Procedure Call Protocol Specification Version 2,” available at
www.ietf.org/rfc/rfc1831.txt.

Since RPC is intended to carry single messages, but can ride over the
stream-based TCP protocol that doesn’t distinguish between messages the way
UDP does, Sun designed a “record” structure such that each RPC message is
encapsulated in a “record.”As the RFC describes, a record is made up of one or
more “record fragments.”These fragments aren’t IP fragments—two record frag
ments can easily be in the same packet.They bring a simple structure. Each
record is made up of one or more fragments, where each fragment starts with a
bit indicating whether the record is continued into the next fragment, and a 31
bit number describing the size of the data in the fragment.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 264

264 Chapter 6 • Preprocessors

An attacker can easily break a record into fragments by manipulating the
stream, so that a critical bit of data is spread across several record fragments.This
would cause a 32-bit fragment header to interrupt the critical data, thereby
foiling straight pattern matching.The rpc_decode preprocessor, in
spp_rpc_decode.c, can defeat these attacks just as simply by consolidating records
broken into more than one record fragment into a single record fragment.The
only real difficulty with this process is knowing which TCP streams to send
through the preprocessor. Snort uses a static list of ports, performing this process
on every TCP stream destined for these ports.

Configuring rpc_decode
There’s good news and bad news when it comes to configuring rpc_decode.The
good news is that rpc_decode takes only a list of ports as a parameter.The bad
news is that determining which ports should be in this list is difficult.

Normal client-server applications work by having the server listen on a well-
defined port, such that the client knows what port to contact. For example,
Telnet servers usually listen on port 23, while FTP servers listen on port 21.
Server administrators can override these ports, but generally don’t—when they
do, they must communicate the nonstandard port to all users.

RPC works differently. RPC-based servers on a host start listening on an
unreserved port, which they then register with a local portmapper.The
portmapper, called rpcbind on most Unices and portmap on Linux, listens on a
static port (TCP and UDP 111), which clients contact to learn the port numbers
of the servers they seek.This nonstatic nature of server port assignments makes it
difficult to configure the rpc_decode preprocessor properly. We’d like the prepro
cessor to act on all RPC-based traffic, but we don’t know which ports our
RPC-based servers are using. We could be conservative and simply choose the
portmapper’s listening ports.This is actually Snort’s default—it listens on ports
111 and 32771. While 111 is the standard portmapper port, versions of Solaris
prior to 2.6 listened on port 32771 as well. Now, we do have other options.

How might we choose more ports for rpc_decode to translate? Well, first you
might notice that most of a machine’s RPC servers that start on boot seem to
always show up with the same port numbers. If your network is fairly homoge
neous, these should be about the same from machine to machine.You can add
these port numbers to the list. Second, if you have any applications at your site
that use RPC, you might add whatever port number they tend to communicate
with most often.You can try to find or confirm patterns in your site’s use of

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 265

Preprocessors • Chapter 6 265

RPC by sniffing headers on traffic for a few days, tracking down the protocols in
use on your network. Setting this list too inclusively could be dangerous, though.
The rpc_decode preprocessor modifies Snort’s internal representation of any
packets passing through it—if it acts on non-RPC traffic, it might wrongly
modify packet data.

You can activate the rpc_decode preprocessor by including the following line
in Snort’s configuration file:

preprocessor rpc_decode

If you want to specify ports outside of the default, simply add a colon to the
end of this, followed by your space-delimited port list:

preprocessor rpc_decode: 111 32771 1024

You can also activate or deactivate RPC anomaly detection in this prepro
cessor with the following four directives:

■	 alert_fragments The alert_fragments parameter, which is off by default,
instructs the RPC decode preprocessor to alert whenever it sees RPC
messages broken up into multiple fragments. As this could be a sign of
IDS evasion by an attacker on some networks, this might be prudent.

■	 no_alert_multiple_requests This parameter modifies the RPC decode pre-
processor’s normal behavior, so that it doesn’t alert when more than one
RPC query (message) is in a single packet. Especially if stream4 is doing
stream reassembly on an RPC port, this setting could save you from a
number of false alerts.

■	 no_alert_large_fragments This parameter modifies the RPC decode pre-
processor’s normal behavior, so that it doesn’t alert when the RPC frag
ments might cause integer overflows and end up being too large.

■	 no_alert_incomplete This parameter modifies the RPC decode prepro-
cessor’s normal behavior, so that it doesn’t alert when a single RPC
message is larger than the packet containing it.This alert will false often
when there are large RPC messages that get fragmented—since RPC
messages can be 231 bytes, they can exceed the MTU of the medium on
which their packets travel.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 266

266 Chapter 6 • Preprocessors

rpc_decode Output
The rpc_ddecode preprocessor actually does modify the packet that it’s exam-
ining.This is one of the few preprocessors that currently overwrite the original
packet data, as of Snort 2.1.3RCI.

Preprocessor Options for
Nonrule or Anomaly-Based Detection
A third class of preprocessor performs attack detection that cannot be performed
using regular rules or protocol anomaly detection.The preprocessors that we
examine here show how Snort can be extended easily to detect attacks in about
any way a developer can imagine. Although it hasn’t been done yet, one might
even give Snort the capability to do statistical measurement and learning of
normal network traffic, alerting on deviations from normal behavior.This is
simply a wild example of how preprocessors allow a developer to add nearly any
IDS functionality conceivable to Snort, giving it the capability to straddle all
boundaries between types of NIDSs. Before you get too excited, let’s look at the
two preprocessors that have been declared Enterprise-ready code at the time of
this book’s publication: portscan and bo (Back Orifice).

As an additional note, this class of preprocessors is more concerned with
alerting than with rewriting packets. As a result, this section will not include a
discussion of how each of these preprocessors places a packet back into the
detection engine—this doesn’t apply to them.

Portscan
Some attacks just can’t be detected by rule-matching or protocol anomaly detec
tion. For example, how does one reliably detect a portscan from a single packet
or connection? A portscan generally involves several probes, generally to more
than one port or more than one machine. If it does not, it’s extremely difficult to
distinguish from an ordinary valid connection attempt. A single incoming port-
80-destined packet to your non-Web server workstation could be the Internet
equivalent of a “wrong number.”A user could have entered a name or IP address
incorrectly, or your organization’s DNS entries might have an error. However,
200 port-80-destined packets addressed to each of your IP addresses, arriving in
numerical order by IP address, are almost certainly a curious party’s portscan.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 267

Preprocessors • Chapter 6 267

What distinguishes one from the other is a subtle combination of at least the
following factors:

■ Number of destination hosts

■ Number of destination ports

■ Time over which the packets were sent

There’s no real way to take all these factors into account with straight rule-
matching, even with stream reassembly. Remember, the multiple packets that
we’re looking for would each be seen as belonging to its own separate connec
tion. Snort’s portscan preprocessor, in spp_portscan.c, detects portscans by
watching for a specific number of probe packets sent within a certain time
period of each other.These probe packets can be directed entirely at one host or
spread across a network of machines—all that matters is that the number of
packets crosses a preset threshold in a preset period of time. Once this happens,
the portscan preprocessor alerts.

This preprocessor also sounds an alert whenever it receives one of the well-
known “stealth scan” packets, such as those sent by nmap.These include the
odd/illegal packets shown in Table 6.1.

Table 6.1 Snort-Detected Stealth Packets

NULL All TCP flags are deactivated.

FIN Only the FIN flag is on.
SYN-FIN Only the SYN and FIN flags are on.
XMAS Only the FIN, URG, and PSH flags are on.

You should never encounter one of these packets on your network if it cor
responds perfectly to the TCP specifications. For example, NULL packets should
never happen—these correspond to a total lack of state information in a stateful
protocol!

One warning is in order: the portscan preprocessor’s code itself warns that,
“…the connection information reported at the end of scan is wildly inaccurate.”
In essence, the preprocessor is fairly good at telling you that someone is scanning
your network, but it’s not very good at counting exactly how many probes the
scanning party sent.The basic reason for this failure is that the portscan prepro
cessor is not building and consulting a database of all traffic sent by a scanning
system. It’s just not designed to maintain this much historical information. It

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 268

268 Chapter 6 • Preprocessors

maintains some simple counts of how many connections each host has tried to
open and how many connections each host has received. It removes information
on hosts often, as the user-configured expiration time is reached without a given
host having initiated the threshold number of connections.

This is easier to understand with an example. Say that we’re watching for five
probes within 15 minutes. If a host scans four ports on our network in five sec
onds, then waits an hour, and then scans six ports, we won’t get an alert until the
second set of scans is almost complete.That’s expected and normal. However, the
alert won’t tell us about the initial four ports that were scanned, because the pre
processor will already have forgotten about those four probes when it gets the
new probes.This is part of why tuning a portscan detector is so difficult. On the
one hand, you’re eager to make sure that an attacker can’t bypass detection by
sending his probe packets very slowly. On the other hand, you can’t alert on
every SYN packet that enters your network unexpectedly!

Anyway, this lack of accurate reporting doesn’t make the preprocessor useless.
It’s still decent at detecting scans—it’s just not going to give you hyper-accurate
data on how many probes a particular attacker sent you.

Configuring the Portscan Preprocessor
You can activate the portscan preprocessor by adding the following line to your
Snort configuration file:

preprocessor portscan:

<monitor network> <number of ports> <detection period> <file path>

You must replace <monitor network> with the target network you’d like the
preprocessor to watch for scans against, listed in CIDR notation.The <number of
ports> and <detection period> parameters denote a number of ports scanned
within a period in seconds, specifying a time-limited threshold. Finally, the <file
path> parameter denotes the fully qualified pathname of the file to which you’d
like portscans logged. For example, to alert whenever five ports are scanned
within a 60-second period on the 10.0.0.0/8 network, you’d add this line:

preprocessor portscan: 10.0.0.0/8 5 60 /var/log/portscan.log

The portscan preprocessor also comes with a function that allows you to
specify source hosts that should be ignored.You can use this by specifying a
space-delimited list of IP addresses, in CIDR notation, on a preprocessor
portscan-ignorehosts line:

preprocessor portscan-ignorehosts: 192.168.1.1/32 192.168.2.0/24

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 269

Preprocessors • Chapter 6 269

Back Orifice
The Cult of the Dead Cow wrote Back Orifice in 1998 as a remote control
mechanism, often used by attackers to maintain control of their compromised
systems.The remote control mechanism does not use a reserved port, and it does
use encryption, making it less than trivial to detect on a network. Luckily, it uses
an overly simple encryption scheme to both hide and authenticate access to the
target system. In this scheme, the attacker picks a password, which is then hashed
into a 16-bit number. Sixteen bits is a relatively small keyspace, presenting only
65,536 possibilities. All traffic is encrypted by XOR’ing it with this hash. All
requests made from the client to the server begin with the magic string
“*!*QWTY?” before encryption—this “known plaintext” vulnerability makes it
easy to brute-force the password. In essence, we can try XOR’ing “*!*QWTY?”
with every hash value until we find one that matches one of the packets we see
on the wire. Since the encryption scheme is so simple, one can easily write a
program to brute-force the encryption, giving a security analyst a clear picture of
what the attacker orders the machine to do.

Snort’s bo (Back Orifice) preprocessor, in spp_bo.c, detects Back Orifice by
examining every UDP packet of size at least 18 bytes and checking its first eight
characters of payload against a precomputed table of enciphered versions of the
magic string. (Actually, to save resources, it checks only the first two characters
and the last two characters of this string.) The Back Orifice preprocessor com
putes this table when Snort first starts up, during the preprocessor’s initialization
phase. We’ll examine the preprocessor initialization phase in the last section of
this chapter, when we examine the telnet_negotiation preprocessor in-depth.

Configuring the Back Orifice Preprocessor
The Back Orifice preprocessor takes no arguments—it cannot be configured at
all.

General Nonrule-Based Detection
As you can see, one major purpose for Snort preprocessors is to detect attacks
that can’t be easily caught via straight rule-matching.These represent a strong
method of adding more intelligence to Snort without sacrificing the speed of
straight pattern-matching. Nicely, a Snort box deployed to simply capture traffic
will not have to run packets through these preprocessors, as the analyzer box(es)

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 270

270 Chapter 6 • Preprocessors

can perform that function well. Again, the Snort developers have worked very
hard to maintain performance.

You should note that most of the preprocessors offered alerting modes that
could be deactivated.These alerting modes form the basis for Snort’s protocol-
anomaly detection and might catch sneakier attackers. However, they might
prove too noisy on some networks, depending on what operating systems are
deployed. For example, stream4 tends to alert on protocol problems too often on
networks with particular versions of Windows. If you have time to observe and
tune your preprocessors, it’s wise to leave these alerting options active initially,
backing off on noisy ones. If you don’t have the time or resources to tune, you
can just configure each preprocessor for its primary functionality. Actually, as of
Snort 1.9.1, most of the default settings assume that you prefer the latter strategy.

Performance Monitoring
All good analysts hope one day to have enough spare cycles when they’re not
actively engaged in incident handling to be able to tune their IDS setup for max
imum efficiency. Of course, the clever already realize that streamlining perfor
mance is an excellent way to free up cycles… Regardless of your position along
this circuit, when it’s time to start examining performance, it’s time to roll out
the perfmonitor preprocessor (spp_perfmonitor.c).

This preprocessor exists to gather statistics about Snort’s real-time/actual per
formance and lay them out against its theoretical/optimal performance on the
same system.

Configuring the
Performance Monitoring Preprocessor
The performance monitoring preprocessor only takes a handful of options,
which it cheerfully summarizes to the console when Snort is invoked in a non-
quieted way.

PerfMonitor config:

Time: 1 seconds

Flow Stats: INACTIVE

Event Stats: INACTIVE

Max Perf Stats: INACTIVE

Console Mode: ACTIVE

File Mode: ./snort-log-tld/snort-perf-stats

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 271

Preprocessors • Chapter 6 271

SnortFile Mode: INACTIVE

Packet Count: 500

Note:This example was generated using the following line in the Snort con
figuration file:

preprocessor perfmonitor: time 1 console file ./snort-log-

tld/snort-perf-stats pktcnt 500

You can tweak this configuration to fit your environment by adjusting the
argument parameters:

■	 The time option specifies the length of time, in seconds, between sampling
passes. Setting this at too low a value can tremendously inflate your over
head costs, so be cautious.The example shows an interval of 1 second, but
bear in mind that it was run for an extremely limited period of time on
an unloaded system.The default value is 300. Note that if your run is less
than time, you will not get statistics from this preprocessor.

■	 The console option directs the output from perfmonitor to display on the
console. By default, console is enabled. May be used alone or in conjunc
tion with the file option.

■	 The file <filename> option directs the output from perfmonitor to be
written to the specified filename. By specifying “snortfile”, the output
will be directed to your Snort log directory. By default, file is set to
output to /var/snort/snort.stats.The statistics are written to the file with
a single, comma-separated line for each sampling run. When the same
filename is specified on successive runs, the results are also automatically
stored on consecutive lines. Note that the Snort docs warn that “[n]ot
all statistics are output to this file.”

■	 The pktcnt option tells the preprocessor how many packets should be han
dled before checking the time sample.This, in conjunction with the time
option can either bolster or scuttle your system performance, so use with
care.The default value is 10000. Note that if your run captures fewer than
pktcnt packets, you will not get statistics from this preprocessor.

There are also three additional options that you can invoke for more in-
depth assessments:

■	 The flow option generates prodigious amounts of detailed information
on network traffic flows, complete with information on packet length to

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 272

272 Chapter 6 • Preprocessors

total packets per flow ratios, volume of flows per port and protocol type,
fragmentation statistics, and so on.

■	 The events option generates a much more compact data set reflecting the
number of signatures tripped, matched, and/or verified. Non-qualified
events are those that were tripped and matched by the setwise pattern
matcher. Qualified events are non-qualified events that are subsequently
verified against the signature flags.This option highlights any discrepan
cies between what is expected to be detected and what is actually being
detected by a given ruleset.

■	 The max option instructs the preprocessor to calculate Snort’s theoret
ical optimal performance levels at each time interval as well as to sample
the current real-time activity statistics.This is the heart of performance
tuning with Snort. Note that the calculations and sampling are made
fresh at each sample time, so the time and pktcnt variable settings are very
important here. Also note that this is currently only a valid option for
single-processor machines.

Note that none of these final three is turned on by default.

Experimental Preprocessors
The preprocessors listed in the following sections are all experimental or not-yet-
Enterprise-grade.They’re either under development, not yet finished, or generally
experimental; consequently, they’re generally not enabled by default. However,
you might want to try them out if you’re either looking for the particular func
tionality that they offer, or you’re interested in helping to develop or test new
Snort code. For example, you might want to detect ARP spoofing attacks, per
haps to see if any attackers are performing active-sniffing attacks against your
switched networks.This might lead you to the arpspoof detection preprocessor,
described next.

arpspoof
The arpspoof preprocessor detects Address Resolution Protocol (ARP) spoofing
attacks, like those available via dsniff ’s arpspoof
(http://naughty.monkey.org/~dugsong/dsniff/). An attacker uses ARP spoofing
on a local network to trick hosts into sending him traffic intended for another
host. A host that wants to send an IP packet to another host on the same LAN

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 273

Preprocessors • Chapter 6 273

doesn’t generally just send the packet on the LAN—it has to know the physical
hardware, or Media Access Control (MAC), address of the destination host.This
address looks something like AA:BB:CC:DD:11:22, as it is a six-octet number.To
learn the MAC address that it needs, it broadcasts an ARP request, along the lines
of “who has IP address 10.0.0.1? Tell AA:BB:CC:DD:11:22?”The destination
host responds with its own MAC address, which the sender then caches and uses
for all traffic it sends to that host for a set period of time, called the cache entry
Time-To-Live (TTL). In an ARP spoof attack, a hostile host on the network
sends out a false ARP reply, claiming its hardware address as the intended desti-
nation.The attacker wants the recipient host to cache this incorrect data and
send packets to his hostile host instead of the correct destination. He’ll usually
configure this hostile host to forward the packets on to the correct host, to pre
serve the stream.

Among other things, this type of trick helps an attacker redirect traffic and
eavesdrop on a switched network. Given good tools, it can even let him transpar
ently modify the data stream, possibly injecting traffic.You can learn more about
this by examining the ettercap tool included on this book’s CD-ROM.

The arpspoof preprocessor detects this type of trickery by checking ARP
traffic against a user-supplied table of IP addresses and hardware MAC addresses.
You supply this table in the Snort configuration file, using the
arpspoof_detect_host preprocessor directive:

preprocessor arpspoof

preprocessor arpspoof_detect_host: 192.168.1.1 f0:a1:b1:c1:d1:91

preprocessor arpspoof_detect_host: 192.168.1.2 f0:a2:b3:c4:d5:96

This preprocessor, in spp_arpspoof.c, can also detect unicast (nonbroadcast)
ARP queries. Remember, ARP queries are supposed to be broadcast to the
entire LAN.You can activate alerting on unicast ARP queries by using the -uni
cast option on the preprocessor activation line in Snort’s configuration file:

preprocessor arpspoof: -unicast

portscan2 and conversation
portscan2 is a successor to the portscan preprocessor. Combined with conversation,
this is a stateful portscan detection preprocessor.The Snort team does not yet
consider this preprocessor enterprise ready, so this chapter doesn’t devote much
coverage to it.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 274

274 Chapter 6 • Preprocessors

portscan2 does require the conversation preprocessor. In essence, conversation
provides a state engine that keeps state on TCP, UDP, and ICMP—it compiles
information on which hosts have contacted which and on which ports. conversa
tion isn’t really used for its own sake—it simply provides a data compilation
mechanism for portscan2.

The flow and flow-portscan preprocessors have now superseded these two
preprocessors. We still cover the portscan2 and conversation preprocessors solely
because they haven’t yet been removed from the codebase and may thus still be
in use.

Configuring the portscan2 Preprocessor
To understand how portscan2 is configured, you will need to understand how it
operates. portscan2 keeps detailed short-term records of all session-initiating
packets (potential probes) that cross Snort, from any single host to any other
single host. In certain situations, portscan2 can be configured to ignore hosts and
ports; basically, it watches to see if any one host sends too many probes and then
issues alerts if it does. portscan2 accomplishes this by maintaining counts and
waiting to see if thresholds are crossed.The criteria for crossed thresholds is based
on either too many different destination ports or hosts. portscan2 maintains this
information for a short period of time, which means that it won’t necessarily
detect a slow (and thus stealthy) scan.

portscan2 is activated by adding a preprocessor portscan2 line in Snort’s configu
ration file (snort.conf). Optionally, you can add a colon after portscan2 and add a
comma-delimited set of parameters settings, like so:

preprocessor portscan2: targets_max 1000, scanners_max 1000, port_limit 20

As we’ll discuss, some of this preprocessor’s defaults are almost certainly too
low. Let’s examine the parameters that you can set:

■	 targets_max Defaulting to 1000, this resource-control parameter controls
how many targets that portscan2 will keep track of at maximum.

■	 scanners_max Defaulting to 1000, this resource-control parameter con
trols how many different scanning IPs portscan2 will track at maximum.

■	 target_limit Defaulting to 5, this parameter controls the target host
threshold. Once any particular scanner has sent a probe to this many
hosts within the timeout period, the preprocessor raises an alert.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 275

Preprocessors • Chapter 6 275

■	 port_limit Defaulting to 20, this parameter controls the port threshold.
Once any particular host has sent a probe to this many ports within the
timeout period, the preprocessor raises an alert.

■	 timeout Defaulting to 60, this parameters sets a time in seconds that any
scanning data will last. If this time is exceeded without any activity from
a host, data may be pruned.

■	 log Defaulting to “/scan.log,” this parameter controls the pathname of
the preprocessor’s logfile, relative to Snort’s current working directory.

The default values here are decent for catching fast portscans on small net
works. If you want to catch slow scans, you’ll most definitely need to increase
some of these values. If an attacker configures between a 10- and 20-second
delay between his probe packets, the timeout value will probably fail you. If an
attacker uses a number of decoy IP addresses (as some have been known to do
when they scan sniff an entire class C for replies), the default scanners_max value
will fail you as well. As always, it’s best to try a set of values and tune them based
on your experiences.

Similar to the portscan preprocessor, you can define hosts to ignore activity
from.You accomplish this via a space-delimited list of host and network IPs on a
preprocessor portscan2-ignorehosts line.

preprocessor portscan2-ignorehosts: 192.168.1.1 192.168.2.0/24

Further, you can define a port that the portscan preprocessor should ignore
for each host/network, by appending an @ sign and a port number to the end of
an IP address, like this:

preprocessor portscan2-ignorehosts: 192.168.1.1@25 192.168.2.0/24@80

It is also possible to pass multiple ports for an IP address by listing that IP
address multiple times, like so:

preprocessor portscan2-ignorehosts: 192.168.1.1@25 192.168.1.1@80

As with other options using IP addresses in the Snort configuration file, you
can definitely use the ! character for negation.

Now, remember that the portscan2 preprocessor requires that you first run
the conversation preprocessor. Let’s explore how this is configured.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 276

276 Chapter 6 • Preprocessors

Configuring the conversation Preprocessor
The conversation preprocessor keeps records of each communication between two
hosts, organizing it into “conversations” even for the non-session-based protocols
like UDP.The conversation preprocessor does not perform reassembly, as this
preprocessor solely supports the portscan2 preprocessor, essentially allowing the
portscan2 preprocessor to only keep track of, and potentially alert on, the first
packet in a conversation. It can also alert when any packet comes through with
an IP-based protocol that is not allowed on your network.You can activate the
conversation preprocessor by simply including a preprocessor conversation line in
your Snort configuration file, snort.conf. However, you may want to add parame
ters by placing a colon at the end of this line and then adding a comma-delim-
ited list of parameters to the right of it, like so:

preprocessor conversation: timeout 120, max_conversations 65335

Let’s look at the parameters available:

■	 timeout Defaulting to 120, this defines the time in seconds for which
the conversation preprocessor maintains information. After timeout sec
onds of inactivity, a conversation may be pruned to save resources.

■	 max_conversations Defaulting to 65335, this resource-control parameter
sets the maximum number of conversations that the conversation pre
processor will keep track of at a time.

■	 allowed_ip_protocols Defaulting to “all,” this parameter allows you to
define a list of allowed IP protocols, by number. For example,TCP is 6,
UDP is 17, and ICMP is 1, so you could set this to “1 6 17” to get
alerts whenever non-TCP/UDP/ICMP traffic passes the sensor.

■	 alert_odd_protocols Defaulting to off, this parameter defines whether your
receive alerts when a protocol not set in allowed_ip_protocols is detected.
To activate this parameter, simply include it on the preprocessor line—it
doesn’t require any setting.

So, if you wanted to monitor up to 12,000 conversations, keeping data on a
conversation until it had been inactive for 5 minutes (300 seconds), and receiving
alerts whenever any protocols besides TCP, UDP, and ICMP crossed the sensor,
you’d put this in your Snort configuration file:

preprocessor conversation: max_conversations 12000, timeout 300,

allowed_ip_protocols 1 6 17, alert_odd_protocols

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 277

Preprocessors • Chapter 6 277

Just like all other preprocessors, the best way to find the best settings for your
site is to pick a reasonable set and then pay attention to Snort’s alerting and
overall behavior, tuning as necessary.

Writing Your Own Preprocessor
In this section, we’ll explore why and how you might write your own prepro
cessor plug-in. We’ll accomplish the former by exploring the spp_telnet_negotia-
tion.c preprocessor. We’ll see the necessary components in a preprocessor, how it’s
plugged in to the Snort source code, and how it accomplishes its function. After
this discussion, you’ll be well on your way to writing your own preprocessor.

Over the course of this chapter, we’ve explored the following reasons to
write your own preprocessor:

■ Reassembling packets

■ Decoding protocols

■ Nonrule or anomaly-based detection

In essence, you write your own preprocessor whenever you want to do
something that straight rule-based detection can’t do without help. Let’s explore
each of the previously listed reasons, to understand why they needed a prepro
cessor to fulfill the function.

Reassembling Packets
Signature-based detection matches well-defined patterns against the data in each
packet, one at a time. It can’t look at data across packets without help. By
reassembling fragments into full packets with frag2, you can make sure that an
attack doesn’t successfully use fragmentation to evade detection. By reassembling
each stream into one or more pseudo-packets with stream4, you attempt to
ensure that the single-packet signature mechanism is able to match patterns
across multiple packets in a TCP session. Finally, by adding state-keeping with
stream4, you give this signature-matching some intelligence about which packets
can be ignored and where a packet is in the connection. Packet reassembly pre
processors help to ensure that Snort detects attacks, even when the data to be
matched is split across several packets.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 278

278 Chapter 6 • Preprocessors

Decoding Protocols
Rule-based detection generally gives you simple string/byte-matching against the
data within a packet. It can’t handle all the different versions of a URL in HTTP
data without help, or at least without countably infinite rulesets.The HTTP
decode preprocessor gives Snort the capability to canonicalize URLs before
trying to match patterns against them. Straight rule-matching can also be foiled
by protocol-based data inserted in the middle of data that would otherwise
match a pattern. Both the RPC decode and Telnet negotiation preprocessors
remove data that could be extraneous to the pattern-matcher.The RPC decode
preprocessor consolidates all of the message fragments of a single RPC message
into one fragment.The Telnet negotiation preprocessor removes Telnet negotia
tion sequences. Protocol-decoding preprocessors make string-matching possible
primarily by forcing packet data into something less ambiguous, so that it can be
more easily matched.

Nonrule or Anomaly-Based Detection
Rule-based detection performs well because of its simplicity. It’s very determin
istic, making it easy to tune for fewer false positives. It’s also easy to optimize.
However, there are functions that just can’t be achieved under that model. Snort
has gained protocol anomaly detection, but even this isn’t enough to detect some
types of attack.The portscan preprocessor allows Snort to keep track of the
number of scan-style packets that it has received over a set time period, alerting
when this number exceeds a threshold.The Back Orifice preprocessor allows
Snort to detect encrypted Back Orifice traffic without creating a huge ruleset.

This third class of preprocessors expands Snort’s detection model without
completely redesigning it—Snort can gain any detection method flexibly.
Preprocessors specifically, and plug-ins in general, give Snort the capability to be
more than an IDS.They give it the capability to be an extensible intrusion detec
tion framework onto which most any detection method can be built. Less spec
tacularly, they give Snort the capability to detect things for which there isn’t yet a
rule directive. For example, if you needed to have a rule that detected the word
Marty being present in a packet between three and eight times (no more, no less),
you’d probably need a preprocessor—Snort’s rules language is flexible, but not
quite that flexible. More usefully, what if you needed to detect a backdoor mech
anism only identifiable by the fact that a single host sends your host/network

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 279

Preprocessors • Chapter 6 279

UDP packets whose source and destination port consistently sum to the fixed
number 777? (Note: this is a real tool.)

Without going quite that far, let’s explore how a preprocessor is built.

Setting Up My Preprocessor
Every preprocessor is built from a common template, found in the Snort source
code’s templates/ directory. As you consider the Snort code, you should consider
the following filename convention. We’ll talk about the snort/ directory—this is
the main directory you get when you expand the Snort source tarball or zipfile.
Its contents look like this:

[jay@localhost snort]$ ls

acconfig.h config.sub depcomp Makefile.am rules

aclocal.m4 configure doc Makefile.in snort.8

ChangeLog configure.in etc missing src

config.guess contrib install-sh mkinstalldirs templates

config.h.in COPYING LICENSE RELEASE.NOTES verstuff.pl

The templates directory contains two sets of plug-in templates—to build a
preprocessor plug-in, we want the spp_template.c and spp_template.h files.

[jay@localhost snort]$ ls templates/

Makefile.am spp_template.c sp_template.c

Makefile.in spp_template.h sp_template.h

You should take a look at these template files as you consider the Telnet
negotiation preprocessor.This preprocessor is with the others in the
snort/src/preprocessors directory.

[jay@localhost preprocessors]$ ls

flow perf-flow.h spp_conversation.c spp_portscan2.c

HttpInspect perf.h spp_conversation.h spp_portscan2.h

Makefile.am sfprocpidstats.c spp_flow.c spp_portscan.c

Makefile.in sfprocpidstats.h spp_flow.h spp_portscan.h

perf-base.c snort_httpinspect.c spp_frag2.c spp_rpc_decode.c

perf-base.h snort_httpinspect.h spp_frag2.h spp_rpc_decode.h

perf.c spp_arpspoof.c spp_httpinspect.c spp_stream4.c

perf-event.c spp_arpspoof.h spp_httpinspect.h spp_stream4.h

perf-event.h spp_bo.c spp_perfmonitor.c spp_telnet_

negotiation.c

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 280

280 Chapter 6 • Preprocessors

perf-flow.c spp_bo.h spp_perfmonitor.h spp_telnet_negotiation.h

In the rest of this section, we’ll explore the code in the file spp_telnet_negotia-
tion.c, making references to the matching spp_telnet_negotiation.h header file as
necessary. Remember, this book refers to the production Snort 2.1.3RC1 code.

Let’s start looking at this code:

/* Snort Preprocessor for Telnet Negotiation Normalization*/

/* $Id: spp_telnet_negotiation.c,v 1.21 2003/10/20 15:03:39 chrisgreen Exp $

*/

/* spp_telnet_negotiation.c

*

* Purpose: Telnet and FTP sessions can contain telnet negotiation strings

* that can disrupt pattern matching. This plugin detects

* negotiation strings in stream and "normalizes" them much like

* the http_decode preprocessor normalizes encoded URLs

*

*

* http://www.iana.org/assignments/telnet-options -- official registry of options

*

*

* Arguments: None

*

* Effect: The telnet nogiation data is removed from the payload

*

* Comments:

*

*/

The preprocessor starts out simply describing what its purpose is and how it
can be called.You’ll notice as we read through the code that the “Arguments”
description in the previous comments is inaccurate—the code takes a space-delim-
ited list of ports as an argument.

Before we continue reading code, we should talk about this preprocessor’s pur
pose, so you understand what the code is doing.The best way to understand this

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 281

Preprocessors • Chapter 6 281

thoroughly is to read the Requests for Comments (RFC) document describing
the Telnet protocol.

OINK!
The Telnet protocol is described in detail in RFC854, available via
www.faqs.org/rfcs/rfc854.html. For even more comprehensive and easier-
to-follow coverage, consider W. Richard Stevens’ TCP/IP Illustrated
Volume 1. This is an essential and standard reference for understanding
TCP/IP protocol implementations.

Telnet’s creators knew that it would need to function between many devices,
potentially with somewhat different levels of intelligence and flexibility.To this
end, the Telnet protocol defines a Network Virtual Terminal (NVT), a “minimal”
concept to which Telnet implementers could tailor their code.The protocol
allows two NVTs to communicate to each other what options (extra features)
they might or might not support.They communicate with escape sequences,
which start with a special Interpret as Command (IAC) character. Following this
character is a single-byte number, which codes a command.The command sent is
usually a request that the other side activate/deactivate an option, if available, a
request for permission to use an option, or an answer to a previous request from
the other side. Most of these sequences, then, are three characters long, like this
fictional one:

IAC DON'T SING

255 254 53

The protocol also allows for deleting the previous character sent via the Erase
Character (EC) command and erasing the last line sent via the Erase Line (EL)
command, both of which need to be accounted for in the preprocessor. It also
allows for a No Operation (NOP) command, which tells it to do nothing—it’s not
clear why this is included in the protocol. Finally, it allows for complex negotia
tion of parameters of the options via a “subnegotiation” stream of characters, ini
tiated with a Subnegotiation Begin (SB) character, followed by the option that it
references, and terminated by a Subnegotiation End (SE) character. Such a
sequence might look like this:

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 282

282 Chapter 6 • Preprocessors

IAC SB SING HUMPTY-DUMPTY SE

255 250 53 1 240

There’s more to Telnet than this, but this is enough to read and understand
the preprocessor code. Let’s get into that code now.

What Am I Given by Snort?
We’ll now take an in-depth look at the preprocessor’s code, exploring what each
line of the code does. Commentary follows the lines of code that it references. If
your C skills are rusty, don’t worry—you’ll probably find this discussion quite
understandable.The Telnet negotiation preprocessor is one of the simplest pre
processors. Let’s take a look at it together.

/* your preprocessor header file goes here */

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#ifdef HAVE_STRINGS_H

#include <strings.h>

#endif

The preceding lines just import standard C header files.

#include <sys/types.h>

#include "decode.h"

#include "plugbase.h"

#include "parser.h"

#include "log.h"

#include "debug.h"

#include "util.h"

#include "mstring.h"

#include "snort.h"

The preceding lines import Snort’s function prototypes, constants, and data
structures, so that this plug-in can reference them.The plugbase.h header file, in
particular, contains prototypes for the important functions that every preprocessor
plug-in must call.Table 6.2 lists the other header files with their corresponding
functions.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 283

Table 6.2 Header Files and

Preprocessors • Chapter 6 283

 Their Corresponding Functions

Functionsdecode.h Parses packets into data structures

parser.h Performs all input parsing (for example,
snort.conf)

log.h Logs all packet data, printing/formatting
headers and data

debug.h Performs Snort’s debugging, with
enforcing granular levels of detail

util.h Miscellaneous utilitarian functions
mstring.h Provides string functions not provided by

C standard libraries
snort.h Provides major data structures and Snort’s

primary functions

While not all of the header file listed in Table 6.2 are necessary, they’ve prob
ably been included to keep things simple and maintainable for the programmer.

extern u_int8_t DecodeBuffer[DECODE_BLEN]; /* decode.c */

This function is specific to the Telnet negotiation preprocessor.The prepro
cessor prunes negotiation code by copying all non-negotiation data from the
packet it’s examining into a globally available DecodeBuffer. It then signals that
the packet has an alternate form, allowing the detection engine to look at either
form of the packet data, based on whether the rules it evaluates specify “raw
bytes.” Oddly, even though rawbytes sounds like a more general option, it’s
implemented strictly for the benefit of Telnet.

OINK!
Rawbytes signals that the rule should look at the non-negotiation-modi-
fied version of the Telnet packet.

/* define the telnet negotiation codes (TNC) that we're interested in */

#define TNC_IAC 0xFF

#define TNC_EAC 0xF7

#define TNC_SB 0xFA

#define TNC_NOP 0xF1

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 284

284 Chapter 6 • Preprocessors

#define TNC_SE 0xF0

#define TNC_STD_LENGTH 3

The first five constants define the numerical versions of the codes that we
explored earlier.The last constant simply codifies the fact that any negotiation
sequences are at least three characters long.

/* list of function prototypes for this preprocessor */

extern void TelNegInit(u_char *);

As we’ll explore soon, the TelNegInit() function initializes the preprocessor
when Snort first starts. It calls a function to parse the preprocessors arguments
from the snort.conf file and adds the main work function (NormalizeTelnet()) to
the list of preprocessors called to examine every packet. Every preprocessor must
have one of these functions to perform these two tasks. It must also have a Setup
function to link this one to the Snort codebase—we’ll explore SetupTelNeg()
soon.

extern void NormalizeTelnet(Packet *);

As we’ll explore later, this function performs the real task of the preprocessor.
The previously discussed Init function will register this with Snort’s main prepro
cessor engine.

static void SetTelnetPorts(char *portlist);

This function parses the Telnet negotiation preprocessor’s arguments and is
called by TelNegInit(). It parses a simple port list into a data structure that
NormalizeTelnet() can reference before trying to work on a packet.

/* array containing info about which ports we care about */

static char TelnetDecodePorts[65536/8];

This array stores the TCP ports that the preprocessor will be paying attention
to. Notice that it stores this via a single bit for every port between 0 and 65,536,
not a byte.

/*

* Function: SetupTelNeg()

*

* Purpose: Registers the preprocessor keyword and initialization

* function into the preprocessor list.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 285

Preprocessors • Chapter 6 285

*

* Arguments: None.

*

* Returns: void function

*

*/

void SetupTelNeg()

{

/* Telnet negotiation has many names, but we only implement this

* plugin for Bob Graham's benefit...

*/

RegisterPreprocessor("telnet_decode", TelNegInit);

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Preprocessor: Telnet Decode

Decode is setup...\n"););

}

SetupTelNeg() links this preprocessor to the Snort code by registering its rules
file keyword telnet_decode with its initiation function, TelNegInit().The obvious
reason for this registration is so that the initialization code isn’t called if the key
word referring to the preprocessor isn’t present in Snort’s configuration file.This
registration takes place via the RegisterPreprocessor() function from plugbase.c.

This is the first function in the preprocessor that Snort calls. It is called from
plugbase.c, to which we must add it by hand.This process, which we’ll describe
after explaining this code, is also outlined in snort/doc/README.PLUGINS.

/*

* Function: TelNegInit(u_char *)

*

* Purpose: Calls the argument parsing function, performs final setup on data

* structs, links the preproc function into the function list.

*

* Arguments: args => ptr to argument string

*

* Returns: void function

*

*/

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 286

286 Chapter 6 • Preprocessors

void TelNegInit(u_char *args)

{

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Preprocessor: TelNeg

Initialized\n"););

SetTelnetPorts(args);

/* Set the preprocessor function into the function list */

AddFuncToPreprocList(NormalizeTelnet);

}

This function is called by Snort early in its run, as it parses the Snort rules
file. It is a standard preprocessor Init() function, which is always registered by the
preprocessor’s Setup() function.The purpose of this function is to call an argu-
ment-parser and to add the preprocessor’s main function to the preprocessor
function list. Remember, a packet entering Snort goes through the decoder to be
parsed, then each of the preprocessors in order, and then finally goes to the
detection engine. AddFuncToPreprocList(), from plugbase.c, adds our preprocessor’s
main function to the linked list of preprocessor functions.

/*

* Function: PreprocFunction(Packet *)

*

* Purpose: Perform the preprocessor's intended function. This can be

* simple (statistics collection) or complex (IP defragmentation)

* as you like. Try not to destroy the performance of the whole

* system by trying to do too much....

*

* Arguments: p => pointer to the current packet data struct

*

* Returns: void function

*

*/

void NormalizeTelnet(Packet *p)

{

This is the real workhorse of the preprocessor. In essence, this is the function
for which SetupTelNeg() and InitTelNeg() exist to provide to Snort.This structure
of functions is standard, as you’ll note when reading the other preprocessors and
the preprocessor template.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 287

Preprocessors • Chapter 6 287

The function starts out receiving a simple pointer to the packet currently
being considered. (You can find the structure definition for Packet in
snort/src/decode.h.) Let’s look at the variables that it defines.

char *read_ptr;

char *start = (char *) DecodeBuffer; /* decode.c */

char *write_ptr;

char *end;

int normalization_required = 0;

■	 read_ptr points to the current byte being considered in the incoming
packet data.

■	 start points to the beginning of the destination buffer (DecodeBuffer).

■	 write_ptr points to the current position to which we’re writing in
DecodeBuffer.

■	 end points to the end of the incoming packet data.

■	 normalization_required tells us whether we need to normalize this packet.

if(!(p->preprocessors & PP_TELNEG))

{

return;

}

The preprocessor checks to see if it has been configured on. If it hasn't, it
exits.

/* check for TCP traffic that's part of an established session */

if(!PacketIsTCP(p))

{

return;

}

Like every preprocessor function, this one must decide whether it should
even be looking at this packet. If the packet isn’t a TCP packet, the preprocessor
needs to exit.

/* check the port list */

if(!(TelnetDecodePorts[(p->dp/8)] & (1<<(p->dp%8))))

{

return;

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 288

288 Chapter 6 • Preprocessors

}

p->dp is the packet’s destination port. If this port was not among those that
this preprocessor should affect, we need to exit.

Again, note that the port is being checked in this array using a bitwise check.
For example, if dp=14, then p->dp/8 will be 1, thus referring to the second byte
in the array. 1<<(p->dp%8) means “shift the binary number 00000001 by the
remainder of dp/8.” 14%8 is 6, so 1<<(p->dp%8) is, in binary, 0100 0000. By
AND-ing the second byte in the array with this number, we get the status of the
sixth byte.

/* negotiation strings are at least 3 bytes long */

if(p->dsize < TNC_STD_LENGTH)

{

return;

}

Finally, we’re looking at something specific to the Telnet protocol.This if
statement just says that, since any Telnet negotiation sequence must be at least 3
bytes long, it doesn’t need to see any packet whose data is less than 3 bytes.

/* setup the pointers */

read_ptr = p->data;

end = p->data + p->dsize;

This sets our start and end points on the incoming packet data:

/* look to see if we have any telnet negotiaion codes in the payload */

while(!normalization_required && (read_ptr < end))

{

/* look for the start of a negotiation string */

if(*read_ptr == (char) TNC_IAC)

{

/* set a flag for stage 2 normalization */

normalization_required = 1;

}

read_ptr++;

}

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 289

Preprocessors • Chapter 6 289

This code runs through the incoming packet data looking for the start of a
Telnet negotiation code sequence.This code doesn’t perform any modifica-
tions—it’s just here to quickly determine if the packet will need normalization. As
soon as it finds a single IAC character, it flags that normalization is required and
halts.

if(!normalization_required)

{

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Nothing to process!\n"););

return;

}

If we didn’t find anything to normalize, we exit.

/*

* if we found telnet negotiation strings OR backspace characters,

* we're going to have to normalize the data

*

* Note that this is always (now: 2002-08-12) done to a

* alternative data buffer.

*/

If we found an IAC character, then this routine normalizes the data:

/* rewind the data stream to p->data */

read_ptr = p->data;

/* setup for overwriting the negotaiation strings with

* the follow-on data

*/

write_ptr = (char *) DecodeBuffer;

We set the read_ptr to the beginning of the incoming packet data, and the
write_ptr to the start of the output buffer. Remember, DecodeBuffer is a global
variable that the detection engine will look in for our alternative version of the
packet.

/* walk thru the remainder of the packet */

while((read_ptr < end) && (write_ptr < ((char *) DecodeBuffer) + DECODE_BLEN))

{

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 290

290 Chapter 6 • Preprocessors

DECODE_BLEN is the constant length of the DecodeBuffer.The while loop
allows us to copy data from the packet data to the DecodeBuffer, skipping negotia
tion sequences.

/* if the following byte isn't a subnegotiation initialization */

if(((read_ptr + 1) < end) &&

(*read_ptr == (char) TNC_IAC) &&

(*(read_ptr + 1) != (char) TNC_SB))

{

This code looks for negotiation sequences (initiated by IAC) and skips the
read_ptr forward the appropriate number of bytes. Remember, skipping read_ptr
forward without doing a copy ensures that the skipped data doesn’t make it into
DecodeBuffer. Note that this code doesn’t want to handle the suboption negotia
tion case; hence, its decision not to branch if the second byte in the sequence is a
Subnegotiation Begin (TNC_SB) character.

/* NOPs are two bytes long */

switch(* ((unsigned char *)(read_ptr + 1)))

{

case TNC_NOP:

read_ptr += 2;

break;

If the sequence is just an IAC, NOP, then it's only two characters long.
case TNC_EAC:

read_ptr += 2;

/* wind it back a character */

if(write_ptr > start)

{

write_ptr--;

}

break;

EAC is a backspace. When we see one, we skip the two characters of negoti
ation (IAC,EAC), but also decrement write_ptr, so that the byte that was at
write_ptr is overwritten on our next character write.

default:

/* move the read ptr up 3 bytes */

read_ptr += TNC_STD_LENGTH;

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 291

Preprocessors • Chapter 6 291

}

In all other non-subnegotiation cases, we need to skip exactly three characters.
}

/* check for subnegotiation */

else if(((read_ptr + 1) < end) &&

(*read_ptr == (char) TNC_IAC) &&

(*(read_ptr+1) == (char) TNC_SB))

{

/* move to the end of the subneg */

do

{

read_ptr++;

} while((*read_ptr != (char) TNC_SE) && (read_ptr < end));

Remember that our last if branch refused to handle subnegotiation.This one
handles them—it simply moves the read_ptr forward until it gets past the termi
nating Subnegotiation End (SE) character, thus omitting the entire sequence from
DecodeBuffer.

}

else

{

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "overwriting %2X(%c) with

%2X(%c)\n",

(char)(*write_ptr&0xFF), *write_ptr,

(char)(*read_ptr & 0xFF),

*read_ptr););

/* overwrite the negotiation bytes with the follow-on bytes */

*write_ptr++ = *read_ptr++;

}

This is the case where we weren’t at the start of a negotiation code. We just
copy another character from the packet data to DecodeBuffer.

}

p->packet_flags |= PKT_ALT_DECODE;

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 292

292 Chapter 6 • Preprocessors

p->alt_dsize = write_ptr - start;

The code now sets two variables on the original packet’s data structure.The
first tells the detection engine that the Telnet negotiation preprocessor has cre
ated a second, altered version of the packet data by using a bitwise-OR to set a
Snort internal packet flag. Don’t worry; this is changing data that Snort keeps on
the packet, not in the original data collected from the packet.The second vari
able stores the length of the data placed in DecodeBuffer.

/* DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN,

"Converted buffer after telnet normalization:\n");

PrintNetData(stdout, (char *) DecodeBuffer, p->alt_dsize););

*/

}

DebugMessage() now logs the results of the Telnet negotiation preprocessor’s
handiwork. If Snort is at the appropriate level of debug, this will come out.

Now, for the sake of brevity, we’re not going to explain the argument-parsing
function much.This function, as is standard with most of the preprocessors, is a
mostly optional routine called by the preprocessor Init() function, which is
InitTelNeg() in this case.

/*

* Function: SetTelnetPorts(char *)

*

* Purpose: Reads the list of port numbers from the argument string and

* parses them into the port list data struct

*

* Arguments: portlist => argument list

*

* Returns: void function

*

*/

static void SetTelnetPorts(char *portlist)

{

char portstr[STD_BUF];

char **toks;

int is_reset = 0;

int num_toks = 0;

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 293

Preprocessors • Chapter 6 293

int num = 0;

if(portlist == NULL || *portlist == '\0')

{

portlist = "21 23 25 119";

}

If this function does not get a list of ports in the Snort configuration file, it
chooses ports 21, 23, 25, and 119.

/* tokenize the argument list */

toks = mSplit(portlist, " ", 31, &num_toks, '\\');

mSplit is one of the functions in mstring.c, Snort's string-handling functions.
LogMessage("telnet_decode arguments:\n");

/* convert the tokens and place them into the port list */

for(num = 0; num < num_toks; num++)

{

if(isdigit((int)toks[num][0]))

{

char *num_p = NULL; /* used to determine last position in string */

long t_num;

t_num = strtol(toks[num], &num_p, 10);

if(*num_p != '\0')

{

FatalError("Port Number invalid format: %s\n", toks[num]);

}

else if(t_num < 0 || t_num > 65335)

{

FatalError("Port Number out of range: %ld\n", t_num);

}

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 294

294 Chapter 6 • Preprocessors

/* user specified a legal port number and it should override the

default port list, so reset it unless already done */

if(!is_reset)

{

bzero(&TelnetDecodePorts, sizeof(TelnetDecodePorts));

portstr[0] = '\0';

is_reset = 1;

}

/* mark this port as being interesting using some portscan2-type

voodoo, and also add it to the port list string while we're at

it so we can later print out all the ports with a single

LogMessage() */

TelnetDecodePorts[(t_num/8)] |= 1<<(t_num%8);

if(strlcat(portstr, toks[num], STD_BUF - 1) >= STD_BUF)

{

FatalError("%s(%d) Portstr is truncated!\n", file_name, file_line);

}

if(strlcat(portstr, " ", STD_BUF - 1) >= STD_BUF)

{

FatalError("%s(%d) Portstr is truncated!\n", file_name, file_line);

}

}

else

{

FatalError(" %s(%d) => Unknown argument to telnet_decode "

"preprocessor: \"%s\"\n",

file_name, file_line, toks[num]);

}

}

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 295

Preprocessors • Chapter 6 295

mSplitFree(&toks, num_toks);

/* print out final port list */

LogMessage(" Ports to decode telnet on: %s\n", portstr);

}

As promised, this function was fairly simple.

Examining the Argument Parsing Code
Let’s look at SetTelnetPorts(), the only function in this preprocessor that we
haven’t examined yet.This simple function just takes a port list from Snort and
parses it into a data structure usable by the main preprocessor function that we
just explored.

/*

* Function: SetTelnetPorts(char *)

*

* Purpose: Reads the list of port numbers from the argument string and

* parses them into the port list data struct

*

* Arguments: portlist => argument list

*

* Returns: void function

*

*/

static void SetTelnetPorts(char *portlist)

{

The SetTelnetPorts() function takes a pointer to a string as an argument; this
string is the space-delimited list of ports that Snort determines from the prepro
cessor telnet_decode line its configuration file. More specifically, Snort passes every
thing after the colon (:) on that line as a string to TelNegInit(), which passed it to
the SetTelnetPorts() function. TelNegInit() receives that pointer as its only argument
(the initiation functions of all preprocessor plug-ins receive that same one argu
ment), a pointer to the string of text that followed the colon in their prepro
cessor directive lines in Snort.conf.

char portstr[STD_BUF];

char **toks;

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 296

296 Chapter 6 • Preprocessors

int is_reset = 0;

int num_toks = 0;

int num = 0;

Let’s detail what each of these variables do.

■	 portstr This is a string that the function constructs specifically so that it
can report a list of ports that it found in the log.

■	 **toks This is a two-dimensional character array (an array of pointers to
strings) that will point to the tokenized (separated) strings, which each
encode a port.

■	 is_reset A flag describing whether the default port list has been replaced
by a user-supplied one.

■	 num_toks The number of ports parsed by the function.

■	 num A simple integer counter used in a for loop.

if(portlist == NULL || *portlist == '\0')

{

portlist = "21 23 25 119";

}

In the default Snort 2.1.3RC1 configuration file, there’s no port list speci-
fied.This is accomplished with the line:

preprocessor telnet_decode

You’ll note that this line does not contain a colon, and thus contains no
arguments. In this case, the preprocessor (and thus this function) will receive a
string pointer with NULL as its contents.This may seem equivalent to the situa
tion where you include a colon in the syntax, but do not add any text after the
colon, like this:

preprocessor telnet_decode:

In this case, the preprocessor receives a pointer to a string of zero length as an
argument, which is basically the string \0.This is the case even if you added some
spaces after the colon, because Snort strips terminating whitespace off the end of
the lines in snort.conf. Basically, this if {} construct tells the preprocessor to use
its default port list of “21 23 25 119” if it receives no input.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 297

Preprocessors • Chapter 6 297

The preprocessor calls the Snort function mSplit(), from mstring.c, which can
be thought of as the “Marty String” library.

/* tokenize the argument list */

toks = mSplit(portlist, " ", 31, &num_toks, '\\');

Here is the definition of mSplit and the comments that describe it:

char **mSplit(char *str, char *sep, int max_strs, int *toks, char meta)

* char *str => the string to be split

* char *sep => a string of token seperaters

* int max_strs => how many tokens should be returned

* int *toks => place to store the number of tokens found in str

* char meta => the "escape metacharacter", treat the character

* after this character as a literal and "escape" a

* seperator

*

* Returns:

* 2D char array with one token per "row" of the returned

* array.

This function parses the string portlist into 0–31 shorter strings, called tokens,
using space as the separator and allowing that separator to be escaped by preceding
it with \\. Each of these strings should be an ASCII representation of a port
number.

LogMessage, another Snort function, writes information by default to the con
sole via or to a log facility, if configured to do so.You’ll see this output at the end
of this subsection, when we’re done exploring the code.

LogMessage("telnet_decode arguments:\n");

Now the code loops through each of the strings (tokens) that mSplit() cre
ated, converting them to long integers and storing them.

/* convert the tokens and place them into the port list */

for(num = 0; num < num_toks; num++)

{

First, it checks to see if the first character in our string is an ASCII represen
tation of a digit (0–9) with the isdigit() C library function:

if(isdigit((int)toks[num][0]))

{

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 298

298 Chapter 6 • Preprocessors

The following lines are where things begin to get a bit more tricky:

char *num_p = NULL; /* used to determine last position in string */

long t_num;

This defines two new variables:

■	 num_p This is a pointer to terminating, nondecimal part of the port
string.

■	 t_num This is a long integer that stores the port number that gets pulled
out of the string.

t_num = strtol(toks[num], &num_p, 10);

This converts the numth token (string) into a long integer using the C stan
dard library strtol() function. strtol(), which converts strings to long ints, takes a
pointer to the string, a pointer to store a result in, and a numerical base as its
arguments. Normal decimal numbers are base 10, while binary numbers are base
2 (the Snort configuration file uses base 10 port numbers). strtol() returns the
integer form of the number that it finds, and sets num_p to point to the part of
the string that is after the decimal number. If our string is, as Snort expects,
simply a string of ASCII digits between zero and nine, terminated by a \0, this
pointer should just point to the terminating \0 character.

The if statement checks to see if the first character pointed to by num_p is a
\0. If it is not, then this particular string was not made up strictly of ASCII char
acters between zero and nine, and an error occurs. It calls FatalError(), which
prints the message ERROR => Port Number invalid format, along with the partic
ular string that it was parsing, and then causes Snort to exit.The error message is
printed either to the console or to the system log.The output is similar to what
you will see here:

if(*num_p != '\0')

{

FatalError("Port Number invalid format: %s\n", toks[num]);

}

If our string is fine, but the number to which it converts is either negative or
too large to be a valid TCP port, it causes Snort to exit, printing ERROR =>
Port Number out of range: and the port number to the console or system log:

else if(t_num < 0 || t_num > 65335)

{

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 299

Preprocessors • Chapter 6 299

FatalError("Port Number out of range: %ld\n", t_num);

}

Now, if neither of these error conditions comes up, the string is fine and the
function can store it in the list of ports.

/* user specified a legal port number and it should override the default

port list, so reset it unless already done */

if(!is_reset)

Contrary to the comment and to the is_reset structure, this block of code
runs both when the user has input a specific port list on the preprocessor
telnet_negotiation snort.conf directive and when the user has left one off. If you’re
very interested in how this particular function works, it’s important that you
understand this misrepresentation; if you’re not so interested, don’t worry, because
this doesn’t really generalize to the other preprocessors.

For the most part, the is_reset variable keeps track of whether the function
has initialized its two important output data structures yet.

First, it zeroes out the TelnetDecodePorts data structure.This structure is a
65,536/8-byte array that stores the ports the preprocessor should examine in a
bitwise true/false fashion.This was described earlier, when we were examining
the NormalizeTelnet() function:

{

bzero(&TelnetDecodePorts, sizeof(TelnetDecodePorts));

It also blanks the portstr string by setting its first character to the \0 string ter
minator character:

portstr[0] = '\0';

Finally, it sets is_reset so that it doesn’t reinitialize these values now that it’s
populating them with data:

is_reset = 1;

}

Now, whether or not the data structures just got initialized, the function now
has to store the port number that got translated from the string that it’s currently
handling.

First, it activates the t_numth bit in the TelnetDecodePorts array. Remember
from the NormalizeTelnet() function that this activates the (t_num%8+1)th bit of
the (t_num/8+1)th byte.To make this more concrete, think of the example where

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 300

300 Chapter 6 • Preprocessors

t_num is 14.Then, t_num/8 will be 1 and t_num%8 will be 6.Therefore, this will
activate the seventh bit of the second byte in the array. If this is confusing, you
might want to reread the explanation for the code walkthrough of
NormalizeTelnet()

/* mark this port as being interesting using some portscan2-type voodoo,

and also add it to the port list string while we're at it so we can

later print out all the ports with a single LogMessage() */

TelnetDecodePorts[(t_num/8)] |= 1<<(t_num%8);

Finally, the function adds the string representation of the port number to its
portstr string, which gets logged at the end of this function:

if(strlcat(portstr, toks[num], STD_BUF - 1) >= STD_BUF)

{

FatalError("%s(%d) Portstr is truncated!\n", file_name, file_line);

}

if(strlcat(portstr, " ", STD_BUF - 1) >= STD_BUF)

{

FatalError("%s(%d) Portstr is truncated!\n", file_name, file_line);

}

}

This next else block corresponds to the if(isdigit((int)toks[num][0])) test at the
beginning of this loop.The code internal to the block gets executed if the first
character of the string it is evaluating is not a numerical digit (between zero and
nine).

else

{

FatalError(" %s(%d) => Unknown argument to telnet_decode "

"preprocessor: \"%s\"\n",

file_name, file_line, toks[num]);

}

The loop ends here and logs the list of ports that it parsed (stored in portstr)
out to the console or to the system logs. It also calls mSplitFree(), which frees the
data structure created by mSplit.

}

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 301

Preprocessors • Chapter 6 301

mSplitFree(&toks, num_toks);

/* print out final port list */

LogMessage(" Ports to decode telnet on: %s\n", portstr);

}

This is all of the preprocessor code that we’ll need to look at. In the next
section, you’ll learn how preprocessor code is placed into Snort. Now, since
Marty designed the preprocessor architecture to be simple and modular through
plug-ins, this is a pretty easy process.

Getting the Preprocessor’s Data Back into Snort
The telnet_negotiation preprocessor works much like other preprocessors, with the
exception of its unique method of getting data back to the detection engine.
Different preprocessors do this in different ways. For example, frag2 sends the
packet it just reconstructed back through the same detection engine that gave it
all the fragments of the packet. It avoids an infinite loop by setting a flag on the
packet noting that said packet is a rebuilt fragment packet. Another example is
http_inspect, which creates a canonical URL from the data in an HTTP packet
and then passes that URL by itself into a separate variable.You can perform this
process in whatever way makes the most sense, unless the Snort developers create
a standard and required API for passing back preprocessed data.

Adding the Preprocessor into Snort
Snort’s plug-ins are linked to it in a fairly static way. In essence, you need to do
the following to link in a new plug-in:

1.	 Insert an include directive in plugbase.c for your plug-ins header file.

2.	 Insert a call to your plug-ins Setup() function in plugbase.c’s

InitPreprocessors().

3.	 Add your plug-ins code and header file to the

preprocessors/Makefile.am.

Let’s practice doing this for the telnet_negotiation preprocessor, as if it hadn’t
been done yet. First, we need to add our telnet_negotiation.h header file into
plugbase.c. Here’s the relevant portion of plugbase.c:

/* built-in preprocessors */

#include "preprocessors/spp_portscan.h"

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 302

302 Chapter 6 • Preprocessors

#include "preprocessors/spp_rpc_decode.h"

#include "preprocessors/spp_bo.h"

#include "preprocessors/spp_telnet_negotiation.h"

#include "preprocessors/spp_stream4.h"

#include "preprocessors/spp_frag2.h"

#include "preprocessors/spp_arpspoof.h"

#include "preprocessors/spp_conversation.h"

#include "preprocessors/spp_portscan2.h"

#include "preprocessors/spp_perfmonitor.h"

#include "preprocessors/spp_httpinspect.h"

#include "preprocessors/spp_flow.h"

We can just add a single line to the end of this list:

#include "preprocessors/spp_telnet_negotiation.h"

Second, let’s insert our Setup() function into plugbase.c, so that our plug-in
has a chance to register itself. We’re adding this call to InitPreprocessors():

void InitPreprocessors()

{

if(!pv.quiet_flag)

{

LogMessage("Initializing Preprocessors!\n");

}

SetupPortscan();

SetupPortscanIgnoreHosts();

SetupRpcDecode();

SetupBo();

SetupTelNeg();

SetupStream4();

SetupFrag2();

SetupARPspoof();

SetupConv();

SetupScan2();

SetupHttpInspect();

SetupPerfMonitor();

SetupFlow();

}

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 303

Preprocessors • Chapter 6 303

Now we can add the Telnet negotiation plug-ins Setup() function, called
SetupTelNeg():

SetupTelNeg();

Finally, we need only add our preprocessor’s source files to:

snort/src/preprocessors/Makefile.am:

libspp_a_SOURCES = spp_arpspoof.c spp_arpspoof.h spp_bo.c spp_bo.h \

spp_frag2.c spp_frag2.h \

spp_portscan.c spp_portscan.h spp_rpc_decode.c spp_rpc_decode.h \

spp_stream4.c spp_stream4.h spp_telnet_negotiation.c \

spp_telnet_negotiation.h \

spp_perfmonitor.c spp_perfmonitor.h \

spp_conversation.c spp_conversation.h spp_portscan2.c spp_portscan2.h \

perf.c perf.h \

perf-base.c perf-base.h \

perf-flow.c perf-flow.h \

perf-event.c perf-event.h \

sfprocpidstats.c sfprocpidstats.h \

spp_httpinspect.c spp_httpinspect.h \

snort_httpinspect.c snort_httpinspect.h \

spp_flow.c spp_flow.h

We can add our Telnet negotiation preprocessor to the end of this list with
the following:

spp_telnet_negotiation.c spp_telnet_negotiation.h

That’s all there is to it—adding a Snort preprocessor is pretty easy! Don’t
forget to put a backslash at the end of the previous line, like so:

spp_flow.c spp_flow.h \

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 304

304 Chapter 6 • Preprocessors

Summary
Preprocessors add significant power to Snort. Snort’s existing preprocessors give it
the capability to reassemble packets, do protocol-specific decoding and normal
ization, do significant protocol anomaly detection, and add functionality outside
of rule-checking and anomaly detection.

The stream4 and frag2 preprocessors enhance Snort’s original rule-based pat-
tern-matching model by allowing it to match patterns across several packets with
TCP stream reassembly,TCP state-keeping, and IP defragmentation. Data carried
by TCP is generally contained in several packets—stream reassembly can build a
single packet out of an entire stream so that data broken across several packets
can still match attack rules. As packets are carried across networks, they often
must be broken into fragments. frag2 rebuilds these fragments into packets that
can then be run through Snort’s detection engine.

The Telnet negotiation, HTTP_Inspect and RPC decode preprocessors all
serve the primary purpose of data normalization.The Telnet negotiation prepro
cessor removes Telnet’s inline feature-negotiation codes from the protocol,
allowing more deterministic content matching. It accomplishes this while still
leaving the original data intact, so that rules with the rawbytes keyword can access
the original application data for unhindered pattern matching.The
HTTP_Inspect decode preprocessor deals with the problem created by Web
servers that accept many forms of the same URL by creating a “canonical” form
of the URL to which rule-maintainers can write their URLs.This preprocessor
does not do data replacement either—the canonicalization can be accessed by
using the uricontent keyword in an HTTP rule. RPC, when carried over TCP,
must still be separated into discrete messages.The protocol makes this separation
by defining a formal message as built of one or more message fragments.The
fragment mechanism creates ambiguity in rule creation, since fragment headers
can occur anywhere within the application data.The RPC decode preprocessor
normalizes the RPC protocol by converting all multiple-fragment RPC messages
into single-fragment messages. It makes these adjustments inline, and thus
destructively, in the original decoded packed data.

The first two types of preprocessors enhance Snort’s rules-checking and add
substantial protocol anomaly detection.They allow Snort to perform rules-
checking across packets and within nontrivial protocols. Finally, by using greater
understanding and memory of the protocols involved, they perform protocol
anomaly detection to catch attacks that don’t necessarily match an existing
signature.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 305

Preprocessors • Chapter 6 305

The third type of preprocessor we discussed allows Snort to move beyond the
rules-based and protocol anomaly detection models for a particular purpose.
Portscan counts probe packets from each given source and attempts to detect
portscans. Back Orifice watches UDP packets for stored encrypted values of a
plaintext string known to be the header for a popular hacker remote control
tool. Each of these functions cannot be easily accomplished with Snort’s existing
rules or protocol-anomaly detection engines.

You can build your own preprocessors fairly readily, starting with Marty
Roesch’s template.Your preprocessor will need a Setup function to link its
snort.conf keyword to its initialization function. It will need an initialization func
tion to parse options, set up data structures, and add the main preprocessor func
tion to Snort’s list of preprocessors. Finally, it will need a main function to take in
a packet and perform some task.That task might involve rewriting the data in
the packet, parsing a particular part of the packet into a new global data structure
accessible to the detection engine, or alerting on a condition not expressible via
rules. Once you’ve coded these functions, the preprocessor can be linked into
Snort via the plugbase.c file by following the instructions in
snort/doc/README.PLUGINS. It can be easily compiled into Snort via the
snort/src/preprocessors/Makefile.am file. We examined this process by exploring
the Snort Telnet negotiation preprocessor, an existing plug-in that’s simple
enough to understand but still useful.

Solutions Fast Track

What Is a Preprocessor?

� Preprocessors are written as “plug-ins” to allow them to give Snort
flexible extensibility, configurable on a host-by-host basis.

� Preprocessors give Snort the capability to handle data stretched over
multiple packets.

� Snort uses preprocessors to canonicalize data in protocols where data
can be represented in multiple ways.

� Snort uses preprocessors to do detection that doesn’t fit its model of
flexible pattern matching.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 306

306 Chapter 6 • Preprocessors

� Preprocessors provide Snort with much of its anomaly detection
capabilities, which can detect some attacks that might not yet have rules.

Preprocessor Options for Reassembling Packets

� stream4 adds statefulness to Snort, so that it can ignore packets that will
be ignored by the target host.

� stream4 adds stream reassembly to Snort, so that it can detect attacks
broken across several packets in a TCP stream.

� frag2 reassembles packets from their associated fragments, allowing it to
detect attacks broken across multiple fragments.

Preprocessor Options for
Decoding and Normalizing Protocols

� telnet_negotiation normalizes Telnet traffic, removing the inline feature-
negotiation codes that are part of the Telnet protocol.

� http_inspect normalizes data in HTTP requests, particularly URIs,
making pattern-matching possible even when attacks obfuscate URLs
with Web server-specific alternative encodings. Additionally, it alerts on
possible uses of HTTP evasion.

� rpc_decode normalizes RPC traffic, forcing all RPC messages into
single-fragment messages.

Preprocessor Options for
Nonrule or Anomaly-Based Detection

� Preprocessors can also allow you to add nearly any detection model to
Snort.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 307

Preprocessors • Chapter 6 307

� Portscan detects portscan attacks by watching for the number of
incoming packets from each source to exceed a packet-per-time-period
threshold. It also watches for NMAP “stealth” packets.

� The Back Orifice preprocessor detects a host on your network being
controlled via Back Orifice by watching UDP traffic for 216 possible
versions of the encrypted Back Orifice “magic string” application
header.

Experimental Preprocessors

� arpspoof detects ARP spoofing attacks by checking ARP responses
against a static table of ARP-to-IP addresses.

� perfmonitor outputs performance statistics for Snort.

� Portscan2 is a successor to portscan, but was not considered Enterprise-
ready.This preprocessor is the sole user of the conversation preprocessor.

� flow-portscan is also a successor to portscan, though the Snort
developers expect to be retiring it soon, as it is also not performing to
user satisfaction.

Writing Your Own Preprocessor

� Preprocessor development begins with the spp_template.c file in Snort’s
templates directory.

� A preprocessor requires a Setup function to link its snort.conf keyword to
its initialization function, and an initialization function to parse
arguments, set up data structures, and register the preprocessor function
into Snort’s preprocessor function list.

� Each new preprocessor must be linked into Snort via two insertions into
plugbase.c and an addition to the preprocessor/Makefile.am file.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 308

308 Chapter 6 • Preprocessors

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: If Snort is rules-based, why is there anomaly detection in the preprocessors?
How do you classify Snort?

A: According to Marty Roesch, Snort is an extensible intrusion detection frame
work with a rules-based detection engine and a number of anomaly-detec-
tion features encompassed in its packet decoders and preprocessors
subsystems.

Q: What is the difference between a signature and a rule?

A: Signatures are generally very static and inflexible, consisting primarily of a
single positive pattern match statement and one or more numerical equality
checks on header fields in the packet. Rules are much more intelligent and
flexible. For example, Snort allows you to look for one string match in the
packet data while simultaneously requiring that another string not match the
packet data. Other features of the rules language allow you to define addi
tional context for these comparisons. Finally, state-keeping features that allow
you to accurately and precisely express whether the client or server is sending
the communication and where in the session said communication is generally
aren’t part of straight signature-checking.

Q: Why does Snort send the individual packets of a stream under reassembly to
the detection engine when the entire stream will go through the detection
engine as a whole?

A: Snort sends the individual packets in a stream through the detection engine
partly because the packets themselves might match attack rules that the
stream will not. For example, the TCP/IP flags from the original packets will
not be preserved in the pseudo packet, but might match an attack rule.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 309

Preprocessors • Chapter 6 309

Q: Why does Snort contain both a stream reassembly and state-keeping prepro
cessor (stream4) and another state-keeping preprocessor (conversation)?

A: stream4 and conversation have quite different purposes. stream4 exists specifi
cally to add TCP state-keeping, keeping track of where we are in a TCP ses
sion, and TCP stream reassembly, reassembling an entire TCP stream into one
or more large packets, allowing rules to match against data that’s split across
several TCP segments/packets. Conversation keeps track of all IP protocols,
including the nonstateful UDP and ICMP protocols. It maintains a limited
set of state information specifically so that it can help portscan2 intelligently
tell the difference between a conversation-starting probe packet and a reply
packet.

Q: What is protocol normalization and why do I need it?

A: Protocol normalization attempts to put a protocol into a canonical format so
that rules can more easily match attack data.This is needed; otherwise, an
attacker can make one or more small changes in the attack data that will not
cause the target system to interpret it differently, but will cause the minutely
altered data to get past a rule that would normally have matched. One simple
example of this is that Microsoft IIS Web servers allow the client to send a
URI with /s changed into \s and will handle them as equivalent; this change
will evade a normal rules or signature-based IDS unless it supports HTTP
normalization. Snort does include HTTP normalization, implemented in its
http_inspect preprocessor.

www.syngress.com

295_Snort2e_06.qxd 5/6/04 12:51 PM Page 310

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 311

Chapter 7

Implementing Snort
Output Plug-Ins

Solutions in this Chapter:

■	 What Is an Output Plug-In?

■	 Exploring Output Plug-In Options

■	 Writing Your Own Output Plug-In

■	 Creating a W3C Extended Log Format
Output Plug-In

■	 Tackling Common Output Plug-In Problems

�	Summary

�	Solutions Fast Track

�	Frequently Asked Questions

311

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 312

312 Chapter 7 • Implementing Snort Output Plug-Ins

Introduction
Have you ever wondered how weak technology companies stay in business? Why
some companies decide to implement inferior products, especially those that are
purchased to protect an organization’s data? Or how substandard new products
gain market share? The answers are abundant, but time and time again a common
theme surfaces. Reporting has always been a key component to deal makers and
breakers. Gathering and correlating data is only half the technology product
equation; the other half is comprised of data presentation and reporting.
Manually categorizing and analyzing data can be an extremely time-consuming
and resource-intense process; therefore, any technology that enables the user and
lessens the resource requirement is beneficial.

The Snort development team acknowledged this business driver with the
creation of an open Output Plug-In application programming interface (API).
Snort output plug-ins, also referred to as Snort output modules, were introduced in
version 1.6.The introduction of output plug-ins officially completed Snort’s
inauguration into the elite group of enterprise-class Intrusion Detection Systems
(IDSs). Output plug-ins provide administrators the ability to configure logs and
alerts in a manner that is easy to understand, read, and use in their organization’s
environment. For example, if Acme Widgets uses MySQL databases to store all
corporate and client information, we can assume that Acme Widgets has a good
amount of in-house knowledge of MySQL.Therefore, it makes sense that Acme
would also want its Network IDS (NIDS) logs and alerts to be stored in a
MySQL database or even in a different table of a current database.

Snort currently has a wide range of output plug-ins to support different types
of technologies, products, and formats, including databases, packet dump text
files, header dump files, and XML, to name a few.The source code for each of
the plug-ins is included within the Snort source distribution. By the time you
reach the conclusion of this chapter, you should understand Snort plug-ins, the
role they play in formatting data, and the overall schema and API that the plug-
ins implement. Depending on your programming experience and level of skill,
you might also be able to write your own output plug-ins.

What Is an Output Plug-In?
Output plug-ins were introduced in Snort version 1.6.These plug-ins allow for a
more flexible formatting and presentation of Snort output to the administrator.
These output modules are executed whenever Snort’s alert or logging subsystems

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 313

Implementing Snort Output Plug-Ins • Chapter 7 313

are called, following the execution of preprocessors and the packet capture
engine. Packet, or traffic, analysis would be pointless without the output plug-ins
to process, format, and store the data.The plug-ins define aspects pertaining to
data storage, format, and transportation media.They live within the product and
have an open API so that individuals and organizations outside the Snort devel
opment team can write customized methods to allow Snort to better interface
within their environments.

In general, output plug-ins can be considered product add-ons since they can
be written by anyone and included within Snort at compile time. After the plug-
ins have been built within the Snort application, you can refer to them via Snort
configuration files, from the command line, and from within defined Snort rules.
The packet capture engine in Snort retrieves packets off the wire and “sends”
them to the analysis module. If the packet or packets trigger an alert or log
event, the data is passed to the corresponding output module. Figure 7.1 depicts
the logical flow of information at a high level within Snort.The flexible archi
tecture of Snort will continue to allow future additions such as the output plug-
ins to be included in the product.

Figure 7.1 Snort Output Plug-In Architecture

captured based on
defined filters. Only
traffic using one of the
defined protocols
currently supported
by Snort will be
interpreted.

Supported Protocols:
TCP/IP

 802.11x
 ICMP
 HTTP
 FTP

Snort Engine

1. The Snort engine parses
the traffic data.

2. It then analyzes the data
via the Snort rules to
determine if the data
matches any rule.

3. In the case the data
matches a Snort rule,
the corresponding
action event is
conducted and data is
spooled to the defined
output plug-in.

Data Flow

Snort Output Plug-in

1. The Snort Output Plug-in
formats and stores the
data in the defined
method.

Example Plug-in Methods:
 Database
 XML
 Unified
 TCPDUMP
 Syslog

Output Plug-in Data

1. The data is now ready to
read and or process
depending on the
selected format.

Network Traffic

1. Network traffic is

Output plug-ins can seem somewhat complex, especially if you are not an
avid or skilled programmer; however, this should not limit your ability to under
stand exactly how the plug-ins work. For the most part, each plug-in is very dif-

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 314

314 Chapter 7 • Implementing Snort Output Plug-Ins

ferent in the realm of formatting and storing the Snort data. Function and code
development for data handling is usually a direct reflection of the skill level of
the plug-in author or author team.The main functionality tasks can be quite
technically and algorithmically different, since most of the time it is completely
original code.There are some commonalities within plug-ins that range in archi
tecture and design to function calls and structure definitions.

Key Components of an Output Plug-In
Snort output plug-in functionality can be divided into seven main categories:
copyright and header information; include files, dependencies, and global vari
ables; keyword registration; argument parsing and function list linking; data for
matting, processing, and storage; preprocessor processing; and application cleanup
and exiting.The following list details each aspect of the plug-ins:

■	 Copyright and header information Each of the existing Snort
output plug-ins has a distinct copyright notice that can be added at the
discretion of the developer. Furthermore, a header details the purpose of
the plug-in, any arguments that the plug-in requires, the plug-in’s effect,
and any additional comments.

■	 Include files, dependencies, and global variables Files and file
dependencies, as with most applications, are a critical aspect of the pro
gram and are self-explanatory. Global variables, or variables that are used
throughout the master application, are also key characteristics of plug-ins.

■	 Keyword registration Output plug-ins are referenced and called from
the configuration file and from the command line. As a part of the plug-
in, you must define and link the keyword to the Snort application so that
it knows that something “special” should occur when it parses the word.

■	 Argument parsing and function list linking Since most of the
plug-ins require arguments to be passed along during the declaration
process, it is necessary to write code that handles such data. For
example, if you were using a logging function, you would probably need
to specify the name of the log that you wanted to use for data storage.
In addition to parsing the arguments, output plug-ins must also cross
link functions with the main Snort engine.

■	 Data formatting, processing, and storage Unique aspects of plug-
ins, these tasks are the “meat” of the plug-in and as such must be

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 315

Implementing Snort Output Plug-Ins • Chapter 7 315

included. Simply stated, if there were no functions to process, format,
and store the data, the output plug-in would be incomplete and useless.

■	 Process preprocessor arguments In the case that any preprocessor
arguments exist, sufficient data-handling code must be written for these
so that Snort and the output plug-ins can distinguish preprocessor ele
ments before parsing commences.

■	 Cleanups In most cases, functions to clean up memory, application
connections, and open sockets are included within output plug-ins to
ensure that Snort executes in the most efficient manner possible.

OINK!
Understanding how a plug-in works is not as complicated as writing
actual Snort output plug-ins. More information and in-depth techniques
on writing output plug-ins can be found later in the chapter. Although
the Snort source directory contains templates for output plug-ins, it
might be easier to write a script that interfaces with Barnyard than a
compilable plug-in for Snort.

Exploring Output Plug-In Options
Snort output plug-ins have numerous commonalities and dissimilarities. Besides
the customized plug-ins that can be created, there are multiple built-in methods
that can modify and store data. Initially covered in Chapter 5, “Playing by the
Rules,” Snort permits users to log to text files and databases in numerous ways.
The output plug-ins are most often defined in a configuration file, but they are
created as standalone C programs and called on from triggered Snort rules. As
you read this section, you will become deeply familiar with the technologies and
formats that are currently built into the Snort application.

More information on how to use and pass data to these output plug-ins can
be found in Chapters 4, 5, and 8.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 316

316 Chapter 7 • Implementing Snort Output Plug-Ins

Default Logging
Snort provides some simple ways to log both generated alerts and alert-related
packet data. In most cases, this packet data is network traffic that has been col
lected with Snort’s packet capture engine.These logs provide users, administra
tors, and engineers with a bit of flexibility as to how Snort data should be stored.
For example, you might want Snort to store its logs according to source IP
address so that you don’t have to sort them manually.The simplest method to log
packets is using the –l flag via the command line:

cloud@host:/root# snort -l ./log

The following two examples are log entries generated by Snort. Figure 7.2
displays a packet log of an ICMP echo, and Figure 7.3 is the corresponding
ICMP echo response. As you might glean, the examples are not complete PCAP
packet dumps, merely header information. Note: The default logging method for
Snort is ASCII plaintext.

Figure 7.2 Example ICMP Echo Request

cloud@host:/root# cat ./log/192.168.1.123/ICMP_ECHO

02/12-08:56:11.252959 192.168.1.123 -> 192.168.1.10

ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:42240 Seq:0 ECHO

Figure 7.3 Example ICMP Echo Reply

cloud@host:/root# cat ./log/192.168.1.10/ICMP_ECHO_REPLY

02/12-09:54:05.820069 192.168.1.10 -> 192.168.1.123

ICMP TTL:255 TOS:0x0 ID:64527 IpLen:20 DgmLen:84

Type:0 Code:0 ID:61952 Seq:0 ECHO REPLY

The Snort d and e flags display packet headers and application data in a
descriptive manner. In Figure 7.4, it is important to ensure that the directory log
exists. In the case that no log exists, Snort will exit with an error message. In the
following example, Snort logs all packets to the master log directory in a direc
tory hierarchy based on the source address within each IP datagram (in this case,
any IP address that does not fall into our home network 19.168.1.0/24).The –h
flag declares the hierarchy-based logging schema and defines a home network. As

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 317

Implementing Snort Output Plug-Ins • Chapter 7 317

a quick reminder, the –l flag defines the logging directory to store the saved
packet logs. Assume that the following 192.168.1.0/24 address space is the orga-
nization’s internal address range; if you are not versed in CIDR addressing,
192.168.1.0/24 is equal to the 192.168.1.0 class C network.

Figure 7.4 Logging Internal Network Traffic with Snort

gabe@host:/root# snort –d -e –l ./log –h 192.168.1.0/24

// ICMP Echo

gabe@host:/root# cat ./log/192.168.1.123/ICMP_ECHO

02/12-09:56:26.737220 0:E0:29:9E:5D:6E -> 0:A0:24:D1:75:6A type:0x800

len:0x62

192.168.1.123 -> 192.168.1.10 ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:62208 Seq:0 ECHO

87 F1 49 3E 5E 9A 04 00 08 09 0A 0B 0C 0D 0E 0F ..I>^...........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

// ICMP Echo Reply

gabe@host:/root# cat ./log/192.168.1.10/ICMP_ECHO_REPLY

02/12-09:56:26.737257 0:A0:24:D1:75:6A -> 0:E0:29:9E:5D:6E type:0x800

len:0x62

192.168.1.10 -> 192.168.1.123 ICMP TTL:255 TOS:0x0 ID:64528 IpLen:20

DgmLen:84

Type:0 Code:0 ID:62208 Seq:0 ECHO REPLY

87 F1 49 3E 5E 9A 04 00 08 09 0A 0B 0C 0D 0E 0F ..I>^...........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

Binary logging was originally introduced into Snort to minimize the CPU
cycles that had to be dedicated to data reporting, not traffic capturing and anal
ysis. Most sensors that have heavy loads of traffic to analyze or have weaker hard
ware use some type of binary logging. Binary logging also helps minimize log
size—not that log size should ever be an issue. If size becomes an issue, it is prob
ably because your sensor is poorly configured or you are under extremely heavy

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 318

318 Chapter 7 • Implementing Snort Output Plug-Ins

attack.The following code informs Snort to log all packet data to the ./log direc
tory in binary format:

gabe@host:/root# snort –l ./log –b

OINK!
Although Snort’s ASCII logging functionality may be ideal for certain
environments and installation, it is definitely not for every environment.
For instance, when logging in ASCII mode, Snort creates a directory
structure for every source IP of a packet that triggers an alert. Then in
that directory it creates a file for each protocol-src-dest-port combina
tion, whereas a full port scan of one system would create over 131,000
files in the directory tree. Our recommendation: Wherever possible, use
Snort’s binary mode. It is faster, the files are smaller, and most impor
tant, you can parse the data using PCAP graphical interfaces such as
THC’s NetDude or Ethereal.

Using the straight log-to-binary instruction eliminates the need to create
robust directory hierarchies, since all packet data is logged in one potentially very
large binary-formatted file.The binary files can be read back with any
TCPDump-compatible packet sniffer or analyzer, such as Ethereal,TCPDump, or
Iris. Snort also has the built-in ability to read back this data by using the –r flag,
for playback mode. Playback mode must be run on an instance of Snort that is
not already running, capturing packets. Figure 7.5 shows the Snort playback
mode being executed on a binary packet log.The example payload consists of
two ICMP packets stored in binary format. Figure 7.5 illustrates the packet’s
source and destination information, packet header, and payload.

OINK!
You can download eEye’s Win32 packet capture program, Iris, from
www.eeye.com.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 319

Implementing Snort Output Plug-Ins • Chapter 7 319

Figure 7.5 Snort Playback Mode

gabe@host:/root# snort -vd -r ./log/snort-0212@0931.log

*HEADER INFORMATION WAS REMOVED FOR SPACE PURPOSES

--== Initializing Snort ==-

Decoding Ethernet on interface \INTERFACE_REMOVED

--== Initialization Complete ==-

-*> Snort! <*

Version 1.9.0-ODBC-MySQL-WIN32 (Build 209)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

1.7-WIN32 Port By Michael Davis (mike@datanerds.net,

www.datanerds.net/~mike)

1.8-1.9 WIN32 Port By Chris Reid (chris.reid@codecraftconsultants.com)

02/12-09:31:05.744958 192.168.1.123 -> 192.168.1.10

ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:55808 Seq:0 ECHO

96 EB 49 3E 02 C1 00 00 08 09 0A 0B 0C 0D 0E 0F ..I>............

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

=+

02/12-09:31:05.744988 192.168.1.10 -> 192.168.1.123

ICMP TTL:255 TOS:0x0 ID:38079 IpLen:20 DgmLen:84

Type:0 Code:0 ID:55808 Seq:0 ECHO REPLY

96 EB 49 3E 02 C1 00 00 08 09 0A 0B 0C 0D 0E 0F ..I>............

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

=+

Continued

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 320

320 Chapter 7 • Implementing Snort Output Plug-Ins

Figure 7.5 Snort Playback Mode

Run time for packet processing was 0.12402 seconds

===

Snort analyzed 2 out of 2 packets, .

Breakdown by protocol: Action Stats:

TCP: 0 (0.000%) ALERTS: 0

UDP: 0 (0.000%) LOGGED: 0

ICMP: 2 (100.000%) PASSED: 0

ARP: 0 (0.000%)

EAPOL: 0 (0.000%)

IPv6: 0 (0.000%)

IPX: 0 (0.000%)

OTHER: 0 (0.000%)

DISCARD: 0 (0.000%)

===

Wireless Stats:

Breakdown by type:

Management Packets: 0 (0.000%)

Control Packets: 0 (0.000%)

Data Packets: 0 (0.000%)

===

Fragmentation Stats:

Fragmented IP Packets: 0 (0.000%)

Fragment Trackers: 0

Rebuilt IP Packets: 0

Frag elements used: 0

Discarded(incomplete) : 0

Discarded(timeout): 0

Frag2 memory faults: 0

===

TCP Stream Reassembly Stats:

TCP Packets Used: 0 (0.000%)

Stream Trackers: 0

Continued

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 321

Implementing Snort Output Plug-Ins • Chapter 7 321

Figure 7.5 Snort Playback Mode

Stream flushes: 0

Segments used: 0

Stream4 Memory Faults: 0

===

You can implement an advanced method for logging binary data via the
Unified plug-in, which we cover later in this section.

In addition to standard and binary logging, Snort’s Berkeley Packet Filter
(BPF) interface is also available at the command line. Snort BPF provides such
options as navigation filters and several methods of manipulating binary log data.
More details on BPF are available in Chapter 5. Chapter 5 also covers the details of
logging only attack-relevant packets, also referred to as enabling NIDS mode. Just as a
refresher, Snort officially becomes a NIDS instead of merely a packet logger when
the -c flag is used in conjunction with a Snort rules configuration file:

gabe@host:/root# snort –de –l ./log –h 192.168.1.0/24 –c snort.conf

The Snort.conf configuration file should contain a set of Snort rules in addi
tion to any other configuration-related instructions, which are applied to every
packet that Snort captures and analyzes. Only packets that match a rule within
your rule file generate a Snort alert. With NIDS mode, packets can be logged in
ASCII or in binary format and stored via a variety of output modules.

SNMP Traps
Thanks to Carnegie Mellon researchers, Glenn Mansfield Keeni, and K. Jayanthi,
Snort has the ability to log or send alert information via Simple Network
Management Protocol (SNMP) traps to a remote SNMP server.The format fol
lows the SNMP standard RFC format and was implemented in large part by the
NetSNMP transmission code from http://net-snmp.sourceforge.net. SNMP,
though at times unreliable, was created to aid and provide functionality that most
commercial IDSs already have implemented. SNMP is commonly utilized and
one of the most popular if not the most popular protocols to manage and mon
itor network devices remotely. It provides a very simple API to store information
and, depending on the implementation version, can even somewhat protect the
data from external users; however, with this said, SNMP was not designed with
security in mind. If you must use SNMP, then go for it—otherwise we would
recommend utilizing a different storage medium.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 322

322 Chapter 7 • Implementing Snort Output Plug-Ins

XML Logging
Our favorite and relatively new logging format outside Unified logging is XML
logging. XML-formatted logs are extremely easy to understand and implement
in a wide variety of other applications. Just about all enterprise management sys
tems and portals have mechanisms built in that can parse and utilize comma-
delimited, XML, or SQL database storage media. With that said, utilizing Snort’s
XML logging feature has the potential to significantly put a drag your system’s
CPU, which could increase its probability of missing or alerting on attacks.

We’re sure you are familiar with the XML standard or at least have heard of
it (if not, refer to Microsoft’s XML standard and specification or simply “Google
it,” because there are thousands of excellent resources out there that deal with
implementation, parsing, or simply overviews.) Due to the nature of XML, it is
extremely easy to convert XML data to HTML pages or reports.There are even
tools that will convert generic XML files to similar HTML tables. But best of all,
most Web browsers come with built-in XML translation capabilities, Microsoft
Internet Explorer being the most notable of them.

Since there are multiple example standards to include Microsoft’s version, we
felt it critical to inform you that Snort’s XML standard is IDMEF. More informa
tion on the IDMEF XML standard is available at www.ietf.org/internet-
drafts/draft-ietf-idwg-idmef-xml-11.txt.

OINK!
If CPU resources are an issue or your IDS continuously parses a large
amount of data, we recommend using Barnyard’s XML formatting capa
bilities, even though it does not implement the IDMEF standard… yet. As
a general rule of thumb throughout this chapter, we continuously rec
ommend Barnyard where it makes sense.

Syslog
Syslog could quite possibly be the most powerful and universal enterprise log
ging element included in Snort for the simple reason that nearly every type of
enterprise management system reads, a.k.a. parses, Syslog-formatted input. Not to
mention the fact that Snort is the most popular and frequently utilized IDS in
the world.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 323

Implementing Snort Output Plug-Ins • Chapter 7 323

Gaining momentum in 2002 and really hitting the market at full speed in
mid-2003, security management applications have started to consolidate the mul
tiple information security and cyberprotection devices required to manage large
enterprise environments. Initially, these devices were designed to parse output
from the more popular freeware and commercial tools such as NMAP, Nessus,
Snort, Internet Scanner, RealSecure, Retina, Foundstone, and Dragon. Each of
these applications offers advantages and benefits over others; some of the most
popular are HP OpenView’s Suite, Archer, and PreventSys. One of the easiest
tasks these applications had to undertake was creating parsing engines to inter
pret the data from these multiple sources, with the complex development task of
creating an interpretation engine that intelligently linked and correlated the data
sources. Common formats that these applications parse include:

■ Syslog

■ SNMP

■ Consistently delimited text files

■ SQL databases with public schemas

It is pertinent to understand and realize that these applications exist so that
you have the ability to implement such a process to manage the entire environ-
ment.These applications are also the back ends for nearly every managed security
service provider, albeit some companies spend more on internal development.
Don’t be fooled—if a company states that it uses and implements best-of-breed
freeware products then manages them for you, it’s because the realized margin is
significantly larger.

Snort provides a mechanism for sending sensor alerts to the UNIX/Linux
syslog facility.This can be accomplished by running Snort via the command line
with the –s flag or by using alert_syslog configuration instructions in the Snort
configuration file. As you have learned, maintaining consistent Snort configura
tions is mandatory for enterprise-level intrusion detection.

Syslog provides a standard method for logging system messages, kernel traps,
and other important messages. Syslog also supports UNIX domain sockets and is
capable of local and remote logging. Syslogd is the traditional UNIX syslog
daemon; SyslogNG, also known as syslog next generation, is another popular ver
sion of the daemon. It is important to note that the difference between
SyslogNG and Syslogd is tremendous.The legacy UNIX/Linux syslogd transmits
its messages over UDP, thereby lessening the reliability of the message because

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 324

324 Chapter 7 • Implementing Snort Output Plug-Ins

UDP is a connectionless protocol. As a quick reminder for everyone who is
wondering what we mean by connectionless, the term means that there is no
“handshake” similar to that of TCP. As an analogy,TCP is similar to chatting to
someone over the phone, since that person would pick up and answer to let you
know he is willing to chat. UDP is like sending a letter to someone and not
asking for an acknowledgment. UDP acts as a mere packet cannon, blindly firing
the packets off to the destination systems.

Numerous corporations that rely on the Syslog protocol for management and
monitoring of critical devices over more than one or two hops rarely stick with
the default Syslogd daemon. As a rule of thumb, if it’s critical and more than
three “hops” away or if the system is located in a high-bandwidth environment,
try to implement a more reliable solution.The alert_syslog output plug-in allows
Snort users to define priorities within the rules and provide enhanced flexibility
in logging alerts through a set of instruction parameters—keywords.The key
words are used to inform Snort of the actions that should be executed upon par
ticular traffic and rule configuration anomalies:

■ Facilities

■ LOG_AUTH

■ LOG_AUTHPRIV

■ LOG_DAEMON

■ LOG_LOCAL0

■ LOG_LOCAL1

■ LOG_LOCAL2

■ LOG_LOCAL3

■ LOG_LOCAL4

■ LOG_LOCAL5

■ LOG_LOCAL7

■ LOG_USER

■ Priorities

■ LOG_ALERT

■ LOG_CRIT

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 325

Implementing Snort Output Plug-Ins • Chapter 7 325

■ LOG_DEBUG

■ LOG_EMERG

■ LOG_ERR

■ LOG_INFO

■ LOG_NOTICE

■ LOG_WARNING

■ Options

■ LOG_CONS

■ LOG_NDELAY

■ LOG_PERROR

■ LOG_PID

The following is an excerpt from a Snort configuration file in which the
alert_syslog output module has been enabled. As defined in the excerpt, the
output plug-in schema defines one or more facilities in addition to any options
that are also declared within the configuration file:

output alert_syslog: LOG_AUTH LOG_ALERT LOG_PID

The example shows the syslog output option being selected, logging

to the log_auth facility as an alert with the log_pid option.

Kiwi Software created a successful and fully functional Win32 port of the

Syslog. It resides as a local application on most Microsoft-based plat

Syslog can be used in place of the UNIX syslog application to log and store

mation on downloading and configuring Kiwi Syslog at the company’s

Tools & Traps…

Not Just a Fruit!

popular UNIX-based syslog application, ironically referred to as Kiwi

forms, including the commercial powers Windows NT, 2000, and XP. Kiwi

the inputted system messages. You can find detailed and current infor

Web site (www.kiwisyslog.com).

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 326

326 Chapter 7 • Implementing Snort Output Plug-Ins

As previously mentioned, multiple syslog implementations are available for
users to select from for both transmitting and receiving packets.The following
sections discuss the more popular syslog implementations with a brief description
covering the inherent advantages and disadvantages of each.

SMB Alerting
One of the most interesting but not as useful output formats is SMB Alerting,
made possible by Andrew Baker and Marty Roesch. As a quick overview, this
program is designed to alert remote Windows systems of incidents occurring in
real time.This plug-in comes with a workstations file, and each alert is trans
mitted to the corresponding workstation’s IP address or name. When the alert is
received, the system pops up a Windows box with the incident alert data.The
only caveat is that the remote Windows system must have the Microsoft
Windows Messenger service running and permitting messages from the Snort
system. Note that this is not the same thing as the MSN Online Chat Messenger.

PCAP Logging
The Packet Capture Library (PCAP) is a portable framework for low-level net
work monitoring that uses the standard PCAP format.There are multiple appli
cations within the PCAP library, including network statistics collection, security
monitoring, and network debugging.The libpcap interface within Snort supports
a filtering mechanism called BPF (described in detail in Chapter 5). Snort’s net-
work-monitoring architecture is based on the PCAP library. For that reason and
due to the Win32 ports of PCAP, WinPCAP, Snort has proved quite portable
across numerous platforms, including Solaris, Linux, multiple flavors of BSD, and
numerous versions of Microsoft Windows. Since Snort is capable of generating
PCAP logs, it is possible to use the many available PCAP-compatible packet snif
fers and analyzers, such as the popular Ethereal and Iris—and to be completely
honest, just about every other network traffic analyzer out there.

The log_tcpdump Snort output plug-in logs and stores traffic packets in a
PCAP-formatted file. Because this is such a widely accepted format, it has
allowed increased flexibility in working with such log files. As mentioned, an
array of software is available for examining PCAP-formatted files. Figure 7.6 is a
partial dump of a log_tcpdump Snort plug-in generated log file.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 327

Implementing Snort Output Plug-Ins • Chapter 7 327

Figure 7.6 Replaying a TCPDump Formatted File

gabe@host:/root# tcpdump -r snort_tcpdump.log

21:16:55.333580 192.168.1.123 > vault.nonexistent.net: icmp: echo request

21:16:55.333617 vault.nonexistent.net > 192.168.1.123: icmp: echo reply

21:16:56.350427 192.168.1.123.3619 > vault.nonexistent.net.8080: S

129548898:129548898(0) win 5840 <mss 1460,sackOK,timestamp 694489

0,nop,wscale 0> (DF)

21:16:56.384452 192.168.1.123.3643 > vault.nonexistent.net.3128: S

129280222:129280222(0) win 5840 <mss 1460,sackOK,timestamp 694491

0,nop,wscale 0> (DF)

21:16:56.438479 vault.nonexistent.net.6001 > 192.168.1.123.3652: R 0:0(0)

ack 138480606 win 0 (DF)

21:16:57.040513 vault.nonexistent.net.x11 > 192.168.1.123.3866: R 0:0(0)

ack 140201788 win 0 (DF)

21:16:57.198293 192.168.1.123.3922 > vault.nonexistent.net.socks: S

133341313:133341313(0) win 5840 <mss 1460,sackOK,timestamp 694572

0,nop,wscale 0> (DF)

21:16:58.373683 192.168.1.123.4353 > vault.nonexistent.net.snmp: S

141096774:141096774(0) win 5840 <mss 1460,sackOK,timestamp 694690

0,nop,wscale 0> (DF)

21:16:58.523514 192.168.1.123.4396 > vault.nonexistent.net.705: S

137958228:137958228(0) win 5840 <mss 1460,sackOK,timestamp 694706

0,nop,wscale 0> (DF)

21:16:58.622938 192.168.1.123.4445 > vault.nonexistent.net.snmptrap: S

133972684:133972684(0) win 5840 <mss 1460,sackOK,timestamp 694715

0,nop,wscale 0> (DF)

You can find more information on libpcap and TCPDump at www.tcp-
dump.org/release.You can find more information on the Win32 port of libpcap,
WinPCAP, at http://netgroup-serv.polito.it/winpcap.

Snortdb
Snort is capable of logging alerts and packets to several different types of
databases, including MySQL, PostgreSQL, SQL Server, and Oracle, in addition to
any UNIX/Linux ODBC-compliant database.The database output plug-in, and
the general ability to log to databases, added Snort to the short list of commer-
cial-grade robust and flexible network IDSs. Database output allows data to be
stored and viewed in real time, in addition to the plethora of other categorization
and querying benefits that come with selecting a database plug-in.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 328

328 Chapter 7 • Implementing Snort Output Plug-Ins

The code snippet in Figure 7.7 was taken from a default Snort configuration
file for the “output database” output plug-in. Within the instructions in the con
figuration file, you can define the action event (log or alert), database type, user-
name, password, database name (in case there are multiple databases or database
needs), and host.

OINK!
Do not forget how important local system security is when you’re con
figuring your Snort IDS, because the username and password for your
database will be located in a cleartext file within your directory structure.
The moral of the story: Lock down your system and provide access only
to trusted parties!

Figure 7.7 Configuring Output Plug-Ins

##

Step #3: Configure output plugins

#

Uncomment and configure the output plugins you decide to use. General

configuration for output plugins is of the form:

#

output <name_of_plugin>: <configuration_options>

#

alert_syslog: log alerts to syslog

Use one or more syslog facilities as arguments. Win32 can also optionally

specify a particular hostname/port. Under Win32, the default hostname is

'127.0.0.1', and the default port is 514.

#

[Unix flavours should use this format...]

output alert_syslog: LOG_AUTH LOG_ALERT

#

[Win32 can use any of these formats...]

Continued

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 329

Implementing Snort Output Plug-Ins • Chapter 7 329

Figure 7.7 Configuring Output Plug-Ins

output alert_syslog: LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname, LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname:port, LOG_AUTH LOG_ALERT

log_tcpdump: log packets in binary tcpdump format

--

The only argument is the output file name.

#

output log_tcpdump: tcpdump.log

database: log to a variety of databases

See the README.database file for more information about configuring

and using this plugin.

#

output database: log, mysql, user=root password=test dbname=db host=

localhost

output database: alert, postgresql, user=snort dbname=snort

output database: log, odbc, user=snort dbname=snort

output database: log, mssql, dbname=snort user=snort password=test

output database: log, oracle, dbname=snort user=snort password=test

unified: Snort unified binary format alerting and logging

--

The unified output plugin provides two new formats for logging and generating

alerts from Snort, the "unified" format. The unified format is a straight

binary format for logging data out of Snort that is designed to be fast and

efficient. Used with barnyard (the new alert/log processor), most of the

overhead for logging and alerting to various slow storage mechanisms such as

databases or the network can now be avoided.

#

Check out the spo_unified.h file for the data formats.

Continued

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 330

330 Chapter 7 • Implementing Snort Output Plug-Ins

Figure 7.7 Configuring Output Plug-Ins

#

Two arguments are supported.

filename - base filename to write to (current time_t is appended)

limit - maximum size of spool file in MB (default: 128)

output alert_unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128

You can optionally define new rule types and associate one or more output

plugins specifically to that type.

#

This example will create a type that will log to just tcpdump.

ruletype suspicious

{

type log

output log_tcpdump: suspicious.log

}

#

EXAMPLE RULE FOR SUSPICIOUS RULETYPE:

suspicious tcp $HOME_NET any -> $HOME_NET 6667 (msg:"Internal IRC

Server";)

#

This example will create a rule type that will log to syslog and a mysql

database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysql, user=snort dbname=snort host=localhost

}

#

EXAMPLE RULE FOR REDALERT RULETYPE:

redalert tcp $HOME_NET any -> $EXTERNAL_NET 31337 \

(msg:"Someone is being LEET"; flags:A+;)

Continued
www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 331

Implementing Snort Output Plug-Ins • Chapter 7 331

Figure 7.7 Configuring Output Plug-Ins

#

Include classification & priority settings

#

include classification.config

#

Include reference systems

#

include reference.config

OINK!
You must choose the appropriate action for this plug-in—log or alert. If
log is selected, the corresponding plug-in will run on the log output
chain; however, if alert is selected, the corresponding plug-in will run on
the alert output chain to process and output data.

A series of scripts is included within the contrib directory in the Snort source
tree. In Figure 7.8, assume that we have created a MySQL database called snort,
into which we placed our Snort logs. It is also important to note that we com
piled Snort with the -with-mysql=<dir> option. Using the create_mysql script that
is bundled with Snort, it is feasible to quickly create the necessary tables for the
Snort data repository. Figure 7.8 illustrates a MySQL database being created and
the create_mysql script being executed.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 332

332 Chapter 7 • Implementing Snort Output Plug-Ins

Figure 7.8 Creating the Snort Database

// Manually Creating the Snort DB

mysql> create database snort;

Query OK, 1 row affected (0.00 sec)

// Executing the Create_MySQL Script

mysql> source create_mysql;

Query OK, 0 rows affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Table 7.1 is a comprehensive listing of the scripts that are included in Snort’s
distribution, in case you want to set up a database to utilize in conjunction with
Snort.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 333

Implementing Snort Output Plug-Ins • Chapter 7 333

Table 7.1 Snort Database Creation Scripts

Database Corresponding Snort Script Operating Platform(s)

MS SQL create_mssql
MySQL create_mysql
Oracle create_oracle.sql
PostgreSQL create_postgresql

Microsoft Windows Server
Linux, UNIX, and Windows
Linux, UNIX, and Windows
Linux, UNIX, and Windows

MySQL versus PostgreSQL
Before we get started, it is important to note that no matter which database you
select, Snort still might get only six writes per second due to its internal imple
mentation of output modules and the Snort DB output module code. With this
said, most administrators chose to use a unified output option and leverage
Barnyard. However, as fellow Snort advocates, developers, and industry leaders,
we are commonly asked questions about what freeware database should be uti
lized with Snort. Common questions that we’ve heard before include:

■	 I use MySQL. Is there any reason I should change to PostgreSQL?

■	 I’ve heard MySQL is easy to use with Snort. Any truth to that?

■	 If I’m a new Snort and IDS user, what database should I select?

■	 I want to roll out Snort sensors throughout my environment. What
database type is best for my distributed environment?

The truth of the matter is that there is no directly correct answer for any of
these questions. As far as features and popularity are concerned, MySQL is the
clear winner. MySQL has many more administrative features that ease the instal
lation and administration processes associated with setting up and maintaining a
database. In addition to the built-in features, a tremendous number of tools and
extensions have been developed. Such tools include enhanced graphical front
ends, remote monitoring tools, query testing and creation tools, and, potentially
most important, custom report-generation tools.

Now, you might be thinking that it could be easier for you to install
MySQL, but in the long run, it is speed and stability that’ll go the distance. In
terms of raw speed (querying speed), MySQL is faster; depending on the size and
number of users, though, you probably won’t notice a difference. With that said,

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 334

334 Chapter 7 • Implementing Snort Output Plug-Ins

PostgreSQL allows 120 simultaneous users (accounts) to connect to the database,
whereas MySQL allows only 40.This factor might not play a big role in your
decision process, but you should also consider which free databases large MSSPs
implement.The two databases deal with simultaneous connections in varying
ways, too. When a user is connected to a MySQL database and is inputting
records, the entire table becomes locked until the data is entered. Conversely, if a
PostgreSQL database is being updated, it only locks that particular row of the
database being modified.This is a significant feature difference, since most IDSs
are frequently updating their databases with captured packets and alerts.

The last couple tidbits include MySQL’s 8 terabyte row limitation compared
to PostgreSQL’s 16 terabyte maximum. When utilized in a Web-based environ
ment, PostgreSQL serves about 10 pages per second, whereas MySQL serves up
to 25 per second. And lastly, the licensing of the databases is different.
PostgreSQL is completely free and resides under the BSD license (use, sell,
modify with no additional cost). Refer to the BSD license for the particulars.
MySQL is released under the GNU Public license, allowing you to utilize and
modify the software as long as you provide your updates back to the open com
munity. Oh, and by the way, if you intend to use MySQL in a commercial envi
ronment, there could be an associated cost!

OINK!
You can find more information on both the OpenSource BSD license and
the extremely similar MIT license at www.opensource.org/licenses/bsd-
license.php.

After the database has been created and the script executed, you can verify
the installation and configuration by running the SQL show tables command.The
show tables command ironically displays all the tables within the database. Figure
7.9 shows what tables should have been created when the create_mysql script was
executed.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 335

Implementing Snort Output Plug-Ins • Chapter 7 335

Figure 7.9 Snort’s Created Tables

mysql> show tables;

+---------------------------+

| Tables_in_snort |

+---------------------------+

| data |

| detail |

| encoding |

| event |

| icmphdr |

| iphdr |

| opt |

| reference |

| reference_system |

| schema |

| sensor |

| sig_class |

| sig_reference |

| signature |

| tcphdr |

| udphdr |

+---------------------------+

16 rows in set (0.00 sec)

Storing our Snort logs within a relational database is much more efficient
than storing them in flat files.They will be far more manageable in this form.
Several tools are available for extracting and formatting Snort database logs.The
output in Table 7.2 is from a script written by Yen-Ming Chen of Foundstone
Inc. Chen’s script retrieves Snort logs from a specified database and outputs high-
level information. (The HTML links were removed from this report due to for
matting issues.) Yen-Ming Chen’s script can be downloaded from
http://packetstormsecurity.org/sniffers/snort/snort_stat.pl.

Total events: 40

Timestamp begins at: 2003-02-12 22:42:20

Timestamp ends at: 2003-02-12 22:52:44

Total signatures: 10

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 336

336 Chapter 7 • Implementing Snort Output Plug-Ins

Total Destination IP observed: 1

Total Source IP observed: 1

Table 7.2 Snort_Stat Log Retrieval

Number of Reports on Each Signature

Numbers Signature Latest Timestamp

12 4 2003-02-12 22:52:37
8 2 2003-02-12 22:52:44
6 10 2003-02-12 22:52:44
2 5 2003-02-12 22:52:38
2 6 2003-02-12 22:52:35
2 7 2003-02-12 22:52:35
2 8 2003-02-12 22:52:38
2 1 2003-02-12 22:52:33
2 9 2003-02-12 22:52:36
2 3 2003-02-12 22:52:35

About the Microsoft SAM File
The Snort Alert Monitor (SAM) is a program that you can use in conjunc
tion with Snort to provide a bit of real-time analysis on potential threats

valuable aspect of SAM is that it can report and present alerts in an exec

Snort or any other mainstream additional Snort add-ons. According to

and ACID was great for digging into the details, but we needed some
thing that was a little higher overview and able to sound alarms if certain

database that SAM supports is MySQL.

Tools & Traps…

Sorry … We’re Not Talking

and realized attacks. SAM is available at www.lookandfeel.com. The most

utive manner, graphically. SAM is intended to complement, not replace,

Look and Feel Software, “Snort was great for identifying suspicious traffic,

conditions were met.” Unfortunately, at the time of this writing, the only

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 337

Implementing Snort Output Plug-Ins • Chapter 7 337

The Database Login dialog box in Figure 7.10 is the interface for config
uring SAM and its ODBC connections. It is important to note that SAM does
not encrypt any part of the authentication schema.

Figure 7.10 SAM Database Configuration

The SAM interface allows you to view the top attacks as defined by rule ID,
top attackers as defined by IP address, and up-to-date information on attacks
broken down by specific time allocations.You can also drill down to specific tid
bits of information by clicking IP address and attack ID links. In addition to the
graphs at the bottom and quick-link columns on the right, a noticeable stoplight
on the left provides a “kindergarten-grade” alert status—red being the undesired
color. Figure 7.11 is the SAM interface without a database connection.

Figure 7.11 SAM Interface

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 338

338 Chapter 7 • Implementing Snort Output Plug-Ins

When SAM is running in conjunction with Snort, it maintains an Open
Database Connection (ODBC) to the MySQL database server. Depending on
the amount of traffic, sensor placement, triggered rules, and bandwidth limita
tions, it is possible to notice a network slowdown because of SAM. If it’s feasible,
you might want to consider placing your SAM application on the same system
that houses your database.

Unified Logs
Unified logs are the future of Snort reporting, logging, and output. Increased
speed and efficiency are completely driving this initiative. Unified plug-ins
decrease the number of processes that the Snort engine must use on noncapture
or analysis functions, thereby hopefully increasing the likelihood that packets are
not dropped.

Snort’s unified output plug-in is designed to be fast and efficient, logging
output in straight binary format. Many administrators prefer this method of log
ging, since it is acceptable for use with Snort’s most popular reporting tools,
Barnyard and Cerebus.The unified logging output plug-in supports two argu
ments: the name and the size of the file that you want to store the logs to.The
path to these files should be included along with the name if they do not reside
locally in reference to the Snort binary. Figure 7.12 is an example unified log
instruction from the Snort configuration file. Notice that there are two entries,
one for alerts and another for logs. Each instruction has a 128MB file limit as
defined by the limit 128 declaration.

Figure 7.12 Unified Output Plug-In Configuration Excerpt

output alert_unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128

Why Should I Use Unified Logs?
We are not sure that we can stress this enough, but unified logs significantly
increase the efficiency of the Snort sensor. As previously stated, unified logs are
currently the “best-of-breed” solution for outputting Snort-gathered data.The only
major modification that we see coming down the pipeline is the potential to send
Snort unified data directly to a database.This type of solution would allow for real-
time data storage outside Snort, without decreasing the ability to efficiently catego
rize and sort through the data—functions provided within databases.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 339

Implementing Snort Output Plug-Ins • Chapter 7 339

If you are thinking, “Isn’t unified logging just cheap threading?” you are cor
rect. Unified logging frees up the Snort engine so that its resources can be
directed to the vital processes of capturing and analyzing packets. CPU cycles are
redirected from the main Snort binary and passed on to the future interpreting
application. In simple terms, unified logging takes the weight and stress off the
Snort engine for payload translation. With all this said, unified logging provides a
bit more than simply threading processes. It allows for an applicationwide
enhancement without modifying the main engine. Moreover, developing
portable threads is no easy task, especially considering the complexity of creating
a parser to format data output.

OINK!
It is not uncommon to see commercial environments using unified logs
for long-term forensic data storage.

What Do I Do with These Unified Files?
Unified files can be viewed and analyzed in a number of different ways, and as
you know, the benefits of using the unified log plug-in are speed, speed, and
might we say, speed. Currently, Barnyard is the tool of choice for unified log pro
cessing, and two of the three modes of operation allow for continual, or
streaming, analysis.The continual and continual with checkpoints modes will process
spo_unified-formatted data and continue to process unified file logs. Barnyard can
receive input in one of two ways: via its input processors or from an output
plug-in. In either case, the bulk of the data processing is still taken away from the
Snort process.The other major difference for the plug-in is that it requires
another application to interpret the data.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 340

340 Chapter 7 • Implementing Snort Output Plug-Ins

Notes from the Underground…

Ensuring Quality in Barnyard
Barnyard comes with an –R option that allows users to execute test runs
of the application during development or configuration time. It will parse
all the configuration options, both from configuration files and via the
command line, and output any errors to STDOUT. It proves a valuable fea
ture for testing and debugging systems and should be included in any
automated quality assurance or system test.

Unified logs are often stored in a manner that does not follow a typ
ical naming schema. The following is a sample listing of a snort log direc

-rw------- 1 root root 0 Feb 18 15:16 alert

-rw------- 1 root root 0 Feb 18 15:16

portscan.log

-rw------- 1 root root 0 Feb 18 15:16 scan.log

-rw------- 1 root root 24 Feb 18 15:16

snort.log.1045599382

Since the information logged by this plug-in is stored as binary data,
many programs supporting TCPDump formatted logs can be used to nav
igate through its contents. As we stated, the more popular programs are
Cerebus and Barnyard. Barnyard is quickly becoming the standard, but
Cerebus is still holding strong.

Dry Run Mode is an excellent feature; unfortunately, other freeware
and commercial tools lack this type of functionality.

tory. The unified log is snort.log.1045599382:

Cerebus
Cerebus is described by the Cerebus development team as “a text-based full-
screen alert analysis system for Snort unified alert output.” It allows for multiple
alert files to be loaded into its embedded database system, as well as real-time
queries, and is geared for enterprise organizations.The Cerebus database tech
nology uses statically linked binaries and requires no additional database software.
Given that you use it on single databases, the real value of the product comes

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 341

Implementing Snort Output Plug-Ins • Chapter 7 341

through when you analyze and interpret large volumes of Snort alert and packet
data from multiple databases. Another valuable feature of Cerebus is that it sup
ports retrieving and analysis of remote data over a network.You can download
Cerebus and more information at www.dragos.com/cerebus.

OINK!
Cerebus Lite is freely available, and a commercial version that supports a
greater number of alert files is available with an associated price tag. At
the time of this writing, Cerebus Lite was free for personal use, or free
for 14 days if used in a commercial environment.

Barnyard
Barnyard has the ability to gather data from Snort’s unified output plug-in and
send it to an alternate location, such as a database. It decouples the output stage
from Snort and gives a boost in performance and reliability. Barnyard is dis
tributed under QPLed. Figure 7.13 is an example of Barnyard processing two
unified Snort logs.

Figure 7.13 Barnyard Processing Two Unified Snort Logs

// Analyzing with Barnyard

gabe@host:/root# barnyard -o -f /var/log/snort/snort.log.1045099117

// Barnyard Log Dump

[**] [1:366:4] ICMP PING *NIX [**]

[Classification: Web Application Attack] [Priority: 3]

Event ID: 1 Event Reference: 1

02/13/03-01:18:39.069619 192.168.1.123 -> 192.168.1.10

ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:197 Seq:0 ECHO

5F 83 4A 3E 5B 68 03 00 08 09 0A 0B 0C 0D 0E 0F _.J>[h..........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

Continued

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 342

342 Chapter 7 • Implementing Snort Output Plug-Ins

Figure 7.13 Barnyard Processing Two Unified Snort Logs

[**] [1:408:4] ICMP Echo Reply [**]

[Classification: Web Application Attack] [Priority: 3]

Event ID: 2 Event Reference: 2

02/13/03-01:18:39.069653 192.168.1.10 -> 192.168.1.123

ICMP TTL:255 TOS:0x0 ID:61629 IpLen:20 DgmLen:84

Type:0 Code:0 ID:197 Seq:0 ECHO REPLY

5F 83 4A 3E 5B 68 03 00 08 09 0A 0B 0C 0D 0E 0F _.J>[h..........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

// Analyzing with Barnyard

gabe@host:/root# barnyard -o -f /var/log/snort/snort.alert.1045099117

// Barnyard Alert Dump

02/13/03-01:18:39.069619 {ICMP} 192.168.1.123 -> 192.168.1.10

[**] [1:366:4] ICMP PING *NIX [**]

[Classification: Web Application Attack] [Priority: 3]

02/13/03-01:18:39.069653 {ICMP} 192.168.1.10 -> 192.168.1.123

[**] [1:408:4] ICMP Echo Reply [**]

[Classification: Web Application Attack] [Priority: 3]

Barnyard is capable of outputting reports as CSV, HTML, and comma delim
ited, to mention a few formats. More information on the details for installing,
configuring, maintaining, and tweaking Barnyard can be found in Chapter 11,
“Mucking Around with Barnyard.”

Writing Your Own Output Plug-In
Writing a customized output plug-in can be one of the best investments that an
organization can make in maintaining its IDSs and systems.Yes, it is an invest
ment. Whether monetary, time, or a combination of the two, creating an output
plug-in has the potential to be extremely resource-intensive. Before you consider
writing an output plug-in, think about the requirements and reasoning for doing
so. Does it need to be real-time data storage and processing, or can a parser or
script be used to modify the data alerts and log? If possible, a post-storage data

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 343

Implementing Snort Output Plug-Ins • Chapter 7 343

modifier or analyzer should be used to save system resources during the traffic
analysis phase. Whether you are writing a post-storage script or output plug-in,
identifying in-house talent and resources are also musts before even considering a
trip “down the development path.”

An uncommon yet legitimate and professional method for creating an output
plug-in is to hire an outside party. We know of a few firms that chose to go this
route. In general, the creation of the plug-in should not be too expensive, and the
total price should fall somewhere between $2,000 and $7,000. Besides Sourcefire
and Silicon Defense, security consulting boutiques such as Foundstone, @Stake,
and Guardent might be good places to start looking for help.

Why Should I Write an Output Plug-In?
Simply put, you might want to write your own plug-in if one in existence does
not meet your current organizational or technical requirements. For an organiza
tion, implementing and maintaining an IDS can and should be a major invest
ment, when done correctly. Monitoring potential and realized threats is a
complicated, ongoing process and as such should be implemented in a way that
has minimal impact on network management and administrators.

Determining the return on investment (ROI) for writing an output plug-in
is one of the first steps in your initial conversations.You should conduct some
initial research to get an idea or estimate on the amount of time that it will take
to create a functional plug-in.The following are some questions that can help
determine the estimated development time:

■	 Does a similar plug-in already exist? If so, can you grab some logic or
code from it?

■	 Are test systems required? If so, do you have tests systems readily avail
able to aid in creating the plug-in?

■	 How complicated is the task you are looking to accomplish? Is it simply
modifying data. or is there a new type of storage mechanism that should
be taken into consideration?

If example code or logic exists or if you already have test systems, you might
already have an advantage. However, that still doesn’t mean the process will be easy.
Table 7.3 includes some of our best guesses that can be of some assistance in deter
mining the time requirement for developing a new output plug-in.The table lists
the skill level and an estimated development time for developing a Snort output
plug-in.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 344

344 Chapter 7 • Implementing Snort Output Plug-Ins

Table 7.3 Estimated Snort Output Development Time

Skill Level Estimated Development Time

Snort and programmer expert—
People with excellent structured
programming skills who not
only understand but feel
comfortable modifying current
Snort output plug-ins and who
understand the technology
requirements for the new
plug-in.
Programming expert—An
excellent structured-language
programmer with experience in
structures, links, memory
allocation, (potentially) sockets
and data transfer, and data
modification as mentioned under
”Moderate programming skills”
but who might not have any
“real” experience in using or
implementing Snort-specific features.
Moderate programming skills—
Programmers with general
structured programming skills as
mentioned under ”Low
programming skills,” plus abilities
to modify data in respect to
separation, searching, and queuing.
Low programming skills—
Programmers with general
structured programming
experience, which includes
knowledge of input, output,
multifile applications, argument
processing, and external file and
variable usage.
Don’t even consider it—If you
do not minimally possess low
programming skills, you or your
organization should probably look
for another solution.

www.syngress.com

One to two days

Two to four days

Two to four weeks

In excess of three weeks

Appropriate only for ambitious persons
without defined deadlines.

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 345

Implementing Snort Output Plug-Ins • Chapter 7 345

OINK!
Table 7.3 was designed for an easy to moderate technology and data
storage schema. Obviously, the development time would increase along
with an increase in the output plug-in level of difficulty.

Setting Up Your Output Plug-In
Setting up, designing, coding, and implementing a new Snort output plug-in can
have similarities across all platforms. In this section, we cover the major aspects of
the spo_alert_full output plug-in and draw conclusions on analogous characteris
tics of this particular plug-in to that of developing a new Snort-enabled tech
nology output plug-in.

Most Snort output plug-in headers follow a standard format that strictly
defines the purpose, arguments, effect, and name of the output plug-in. As you
can see in Figure 7.14, the header quickly provides technical information so that
users and administrators can understand the plug-in requirements and overall
motivation and mission of the output plug-in.

Figure 7.14 The Snort Full Alert Output Plug-In Header

/* spo_alert_full

*

* Purpose: output plugin for full alerting

*

* Arguments: alert file (eventually)

*

* Effect:

*

* Alerts are written to a file in the snort full alert format

*

* Comments: Allows use of full alerts with other output plugin types

*

*/

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 346

346 Chapter 7 • Implementing Snort Output Plug-Ins

All output plug-ins must define the appropriate header and include files.
These files can include anything from network protocol APIs to groupings of
other source header file declarations.

#Header Files

It is common practice and a requirement in nearly all structured program
ming language applications to declare all function prototypes.The prototypes are
generally listed at the top of the program, but this is coincidentally due to
learned best practices.

void AlertFullInit(u_char *);

SpoAlertFullData *ParseAlertFullArgs(char *);

void AlertFull(Packet *, char *, void *, Event *);

void AlertFullCleanExit(int, void *);

void AlertFullRestart(int, void *);

Global variable definitions are another characteristic common to enterprise
applications.These variables can be used throughout the program and within
other additional built-in modules to include Snort output plug-ins.

/* external globals from rules.c */

extern char *file_name;

extern int file_line;

Initially, setting up and configuring your output plug-in involves a few key
steps, including globally registering the output plug-in keyword and initializing
the function in the Snort output plug-in list (see Figure 7.15). In most cases, this
function would not need to return any values and does not accept any parame
ters or additional information.

Figure 7.15 Setting Up the Plug-In

/*

* Function: SetupAlertFull()

*

* Purpose: Registers the output plugin keyword and initialization

* function into the output plugin list. This is the function that

* gets called from InitOutputPlugins() in plugbase.c.

*

Continued

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 347

Implementing Snort Output Plug-Ins • Chapter 7 347

Figure 7.15 Setting Up the Plug-In

* Arguments: None.

*

* Returns: void function

*

*/

void AlertFullSetup()

{

}

Initializing the function in reference to argument parsing and performing the
final setup of data in regard to data input should be conducted here (see Figure
7.16). By now, the program should have prepared all the rudimentary plug-in
preparation tasks.

Figure 7.16 Alert Initialization

/*

* Function: AlertFullInit(u_char *)

*

* Purpose: Calls the argument parsing function, performs final setup on

data

* structs, links the preproc function into the function list.

*

* Arguments: args => ptr to argument string

*

* Returns: void function

*

*/

void AlertFullInit(u_char *args)

{

}

Obviously, creating and formatting the output is the most important function
within the output plug-in. In a function similar to this, you would gather the
captured data, analyze said data, and conduct all the formatting for the plug-in
(see Figure 7.17).

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 348

348 Chapter 7 • Implementing Snort Output Plug-Ins

Figure 7.17 Formatting and Report Generation

void AlertFull(Packet *p, char *msg, void *arg, Event *event)

{

*Here lies the bulk of the program

}

Similar to the subsequent restarting function, the cleanup and closing the
loose ends function can handle memory management issues, session management
anomalies, and anything else that needs to be cleaned up or reallocated.

void AlertFullCleanExit(int signal, void *arg)

{

}

In some cases, proper output plug-in execution requires the restart of certain
functions, communication sessions, and other module-specific technologies.

void AlertFullRestart(int signal, void *arg)

{

}

This overview was provided for a very specific instance of one current Snort
output plug-in.The goal was not to define every line of code or even provide
insight into program-specific algorithms or logic; it was to provide an overview
of the core functions and functionality found within most output plug-ins.

Creating Snort’s W3C Output Plug-In
Now that you have seen an overview of the way Snort output plug-ins are cre
ated and the essential components for the creation of such plug-ins, let’s dive into
actually creating a brand new plug-in.The plug-in described in this section was
created by the authors of this book especially for the release of Snort 2.1.

We chose to implement the W3C logging format for a few main reasons.
First and foremost, it was not already included in the list of output formats Snort
currently supported. Second, it is a relatively new format, gaining popularity over
other new and legacy logging formats due to its simplicity and flexibility.

Before we could get started on developing the plug-in, there were a few
things we needed:

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 349

Implementing Snort Output Plug-Ins • Chapter 7 349

■	 The latest version of Snort source code

■	 A Windows-friendly C Compiler

■	 A network connection and the ability to transmit traffic that would alert
and test the new Snort plug-in

As you know, adding support for a new output plug-in in Snort requires a
recompilation of the Snort executable module.This is due to Snort’s portability
requirements—it is hard to have a heterogeneous module-based plug-in plat
form. However, the Snort developers have done a pretty good job of keeping the
amount of modifying to the Snort source files to a minimum. In fact, it typically
requires two lines of code to add support for a new output plug-in.The steps
involved in this process are:

■	 In the plugbase.c file, add an include directive for your primary plug-in
include file.

■	 In the plugbase.c file’s InitPlugIns function, add a call to your plug-in’s
initialization routine.

These two steps will get you off the ground, but you aren’t ready for catching
alerts yet; you need to write some additional callback functions and inform Snort
of their existence.The minimum functions your plug-in will require consist of a
conceptual variation of the functions described in the following sections.

myPluginSetup (AlertW3CSetup)
The myPluginSetup function is defined in your source files and must be declared
in your header file as well.You also must insert a call to this function in plug-
base.c’s InitPlugins, as previously discussed. What’s special about this function is
that it is the only routine that Snort actually statically references. Snort calls this
function when it wants to know some more information about your plug-in—
specifically, its keyword and a function pointer to an additional initialization rou-
tine.The keyword is what is actually referenced in the snort.conf file when a
plug-in is activated.The initialization function pointer is used should Snort
decide to activate your plug-in.

myPluginInit (AlertW3CInit)
The myPluginInit function is called by Snort when it chooses to activate your
plug-in.You should recall that Snort learns of this function via its static call to

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 350

350 Chapter 7 • Implementing Snort Output Plug-Ins

the myPluginSetup function.This function’s purpose is to initialize any contextual
data (such as file references) necessary for it to function. Second, it must then
provide Snort with some additional function pointers: a function for alerts and
two shutdown functions.These pointers are provided by a call to
AddFuncToOutputList, AddFuncToCleanExitList, and AddFuncToRestartList.

myPluginAlert (AlertW3C)
The myPluginAlert function is the actual function Snort calls when there is a new
alert to process.You should remember that Snort learns of this function by
myPluginInit’s call to AddFuncToOutputList.

This function takes several parameters:

■	 Packet The actual packet that caused the alert.

■	 Message Any message generated by the associated rule.

■	 Data An arbitrary DWORD value specified in the
AddFuncToOutputList function.This is typically a pointer to a structure,
allocated on the heap, containing file handles and other configuration
information.

■	 EventData A structure containing information about the associated
Snort rule.

myPluginCleanExit (AlertW3CCleanExit)
The myPluginCleanExit function is called by Snort when the application is shut
ting down. Remember that Snort learns of this function by myPluginInit’s call to
AddFuncToCleanExitList.This function’s purpose is typically to deallocate any
contextual information allocated by myPluginInit.

myPluginRestart (AlertW3CRestart)
The myPluginRestart function is called by Snort when the application is shutting
down. Remember that Snort learns of this function by myPluginInit’s call to
AddFuncToRestartList.This function’s purpose is typically to deallocate any con
textual information allocated by myPluginInit.

Those functions are the “meat” of the plug-in. Next we’ll identify the impor
tant aspects of the W3C output plug-in’s source code and relate it to what we
have just learned.The goals in creating the W3C plug-in were to save alert data
to a log file in a W3C format.The plug-in operates as we have just learned, and

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 351

Implementing Snort Output Plug-Ins • Chapter 7 351

we will now explore how it is implemented. Note that implementation and cre
ation are two different beasts.

The first step was to create two source files, spo_w3c.h and spo_w3c.c, and
declare the structure of our plug-in with the following functions:

void AlertW3CInit(unsigned char *ConfigOptions);

void AlertW3CSetup();

void AlertW3CCleanExit(int signal, PW3C_CONTEXT Context);

void AlertW3CRestart(int signal, PW3C_CONTEXT Context);

After creating the two source files, we need to modify Snort’s code base so
that it knows about our plug-in.This step is critical because Snort was not cre
ated to dynamically notice or identify new plug-in code just because it resides in
the same directory structure as the other plug-ins. So, in Snort’s plugbase.h, we
added the following line at the top of the file:

#include "output-plugins/spo_w3c.h"

Again, inside Snort’s plugbase.h file within the InitOutputPlugins function, we
added the following function call:

AlertW3CSetup();

Those steps were necessary so that Snort could provide the ability to give our
function a call when it starts.

Snort calls our setup routine, AlertW3CSetup, when it starts. So, from this
point, we need to give Snort some additional information about our plug-in.
This is done by the following code snippet:

RegisterOutputPlugin("alert_W3C",

NT_OUTPUT_ALERT, AlertW3CInit);

Now Snort knows that our plug-in is named alert_W3C, and it knows how
to activate it. Snort decides whether to activate the plug-in by the presence of a
reference to it in the snort.conf file. Such a reference should look like the fol
lowing:

output alert_W3C: /snort/log/w3clog.txt

We are now getting close to the end of the process.The plug-in is activated
via the AlertW3CInit function.This function sets up some configuration infor
mation and informs Snort about some additional entry points into our plug-in:
AlertW3C, AlertW3CCleanExit, and AlertW3CRestart.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 352

352 Chapter 7 • Implementing Snort Output Plug-Ins

The configuration information is set up by calling the static routine
InitializeContext, which returns a pointer to a W3C_CONTEXT structure.
Inside this structure exists only one member: a FILE handle to the opened log.
Should we need to add any more configuration information, we’d add it to this
structure and the InitializeContext function.The AlertW3CInit function makes
several calls to the Snort runtime to inform it about its additional entry points:

AddFuncToOutputList(AlertW3C, NT_OUTPUT_ALERT, ctx);

AddFuncToCleanExitList(AlertW3CCleanExit, ctx);

AddFuncToRestartList(AlertW3CRestart, ctx);

The real work of the plug-in is done inside the AlertW3C function. Basically,
this function takes its several arguments and serializes them into a W3C log
string, which it appends to its log file.This is done in the following steps:

1.	 Call the static routine InitializeOutputParameters, which takes the same
arguments of AlertW3C and serializes it into a data structure
OUTPUT_PARAMETERS.

2.	 Take the OUTPUT_PARAMETERS structure and pass it to the func
tion AllocLogEntryFromParameters, which transforms the structure into a
character array containing the log message.

3.	 Write that character array to the log file using the fwrite function.

Finally, when Snort shuts down, it will give our plug-in a call via the
AlertW3CCleanExit function.The purpose of this function is very simple: release
allocated data structures and system handles, such as our context structure and its
file handle.This is done by its internal call to ReleaseContext.You are now ready
to put the remaining pieces of the puzzle together by analyzing the source of the
plug-in in hopes that you can use this guide and example to write your own
plug-in if you so desire.

The header file is very straightforward, to the point that it prototypes a single
function that takes and returns no information and is directly linked to Snort’s
code base:

//

//

// spo_w3c.h

//

// Purpose:

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 353

Implementing Snort Output Plug-Ins • Chapter 7 353

// - Header file for spo_w3c.c, which is the output plugin for asserting

// alerts in w3c log format.

//

///

#ifndef _SPO_W3C_H

#define _SPO_W3C_H

void AlertW3CSetup();

#endif

The following code is the body of the plug-in for the new Snort W3C
output format style.You will notice all the functions that we have already men
tioned and detailed in addition to some of the structures that we have reimple
mented to allow us to get the appropriate data parsed into the program. It is
important to remember that this plug-in must be used in conjunction with Snort
and must be compiled with Snort.The location of the output file is in the con
figuration file, so you do not need to modify this code to view your logs. Inline
documentation is included in most of the file, but as always, if you have any
questions on this code, chapter, or book, you should feel free to drop the authors
a line at Syngress, or you may contact James C. Foster directly at
jamesfoster@safe-mail.net.

///

//

// spo_w3c.c

//

// Purpose:

// - output plugin for asserting alerts in w3c log format.

//

// Arguments:

// - Log File Name

//

// Effect:

// - Alerts are written to a file using the w3c log format.

//

///

#ifdef HAVE_CONFIG_H

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 354

354 Chapter 7 • Implementing Snort Output Plug-Ins

#include "config.h"

#endif

#include <sys/types.h>

#include <stdio.h>

#include <stdlib.h>

#ifndef WIN32

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#endif /* !WIN32 */

#ifdef HAVE_STRINGS_H

#include <strings.h>

#endif

#include "event.h"

#include "decode.h"

#include "plugbase.h"

#include "spo_plugbase.h"

#include "parser.h"

#include "debug.h"

#include "mstring.h"

#include "util.h"

#include "log.h"

#include "snort.h"

#define MESSAGE_MAX_SIZE 40

#define IP_MAX_SIZE 15

//

// Array indices for the plugin's configuration options in snort.conf

//

#define W3C_ARGUMENT_FILENAME 0

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 355

Implementing Snort Output Plug-Ins • Chapter 7 355

//

// Plugin context information used for snort's callback plugin

// architecture.

//

typedef struct _W3C_CONTEXT {

FILE *LogFile;

} W3C_CONTEXT, *PW3C_CONTEXT;

//

// Bit flags specifying what members of the OUTPUT_PARAMETERS

// structure are valid.

//

#define ATTRIBUTE_TIMESTAMP 0x00000001

#define ATTRIBUTE_SOURCE_IP 0x00000002

#define ATTRIBUTE_SOURCE_PORT 0x00000004

#define ATTRIBUTE_DESTINATION_IP 0x00000008

#define ATTRIBUTE_DESTINATION_PORT 0x00000010

#define ATTRIBUTE_MESSAGE 0x00000020

#define ATTRIBUTE_SID 0x00000040

//

// This structure is serialized from several data structures

// and represents the actual output used in each log entry.

//

// If any change is needed for the output, you need only modify

// this structure, InitializeOutputParameters, and

AllocLogEntryFromParameters.

//

typedef struct _OUTPUT_PARAMETERS {

char TimeStamp[TIMEBUF_SIZE + 1];

char SourceIP[IP_MAX_SIZE + 1];

char DestinationIP[IP_MAX_SIZE + 1];

u_short SourcePort;

u_short DestinationPort;

char Message[MESSAGE_MAX_SIZE + 1];

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 356

356 Chapter 7 • Implementing Snort Output Plug-Ins

unsigned long Attributes;

int SID;

} OUTPUT_PARAMETERS, *POUTPUT_PARAMETERS;

//

// Forward definitions

//

void AlertW3CInit(unsigned char *ConfigOptions);

void AlertW3C(Packet *, char *, PW3C_CONTEXT, Event *);

void AlertW3CCleanExit(int, PW3C_CONTEXT);

void AlertW3CRestart(int signal, PW3C_CONTEXT);

//

// Function: InitializeContext

//

// Arguments:

// - ConfigOptions - Configuration options specificed in snort.conf

//

// Purpose:

// - Process arguments specified in snort.conf and creates

// a runtime context datastructure that snort passes

// to our callback routines: AlertW3C, AlertW3CCleanExit,

// and AlertW3CRestart.

//

static PW3C_CONTEXT InitializeContext(unsigned char *ConfigOptions)

{

int tokenCount = 0;

char **tokens = 0;

PW3C_CONTEXT ctx = 0;

// Ready for additional parameters - increment 3rd parameter

// as necessary.

tokens = mSplit(ConfigOptions, " ", 2, &tokenCount, 0);

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 357

357 Chapter 7 • Implementing Snort Output Plug-Ins

ctx = SnortAlloc(sizeof(W3C_CONTEXT));

ctx->LogFile = OpenAlertFile(tokens[W3C_ARGUMENT_FILENAME]);

mSplitFree(&tokens, tokenCount);

return ctx;

}

//

// Function: ReleaseContext

//

// Arguments:

// - Context - Context structure allocated by InitializeContext

//

// Purpose:

// - Performs any de-initialization necessary on the context structure

// which is allocated on plugin initialization.

//

static void ReleaseContext(PW3C_CONTEXT Context)

{

fclose(Context->LogFile);

free(Context);

}

//

// Function: InitializeOutputParameters

//

// Arguments:

// - OUT OutputParams - Output parameter is initialize by this function.

// - IN PacketData - Packet structure representing data off the wire

// - IN Message - Message from the applicable snort rule

// - IN Context - Context allocated by InitializeContext on plugin

initialization

// - IN EventData - Data from the applicable snort rule

//

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 358

358 Chapter 7 • Implementing Snort Output Plug-Ins

// Purpose:

// - This function is called from AlertW3C and is used to serialize

// several data sources into one common data structure.

//

static void InitializeOutputParameters(

POUTPUT_PARAMETERS OutputParams,

Packet *PacketData,

char *Message,

PW3C_CONTEXT Context,

Event *EventData

)

{

char *ip = 0;

// Clear output buffer

bzero(OutputParams, sizeof(OUTPUT_PARAMETERS));

// Timestamp

if (PacketData && PacketData->pkth)

{

ts_print(&PacketData->pkth->ts, OutputParams->TimeStamp);

OutputParams->Attributes |= ATTRIBUTE_TIMESTAMP;

}

// SID

if (EventData)

{

OutputParams->SID = EventData->sig_id;

OutputParams->Attributes |= ATTRIBUTE_SID;

}

// Message

if (Message)

{

strncpy(OutputParams->Message, Message, MESSAGE_MAX_SIZE);

OutputParams->Attributes |= ATTRIBUTE_MESSAGE;

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 359

Implementing Snort Output Plug-Ins • Chapter 7 359

}

if (PacketData && PacketData->iph)

{

// NOTE: inet_ntoa uses thread local storage on NT platforms and

// therefore atomicity is irrelevant. However, *NIX* probably

// uses a static buffer. There isn't any compenstation

// for this issue anywhere else, so it doesn't matter too much here.

ip = inet_ntoa(PacketData->iph->ip_dst);

strncpy(OutputParams->DestinationIP, ip, IP_MAX_SIZE);

ip = inet_ntoa(PacketData->iph->ip_src);

strncpy(OutputParams->SourceIP, ip, IP_MAX_SIZE);

OutputParams->Attributes |= ATTRIBUTE_SOURCE_IP;

OutputParams->Attributes |= ATTRIBUTE_DESTINATION_IP;

}

if (PacketData && PacketData->tcph)

{

OutputParams->SourcePort = ntohs(PacketData->tcph->th_sport);

OutputParams->DestinationPort = ntohs(PacketData->tcph->th_dport);

OutputParams->Attributes |= ATTRIBUTE_SOURCE_PORT;

OutputParams->Attributes |= ATTRIBUTE_DESTINATION_PORT;

}

}

//

// Function: AllocLogEntryFromParameters

//

// Arguments:

// - OUTPUT_PARAMETERS - Content serialized from several data sources

// into a common usable data structure.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 360

360 Chapter 7 • Implementing Snort Output Plug-Ins

//

// Purpose:

// - This function takes a OUTPUT_PARAMETERS structure and transforms

// it into a proper W3C event character string. It is called once

// from AlertW3C.

//

// Return Value:

// A pointer to a character array. This string should be free()'d.

//

static char* AllocLogEntryFromParameters(OUTPUT_PARAMETERS *OutputParams)

{

// Format to output:

// [DATE] [SID] [SRCIP] [SRCPORT] [DSTIP] [DSTPORT] [MSG] \r\n

char *logEntry = 0;

unsigned long bytesNeeded = 0;

char tmp[50];

//

// Calculate memory needed

//

if (OutputParams->Attributes & ATTRIBUTE_TIMESTAMP)

bytesNeeded += strlen(OutputParams->TimeStamp) + 2;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_MESSAGE)

bytesNeeded += strlen(OutputParams->Message) + 2;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_SID)

bytesNeeded += 11 + 2;

else

bytesNeeded += 3;

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 361

Implementing Snort Output Plug-Ins • Chapter 7 361

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_IP)

bytesNeeded += IP_MAX_SIZE;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_IP)

bytesNeeded += IP_MAX_SIZE;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_PORT)

bytesNeeded += 5 + 2;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_PORT)

bytesNeeded += 5 + 2;

else

bytesNeeded += 3;

bytesNeeded += 3; // \r\n and NULL

//

// Parse it up

//

logEntry = SnortAlloc(bytesNeeded);

bzero(logEntry, bytesNeeded);

// Timestamp

if (OutputParams->Attributes & ATTRIBUTE_TIMESTAMP)

{

// has embedded space character

strcat(logEntry, OutputParams->TimeStamp);

}

else

strcat(logEntry, "- ");

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 362

362 Chapter 7 • Implementing Snort Output Plug-Ins

// SID

if (OutputParams->Attributes & ATTRIBUTE_SID)

{

sprintf(tmp, "%03d", OutputParams->SID);

strcat(logEntry, tmp);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Destination IP

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_IP)

{

strcat(logEntry, OutputParams->DestinationIP);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Destination Port

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_PORT)

{

sprintf(tmp, "%d", OutputParams->DestinationPort);

strcat(logEntry, tmp);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Source IP

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_IP)

{

strcat(logEntry, OutputParams->SourceIP);

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 363

Implementing Snort Output Plug-Ins • Chapter 7 363

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Source Port

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_PORT)

{

sprintf(tmp, "%d", OutputParams->SourcePort);

strcat(logEntry, tmp);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Message

if (OutputParams->Attributes & ATTRIBUTE_MESSAGE)

{

strcat(logEntry, OutputParams->Message);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

strcat(logEntry, "\r\n");

return logEntry;

}

//

///

// OUTPUT PLUGIN Functions

// - AlertW3CSetup <-- Called from InitOutputPlugins() in plugbase.c

// - AlertW3CInit <-- Called from ParseOutputPlugin() in parser.c

// - AlertW3C <-- Call per each alert

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 364

364 Chapter 7 • Implementing Snort Output Plug-Ins

// - AlertW3CCleanExit <-- Called during a clean exit

// - AlertW3CRestart <-- Called if the app needs to restart

//

///

void AlertW3CSetup()

{

//

// Register this plugin with the snort runtime

//

// Config Keyword: 'alert_W3C'

//

RegisterOutputPlugin("alert_W3C", NT_OUTPUT_ALERT, AlertW3CInit);

}

// TASKS:

// - Allocate call context data

// - Process arguments

// - Set function pointers: Alert; Exit; Restart.

//

// Function: AlertW3CInit

//

// Arguments:

// - ConfigOptions - Argument string passed via snort.conf

//

// Purpose:

// - This function is called from snort IF the output plugin is activated

// by the snort.conf file. The Purpose of this function is to:

// a. Inform snort of the proper shutdown and event processing

functions

// b. Initialize a context structure that will be passed around the

// aforementioned callback functions. (No need for global data)

//

void AlertW3CInit(unsigned char *ConfigOptions)

{

PW3C_CONTEXT ctx = InitializeContext(ConfigOptions);

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 365

Implementing Snort Output Plug-Ins • Chapter 7 365

AddFuncToOutputList(AlertW3C, NT_OUTPUT_ALERT, ctx);

AddFuncToCleanExitList(AlertW3CCleanExit, ctx);

AddFuncToRestartList(AlertW3CRestart, ctx);

}

//

// Function: AlertW3C

//

// Arguments:

// - PacketData - Packet data off the wire

// - Message - Message from rule

// - Context - Context structure allocated in InitializeContext()

// - Event - Rule context information

//

// Purpose:

// - This is the primary alert processing entry point call from the snort

// runtime. All post-alert output processing occurs here.

//

void AlertW3C(Packet *PacketData, char *Message, PW3C_CONTEXT Context,

Event *EventData)

{

OUTPUT_PARAMETERS output;

int outputLength = 0;

char *outputString = 0;

// Gather/process parameters

InitializeOutputParameters(&output, PacketData, Message, Context,

EventData);

// Parse into character array

outputString = AllocLogEntryFromParameters(&output);

if (outputString)

{

outputLength = strlen(outputString);

// write log

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 366

366 Chapter 7 • Implementing Snort Output Plug-Ins

fwrite(outputString, outputLength, 1, Context->LogFile);

free(outputString);

}

}

//

// Function: AlertW3CCleanExit

//

// Arguments:

// - signal -

// - Context - Context structure allocated in InitializeContext()

//

// Purpose:

// - This function is called by the snort runtime when the application is

shutting down.

//

void AlertW3CCleanExit(int signal, PW3C_CONTEXT Context)

{

ReleaseContext(Context);

}

//

// Function: AlertW3CRestart

//

// Arguments:

// - signal -

// - Context - Context structure allocated in InitializeContext()

//

// Purpose:

// - This function is called by the snort runtime when the application is

restarting.

//

void AlertW3CRestart(int signal, PW3C_CONTEXT Context)

{

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 367

Implementing Snort Output Plug-Ins • Chapter 7 367

ReleaseContext(Context);

}

Running and Testing the Snort W3C Output Plug-in
We have now completed the program, and there is only one last item to take
care of: We must test it! Assuming that there are numerous compilers, all of
which work differently in use but are similar in functionality, we’ve compiled our
version of Snort using Microsoft Visual Studio 6.The compilation went
smoothly, and after compiling we ran Snort with a few attacks, ICMP and Scan
attempts, to test our plug-in. Sure enough, it worked as planned. Figure 7.18 dis
plays a sanitized log ascertained from our testing of the plug-in. Notice how it is
prefaced with our timestamp, followed by the remaining appropriate fields.

Figure 7.18 W3C Output Log Format Example

04/06-21:12:49.876116 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:50.008543 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

04/06-21:12:50.877603 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:51.008837 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

04/06-21:12:51.878793 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:52.016027 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

04/06-21:12:52.879979 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:53.009929 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

04/06-21:13:02.783056 620 192.168.1.1 8080 192.168.1.101 3134 SCAN Proxy

Port 8080 attempt

04/06-21:13:03.234953 620 192.168.1.1 8080 192.168.1.101 3134 SCAN Proxy

Port 8080 attempt

04/06-21:13:03.736479 620 192.168.1.1 8080 192.168.1.101 3134 SCAN Proxy

Port 8080 attempt

04/06-21:13:18.394430 385 192.168.1.1 - 192.168.1.101 - ICMP traceroute

04/06-21:13:18.408880 408 192.168.1.101 - 192.168.1.1 - ICMP Echo Reply

Dealing with Snort Output
Sometimes you might find that it is easier to work with what Snort gives you
instead of creating a new output plug-in. Considering the current varying
options and formats, in most cases you might simply want to go the down the
path of least resistance and deal with post-Snort data modification.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 368

368 Chapter 7 • Implementing Snort Output Plug-Ins

One of the easiest and certainly the most popular methods for creating a cus
tomized Snort data interface is creating some type of database interface.The cur
rent relational database plug-ins update the databases in real time when new
threats are identified, rules triggered, and data logged.The data accessed from the
databases can still be considered real-time data.These databases provide an excel
lent medium for accessing up-to-the-minute data without having to “reinvent
the wheel.”As you now know, there are multiple database outputs you can select,
ranging from the enterprise choice of Oracle to the freeware version of MySQL.

Perl with Tcl/Tk, Java, Visual Basic, PHP, and even Visual C++ are suitable
languages to code Snort database interfaces.There are many others, but PHP and
Perl are two of the most popular due to the easy language syntax, Web-based
nature, and rapid development characteristics.Table 7.4 details a few of the vital
pros and cons that should be weighed in considering a database solution.

Table 7.4 The Pros and Cons of Using Snort Database Information

Pros Cons

Real-time information.

Some data correlation can be
achieved inside the relational.

Relational databases allow you to
create multiple tables and relations
to potentially access subsets of
data from multiple Snort sensors.
Storing the data in the databases
might be a more flexible solution
going forward.

In comparison to the other options,
databases have the potential to be
bandwidth-intense.
Databases alone are enterprise applica
tions in themselves, and as such might
databases require maintenance in
regard to user management, patching,
and system configuration.
Costs might be associated with imple
menting the database option if a non
freeware option is selected.

For the most part, accessing the data
in a secure manner is left up to the
user.
Network databases are popular
“hacker targets.” Application
security should not be an option; it
should be mandatory.
Heavy development time.

Another option that is available if you do not want to use a database to store
Snort logs is to go the flat-file route. Using flat files poses an interesting situation

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 369

Implementing Snort Output Plug-Ins • Chapter 7 369

in that these files are usually stored on the Snort sensor. Some of the more pop
ular flat-file plug-ins are Alert_fast, Alert_full, Alert_CSV, and Log_TCPDump. It
is possible to retrieve these files remotely, but the logistics and time delta
between the event and event notification might prove unacceptable. Flat-file
analysis really hits its full value proposition when a single data element or type of
data element is desired. It is a poor enterprise solution.Table 7.5 highlights a few
of the pros and cons of using a file-flat analysis schema.

Table 7.5 The Pros and Cons of Using Snort Flat-File Information

Pros Cons

Decent speed on small to medium-

sized networks.

Simplicity; in general, accessing flat

files to retrieve data is not an overly

complicated task.

There shouldn’t be any additional

costs associated with going this route.

The “time to market” or

development time should be minimal.

Flat files must be parsed and inter
preted before data modification can
begin.
Depending on the size of the file and
the amount of available system
memory, parsing the file might bring
your system to a screeching halt (same
with XML).
Inflexible.

Post-real-time speeds.

In general, flat files are stored on
the Snort sensors.

XML has hit the market like a gigantic red dump truck. Many people have
been drawn to its perceived benefits and mystic technology, and heavy endorse
ment doesn’t seem to be hurting anything either. XML has several of the same
issues as flat files do, since in most cases these files would be stored locally on the
sensors.The only notable advantage over a flat-file plug-in is that XML-for-
matted output is easier to extend and more flexible if it should be used in future
applications.Table 7.6 lists XML technology pros and cons in reference to Snort
sensor databases.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 370

370 Chapter 7 • Implementing Snort Output Plug-Ins

Table 7.6 The Pros and Cons of Using Snort XML-Formatted Information

Pros Cons

Immerging technologies that
support XML-formatted data feeds.

To date, XML has been a relatively
secure technology.

Storing the data in XML might be a
more flexible solution going forward.
In general, XML files are stored on
the Snort sensors.

XML files must be parsed and inter
preted before data modification can
begin.
Depending on the size of the file and
the amount of available system
memory, parsing the file might bring
your system to a screeching halt (same
with flat files).
Post-real-time speeds.

An excellent new feature in Snort is the ability to store unified or binary data
or to provide such data as an input stream to another program using such infor
mation. Using binary data and unified data streams threads processes away from
the Snort executable, thus allowing Snort to focus on the more critical processes
such as data collection and storage. Chapter 11 addresses all the intricacies of
unified data and processing such data.Table 7.7 lists the pros and cons of using
spooling streams.

Table 7.7 The Pros and Cons of Using Snort Unified and Binary Information

Pros Cons

Unmatched speed.

Unmatched Snort application and
sensor performance.
Snort’s Barnyard application is
maintained by the Snort
development and is quickly
becoming an integral part of the
product.
Flexible and scalable.

Extremely complicated development or

plug-in modification.

Additional applications are required to

process the data streams.

Data selection and categorization is

not on par with data inputted into the

database.

All things considered, our recommendation is twofold. If you are looking for
a quick fix to a problem or to merely create a “hack job” that gets the issue

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 371

Implementing Snort Output Plug-Ins • Chapter 7 371

resolved, by all means go with a script that pulls relevant information out of a
PCAP or header-infused alert file. Such a solution would be adequate if your
goal was to determine what attacks were generated from a particular source.
However, if the goal is to create an enterprise-grade or purely a more sustainable
application, the choice should be obvious: relational databases or unified data
streams. Once the code to access and retrieve the data is flushed out, data selec
tion and modification will seem trivial. Moreover, using a Snort database might
prove beneficial down the road, when future NIDS projects arise.

Tackling Common
Output Plug-In Problems
With Snort’s flexibility and scalability come various issues. Of course, these issues
span a wide range of technical and user-instantiated problems.

One of the most common issues that users have when trying to gather data
from a database in which Snort has logged and stored data is reading—or should
we say de-obfuscating—IP addresses. Why, you ask? Well, Snort saves all IP
addresses as binary integers, thereby saving space and permitting the IP addresses
to be searched by intricate queries involving network masks. Snort’s database was
created and designed to store IP addresses in distinct fields, the iphdr.ip_src and
iphdr.ip_dst fields.

It is true that the database stores these addresses in different formats, but it is
not complicated to convert these integers back to period-delimited IPv4
addresses. Depending on which backend database you are implementing, there
are multiple ways to conduct analysis on the addresses. If you have implemented
a MySQL database, you are in luck because it comes with a native or built-in
function that does the conversion for you: inet_ntoa(). This function will handle
all the algorithmic conversion for you such that 2130706433 would be easily
converted to the IP address representation of 127.0.0.1, also known as your loop-
back address.Yet if you wanted to run a direct SQL statement to ascertain this
value, you would simply need to type:

Syngress_mysql>SELECT ip_src, inet_ntoa(ipaddress_ from iphdr;

Unfortunately, it is not that easy for all you truly freeware users who have
selected PostgreSQL storage databases because there is not a native function.
However, converting the unsigned integer manually is not as difficult as you
might think.The following is a function created by Phil Mayers to convert the
integer to an IP address on the fly:

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 372

372 Chapter 7 • Implementing Snort Output Plug-Ins

CREATE FUNCTION plpgsql_call_handler () RETURNS OPAQUE AS

'/usr/lib/pgsql/plpgsql.so' LANGUAGE 'C';

-- Note: remember to change the above path to 'plpgsql.so'

CREATE TRUSTED PROCEDURAL LANGUAGE 'plpgsql' HANDLER plpgsql_call_handler

LANCOMPILER 'PL/pgSQL';

CREATE FUNCTION int8ip_to_str(int8) RETURNS inet AS '

DECLARE

t inet;

BEGIN

t = (($1>>24) & 255::int8) || ''.'' ||

(($1>>16) & 255::int8) || ''.'' ||

(($1>>8) & 255::int8) || ''.'' ||

($1 & 255::int8);

RETURN t;

END;

' LANGUAGE 'plpgsql';

The following is an example of the custom function int8ip_to_str():

snort_db=# SELECT ip_src, int8ip_to_str(ip_src) FROM iphdr;

ip_src | int8ip_to_str

------------+--------------

2130706433 | 127.0.0.1

An extremely common database problem that we have recognized is spawned
from a user error when upgrading Snort installations. As with most database-
driven applications, or more appropriately, most database-reliant applications,
Snort changes its database schema on most major and even some minor releases.
This is because the database schema changes when new types of data are per
mitted or stored via the Snort application. If you receive a Snort error stating
that the database version you are using is old, you will probably have to reinstall a
new Snort database and migrate the old dataset to the new format. More risky
but nonetheless an option, you can always try to update the database with the
new fields in the schema before trying a full reinstall.The following is the error
message Snort throws when an outdated database schema is being used:

database: The underlying database seems to be running an older version of

the DB schema.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 373

Implementing Snort Output Plug-Ins • Chapter 7 373

Summary
The Snort application has gone through many different architectural, algorithm-
specific, and implementation modifications. With just about all these changes
have come direct, positive product and feature enhancements. One of the most
beneficial features built into Snort with reference to reporting and data presenta
tion is Snort’s ability to use output plug-ins.These plug-ins enable network and
security administrators, engineers, and managers alike to optimize the product for
their environments and to ensure that minimal resources are spent maintaining
the technology. Minimizing resources will also have a direct impact on the mean
time to data analysis, which defines how fast your company can react to any incident.

Currently, you have several different options when you’re using output plug-
ins. Various options allow data to be formatted in PCAP, straight text headers
with packet destination and source information, along with rule messages, XML
text databases, and multiple relational databases including MySQL, Oracle, and
MS SQL. Along with the format of the data, Snort provides the ability to store
and transmit the formatted data in numerous ways. Storing alerts and logs locally,
transmitting data to UNIX sockets, and pushing data to local and remote
databases are all potential methods. It is not necessary to use plug-ins for every
thing, given that complementing utilities are available. Log parsers, graphical
interfaces, and correlation engines allow the user to further format data with
application wrappers and scripts. Barnyard, Acid, and Cerebus are three of the
most popular complementary Snort applications.

The existing output plug-ins are nice, but the real value-add comes with
Snort’s ability to create customized plug-ins. Because the Snort development
team has implemented an open API structure for the use of output plug-ins, both
private organizations and professional security teams can design in-house plug-
ins.These in-house plug-ins can be driven by technology or customers, but the
common goal should always remain: to minimize manual data compilation tasks.
These plug-ins access a highly technical subset of functions and application calls
that reference configuration instructions and the corresponding parameters
defined during Snort runtime.The bulk of the plug-in resides in formatting the
input data while also handling the technologies used during the output phase.

We found that just about any technological executive or manager freely
voices the fact that data is useless unless it can be quickly analyzed and used to
make decisions. Part of Snort’s answer to inherent technology issue is output
plug-ins. Our recommendation: If freeware Snort is a valuable asset within your

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 374

374 Chapter 7 • Implementing Snort Output Plug-Ins

organization, it is essential that you have an engineer or scientist who completely
understands output plug-ins.

Solutions Fast Track

What Is an Output Plug-In?

� Output plug-ins, also called output modules, were introduced in Snort
version 1.6 and are an excellent mechanism for storing information in a
customizable formats and locations. It was the first major movement
into creating an open reporting API.

Exploring Output Plug-in Options

� Currently, Snort has plug-ins that support multiple reporting formats to
include straight text headers, PCAP, UNIX syslog, XML text databases,
and numerous other types of relational databases.

� Captured and defined data can be stored in local alert and packet logs
and local and remote databases, in addition to blindly transmitting the
data to a UNIX socket.

� Additional programs such as Acid, Barnyard, and Cerebus are irreplace
able assets in analyzing and modifying data reports.

Writing Your Own Output Plug-In

� Writing Snort output plug-ins is no easy task if you have little or no C
programming experience. It is much more complex than Snort rule
authoring, since to date all the output plug-ins are written in C.

� A potentially quicker alternative to writing an output plug-in is writing
a plug-in wrapper. For example, if the goal is to format data instead of
modifying real-time data formatting and storage, it might be faster and
more economical to write a Perl script that automatically runs against
the payload and outputs the desired information.

� The output plug-ins have some common similarities, including global
variable definitions and prototyping, keyword registration, argument and

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 375

Implementing Snort Output Plug-Ins • Chapter 7 375

preprocessor argument processing, plug-in and function cleanup and
exiting, and data formatting and transmission.

Creating a W3C Extended
Log Format Output Plug-In

� The five major components for our self-authored Snort W3C output
plug-in are myPluginSetup, myPluginInit, myPluginAlert,
myPluginCleanExit, and myPluginRestart, all of which are aptly named and
do as they imply via the naming convention.

� For our custom Snort output plug-in to work, you must register the
plug-in within the Snort source code tree and then recompile the tree.
The following code will handle the registration process:

RegisterOutputPlugin(“alert_W3C”, NT_OUTPUT_ALERT, AlertW3CInit);

� The data buffer utilizes a single dimension character array that gets
written to the log file via C’s fwrite function.

Tackling Common Output Plug-In Problems

� Snort stores IP addresses in databases in a single-integer format to save
CPU resources and space when storing data in the database.

� Database problems are common, so it is pertinent that you verify that
you have the latest database schema installed when you upgrade your
Snort installation. Sometimes this will mean that you merely have to add
a couple empty tables or columns; however, you won’t always get this
lucky.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 376

376 Chapter 7 • Implementing Snort Output Plug-Ins

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Do you have any recommendation as to type of output module to use on a
mobile workstation?

A: Let’s presuppose that for a traveling computer, security is an essential require
ment, CPU and memory are valuable commodities, and that it is being mon
itored and used the majority of the time. It is probably in your best interest
to only use alerts with minimal information, since we can assume that if you
were attacked, immediate action would be taken. Packet headers and rule
content messages should suffice. Specifically, fast alerts would be our UNIX
recommendation, whereas the SMB client (a.k.a. Windows PopUp) would be
the choice for Windows users.

Q: What kind of bandwidth hit will I take if I choose to log alerts to a remote
database?

A: Bandwidth consumption is completely derived from two factors.The first is
the amount of data that is transmitted across the sensor network, and the
second is the ruleset that is implemented on the sensor. We recommend
keeping the primary log database on the Snort sensor to minimize network
impact if you can afford the hardware, because running a database will impact
system performance. If you do not have this option and your network uses
under 20 percent of its available bandwidth on a common workday, it is
probably okay to go ahead and use a remote database plug-in.To test and
prototype the options, you can monitor local logs and sizes to determine
whether the data load would be too great if imposed on the network.

Q: Can I log to multiple databases, even if they are different types of databases?

A: The short answer is yes. Now for the real answer, since there are multiple
ways to reach the end goal: Snort provides users with the ability to log to
multiple instantiations of the same database plug-in, log data to multiple

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 377

Implementing Snort Output Plug-Ins • Chapter 7 377

identical and different databases, and log data to miscellaneous other data
types.The following are examples of output instructions that can be defined
in a configuration file.

Example: Multiple formats including a database:

output mydatabase: oracle, dbname=security host=securitydb.poc2.com

user=joe

output log_tcpdump: /logs/snort/tcpdump/current.log

Example: Multiple databases:

output mydatabase: mysql, dbname=dmzsnort host=10.1.1.7

user=dbadmin password=badidea

output mydatabase: oracle, dbname=security host=securitydb.poc2.com

user=joe password=badidea

Example: Multiple instances of the same database:

output mydatabase: oracle, dbname=sensor host=sensor.poc2.com

port=10302 user=admin password=bads

output mydatabase: oracle, dbname=sensor host=backup.poc2.com

port=10302 user=admin password=bads

Q: Do you recommend that I keep forensic backup data from the Snort sensors?
If so, in what output format should I keep it?

A: We’d say yes; we would recommend that you implement some sort of
perimeter backup capability via your Snort sensors output selection. With
that said, it could prove extremely difficult to back up any amount of non-
alert data or Snort-formatted data such as all the complete raw traffic.
Network Associates has released a product that does this exact thing and has
the capability to store up to 32 terabytes of network traffic before running a
backup procedure. Obviously, this would be overkill for most system net
works and perimeter security policies; however, as a rule of thumb, 30 days of
logs is a good amount to keep on file. If you simply have too much traffic to
possibly keep that much data, keep as much as you can. Hopefully, you will
notice attacks and intrusions when they are occurring and not a month or
two later.

www.syngress.com

295_Snort2e_07.qxd 5/5/04 5:50 PM Page 378

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 379

Chapter 8

Dealing
with the Data

Solutions in this Chapter:

■ What is Intrusion Analysis?

■ Intrusion Analysis Tools

■ Analyzing Snort IDS Events

� Summary

� Solutions Fast Track

� Frequently Asked Questions

379

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 380

1892

380 Chapter 8 • Dealing with the Data

Introduction
“You see, but you do not observe.”

—Sir Arthur Conan Doyle (quoting Sherlock Holmes), A Scandal in Bohemia,

See the traffic. Feel the traffic. Be the traffic.You have instrumented your net
works with Snort, capturing attack traffic and sending alerts. Millions of packets
and thousands of alerts a day, and you have to make sense of it all.

Snort, at its heart, is a very complex pattern matcher geared toward detecting
patterns of network attack traffic. On any given network, on any given day, Snort
can fire thousands of alerts.Your task as an intrusion analyst is to sift through the
data, extract events of interest, and separate the false positives from the actual
attacks. But your job does not stop there. Once you have pruned your data,
intrusion analysis begins.

In this chapter, we cover methodology and the tools to help you manage the
task of monitoring Snort sensors and analyzing intrusion data.The tools we will
cover are:

■ ACID

■ SGUIL

■ SnortSnarf

■ Snort_stat.pl

■ Swatch

For your convenience, the current versions of these tools (at the time of this
writing) are included on this book’s companion CD-ROM.You can find these
tools in the Chapter 8 directory.

What Is Intrusion Analysis?
Intrusion analysis is an investigation into a network incident.The incident in ques
tion might be a compromised host, a denial of service attack, or a port scan.You
must assess the risk to your organization as well as evaluate the impact of the
incident and take actions to mitigate the threat.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 381

Dealing with the Data • Chapter 8 381

Snort Alerts
In most incidents, the first piece of information that an analyst reviews is an
alert. An alert is a message passed from a detection mechanism when it matches
an event to a known pattern.This message can take many forms: pager message,
syslog entry, ticket system entry. Usually at the very core is a simple plaintext
message with a brief description of the event:

Example Full Alert Mode alerts:

[**] [1:1913:8] RPC STATD UDP stat mon_name format string exploit attempt

[**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

11/01-04:27:16.655166 172.16.10.151:807 -> 172.16.10.200:956

UDP TTL:3 TOS:0x0 ID:0 IpLen:20 DgmLen:1104 DF

Len: 1076

[Xref => http://www.securityfocus.com/bid/1480]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0666]

Example of the same event Alerting in Fast mode:

11/01-04:27:16.655166 [**] [1:1913:8] RPC STATD UDP stat mon_name format

string exploit attempt [**] [Classification: Attempted Administrator

Privilege Gain] [Priority: 1] {UDP} 172.16.10.151:807 -> 172.16.10.200:956

We see here a vast difference in output coming from Snort.The first output
format we are given, Full Alert mode, gives the analyst a brief (although verbose)
description of the event. Fast Alert mode gives the analyst a cursory amount of
information about the event.This is a great mode to run Snort in because it
reduces the performance impact of the output stage, but it delivers less informa
tion to the analyst.

Let’s examine the Full Alert mode format:

[**] Snort Alert Message [**]

[Classification:] [Priority:]

Time Stamp Source IP: Port -> Destination IP: Port

Transport Protocol Specific Information[External Reference Links]

It is interesting to note that at the beginning of the alert we see [1:1913:8].
This tells the analyst that the detection engine fired the event (1), the SID for
this signature is 1913, and it has been revised 8 times. In the Full Alert mode

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 382

382 Chapter 8 • Dealing with the Data

example, we find two external references: one to security focus, the other to
Mitre’s CVE database.These can be very helpful in gathering additional informa
tion about this attack. If you can spare the cycles and the bandwidth, you might
want to start off by receiving the alerts in Full mode because this will give you
the most data without having to look through the packet logs that are stored
separately.

Snort Packet Data
Snort can log packet data in three base formats: ASCII, Pcap binary format, and
Unified binary format. ASCII logs, although very easy to read using a text editor,
are not as useful as the binary logs for analysis. Pcap binary logs can be read and
processed by hundreds of tools that have been designed with traffic analysis in
mind. Some examples of tools that can read Pcap format files are tcpdump, ethe
real, ngrep, tcpreplay, logsorter, ethereape, and many, many more. (For a compre
hensive list of Pcap-aware tools, visit Bill Stearns’s excellent site at
www.stearns.org/doc/pcap-apps.html.) Snort’s Unified binary format can be read
by only a few tools, namely Barnyard, Mudpit, and Cerebus.

Providing the ability to view actual packet data is one of Snort’s strong
points. In many commercial solutions, the ability to view the packets that caused
the alerts to fire is not available. As a result, you can’t tell why the IDS made a
mistake when it inevitably happens.

OINK!
Just in case you have any doubt, it is essential to have the packets per
form effective intrusion analysis. Unless you trust your IDS to never ever
produce false positives (and no matter what the vendors say, all IDSs
produce false positives or negatives), you need to have the packets look
at when you’re trying to figure out, whether the alert you are seeing is
really something horrible or whether it is just the IDS making a mistake.

Anyone who says you don’t need the packets hasn’t done intrusion
analysis professionally or is a vendor trying to convince you that it’s okay
that the vendor’s product is missing an essential feature.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 383

Dealing with the Data • Chapter 8 383

Examine the Rule
One of the most important changes that Snort brought to the intrusion detec
tion community is the ability to examine the rule that triggered the alert.You
can now analyze the quality of the rule and take the rule into consideration
when analyzing packet data. Using the rule, you can now view the packet from
Snort’s perspective.

Take the rule that triggered the rpc statd alert:

rpc.rules:alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"RPC STATD UDP

stat mon_name format string exploit attempt"; content:"|00 01 86 B8|";

offset:12; depth:4; content:"|00 00 00 01|"; distance:4; within:4;

byte_jump:4,4,relative,align; byte_jump:4,4,relative,align;

byte_test:4,>,100,0,relative; reference:cve,CVE-2000-0666;

reference:bugtraq,1480; classtype:attempted-admin; content:"|00 00 00 00|";

offset:4; depth:4; sid:1913; rev:8;)

The first thing we note is that this rule is looking for very specific content,
and it does multiple content checks.This gives us the impression that this rule
might have a low rate of false positives.The next thing of interest is the revision
number.The fact that this rule has been revised eight times indicates that either
the vulnerability or the exploits are changing or that multiple attempts to tune
this rule have failed.

Validate the Traffic
The first thing that you need to do to validate the traffic is to compare it to pro
tocol specs.The first place to go for information about a specific protocol is the
Request for Comments (RFC). RFCs are hosted on many sites on the Internet,
including www.ietf.org/rfc.html, www.rfc-editor.org/, and our favorite,
www.networksorcery.com/enp/default0601.htm.

When you’re identifying the target of the attacks, don’t stop at the IP address.
Find out what that host is, what OS is it running, who is responsible for it, and
how critical is it to your organization.

Identify the source of the attack. Determine whether the address could be
spoofed. Is the attack a content-driven exploit that uses TCP as its transport
mechanism? If so, the probability of the address being spoofed is very low.

Attack Mechanism
You need to find out how the attack works, what services it exploits, and
whether you are vulnerable to the attack. Much of this legwork can be done

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 384

384 Chapter 8 • Dealing with the Data

using everyone’s favorite tool, Google. Check vulnerability information sites, such
as Security Focus and Cert.Then follow up with a quick look at Packet Storm
and K-Otik to see if there are any public exploits for this attack. If there are
easy-to-use, publicly available scripts and this is a high-priority incident, your
turnaround time for analysis and defensive recommendation must be very quick.
If the attacker can successfully bypass your network countermeasures and attack
critical machines, you must act quickly to mitigate the overall risk to your com
pany (and possibly your job).

Exploring the attack mechanism further, try to determine what telltale signs
we can use to differentiate between a successful attack and a failed one.This
information can also be used to tighten or tune the rules used to detect the
attack on the network.

Intrusion Data Correlation
Intrusion data correlation is a subject shrouded in myth and protected by the high
priests of network security. In reality, we can explore simple methods of correla
tion to achieve good data visibility and coverage without going to the extreme
depths of data correlation.

The principle concept of intrusion correlation is to find additional data
points connected to the incident you are currently investigating that allow you to
increase your confidence that the incident is real or false. (It doesn’t matter
which it turns out to be; correlation is about increasing your confidence in that
conclusion.) This data can come from hundreds of potential sources and can be
manipulated in hundreds if not thousands of ways.

The main points of intrusion correlation are:

■	 Time Were there any other successful and/or similar attacks within a
threshold of time?

■	 Source Was this the only event associated with this IP address? Can
you find any additional hits with this source address in your firewall or
Web server logs?

■	 Target Was this the only target address to receive this event type over
the last few hours or days?

■	 Event type over threshold of time Have you noticed any rise or fall
in trends related to this particular event type that would suggest a
mounting risk to your organization? Could this be a precursor to a new
worm?

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 385

Dealing with the Data • Chapter 8 385

■	 Ancillary logs Do any system, application, firewall, or router logs
relate to this incident? Was the attacker scoping out your site for days,
looking for a way in? Or is this just an automated attack?

Any supporting evidence will help the investigation of the incident.
Remember, however, that analysis and investigations take time.Track the time it
takes to fully investigate an incident.This will help you if you ever decide to
prosecute the attacker, as well as helping you better manage your incident-han-
dling process. Be aware that business managers will begin to analyze the time you
spend investigating events, and determine which incidents deserve attention
based on how much it will cost the organization.

OINK!
Correlation data can come from many places. However, not all sources
are equal. An alert from a firewall telling you that an attempt to connect
to port 80 (HTTP) was denied is not as good as an IDS alert telling you
that someone connected to your Web server on port 80 and tried a spe
cific attack, or a log entry from your Web server showing you the exact
string that it received from the attacker. That said, the lower-value data
is still very useful for correlation. Some of the places you can find data
for correlation are application logs, OS logs, firewalls, switches, routers,
and DHCP logs.

Following Up on the Analysis Results
Incident reports are filled out. Abuse e-mails are sent, with copies to your opera
tions group.You must now evaluate the overall risk to your organization as well
as make defensive recommendations so that this situation doesn’t reoccur.

To estimate the impact of this incident on your organization, take into consid
eration the criticality of the target to your organization. Is it a core router, a main
frame with all your proprietary research, a database with all your customer credit
card information? Or is the target a workstation or other low-priority devices?

Extrapolate the potential risk this incident could pose to your organization
and if possible tack on a dollar amount. Managers live in a world of dollars and
cents. If we can show them that by dealing with the incident and mitigating
future risk to the organization, we will save the company thousands of dollars,
they just might listen.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 386

386 Chapter 8 • Dealing with the Data

Perhaps the most important part of the analysis process is to provide defensive
recommendations to mitigate the future risk to your organization.This is impor
tant from a security life-cycle perspective, as is taking a proactive stance in
defending your organization’s information assets.

Intrusion Analysis Tools
“Water, water everywhere, nor any drop to drink.”This famous line from poet
Samuel Taylor Coleridge’s “The Rime of the Ancient Mariner” gives us the per
fect analogy for one of today’s network dilemmas: We have way too much data.
We have instrumented the heck out of our networks—now how do we make
sense of it all?

Packet logs, system and application logs, IDS logs, and data correlation are all
parts of this twisty little maze we call intrusion analysis. Although a plethora of
commercial tools is available, we will delve into many of the excellent free tools
for applying our intrusion analysis skills.These free but powerful tools give
everyone the power to effectively analyze data in search of intrusions and misuse.

Database Front Ends
Our foray into data analysis tools begins with database front ends.These intuitive
graphical front ends to databases give the analyst the power and speed to comb
through hundreds of thousands of records, if not more. Smaller networks might
enjoy the simplicity of “grepping” through their intrusion logs, but medium-sized
and large enterprises need to rely on the structure of a well-maintained database.
ACID and SGUIL are the best of their breed when it comes to open source
analysis tools. In the next sections we discuss installing, using, and maintaining
these powerful tools.

ACID

Analysis Console for Intrusion Databases (ACID) is a tool for data browsing and
analyzing. ACID is basically a set of PHP scripts that provide the interface
between a Web browser and the database where Snort data is stored.This tool
has been in development for about three years at the time of this writing, but it
is still described as a beta release. ACID has grown into a very powerful consoli
dation and analysis tool.

ACID is maintained as part of a larger project called AirCERT
(www.cert.org/kb/aircert/) by its creator, Roman Danyliw. At the time of

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 387

Dealing with the Data • Chapter 8 387

writing, the current version of ACID is 0.9.6b23. Originally designed solely for
processing Snort data, ACID is now independent of the Snort database structure
and can work with various data produced by various other engines (provided
that the data is imported into ACID database in some way)—for example, Linux
IP filter firewall or Cisco access list-related messages. A script logsnorter is included
in the ACID distribution and is designed to import logs with alerts from these
engines into Snort databases, so this data becomes available to ACID, too.

At this time, ACID provides the following features:

■	 An interface for database searching and query building. Searches can be
performed by network-specific parameters such as attacker’s IP address,
by meta parameters such as time or date of an event, or by triggered
rule.

■	 A packet browser that can decode and display Layer 3 and Layer 4 infor
mation from logged packets.

■	 Data management capabilities, including grouping of alerts (so that it is
possible to group all events related to an intrusion incident), alert dele
tion, or archiving and exporting to e-mail messages.

■	 Generation of various graphical charts and statistics based on specified
parameters.

The rest of this section describes the installation of ACID and its prerequi
sites, Snort configuration, and the ways in which ACID can be used for intrusion
detection and analysis.You can download ACID from www.cert.org/kb/acid or
install it from the accompanying CD-ROM.

Installing ACID
The structure of ACID is multitiered and scalable.You can use it on just one
computer, or you can have an architecture of up to three tiers. Figure 8.1 shows
logical parts of the system.

OINK

ACID is included on the accompanying CD-ROM.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 388

388 Chapter 8 • Dealing with the Data

Figure 8.1 Multitiered Architecture of an IDS and ACID Console

Snort Sensor

Snort Sensor

MySQL Database

Sniffed networks

Web Server/ACID

Web browser Web browser Web browser

As you can see, ACID works with alerts stored in a database by sensors. A set
of PHP scripts is used for creating queries and browsing the results. Currently,
ACID officially supports PostgreSQL and MySQL, but it is possible to modify it
to work with other SQL-based DBMS supported by PHP.You can use any Web
server as long as it supports PHP4 (although you might run into difficulties with
the optional graphing functionality of ACID because the libraries it uses are
mainly designed for Linux and Apache).

OINK!
As we have said many times in this book, the OS is up to you. Use the
OS that you are most comfortable with, just don’t forget to harden it.
There are few things more embarrassing than finding out that one of
your security systems has been compromised. Take time to make sure
your ACID database and Web servers aren’t going to be compromised.

Prerequisites for Installing ACID
Let’s assume that a Web server and a database are installed on the same host.Your
Snort sensor is probably located on another machine, although it is not important
to us—ACID does not work directly with the sensor, only with database data. If

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 389

Dealing with the Data • Chapter 8 389

you would like to separate a Web server (front end) from the database (back end),
almost nothing changes in the ACID configuration—only some IP addresses in
configuration files. It is even possible to have many Web servers working with one
database. Moreover, of course, the number of Web clients is not limited even for
one Web server.

Operating System on ACID Host
In this section, we mainly use Linux—Red Hat 8.0 or higher.The operating
system used is not overly crucial; all the ACID components can be installed (with
minimal modifications) on any UNIX operating systems or even Microsoft
Windows (although the latter requires more tweaking). If you plan to use the
ACID host only as a server, you can install a minimal set of packages—the only
crucial parts are networking and software development tools. If you also want to
use a graphical Web browser on the same host (for testing purposes, for
example), you need to install X-Windows related packages, too (including
Gnome or KDE, K Desktop Environment) and the browser itself. Actual selec
tion of packages depends on your choice—it is easy to add any missing depen
dencies when they’re needed.

When Size Matters
As we already noted, running Snort on a busy network can produce a sig
nificant number of alerts. With a standard set of rules, it can generate
tens of megabytes of data per day on a network with just a couple of busy

for logging all more or less interesting data to store as a reference for
future investigations. This data can quickly fill a hard drive.

If you have only one partition (on Linux)—root—that holds the entire
file system, filling it up might cause the machine to stop functioning. It is
considered good practice to separate the log and database partitions
from the / (root) and /boot partitions. In the case of Red Hat and most
Linux distributions, one way to separate logs and databases from the root
partition is to create a separate large partition for the /var directory—all

We will set an IP address 10.1.1.30 for our ACID server.

Tools & Traps…

Web sites. In addition, nothing stops you from writing configuration files

MySQL data and various logs are usually stored under this directory entry.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 390

390 Chapter 8 • Dealing with the Data

The Web Server
We will use the Apache 1.3 Web server on Linux because it is a native environ
ment for ACID.You can either download it from www.apache.org and compile
manually or use a package that comes with the Red Hat distribution. For
example, to install Apache from an RPM package, use the following (x-x here is
a minor version number, which may vary):

rpm -ivh apache-1.3.x-x.i386.rpm

chkconfig —level 2345 httpd on

/etc/rc.d/init.d/httpd start

These commands install the package, add an httpd daemon to the set of dae
mons automatically started on run levels 2 to 5, and start the Web server. In Red
Hat distributions it is assumed that the Web site root is located in
/var/www/html directory on the host.

PHP
ACID scripts are written in PHP language, so naturally we need to add PHP4 sup
port to our Web server.There are many different ways to set it up. For example, it
can be set up as an Apache module or run as an external CGI application.The
important features for us are:

■	 Database support MySQL or PostgreSQL. We use MySQL

throughout this section.

■	 GD support This is a graphing library used for producing graphs.

■	 Socket support This is used only for performing native whois queries.

You can either build PHP from source or use Red Hat packages. When
building from source, you need to use at least the following options in PHP
configuration:

./configure [your config options] --with-mysql --with-gd --enable-sockets

For MySQL support:

./configure [your config options] --with-pgsql --with-gd --enable-sockets

For PostgreSQL support, an option with-apache makes PHP work as an Apache
Web server module, which speeds script execution significantly. If you do not want
to deal with compiling the source, it is possible to use Red Hat packages that are
already included in the distribution.Their names vary from distribution to

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 391

Dealing with the Data • Chapter 8 391

distribution. In Red Hat 7.2, a package for PHP is called php-4.0.6-7.rpm, and
MySQL support for PHP is provided via the php-mysql-4.0.6-7.rpm package.
They are installed as follows:

#rpm –ivh php-4.0.6-7.rpm php-mysql-4.0.6-7.rpm

After installation, it is recommended that you modify a configuration file
/etc/php.ini as follows:

1.	 Disable display of inline PHP error messages in generated HTML files
by setting display_errors=off in production environment or at least set
error_reporting = E_ALL & ~E_NOTICE, which will limit the number
of reported error messages.

2.	 Configure SMTP on the server. On Windows you need to set the
SMTP variable to the path of your SMTP server executable module. On
UNIX, set the sendmail_path to the path of the sendmail executable (for
example, sendmail_path=/usr/sbin/sendmail).

3.	 On Windows platforms you also need to set the session.save_path’variable
to a temporary directory writable by the Web server (for example,
c:\temp). Windows-related configuration and installation issues are doc
umented at www.php.net/manual/en/install-windows.php.

Support Libraries
The following libraries need to be installed. Not all of them are critical for ACID
functionality.The only important one is ADODB; others can be omitted if you
are ready to sacrifice graphing features of ACID.

We already mentioned the GD library.This library for raw image manipula
tion supports GIF/JPEG/PNG formats. It is available at www.boutell.com/gd.
The minimum version that can be used with ACID is 1.8. Red Hat, again, pro
vides an RPM package with this library—in 7.2, it is called gd-1.8.4-4.rpm. GD
depends on some other libraries (usually installed as a part of system setup, but
just in case we list them here):

■	 libpng, available at www.libpng.org/pub/png

■	 libjpeg-6b, available at www.ijg.org

■	 zlib, available at www.gzip.org/zlib

Another set of scripts (it is called a library too, but it is not a binary code dis
tribution, only PHP scripts) provides an interface from PHP to GD.This is a

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 392

392 Chapter 8 • Dealing with the Data

PHPlot library, which can be downloaded from www.phplot.com.The distribu
tion simply needs to be unpacked to a directory where PHP can access the
scripts, usually something like /var/www/html/phplot:

$ cp phplot-4.4.6.tar.gz /var/www/html

$ cd /var/www/html

$ tar xvfz phplot-4.4.6.tar.gz

$ mv phplot-4.4.6 phplot

Beginning with version v.0.9.6b22, ACID uses another graphing library—
JPGraph instead of PHPlot. It is available from www.aditus.nu/jpgraph and can
be installed in the same way:

$ cp jpgraph1.8.tar.gz /var/www/html

$ cd /var/www/html

$ tar xvfz jpgraph1.8.tar.gz

$ mv jpgraph1.8/src jpgraph

You can check to see if the PHPlot library was successfully installed by trying
to view an /phplot/examples/test_setup.php URL on your Web server. If the
installation was successful, you will see something similar to Figure 8.2.

Figure 8.2 PHPlot Successfully Installed on a Web Server

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 393

Dealing with the Data • Chapter 8 393

Production, figure taken from first edition Finally, you need to install
ADODB, an abstraction layer for PHP interaction with the database.This library
is available at http://php.weblogs.com/adodb and is installed in the same way as
previously described:

$ cp adodb122.tgz /var/www/html

$ cd /var/www/html

$ tar xvfz adodb122.tgz

$ mv adodb122 adodb

MySQL or PostgreSQL
The underlying database probably is already installed; you simply need to follow
general recommendations for setting up database logging with Snort. If it is not
installed, you can use the packages from your Linux distribution or download
them from www.mysql.com.The setup of database logging is described in
Chapter 7, “Understanding the Output Options,” in the section about Snortdb.
We assume that Snort is set up to log in to MySQL database called snort_db,
which is located on the same host as the Web server.The MySQL user used for
logging is snort, and the password is password.You can use other values; just make
sure that you set up proper permissions for database users.The Snort configura
tion file snort.conf must have the following line to log in to our database:

output database: log, mysql, user=snort password=password dbname=snort_db

host=10.1.1.30

Database tables need to be set up properly. A script create_mysql is included in
the Snort distribution (in /contrib subdirectory, also there is one for PostgreSQL
setup); when run, this script creates all necessary tables. Scripts can also be down
loaded from http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/snort/snort/con-
trib/.The script can be run as follows:

mysqladmin –u root –p create snort_db

mysql –u root -p

mysql> connect snort_db

mysql> source create_mysql

Next, create two users (snort for allowing the Snort sensor to log in to
database and acid for the ACID console to manipulate the data in the same
database) and set passwords for them.You can (and should) omit the DELETE
privilege here so the corresponding user will not be able to delete records from

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 394

394 Chapter 8 • Dealing with the Data

the database. For example, you can create a copy of the ACID console that will
work under the user account that can browse events but not delete them.

mysql>grant INSERT, SELECT on snort_db.* to snort;

mysql>grant INSERT, SELECT on snort_db.* to snort@%;

mysql>grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to acid;

mysql>grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to acid@%;

Finally, set passwords for these users:

mysql>connect mysql

mysql> set password for 'snort'@'localhost' = password('password');

mysql> set password for 'snort'@'%' = password('password');

mysql> set password for 'acid'@'localhost' = password('acidpassword');

mysql> set password for 'acid'@'%' = password('acidpassword');

mysql> flush privileges;

mysql> exit

Note that without the flush privileges command, no changes in password and
privilege settings will become effective.

Activating ACID
ACID installation is also simple.You need to pack the set of scripts in a location
under the Web server root directory, for example:

$ cp acid-0.9.6.tar.gz /var/www/html

$ cd /var/www/html

$ tar xvfz acid-0.9.6.tar.gz

It is also possible to install several copies of ACID under different locations
and configure them for working with other databases, other database users/pass-
words, protect access to those directories with different Web server passwords,
and so forth.These copies will be entirely independent.

Now that we are finished installing packages, let’s proceed to ACID
configuration.

Configuring ACID
First we need to set up some parameters for ACID to work with the database.
The main configuration file for ACID is an acid_conf.php file located in the
ACID directory on a Web server.Table 8.1 lists the most important parameters.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 395

Dealing with the Data • Chapter 8 395

Table 8.1 ACID Database Configuration Parameters

$DBlib_path

$Dbtype
$alert_dbname
$alert_host
$alert_port

$alert_user
$alert_password

Full path to the ADODB installation (Note: Do
not include a trailing \ character in any of the
path variables)

Type of the database used (mysql, postgres)
Alert database name
Alert database server
Port on which MySQL or PostgreSQL server is lis
tening (no need to change it if the default port
is used)
Username for the alert database
Password for the username

In our case, they are configured as follows:

$DBlib_path = "/var/www/html/adodb"

$DBtype = "mysql"

$alert_dbname = "snort_db"

$alert_host ="10.1.1.30"

$alert_user ="acid"

$alert_password ="acidpassword"

Another set of database parameters can be used for archiving alerts (moving
them from the active database to a backup one):

■	 $archive_dbname Archive/backup database name

■	 $archive_host Archive database server

■	 $archive_port Port number for archive database server

■	 $archive_user Username for archive database

■	 $archive_password Password for this username

They are similar to the previous ones.The following parameters might need
to be set up:

■	 $ChartLib_path This creates a full path to the PHPlot install (/in our
case, var/www/phplot).

■	 $chart_file_format The file format options are gif, png, or jpeg. We will
use png.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 396

396 Chapter 8 • Dealing with the Data

■	 $portscan_file This creates a full path to a Snort portscan log file.This
allows processing of portscan data generated by Snort portscan prepro
cessor. Usually this data is not logged to a database.

It is always a good idea to protect access to the ACID pages with a Web
server password. As an example, we will require a username admin and password
adminpassword from a user trying to access the location /acid on a Web server via
the Web browser:

mkdir /usr/lib/apache/passwords

htpasswd -c /usr/lib/apache/passwords/.htpasswd admin

(enter "adminpassword" at the prompt)

Then the following lines need to be added to the httpd.conf file—a configu
ration file for the httpd daemon. In Red Hat, this file is located in the
/etc/httpd/conf directory.

<Directory "/var/www/html/acid">

AuthType Basic

AuthName "ACID console"

AuthUserFile /usr/lib/apache/passwords/.htpasswd

Require user admin

AllowOverride None

</Directory>

After making these changes, you need to restart the httpd daemon:

/etc/init.d/httpd restart

Now we are ready to connect to the console for the first time. Accessing the
URL http://10.1.1.30/acid first brings up a request for a password, and then the
page shown in Figure 8.3 appears.

Figure 8.3 Initial Setup for ACID-Specific Tables

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 397

Dealing with the Data • Chapter 8 397

Production, figure taken from first edition This means that there are some
tables missing. ACID adds extra tables to the database. Clicking the link Setup
page runs a script that updates the database with the required tables (see
Figure 8.4).

Figure 8.4 Setting Up ACID Tables

After clicking the Create ACID AG button, we are ready to start using
ACID.

Damage & Defense…

ACID Security
As you probably noticed, no security features are embedded in ACID itself;
therefore, to ensure security of its setup, you need to do additional

TLS instead of plaintext communications between the browser and the

As you have previously seen, access to the ACID console can be

words or certificates. As was also previously mentioned, it might be useful

tweaking. Your requirements will determine which tools you will use.
For one, you might be interested in using SSL (HTTPS connections) or

server. In Apache, this is achieved using the mod_ssl module
(www.modssl.org).

restricted using native Web server authentication mechanisms—pass-

Continued

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 398

398 Chapter 8 • Dealing with the Data

to create at least two separate copies of ACID and configure one of them

copy of ACID, simply revoke the DELETE privilege from the database user

The most important security issue is that all database passwords are
hardcoded in the PHP scripts in cleartext, so extreme caution needs to be
applied to the host configuration. Any exposure of source code for PHP

with only read database permissions. To restrict permissions for a specific

configured in this copy.

scripts will expose the password to an attacker.

Using ACID
Using ACID is rather simple. Its screens are self-explanatory most of the time.
Let’s look at the main screen (see Figure 8.5).

Figure 8.5 The ACID Main Screen

This screen shows the general statistics for ACID; namely, the number of
alerts divided by protocol, the counts of source and destination ports for trig
gered rules, and so forth. Clicking a link provides additional details about the
particular category. Figure 8.6 provides an example listing of all the unique alerts
(alerts grouped by the triggered rule).

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 399

Dealing with the Data • Chapter 8 399

Figure 8.6 Unique Alerts

Each line (alert) has several clickable fields; the most interesting of these are
probably the classification field and the references to various attack databases
links (for example, Arachnids or CVE).This data is taken from rules when Snort
logs an alert to the database. If you click the cve link in the line that has such a
link in the Signature field, you will be taken to the description of this attack in
CVE (a database of vulnerabilities).The Snort link leads to the similar description
on the www.snort.org site. Classification helps group attacks by their type, which
is also set up in the Snort rules file.

Each individual logged packet can be displayed in a decoded format, showing
various flags, options, and packet contents (see Figure 8.7).

Figure 8.7 Displaying a Single Alert

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 400

400 Chapter 8 • Dealing with the Data

The unique alert display can be used for checking any “noisy” signatures and
tuning them.You can sort the listing in ascending or descending order of number
of alerts and then select the ones that are triggered more often. Sorting is done
by clicking a corresponding arrow (> or <) in the header of the relevant column
(refer back to Figure 8.7).

Querying the Database
One of the most important features of ACID is its searching tools. It is possible
to create database queries with many parameters—from signature type to packet
payload contents (provided that this information has been logged in the
database).The main search screen is shown in Figure 8.8.

Figure 8.8 Search Parameters

As you can see, in the Meta Criteria section, you can specify different Snort
sensors (in a case where you have many sensors storing data in the same
database), search in a specific alert group only (more about alert groups in the
next section), and match signatures (exactly or by a substring in their names),
classification, and time periods. It is also possible to search only for packets with
specific Layer 3 and Layer 4 information, plus perform a context search inside
captured packets’ payload. For example, let’s find all alerts triggered by signatures
related to Nmap scanner.This can be achieved by specifying the signature field in
meta criteria as roughly = NMAP and clicking the Query DB button.The result
of this query is shown in Figure 8.9.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 401

Dealing with the Data • Chapter 8 401

Figure 8.9 All NMAP-Related Alerts from the Database

In the bottom-left corner is an action field, which specifies possible actions that
you can perform with the results of the query.The displayed alerts can be added to
an alert group, deleted from the database, e-mailed in various formats, or archived
to another database.The three buttons on the right specify which alerts are used
when the selected action is performed. If you click the Selected button, only
specifically selected alerts from all displayed will be used (the leftmost column of
the table contains check boxes for row selection). If you click the ALL on Screen
button, all displayed alerts are used, and clicking the Entire Query button uses the
entire set of results.The difference between ALL on Screen and Entire Query is
that when many results are returned, they are displayed in sets of 50 (by default, a
figure that can be changed in the acid_conf.php file).

The Email alerts action takes as a parameter an address where the results
should be sent.This address is entered in a provided field.The Add to AG action
also takes a parameter—an alert group name or number. Other actions do not
need parameters.

Actually, almost all the buttons on the front page of the ACID console are
simply shortcuts for various queries that could be constructed via the main
search interface.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 402

402 Chapter 8 • Dealing with the Data

Alert Groups
Alert groups are entities used to logically group various alerts and attach annota
tions to sets of events (incidents). An alert group has a number, a text name, and an
optional annotation or commentary. For example, if you are researching a particular
intrusion incident, you might be interested in putting all the related alerts into one
group so that you will be able to reference it in running queries, e-mailing results,
and so forth.To do the grouping, you need to create the group first. When you
click the link Alert Group (AG) Maintenance at the bottom of the ACID main
screen, you are presented with the window shown in Figure 8.10.

Figure 8.10 Listing of Alert Groups

In our example, we are using the ID of 1 and the name first group.To create
another group, click the Create link at the top of this page.You will be asked to
enter the name for the new group and an optional description. For our example,
we used grinder incident as the name of the new group.The group ID is generated
automatically. When this information is saved, the list of groups appears similar to
the window shown in Figure 8.11.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 403

Dealing with the Data • Chapter 8 403

Figure 8.11 Creating a New Group

Now we can run a query (for example, let’s search for all SNMP-related
alerts) and add the results to Group 2. When presented with the query results,
select an action Add to AG (by ID) and enter 2 as an ID. Alternatively, you can
use ADD to AG (by Name) and enter the name given to our group. After you
click Entire Query, all search results will be added to the specified group.
Figure 8.12 shows how the parameters are entered in the Query Results screen,
and Figure 8.13 displays the resulting listing of the groups.

Figure 8.12 Adding Search Results to an Alert Group

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 404

404 Chapter 8 • Dealing with the Data

Figure 8.13 Result of Alert Grouping

Each group can be modified:

■	 The Edit link presents you with the screen for modifying the group’s
name and description.

■	 The Delete link deletes the group. It does not delete the alerts, only the
group as a logical entity.

■	 The Clear link clears a group’s contents by ungrouping all alerts from it;
it does not delete the alerts from the database.

Database maintenance is described in the section “Managing Alert Databases”
later in this chapter.

OINK

An alert can be part of multiple groups simultaneously.

Graphical Features of ACID
ACID has a tool that can produce a graphical summary of alerts based on date
periods, alert group membership, source and destination ports, and IP addresses.
An interface for the graph generation is shown in Figure 8.14.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 405

Dealing with the Data • Chapter 8 405

Figure 8.14 Alert Graphing

Many of the features within the graph parameters are relatively self-
explanatory:

■	 The Chart Type parameter allows for the selection of a specific type of
graph to be generated.

■	 The Data Source parameter allows limiting alerts by date, specified by the
Chart Begin and Chart End parameters, and by alert group. If you select
an alert group in this drop-down box, only alerts from this group will
be used as a source dataset.

Another interesting feature is the Chart Period parameter. If nothing is
selected here, the X axis will list either all dates or all ports/Ips, depending on
the chart type. If you select a period such as a week or a day, all alerts are
grouped by day of the week or hour of the day.This allows creation of statistics
such as daily distribution of alerts depending on a day of the week or time of
day.Try it, and you will see that most attacks usually happen during the night
and/or on weekends (at least the script kiddies’ attacks, which amount to the
biggest part of intrusion traffic). Figure 8.15 shows a sample ACID chart.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 406

406 Chapter 8 • Dealing with the Data

Figure 8.15 A Sample ACID Chart

Managing Alert Databases
The database of alerts produced by Snort sensors grows with time. If a significant
number of alerts are logged, the database will become quite large, resulting in
slow searches.To keep the alert database to a manageable size, you can use a
variety of methods.

The simplest management technique is referred to as trimming. Simply put,
trimming translates to deleting the uninteresting and older alerts triggered by
false positives. If you want to delete an alert or a set of alerts, run a query that
includes the alert as one of the results, choose the Delete Alerts action in the
Results screen, and press the corresponding button:

■ Click Selected if you want to delete only part of alerts displayed.

■ Click All on Screen to delete all displayed alerts.

■ Click Entire Query to delete all results of the current query.

Another management technique is archiving. Archiving is the process by
which you move the undesired alerts to another database.To use this feature, you
need to create a second database in exactly the same way that the main one was
created.This is accomplished using the create_mysql or create_postgresql scripts (for
information on how to use these scripts, review the section “Installing ACID
Prerequisites” in this chapter). Let’s assume that this database is called

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 407

Dealing with the Data • Chapter 8 407

snort_archive. After that, you need to specify parameters of this database in
acid_conf.php file; for example:

$archive_dbname = "snort_db"

$archive_host ="10.1.1.30"

$archive_user ="acid"

$archive_password ="acidpassword"

Now after running a query it is possible to select an action Archive alerts
(move) or Archive alerts (copy). After one of the buttons Selected, ALL on
Screen, or Entire Query is pressed, corresponding alerts are moved (or copied)
in the archive database. Figure 8.16 shows the successful results of copying.You
can set up a second copy of ACID in another Web server directory and specify
this archive database as active for this copy. After that, you will be able to browse
the archive as well.

Figure 8.16 Successful Copying of One Alert to the Archive Database

To sum up, ACID is currently the most mature open source GUI tool for
interactive Snort event analysis, but SGUIL is catching up fast.

SGUIL

SGUIL is a lean, mean, Snort analysis machine. Designed from the analysts per
spective, Snort GUI for Lamers, or SGUIL for short, delivers a powerful front
end to a Snort alert database.The motto of the project, “By Analysts, For
Analysts,” says it all.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 408

408 Chapter 8 • Dealing with the Data

As we see in Figure 8.17, SGUIL has three individual components:

■ A set of scripts to run on your sensor

■ A GUI server

■ The SGUIL client

Figure 8.17 Sample SGUIL Setup with Two Snort Sensors Monitoring
Separate Networks

Snort_1

Snort_0

Net_1

Sguil.tk GUI clients

Sguild

Net_0

server

They can all run on the same machine, but we highly discourage this prac
tice. A sensor should dedicate most of its resources to what it is designed to do:
detect attacks. If you were to load additional tasks and overhead on your sensor,
you would miss attacks.The old adage “How many false negatives do you see a
day?” comes to mind.

The sensor scripts log_packets.sh and sensor_agent.tcl are designed to manage
the collection of Snort packet logs. In their default configuration, these scripts
will cause Snort to log packets, so be sure to have plenty of disk space.

The GUI server allows for multiple client GUIs to interact with the IDS data
at the same time.The main component, Sguild, listens on TCP 7734 and can be
SSL enabled.This split architecture allows for a central data repository, with quick
access to data, while the client handles the display of the data.

The final piece of the puzzle and the one you will be spending the most
time in front of is the client. Written in tk, the interface is simple, fast, and pow
erful. Events are displayed in near real time, organized and categorized, and can

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 409

Dealing with the Data • Chapter 8 409

be purged or escalated directly from the main screen. Event and packet queries
can be built from the query builder, and either reports can be sent to your inci-
dent-handling team or as abuse e-mail to the offending ISP.

Installing SGUIL
The install process for SGUIL is a lengthy one, but it is well documented and far
from complex.The steps that we will follow during the install are:

1. Create the SGUIL database.

2. Install Sguild, the SGUIL server.

3. Install a SGUIL client.

4. Install the Sensor scripts.

5. Install Xscriptd.

For this installation, we assume that you already have a UNIX machine with
MySQL installed (refer to the section on installing ACID and the documentation
at: http://mysql.com).

Step 1: Create the SGUIL Database
First we set a password for root, because by default MySQL has no password set
for the root user:

setup root password for all databases

mysql> UPDATE user SET Password=PASSWORD('rootpasswd') WHERE user='root';

Query OK, 2 rows affected (0.01 sec)

Rows matched: 2 Changed: 2 Warnings: 0

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

Our next step is to create the SGUIL database and grant INSERT and
SELECT privileges to the user sguil:

mysql> GRANT ALL PRIVILEGES ON squildb.* TO sguil@localhost IDENTIFIED BY

'sguilf00' WITH GRANT OPTION;

Query OK, 0 rows affected (0.01 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 410

410 Chapter 8 • Dealing with the Data

Now we create the tables and set up the database to receive Snort logs:

mysql> -u squil –p –D squildb <

./squil_directory/server/sql_scripts/create_squildb.sql

Check the results of the schema creation, with the show tables command:

mysql> use sguildb;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> show tables;

+-------------------+

| Tables_in_sguildb |

+-------------------+

| data |

| event |

| history |

| icmphdr |

| portscan |

| sensor |

| sessions |

| status |

| tcphdr |

| udphdr |

| user_info |

| version |

+-------------------+

12 rows in set (0.01 sec)

Our database is now ready to receive events. Once the sensor and server are
installed, we can test this to ensure that all our components can communicate.
The server code, Sguild, will recheck the database schema and connection each
time it starts and can be used to recreate the schema if the database is corrupted.

Step 2: Installing Sguild, the Server
In this next step, we install the server script sguild and its dependencies.The first
thing we need to check is to see if we have tcl installed. Bamm, the author of

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 411

Dealing with the Data • Chapter 8 411

SGUIL, recommends having version tcl-8.3 or later.Tcl is usually installed with
its version number appended to the shell command. For instance, on SuSE 8.2,
the installed tclsh is tclsh8.4. It is symlinked to tclsh. If you don’t have a tcl inter
preter, install one from your distributions packages, and then continue from here.

We first add a user sguil because we don’t want to run these programs as root:

useradd sguil

passwd sguil

Create a directory /etc/sguild, and copy sguild.users, sguild.conf, sguild.queries,
and autocat.conf into it:

mkdir /etc/sguild

cp sguild.users sguild.conf sguild.queries autocat.conf /etc/sguild/

Sguild requires the following two tcl tools:

■	 tclx, the extended libs for tcl.Tclx is installed along with tcl on a
number of platforms, but if you need to install it, you can find it at
http://tclx.sourceforge.net.

■	 mysqltcl, which as you guessed provides mysql support. Grab a copy of
mysqltcl from www.xdobry.de/mysqltcl/.

Once Sguild is installed, test to see that the install worked by initiating the
tclsh interpreter, and then checking to see if mysqltcl and Tclx are installed:

tclsh

% package require mysqltcl

% package require Tclx

%

If it seems like nothing happened and you got no error messages, your install
worked! If you got errors, debug them according to the documentation provided
with the tools. Our next step is to configure sguild.conf.

The main item to configure in sguild.conf is your path to the rules files for
your sensors. Sguild uses this path to look up the Snort rule based on the SID for
the alert. Keep in mind that this means that you need a copy of the ruleset you
are using on your sensors to avoid getting confused with missing Snort rules.

Set up the appropriate environment variables in sguild.conf:

Set RULESDIR /snort_data/rules/

Set EMAIL_FROM "IDS Admin Name, BOFH"

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 412

412 Chapter 8 • Dealing with the Data

Set EMAIL_RCPT_TO securityteam@yourdomain.com

To add members of your analysis team to sguil users, use the command:

sguild –adduser <username>

Sguild is now ready to be started.

OINK!
If you did not properly create the database schema in Step 1, Squild will
do this now.

./sguild

Error: mysqluse/db server: Unknown database 'sguildb'

The database sguildb does not exist. Create it ([y]/n)?:

Path to create_sguildb.sql [./sql_scripts/create_sguildb.sql]:

Creating the DB sguildb...Okay.

Creating the structure for sguildb:

..

..

..............................Done.

Querying DB for archived events...

SELECT event.status, event.priority, event.class, sensor.hostname,

event.timestamp, event.sid, event.cid, event.signature,

INET_NTOA(event.src_ip), INET_NTOA(event.dst_ip), event.ip_proto,

event.src_port, event.dst_port FROM event, sensor WHERE

event.sid=sensor.sid AND event.status=0 ORDER BY event.timestamp ASC

Querying DB for escalated events...

SELECT event.status, event.priority, event.class, sensor.hostname,

event.timestamp, event.sid, event.cid, event.signature,

INET_NTOA(event.src_ip), INET_NTOA(event.dst_ip), event.ip_proto,

event.src_port, event.dst_port FROM event, sensor WHERE

event.sid=sensor.sid AND event.status=2 ORDER BY event.timestamp ASC

Retrieving DB info...

Sguild Initialized.

SGUIL is now ready to receive Snort data and process requests from SGUIL
clients.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 413

Dealing with the Data • Chapter 8 413

Step 3: Install a SGUIL Client
Sguil.tk was writing in tcl/tk, allowing the client portion to run on many plat-
forms.There is even documentation online detailing how to get sguil.tk running
on a Windows 2000 machine. We are going to continue down the UNIX path,
installing sguil.tk on our IDS analysis station.

Sguil.tk is the script that runs the SGUIL client. When run, sguil.tk reads
sguil.conf (by default, the script looks for sguil.conf in the user’s home directory,
then in the current directory) and initializes the GUI.The SGUIL interface will
connect to the SGUIL server (Sguild) and prompt for a username and password.
Note: Remember to use SSL or the password will go in the clear. If you are run
ning sguil.tk for the first time, there will be no sensors to connect to, since we
have not added the sensor component yet.You should get your username and
password window with no errors.

Step 4: Install the Sensor Scripts
Here the SGUIL install gets interesting. Provided we want to run SGUIL to its
fullest extent, we need to apply two patches to Snort.The first patch is for
Snort’s stream reassembler (spp_stream4), and the second is for Snort’s older
portscan preprocessor (spp_portscan).These patches are used to log additional
data for the analyst and are by no means required.

The positive side of installing the patches is that we get more data. IDS ana
lysts can always benefit from a better dataset.The downside is that it makes Snort
a tad harder to keep up to date.

We will proceed with the instructions for patching snort and setting up the
SGUIL sensor components. If you choose not to patch Snort, continue with the
instructions that follow the patch instructions.

Choose the branch of Snort that you are running (currently the 2_1 branch),
and copy the patch code into the source directory for the preprocessors (snort-
2.1.x/src/preprocessors/). Use the patch command to apply the patch to
spp_stream4 and spp_portscan:

cd <sguil-src>/sensor/snort_mods/2_1/

cp spp_portscan_sguil.patch <snort-src>/src/preprocessors/

cp spp_stream4.patch <snort-src>/src/preprocessors/

cd <snort-src>/src/preprocessors/

patch spp_portscan.c < spp_portscan_sguil.patch

patch spp_stream4.c < spp_stream4_sguil.patch

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 414

414 Chapter 8 • Dealing with the Data

You can now compile and install Snort:

./configure; make; make install

OINK!
There is no need for any additional configure flags, such as database
support, since we are using Barnyard to handle our output to MySQL.

Now we need to configure Snort’s portscan and stream4 preprocessors to
work with the newly applied patches and tell Snort to log in Unified binary
format for Barnyard to process.

The configuration for the portscan preprocessor follows this template:

preprocessor portscan: $HOME_NET <ports> <secs> <log_directory>

<sensor_name>

Example:

preprocessor portscan: $HOME_NET 4 3 /snort_data/scans xibalba

This example will monitor $HOME_NET for IP addresses that attempt to
connect to four ports, within three seconds. When the portscan preprocessors
detects a scan, it will log to the directory scans using the sensor name xibalba.

The configuration for the TCP stream resassembler (stream4) is:

preprocessor stream4: keepstats db <log directory>

Example:

preprocessor stream4: detect_scans, keepstats db /snort_data/ssn_logs

The packets that are part of an alerted stream will now be saved as session
logs.This is a vast improvement over Snort’s current process, which is to log a
pseudo packet that is created by the stream reassembler (see Chapter 6,
Preprocessors).This code is actively being changed by Marty and company at
Snort.org. Snort will soon be logging these packets natively, so in the near future
it might not be necessary to patch Snort for this functionality.

Log in Unified binary logging with this line:

output log_unified: filename snort.log, limit 128

Snort will now log in Unified binary format (for Barnyard to process) to a
file named snort.log, which will roll over every 128MB.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 415

Dealing with the Data • Chapter 8 415

We now run Snort:

cd <snort-src>/

snort –c etc/snort/snort.conf –l /snort_data –U –A none –i

<interface_name>

Options to the command line:

■ –u sguil –g sguil (user and group sguil)

■ -m 022 (set the umask of the created files)

Logpackets.sh is a shell script used to manage Snort’s logging of additional
binary packet data.The script runs Snort in binary packet logger mode (-bl) and
should be run directly by the cron daemon on the sensor.To run this script every
hour, add the following to crontab:

#crontab –e

0 0-23 * * * /usr/local/bin/log_packets.sh restart

To install Barnyard, follow the default installation procedures (./configure;
make; make install). SGUIL users formerly had to patch Barnyard as well, but
Andrew Baker recently added the SGUIL output plug-in to the Barnyard source
tree. Configure Barnyard to output data to the SGUIL database, in your barn-
yard.conf file:

config hostname: <sensor_name>

output sguil: mysql, sensor_id 0, database sguildb, server xibalba, user

root,/ password <database_password>, sguild_host xibalba, sguild_port 7736

SGUIL will be gathering a large amount of data, since it is logging more
information than Snort normally does for an event.The three output compo
nents to tie in with Snort are Barnyard, log_packets.sh, and sensor_agent.tcl.
Sensor_agent.tcl runs on the sensor and sends portscan and session logs to the
database.The script will need some additional information regarding hostname,
SGUIL server name, paths to portscan, and session logs, so be sure to configure
sensort_agent.tcl before running it for the first time. Start Barnyard and run the
sensor_agent.tcl script.

/usr/local/bin/barnyard -c /etc/snort/barnyard.conf -d /snort_data\

-g /etc/snort/gen-msg.map -s /etc/snort/sid-msg.map -f snort.log –w\

/etc/snort/waldo.file

/<sguil_src>/sensor/sensor_agent

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 416

416 Chapter 8 • Dealing with the Data

Step 5: Install Xscriptd
Xcriptd runs on the server (the same machine as Sguild) and manages the
retrieval of binary packet data from the sensors to the server as well as passing the
packet data back to the client for use in Ethereal and other PCAP-aware tools.

Xcriptd needs ssh access to the sensors to retrieve data.To enable this, you
must create an ssh key for Xscriptd as follows:

xibalba:/home/sguil/.ssh # su sguil

sguil@xibalba:~/.ssh> ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/home/sguil/.ssh/id_dsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/sguil/.ssh/id_dsa.

Your public key has been saved in /home/sguil/.ssh/id_dsa.pub.

The key fingerprint is:

b9:ad:cc:f3:60:d5:54:ba:95:ca:de:fa:f9:75:50:49 sguil@xibalba

Append the public key to the .ssh/authorized_keys file on your Snort sensor.
Test that this is working by logging in to the remote sensor without having to
type in a username and password. If everything went without a hitch, you are
done with the install and can fire up sguil.tk to start the client.

Using SGUIL
The main advantages that SGUIL brings to the analyst over ACID are speed and
an advanced query builder. SGUIL also comes with patches and code to log an
entire session, rather than just a single atomic packet from an event of interest.
This gives the analyst more data points to correlate, providing that you have the
time and resources to do the extra analysis.

To start the interface, run sguil.tk from your client machine. If everything is
working correctly, you will have a tk window pop up, requesting your SGUIL
username and password. Figure 8.18 shows a screen with a list of your available
sensors. Choose the sensor you want to monitor, and voilà.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 417

Dealing with the Data • Chapter 8 417

Figure 8.18 Login Screen Showing That the tcl Client Is Working

SQUIL’s main screen, shown in Figure 8.19, shows real-time events and pro
vides tools to begin your investigation.The top panes of the interface show basic
event information: sensor, timestamp, source and destination information, and the
event message. Attached to each event is a priority level, assigned by the Snort
rule.You will soon see that configuring your ruleset and the rule priority ranking
will be paramount to your being able to triage events.

Figure 8.19 SGUIL’s Main Screen

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 418

418 Chapter 8 • Dealing with the Data

Events autopopulate the top panes of the interface. Click an event, and you
have the option of viewing additional packet information, the rule that triggered
with the event, and running whois and reverse DNS queries on the source and
destination IPs. We find this functionality extremely useful for monitoring events.

If you have access to the rule that Snort fired on, you can view the packet from
Snort’s perspective.This will give you some initial insight into the event. First, by
understanding the patterns that matched the traffic in question, you will have a
good idea as to whether or not the rule has a high or low probability of falsing.

For example, the event highlighted in Figure 8.19 sparks some interest. We
have 18 counts of ATTACK-RESPONSES ID check returned root.The ports in
question are unusually high-numbered ports (39168 and 32990).The rule is
looking for the content uid=0(root) going to any port over any IP-based protocol.
This is a wide-ranging rule, but with a low probability of falsing outside unusual
Web traffic (akin to reading the Sans Reading Room, or the latest copy of
Phrack) or SMTP (someone e-mails you a security report containing the string).

The design of the interface is very intuitive from a workflow perspective.
Click an event, display packet and rule information, do lookups, then view corre
lated events (a single right-click in the CNT count column).The response time
from SGUIL is very fast—amazingly so if you are coming from ACID. Complex
queries are returned in seconds rather than tens of seconds.

Summary Scripts
Intrusion analyst one minute, incident handler the next; then it’s on to put out
the next fire.

Database-driven applications are very useful for the analyst to drill down and
get detailed information, but in many environments there just isn’t the time or
the resources to do detailed analysis on every event.This is where good summary
scripts come in.

In some cases, what you or your management needs is to get a snapshot of
the malicious activity on the network.The view from 50,000 feet can sometimes
tell a chilling tale about the state of network.

Two tools, snort_stat.pl and SnortSnarf, are scripts that can help you get high-
level information regarding attacks against the network. Once you review the
summary, you can make decisions concerning alert triage. Many medium- and
low-priority events will have to be ignored so that the high-priority events can
be analyzed in depth. Both tools take Snort alert files as input and return sum
marized information.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 419

Dealing with the Data • Chapter 8 419

snort_stat.pl
Snort_stat.pl is a simple Perl script, written and maintained by Yen-Ming Chen.The
script parses a Snort alert file and outputs a report containing a summary of events.
The resulting report shows the analyst how many events were recorded, how many
sources, destinations, and a breakdown of activity from and to each host.

To run snort_stat, all that is required is that you have Perl 5.2 or later installed.
Most modern UNIX distributions already have Perl installed in their default
base. If you plan to use a Windows platform to run snort_stat.pl, download Perl
for win32 from ActiveState (www.activestate.com).

Place snort_stat.pl in your executable path:

#>sudo cp snort_stat.pl /usr/local/bin

Now you are ready to run snort_stat with your current Snort alert file.The
usage menu for snort_stat indicates that the tool takes input from “standard in,” or
stndin:

USAGE: cat <snort_log> | snort_stat.pl -r -f -h -t n

-d: debug

-r: resolve IP address to domain name

-f: use fixed rather than variable width columns

-h: produce html output

-t: threshold

To produce a sample report, we run the command:

cat alert | snort_stat.pl > output.txt

To view our newly created report, we run:

less output.txt

The log begins from: 02 06 15:07:35

The log ends at: 02 18 14:53:34

Total events: 92

Signatures recorded: 3

Source IP recorded: 2

Destination IP recorded: 2

The number of attacks from same host to same

destination using same method

===

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 420

420 Chapter 8 • Dealing with the Data

of

attacks from to method

===

64 172.16.10.200 172.16.10.151 spp_bo: Back Orifice Traffic

detected (key: 2160)

26 172.16.10.151 172.16.10.200 spp_bo: Back Orifice Traffic

detected (key: 2160)

1 172.16.10.151 172.16.10.200 (http_inspect) OVERSIZE

REQUEST-URI DIRECTORY

1 172.16.10.200 172.16.10.151 ATTACK-RESPONSES id check

returned root

Percentage and number of attacks from a host to a

destination

==

of

% attacks from to

==

70.65 65 172.16.10.200 172.16.10.151

29.35 27 172.16.10.151 172.16.10.200

Percentage and number of attacks from one host to any

with same method

==

of

% attacks from method

==

69.57 	 64 172.16.10.200 spp_bo: Back Orifice Traffic detected (key:

2160)

28.26 	 26 172.16.10.151 spp_bo: Back Orifice Traffic detected (key:

2160)

1.09 1 172.16.10.200 	 ATTACK-RESPONSES id check returned root

1.09 	 1 172.16.10.151 (http_inspect) OVERSIZE REQUEST-URI

DIRECTORY

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 421

Dealing with the Data • Chapter 8 421

Percentage and number of attacks to one certain host

===

of

% attacks to method

===

69.57 64 172.16.10.151 spp_bo: Back Orifice Traffic detected (key:

2160)

28.26 26 172.16.10.200 spp_bo: Back Orifice Traffic detected (key:

2160)

1.09 1 172.16.10.151 ATTACK-RESPONSES id check returned root

1.09 1 172.16.10.200 (http_inspect) OVERSIZE REQUEST-URI

DIRECTORY

The distribution of attack methods

===

of

% attacks method

===

97.83 90 	 spp_bo

1.09 	 1 ATTACK-RESPONSES id check returned root

1 172.16.10.200 -> 172.16.10.151

1.09 	 1 (http_inspect) OVERSIZE REQUEST-URI DIRECTORY

1 172.16.10.151 -> 172.16.10.200

An analyst can quickly triage events now that we have a summary of alerts.
We suspect that two machines are infected with the infamous Trojan Back
Orifice. Granted, this could be a false positive, keying off default Back Orifice
ports. At the very least, we know that the machines at 172.16.10.151 and
172.16.10.200 have to be inspected for Trojan files.

To process your alert files nightly, place the following entry in the crontab for
root. Ensure that you have the paths to Snort’s Alert file, and remember to rotate
your alert files every evening to avoid duplicate log entries in your snort_stat
report.

Edit root’s crontab with the command:

crontab –e

Now add the following line that will run snort_stat at 11:59 P.M. every
evening and mail you the report:

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 422

422 Chapter 8 • Dealing with the Data

59 23 * * * cat /var/log/snort/alert | snort_stat.pl | mail –s "Snort

Report" your@email.com

Using SnortSnarf
SnortSnarf is a Perl script that parses Snort log files (it also has a plug-in for
accessing MySQL databases) and produces a set of static Web pages with the
results, grouping Snort alerts by signatures and IP addresses and providing Web
links to additional informational resources for detected attacks. Its distribution
package also includes CGI scripts for creating incidents reports based on groups
of alerts. SnortSnarf can be run as a cron job at regular intervals or run manually
from time to time.The following formats of log files are supported (in addition
to MySQL databases):

■ Snort alerts files (either standard or -A fast type)

■ Syslog files containing some Snort entries

■ spp_portscan log files

■ spp_portscan2 log files

It is also possible to have SnortSnarf reference rules definition files and
extract detailed information about attacks, linking them with individual alerts.

Installing SnortSnarf
SnortSnarf can be found at
www.silicondefense.com/software/snortsnarf/SnortSnarf-052301.1.tar.gz and on
the accompanying CD-ROM. Basic installation of SnortSnarf is not overly com
plicated. If you have Perl 5 installed on your host and a Web server running, the
installation can be completed with the addition of a single Perl module, specifi
cally Time::JulianDay.This module is included in the distribution in the Time-
modules subdirectory.This module is installed as many other Perl modules—you
need to run the following commands in the subdirectory:

perl Makefile.PL

make

make test

make install

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 423

Dealing with the Data • Chapter 8 423

It could also be useful to copy the contents of the /include subdirectory of the
SnortSnarf distribution package to a place where the Perl interpreter will be able
to find them—for example, site_perl or a directory where SnortSnarf will be run.

To produce a set of Web pages from alert files, you need to execute the fol
lowing command:

./snortsnarf.pl –rulesfile rules-file –rulesdir rules-subdirectory –d

destination-folder source-file1 ... source-fileN

For example (the line is wrapped):

./snortsnarf.pl –rulesfile /etc/snort/snort.conf –rulesdir /etc/snort –d

/var/web/www/snarf /var/log/snort/alert

This command will run SnortSnarf on a /var/log/snort/alert file, place the
results in /var/web/www/snarf directory, and in the process make reference to
rules descriptions from the /etc/snort/snort.conf configuration file. If you point
your Web browser to the corresponding location, you will see a page similar to
Figure 8.20.

Figure 8.20 SnortSnarf Results

Provided links allow further exploration of displayed alerts.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 424

424 Chapter 8 • Dealing with the Data

Configuring Snort to Work with SnortSnarf
Now that you have seen the basic functionality of SnortSnarf, let’s see a full
example of its configuration. Assume that we already unpacked SnortSnarf in the
/usr/local/src/snortsnarf directory.You should now complete the following steps:

1.	 Copy the SnortSnarf script to the /etc directory and put the corre
sponding include files in the subdirectory site-perl:

#>cd /usr/local/src/snortsnarf/Time-modules

#>perl Makefile.pl

#>make

#>make test

#>make install

#>cp /usr/local/src/snortsnarf/include/SnortSnarf

/usr/lib/perl5/site-perl/5.6.0

#>cp /usr/local/src/snortsnarf/snortsnarf.pl /etc

2.	 Perform a test run of SnortSnarf (provided that Snort is already running
and logging to /var/log/snort/alert file, the default setting) using the
command:

#>perl /etc/snortsnarf.pl –d /var/www/html/snortsnarf

/var/log/snort/alert

This action should complete without any warnings or errors.

3.	 Now we need to add a crontab entry for running SnortSnarf regularly; in
this example, we will set the action to occur every 30 minutes.This is
accomplished by adding the following line to the root’s crontab:

30 * * * * perl /etc/snortsnarf.pl –d /var/www/html/snortsnarf -

refresh=30 /var/log/snort/alert

4.	 This can be done in many ways, either via editing crontab manually using
the crontab -e command, or, for example:

#>cd /etc/cron.d

#>cat > SnortSnarf

30 * * * * perl /etc/snortsnarf.pl –d /var/www/html/snortsnarf -

refresh=30 /var/log/snort/alert

<Ctrl>d

#>crontab –u root SnortSnarf

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 425

Dealing with the Data • Chapter 8 425

5.	 The refresh=30 option will make SnortSnarf generate Web pages and
force the browser to refresh them every 30 minutes.

Basic Usage of SnortSnarf
Now that the SnortSnarf process has been automated, let’s browse through some
of the pages it provides.The main page (shown in Figure 8.21) shows the total
number of alerts, the date range of the alerts, the source of the alerts, and a sum
mary screen of the various alerts. For each signature, the summary listing includes
the signature name, total number of alerts, number of sources, number of destina
tions, and a Summary link for all signatures of that type. On the Summary screen
are links pointing for further information (see Figure 8.21).This information is
taken from the rules description, so you will need to run SnortSnarf with the
rulesfile option if you want to use this feature.

Figure 8.21 Summary for the “WEB-CGI uploader.exe access” Signature

Clicking the links [sid:837] or [CVE:CVE-1999-0177] will take you to
either the Snort.org site or the Common Vulnerabilities and Events (CVE)
database, respectively, where more detailed explanation of this signature can be
found.

The Top 20 source IPs link will display a summary of the 20 IP addresses that
regularly appear as an attack source (see Figure 8.22).

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 426

426 Chapter 8 • Dealing with the Data

Figure 8.22 Top 20 Attacking IPs

The IP links present in the Source IP column will take you to a page dis
playing a summary of signatures triggered by the traffic from this particular
source.This summary page also contains links that will help you discover to
whom this IP address belongs—whois lookups, DNS lookups, and so forth.

Optional SnortSnarf features include a tool for creating incident reports.This
feature resembles the ACID alert grouping and e-mailing. Its installation is
described in README.SISR in the SnortSnarf distribution package.

The SnortSnarf script has many options other than those described in this
section. It is possible to specify various filters by:

■ Sensor ID

■ Alert priority

■ Date

■ Time

The main difference between SnortSnarf and ACID is that you need to
specify everything on the command line and not interactively.To sum up,
SnortSnarf (similarly to ACID) helps you bring data together.The format is such
that potential problems can be easily analyzed and researched.This analysis will
verify if there was an incident, and Snort alert logs and system log files will pro
vide data of what was possibly compromised. When a security incident occurs,

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 427

Dealing with the Data • Chapter 8 427

the link in the SnortSnarf browser window allows the analyst to review the inci
dent data and start looking for ways to prevent further incursions.This further
research and analysis of SnortSnarf reports will help provide enough information
to make incident-related decisions.The analysis should help identify whether
your defense in-depth plan failed. With this knowledge of what failed, where it
failed, and how it failed, you can make plans to prevent unauthorized access in
the future.

Damage & Defense

Beware of the External Intranet

an attacker wants to see whether your site is running SnortSnarf and
whether you’ve left the resulting HTML files open to the world, all that
attacker has to search for is:

site: "SnortSnarf brought to you"

This will bring up SnortSnarf pages, which at the bottom contain the
string “SnortSnarf brought to you courtesy of Silicon Defense.”

for attackers to see. Some attackers will go to the lengths of attacking
your site, then checking your IDS logs to see if they have triggered an
event.

repository on a management network that is not connected to the
htac

cess list to allow only authorized hosts to connect to the SnortSnarf

exposure of the SnortSnarf data.

As with any Web-based security monitoring tool, ensure that you lock
down access to the Web server that is serving up your intrusion data. One
prevalent reconnaissance tactic is to Google for IDS data. For instance, if

www.yourdomain.com

It’s amazing how many people leave their intrusion data on the Web

To protect your IDS data, place your Web server and SnortSnarf

Internet. Utilizing the defense-in-depth strategy, configure Apache’s

server. Network and host-based firewalls can also be used to limit the

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 428

428 Chapter 8 • Dealing with the Data

Swatch
Automating part of the alert monitoring and event triage is an essential part of
the intrusion analyst’s job. Swatch is a log-monitoring tool designed to watch log
files and match patterns for events of interest. Swatch can be configured to mon
itor any log files. In this example we will monitor Snort logging to syslog.

Using Swatch after you have created the configuration file is simple. Swatch
can be started in a variety of ways:

■ Via a Snort initialization script

■ Used separately as part of init set of scripts

■ Manually

The following is a command line used for starting Swatch:

/usr/local/bin/swatch -c /var/log/.swatchrc -t /var/log/snort/alert &

This line assumes that Swatch is installed in the /usr/local/bin directory, the
configuration file .swatchrc is located in the /var/log directory, and the Snort alert
file is in the /var/log/snort directory. Note that the -c option defines the location
of the configuration file, and the -t option tells Swatch which log file to monitor.
The & sign at the end of the line means that this command is started in the
background. Background processes cannot communicate with the terminal or
stdin/ stdout streams, so you cannot use echo actions in the Swatch configuration
file if you want to start it in the background.

You can also set up Snort logging to syslog in addition to its standard log files
using the output option (in snort.conf):

output alert_syslog: LOG_AUTH LOG_ALERT

Then, each alert will appear in /var/log/messages (the default location on
Red Hat) in the following way (lines are wrapped in this example):

Feb 12 19:19:00 witt snort: [117:1:1] (spp_portscan2) Portscan detected

from 10.1.1.34: 1 targets 21 ports in 24 seconds {TCP} 10.1.1.34:33531 ->

10.1.1.30:1439

Feb 12 19:19:01 witt snort: [1:1418:2] SNMP request tcp [Classification:

Attempted Information Leak] [Priority: 2]: {TCP} 10.1.1.34:33531 ->

10.1.1.30:161

Feb 12 19:19:01 witt snort: [1:615:3] SCAN SOCKS Proxy attempt

[Classification: Attempted Information Leak] [Priority: 2]: {TCP}

10.1.1.34:33531 -> 10.1.1.30:1080

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 429

Dealing with the Data • Chapter 8 429

Feb 12 19:19:01 witt snort: [111:12:1] (spp_stream4) NMAP FINGERPRINT

(stateful) detection {TCP} 10.1.1.34:33541 -> 10.1.1.30:21

Feb 12 19:19:01 witt snort: [1:628:1] SCAN nmap TCP [Classification:

Attempted Information Leak] [Priority: 2]: {TCP} 10.1.1.34:33543 ->

10.1.1.30:1

Feb 12 19:19:01 witt snort: [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS

scan) detection {TCP} 10.1.1.34:33544 -> 10.1.1.30:1

Feb 12 19:19:02 witt snort: [111:9:1] (spp_stream4) STEALTH ACTIVITY (NULL

scan) detection {TCP} 10.1.1.34:33539 -> 10.1.1.30:21

Each alert Snort generates starts with snort: prefix, so you might set up an
action in the Swatch configuration file to react to all syslog messages with this
string:

watchfor /snort:/

mail addresses=abuse@yourcompany.net,subject=--- Snort Alert! --

throttle 00:00:10

Alternatively, if you want to receive e-mail alerts on IIS-related attacks, you
can use something like this in your .swatchrc:

watchfor /IIS/

mail addresses=abuse@yourcompany.net,subject=--- Snort Alert, IIS attack! -

throttle 00:00:5

Figure 8.23 shows a more complicated example of a Swatch configuration
file.

Figure 8.23 Swatch Configuration File for Monitoring Snort Syslog Alerts

watchfor /MS-SQL/

echo bold

mail addressess=root,subject=--- Snort MS-SQL Attack Alert --

exec echo $0 >> /var/log/MSSQL

throttle 00:10

watchfor /Portscan detected/

echo bold

mail addresses=root,subject=--- Snort Port Scan Alert --

exec echo $0 >> /var/log/portscans

Continued

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 430

430 Chapter 8 • Dealing with the Data

Figure 8.23 Swatch Configuration File for Monitoring Snort Syslog Alerts

watchfor /approved AXFR/

echo bold

mail addresses=root,subject=--- Snort Zone Transfer Alert --

exec echo $0 >> /var/log/zonetransfers

When this configuration is used, alerts related to MS-SQL exploits will be e-
mailed to the “root” user and stored in a file /var/log/MSSQL. Port-scanning
alerts and zone transfers will also cause Swatch to send an e-mail to the same
user, but with a different subject line, and store the e-mails in different files.The
following action is useful for producing separated log files for different types of
alerts. It adds a matched log line to the specified file:

exec echo $0 >> file

Swatch can also be used in monitoring syslog files for other events that are
not generated by Snort. For example, the following rule will alert the “root” user
about failed authentication events:

watchfor /failed/

echo bold

mail addressess=root,subject=Failed Authentication

OINK!
It is more convenient to monitor syslog events than, for example, Snort
alert files, because syslog messages are always one line, whereas in alert
files, each alert produces several lines of text, which is not always useful
for pattern matching.

To conclude, Swatch is a simple but powerful tool for real-time monitoring
and alerting.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 431

Dealing with the Data • Chapter 8 431

Analyzing Snort IDS Events
In Snort, as we have discussed, there are two principle output systems: packet logs
and alert messages. We begin our exploration of intrusion analysis by examining
the products of these two systems: alert and packet logs.

Here we see a Full Alert mode alert, which in this case is alerting us to a
classic teardrop attack:

Full Alert:

[**] [113:2:1] (spp_frag2) Teardrop attack [**]

02/19-16:52:06.046302 172.16.10.151 -> 172.16.10.200

UDP TTL:3 TOS:0x0 ID:242 IpLen:20 DgmLen:24

Frag Offset: 0x0003 Frag Size: 0x0004

Begin the Analysis by
Examining the Alert message
The first key to looking at this alert is that we have a message describing the
alert: (spp frag2) Teardrop attack.The spp_frag2 lets the analyst know that a Snort
preprocessor known as frag2 (handles fragmentation processing) has fired the
alert. Following the message we have the basic statistics regarding the event, from
source and destination IPs, timestamp, and pertinent protocol information.

Validate the Traffic
Next we validate the traffic by looking at the packets involved in these attacks.
We will concentrate on identifying the target and the attacker as well as checking
to see if protocol behavior is correct. Examples of what to look for here: tcp
handshake completion, proper sequence numbers, fragmentation ID reuse, frag
mentation overlaps (this is what we see here) or gaps. Is the source address of this
attacked spoofed?

snort –dvr teardrop_attack.cap

02/19-16:52:06.029368 172.16.10.151 -> 172.16.10.200

UDP TTL:3 TOS:0x0 ID:242 IpLen:20 DgmLen:56 MF

Frag Offset: 0x0000 Frag Size: 0x0024

04 01 00 87 00 24 00 00 00 00 00 00 00 00 00 00$..........

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 432

432 Chapter 8 • Dealing with the Data

00 00 00 00

=+

02/19-16:52:06.046302 172.16.10.151 -> 172.16.10.200

UDP TTL:3 TOS:0x0 ID:242 IpLen:20 DgmLen:24

Frag Offset: 0x0003 Frag Size: 0x0004

04 01 00 87

=+

Tcpdump view of the Teardrop attack:

tcpdump –nnvvr teardrop_attack_cap

16:52:06.029368 172.16.10.151.1025 > 172.16.10.200.135: [no cksum] udp 28

(frag 242:36@0+) (ttl 3, len 56)

16:52:06.046302 172.16.10.151 > 172.16.10.200: (frag 242:4@24) (ttl 3, len

24)

Snort and the granddaddy of sniffers, tcpdump, each have different output
formats. Snort was written with the analyst in mind, whereas tcpdump has been
a longtime standard. We notice right away that Snort prints out the Fragment
Offset and the Fragment Size in hexadecimal. In the following, we do the simple
conversion by hand:

Packet #1: Frag Offset: 0x0000 Frag Size: 0x0024

Fragment Offset is 0, as no value is set.
To calculate the decimal equivalent of the Fragment Size, multiply the hex

adecimal value by powers of 16, as outlined in Table 8.2.

Table 8.2 Fragment Size

Power of 16 163 162 161 160

Original hex 0 0 2 4
Resulting decimal 0 0 32 4

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 433

Dealing with the Data • Chapter 8 433

We multiply the hexadecimal value by powers of 16.The resulting decimal
value equals 32 + 4 = 36.This indicates that this fragment carries 36 bytes of
data to be placed at offset 0 (zero).

What we can see here is that we have two fragments.The first fragment
(fragment id 242) has an offset of 0 (zero) and a length of 56 bytes.The second
fragment attempts to overwrite previous data by instructing the stack to place 4
bytes of data at offset 24.

Identify the Attack Mechanism
Once we have our alert message and packet logs, we begin to triage and analyze
the event. What rule or subsystem triggered this event? Is it a good rule? What
type of an attack is it? Are we vulnerable? Are we running that service? Is the
source IP spoofed?

In this case we see a second fragmented UDP packet attempting to overwrite
the data in the first fragment. On a susceptible host, this attack will cause a tem
porary denial of service since protocol stacks were not designed to travel in
reverse (overwrite previous data).This is commonly known as a teardrop attack.

Could the attacker have spoofed the IP addresses? Sure.This is a UDP DoS
attack that does not require a response from the target.The attacker can spoof
any routable IP address and have the potential to successfully disable their target.
Note: The IPs in this incident have been changed to protect the innocent.

Correlations
Now that we have identified the attack mechanism, the next step is to determine
if there have been any other events that were in some way connected to this
attack. Our correlation process will attempt to answer the following questions:

■	 Were there any other successful and/or similar attacks within a threshold
of time?

■	 Was this the only event associated with this IP address?

■	 Can you find any additional hits with this source address in your firewall
or Web server logs?

■	 Was this the only target address to receive this event type over the last
few hours or days?

■	 Have you noticed any rise or fall in trends related to this particular
event type that would suggest a mounting risk to your organization?

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 434

434 Chapter 8 • Dealing with the Data

■ Could this be a precursor to a new worm?

We run this simple shell command to find out how many Snort alerts we
received that match the teardrop attack (this sample was taken from a Full Mode
Alert file):

grep –B 1 '172.16.10.151' alertfile | grep '(spp_frag2) Teardrop attack' |

sort -n | uniq -c

853 [**] [113:2:1] (spp_frag2) Teardrop attack [**]

In this particular incident we find that there were 853 attacks in less than a
minute from the same source IP to the same target. No other logs from that IP
address were present in our IDS or firewall logs.

OINK

There are a number of places online to find correlation information.
Some of our favorites are:

■ http://isc.incidents.org/
■ http://aris.securityfocus.com/
■ www.mynetwatchman.com/
■ http://wormradar.com/

■ or the mailing list at incidents@securityfocus.com

Conclusions
This incident took place in less than a minute and there were no network
defenses in place to stop this attack.. Go back to the attack mechanism portion of
the analysis and formulate your defensive recommendation.There are a number
of solutions to this problem.

First and foremost, pick a firewall and design a policy that can block many of
the most popular fragmentation attacks. As a second solution, you might want to
look into a “traffic scrubber.”This device or software will “normalize” traffic as it
enters your network. If the fragments don’t align, the scrubber can be configured
to correct the overlap or gap. If the TTLs arrive at your network at a lower
number than the maximum depth of your network, the scrubber can raise the
TTL. In fact, these traffic scrubbers are good defenses against the evasion and
insertion attacks outlined in Tim Newsham and Tom Ptacek’s paper
(www.snort.org/docs/idspaper/).

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 435

Dealing with the Data • Chapter 8 435

Summary
The ultimate goal of installing and using Snort is to help a security analyst mon
itor and study intrusion attempts. Currently, intrusion-related traffic on the
Internet is high. If your sensor is located on a busy network, it can generate
megabytes of data each day. Obviously, you need some tool to automate the pro
cess of monitoring and alerting, because it is impossible for a human to browse
such a huge amount of data and come to any meaningful conclusions.

A variety of tools are available for this purpose. We covered a number of
them, each with a different functionality. Swatch is a tool for real-time log file
monitoring and alerting; SnortSnarf provides features for generation of static
HTML reports from log files; and Snort_Stat.pl is a simple Perl script to extract
event data summary reports from your Snort alert files.

ACID is a Web-based interactive console for exploration and management of
Snort alert database. It can also use data from other intrusion detection engines,
provided that they are somehow imported into the same database. A script pro
vided in Snort distribution is able to import some of these alerts.

ACID provides the means to perform database queries (from metasignature
level to the packet contents) and database management—trimming and archiving
of selected alerts and various graphing tools. It also allows an analyst to group
selected events into logical alert groups for further study or e-mail reports to
specified persons.

Finally, SGUIL is on of the most powerful Snort event database front ends
out there. It is a graphical tool that has been designed to be intuitive to an ana
lyst. From the GUI, an analyst can analyze event data and packet logs, populate
reports, and send abuse e-mails.

These tools merely scratch the surface of the vast number of data analysis
tools that are available to analysts. Whether you choose these free solutions, go
with a commercial solution, or end up coding your own IDS analysis suite, these
tools and the functionality they provide will give you the basis from which to
build your analysis suite.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 436

436 Chapter 8 • Dealing with the Data

Solutions Fast Track

What Is Intrusion Analysis?

� Intrusion analysis is an investigation into a network incident.

� A Snort alert is in many cases the first sign of an intrusion. At the core
of the alert message is a simple log of events of interest.This information
includes a timestamp, IP addresses, and port information.

� The analyst must examine the packets gathered during an event to
determine the validity and estimate the severity of the intrusion.

� By examining the rule, an analyst can determine whether the detection
mechanism is prone to falsing, whether the rule has matured, and
subsequently what to look for in the packet logs.

Intrusion Analysis Tools

� ACID works with MySQL or PostgreSQL databases.

� To work properly, ACID needs a Web server with PHP4 and a set of
PHP libraries installed.

� ACID deployment can be scaled so that many different Web servers
work with one database or so that different consoles have different
access rights.

� The search feature allows database exploration and correlation of events.

� Database management allows clearing of alerts or moving them into an
archive database. SGUIL is a powerful analysis platform for monitoring
Snort events.

� SGUIL is written in tcl/tk so it is possible to run on many different
platforms.

� SGUIL can quickly query the database and generate incident reports.
SGUIL can even sanitize the report data so that your private IP
information is not revealed.

� Snort_stat.pl is Perl script that summarizes Snort event file information.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 437

Dealing with the Data • Chapter 8 437

� Run snort_stat.pl from a cron script and have it mail you the results. For
added privacy, encrypt the data with PGP.

� SnortSnarf processes Snort log files and creates a set of static HTML
pages with various details and correlations between data. It can process
various events that are not logged to a database—for example, portscan
log files.

� It is more useful to have SnortSnarf run periodically as a cron job.

� If you provide SnortSnarf with a reference to your rules file, it will
include rule-related information in its output, such as exploit database
reference links or rule descriptions.

� Take care to secure access to the Web server that SnortSnarf is posting
your IDS information on. Attackers might be very interested in what
your IDS is picking up.

Analyzing Snort IDS Events

� The analyst can find additional evidence of the intrusion by correlating
system and application logs with IDS and packet logs.

� Identifying the attack mechanism is important for many reasons. First,
once we can identify the vulnerability that was used to gain access to
our systems, we can take steps to correct it. Furthermore, we could
discover a new attack mechanism, prompting us to protect our networks
and then alert the community to the new threat.

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 438

438 Chapter 8 • Dealing with the Data

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: What database permissions are needed for proper ACID functioning?

A: Snort needs only Insert and Select privileges to log in to a database. ACID
needs Select privileges for running queries, Insert and Update for alert groups
support and caching, and Delete for alert deletion.

Q: What is the minimal version of PHP that ACID can use?

A: PHP 4.0.4pl1.

Q: How can I add the support for portscan files processing by ACID?

A: It is a little tricky. When logging to a database, Snort only logs an occurrence
of the portscan event and not all of the port’s data. It is possible to force
ACID to process a text portscan log (only one file can be configured).The
file to be processed is configured in the $portscan_file variable. ACID does not
store retrieved information in a database but processes this file on demand, so
it is not possible to search by IPs occurring in a portscan file.

Q: How do I compact a MySQL database after many deletion/archiving manip
ulations?

A: The following shell script can be used (assuming the database is called
snort_db):

for table in `echo show tables|mysql snort_db|tail +2`

do

echo optimize table $table|mysql snort_db

done

Q: When I start my Swatch script in the background, it stops very soon. What’s
wrong?

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 439

Dealing with the Data • Chapter 8 439

A: You possibly have echo actions used in a configuration file. Background pro
cesses are not allowed to communicate with the console, so when an alert is
triggered with this action, the system stops the Swatch process.

Q: Is it possible to browse the contents of a packet that triggered an alert in
SnortSnarf?

A: To a certain degree, yes.There is an option -ldir that forces SnortSnarf to
include in its output links to specific log files in which the alert was stored.
When you click such link, the corresponding log file will be opened in a
browser. Of course, these files have to be located in a directory accessible by
the Web server.

Q: What incident categories are built into SGUIL?

A: The following categories are used:

I. Root/Administrator Account Compromise

II. User Account Compromise

III. Attempted Account Compromise

III. Attempted Account Compromise

IV. Denial of Service

V. Poor Security Practice or Policy Violation

VI. Reconnaissance

VII. Virus Activity

Q: How do I purge the data from a SGUIL database or optimize its tables?

A: Click Database | Purge Session Data or Database | Optimize
Tables.

Q: Can I run SGUIL as a pull architecture IDS?

A: Yes. Set up tcpdump to log all packets, transfer them to your SGUILD
machine on an hourly basis, then load them into SGUIL with the following
command:

snort –u sguil –g sguil –l /snort_data –c snort.conf –U –A none –m

122 –r <pcap_file>

www.syngress.com

295_Snort2e_08.qxd 5/5/04 6:03 PM Page 440

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 441

Chapter 9

Up to Date
Keeping Everything

Solutions in this Chapter:

■ Updating Snort

■ Updating Rules

■ Change Control

■ Testing Snort and the Rules

■ Watching for Updates

� Summary

� Solutions Fast Track

� Frequently Asked Questions

441

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 442

442 Chapter 9 • Keeping Everything Up to Date

Introduction
As with many other open-source projects, the Snort Intrusion Detection System
(IDS) is evolving all the time.To keep up with its development and use addi
tional features that appear in new releases, you need to be able to update your
installation periodically.The update process is usually simple—versions of Snort
are backward compatible—so all you need to do is recompile the source (if you
prefer building Snort yourself) or reinstall a package; for example, a Red Hat
.RPM module, which is available from the distribution site. As with all open-
source projects, it is possible that someone has coded some extra functionality
into his/her Snort package that is not in the distributed version, and you want to
try it out. In this case, you can patch your Snort source code with the changes
distributed by that person and see the results.The most important updates are the
rule updates that should be applied to the Snort sensors on a regular basis. Some
rule updates are created by people in response to emergencies, such as new, over
whelming attacks—similar to CodeRed and the recent MS SQL Slammer
worms. Some updates are simply an improvement of an existing rule (hence the
“rev” value that can be in rules and was discussed in Chapter 5, “Playing by the
Rules”), and others are new rules to deal with new attacks or vulnerabilities.
Several rule databases are updated on a regular basis and available at various Web
sites like www.snort.org and whitehats.com, although the owner of
whitehats.com apparently hasn’t updated the site in several versions of Snort. If
you plan to stay current with new attack detection (and you probably will), you
need to continuously monitor one or more sources for new rules and regularly
update your rule files. Several tools exist for performing this task, and this chapter
describes their uses.

Take the following scenario:Your IDS team is watching their consoles in
horror as a new virus starts to wreak havoc on your network.They seem to be
powerless to stop the spread of this virus all over the network.Their signatures
are only filling them in on part of the story.The company’s anti-virus team is
scrambling to clean infected boxes after receiving calls from the help desk saying
something is causing problems with user machines. However, the cleaning pro
cess seems not be working because the removal process didn’t include patching
of the original vulnerability that the virus/worm was exploiting.They clean the
machine, but less than an hour later, it seems to be acting up again.Then, after
almost two hours of infection, all of your IDSs seem to go down with operating
system errors, effectively making your team blind to any further actions on the

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 443

Keeping Everything Up to Date • Chapter 9 443

network.The upper management wants answers to what is going on, but your
IDS and security teams seem powerless to stop or even identify the root cause of
these problems.

This might be an extreme case, but this is what could happen if your IDS
team didn’t constantly update and patch their systems to keep up with the latest
viruses, exploits, and vulnerabilities.The Netsky virus variants are a good
example as of this writing.They are up to variant “k” variant 12 since the orig
inal virus. For example, in order to keep up with the changing variation of the
netsky worms, an IDS team could add or change their snort rules to each new
iteration of the changing hard coded DNS server. Using this constantly updating
process can help your IDS team effect a faster, more inclusive quarantine effort
than your E-mail administrators or even your Anti-Virus teams.The second point
about your IDS sensors being attacked concerns updating your signatures and
IDSs. Recently, there was an attack that would enable the compromise of your
Snort sensors, allowing the attacker to execute arbitrary code on your Snort sen-
sors.This specific attack exploited a flaw within the RPC preprocessor, which is
one of the default enabled Snort preprocessors.This vulnerability was caused by
sending fragmented RPC traffic past a Snort sensor. When the Snort engine was
looking at the fragmentation size, it didn’t take into account the size of the pre
processing buffer.This left Snort open to a buffer overflow attack that could pos
sibly execute code deep inside an organization’s network. What this meant was
that attackers or even virus writers who wanted to infect a network could send
certain packets out on the wire that would effectively kill your IDS sensors that
were sniffing packets on that particular subnet, leaving an organization blind
while other attacks occur.

Another example that recently happened to another commercial IDS com
pany was the witty worm, which was written to exploit and destroy ISS
RealSecure network sensors.This worm was actually only a single packet attack
that would cause an ISS sensor without the most up-to-date patch level to send
20,000 attack packets throughout a network from the management interface and
then write corrupt parts of itself to the sensor, causing a slow corruption of the
file system.This would effectively blind any organization that totally relied on
ISS sensors and cause loads of unnecessary attack traffic deep within organiza
tions’ most trusted networks.

Imagine the possibilities if either of these attacks had been planned to gain
access to sensitive information. If your IDSs aren’t kept up to date and patched,
then both of these scenarios and more are possible, and with the recent rise in
multi-exploit worms should provide a wake-up call to update and secure IDSs.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 444

444 Chapter 9 • Keeping Everything Up to Date

This chapter illustrates several techniques that could be used to keep your sys
tems at their optimal performance levels.

Updating Snort
Information Security is under constant threat, such as the recent variants of worms
such as Beagle, Netsky, and MyDoom. Like most venues of security, IDS is a con
stantly changing environment that needs to be able to meet the changing threats.
For example, when the anti-virus industry receives new viruses and variations on
current ones, it rallies together to add detection and removal tools and instructions,
as the security industry does when a new threat faces networks through Web sites,
mailing lists, and newsgroups. All of these methods will help an IDS team to stay
abreast and sometimes ahead of threats to their networks and users.

Production Choices
Production systems need to be the most stable systems in place for an IDS team.
Changes to these systems should be well tested and well documented, which has
become a general rule of thumb for one author’s production IDS sensors.They
are built using a tested disk image making it such that minus the data, that is
stored at a central server, the sensors can be blown away and rebuilt in 15 min-
utes.This doesn’t take into account the time it takes to load a new disk image
onto a sensor, as different tools and disk configurations cause varying time differ
ences. In addition, all of the Snort configurations and rules and the OS are docu
mented and modified for each change. Not documenting these changes could
leave your production systems with different versions of rules, and in some cases,
different versions of Snort.This could spell disaster for a network’s security pos
ture and leave it open to attack.

Compiled Builds vs. Source Builds 2
One of the most important choices of your Snort IDS system builds is whether
to use precompiled builds of the software or to compile the code yourself. As
members of several government IDS teams, our safest bet was to compile the
code ourselves. We chose to do that for several reasons, one of which is that if
you choose to use precompiled builds, you’re placing some level of trust in the
person or organization who compiled the software.The other consideration is
whether your Snort systems have to link into other platforms, such as an
Enterprise Security Manager/Security Incident Manager (ESM/SIM) or into a

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 445

Keeping Everything Up to Date • Chapter 9 445

database for storage and analysis such as trending and threat modeling. One good
thing about precompiled builds is that if your organization is small or has little
resources to give to intrusion detection, this might be best to keep your
team/single person operational and up to date.

■	 Compiled builds If the organization doesn’t make many changes to
its systems, this might be the best option.This means that they don’t
have to compile Snort from source code.This also might be good for
organizations that don’t have much staff or are not going to link their
Snort sensors to an outside system. One note of caution if your organi
zation will be using precompiled builds: It’s strongly recommended that
you know who and where you download the software from. An IDS is
positioned at a great place on a network to wreak havoc or steal infor
mation from an unsuspecting organization.Therefore, it is critical to test
each new version in a lab environment to provide a level of assurance in
the software.

■	 Source builds If an organization has other pieces of software such as
an ESM/SIM or database or Web application, then this might be the
best option. An advantage to compiling from source code is if the IDS
team uses custom code modifications such as for ESM/SIM integration.
Another example is if modifications become available to meet a new
exploit, such as the rose fragmentation attack.This is a two-packet frag
mentation reassembly attack, which wasn’t detected by even the most
current version of Snort.There is now a patch that can only be applied
to the source code that changes one of the current preprocessors to
detect and alarm on packets that match the criteria set in the rose
attack. Another example is the XML preprocessor used by some Web-
based front ends for Snort. Another reason to use source builds is that
there are options and add-on protections for Snort, such as enabling the
portscan detection preprocessor, which is by default disabled in new ver
sions of Snort to enable the flow preprocessor. Using source code is the
best option if an organization has a large security team that needs to
verify or check for changes from version to version.

Patching Snort 3
If you are using Snort as a production-level Network Intrusion Detection System
(NIDS), you will probably never need to patch it.Throughout the development

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 446

446 Chapter 9 • Keeping Everything Up to Date

of Snort, each major change or bug fix is distributed as part of both the new
minor and major releases. Updating Snort usually consists of downloading the
new package and installing it over the existing one.The basic backward compati
bility with previous versions of Snort is rarely broken, and during the last year,
the most significant compatibility issues arose only with database schema changes
(used by the snortdb database logging plug-in). If you are interested in bleeding-
edge functionality, then you probably downloaded and installed Snort via a
Concurrent Versions System, CVS, (for more information, please refer to the
section Installing from Source in Chapter 3, “Installing Snort”).

OINK!
It’s a bad idea to apply inter-release patches to a production system
unless there is an emergency such as a serious vulnerability. As previ
ously noted, Snort developers react quickly when a problem arises in a
released version of the package.

Downloading Snort source via CVS is simple.You can download it from an
anonymous CVS server:

cvs -d:pserver:anonymous@cvs.snort.sourceforge.net:/cvsroot/snort login

cvs -z3 -d:pserver:anonymous@cvs.snort.sourceforge.net:/cvsroot/snort

cosnort

After downloading the source, updating takes only one command (from the
root of your Snort source directory or, for example, from the “rules” folder to get
updates only for the rules):

cvs –z3 update

If you still need to apply a specific patch to a module that is not in the CVS,
you can obtain a .DIFF file, which actually contains patch information for one
or many source files, and then run a standard UNIX patch program to apply the
patch. Usually, the command will look similar to the following:

patch –p0 originalfile < patchfile

In the previous syntax, originalfile is the file to be modified, and patchfile is the
file with the patch information inside it (.DIFF file). After applying the patch,
you will need to rebuild Snort.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 447

Keeping Everything Up to Date • Chapter 9 447

Updating Rules
Discussion about how rules and updating your rules can make all the difference.
For example, one of the authors once worked for a large government agency. We
had been running Snort 2.0.x, although it hadn’t changed much in the 2.0 revi
sions. We were hitting 99-percent accuracy for a Nimda exploited machine with
the “http directory traversal” signature. Nimda was the name given to an attack
that affected Microsoft IIS Web servers.This attack was the first of its kind that
could use multiple attack vectors to exploit systems.This attack could come in
the form of a malformed MIME attachment (.eml) that was automatically run by
MS Outlook and Outlook Express mail clients, infecting the victim machine by
sending itself to all entries in the address book.This worm could also gain access
to an unpatched MS IIS Web server through a Unicode attack called “directory
traversal,” which allowed attackers to run, view, and execute files otherwise
unavailable remotely. Nimda could also infect machines that were infected with a
backdoor program called “root.exe,” which was left by the CodeRed II worm.
Both these attacks would then place a “readme.eml” file in the root of every
Web-accessible folder. Files with the extension “.eml” are a hidden MS extension
that is automatically run, which would cause possibly thousands of victims from
users just browsing to an infected IIS server. Once on victim’s machine, this
attack would enable full access to the root C drive and enable the Guest account
on the system. We then upgraded to the new Snort 2.0 release without checking
the new ruleset for any changes to that particular signature. Within minutes of
turning on the new version and ruleset, our number of alarms tripled. Our first
reaction was that we were facing a level of infection that we hadn’t accounted for
previously.Then, while our junior analysts were running down the actual packets
that were triggering, we started looking at the ruleset and noticed that with this
release of Snort the “http directory traversal” signature had been changed.The
signature, “http directory traversal,” was triggering on a payload of “../” instead of
the old “Volume Name” in the payload.This seemingly minor change was
causing major differences in the number of alarms we were receiving, as this pay
load in URLs is used for several high traffic sites such as MSN.com, yahoo.com,
and google.com searches.This URL is also used by several Web and application
servers such as Cold Fusion, IIS, Jakarta-Tomcat, and Lotus Domino servers, to
name a few. On a large enterprise network, the majority of your Web traffic is
generated by several of the previously listed sites and servers. Upon realizing the
change, we immediately dropped back to our old ruleset and began a manual

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 448

448 Chapter 9 • Keeping Everything Up to Date

comparison through the entire new ruleset for changes before running the new
ruleset on our production systems.

How Can Updating Be Easy?
Many elements can help make rule updating easier; for example, using the flexi
bility of Snort to use variables in its rules; or the “local” rules file, which can be
used for per-sensor or per-incident rule generation; or placing rules in the
deleted rules file for change control. For example, use a local rule to track a
problem server or for assisting operations staff with a problem server.

Using Variables
Variables in Snort can be extremely helpful to a large security team. For example,
using variables can help when defining an organization’s IP space as a certain
variable name,.This way, when a new rule is created or added, all the team needs
to add to the rule is the variable. Moreover, variables help the performance and
accuracy of the sensor and its backend storage; for example, if the sensor had
been placed in a tap off an organization’s perimeter with no tuning.Then, a
likely scenario would be the sensor being overloaded with alarms that would not
be prevalent to the network, or detect attacks coming from the inside the net
work that were just normal traffic. Variables can also be of great use in custom
signatures; for example, if you were looking for all traffic from a list of IPs such as
a “hot list,” which is a list of IP addresses or ranges that an organization wants to
watch for traffic to or from, such as a list of foreign countries, known virus
hosting servers, or even a range of spyware/ad servers.Then, all the IPs/ranges
could go in that list, so only one or two rules have to be written to log all of
those IPs. Not using variables could result in rules as long as or longer than the
hot list. Another use of variables is in ports such as all NetBIOS ports for MS
Windows communication. For example, when the welchia and blaster worms
(see http://xforce.iss.net/xforce/alerts/id/iso) were prevalent, we used a group of
ports that welchia could be used over to exploit a victim’s machine.This way, we
could monitor over five ports with one custom rule for any welchia attack/probe
that tried to hit our network.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 449

Keeping Everything Up to Date • Chapter 9 449

OINK!
While variables are tremendously useful, it is important to understand
how they are going to be interpreted. For example, if you have a vari
able that is set to a value of “any,” and is used in a negated fashion by a
rule (for example, !$EXTERNAL_NET), the resulting rule will be inter
preted as “not going to any address.” This means that the rule will never
match. There used to be a number of these in the default ruleset, but for
the most part, they have been removed. A similar problem is when vari
ables are “chained,” which means that one variable takes its value from
another. For example, the default configuration file includes variables for
your DNS servers (called $DNS_SERVERS, not surprisingly). That is per
fectly reasonable, but the default value is taken from the variable
$HOME_NET. Therefore, if you have decided to set that to “any,” all the
rules that use a negated form of the $DNS_SERVERS variable now have a
value of “not any.” There are a number of rules like this.

Using the Local Rules File
If you are using variables, use of the local rules file can be one element that helps
some organizations with custom rules.This local file is used to add a custom rule
or rules to the sensor in use for specific purposes. For example, if you are a front
line organization, you are probably looking for any traffic from the top 10 IPs on
www.dshield.org.This site provides a central analysis system for IDS/firewall data
from around the world. One use of the IPs on this list would be to add a signa
ture daily, depending on the hours of your IDS team, to detect these IPs on your
network. Another use is the port report that this site generates to help determine
possibly new worms and exploits based on the ports in use on your network as
well as any information about those ports on the SANS’ www.incidents.org site.
For example, these two rules would alarm on any TCP traffic entering or leaving
your network, no matter what the TCP flags are on the traffic.

alert tcp $Dshield_list any -> $HOME_NET any (msg:"Inbound Dshield

Top IP traffic"; flags:A+; classtype: bad-unknown;)

alert tcp $HOME_NET any -> $Dshield_list any (msg:"Outbound Dshield

Top IP traffic"; flags:A+; classtype:bad-unknown;)

Another use for the local rules file is for a per-sensor custom rule, especially
for per-network segment traffic such as where the perimeter team knows that

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 450

450 Chapter 9 • Keeping Everything Up to Date

this segment contains servers only, which would tell them that this network seg
ment shouldn’t change that often.This is sometimes the case on larger networks
where the perimeter security team doesn’t have authority/visibility into the host
level of a network such as in the case of ISP networks. A good example is if you
are assisting Law Enforcement/Military Intelligence (LE/Mi) by providing a
custom rule to capture what traffic they are looking for and writing it to a sepa
rate log file “logto.” For example, if law enforcement agents are brought in to
investigate a user on your network, they will most likely ask for a filter to detect
the suspect’s Web traffic.Therefore, a rule much like this might help to create a
traffic log for them to use:

log $Suspect_IP any -> any $HTTP_PORTS (msg:"LE case #124A web

traffic"; session:printable; logto:"LEcase_web.txt";)

You could also use the local rules file for, say, 0-day exploits and tracking
unusual traffic for further analysis.This can be useful to log the user-agent field
of the Web connections on the network.The user-agent field is the field that
tells remote servers what Web browser or application is connecting to the site.
For example, if the user-agent is labeled “MSIE,” this is MS Internet Explorer
browser; “Mozilla” is the Netscape browser. One example would be to “log” only
instead of alarming on these packets to stop from flooding the backend of the
Snort sensors.These logs would then be written to a local file on the sensor that
could be searched at any time to filter out the known user-agents, leaving spy-
ware or custom applications such as Gator or hotbar.This will provide a cut-and-
dry method to train junior analysts to research packets, identify applications on
the network, and provide a means to find less than aggressive patch-level users.

One way to update the Snort ruleset easily would be to place all rules that
are created and are not outside of the official Snort.org ruleset in the local rules
file.This way, no changes other than commenting out and moving to the deleted
rules file are made to the default rules. In addition, if all custom rule changes and
additions are in the local rules file, this means that there is only one file to track
for changes that are out of rotation for the official ruleset.

Removing Rules from the Ruleset
A final element that can make rule updating easier is to avoid putting a rule back
in place once it has been removed.This will prevent unneeded downtime while a
formerly working IDS sensor is retuned to a functional status. If your team has
implemented a well-documented and logically flowed change control process,

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 451

Keeping Everything Up to Date • Chapter 9 451

then that should never happen. If, however, there is no real change control pro
cess that documents system changes, chaos ensues with IDS sensors; for example,
if a rule is turned off by the first work shift for false positives, and is turned back
on by the second shift during an incident to track an attack. By the time the
third shift starts monitoring the network, they no idea that the same rule has
been enabled and disabled or for what reasons.This leads to having an IDS team
that has gaps in security.These gaps can cause the team to think they are covered
for attacks and threats; however, in reality they are either vulnerable or unin
formed of the status of their own sensors.

Using Oinkmaster
Snort Oinkmaster is a Perl script created to automate the process of downloading
and merging Snort rules (http://oinkmaster.sourceforge.net). It is also distributed
on the Snort site in the downloads/contributions section. Oinkmaster requires
Perl, a Perl interpreter, tar, gzip, and wget available on the machine on which it
will run.

OINK!
There are several changes to Oinkmaster since Snort 2.1 came out. For a
complete list of changes and how to fix/upgrade older versions of
Oinkmaster, check out the Oinkmaster homepage at
http://oinkmaster.sourceforge.net.

Oinkmaster fetches Snort rules from the archive address specified in
oinkmaster.conf, comments out the unwanted rules, and prints what rules have
been changed since the last update. Unwanted rules are specified in the file
oinkmaster.conf—this helps to specify that some rules should never be included
in the updated rulesets. In this file, you can also tell Oinkmaster to skip entire
files that you do not want to update or check for changes (for example, in the
snort.org distribution of rules, all ICMP rules are placed in the icmp-info.rules
file—if you are sure you do not need those, you can specify this file as
unwanted).The following files in the archive are updated and checked for
changes (or added if missing on your system):

■ *.RULES

■ *.CONF

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 452

452 Chapter 9 • Keeping Everything Up to Date

■ *.CONFIG

■ *.TXT

■ *.MAP

This script can be run manually or as a cron job, but we again stress that fully
automated updating of rules is not recommended; for example, a typo in a
downloaded archive could wreak havoc on your entire rule base. It is always rec
ommended to test a new ruleset before implementing it on a live system (see the
section Testing Rule Updates later in this chapter.) The following are the most
important configuration directives in an oinkmaster.conf file:

Snort 2.1.x

url = http://www.snort.org/dl/rules/snortrules-snapshot-2_1.tar.gz

Snort 2.0.x

url = http://www.snort.org/dl/rules/snortrules-snapshot-2_0.tar.gz

This directive specifies where to download the updates. If you used white-
hats.com rules, then this line would look like this:

url = http://www.whitehats.org/ids/vision18.tar.gz

OINK!
www.whitehats.com does not appear to have any Snort 2.1 rules or to
have updated the ruleset since Snort 1.8. We recommend that you either
visit the snort.org updates or subscribe to the snort-sigs mailing list for
the nightly CVS rule updates.

The following directive instructs Oinkmaster to skip updating of the file
local.rules:

skipfile local.rules

You will definitely need the following line in the oinkmaster.conf file,
because the file snort.conf contains your own settings and there is no use in
replacing it with the downloaded one:

skipfile snort.conf

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 453

Keeping Everything Up to Date • Chapter 9 453

In addition, if you do not use Barnyard, then you do not need to update the
SID map file:

skipfile sid-msg.map

The following lines, or lines similar to these, will disable updating signatures
with the specified numbers; namely, 1, 2, and 3:

disablesid 1

disablesid 2

disablesid 3

The Oinkmaster script is as follows, where rulesdirectory is the directory , the
old rules are located at the end of the run, and the updated rulesets are placed:

./oinkmaster.pl -o rulesdirectory

Some useful command-line options are:

■	 -c Instructs Oinkmaster to only print information about changes that
have occurred since the previous download and not actually change rule
files.

■	 -b Specifies a backup directory for the old rule files.

Oinkmaster can be run as a cron job similar to the following:

30 2 * * * cd /usr/local/oinkmaster; ./oinkmaster.pl -o /snort/rules/ -b

/snort/backup 2>&1

After each run, the script prints information about what was changed (added,
enabled, disabled, and so forth) in the rulesets.The types of information it pro
duces include:

■	 Added This is a new rule; its SID did not exist in the old rules file.

■	 Enabled The rule with this SID was commented out in the old rules
file, but is now activated (uncommented) (this might be caused by
removing the rule’s SID from oinkmaster.conf).

■	 Enabled and modified The rule with this SID was commented out
in the old rules file, but is now activated and has been modified.

■	 Removed The rule with this SID does not exist in the new rules file.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 454

454 Chapter 9 • Keeping Everything Up to Date

■	 Disabled The rule with this SID still exists, but has now been com
mented out (either because it is now commented out in the down
loaded file, or because its SID was added to oinkmaster.conf).

■	 Disabled and modified The rule with this SID still exists, but has
now been commented out.The actual rule has also been modified.

■	 Modified active The rule with this SID has been modified and
remains an active rule.

■	 Modified inactive The rule with this SID has been modified, but
remains an inactive (commented out) rule.

Figure 9.1 shows sample output from oinkmaster.pl.

Figure 9.1 Changes in the Rule Files Reported by Oinkmaster

[***] Results from Oinkmaster started Tue Dec 25 23:36:07 2002 [***]

[*] Rules added/removed/modified: [*]

[---] Removed: [---]

-> File: web-cgi.rules:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-CGI infosearch

fname"; flags: A+; uricontent:

"fname=|7c|";reference:arachnids,290;classtype:attempted-recon; sid:822;

rev:1;)

[///] Modified active: [///]

-> File: dos.rules:

Old: alert tcp $EXTERNAL_NET any -> $HOME_NET 7070 (msg:"DOS Real Server

template.html"; flags: A+;

content:"/viewsource/template.html?"; nocase;reference:bugtraq,1288;

classtype:attempted-dos; sid:277; rev:1;)

New: alert tcp $EXTERNAL_NET any -> $HOME_NET 7070 (msg:"DOS Real Server

template.html"; flags: A+;

content:"/viewsource/template.html?"; nocase; reference:cve,CVE-2000-0474;

reference:bugtraq,1288;

classtype:attempted-dos; sid:277; rev:2;)

[*] Non-rule lines added/removed/modified: [*]

None.

[*] Added files: [*]

None.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 455

Keeping Everything Up to Date • Chapter 9 455

As you can see, one rule from web-cgi.rules was removed, and two rules
were modified in the dos.rules file.

OINK!
If you want to be careful with rules updates, then probably the best way
to use Oinkmaster is to run it with the -c switch, which will only produce
the change report and will not modify the rules. Then, you need to
check this report for updated or added rules and consider
including/modifying these rules in your configuration.

Using IDSCenter to Merge with Your Existing Rules
Using Windows, it is possible to use the rules editor included in the IDSCenter
program.This editor is able to merge rules files and enable/disable rules inside
files individually. On the Rules/Signatures screen of the IDS Rules section, you
can select a file with rules and open it in the Editor window.The Editor window
has a button labeled Import, which allows you to select any text file.This file will
be merged with the one being edited. After this, it is possible to enable, disable,
or edit specific rules in the resulting file. Figure 9.2 shows the Rule Import
dialog. After reviewing, the result can be saved or discarded.

Figure 9.2 Merging Rules Files in IDSCenter

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 456

456 Chapter 9 • Keeping Everything Up to Date

Change Control
One of the most important factors in a security team is the use of change con-
trol.This change in control helps in several ways: accountability/responsibility,
distribution of duties, and most importantly, training. For example, if an organiza
tion has a large team with multiple shifts or teams, with proper change control, if
a change is made to an IDS rule or sensor then there should be a record some-
where.This record log is typically called a “changelog,” and is useful for several
reasons (not the least of which is providing a means to get back one or more
steps after a change is incorrectly implemented). Keeping records like this can
also be helpful and are sometimes needed as a form of auditing. In several of the
cases we have been involved in, investigators have used changelogs to help docu
ment accountability and process flow.This helped the investigators’ case show
that detects were just a part of the normal operating procedures. Another
example would be using the changelog to show who is making the most
changes.This could be helpful to senior members of the team and team manage
ment in determining which members need help participating on the team. One
example that a security team could roll into their training program is using the
change management process to help distribute duties between junior and senior
members. For example, junior members could be charged with maintaining the
current signatures.This way, the junior members learn the change management
process and documentation, and get an understanding of the signatures and how
those signatures work.This benefits both the junior and senior members of the
team, as the senior members are now free to create new signatures and look for
upcoming threats, while helping to teach the junior members how to be analysts.
Training new members and enforcing change control to current team members
are key, because teaching new and junior analysts the process of documenting
and following the process of change control will help them and the team per
form better as they grow.This also helps to maintain order and responsibility to
the team when a problem occurs without causing undue problems.

The Importance of Documentation
Documentation helps to illustrate that testing new rules is important and can
help in several ways, including:

■ False positives

■ Number/volume of rules triggering (flooding)

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 457

Keeping Everything Up to Date • Chapter 9 457

■ Accuracy of rules

■ Change control

■ Rule documentation

Documentation helps to determine why rules have been added, deleted, or
changed.This can help the team determine why a rule triggered and if they
should be looking for more or follow-on data.

Why a Security Team Should
Be Concerned with Rule Documentation
As the size of an IDS team and the network(s) being monitored increases, it will
become painfully obvious to the IDS team members why rule documentation
and change control are important. For example, when one of the authors of the
book was a member of a large IDS team, all rules were written in a log file read
by all members of the team, and agreed upon by senior members of the team.
This provides a level of accountability and change control for all rules, and pro
vides a guide to rule creation and training for junior analysts. One of the other
options is to take advantage of the “reference:URL” option in a Snort rule.This
can be helpful if there is a series of rules to detect a worm or virus and its vari
ants. For example, one of the authors found it extremely helpful during the early
days of the Netsky variants. A simple change in the “reference” URL and the
analysts would have a link to follow to find out more information about the
variant detected and whether the alarm is false or an infection.

Testing Snort and the Rules
Testing and tuning of rules and sensors is one, if not the most, important aspect of
an IDS. Most testing should occur in a test lab or test environment of some kind.
One part of Snort (new to the 2.1 version) is the use of a preprocessor called
“perfmonitor.”This preprocessor is a great tool to determine sensor load, dropped
packets, number of connections, and the usual load on a network segment. Of
greater benefit is using perfmonitor combined with a graphing tool called
“perfmon-graph,” located at http://people.su.se/~andreaso/perfmon-graph/.

It does take some tweaking of the perfmon preprocessor to generate the
snortstat data. Moreover, an ongoing issue with the perfmon preprocessor seems
to be that it counts dropped packets as part of the start and stopping of a Snort
process.This issue hasn’t been resolved as of this writing. However, one

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 458

458 Chapter 9 • Keeping Everything Up to Date

suggestion is to document every time the Snort process is stopped or started, and
that time should match the time in the graph.

OINK!
perfmon-graph generates its graphics based on the Perl modules used by
rrdtool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/). The rrdtool
is a great tool that is usually found in use by network operations staffs.
This tool takes log data from Cisco and other vendors’ logs to provide
graphs about things like load, performance, users, and so forth. If you
don’t want to install the full rrdtool, you can just install the Perl libraries.

“make site-perl-install”
With this installed, the perfmon-graph functions will work and gen

erate the graphics.

perfmon-graph combs through the data logged by the Snort preprocessor and
then displays it in a generated HTML page. With some tweaking, this is a great
way to make hourly/daily/weekly charts of trends in several metric capable
charts.This can prove invaluable in larger or governmental organizations where
metrics control your budget.

There are pieces of software that can be used for testing new rules and Snort
versions, such as User-Mode (UM) Linux (http://usermodelinux.org/ this is more
updated that the official site), which is free. UM Linux can be used to run a virtual
Linux system concurrently with your running Linux platform. As UM Linux can
also use the host system’s network devices, this can provide a means of “live” testing
of new rules and Snort versions without having to dedicate a spare machine.
VMware (www.vmware.com) is a great tool to use in such situations, and although
it does cost about $300, it is useful in running alternate operating systems inside of
others. One common example is to install VMware on a Windows machine and
then install Linux as if it were on a fresh machine within VMware.This capability
is excellent to train junior team members on to gain experience with other oper
ating systems similar to the production systems without having to worry about loss
of data. Finally, Virtual PC (www.microsoft.com/windowsxp/virtualpc/) is very
similar to VMware. If, however, you are a member of a large organization, then you
most likely have a test lab that can get feeds to real-time data to run past your new
test rules/configurations.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 459

Keeping Everything Up to Date • Chapter 9 459

Testing within Organizations
Whether your security team made up of one person or several 24/7 teams
throughout the world, testing of new rules and Snort builds should be the
second most important role your team handles.The first is to document just
about everything your team does, including testing and rule creation, removal,
and maintenance.The scope of a security team’s testing also may depend on the
size of a organization, monetary backing, and time and materials. Several ways to
test include using a test lab with live taps from the production network to a
single laptop/desktop plugged in to a network, to using Snort rule generation
tools such as Snot or Sneeze. Snot and Sneeze are just two of the tools that take
the contents of a rules file and generate traffic to trigger on the rules. A new and
controversial toolset, Metasploit, is available to help organizations protect their
networks (www.metasploit.com/projects/Framework/).

OINK!
The authors of this book are not in any way encouraging readers to
download or run this tool. Metasploit is a flexible set of the most current
exploits that an IDS team could run in their test network to gather accu
rate signatures of attacks. One of the “features” of the Metasploit
framework is the capability to modify almost any exploit in the database.
This can be useful in detecting modified exploits on the production net
work, or writing signatures looking deep within packets for telltale back
door code. The possibilities that this brings to an IDS team in terms of
available accurate, understandable attack data are immense. While all
these methods are great for testing, most organizations are going to
have to choose some combination thereof.

Small Organizations
We consider “small” organizations as those without a dedicated IDS team or
having an IDS team of up to five people, and not much monetary backing for
the IDS team. As such, most of these teams use either open-source tools or those
tools that are fairly inexpensive; for example, using a second-hand desktop/laptop
or doubling up a workstation as a testing box.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 460

460 Chapter 9 • Keeping Everything Up to Date

Using a Single Box or Nonproduction Test Lab
One method that a person or small team could use to test new rules and versions
of Snort before placing them in a production environment would be to use a test
lab with at least one attack machine, victim machine, and a copy of an existing
IDS sensor build. Understandably, this might be a lot for a small team to acquire,
so a suggestion would be to find a single box. If one can’t be found in the orga
nization, then usually a local electronics store will sell used or cheap machines.
This box should be built with the same operating system as a team’s production
OS and have the same build of Snort.That way, when the team is testing rules or
versions, if s an exploit or bug occurs for the OS or, in the rare case, for Snort,
the team can know it before it hits a production system.This method can be
made easier if the team uses disk-imaging software such as dd from the open-
source community or a commercial product such as Norton Ghost.This way, as
the team’s production systems change, they can just load the production image
on to the test box to test against the most current production system.

If the team or person doesn’t have the time or resources to run a dedicated test
machine, one option would be to use a virtual test lab in which to test. A virtual
test lab would be to add something like VMware or Virtual PC to a workstation
on the network.This would provide a means to install a guest OS such as Linux or
*BSD, which is most likely the OS of choice for a Snort sensor in a small security
team.This small team could then test and run new rules or Snort builds against any
traffic hitting the workstation without having to use the production sensors. If this
software is loaded on a standard Intel PC, then with a little tuning, the image, in
the case of VMware, could be placed on a laptop and taken to other sites to use as
a temporary sensor when testing at new or remote sites.

Finally, another option for a smaller organization is for the security team to
perform testing with their own workstation. As most organizations have an MS
Windows environment for their workstations, we will be using Windows as the OS
of choice in this discussion.There are Snort builds for the Windows environment
known as the win32 builds, which allow people to run Snort from a Windows
machine. One piece of software called “EagleX” from Eagle Software (www.eagle-
software.com) does a nice job of installing Snort, the winpcap library needed to
sniff traffic, database server, and Web server.This is all done with only local access
to the resources, setting up a Snort sensor on the Windows workstation to log all
information to a local MySQL database, and running ACID (Analyst Console for
Intrusion Detection), which is a Web-based front-end for Snort.This is great for
both new Snort users and a small staff to test rules and determine if Snort build or
a rule is going to flood Snort and its front end.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 461

Keeping Everything Up to Date • Chapter 9 461

Large Organizations
We consider “large” organizations as those with an IDS team of more than five
people.These are teams who are usually given their own budget and cover a
24/7 operation or are geographically separated. In an environment such as this, a
team should have a dedicated test lab to run exploit code and malware to deter
mine signatures for detecting attacks and test new Snort builds and rules.This
test lab would also ideally have a live feed tap from the production network to
test with accurate data and load of the rules and builds. Creating an image of the
production sensor build would make the most sense for large security teams.This
would greatly help the deployment time and processes of new sensors, and pro
vide a means to quickly test rules in the current sensors.

Another option for a large organization is the consideration of port density
on each point on a network where sensors are located. If, for example, at each
tap/span of live data this is plugged into a small switch or hub, then the produc
tion systems could be plugged into the switch/hub.Then, a spare box, perhaps of
the same OS build as the production system, could be placed at points on the tap
infrastructure most important to the organization. By placing an extra box at the
span point, testing of a new rule or Snort build could be exposed to real-time
accurate load, giving the best picture for a sensor. We have found this to be good
to use on points such as the external tap used for testing and running intelli
gence rule tests such as strange traffic that normally wouldn’t be getting through
the firewall. Alternatively, you could place an extra box at the RAS/VPN remote
access points, as nearly every IDS analyst who has monitored a RAS link into an
organization knows that these are the points to see some of the earliest victims of
viruses and worms, out-of-date security patched machines, and just strange traffic
in general. If an extra tap was placed at each of these locations, then a view of
the new rules or Snort builds and how they would perform would be highly
accurate without compromising the integrity of the production sensors.

Finally, another extremely useful method to test Snort rules and builds by
larger organizations is a full test lab.This is sometimes shared with other IT teams
such as Operations for new infrastructure equipment or a help desk team to test
new user software. If all of these are present, then this will help in demonstrating
the effectiveness of an attack or virus. For example, if this lab is a disconnected
network from the live network, then when malware or exploits are found, they
can be run in this environment to help the Computer Incident Response Team
(CIRT) team understand containment and countermeasures to use, while the

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 462

462 Chapter 9 • Keeping Everything Up to Date

IDS team can use this data to create and test signatures to determine infection,
detect initial attacks, and possibly other side effects of hostile traffic.

Watching for Updates
As the security field is constantly changing, so should a security team’s informa
tion. One of the most important responsibilities for a security team is to make
sure to keep current on threats to their network and signatures to detect those
threats.The members of a security team should subscribe to several security and
anti-virus mailing lists, and read several security Web sites. Another way to keep
current would be to get information from several CIRT organizations to find
out about threats and attacks they are investigating. If the security team uses all or
some of these sources to keep their IDS sensors up to date, they should be able
to handle most threats facing their network.

The Importance of Security
Mailing Lists and Web Sites
Mailing lists allow a security team to receive information from sources all over
the world.This can also provide a means to get information that is in a raw
format and before the mainstream media. If the security team has a group
account that they can use to sign up for these lists, then this can be the account
that every member of the team checks for information.There are several Web
sites and mailing lists that an organization’s security team might want to sub
scribe to in order to be aware of what threats and risks they might want to be on
the lookout for:

■	 Mailing lists bugtraq (www.securityfocus.com/bugtraq), Full-Disclosure
(http://lists.netsys.com/mailman/listinfo/full-disclosure), VulnWatch
(www.vulnwatch.org/), vuln-dev (www.securityfocus.com/vuln-dev),
incidents (www.securityfocus.com/incidents), and honeypots (www.secu-
rityfocus.com/honeypots)

■	 Web sites securityfocus.com, securiteam.com, infosecdaily.net,
infosyssec.com, packetstormsecurity.com

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 463

Keeping Everything Up to Date • Chapter 9 463

Chain-of-Command and
Outside Management for CIRT Organizations
Government and military organizations have other lists that they have to monitor
for IDS and intelligence information. For nonmilitary organizations, your early
warning information is going to come from several sources.Your security team can
use this information to help develop IDS signatures, such as in the case of the
dameware exploit (www.securiteam.com/windowsntfocus/5SP0J0UAUQ.html)
and the flow from the discovery e-mail to the signature that was developed to
track attack attempts, and track virus outbreaks as in the Beagle URLs
(http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=101059) that
the virus used to communicate infection back to its home.This can be used to
track all infections and assist in containment of the outbreaks. Lastly, these can be
used for policy enforcement such as in enforcing that a patch has been applied to a
network to track which machines in the network are still vulnerable. In the gov
ernment sector, vulnerabilities are coordinated in Information Assurance
Vulnerability Alerts (IAVAs). IAVAs are whitepapers about a threat such as back
ground, detection algorithm, and patches that are needed to fix the vulnerability.
Commercial sector companies can also get this information from FedCIRC, which
is now under the Department of Homeland Security. One example of an IDS
team’s custom signatures would be to write a signature to detect either the threat
attack vector or what a vulnerable system will respond with.Then, this signature
can be used to help determine when network segments have been patched. Some
of these groups include:

■	 FedCIRC <www.dhs.gov> This is the primary source of information
that government agencies have for information on IDS, and Anti-Virus
(AV), threats facing their networks.

■	 CIRT Carnegie Mellon < www.cert.org> This organization is
known not for their timely release of threat and IDS information, but
for not releasing until there is a solution to the issue.This information
can help an IDS team generate rules to help track for compliance with
the issue.

■	 Commercial sources These services, such as ISS x-force
(www.iss.net/xforce) or SecurityFocus Deepsight (www.analyzer.
securityfocus.com), are great for organizations that don’t have a large
security team.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 464

464 Chapter 9 • Keeping Everything Up to Date

Use in Events-of-Interest,
0-Day, and Other Short-Term Use
The final piece of the puzzle is especially important for government and military
organizations. If your organization takes a hard stance on security incidents, then
your IDS information is going to be the first or second place that investigators
are going to come looking for information. One other piece to this is to help
keep the Snort sensors from taking up more memory space than needed.This
means having a process to handle short-term rules and others that are not a part
of the normal signature load. Short-term rules also account for most of the rules
trying to hit the moving target of 0-day worms,Trojans, and viruses.

Short-Term Rules
These are rules that we use for quick daily/hourly issues. For example, in most
large enterprises in which we have worked, the Operations staff comes to the IDS
team for assistance in solving network/user problems when they can’t figure out
what’s causing the problem. One recommendation is not to log these rules into
your ESM/database. Moreover, these rules usually don’t have any bearing on the
security of the network. An example of this occurred when an Operations staff
approached one of the author’s IDS teams to request what be could seen with a
user’s IP.The user was having difficulty connecting to a certain Web site over an
odd port. Since IDS sensors are usually placed to have a good view of a network at
all places, this would be helpful to the Operations team. We created a rule to track
the user across several sensors throughout the network. When we looked through
each point on the network, we were able to determine that a router lower down in
the enterprise had an access control list (ACL) block list on it. An ACL is a list of
IPs and/or ports that are either blocked or permitted to pass a switch or router.
The Operations staff wasn’t aware that the ACL in place was still on the router.
This proved that there was a problem with the Operations staff blocking router list
procedures.This also solved the user’s connectivity problem.

Policy Enforcement Rules
These are rules that are helpful to track a network or user’s actions.This can be
useful for tracking attackers in terms of geo-location, country, or organization.
This can also be turned around to track the most popular networks or Web sites
that your users are visiting.This would be useful in tracking AOL Instant
Messaging (AIM) usage on a network. For example, if you are trying to block all

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 465

Keeping Everything Up to Date • Chapter 9 465

AIM traffic, these kinds of rules would be able to track protocol, users, and the
servers to which they connect, even if they use a nonstandard port (depending
on the accuracy of the rule). At one organization, they were using this type of
rule to find out who had installed AIM, and then add a removal script into their
login script the next morning and send a notice to the user’s supervisor to
address the problem of illegal software.Then, this organization would keep track
of all of the AIM servers that users were connecting to, and add any new servers
to a list of firewalled off servers going outbound.This was a slow process, but it
finally solved the problems the network was facing with AIM usage.

Forensics Rules
These are rules that are placed on a network to track a specific suspect or action.
Recently, one of the authors was running an investigation of a particular user. We
turned on rules looking for a very specific set of information that we were trying
to gather as evidence. In particular, we used two sets.The first used the
“session:printable” parameter to a rule to create a human-readable format for our
investigators to use.The second set was our admissible ruleset.This set was cap
turing the same traffic as the first set, but instead of using the session parameter,
we logged all of these rules into a binary or pcap formatted file.This file was
then md5 checksummed after the capture was complete.This md5 value was
then given to the investigators as part of our chain of custody procedures.The
binary file is generally given to investigators so that their analysts can go over the
information your IDS team has gathered and still be able to provide it as evi
dence for the case. Once the investigators had all the information they needed,
the rules were turned off, and nothing other than a mark in our change logs and
daily activities log was noted.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 466

466 Chapter 9 • Keeping Everything Up to Date

Summary
Snort is an open-source IDS, and as such, is under constant development. New
minor and major releases appear regularly.To maintain an up-to-date IDS, you
will need to update your installation periodically.The update of executables does
not need to be done each time a new release is issued, especially for production
systems. Each upgrade has to be carefully considered.The process of upgrading
executables is rather simple, as backward compatibility is usually preserved. It is
usually possible to simply install a new executable over the old one while pre
serving configuration information.

Much more important are updates to the rules.They need to be watched
regularly.There are semi-automated tools for rule management, Oinkmaster cur
rently being the most convenient.This tool allows downloading and comparing
of new rulesets with old ones with or without performing on-the-fly changes to
the rules. It is better, though, to manually review new and changed rules before
putting them into Snort configuration files.There are also tools for merging rule
files, both for UNIX and Windows.The keywords sid and rev in rule definitions
allow you to uniquely identify rules and their versions during the update or
merge process.

Each new configuration of Snort has to be tested.The simplest way to do so
is by starting Snort with the -T option, which makes it check the configuration
and report any errors.The Snot and Sneeze tools allow simulating traffic
described by Snort rules to check their detection. Both take rules from the speci
fied file and produce IP packets that will trigger these signatures.The main
source of information about new rules is the www.snort.org Web site.There is
also a “snort-sigs” mailing list that is dedicated to signatures submission and dis
cussion of rules development.

Keeping Snort up to date is best done through various means, such as moni
toring mailing lists and newsgroups.Your IDS rules can also be used to help fight
worms and viruses and assist in patch management and verification of patches.

Solutions Fast Track

Updating Snort

� Patching Snort—the patch can be applied to the old distribution

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 467

Keeping Everything Up to Date • Chapter 9 467

without having to change your configuration.

� Updating Snort distributions from binary—the easiest to install with
little skill or if the security team is small.

� Updating Snort distributions from source—useful if the Snort code is
under source review or outside customizations such as for an enterprise
security management tool (ESM).

Updating Rules

� Keep your rules up to date! Security threats to your network are con
stantly changing. During the writing of this chapter, the Netsky net
work virus went from variant a through k.

� Test your rules! While keeping rules up to date is important, before a
rule can go into production it needs to be tested for accuracy. One
quick way to test a new rule is to run it with the –T option and check
for errors during Snort’s start. One other method to test your rules is to
use a generator tool such as Snot or Sneeze.

� Check for rule changes from several distributions. Oinkmaster allows
you to automatically check for any changes.

� Manage your rules from sensor to sensor using snortcenter or policy-
manager.

Change Control

� Maintaining change control of your Snort rules is very important, espe
cially if law enforcement is involved.This can be accomplished with sev
eral tools and methods depending on the size of the network team. An
open-source tool called snortcenter provides a method of some simple
change control and logging of changes via a Web interface.

� Documentation of changes and updates to your Snort sensors provides
repeatable processes.These processes provide a stable, documented sensor
for the production networks.This also provides a process to help train
junior analysts to make correct, stable changes to the sensors.

� Maintain a “changelog” that documents when changes occur on the

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 468

468 Chapter 9 • Keeping Everything Up to Date

sensors and by whom in the case of large teams.This can provide
accountability for accidents as well as a means for the team leader to
determine an analyst’s effectiveness at documentation.

Testing Snort and the Rules

� Testing both Snort version updates and new or updated rules will assure
a smooth, predictably running Snort sensor in a production network.

� Testing Snort versions can be accomplished through several means, from
using live copies or “feeds” of production network traffic in a test lab, to
using a virtual machine software such as VMware, Virtual PC, or User-
Mode Linux on an inexpensive PC.

� Using source distributions of Snort to compile by hand versus using
precompiled binary distributions will also help a team to understand and
configure Snort to best suit their organization.

� Changing current production rules or implementing new rules should
be documented and tested on a system that is similar to the production
environment.

Watching for Updates

� There are several security mailing lists, newsgroups and Web sites that
your security team might want to subscribe to in order to keep current
on threat information on attacks and exploits.These can be used to gen
erate or even get Snort signatures to help detect attacks.

� Rule updates and information can also come from your chain of com
mand or outside organizations such as CERT/CC, Securityfocus
deepthreat, ISS X-Force, or any other security threat groups.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 469

Keeping Everything Up to Date • Chapter 9 469

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: How often should you upgrade Snort?

A: A good time for production systems would be at least at each major update.
For example, upgrading from 2.0 to 2.1 will keep your sensors up to date
with the rules being published in most of the lists and Web sites mentioned.
For those who might want to take advantage of even the small features and
bug fixes in each release, use the dot releases, 2.1.1 to 2.1.2. If your team has
members of the Snort development team as part of the organization, then
they can risk downloading the CVS builds.

Q: How often should you install the official rules?

A: The rules should be upgraded as often as possible to take advantage of rule
corrections and updates. An example is one of the authors wrote a Web-
based script that compared the official rules to the currently running rules on
their sensors every 24 hours.This helped the IDS team adjust the accuracy of
rules in use on the production systems.

Q: Should you use the Snort variables in custom rule design?

A: A definitive answer is yes. As Snort users, you will realize the power of being
able to use custom named variables can become.

Q: Are there other front ends to view Snort data?

A: Yes, there are several Web-based consoles available that use modifications on
the ACID front-end such as SGUIL (http://sguil.sourceforge.net/), for
example, which gives the capability to replay session information in the Web
console. Snortcenter is just one of those front-ends. Several Windows client
applications can be used to view data as well.

www.syngress.com

295_Snort2e_09.qxd 5/5/04 6:05 PM Page 470

470 Chapter 9 • Keeping Everything Up to Date

Q: If a new Snort user has questions about Snort that aren’t answered in this
book, where can he go to get answers about rule configuration and options?

A: The best answer to that is to sign up to the snort-users mailing list at
www.snort.org.This is a very active mailing list with lots of people willing to
answer most questions.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 471

Chapter 10

Optimizing Snort

Solutions in this Chapter:

■	 How Do I Choose the Hardware to Use?

■	 How Do I Choose the Operating System to
Use?

■	 Speeding Up Snort

■	 Finding and Eliminating Bottlenecks

■	 Benchmarking and Testing the Deployment

�	Summary

�	Solutions Fast Track

�	Frequently Asked Questions

471

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 472

472 Chapter 10 • Optimizing Snort

Introduction
So far, you have learned many of the reasons that Snort is a powerful, important
tool to add to your network security toolbox. However, the hype is all for naught
if Snort is not installed on a proper machine running an operating system (OS)
that meets your organizational requirements, and you have the technical capabili
ties to set it up properly.This chapter explains several system configurations that
will attempt to optimize Snort performance for dissimilar business requirements
on diverse network environments.

In the first couple of sections of this chapter, we examine the hardware that’s
necessary as well as recommended for running Snort on several OS platforms and
network configurations. As would be expected for such vastly different OSs (Linux,
BSD, Windows, or Solaris), the amount of computing power required to run Snort
efficiently on one system could vary on another system. An important note to keep
in mind is that the goal of building a Snort box is to limit any type of packet loss.
Otherwise, you could miss an attack or fail to log a crucial bit of evidence.

Later in the chapter, we discuss the pros and cons of the various OSs for run
ning Snort.The choice of using Linux, BSD, Windows, or Solaris will depend
mostly on the comfort level you have with each OS. If you had little or no expe
rience with a particular OS, it would be pointless to attempt a Snort installation
on that OS. However, hardware deficiencies can sometimes be made up for with
tweaks to the OS. With this in mind, your choice of OS can be influenced by
factors such as the speed of Linux or the ease of use of Windows.

Lastly, we will help guide you with different options and tools for testing and
benchmarking your Snort installation.Testing your Snort installation will not
only help identify the potential areas of weakness within your configuration—it
will also aid in ensuring that you are getting the absolute highest return on your
investment.

How Do I Choose the Hardware to Use?
When choosing the hardware that you want to have for your sensor, you must
take a few factors into consideration. First, you must consider the size of the net
work you are planning to monitor. If you are only watching a relatively small
network (between 20 and 40 computers), the sensor you are building is not
going to need as much power as a sensor to monitor a large, enterprise-sized
network. Network implementation will also make a difference, especially if you
chose to create an inline Snort system versus utilizing a passive configuration.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 473

Optimizing Snort • Chapter 10 473

There are benefits to selecting an inline system, including potentially blocking
attacks in real time similar to that of a network intrusion prevention product, but
the passive implementation is what we cover in detail throughout this chapter.
There are also factors concerning the OS choice and what it can take advantage
of on the hardware side. We detail information on these considerations
throughout the remainder of this chapter.

Obviously, cost is always a concern. One of the benefits of using Snort is that
the software is open source and free.You wouldn’t want to waste your savings on
the software by buying more hardware than you can use. In short, buy what you
need, and use what you buy.The point of having a Network Intrusion Detection
System (NIDS) is to monitor all packets of interest flowing through your net
work, so the point of constructing your standalone sensor is to make sure that all
those packets are captured and logged. Building your sensor from a hardware per
spective, you should have one goal: to not lose any packets.

With this in mind, let’s discuss the five pieces of hardware that will determine
and define your sensor’s performance:

■ Processor speed and architecture

■ PCI and bus

■ Memory

■ Disk space

■ Network interfaces

First, processor speed and architecture will determine how quickly the packets
are analyzed and catalogued.The major differing architectures with varying designs
are Intel, SPARC, and Mac.You want to make sure that the processor has enough
speed to not create a logjam and therefore result in packet loss.

Second is the PCI and bus speed of your platform. Fast memory, storage, and
interface cards mean very little if your PCI bus speed is not up to par. As a quick
side note, you will not have to worry about ensuring that your PCI speed is suf
ficient if you purchase your rack-mountable box from a reputable vendor such as
niche company network engines (www.networkengines.com) or Dell
(www.dell.com). If you are building an enterprise sensor, you will want to look
for high-quality motherboards, possibly Intel’s Westville chassis with dual PCI
buses (one for sensing, the other for administration). Don’t forget that you will
want to have enough memory to run your OS and Snort effectively and effi
ciently while also providing enough room to keep the incoming packets in the

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 474

474 Chapter 10 • Optimizing Snort

system memory before being transferred to the hard drive or other media source.
On that note, you want to have a large-format media source to write the log files
to. A large hard drive usually suffices, but eventually that might have to be backed
up with some other form of media (writing to a CD, DVD, or tape drive).This
way, you can have all your log files stored away. A large hard drive is not always
necessary if you plan to back it up with some removable media at the end of the
day (a good piece of advice).

The final piece of hardware and in many ways the most important is your
network interface card (NIC). It is imperative to have a high-quality, high-band-
width-capable card. In most cases, it will be counterproductive to purchase and
use a 10Mbps NIC, especially considering the cost of NICs. It will defeat the
purpose of having a sensor if you have bandwidth spikes, or periods of heavy
traffic, on your network over 10Mbps (which might happen a lot for even
smaller networks). It is mandatory to have a 100Mbps NIC, preferably a name
brand such as Intel or 3Com. If the network supports it and you have the extra
money, spring for a gigabit card.This way, you can always be sure that your NIC
is not responsible for any packet drops.

What Constitutes “Good” Hardware?
The best hardware is that which doesn’t allow any packet loss. Obviously, inci
dental packet loss might happen, so your goal in constructing a “good” sensor
system is to minimize the packet loss due to hardware limitations.The previous
guidelines are reasonable standards to use for your system.The point to all this—
to determine the right hardware for your system—boils down to some facts
about your network and decisions you have to make about how you want to
administer the box.Your goals should be to:

■	 Limit packet loss.

■	 Stay within your means; don’t overspend on something that is already free.

■	 Be sure that the system you set up completes the task that it is

supposed to.

Processors
For your processor, you have to compromise between performance and price. If
you have the capital to get a truly top-of-the-line processor, it won’t hurt. Of
particular interest is the new Intel Pentium IV 3.40GHz processor.The special

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 475

Optimizing Snort • Chapter 10 475

feature of this processor is Hyper-Threading technology.This aspect of the pro
cessor permits a second pipeline for applications to be opened automatically
inside the chip to act similar to a multiple-processor system. Why is this impor
tant? It allows Snort to continue running in one pipeline without great loss to
processing power while another set of applications can be engaged for, say, rou
tine maintenance.

The goal behind this technology is to limit any network-monitoring down-
time.This processor is obviously overkill for many systems, and the Hyper-
Threading technology might not yet be fully implemented within Linux.This
processor might only get its full value out of a Windows system at present.

Another option that allows for similar work (multitasking processes) is a mul
tiprocessor configuration.This could be done with several processors; both AMD
and Intel make processors capable of being used in MP systems.The Intel Xeon
Processor has Hyper-Threading technology, is not as expensive as a Pentium IV,
can be used in MP systems, and as such is an intelligent choice for any x86 con
figuration. For non-x86 setups, the only real power player is the 64-bit
UltraSPARC processor. It has the flexibility and the power required of a pro
cessor. However, it will limit your operating system choice because no Windows
versions are compatible with Sun hardware.

RAM Requirements
The amount of RAM required is a sticky question. If you have RAM with a
high bus speed, you will not need as much of it. Getting too much could sub
stantially increase the cost of your NIDS. As of this writing, RAM for x86 sys
tems is relatively inexpensive, so it’s difficult to go wrong by estimating on the
high side. If you’re planning to use a more proprietary platform, such as an
UltraSPARC, memory costs might be more of a factor.The OS you choose will
give you a minimum recommended amount.

For example, you need more RAM for your system if you are going to run
Snort off a Windows platform as opposed to a more streamlined OS such as
Linux. Generally, the size of your network and the amount of expected traffic
will give you an idea of how much RAM you need. If you are purchasing your
system for the purpose of rolling it out to your relatively large enterprise envi
ronment, we’ll assume you have two to three grand to spend on your Snort
hardware. Go to Dell.com and purchase a single U rack-mountable system with
at least a gigabyte of fast memory.You can get a barebones system with that for
about $1600. If you are a home user or have a tight budget at work, you might

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 476

476 Chapter 10 • Optimizing Snort

need to be a little more frugal with your spending; 128MB will work for a Linux
system, whereas 256MB is the suggested minimum for a Windows-based system.

If you face the choice of selecting more RAM versus additional CPU, we
recommend purchasing more RAM. RAM will allow you to keep more data at
“your fingertips” at faster speeds.The odds that you will be pushing your limits
with CPU are very small when you consider that most common lags are realized
in hard disk write speeds and memory usage. Do not expect hard disk swap
spaces to help you out here.

Storage Medium
When choosing your large-format media, you must make decisions about how
you are going to operate your NIDS each day. If you plan to make a library of
your daily log files, getting a smaller media source is a good idea.This could be a
Zip drive, CD, or even something like a Smart Media card.The latter is a smaller
and more easily stored option, but it could be prohibitively expensive. If you
don’t plan to back up your log files daily but more toward weekly or monthly,
you need a large hard drive as well as a very large removable media source.This
is probably impossible if you are dealing with an enterprise-sized network, where
daily backups are needed. However, in a small network, backing up will not be as
daunting a task. Overall, a 60GB hard drive should be fine for either setup. Hard
drives are relatively inexpensive, so you should get one for a reasonable priced.

Outside of size and storage capacity, hard drives have a write speed associated
with them. Disks with faster write speeds are beneficial for systems with enterprise
applications that require a large amount of data to be stored quickly. SCSI drives
are historically faster than SATA or FireWire drives, but they are still much more
expensive.You can expect to pay approximately three times as much for a SCSI
disk array versus the competing slower technologies; however, a SATA drive run
ning with SenTek can achieve speeds up to 85 percent of those of a SCSI.

OINK!
Here’s an interesting thought: A SCSI drive at 90 percent capacity writes
slower than a SATA drive at 30 percent capacity.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 477

Optimizing Snort • Chapter 10 477

Network Interface Card
Finally, there is the NIC. As we touched on earlier, there is a definite requirement
for a 100Mbps card. If the funding is there, get the gigabit card. We cannot stress
this enough.Your goal is to minimize packet loss, and this is the easiest way to do
so. Now, if you have a small network, you really don’t have to worry about any
thing greater than 100Mbps.You should also consider the incoming bandwidth
size. If your network is running off a T1, your Snort box is really not going to
have a difficult time watching that.The bulk of its time will be taken up
watching the internal network (if that is how you set it up).

OINK!
We have not yet taken into account internal bus speed. Network cards
can become limited if the corresponding bus speed is not high enough
to matter. For example, you will never come close to using a 1GB inter
face card on an ISA bus.

How Do I Test My Hardware?
Snort Intrusion Detection is not the definitive guide for purchasing and configuring
computer OSs and hardware. Instead, it should be used as a guide to assist in
developing a set of platform-specific tests. In general, you should execute five
categories of tests on each Snort sensor to ensure that you have the hardware
properly installed and configured:

■	 Network connectivity The most important aspect of testing your
hardware is to ensure that your NICs are functioning properly. In most
cases, Snort sensors require that you use your card in two different
methods: regular and promiscuous. In simple terms, it is important that
you test to make sure that your card can send and receive packets in
regular mode as well as capture packets successfully in promiscuous
mode. In addition to packet sniffing, users commonly require remote
access to this system for management purposes. One of the best ways to
gain remote administration access is via a second NIC.The second NIC
can serve as a secure link inward without compromising the other card’s
ability to capture packets.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 478

478 Chapter 10 • Optimizing Snort

■	 Sensor placement After determining that your NICs are working,
sensor placement tests will ensure that you can capture the packets that
you intend to capture. We realize that this is not a “real” hardware test,
but it is just as important as the hardware tests. Ensure that no unin
tended network routes or filters are preventing you from analyze poten
tially malicious traffic.This step is especially important on switched
networks, where Snort monitoring might require special switch config
uration to set up port mirroring.

■	 CPU usage There are multiple methods for testing your CPU usage.
The goal of the CPU tests is to verify that you have the processing
power to handle a heavy load of packets during a network traffic spike,
or sudden increase in bandwidth consumption.The method in which
you will derive the most value is multifaceted and requires a few types
of tests. A good breadth of tests without consuming too much time and
resources is to run the following three tests:

■	 Idling When the sensor is idling and no packets are being ana
lyzed, ensure that a maximum of 2 to 3 percent of your CPU is
being used.

■	 Twenty-five percent Suppose you are on a network that supports
a transmission rate of 10Mb/s. In this scenario, you should ensure
that you are under 20 percent CPU utilization when the traffic hits
about 2.5Mb/s, or about 25 percent of your bandwidth capacity.

■	 Fifty percent Similar to the previous case, when your bandwidth
capacity is at approximately 50 percent, it is important to maintain a
CPU utilization rate less than or equal to 45 percent.

■	 Hard disk A rather trivial test, but you should ensure that you have an
adequate amount of space available on your hard drive after installing
and configuring your OS. Believe it or not, some installations of
Windows XP Professional consume over 3GB of drive space. Add some
applications and you could easily be over 5GB. On a completely irrele
vant note, a Visual Studio .NET installation can take as much as 2GB.
The point is to take a few seconds and check your system.

■	 Logging Snort packet and alert logs are the central point for traffic
analysis, reporting, and data collection. It is essential to ensure that the
logs have the proper rights and attributes for writing and that there are

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 479

Optimizing Snort • Chapter 10 479

no configuration anomalies that would limit the log size to something
less than what you defined during configuration.

How Do I Choose
the Operating System to Use?
The choice of OS for your Snort installation depends on several factors. Ease of
use, performance, and familiarity are all aspects that must be taken into account.
The choice of hardware in your Snort box is also going to be a determining
factor of which OS is best to use. For example, as a streamlined OS, Linux might
be the best choice for a low-performance machine. However, in a high-perfor-
mance machine, the choice of OS will be less dependent on hardware.

First, the most effective OS choice for any network administrator will be the
OS with which he or she is most familiar. For example, if you are proficient with
Windows software but are completely new to Linux, the obvious choice is going
to be Windows. It is difficult enough to learn a program like Snort, let alone
teach yourself an OS at the same time.

Another option that will influence your OS choice is ease of use.There are
going to be intricacies for each OS used for your Snort installation. As with
many products, Windows-based software will be easy to use and set up—this
includes Snort. Although there are some technical complications with the Snort
product on a Windows system, such as WinPCAP issues, Microsoft kernel
updates, and “cold” (requiring reboot) system fixes, the documentation is out
there and easily accessible to correct any problems that might arise.The Linux
based platform has even more documentation on it and is more stable, since
Snort was originally written to run on such an OS. Again, these are things to
look at when choosing your OS.

Finally, for performance, you must examine the way the OS is built. Of
course, the more “bulky” OS (Windows) will have performance drags, unlike the
streamlined Linux.This is expected, and hardware can help make up differences
in the performance of the OS. As stated earlier, all these factors must be taken
into account; no one factor should influence your decision of which OS to use.

Now let’s discuss your choice of OS in greater detail.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 480

480 Chapter 10 • Optimizing Snort

What Makes a “Good” OS for an NIDS?
To choose a “good” OS for Snort, you must consider integration into your net
work infrastructure.You don’t want to run a Snort box that will interfere with
normal operations.The goal of setting up any NIDS should be ease of installa
tion and administration. Because of this inherent goal, this entire section can be
summed up in one powerful statement, referred to as our Golden Rule for
selecting a NIDS platform:

Select the platform that your organization is most familiar with and that will
easily integrate into your current environment administration process.

Notes from the Underground…

Leveraging Win32 IPSEC via Snort
Don’t count out Windows yet! A while back, we downloaded an excellent

script, for our Slackware box that monitored Snort logs and automatically

would do that for a Windows-based OS, so we decided to write our own.
Understand that this was not an effort to modify the win32 kernel but
more or less an endeavor to get a similar technology for a Windows 2000
laptop. After two minutes of research, we decided to try to create a Snort-
monitoring mechanism that would somehow automatically trigger and
then block attacker IP addresses via IPSec rules.

The monitoring mechanism was easy enough. It loads the stats of
the alert file and checks every second to see if the file has been accessed.
When it identifies that the file has been accessed, it grabs an attacker IP
address and compares it to any other previously analyzed attack IP
addresses in hopes of minimizing redundant IPSec filters. Provided that it
is a new IP address, the script then passes that address as a parameter to
the filter function. In this case, the function ipfilter() will disallow the
attacker from connecting to port 135 on the local system. If you are unfa
miliar with IPSec filters, they are similar to Berkeley packet filters in decla

Perl script, or at least at that time what we thought was an excellent

updated IPTable filters. Unfortunately, we could not find anything that

ration syntax but drastically different in functionality.
For this Perl script to work, you must have the following:

Continued

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 481

Optimizing Snort • Chapter 10 481

■

■ Microsoft’s IPSECPOL.exe utility included within the Windows
2000 Resource Kit

■ Win32 Snort installed and configured

Snort usage:

snort -c ids.conf -A fast -N -l .

Just about anything can go into the configuration file, as long as
your script can find and access the alert.ids file. This script can also be

#Proof of Concept PERL Script to Allow Win32 Snort to Leverage

Microsoft's IPSEC Engine

#By: James C. Foster

#######

#Monitor the Alert File so that you know when to activate the IPSEC

filters

$file="alert.ids"; #This is the name and path of the alert file

@stats=stat($file);

$iat=@stats[8]; #Record alert file statistics

while(1)

{

sleep 1;

@stats=stat($file);

if ($iat != @stats[8])

{print "Something was added to the Alert.ids file\n";

###Call sub function to grab attack IP

$alertip=&get_alert_ip;

###Call sub function to compare IP to attacker IP array and

ignore list

&compare_ip($alertip);

$iat = @stats[8];

}

else {print "Still Waiting\n";}

ActiveState’s Perl interpreter

found on this book’s companion CD-ROM.

Continued

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 482

482 Chapter 10 • Optimizing Snort

}

#######

#Grab the attacker's IP address from the alert file

sub get_alert_ip{

open (ALERT, "alert.ids") or die "Cannot open or read alert file";

while (<ALERT>)

{

next if (/^\s*$/); #skip blank lines

next if (/^#/); # skip comment lines

if (/\.*\s(\d+\.\d+\.\d+\.\d+)\.*/) #Grab the IP Address

{

$alertip=$1;

print "Alert IP address is $alertip \n";

}

}

close (ALERT);

#Check to see if you got it!

if ($ip eq ""){ print "Could not get the IP address out of the

alert file! \n";}

$alertip;

}

#########

#Compares the new IP address to the IP address I have already

captured

sub compare_ip{

my ($compareip) = @_;

open (COMPARE, "attackers.old") or die "Cannot read the ignore file,

$!\n";

while (<COMPARE>) {

chop;

next if (/^\s*$/); #skip blank lines

next if (/^#/); # skip comment lines

if (/(.*)/)

{

$alertip=$1;

Continued

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 483

Optimizing Snort • Chapter 10 483

if ("$alertip" eq "$compareip")

{

print "Somebody old is still attacking \n";

}

else

{ #Send the new IP address to the IPSEC filter subfunction

&ipfilter($compareip);

$tag=1;

}

next;

}

}

close (COMPARE);

if ($tag eq 1)

{

system ("echo $compareip >> attackers.old");

}

}

#########

#Proof of Concept that filters all inbound protocol connections to my

NetBIOS port (135)

sub ipfilter{

my ($attackerip) = @_;

use Win32;

use Win32::Process;

Win32::Process::Create($afilter2::Process::Create::ProcessObj,

'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:tcp",

0, DETACHED_PROCESS, ".");

Win32::Process::Create($afilter2::Process::Create::ProcessObj,

'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:udp",

0, DETACHED_PROCESS, ".");

Win32::Process::Create($afilter2::Process::Create::ProcessObj,

'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:raw",

0, DETACHED_PROCESS, ".");

Win32::Process::Create($afilter2::Process::Create::ProcessObj,

'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:icmp",

Continued

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 484

484 Chapter 10 • Optimizing Snort

0, DETACHED_PROCESS, ".");

}

#########

Disclaimer: This is not meant to be used in an intrusion prevention

capacity and was included for research and educational purposes

only.

The following are references that you might find useful in imple

script:

■ ActiveState Software
■ IPSec
■

menting, testing, or modifying the previously detailed proof-of-concept

www.activestate.com

www.microsoft.com\windows2000\reskit\

Perl www.perl.org

What OS Should I Use?
The obvious answer to the question of which OS you should use is the OS with
which you or your organization are most familiar. It is nothing short of painful
to attempt to set up a stable Snort box on an OS with which you have no expe
rience. As long as you follow our Golden Rule, you will come to find that main
taining your sensor will not be a complicated task.Table 10.1 lists some
environment-neutral pros and cons for selecting a base platform in case your
organization has multiplatform skill sets and standards.

Table 10.1 Measuring the OS Selection

Windows UNIX and Linux

Pros Cons Pros Cons
Easy installation High CPU CPU-efficient Initial installation
and configuration overhead platform and configuration
Windows-based Not Snort’s native Wide variety of Steep learning
system platform additional tools curve
administration available
Microsoft security Can use
features such as automated filters
EFS such as Perl

scripts that
enable IPTable rules

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 485

Optimizing Snort • Chapter 10 485

OINK!
If you belong to one of the 99 percent of companies that are cost con
servative, you will get more for your money if you select a UNIX-based
OS. The software is less expensive (if you pick a free OS), and, as dis
cussed, you can get by with a bit less hardware.

How Do I Test My OS Choice?
Testing your OS is somewhat similar to testing your hardware configuration.You
can perform a plethora of tests that will ensure and assess everything from net
work connectivity to administration and sensor thresholds. In general, the goal of
testing your OS is to make sure that everything runs smoothly.You want to
ensure that the installation and configuration of the OS, in addition to any other
applications, did not adversely affect performance.The following five categories
encompass the main concentrations of tests that should be included in your OS
test plan:

■	 Hardware tests should be included in the test plan for your intrusion
detection sensor.

■	 Stress tests should be included to identify the stress thresholds of an
intrusion detection sensor.

■	 Remote administration is an essential feature for network security
applications and tools, especially those that report real-time security
incidents. Verify that all remote administration applications function in a
secure and on-demand manner. In case of an emergency, it is critical
that administrators are able to collect and analyze network and attack
data. Microsoft’s new remote administration solutions are actually secure
when connecting to trusted systems.They use the Remote Desktop
Protocol (RDP) 5.5, which encompasses an authentication and encryp
tion (encoding) schema. Other administration programs such as
PCAnywhere and VNC should be configured to enable encryption and
have the latest patches.

■	 Log management is essential. It is important to test your sensor’s log
ging capabilities. Included within the gambit of tests should be proce
dures to confirm that large files are handled properly and to ensure that

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 486

486 Chapter 10 • Optimizing Snort

all the output modules were successfully implemented. Running tests to
test log file sizes is easy. Simply create a rule to monitor all data (the fol
lowing example should be sufficient) so that your sensor logs fill quickly.
After the logs have hit their maximum capacity, observe the following
results. In addition, the following rule will log to the configured “log
output module,” so this method can also test the flexibility of the in-
place logging mechanisms.

log ANY ANY -> ANY ANY (msg: Testing Log Procedures);

Log management is coupled and included within this gambit of
testing in addition to Snort testing because here we focus on testing the
platform-layer implementation—specifically, how the OS handles the
defined logging modules.

■	 System administration covers technical administration of the system
and policy and managerial administration tasks such as installing mainte
nance patches, maintaining user accounts, and viewing system and secu
rity logs and reports. We are quite sure that a good amount of these tests
are already in place within your organization. If not, you might have a
longer road ahead.The current patches and system fixes should be ascer
tained from the respective vendor Web sites for the underlying platforms
in addition to any other installed applications. Managing user accounts is
not a complicated task because of two key data points. First, network
sensors should not be installed on systems with multiple functions;
second, only administrative users should have accounts on these boxes.

Speeding Up Snort
If you are familiar with Snort and the underlying platform, installing and config
uring your sensor should only require a modest amount of effort and resources.
With that said, if you are not very familiar with your OS of choice and Snort,
installing and configuring your Snort sensor could require more intense amounts
of organizational resources. Furthermore, installing and configuring multiple sen
sors might prove a heavy burden on time, even with the proper technical skill set.

A few common goals that might present obstacles in initially designing and
implementing your intrusion detection network include collecting and analyzing
all logs in a central location, implementing a manageable rule-updating policy,
implementing a secure method for managing all the sensors, and all the legwork
required to get all the sensors brought up to “production status.”

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 487

Optimizing Snort • Chapter 10 487

You have numerous methods to minimize resources and time during the
initial setup process. Installation and configuration scripts can quickly help auto
mate numerous manual tasks such as system rebooting, log analysis, and user man
agement. In addition to automation scripts, the method by which you initially set
up your sensor will play a huge role in the flexibility of and future reuse of your
sensor configuration. Creating reusable configuration and variable files plays a sig
nificant role in getting the most out of your installation and development time.
Furthermore, the ability to tweak your preprocessors and output plug-ins can dra
matically decrease the burden of the CPU load. Lastly, there is always the option to
clone the drive; however, this only works if you want the sensors to be exactly
alike, which is not always a viable option for distributed networks.

The following references serve as a quick refresher if you would like to get
detailed information about any of the topics previously mentioned.

■	 Installation tweaks—Chapter 3, “Installing Snort”

■	 Creating portable configuration and variable files—Chapter 5, “Playing
by the Rules”

■	 Flexible preprocessors—Chapter 6, “Preprocessors”

■	 Flexible output plug-ins—Chapter 7, “Implementing Snort Output
Plug-Ins”

The Initial Decision
Most analysts would consider it unheard of to analyze network intrusion
attempts in anything except real time or very near real time, but it is a considera
tion that has been made by several global and small enterprises. Real-time intru
sion detection is an around-the-clock constant process of protection for your
organization and its environment. Believe it or not, a small number of companies
have implemented hybrid approaches to monitoring their intrusion detection
infrastructures, which can have grave effects on system speed, organizational
maintenance time, and upfront deployment costs.

Now you might be asking yourself, how would the decision of when to
monitor the devices affect the speed at which they operate? The answer is quite
simple: Snort has numerous features that you might have become familiar with,
including its output modules—specifically, the alerting and logging modules. If
you were to select a logging mechanism that did the upfront packet formatting
by the Snort executable, it would impact the overall performance of your

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 488

488 Chapter 10 • Optimizing Snort

installation and configuration. Conversely, if you elected to implement Barnyard,
it would post-process the captured data and conduct formatting via another pro
cess or even another system.

The major question your organization needs to pose to itself when deciding on
the timeframe for analysis is, when will the data be read by a human analyst? If you
don’t plan to monitor your IDS constantly or have an analyst sit in front of the
monitor 24/7, it probably doesn’t make sense to log your alerts in such a way. A
very common practice for organizations that implement their IDS infrastructures
in this manner is to simply review the logs once a day, first thing in the morning.

In addition to determining when the logs and alerts will be analyzed, you
also have to determine the architecture or infrastructure design of your imple
mentation. Inline versus passive, log storage for 30 or 180 days, and real-time
analysis are all questions that have to be answered.

Deciding Which Rules to Enable
Snort’s ruleset is the most critical asset of your intrusion detection sensor. In
addition to being the most complex and time-intense aspect of the setting up
Snort, it is also the most configurable. For that reason, it is very easy to improp
erly configure your system. We have seen both extremes—sensors with only 10
rules because the administrator thought he only needed rules for current vulner
abilities and threats and sensors with over 1500 rules that created a 10 to 35 per
cent packet loss ratio on normal to peak traffic periods.

One of the most popular and effective methods for determining appropriate
rulesets adopts two key principles:

■	 Identifying key protocols and services that are used on your network. If
NetBIOS and HTTP services are the only services used on a particular
network segment, only rules referencing those services need to be
applied. An additional general rule that defines external sources
attempting to connect to a nonutilized network service should be cre
ated to log the traffic.

■	 Determining the level of granularity required for your evidentiary logs.
For example, if the network is merely a development network, the
attack details and rules might not need to be as stringent as for a finance
or publicly facing network.

Figure 10.1 is a tool that you can use to assist in ensuring the proper catego
rization for Snort rules and rulesets.The tool requires a bit of subjectivity in the

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 489

Optimizing Snort • Chapter 10 489

definition for the threat’s threat level. We view critical threats as any automated
exploit or tool that assists in exploiting a vulnerability.

Figure 10.1 Categorizing Rules

Critical Threat
&

< 15% Network

% of Affected Systems

Th
re

at
 Le

ve
l

Moderate Threat
&

< 15% Network

Minimal Threat
&

< 15% Network

Critical Threat
&

15-35% Network
Impact

Moderate Threat
&

15-35% Network
Impact

Minimal Threat
&

15-35% Network
Impact

Critical Threat
&

> 35% Network

Moderate Threat
&

> 35% Network

Minimal Threat
&

> 35% Network

Disable
Key:

AlertLog

Impact Impact

Impact Impact

Impact Impact

Critical threats are proliferating on the Internet at a fast pace, such as most e-
mail–borne viruses, popular new exploits, and vulnerabilities that allow adminis-
trator-level access to system resources or data and in most cases are easy to
leverage. For an enterprise organization, these critical threats are where you want
to spend the majority of your company’s time and energy. A moderate threat is
one that requires more than one step to complete and usually requires an ade
quate amount of technical ability to exploit from a malicious user perspective.
Other moderate threats include vulnerability proof-of-concept code and vulnera
bilities that affect popular software products. Finally, minimal threats are consid
ered more difficult attacks that leverage system information or any other
noncritical pieces of information. Minimal threats are those that require a consid
erable amount of technical “know-how,” a highly specific scenario to exploit the
vulnerability, or numerous manual procedures that must be sequenced together in
a specific order.The following are some well-known threat examples categorized
in our schema:

■	 Critical threats SQL Slammer worm, CodeRed, IIS Unicode attacks

■	 Moderate threats MDAC remote buffer overflow, Wu-FTP buffer
overflow, OpenSSL bugs

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 490

490 Chapter 10 • Optimizing Snort

■	 Minimal threats Bind TSIG, “obscure” CGI vulnerabilities, SMTP
VRFY vulnerability

Network impact refers to the number of systems within your environment
that are affected by the threat. A network with 500 nodes—servers, workstations,
and network devices—that has 25 IIS servers would have an impact of 5 percent
for a threat such as a Microsoft self-propagating Web server worm. We realize
that our tool is not perfect since it does not account for percentage of private,
production, or transaction systems; however, it can be used to help create your
baseline.You might determine that you want to only determine the threat level
pertaining to externally facing systems or production-status systems. Both are
commonly analyzed scenarios and can add value if presented to “decision
makers” or administrators in a timely fashion.

Notes on Pattern Matching
Pattern matching is frequently a problem within intrusion detection deployments
because it is very CPU resource intensive. Realizing this level of intensity is dras
tically important when creating Snort rules that leverage this type of function
ality. We recommend sparsely using pattern-matching algorithms in your rules
and never launching pattern-matching rules from a pattern-matching rule.This
type of execution tree could bring your Snort installation to a halt if these rules
were triggered by an automated attack or worm.

More information on pattern-matching specifics can be found in Chapter 5.

Configuring Preprocessors for Speed
Introduced in Snort version 1.5, preprocessors provide an API for administrators
and developers to define sets of instructions to be interpreted and executed on
captured traffic.The preprocessor’s unique value is derived from the fact that it
analyzes the data before potentially passing it to the Snort ruleset.This feature
adds many technical benefits, especially in the realm of identifying more complex
network attacks that are obfuscated and/or divided between multiple packets.
Explicit preprocessor features within Snort include TCP packet reassembly,
decoding HTTP, fragmentation alerts, portscan identification, and stateful inspec
tion protocol support.

As with most of the features within Snort, it is recommended to ensure that
the ROI exists before implementing any preprocessors. However, preprocessors
present a unique problem because, if configured improperly, it is quite easy to

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 491

Optimizing Snort • Chapter 10 491

create a potential infinite looping or denial-of-service (DoS) anomaly that would
bring your sensor to a screaming halt.

The conversation preprocessor takes in a number of parameters, but most
importantly, it provides a user the capability to set the timeout value and the
number of simultaneous sessions that can be monitored.The preprocessor relies
on human knowledge during configuration time because it allows you to mon
itor the entire range of 65,535 ports. A timeout value of 60 seconds could easily
allow an attacker to take down the sensor by flooding packets for 30 seconds and
then send an attack that would go unnoticed.

It is difficult to pinpoint recommendations for configuring your preproces
sors while maintaining acceptable levels of performance. Our recommendation is
to use your common sense, and hopefully that sense in combination with our
previous recommendation to buy a powerful machine will ensure that your plug-
ins will serve as intended. Some rules to live by include:

■	 Don’t monitor more than 10,000 connections with any single prepro
cessor.

■	 Multiple portscan preprocessors are not needed.

■	 HTTP decoding is only needed for systems that receive inbound HTTP
connections; in other words, your Web servers.

■	 Use the new Stream4 for packet reassembly and inspection.

■	 Similar to HTTP decoding,Telnet decoding for Telnet and FTP should
only be used on systems with corresponding Telnet and FTP servers (in
most cases, ports 23 and 21).

It was not our intent to scare you away from using preprocessors, since some
of them were designed to be more accurate and efficient than their commercial
counterparts. Learn them, consider their ROI, design them to correlate on data
from pertinent and relevant systems, and implement efficiently.

OINK!
For more in-depth information on preprocessors, please refer to
Chapter 6.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 492

492 Chapter 10 • Optimizing Snort

Using Generic Variables
Generic variables can and should be used wherever possible. Why, you ask? Well,
generic variables allow users, administrators, and intrusion detection engineers to
quickly pull and reuse Snort rulesets in different environments. Instead of the
rules being tied to specific IP addresses, whether internal or external, the rules
are tied to variable names. For example, if a Snort rule were to detect a certain
type of Web-based attack, then naturally you would only want it to analyze
packets destined toward internal Web servers.

Snort provides users the ability to create stand-alone configuration files or
numerous smaller configuration files that are linked to one main configuration
file that Snort analyzes during execution.This is a perfect method for creating
reusable sets of rules, since the only areas that would require modification are the
variable definitions. Consider the time savings for changing 15 to 50 variable
names instead of changing 1000 or more Snort rules.

A collection of the most common generic variables declarations include
internal network ranges, external networks, DMZ or transaction zone addresses,
Web servers, DNS servers, mail relays, routers, client networks, and so forth.
These variable names and types are seen throughout Snort documentation and
current Snort rules in formats such as $HOME_NET or $DMZ.

OINK!
More detailed examples of using generic variables can be found in
chapter 5.

Choosing an Output Plug-In
Snort output plug-ins are excellent for modifying and presenting log and alert
data in a customizable fashion. During the installation and configuration process
of your sensor, you have the ability to enhance Snort’s reporting features without
using any additional add-on tools such as ACID or SnortSnarf to assist in log
analysis. Just as a quick recap: Plug-ins allow you to define files to use for storage
in addition to the format of the data that goes into those files.

When selecting an output plug-in, you should determine the business and
technical factors of your selection. For example, the projected traffic rate should

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 493

Optimizing Snort • Chapter 10 493

be taken into consideration when designing the sensor. In addition, you need to
run through the plug-ins and do what we refer to as a common sense test.A
common sense test is just verifying that you are not trying to output to syslog on
a Windows 2000 system or write to C:\Snort\logs on an OpenBSD sensor.

There are additional factors in selecting output plug-ins that will potentially
affect the overall choice and functionality of the system:

■	 Too many plug-ins can hinder system performance.

■	 Individual rules that output data to multiple files can also impede per
formance.

■	 Data format defined within the plug-ins should be streamlined; complex
data formatting should be completed outside the Snort engine, such as
that in a Perl parsing program.

■	 Only pertinent data should be included in the plug-ins.

It is important to note that selecting a specific output plug-in is not
always necessary. Depending on the type of installation and configuration your
environment requires, it may prove beneficial to implement the unified logging
option and leverage a post-process application similar to Barnyard. Barnyard ana
lyzes and correlates packets after they have been saved off in their storage file
while its main goal is to minimize CPU cycles directed towards reporting uti
lized by the Snort executable.This allows the Snort application to focus on
packet capture and analyze instead of data parsing and formatting.

We also recommend only selecting one output plug-in, specifically we
highly discourage “stacking” or using multiple output plug-ins within a single
instance of Snort.This also puts a significant burden on the application which
could lead to dropped packets and lost attack analysis.

OINK!
Output plug-in paths, locations, and references might have to modified
if declared statically, especially if different platforms were used. We rec
ommend creating a logging structure that is not only type-fully named,
but also consistent across your entire intrusion detection network.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 494

494 Chapter 10 • Optimizing Snort

Benchmarking Your Deployment
In the business world, benchmarks serve as a tool to help an organization
improve its business processes.Technically, benchmark tests can serve as an excel
lent resource to aid in identifying strengths and weaknesses in test subjects, sys
tems, and cases. In our case, proper Snort benchmark testing will identify current
and potential configuration-related bottlenecks due to improper configurations,
lackluster hardware, or software inefficiencies. Keys to conducting a high-quality
benchmark are proper comparison systems, one-off configuration modifications,
repeatable results, and documentation. It might seem like a great deal of specific
information and, to be honest, conducting a commercial-grade benchmark con
sumes a considerable amount of time and resources.Therefore, for the remainder
of this section, we will refer to benchmarks in two ways. Both will be related to
Snort tests, but one will be referred to as commercial-grade benchmarks (CGB)
and the other as ad hoc benchmarks (AB).The first is self-explanatory, and the
other simply means that you are executing a less formal test in search of one or
two advantageous outcomes. An example would be implementing a new rule and
seeing the impact that rule has on your sensor and if the performance impact is
worth the gathered data.

If you are asking yourself, “Do I really need to conduct a benchmark test,
since I only want to use Snort as an additional resource in my environment in
the case of an emergency or one-off scenario?” the answer might be “no.” In
general, benchmarks are used in commercial organizations for commercial-grade
applications; however, Snort stands apart from the crowd as a publicly available
tool that has the quality of any other private product. Whatever your decision,
expect to spend 40 to 80 engineer hours for system preparation and testing.

Benchmark Characteristics
Benchmarks, either good or bad, have certain distinguishing characteristics.
Numerous factors can lead up to or directly contribute to the success or failure
of a test. Such factors range from inadequate resources or time allocation to
improper tool automation. Subsequent sections detail some of the disastrous pit
falls that should be avoided, in addition to vital elements that should be included
in the benchmark.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 495

Optimizing Snort • Chapter 10 495

Attributes of a Good Benchmark

■	 Strong benchmarks result from a combination of solid documented
business requirements and functional test plans. It is key to understand
the business drivers for conducting the benchmarks, even if the driver is
to simply “create a leaner, faster, more efficient Snort intrusion detection
platform.” In addition to creating the vision of a benchmark, docu
mented goals and milestones should also be included in the require
ments. For example, if your goal is to determine if it is better to place
Snort on an old Linux system or relatively new Win32 system , then the
milestones in achieving this goal would be: Create identical Snort con
figurations on production-ready test systems.

■	 Determine and specify a test set of intrusion detection rules to imple
ment on both test systems.

■	 Identify and gather required assessment tools (for example, vulnerability
scanners, port scanners, etc.).

■	 Develop process and procedure automation via scripting or manual pro
cedures.

■	 Develop a benchmark test plan.

■	 Conduct the benchmark.

■	 Analyze the results and determine future action items.

Snort benchmarks coincide with most other types of technical benchmark
assessments in reference to test methodology. In practice, it is purely another
technology-enabled management tool. As a rule of thumb, the more automation,
the better!

Attributes of a Poor Benchmark
At the risk of sounding sarcastic, we must say that most of the attributes of a poor
benchmark can be derived by taking the inverse of the attributes of a good bench
mark in the previous section. With that said, there are a few exceptions.The most
widespread flaw when conducting a benchmark is to permit uncontrolled variables
and factors the ability to construe test results. For example, Snort benchmarks
should be tested in controlled cells, or environments, so that only network traffic
that is sent from other controlled systems is captured and analyzed by the sensor.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 496

496 Chapter 10 • Optimizing Snort

Therefore, running your tests in a production environment is probably a very bad
idea. Another common mistake is modifying more than one element between the
two test cases. It would provide very little insight into the true performance differ
ences of an OpenBSD versus Windows 2000 Snort install if both rulesets were
completely different.The last aspect often overlooked is running multiple tests
during the benchmark; not only running multiple types of different tests, but also
multiple identical tests for verification purposes.

To recap, avoid these three common flaws:

■ Conducting benchmarks in an uncontrolled environment

■ Measuring and comparing dissimilar systems

■ Being satisfied with the results of one test run

What Options Are Available for Benchmarking?
The options for benchmarking an IDS in today’s market are few, and if you are
counting viable enterprise solutions, then the answer is “None.” Minus the sur
plus of vulnerability and port scanners and chained exploit scripts, six tools are
commonly used to aid in benchmarking. Of the six, the only one that is close to
commercial grade and that has a graphical interface is IDS Informer.The
remainder of the options are command-line tools and, in most cases, scripts.The
technical abilities range from stateful attacks to blind CGI requests.

IDS Informer is our top recommendation for consulting and enterprise orga
nizations that require easy installs, graphical interfaces, and good reporting. If you
simply require a freeware tool or comprehensive script, it is a toss-up between
IDS Wakeup and Ftester (Firewall Tester).

IDS Informer
Blade Software’s IDS Informer (www.gui2000.com) is the current industry stan
dard for testing IDS features and implementations.The product’s graphical inter
face and configurable features far surpass any other available IDS testing tool or
application. With offices in the United States, the United Kingdom, and India,
Blade also publishes application bug fixes and attack updates on a regular basis.

The GUI provides an easy-to-understand and easy-to-use interface for con
figuring IDS Informer. As shown in Figure 10.2, the user can specify the source
IP and MAC address for all the attacks and define the destination IP address. If
the destination IP address is unreachable, the destination MAC will be forced to

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 497

Optimizing Snort • Chapter 10 497

use a broadcast address of FF-FF-FF-FF-FF-FF. Otherwise, the engine will use
the retrieved, corresponding MAC address of the defined destination IP address.
IDS Informer can also configure the transmission rate and Time-to-Live (TTL)
for the attacks. Each of these provides greater flexibility in case the tool is being
executed in a production environment. Informer also provides the capability to
graphically select any of the network cards found on the system.

Figure 10.2 Blade IDS Informer Configuration

The other beneficial option open to the user configuring IDS Informer is
the ability to create manageable groups of attacks.The Successful HTTP group
created in Figure 10.3 contains the following three successful attack sequences:
HTTP IIS .htr access, HTTP IIS Index .htw Cross-Site Scripting, and HTTP IIS
.asp showcode. Group creation allows an administrator or consultant to predefine
small and manageable subsets of attacks.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 498

498 Chapter 10 • Optimizing Snort

Figure 10.3 IDS Informer Attack Groups

The prime disadvantage of this product is that it has a price tag; however, at
the affordable price of $5000 per license, it will prove a valuable addition to any
consultant and developer shop. In the past, Blade Software offered specials that
allowed extended trial periods for auditors and consultants. Besides the attack
reports being a little weak on technical content, the only other considerable
downside of the product is the inability to create custom attack simulations.
Granted, the ability to quickly configure the attacks Blade creates does exist, but
it would be nice if an open API existed to allow end users the ability to create
and run additional attacks.

After the settings and preferences have been configured for the test environ
ment, you are one step away from running Informer. As explained previously,
Informer provides the user with the flexibility to determine what attacks should
and should not be executed on the network. Informer also has the capability to
launch all the attacks against the predefined target, as shown in Figure 10.4. All
10 default attack groups were included in Figure 10.4, and over 7000 packets
were transmitted in total.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 499

Optimizing Snort • Chapter 10 499

Figure 10.4 Running IDS Informer

At the bottom of Figure 10.4 is the space that is provided to view the attack
log of the most recent set of tests. Each attack comes with a corresponding entry
in the attack log so that the attacks can be correlated to the IDS sensor logs in
search of false positives, false negatives, and other poor configurations.The fol
lowing is an attack log dump after a complete test was run with All Predefined
Attacks enabled. As you can see, source and destination information is included,
along with protocol and transmission specifics. Unfortunately, no attack strings
and content are logged. Such information would assist administrators looking to
test their systems and enhance those systems with new rules and signatures.

Sending attack Trace route ICMP from 0.0.0.0 to 10.0.9.100

Attack 1 sent, 3:19:16 PM, 2/8/2003, packets sent TCP 0, UDP 0, ICMP 96

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack Finger user S from 0.0.0.0 to 10.0.9.100

Attack 2 sent, 3:19:18 PM, 2/8/2003, packets sent TCP 12, UDP 0, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack DNS Zone transfer S from 0.0.0.0 to 10.0.9.100

Attack 3 sent, 3:19:19 PM, 2/8/2003, packets sent TCP 16, UDP 0, ICMP 0

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 500

500 Chapter 10 • Optimizing Snort

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack Nmap UDP scan from 0.0.0.0 to 10.0.9.100

Attack 4 sent, 3:19:22 PM, 2/8/2003, packets sent TCP 2, UDP 1475, ICMP

1457

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack Nmap TCP scan from 0.0.0.0 to 10.0.9.100

Attack 5 sent, 3:19:26 PM, 2/8/2003, packets sent TCP 3122, UDP 0, ICMP 2

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack HTTP IIS unicode 1 S from 0.0.0.0 to 10.0.9.100

Attack 6 sent, 3:19:27 PM, 2/8/2003, packets sent TCP 9, UDP 0, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack Backdoor Back orifice S from 0.0.0.0 to 10.0.9.100

Attack 7 sent, 3:19:28 PM, 2/8/2003, packets sent TCP 0, UDP 45, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack RPC Linux statd overflow S from 0.0.0.0 to 10.0.9.100

Attack 8 sent, 3:19:29 PM, 2/8/2003, packets sent TCP 25, UDP 5, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack HTTP IIS htr overflow S from 0.0.0.0 to 10.0.9.100

Attack 9 sent, 3:19:30 PM, 2/8/2003, packets sent TCP 7, UDP 0, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

Sending attack DOS Smurf from 0.0.0.0 to 10.0.9.100

Attack 10 sent, 3:19:33 PM, 2/8/2003, packets sent TCP 2, UDP 0, ICMP 1000

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-

FF-FF

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 501

Optimizing Snort • Chapter 10 501

IDS Wakeup
IDS Wakeup (www.hsc.fr/ressources/outils/idswakeup) is a command-line tool
that uses a collection of other tools and attack strings to test intrusion detection
sensors. By far one of the most comprehensive freeware utilities of its kind, it is
distributed by its creators, Herve` Schauer Consulting.The simulated attacks
range from malicious FTP requests to protocol-based DoS sequences and Web
server buffer overflow strings. One of the key differentiators of this tool com
pared to the other freeware programs is the TTL feature. Modifying the TTL
field within a packet allows you to send attacks that might trigger IDS rules but
not affect the production servers.This has proven to be an excellent feature for
consultants and administrators who want to take advantage of this tool’s capabili
ties during production hours without fear of disrupting business.

IDSWakeup is a UNIX-based tool that can be executed locally. It requires
that you pass it a source and destination IP address.There is no need to specify a
port, since the attacks come with corresponding port assignments. Another useful
feature of the tool is the ability to define how many cycles should be completed
before exiting:

IDSWakeup usage: ./IDSWakeup <source IP> <destination IP> <number of

cycles> <TTL>

The program has two dependencies. First, you must install and configure
HPing2, which can be downloaded from www.kyuzz.org/antirez/hping.The
second dependency is a program released with IDSWakeup called IWU. IWU is
another command-line utility created to quickly send datagrams; it requires that
you install Libnet. Libnet is a set of libraries that can be used to streamline the pro
cess of developing network-based applications.The frameworks and structures for
implementing and using protocols are the best. Libnet and other security projects
can be downloaded from the Packet Factory Web site at www.packetfactory.net/.

The following is an example of a test that was run on an internal network
with a source address of 10.1.1.1 and a destination address of 10.0.2.130.The
tool will run twice before exiting and should not disturb the target system due
to the defined TTL value of 1.

/root/IDSW/./IDSwakeup 10.1.1.1 10.0.2.130 2 1

-=

- IDSwakeup : false positive generator

- Stephane Aubert

- Hervé Schauer Consultants (c) 2000

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 502

502 Chapter 10 • Optimizing Snort

-=-

src_addr:0 dst_addr:127.0.0.1 nb:1 ttl:1

sending : teardrop ...

sending : land ...

sending : get_phf ...

sending : bind_version ...

sending : get_phf_syn_ack_get ...

sending : ping_of_death ...

sending : syndrop ...

sending : newtear ...

sending : X11 ...

sending : SMBnegprot ...

sending : smtp_expn_root ...

sending : finger_redirect ...

sending : ftp_cwd_root ...

sending : ftp_port ...

sending : trin00_pong ...

sending : back_orifice ...

sending : msadcs ...

245.146.219.144 -> 127.0.0.1 80/tcp GET /msadc/msadcs.dll

HTTP/1.0

sending : www_frag ...

225.158.207.188 -> 127.0.0.1 80/fragmented-tcp

GET /................................... HTTP/1.0

181.114.219.120 -> 127.0.0.1 80/fragmented-tcp

GET /AA\

AAA\

AAA\

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/../cgi-bin/phf HTTP/1.0

(cut remaining tool dump to save page space)

Sneeze
Sneeze (http://snort.sourceforge.net/sneeze-1.0.tar) took a somewhat different
approach than the two previous IDS benchmarking tools. Written by Brian
Caswell and Don Bailey, Sneeze was designed to parse Snort IDS rules files with

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 503

Optimizing Snort • Chapter 10 503

the goal of generating sensor false positives, or fake attacks. Sneeze implements an
ingenious tool concept that exposes potential issues that administrators face
during the continuous battle of monitoring IDSs and eliminating false positive
issues. A significant amount of time is spent analyzing network attacks via the
alert and packet logs from Snort, since one of the underlying goals for all IDSs is
to provide pertinent, accurate information. A simple attack intrusion detection
signature matches malicious packets destined for a sensitive host, but the true
value of an IDS is shown through complicated signatures and rules that correlate
malicious attack strings and their corresponding target responses. Sneeze allows
you to become familiar with the Snort rules that are prone to false positives and
the intricacies in determining if indeed the attack is legitimate.

Sneeze serves as a free yet useful tool for quickly tracking and testing IDS
sensors in a production environment.The latest release of the tool has been
tested with Snort 1.8 and its corresponding ruleset.

Sneeze is a command-line tool written in Perl that can only be run from
UNIX-based platforms.The default parameters the tool requires are the destina
tion host and rules file. Additional options are available. We feel that each of the
options is more or less self explanatory, so we only include a tool dump here:

Usage C:\sneeze\sneeze.pl -d <dest host> -f <rule file> [options]

-c count Loop X times. -1 == forever. Default is 1.

-s ip Spoof this IP as source. Default is your IP.

-p port Force use of this source port.

-i interface Outbound interface. Default is eth0.

-x debug Turn on debugging information.

-h help Duh? This is it.

There are only two prerequisites to running the tool. First, you must have a
good Snort rules file that you intend to use to feed data to the Sneeze engine.
Varying combinations of content and destination port and IP addresses are char
acteristics of a good rules file. In addition, you also need to preinstall the
Net::RawIP Perl module. Sneeze uses this module to lay the groundwork for
writing raw packets, spoofed packets, and general packet transmission.You can
download the Net::RawIP module from www.cpan.org/modules/by-module/Net/.

The biggest downside of the tool is that it can only be run in the UNIX-
based environment, strictly because it uses the Net::RawIP module.
Unfortunately, the designer did not create it to be platform neutral.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 504

504 Chapter 10 • Optimizing Snort

TCPReplay
TCPReplay is one of the most useful and straightforward tools that is at your
disposal for testing your Snort installation. In short,TCPReplay was created to
replay captured TCP PCAP files back “on the wire.” One of the most interesting
yet somewhat conventionally useless features is the ability to sniff and store
packets from one interface while writing those same packets to a different inter
face. As you might imagine, this feature has the potential to be very fun and pro
vide numerous challenges in regard to data bridging or manipulation.This
application provides you with the functionality to sniff, modify, and replay
packets across the wire.

Another key feature for this application is to store attack sequences in PCAP
files with interests in replaying those attacks over and over again, quickly.This
allows you to save an extraordinary amount of time since you would only have
to run a command-line tool with a switch that leverages a saved input file.The -f
option allows you to even save more time by saving tested command-line con
figurations within a text configuration file, whereas you could quickly launch the
program and point it at that program.

The looping feature, the -l switch, allows you to replay a single file multiple
times, throwing the same packets on the wire multiple times. When used in
combination with the -R argument (replay the packets as fast as possible),
TCPReplay becomes a must-have tool to aid in stress-testing your Snort install.

The last key option that most users commonly forget is the -1 (the numeral
one) option, which allows you to send a single packet every time you press a key
on your keyboard.This is especially useful if you are testing particular rules
within your Snort configuration and would like to see if certain rules are flag
ging known attacks or analyze response times. It is a common practice for large
enterprises and managed security service providers to utilize this feature for hun
dreds of attacks and determine the response time for their correlation technology
and analysts.The following are the options and features that you may utilize in
the current version of TCPReplay.

Usage: tcpreplay [args] <file(s)>

■ -A “<args>” Pass arguments to tcpdump decoder (use w/ -v).

■ -b Bridge two broadcast domains in sniffer mode.

■ -c <cachefile> Split traffic via cache file.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 505

Optimizing Snort • Chapter 10 505

■ -C <CIDR1,CIDR2,...> Split traffic by matching src IP.

■ -D Data dump mode (set this BEFORE -w and -W).

■ -f <configfile> Specify configuration file.

■ -F Fix IP,TCP, UDP and ICMP checksums.

■ -h Help.

■ -i <nic> Primary interface to send traffic out of.

■ -I <mac> Rewrite dest MAC on primary interface.

■ -j <nic> Secondary interface to send traffic out of.

■ -J <mac> Rewrite dest MAC on secondary interface.

■ -k <mac> Rewrite source MAC on primary interface.

■ -K <mac> Rewrite source MAC on secondary interface.

■ -l <loop> Specify number of times to loop.

■ -L <limit> Specify the maximum number of packets to send.

■ -m <multiple> Set replay speed to given multiple.

■ -M Disable sending Martian IP packets.

■ -n Not nosy mode (noenable promisc in sniff/bridge mode).

■ -N <CIDR1:CIDR2,...> Rewrite IP addresses (pseudo NAT).

■ -o <offset> Starting byte offset.

■ -O One output mode.

■ -p <packetrate> Set replay speed to given rate (packets/sec).

■ -P Print PID.

■ -r <rate> Set replay speed to given rate (Mbps).

■ -R Set replay speed to as fast as possible.

■ -s <seed> Randomize src/dst IP addresses w/ given seed.

■ -S <snaplen> Sniff interface(s) and set the snaplen length.

■ -t <mtu> Override MTU (defaults to 1500).

■ -T Truncate packets > MTU so they can be sent.

■ -u pad|trunc Pad/truncate packets that are larger than the snaplen.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 506

506 Chapter 10 • Optimizing Snort

■ -v Verbose: print packet decodes for each packet sent.

■ -V Version.

■ -w <file> Write (primary) packets or data to file.

■ -W <file> Write secondary packets or data to file.

■ -x <match> Only send the packets specified.

■ -X <match> Send all the packets except those specified.

■ -1 Send one packet per key press.

■ -2 <datafile> Layer 2 data.

■ <file1> <file2> File list to replay.

If you quickly want to replay a file and do not need to analyze the results of
the packets getting written to the wire, you need only specify the interface that
you want to transmit on and the configuration file:

root@harriford:/test [root@harriford test]# tcpreplay -i eth0 -f file

sending on: eth0

Now leveraging our favorite feature, the -1 argument, we’ll show you how to
send one packet at a time. As you can see by the Linux script file that captured
our command and STDOUT stream,TCPReplay prompts you to press the Enter
key after successfully sending the individual packets.The first example only sends
one packet, as you can glean from the following.

Script started on Thu 2 Apr 2004 04:09:59 PM EDT

root@harriford:/test[root@harriford test]# tcpreplay pi eth0 -1 file -1

sending on: eth0

**** Press <ENTER> to send the next packet:

**** Press <ENTER> to send the next packet:

1 packets (60 bytes) sent in 4.18 seconds

14.3 bytes/sec 0.00 megabits/sec 0 packets/sec

This example sends an entire file one packet at a time. Notice how it
prompts you to send the next packet after it outputs the packet header that was
transmitted. Make no mistake that this is the packet header and will not include
the payload, nor will it contain all the flags of the packet.

root@harriford:/test[root@harriford test]# tcpreplay -i eth0 –l file –v -1

sending on: eth0

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 507

Optimizing Snort • Chapter 10 507

**** Press <ENTER> to send the next packet:

12:24:39.529936 arp who-has 192.168.79.10 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:40.039930 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:41.449947 192.168.10.13.3042 > 192.168.30.230.ssh: P

2061464227:2061464263(36) ack 182807601 win 30 (DF)

**** Press <ENTER> to send the next packet:

12:24:41.461231 192.168.30.ssh > 192.168.10.13.3042: . ack 36 win 8576 (DF)

[tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:42.039961 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:42.130655 arp who-has 192.168.10.120 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:43.030711 205.188.8.49.5190 > 192.168.10.13.3031: P

2721207987:2721208045(58) ack 2057068322 win 16384 (DF)

**** Press <ENTER> to send the next packet:

12:24:43.196248 192.168.10.13.3031 > 205.188.8.49.5190: . ack 58 win 16716 (DF)

**** Press <ENTER> to send the next packet:

12:24:43.511205 arp who-has 192.168.10.40 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:44.040280 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:44.449945 192.168.10.13.3093 > 192.168.30.171.ssh: P

2541684072:2541684108(36) ack 2140890790 win 16192 (DF)

**** Press <ENTER> to send the next packet:

12:24:44.461258 192.168.30.171.ssh > 192.168.10.13.3093: . ack 36 win 8576

(DF) [tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:46.049927 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:46.626381 arp who-has 192.168.10.40 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 508

508 Chapter 10 • Optimizing Snort

12:24:46.963430 192.168.10.13.3042 > 192.168.30.230.ssh: P 36:72(36) ack 1

win 16500 (DF)

**** Press <ENTER> to send the next packet:

12:24:46.972758 192.168.30.230.ssh > 192.168.10.13.3042: . ack 72 win 8576

(DF) [tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:47.380193 205.188.8.49.5190 > 192.168.10.13.3031: P 58:118(60) ack 1

win 16384 (DF)

**** Press <ENTER> to send the next packet:

12:24:47.499927 192.168.10.13.3031 > 205.188.8.49.5190: . ack 118 win 16656

(DF)

**** Press <ENTER> to send the next packet:

12:24:48.050018 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:49.961361 192.168.10.13.3093 > 192.168.30.171.ssh: P 36:72(36) ack 1

win 16192 (DF)

**** Press <ENTER> to send the next packet:

12:24:49.970187 192.168.30.171.ssh > 192.168.10.13.3093: . ack 72 win 8576

(DF) [tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:50.058135 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:52.058599 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:52.970009 192.168.10.13.3042 > 192.168.30.230.ssh: P 72:108(36) ack 1

win 16500 (DF)

**** Press <ENTER> to send the next packet:

12:24:52.979929 192.168.30.230.ssh > 192.168.10.13.3042: . ack 108 win 8576

(DF) [tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:54.061184 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:55.861213 arp who-has 192.168.10.12 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 509

Optimizing Snort • Chapter 10 509

12:24:55.969979 192.168.10.13.3093 > 192.168.30.171.ssh: P 72:108(36) ack 1

win 16192 (DF)

**** Press <ENTER> to send the next packet:

12:24:55.980057 192.168.30.171.ssh > 192.168.10.13.3093: . ack 108 win 8576

(DF) [tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:56.061448 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:56.870830 205.188.8.49.5190 > 192.168.10.13.3031: P 118:183(65) ack 1

win 16384 (DF)

**** Press <ENTER> to send the next packet:

12:24:57.011311 192.168.10.13.3031 > 205.188.8.49.5190: . ack 183 win 16591

(DF)

**** Press <ENTER> to send the next packet:

12:24:57.877652 arp who-has 192.168.10.2 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:57.882818 arp who-has 192.168.10.3 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:57.888295 arp who-has 192.168.10.4 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:58.066606 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:58.889928 arp who-has 192.168.10.12 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:58.971205 192.168.10.13.3042 > 192.168.30.230.ssh: P 108:144(36) ack

1 win 16500 (DF)

**** Press <ENTER> to send the next packet:

12:24:58.979943 192.168.30.230.ssh > 192.168.10.13.3042: . ack 144 win 8576

(DF) [tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:59.597502 arp who-has 192.168.10.6 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.602729 arp who-has 192.168.10.7 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.608208 arp who-has 192.168.10.8 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 510

510 Chapter 10 • Optimizing Snort

12:24:59.613320 arp who-has 192.168.10.9 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.624168 arp who-has 192.168.10.11 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.633763 4.11.150.188.3353 > 192.168.10.13.135: S

2355639698:2355639698(0) win 64240 <mss 1460,nop,nop,sackOK> (DF)

**** Press <ENTER> to send the next packet:

12:24:59.639793 arp who-has 192.168.10.14 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.645089 arp who-has 192.168.10.15 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.646625 192.168.10.13.3183 > 192.168.10.5.domain: 2+ PTR?

188.150.11.4.in-addr.arpa. (43)

**** Press <ENTER> to send the next packet:

12:24:59.649925 arp who-has 192.168.10.16 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.649971 arp who-has 192.168.10.17 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.650103 192.168.10.5.domain > 192.168.10.13.3183: 2 1/5/0 (228) (DF)

**** Press <ENTER> to send the next packet:

12:24:59.659954 arp who-has 192.168.10.18 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.660004 arp who-has 192.168.10.19 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.669925 arp who-has 192.168.10.20 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.669970 4.11.150.188.3361 > 192.168.10.21.135: S

2356091652:2356091652(0) win 64240 <mss 1460,nop,nop,sackOK> (DF)

**** Press <ENTER> to send the next packet:

12:24:59.670038 192.168.10.21 > 4.11.150.188: icmp: host 192.168.10.21

unreachable - admin prohibited [tos 0xc0]

**** Press <ENTER> to send the next packet:

12:24:59.681226 arp who-has 192.168.10.23 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

12:24:59.689930 arp who-has 192.168.10.24 tell 192.168.10.1

**** Press <ENTER> to send the next packet:

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 511

Optimizing Snort • Chapter 10 511

12:25:00.059967 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

59 packets (3953 bytes) sent in 17.37 seconds

232.0 bytes/sec 0.00 megabits/sec 3 packets/sec

root@harriford:/test[root@harriford test]# exit

Script done on Thu 2 Apr 2004 04:16:30 PM EDT

In the last scenario, we sent a TCPReplay file out to the wire as fast as pos
sible, continuously. In addition to speed, we also specified that we wanted to see
verbose output sent to STDOUT so that we could quickly analyze what packets
were sent and when.

[root@harriford test]# cd /home/kevin/tcpreplay –f file -i eth0 -R -v

sending on: eth0

12:24:39.529936 arp who-has 192.168.10.41 tell 192.168.10.1

12:24:40.039930 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:41.449947 192.168.10.13.3042 > 192.168.30.230.ssh: P

2061464227:2061464263(36) ack 182807601 win 30 (DF)

12:24:41.461231 192.168.30.230.ssh > 192.168.10.13.3042: . ack 36 win 8576

(DF) [tos 0x10]

12:24:42.039961 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:42.130655 arp who-has 192.168.10.120 tell 192.168.10.1

12:24:43.030711 205.188.8.49.5190 > 192.168.10.13.3031: P

2721207987:2721208045(58) ack 2057068322 win 16384 (DF)

12:24:43.196248 192.168.10.13.3031 > 205.188.8.49.5190: . ack 58 win 16716

(DF)

12:24:43.511205 arp who-has 192.168.10.40 tell 192.168.10.1

12:24:44.040280 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:44.449945 192.168.10.13.3093 > 192.168.30.171.ssh: P

2541684072:2541684108(36) ack 2140890790 win 16192 (DF)

12:24:44.461258 192.168.30.171.ssh > 192.168.10.13.3093: . ack 36 win 8576

(DF) [tos 0x10]

12:24:46.049927 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:46.626381 arp who-has 192.168.10.40 tell 192.168.10.1

12:24:46.963430 192.168.10.13.3042 > 192.168.30.230.ssh: P 36:72(36) ack 1

win 16500 (DF)

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 512

512 Chapter 10 • Optimizing Snort

12:24:46.972758 192.168.30.230.ssh > 192.168.10.13.3042: . ack 72 win 8576

(DF) [tos 0x10]

12:24:47.380193 205.188.8.49.5190 > 192.168.10.13.3031: P 58:118(60) ack 1

win 16384 (DF)

12:24:47.499927 192.168.10.13.3031 > 205.188.8.49.5190: . ack 118 win 16656

(DF)

12:24:48.050018 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:49.961361 192.168.10.13.3093 > 192.168.30.171.ssh: P 36:72(36) ack 1

win 16192 (DF)

12:24:49.970187 192.168.30.171.ssh > 192.168.10.13.3093: . ack 72 win 8576

(DF) [tos 0x10]

12:24:50.058135 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:52.058599 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:52.970009 192.168.10.13.3042 > 192.168.30.230.ssh: P 72:108(36) ack 1

win 16500 (DF)

12:24:52.979929 192.168.30.230.ssh > 192.168.10.13.3042: . ack 108 win 8576

(DF) [tos 0x10]

12:24:54.061184 802.1d config 8000.00:03:e3:2f:69:c0.800e root

8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:55.861213 arp who-has 192.168.10.12 tell 192.168.10.1

12:24:55.969979 192.168.10.13.3093 > 192.168.30.171.ssh: P 72:108(36) ack 1

win 16192 (DF)

59 packets (3953 bytes) sent in 0.10 seconds

393960.5 bytes/sec 3.01 megabits/sec 5880 packets/sec

root@harriford:/test [root@harriford test]

If you are wondering what a TCPReplay input file looks like, we have
copied a segment from the top of a file and pasted it here.Yes, it’s ugly, and as
you can tell, it’s also in a binary format:

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 513

Optimizing Snort • Chapter 10 513

As we’ve shown,TCPReplay is an extremely powerful tool that can be lever
aged and utilized for myriad purposes, most commonly network, systems, and
intrusion detection security testing. We recommend that you add TCPReplay to
your short list of tools that you learn inside and out so that you can get to the
point where you are creating scripts that leverage the functionality within
TCPReplay.

THC’s Netdude
Another one of our favorite tools has to be THC’s Netdude. Often confused
with Ethereal because of its network packet translation and graphical interface,
Netdude is very different in terms of backend functionality and technology.
Netdude parses and decodes packets in post-time. It takes a saved PCAP file as
input and parses out that file where you can analyze each packet individually,
search for strings in multiple packets, or conduct global searches by source, desti
nation, or protocol. Netdude is designed to work with tcpdump and tcpdump
formatted files, yet as we shall see, it is also quite useful when used in
conjunction with TCPReplay. Although you might be thinking that this isn’t
very exciting technology, the key feature of Netdude is its capability to modify
packets from within the interface, then save the modified PCAP files locally.

Figure 10.5 displays the general Netdude preferences for displaying certain
types of data from the packets, in particular the tcpdump settings, timestamp set
ting, the working tmp directory, and fonts that you would like to see in the
Netdude interface. Figure 10.6 pictures Netdude’s trace area management inter
face, which allows you to define the interval of time within the saved log file

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 514

514 Chapter 10 • Optimizing Snort

that you want to analyze. Netdude provides you with the granularity of selecting
packets subdivided by mere fractions of a second—specifically, you can specify
intervals up to six decimal places past 1 second.

Figure 10.5 Netdude Preferences

Figure 10.6 Netdude Trace Area Management

After you have configured Netdude, you should be ready to rock and roll—
to start analyzing and modifying packet streams. Figure 10.7 is a screen capture of
Netdude as it’s used to analyze a single packet within a communication stream.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 515

Optimizing Snort • Chapter 10 515

The highlighted packet 16:56:47:000625 has the checksum field selected within
the interface. Currently, the TCP window size of the packet is 24820, if for some
reason you would like to modify that window size to something different. As
shown in Figure 10.8, you would only need to double-click the Win button on
the interface and another small window would appear. Netdude provides you the
ability to enter your values in both decimal and hexadecimal formats.To change
a value of any packet after the popup window appears, just replace the value and
press Enter.

The same process is true for any type of packet that Netdude can parse and
decode.The hard part of utilizing Netdude (if there is one) is understanding
what all the values in the interface are and how they affect the overall communi
cation stream.

Figure 10.7 Netdude Modifying Checksums

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 516

516 Chapter 10 • Optimizing Snort

Figure 10.8 Netdude Modifying a TCP Window Size

You have the ability to analyze and modify fields inside the packet’s headers,
too. Application payload fields may also be modified within Netdude, as shown
in Figure 10.9.The HTTP packet highlighted in Figure 10.9 has a payload con
sisting of an HTTP GET statement. Application payloads are not modified in the
same fashion as packet headers; however, you can select the packet you want to
analyze and modify the ASCII text inline.

Figure 10.9 Netdude Analyzing a Trace

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 517

Optimizing Snort • Chapter 10 517

The last stage of running Netdude is saving the new or updated PCAP file.
In Figure 10.10 we are saving the PCAP file with all our updated changes. Why
is this important? We have just created a file or potential test script that can be
run against our IDS deployment.This packet dump could be custom packets, OS
attacks, or just a large listing of Web-based URI attacks. Whatever the scenario,
this file can now be “replayed” utilizing the TCPReplay tool that we covered
earlier in this chapter.

Figure 10.10 Netdude Saving Data Files

Other Packet-Generation Tools
HPING and Cenzic's Hailstorm are two other very good tools for creating
custom packets to test your Snort installation. Even though the complexity and
type of application vastly differ between the two tools, the concept allowing you
to create custom packets remains the same. Do not get confused—HPING is not
a program that merely allows you to ping other systems!

Cenzic, the newly branded enterprise-grade Web application security assess
ment and life-cycle augmentation application, was designed to aid all teams
involved in software development. It offers perspectives at both the CIO and
CSO levels in addition to providing technical insight to developers and an API to
quality assurance engineers who are responsible for creating, testing, and retesting
features within applications. Cenzic’s approach is strictly geared to large enter
prises that value their proprietary software applications and are willing to make a
significant investment in security.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 518

518 Chapter 10 • Optimizing Snort

One of the biggest advantages of Cenzic over its free counterparts is its
ability to intelligently test and identify security holes in Web-based applications.
Cross-site scripting, buffer overflows, and SQL injection attacks are just a few of
the vectors that Cenzic can zone in on within applications.The “fault detection”
technology that Hailstorm implements identifies potential vulnerabilities via the
identification of atypical application behavior after a particular transmission
sequence has been sent to the application.

Since HPING is free and with the release of HPING3 has become com
pletely scriptable, it is our choice for creating custom packets on the fly for
UNIX and Linux operating environments. It’s understood that if you are an
“uber” coder you can merely write or reimplement an open source raw socket
API that permits you to send custom or potentially RFC-incompliant packets.
However, if your raw socket programming skills are not up to snuff, it’s probably
best that you focus on learning to use HPING.

First of all, HPING only supports the creation of TCP/IP packets.This is not
a terrible limitation, since most of the more common applications and applica-
tion-layer protocols were built to reside on top of HPING.The generality of
HPING has created a large base of uses, which span network management to
security and application testing. According to HPING’s developers, here are some
of the most common uses of HPING:

■ Firewall testing

■ Advanced port scanning

■ Network testing, using different protocols,TOS, fragmentation

■ Manual path MTU discovery

■ Advanced traceroute, under all the supported protocols

■ Remote OS fingerprinting

■ Remote uptime guessing

■ TCP/IP stacks auditing

In the realm of IDS testing and deployment, we recommend utilizing HPING
to develop custom packets for the sole purpose of seeing what type of packets will
get through your network security perimeter unnoticed. For instance, HPING can
help determine whether a packet with a source port of 51, a payload of 100 bytes,
and a destination port of 139 will make it through your firewall and past your IDS.
In most cases, it’s the complex unseen attacks that have the potential for causing

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 519

Optimizing Snort • Chapter 10 519

the most damage to your network and environment because in all likelihood they
will have more untarnished time on the inside.

OINK!
Use HPING to find the tiny holes in your network security perimeter and
to customize attack packets to see if your Snort signatures are too
focused and have potential to generate false positives!

Additional Options
In addition to the three options previously presented, a few other tools are
worthy of a quick mention. Stick (www.packetstormsecurity.org/
distributed/stick.tgz), quite possibly the most publicized and inappropriately
hyped IDS testing tool, was released some ago to intrusion detection sensor
developers. Stick has several useful features, the most notable being speed.Yet it
also has one very large downside: It does not effectively monitor and handle the
packet and attack state, thereby allowing an intrusion detection engine to poten
tially finger the tool. A similar program, Snot, has the same problem but serves as
another adequate example tool to generate attacks. For more information on
Snot, visit www.stolenshoes.net/sniph/index.html.

Another tool worthy of mention is Ftester. Ftester comprises two Perl scripts
that can be downloaded from http://ftester.sourceforge.net. One script sends
network attacks to remote hosts, allowing you to spoof source addresses and
ports.The other script is a sniffer that is used to read in the attack packets sent to
the destination system.The first can be used to test NIDS and HIDS, and the
second is used in combination with the first to test network filters and firewalls.

One important differentiator between Ftester and Snot/Stick is that Ftester
simulates bona fide TCP connections, thereby permitting stateful attacks. Ftester
requires that you configure the ftest.conf file to set up the attack packets to send
to the “packet cannon engine.” It also requires that you have the following Perl
modules installed:

■ Net::RawIP

■ Net::PcapUtils

■ NetPacket

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 520

520 Chapter 10 • Optimizing Snort

Stress Testing the Pig!
Stress testing an IDS begins with identifying a core set of tools that can be used
to aid in the automation of such tests. Whether the execution of one or two
tools simultaneously or the scripted execution of numerous tools, stress testing is
an integral part of rolling out your production system. Usually the tests are
geared to push your hardware, software, or configuration to the max, whereas
your deficiencies are identified.

Hardware tests can include identifying breakpoints for the amount of data you
can parse and interpret off the wire without dropping packets. A software test
could be straightforward, as in seeing what attacks are recognized and what attacks
are missed during peak periods of traffic. Lastly, configuration testing could identify
how fast Snort is writing to your database or logging to your file system—both of
which have the potential to kill the effectiveness of your installation.

Stress Tests
Conducting vulnerability, attack, and packet stress tests are some of the most
useful tests that can be performed against your Snort sensors.The goal of any
stress test is to identify thresholds. In the case of NIDSs, a stress test should iden
tify the amount of data that can be processed and parsed through the Snort
engine. Dropped packets due to inadequate hardware may be difficult to identify,
yet identifying rules that consume large amounts of CPU cycles and decrease
system performance are more difficult.

Here are a few links to free vulnerability assessment and stress-test tools:

■ NTOMax and FScan www.foundstone.com

■ Nessus www.nessus.org

■ Whisker www.wiretrip.net/~rfp

■ NMAP www.insecure.org

■ Paketto Keiretsu www.doxpara.com

■ Nikto www.cirt.net/nikto/

■ SPIKE www.immunitysec.com

The previously identified free vulnerability assessment and stress-test tools
can be used to help design and execute system stress and benchmark tests. For
instance, if you launch three tools simultaneously from three different systems,

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 521

Optimizing Snort • Chapter 10 521

you could generate a large amount of potentially malicious traffic.The stress test
you create should chain together multiple tools generating large amounts of
traffic. Benchmarking the tests is easier than running the actual tests. After each
test you will want to record the number of packets that were captured and ana
lyzed, the number of alerts that were generated, and the exact size and number of
entries that were logged. As long as you run the same tools with the same con
figuration and usage, the only recorded statistic that could potentially change is
the size of the log. Otherwise, any inconsistencies could probably be caused from
dropped packets or poor rulesets.

Dave Aitel’s free version of SPIKE, the godfather tool of fuzzing, is also an
excellent tool that can be utilized for stress testing your IDS from a network
packet perspective. SPIKE has the potential to create and send packets at an atyp
ically fast rate with varying payloads, headers, and flags, thus making it a perfect
example of the type of tool that you could employ to generate potentially mali
cious or random network traffic simulating a large corporate environment.

Individual Snort Rule Tests
You have a couple methods for testing rules, but in general one of the best and
most accurate methods of testing for proper rule syntax is interpreting each rule
individually. Now, this might seem like a cumbersome task, but a quick Perl
script that extracts individual rules from a rules file or the reverse (where you
specify a directory and it opens each individual rules file and appends it to a
master rules file) would be easy enough to create.

The syntax for parsing a file is in the following, but the more rules that you
have, the harder it will be to debug the scripts.The –i flag specifies the interface;
the –n flag tells Snort to exit after one packet is received.This allows you to
ensure that the rule is in the proper format:

Test Syntax: snort –i eth0 –n 1 –c /Snort/rules/example.rule

Berkeley Packet Filter Tests
Similar to testing individual Snort syntax rules, you have the ability to individual
test BPF rules with the tcpdump utility. Since tcpdump is merely an interpreter
for the rules, very little debugging functionality is built into the program.The
easiest way to identify potential errors is to test the rule for proper syntax.The
following command will individually parse the rule to ensure that it utilizes the

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 522

522 Chapter 10 • Optimizing Snort

correct syntax.The –i flag is utilized to define the appropriate network interface
that the rule should be applied to, but in this case any valid interface is sufficient:

Test Syntax: tcpdump –i eth0 –n –F /Snort/bpf/example.filter

Tuning Your Rules
Snort provides you the ability to fine tune your rules in a variety of ways. Fine
tuning your scripts could range from disabling nonessential rules or modifying
common rule variables to adequately map to your environment to including
Berkeley Packet Filter rulesets.These three major categories for modifying your
Snort sensor installation were covered in detail throughout this section.

In addition to the major modifications that you can make, several small mod
ifications may be made. Small modifications include configuring Snort to run on
a different interface, changing the output modes from verbose to quiet or vice
versa, modifying the file system or directory structure for rules files, and
upgrading to a later version of Snort. Oh, and one more change you might like
to add to your list: defining new log and alert files.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 523

Optimizing Snort • Chapter 10 523

Summary
It is imperative that you first decide what OS you are going to use as the under
lying platform for your IDS. Our Golden Rule is, “Select the platform with
which your organization is most familiar and that will easily integrate within
your current environment administration process.” Monitoring and managing an
IDS, or more realistically, a network of sensors, is an extremely time-consuming
job. For that reason, we recommend choosing an OS that is familiar to your
organization, to lessen the headaches of managing yet another nonconforming
network device. Currently, the publicly available version of Snort can be config
ured to run in an assortment of methods on multiple platforms, including
Windows NT/2000/XP/9x, Red Hat, Mandrake, Solaris, OpenBSD, FreeBSD,
and various other Linux and UNIX-based OSs.

After choosing the OS, you must purchase or set up the appropriate hard
ware. A good rule of thumb is to always buy in excess in the following four
areas: memory, CPU and motherboard processing power, NICs, and hard disk
space.You might be thinking, “That’s everything in a computer.” Notice that we
didn’t say anything about graphics capabilities, audio cards, monitors, parallel
drives, or multiple types of disk drive.

The next step in setting up the Snort NIDS is developing and executing a
plan to create a flexible sensor so that you can use numerous automation tech
niques to roll out an environmentwide grouping of sensors. Creating flexible
sensor configurations could include potentially everything from creating disk
clones to Snort automation scripts and installing remote server administration
software. In addition to the multitude of application-generic steps you might
undertake, it is also feasible to set up your Snort rules and configuration files in a
manner that allows you to easily modify Snort when porting it to another
system. Generic variables such as $INTERNAL, $EXTERNAL, $DMZ, and
$NOT_ME help tremendously in configuring rules files, so that instead of modi
fying potentially hundreds upon hundreds of Snort rules, you only need to
change the dynamic variables. In addition to variable declarations, you can also
tweak the installation by modifying your preprocessors and output plug-ins in
hopes of increasing sensor efficiency.

The last aspect before rolling your sensor into a production environment is to
double-check your work. Designing and executing a test plan for your sensors
should be mandatory. Assuring production-level quality is a requirement in most
large commercial entities nowadays, and frankly, such plans are not used enough.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 524

524 Chapter 10 • Optimizing Snort

Unfortunately, the list of commercially available intrusion detection testing appli
cations and tools is short—or should we say that the list encompasses IDS
Informer. Blade Software’s IDS Informer is the only intrusion detection applica
tion that has a graphical interface for Win32 platforms. Informer allows users the
ability to configure the source IP and MAC address and to specify attack mod
ules to send over the wire. Freeware tools that you can use to assess your sensor
implementations include IDS Wakeup, Sneeze, Ftester, Stick, and just about any
other port and vulnerability scanner you can get your hands on.

Snort intrusion detection can be a highly effective and useful network appli
cation in your environment if the proper thought and resources are leveraged
throughout the entire NIDS implementation life cycle. Snort can prove a great
technological advantage in fighting digital enemies or simply a neglected
resource hog—the choice is yours to make.

Solutions Fast Track

How Do I Choose the Hardware to Use?

� Don’t be cheap on hardware; performance peaks will instantly find the
holes in weak hardware.

� Examine hardware specifications for features that cater to Snort.

� Buy in excess when dealing with CPU power, memory, hard disk space,
and NIC speeds.

How Do I Choose the Operating System to Use?

� Linux and UNIX-based OSs are faster and more efficient, but if you
don’t know them well, it is advisable to purchase more powerful
hardware and go with a Microsoft base.

� Use the advantages of the OS to create the most powerful Snort
installation possible. Hence, leverage the efficiency, security, and
administration aspects of whatever OS you decide on.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 525

Optimizing Snort • Chapter 10 525

Speeding Up Snort

� Creating a more efficient and custom instances of Snort is essential to
maximizing your sensor’s potential.This can be accomplished by
ensuring that only rules that add value in the appropriate means are
implemented on your system.

� Defining the proper output and preprocessor plug-ins can mean the
world when it comes to dropped packets due to a peak in network
traffic.

� Disk cloning, installation scripts, remote administration, and generic
variable declarations all aid in decreasing the mean time to complete the
Snort installation process.

Finding and Eliminating Bottlenecks

� Bottlenecks can range from small nuisances to major concerns that can
lead to the complete breakdown of your intrusion detection
deployment. Review your configuration, installation, and hardware to
help identify some of these bottlenecks.

� Both online and commercial help exists for Snort deployments.

� Do not underestimate the potential CPU analysis hit of pattern-
matching algorithms implemented in your rules.

� Multiple or stacked output plug-ins have the potential to drastically slow
down Snort configurations.

Benchmarking and Testing the Deployment

� Benchmarks are an excellent way to measure system capabilities and
thresholds; however, they are of no use unless you use them in
comparison tests. Benchmarks should be compared on business,
managerial, and technical levels.

� Stress testing your installation should be a routine and ongoing process
that identifies potential areas of weakness in the case of a rampant
weakness.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 526

526 Chapter 10 • Optimizing Snort

� Test your rules! There is no substitute for testing the rules you have
selected to implement and protect your environment. At a bare
minimum, become familiar with and frequent the Snort.org Web site.

� Automation is key in developing sound Snort benchmarks.

� Test your hardware, software, and configuration to the max! There is no
doubt that hackers or automated worms will do it in the future.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: If I had to place an emphasis on hardware or OS choice, which is more
important for getting a stable Snort box up and running?

A: The more important aspect is to get the OS right. If you don’t know how to
use Linux, installing Snort on a Linux box will do you no good.You can
tweak your ruleset or manipulate the system load to accommodate some
hardware deficiencies, but your ability to actually work the computer is most
important. (There are minor exceptions: Don’t try to realistically run Snort
on a 286—hardware must be within reason.)

Q: Does network configuration determine which OS is chosen?

A: No.The fact that your network is a Windows network will not rule out the
possibility of using Linux as the OS for your Snort box, and vice versa. With
this in mind, we direct you to the previous question about OS performance
as a criterion for choosing your OS.

Q: What kind of rules should be defined for mobile sensors—for example, Snort
running on a consultant’s Windows XP Professional laptop?

A: We recommended running a slimmed-down ruleset that would include
attacks pertinent to Windows XP Professional in addition to any applications
running on that box. Specific rules to protect against NetBIOS user and

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 527

Optimizing Snort • Chapter 10 527

share enumeration, Plug-n-Play attacks, registry connections, portscans, and
other Microsoft XP-centric attacks should be included in the mobile ruleset.

Q: If familiarity is not an issue in choosing an OS, what is the best choice?

A: Linux. As the OS for which Snort was originally written as well as a powerful,
portable, streamlined OS, Linux will easily outperform Solaris and Windows. As
with so many things in the computing world, Windows will undoubtedly be a
system hog and diminish program performance. Since Linux doesn’t have the
same sort of problem, you can easily make the decision.

Q: Do you have any recommendations when it comes to building or buying
Snort appliances?

A: In terms of hardware, building your own boxes is almost always the cheaper
solution by a power of three. Hence, you can expect to pay a company at
least three times the cost of a system you could order from Dell. With that
said, it might be worth $5000 to $10,000 to outsource the hardware, installa
tion, and configuration of your Snort sensor. Our guess is that if you are
reading this book, you are somewhat familiar with Snort and could opt to
order a 1U rack mount box from Dell and have your Snort installation up
and running within 10 days.

Q: Is pattern matching GREP?

A: GREP, or general regular expression parser, is nothing more than a program
that has implemented a specific and often viewed default version of regular
expressions. Pattern matching can be considered a subset of the functionality
implemented within a regular expression engine, whereas it’s major goal is to
identify anomalies based on wildcards and defined character sets within a
larger body of data.

www.syngress.com

295_Snort2e_10.qxd 5/6/04 9:51 AM Page 528

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 529

Chapter 11

Mucking Around
with Barnyard

Solutions in this Chapter:

■ What Is Barnyard?

■ Understanding the Snort Unified Files

■ Installing Barnyard

■ Configuring Barnyard

■ Understanding the Output Plug-Ins

■ Running Barnyard in Batch Processing Mode

■ Using the Continual Processing Mode

■ Deploying Barnyard

■ Writing a New Output Plug-In

■ Secret Capabilities of Barnyard

529

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 530

530 Chapter 11 • Mucking Around with Barnyard

Introduction
Long ago, when Snort was still considered “lightweight,” there was never any
thought that it would not be able to capture and decode packets, detect events,
and generate output all as a single process. In those days, Snort was not capable of
many of the things it can do today.Tasks such as portscan detection and TCP
stream reassembly were distant dreams, and features such as HTTP URI normal
ization and database logging had not even been thought of.Then, something
unexpected happened. Snort became popular, and the number of users increased
dramatically. With these new users came new needs, and new features were
developed to meet those needs. As new features were added and Snort evolved
from “lightweight” to robust, more and more resources (both memory and pro
cessor) were required to keep up with increasing network speeds.

One advantage of open-source software is that it allows and encourages users
to customize it for their particular needs. When Snort 1.5 was released, it added
the capability for users to add preprocessor and detection plug-ins that could be
used to add features without the need to understand the entire system. Snort 1.6
added a similar mechanism for adding output plug-ins. With this architecture,
Snort started to accumulate many more ways to output events. However, as Snort
was deployed on faster and faster networks, a problem arose. Many of the
methods used to output events were relatively slow.This was not because they
were poorly implemented; it was just inherent in some of the ways users wanted
to output events. For example, it is a fairly fast operation to write a line of text
to a file. However, if we were to write that same line of text to an SQL database,
we would first need to generate an SQL query to insert the event, send this
query to the database server, and then wait for the database server to return that
the query was successful. Unfortunately, while waiting for the database server,
Snort is not processing any network traffic.Therefore, with all these new output
plug-ins, it was highly possible that Snort could drop packets (and miss attacks)
simply because it was spending too much time generating output.

To solve this dilemma, Snort needed some mechanism that would allow it to
continue to process network traffic while simultaneously performing expensive
output operations such as writing alerts to a database. One suggestion was to make
Snort multithreaded.This would allow one thread to output the alerts while a sep
arate thread processed the network traffic. Unfortunately, by the time this problem
became apparent, Snort had been ported to so many different operating systems
that the developers did not feel confident that they could maintain a stable version

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 531

Mucking Around with Barnyard • Chapter 11 531

of Snort if it were multithreaded.Therefore, an alternative solution had to be
found. In the end, it was decided that the best solution was to write a helper pro
gram that would generate the alert output, while Snort would focus on processing
the network traffic. Snort would communicate with this helper program by
spooling the alert information using a set of files.Thus, the Snort unified output
format and Barnyard were born. With Barnyard deployed, Snort does not have to
deal with the myriad of ways that the alerts need to be formatted and dispatched.
Instead, Snort can simply output the events using the unified output plug-in, and
Barnyard will handle the details of inserting them into a database, generating syslog
notifications, and so forth. In this chapter, we discuss how to install, configure, and
use Barnyard as part of your Snort installation.

What Is Barnyard?
Barnyard was developed to separate the various output-processing tasks from the
more time critical task of monitoring network traffic. In this sense, Barnyard can
be thought of as an asynchronous event processing and dispatching tool designed
for use with Snort. In its normal mode of operations, Barnyard waits for Snort to
generate an event and then dispatches the event through one or more output
plug-ins.This is almost identical to how Snort works alone, except that, when
used with Barnyard, Snort is free to return to processing network traffic while
Barnyard handles generating the event output.

The most obvious situation in which to use Barnyard is when Snort is being
used to monitor a high-speed network—the scenario envisioned when Barnyard
was additionally developed. However, several other advantages can be realized by
using Barnyard. For example, while Snort requires some level of root privileges
to promiscuously sniff network traffic, Barnyard has no such requirement.
Barnyard only needs to be able to read the unified files generated by Snort.
Therefore, the security conscious user may want to use Barnyard to implement
privilege separation. Additionally, there are some situations in which real-time
processing of event data is unimportant; for example, if event data is being loaded
into a spreadsheet for analysis. In this case, Barnyard can be used in batch-pro-
cessing mode to process only those sets of unified files of interest. Finally, since
the Snort unified files provide a convenient event archival system, Barnyard can
be used to reprocess archived event data should there ever be a need.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 532

532 Chapter 11 • Mucking Around with Barnyard

Understanding the Snort Unified Files
Now that you know what Barnyard is, you are ready to start learning how to
install, configure, and use it. However, before going farther, it is important to gain
an understanding of the information that is provided for Snort to process. Before
Barnyard could be developed to assist Snort in processing event output, there first
needed to be a mechanism for Snort to communicate the important information
about an event to a separate program. It had already been decided to use files to
store this information, but the exact format had not been determined.The pri
mary goal for this format was that it needed to be fast to write to a file.
Additionally, since there was a plan to use these files for event archival, the indi
vidual records needed to be small. Based on these two requirements, the Snort
unified file format was developed.

A Snort unified file consists of a four-octet magic number that identifies
what type of records it contains, a binary header, and zero or more unified
records. All of the fields in the unified file are written using host byte ordering.
Currently, Snort can generate three types for Snort unified files: alert, log, and
stream-stat.There is a fourth unified file type supported by Snort that combines
both alert and log records into a single file. However, this file type is considered
experimental and may be modified in future versions of Snort.The rest of this
section covers the details on each of the three types of unified records that Snort
generates.

Unified Alert Records
The unified alert record contains all of the essential information about a Snort
alert. Since these records contain only essential information, they are extremely
small (56 bytes) when written in unified format.Table 11.1 lists all of the fields
that are part of a unified alert record.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 533

Mucking Around with Barnyard • Chapter 11 533

Table 11.1 Unified Alert Record Fields

Field Description

Signature generator ID This field indicates which subsystem in Snort
generated the alert. Snort has several subsys
tems that are capable of generating alerts. The
most familiar of these is the rules subsystem,
which has a generator ID of 1. Additionally,
the preprocessor and packet decoder also gen
erate alerts, and each has its own generator ID
assigned.

Signature ID The signature ID (SID) indicates the particular
type of alert that was generated. For Snort
rules, this is the SID value that is specified in
each rule. For the other generators, each type
of alert is assigned a unique SID value. New
values are used as new rules and new types of
detection are added.

Signature revision The signature revision indicates the particular
revision of the algorithm used to detect the
alert. Currently, revisions are only used by
Snort rules to track changes that are made to
the rule over time.

Classification ID The classification ID indicates the classification
to which the alert belongs. Each classification
that is loaded by Snort is assigned an integer
ID value, and that value is recorded here.

Priority The priority value indicates the priority of the
alert as assigned by Snort. For Snort rules, this
value is usually inherited from the classifica
tion, but it can also be specified using the pri
ority rule keyword.

Event ID The event ID is a numeric value assigned to
each event generated by Snort. When Snort is
started, this value is set to 1 and is incre
mented each time a new event is generated.

Event timestamp The event timestamp indicates the time the
event was detected. The timestamp of the
event is represented as seconds and microsec
onds since UNIX epoch (January 1, 1970).
Typically, this indicates the timestamp of the
packet that triggered the event.

Continued

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 534

534 Chapter 11 • Mucking Around with Barnyard

Table 11.1 Unified Alert Record Fields

Field Description

Event reference ID

Event reference timestamp

Source IP address

Destination IP address

Source port

Destination port

Protocol

This value is not currently used in unified alert
records and should always be equal to the
event ID.
This value is not currently used in unified alert
records and should always be set to 0.
This field indicates the source IP address for
the event. Typically, this will be the source IP
from the packet that triggered the event. If
there is no valid source IP address for the
event, this field should be set to 0.
This field indicates the destination IP address
for the event. Typically, this will be the destina
tion IP from the packet that triggered the
event. If there is no valid destination IP address
for the event, this field should be set to 0.
Depending on the protocol, this field contains
either the source port or ICMP type for the
event. If the protocol is either TCP or UDP, this
will be the source port. If the protocol is ICMP,
it will be the ICMP type. This value is typically
taken from the packet that triggered the
event. If the protocol is not ICMP, TCP, or UDP,
or there is no valid source port/ICMP type for
the event, this field should be set to 0.
Depending on the protocol, this field contains
either the destination port or ICMP code for the
event. If the protocol is either TCP or UDP, this
will be the destination port. If the protocol is
ICMP, it will be the ICMP code. This value is typ
ically taken from the packet that triggered the
event. If the protocol is not ICMP, TCP, or UDP,
or there is no valid destination port/ICMP code
for the event, this field should be set to 0.
The protocol field indicates the IP protocol for
this event.

Continued

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 535

Mucking Around with Barnyard • Chapter 11 535

Table 11.1 Unified Alert Record Fields

Field	 Description

Flags	 The flags field is used to record some of the
characteristics of the packet that caused Snort
to generate the event. This includes informa
tion about whether the packet was reassem
bled from fragments, part of a rebuilt TCP
stream, obfuscated to hide the source and/or
destination hosts, and so forth.

Unified Log Records
In addition to information about the rule that generated the event, each unified
log record contains the complete packet that caused the event to be generated.
Therefore, a unified log record is significantly larger than the corresponding uni
fied alert record would be. However, the additional amount of information avail
able from the unified log record makes up for this extra space. Additionally, the
unified log records allow multiple packets to be associated with a single event.
These tagged packets occur when either a rule has been explicitly configured to
log multiple packets for a single event, or the event was triggered from a reassem
bled TCP stream segment. By logging multiple packets for an event, more con
textual data is available for analyzing the event.Table 11.2 lists all of the fields
that are part of a unified log record. Many of these fields are the same as those
contained in the unified alert records.

Table 11.2 Unified Log Record Fields

Field Name Description

Signature generator ID Please see Table 11.1.
Signature ID Please see Table 11.1.
Signature revision Please see Table 11.1.
Classification ID Please see Table 11.1.
Priority Please see Table 11.1.
Event ID Please see Table 11.1.

Continued

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 536

536 Chapter 11 • Mucking Around with Barnyard

Table 11.2 Unified Log Record Fields

Field Name Description

Event reference ID

Event reference timestamp

Flags
Packet timestamp

Packet captured length

Packet length

Packet data

The event reference ID indicates the event ID of
the original event that caused this packet to be
logged. There are a number of cases in Snort
where a single alert will cause multiple packets
to be logged. In those cases, this value can be
used to associate all of the packets that belong
to the original event. If this record is not associ
ated with an earlier event, this value will be the
same as the event ID.
The event reference timestamp indicates the
timestamp of the original event that caused this
packet to be logged. If this record is not associ
ated with an earlier event, this value will be set
to 0.
Please see Table 11.1.
The packet timestamp indicates when the packet
was captured from the network. This is repre
sented as seconds and microseconds since UNIX
epoch.
This field indicates how much of the packet was
captured off the network. While Snort usually
captures the entire packet, it can be configured
to only capture the beginning of the packet.
Thus, this field indicates the size of the packet
data field.
This field indicates the total length of the packet
on the network.
This field contains the actual packet data. The
amount of data available is indicated by the
packet captured length field.

Unified Stream-Stat Records
The unified stream-stat records are different from the unified alert and log
records, since they are not generated based on alerts. When configured appropri
ately, the stream4 preprocessor will write information about each TCP session
that it observes to the stream-stat unified output file. While Barnyard supports

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 537

Mucking Around with Barnyard • Chapter 11 537

reading these records, currently no output plug-ins process the information.
However, this information could be processed to analyze various aspects of the
TCP sessions on the network.Table 11.3 lists all of the fields that are part of a
unified stream-stat record.

Table 11.3 Unified Stream Stat Record Fields

Field Name Description

Start time This field indicates the time when the TCP con
nection was opened. This time is stored as the
number of seconds since UNIX epoch.

End time This field indicates the time when the TCP con
nection was closed. This time is stored as the
number of seconds since UNIX epoch.

Server IP address This field indicates the IP address of the server
that accepted the TCP connection.

Client IP address This field indicates the IP address of the client
that initiated the TCP connection.

Server port This field indicates the server port for the TCP
connection.

Client port This field indicates the client port for the TCP
connection.

Server packets This field indicates the total number of packets
that were sent by the server.

Client packets This field indicates the total number of packets
that were sent by the client.

Server bytes This field indicates the total number of octets
that were sent by the server. This only includes
octets that were part of the TCP payload.

Client bytes This field indicates the total number of octets
that were sent by the client. This only includes
octets that were part of the TCP payload.

Installing Barnyard
Installing Barnyard is a fairly straightforward process for those users familiar with
downloading and compiling source packages. Unfortunately, Barnyard is not cur
rently available in any of the major UNIX distributions and we are unaware of

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 538

538 Chapter 11 • Mucking Around with Barnyard

any prebuilt packages that can be easily installed.Therefore, to use Barnyard, you
are going to have to compile it.The requirements for building Barnyard are sim
ilar to those for building Snort. If you have successfully built Snort on your
system, then building Barnyard should be no problem. However, if you installed
Snort from a package, you may need to install additional software in order to
build Barnyard.

To build Barnyard, you must have a C compiler installed on your system.
Barnyard has been developed and tested using gcc, but should also compile with
other C compilers. If you want to include database support for Barnyard, then
you will also need to install the appropriate headers and libraries for the database
you want to use. For example, on Debian Linux, to build Barnyard with MySQL
support you will need the package libmysqlclient-dev installed.

Barnyard is developed and tested using Debian Linux; however, it should also
run on any of the UNIX systems on which Snort runs. While Barnyard is not
officially supported on Windows systems, unofficial packages are available at
www.codecraftconsultants.com/Barnyard.aspx.

OINK!
As noted previously, using Barnyard and the unified output plug-ins
allows you to handle intrusion detection on one system and alert man-
agement/analysis on a different system very effectively. One side effect
of this is that you can choose to install Barnyard on whatever platform
you like and the one with which you are most comfortable. For example,
if you have installed Snort on a customized build of a high security dis
tribution like Immunix (mentioned in Chapter 3, “Installing Snort”), you
can push all the log files to a separate system running Debian (since
that’s where Barnyard was developed) to handle the output into what
ever format you prefer for analysis.

Downloading
The official releases of Barnyard can be downloaded from the Barnyard project
site on SourceForge located at http://sourceforge.net/projects/barnyard/. As of
this writing, the most recent released version is 0.2.0; however, the CD-ROM
that accompanies this book only includes version 0.1.0. Since this chapter docu
ments version 0.2.0, you will need to download Barnyard from the project site

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 539

Mucking Around with Barnyard • Chapter 11 539

noted previously. Additionally, if there is a newer version of Barnyard 0.2 on the
project site, it is recommended that you use that version since it may contain
important bug fixes. After downloading the source archive from the Web site, you
will need to uncompress the archive.To do this, type the following command:

tar –xzf barnyard-0.2.0.tar.gz

This will extract the contents of the archive and create a directory called
barnyard-0.2.0.

Building and Installing
Building Barnyard from the source package is simple. First, the configure speci
fying any particular build options (such as database support) that we may need.
Then, we run make to build Barnyard. Finally, we run make install to install the
Barnyard binary into the path.The only complicated part of this process is speci
fying build options when running configure. In order to use Barnyard’s database
output plug-ins it must be built with database support.To enable database sup
port, you must specify the appropriate options to configure. Table 11.4 lists the
options that are most often used.

Table 11.4 Barnyard configure Script Options

Option Description

--enable-mysql

--with-mysql-includes=<dir>

--with-mysql-libraries=<dir>

--enable-postgres

This option configures Barnyard to be built
with support for the MySQL database server.
This option can be used to specify the loca
tion of the MySQL header files. If the --
enable-mysql option is not also specified, this
option is ignored.
This option can be used to specify the loca
tion of the MySQL client libraries. If the --
enable-mysql option is not also specified, this
option is ignored.
This option configures Barnyard to be built
with support for the PostgreSQL database
server.

--with-postgres-includes=<dir> This option can be used to specify the loca
tion of the PostgreSQL header files. If the --
enable-postgres option is not also specified,
this option is ignored.

Continued

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 540

540 Chapter 11 • Mucking Around with Barnyard

Table 11.4 Barnyard configure Script Options

Option Description

--with-postgres-libraries=<dir> This option can be used to specify the loca
tion of the PostgreSQL client libraries. If the
--enable-postgres option is not also specified,
this option is ignored.

It is not usually necessary to specify any of the –with-mysql-* or –with-post-
gres-* options, since the configure script will attempt to search for the required
files in the normal places. However, if these files are not located in any of the
usual places, then configure will generate an error and you will need to specify the
appropriate locations. For example, if the MySQL header files are installed in
/usr/include/mysql4, then the following configure command would be used to
build Barnyard with support for MySQL:

./configure -–enable-mysql –-with-mysql-includes=/usr/include/mysql4

Running the configure script will determine various settings that need to be
specified for Barnyard to build on a particular system. When run, configure will
display information about several tests that it runs to determine how to build
Barnyard. If there is a failure, an appropriate error message will be displayed.
Since it is impossible to determine all of the possible failure messages that could
be generated, we will not attempt to list them here. For the most part, most of
the error messages are self-explanatory. If configure runs successfully, then you can
proceed to building Barnyard by issuing the make command. If error messages are
displayed, then those errors will need corrected before continuing.The most fre
quent errors observed concern correctly locating the header files and client
libraries for database support. If configure reports an error finding these files, you
may need to add additional options to indicate where they can be found.

For all of the examples in this chapter, Barnyard has been built with both
MySQL and PostgreSQL support.To build and install Barnyard, the following
commands were run:

./configure -–enable-mysql —enable-postgres

make

make install

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 541

Mucking Around with Barnyard • Chapter 11 541

Configuring Barnyard
Now that we have successfully installed Barnyard, we will explore how to run it.
Barnyard supports two modes of operation: batch processing and continual pro
cessing. In batch-processing mode, Barnyard processes each of the specified uni
fied files and then exits.This mode is useful in many circumstances. For example,
it can be used to extract data from a unified file or to reload old data into a
database. It is also extremely useful when testing new output plug-in configura
tions (and new output plug-ins). While the batch-processing mode is useful, the
continual-processing mode uses most of Barnyard’s capabilities. Most deploy
ments will consist of one or more instances of Barnyard running in continual-
processing mode. In this mode, after processing the existing data from the unified
files, Barnyard waits for new events and processes them as they occur. When run
ning in this mode, events are processed by Barnyard almost immediately after
they are detected by Snort. It is in this mode that Barnyard best realizes its goal
of separating event processing from event detections.The mode Barnyard runs in
is determined by the command-line options. In either mode, Barnyard is capable
of processing any of the Snort unified data types.

As we learned in the section about the Snort unified output files, Barnyard is
capable of processing three types of data: alerts, logs, and stream-stats. Which type
of data is processed depends on which files we tell Barnyard to read. Like Snort,
Barnyard has a number of output plug-ins that can format the various unified
data types in a number of ways.Their capabilities range from providing a human-
readable version of alert records to inserting log records into a database. In the
next section, you’ll learn more about the output plug-ins included in Barnyard
and how to configure them. For now, let’s look at how to use the various com-
mand-line and configuration file options to run Barnyard. After discussing those,
we will examine how to run Barnyard in each of its two modes in more detail.

The Barnyard Command-Line Options
It has often been said that Barnyard has one of the most confusing sets of com-
mand-line options of any open-source program. While this may or may not be
true, we must admit to occasionally needing to refer to the source code to
remember exactly what a particular option does. In Barnyard 0.2, some of these
complexities were addressed by removing some seldom used options (–r and –t),
adding a new option (–n), and making the command line for batch processing
mode easier to use.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 542

542 Chapter 11 • Mucking Around with Barnyard

OINK!
While the changes to the command line should not affect users
upgrading from Barnyard 0.1, we recommend that you at least look at
the new way to run Barnyard in batch-processing mode (previously
called one-shot mode) and the new –n option that is available for con
tinual processing mode.

Similar to Snort, Barnyard uses a combination of command-line options and
configuration file directives to control how it runs and what it does. In general,
the command-line options determine how Barnyard is going to run, and the
configuration file directives determine what it does.The command-line options
for Barnyard can be logically divided into three functional groups: informational,
general configuration, and continual-processing mode.Table 11.5 lists the all of
the available command-line options.

Table 11.5 Command-Line Options

Informational Options:

-h Help Display the Barnyard usage information
-? Help Display the Barnyard usage information
-V Version Display the Barnyard version string
-R Dry run Display the processed configuration

and exit

General Configuration Options:

-c <file> Configuration file Read configuration data from <file>
-d <dir> Spool directory Read unified files from <dir>
-L <dir> Log directory Generate output files in <dir>
-v Verbose Increase the verbosity by 1 (up to a max

imum of 255)
-s <file> sid-msg map file Read the sid-msg map from <file>
-g <file> gen-msg map file Read the gen-msg map from <file>
-p <file> classification Read the Snort classification configuration

config file from <file>
-o Batch processing Enable batch-processing mode

mode
Continued

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 543

Mucking Around with Barnyard • Chapter 11 543

Table 11.5 Command-Line Options

Continual Processing Mode Options:

-a <dir> Archive directory Archive processed unified files to <dir>
-f <base> Base spool file Use <base> as the base unified filename

name
-n New events flag Only process new events
-w <file> Bookmark file Enable bookmarking using <file>
-D Daemon flag Run in daemon mode
-X <file> PID file Store the process ID in <file>

In the rest of this section, we discuss the informational and general configu
ration options.The options that are specific to the continual-processing mode
will be discussed when we discuss running Barnyard in that mode.

■	 The “dry run” option (–R) The “dry run” (–R) option is one of the
most useful and most often ignored command-line option. When
Barnyard is run with this option, it displays how Barnyard will run based
on the configuration information specified on the command line and in
the configuration file. Barnyard will then exit without actually pro
cessing any of the data.This is extremely helpful when first experi
menting with Barnyard and when troubleshooting a configuration that
is not behaving as desired. We will use this option repeatedly when
testing various configurations in this chapter.

■	 The configuration file option (–c) The –c option is used to specify
the name of the configuration file for Barnyard to use.The configura
tion file contains additional configuration options and the configurations
for all of the output plug-ins that will be used to process the unified
event data. If this option is not specified on the command line, Barnyard
will attempt to use /etc/snort/barnyard.conf.The directory in which
the configuration file is located is also used by Barnyard when looking
for other configuration files.

■	 The spool directory option (–d) The –d option is used to specify
the directory where the Snort unified files are located.This is called the
spool directory in accordance with other applications that use a direc
tory to hold data that is waiting to be processed.The default value for
the spool directory is dependent on the mode in which Barnyard is

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 544

544 Chapter 11 • Mucking Around with Barnyard

running. In continual-processing mode, the spool directory will default
to /var/log/snort. In batch-processing mode, it will default to the cur
rent working directory when Barnyard is executed.

■	 The log directory option (–L) The –L option is used to specify a
default directory for output files to be written to.This directory is called
the log directory. Like the spool directory, the default value for the log
directory depends on the mode in which Barnyard is running. In con-
tinual-processing mode, the log directory will default to /var/log/snort.
In batch-processing mode, it will default to the current working direc
tory when Barnyard is executed.

■	 The –s, –g, and –p options The –s, –g, and –p options are all used to
configure Barnyard to load meta-data to translate the event information
into a human-readable form.You may recall that in the unified data
structures, most of the information about an event is represented as a
numeric value. While this is useful for performance purposes, numeric
values are not generally considered user friendly. In order for Barnyard
(and its assortment of output plug-ins) to present event data in a
human-understandable format, it requires that this meta-data be loaded.
The –s, –g, and –p options are used to specify files from which to load
the SID message map, generator message map, and classification config
(respectively). If the file specified is a relative pathname, Barnyard will
prepend the configuration directory to construct the absolute pathname.

As of Barnyard 0.2, these options can also be set in the configuration file. If
they are specified in both locations, the value on the command line will be used
and a warning message will be printed. If no values are specified, then Barnyard
will attempt to load the files sid-msg.map, gen-msg.map, and classification.config
from the same directory from which the configuration file was read.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 545

Mucking Around with Barnyard • Chapter 11 545

Notes from the Underground…

The Message Map Files
While the SID and generator message map files are necessary for Barnyard
to provide human-readable output of events, they are not considered part
of the Snort configuration and are rarely discussed. These two files are
used by Barnyard to translate a Snort event ID (SID) to a combination of
a textual event message and event references. A Snort event ID is combi

Snort has many generators that are capable of detecting events. The
most familiar of these is the Snort rules engine, which has been assigned
a generator value of 1. All of the entries in the default SID message map

use the provided Snort rules, you probably have no need to update this

to add appropriate entries if you want Barnyard to provide human-read-

format of this file. Each line in the SID message map file contains the
information for a single rule. The format of the line is as follows:

SID || MSG || Reference || Reference . . .

In the preceding line, SID is the ID of the rule, MSG is the rule mes
sage, and Reference is a rule reference. Each section is separated by a
delimiter of || (a space followed by | twice followed by another space).

no limit to the number of Reference portions that can be specified; how

The generator message map is responsible for translating the SIDs of
the events from the other event generators in Snort. These generators

all of these events are known before a new version of Snort is released

you should make sure that you have the generator map that was released
with the particular version of Snort you are running.

nation of a generator, an ID, and a revision.

file represent the rules that are available from www.snort.org. If you only

file. However, if you start writing your own rules for Snort, you will need

able messages for them. To do this, you will need to understand the

Both the SID and MSG portions must be specified for each entry. There is

ever, they each need to be separated by a delimiter.

consist of the Snort packet decoder and the Snort’s preprocessors. Luckily,

and you will not need to update the generator message map. However,

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 546

546 Chapter 11 • Mucking Around with Barnyard

The Configuration File
In addition to the command-line options, Barnyard also requires a configuration
file.The configuration file contains two types of information: configuration
directives and output plug-in configurations. In this section, we explore the var
ious configuration directives and the basic format of an output plug-in declara
tion. Details on configuring each output plug-in are covered in the section titled
Configuring the Output Plug-Ins.

OINK!
Readers familiar with Barnyard 0.1 might be asking, “What about the
data processor plug-in configurations?” While Barnyard still uses data
processors to read the different types of Snort unified files, it became
apparent over time that requiring the user to configure each of them
was a waste of time. Therefore, in Barnyard 0.2, all of the data proces
sors are loaded by default. However, there is no need to update all of
your existing configuration files to remove those lines. If Barnyard 0.2
encounters a preprocessor directive in the configuration file, it will just
warn you that it is no longer needed.

The configuration file included with Barnyard includes several examples for
many of the supported configuration options. It is usually easier to edit the
included configuration file than it is to create a configuration file from scratch.
Here is an example Barnyard configuration file that uses an assortment of the
available options:

Indicate the interface that Snort is detecting traffic on

config interface: eth1

Tell Barnyard where to load meta-data from

config sid-msg-map: /etc/snort/sid-msg.map

config gen-msg-map: /etc/snort/gen-msg.map

config class-file: /etc/snort/classifications.config

Send alert records to our syslog host

output alert_syslog2: syslog_host: 192.168.69.2

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 547

Mucking Around with Barnyard • Chapter 11 547

Insert log records into the database with full packet details

output log_acid_db: mysql, database snort, server localhost, \

user dbusername, password dbpasswd, detail full

This example file contains a mix of comments, configuration directives, and
output plug-in directives. Comments are those lines that begin start with a #
character.The configuration directives are those lines that start with the config
keyword. Output plug-in directives are those lines that begin with the output
keyword. Additionally, if a configuration or output plug-in line is getting too
long, it is possible to continue it on a subsequent line by using the line continua
tion character, /.This is similar to the format used for the Snort configuration
file, and users familiar with that should have no problems here.

Configuration Directives
The configuration directives are used to specify additional configuration options.
These options allow the user to specify additional runtime options (localtime and
daemon), load meta-data files (sid-msg-map, gen-msg-map, and class-file), and
specify informational items (hostname, interface, and filter). While the example
configuration file included with Barnyard mentions each of these directives, let’s
explore them in detail.

localtime
The localtime configuration directive is used to configure Barnyard to render all
event timestamps using the local time zone. It is specified in the configuration
file with the following syntax:

config localtime

By default, Barnyard renders all timestamps using Coordinated Universal
Time (UTC). UTC was selected as the default to make it easier to correlate
events that occurred at different geographic locations. Additionally, using UTC
eliminates a problem that occurs twice a year for those of us who use daylight
saving time. If we timestamp all events using the local time zone, then twice a
year we will have incorrect information about the timing and sequencing of
events. In spring, two events that may have occurred only minutes apart may
appear to be separated by over an hour. In fall, some events may appear to have
occurred before other events, when in reality they happened later. While this
may seem like a minor issue, it becomes extremely important when investigating
an incident that occurred at one of those times.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 548

548 Chapter 11 • Mucking Around with Barnyard

daemon
The daemon configuration directive configures Barnyard to run as a daemon
process.This directive is specified as follows:

config daemon

This directive is only followed if Barnyard is configured to run in continual-
processing mode. Barnyard can also be run as a daemon by using the –D com-
mand-line option.

Sid-msg-map, gen-msg-map, and class-file
These configuration directives operate identically to the –s, –g, and –p command-
line options.They specify the files to load the SID message map, the generator
message map, and the classification config (respectively).These directives are spec
ified as:

config sid-msg-map: <filename>

config gen-msg-map: <filename>

config class-file: <filename>

As with the similar command-line options, if the filename consists of a rela
tive pathname, it will be combined with the configuration directory to deter
mine the absolute pathname. As mentioned previously, if the option is specified
on both the command line and in the configuration file, the value on the com
mand line will be used and a warning will be logged.

hostname, interface, and filter
These three configuration directives allow us to specify some additional informa
tion that may be used by the output plug-ins.They are specified as:

config hostname: <hostname>

config interface: <interface>

config filter: <bpf string>

The hostname directive is used to specify the name of the Snort sensor. If no
value is specified, Barnyard will use the configured hostname of the system on
which it is running.The interface directive is used to specify on which interface
the events were detected.The filter directive is used to specify the Berkeley
Packet Filter (BPF) that was used when Snort was detecting events.These direc
tives were initially added to allow the Barnyard ACID database output plug-in to

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 549

Mucking Around with Barnyard • Chapter 11 549

operate similarly to the database output plug-in in Snort. Since they were added,
other output plug-ins have also started to use them. If you are not using the
ACID database output plug-in, you may not need to set these values. However, if
you are doing central processing of alert files from a large number of Snort sen
sors (as in a large-scale corporate deployment), it may still be very useful to be
able to specify the hostname associated with the files that Barnyard is processing.

Output Plug-In Directives
The most important part of the Barnyard configuration file is the output plug-in
directives. Everything else discussed so far has been concerned with specifying
how Barnyard is going to run, where it reads data from, and where it should
write its output.The output plug-in configuration directives indicate what
Barnyard is going to do with each event it processes.These are so important that
there is an entire separate section in this chapter dedicated to them. For now, we
just want to introduce you to what an output configuration directive looks like.
Depending on whether configuration options are specified, an output plug-in
directive is specified using one of the following two formats:

config <output plug-in>

config <output plug-in>: <configuration options>

Most of the output plug-ins will use appropriate defaults if no configuration
options are provided. While all of the output plug-ins support configuration
options, few of the plug-ins actually require them.

Understanding the Output Plug-Ins
Like Snort, Barnyard includes several plug-ins that allow the user to configure
events to be output in a variety of ways. Barnyard 0.2 includes nine different
output plug-ins: five for processing unified alert events, and four for processing
unified log events (and, as mentioned previously, none for processing unified
stream-stat events). Each of these output plug-ins processes the unified events in
a different way.The alert output plug-ins include alert_fast, alert_csv, alert_syslog,
alert_syslog2, and alert_acid_db.The log output plug-ins include log_dump,
log_pcap, log_acid_db, and sguil. In the following sections, we’ll see what each
output plug-in does, how to configure it, and when we may want to use it.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 550

550 Chapter 11 • Mucking Around with Barnyard

OINK!
The attentive reader may have looked at the Barnyard 0.2 distribution
and counted 10 output plug-ins. Be assured that we can actually count
and are fully aware of the extra output plug-in. The additional output
plug-in, alert_console, was actually developed for this chapter, and you’ll
learn all about it in the section Writing a New Output Plug-In.

alert_fast
Barnyard’s alert_fast output plug-in renders unified alert records in a human-
readable format to an output file. If no configuration options are provided, the
output will be written to the file fast.alert in the logging directory. If the file
already exists, any new events will be appended to it.The configuration lines for
the alert_fast output plug-in are:

output alert_fast

output alert_fast: <filename>

If using the second syntax, replace <filename> with the name of the output
file you want to use. For example, if you want the output to be written to the
file barnyard.alerts, you would use the following line in your configuration file:
output alert_fast: barnyard.alerts

OINK!
When specifying output files for different output plug-ins (and possibly
different instances of Barnyard), it is important to use different file
names. If the same filename is used, the output from multiple plug-ins
may be intermixed in unexpected ways.

The exact format of the alert record is dependent on the IP protocol.There
is one format for alerts for TCP and UDP packets, and a second format for
everything else. Here is some sample output from the alert_fast output plug-in
showing both TCP and ICMP alerts:

03/06/04-15:56:41.118618 {ICMP} 192.168.69.129 -> 192.168.69.2

[**] [1:402:4] ICMP Destination Unreachable (Port Unreachable) [**]

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 551

Mucking Around with Barnyard • Chapter 11 551

[Classification: Misc activity] [Priority: 3]

03/06/04-16:11:48.334225 {TCP} 192.168.69.129:52543 -> 192.168.69.2:22

[**] [1:1325:3] EXPLOIT ssh CRC32 overflow filler [**]

[Classification: Executable code was detected] [Priority: 1]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144]

[Xref => http://www.securityfocus.com/bid/2347]

Both of these output examples contain the same basic information.The first
line contains the time when the alert occurred and information about the packet
that caused the alert. Specifically, the IP protocol, source IP address, and destina
tion IP address are all provided. If the IP protocol was either UDP or TCP, then
the source and destination ports are also included.The second line contains
information about the alert itself.This includes the generator ID, signature ID,
and revision of the alert along with the alert messages.The third line displays
additional alert information, specifically the classification and priority.The output
for an alert may contain additional lines that are references to external databases
that provide additional information about the alert.The number of lines present
is dependent on how many external references have been defined in the message
map files.The second alert just discussed had two such references, and therefore
there are two additional lines of output.The first alert had none, so there are no
external reference lines displayed.

The chief advantage of the alert_fast output plug-in is that it generates
human-readable output.This is useful if you want to be able to review a file that
contains all of the alerts detected by Snort. However, if you have ever worked as
a system administrator or security analyst, you probably know that reading
through screens of logs is not very interesting.Therefore, this output plug-in is
usually used to convert a particular unified alert file to a human-readable format.

alert_csv
The alert_csv output plug-in is used to render unified alert records in a comma
separated value (CSV) format to an output file. If no configuration options are
provided, the output will be written using the default format to the file csv.out
in the logging directory. Like alert_fast, if the file already exists, any new records
will be appended to it. In addition to configuring the output file to use, you can
also specify the exact format used (which alert record fields are displayed and in

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 552

552 Chapter 11 • Mucking Around with Barnyard

what order). In order to specify the format, it is also required to specify the
output filename.The possible configuration lines for the alert_csv output plug-in
are:

output alert_csv

output alert_csv: <filename>

output alert_csv: <filename> <format>

The format configuration option is a comma-separated list indicating which
fields will be output and their order.Table 11.6 lists all of the available fields for
the format option. If a format option is not specified, then the following default
format will be used:

sig_gen,sig_id,sig_rev,class,priority,event_id,tv_sec,tv_usec,src,dst,sport_

itype,dport_icode,protocol

Table 11.6 Available Fields for alert_csv

Field Name Description

sig_gen Signature generator
sig_id Signature ID
sig_rev Signature revision
sid Triplet of “sig_gen:sig_id:sig_rev”
class Classification ID
classname Textual classification name
priority Priority ID
event_id Event ID
event_reference Event reference
ref_tv_sec Reference seconds
ref_tv_usec Reference microseconds
tv_sec Event seconds
tv_usec Event microseconds
timestamp Event timestamp in a human-readable format (2001-

01-01 12:34:56)
src Source IP address as an unsigned integer
srcip Source IP address as a dotted quad (for example,

192.168.1.1)
dst Destination IP address as an unsigned integer

Continued
www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 553

Mucking Around with Barnyard • Chapter 11 553

Table 11.6 Available Fields for alert_csv

Field Name Description

dstip Destination IP address as a dotted quad (for example,
192.168.1.1)

sport_itype Source port or ICMP type or “0” (depending on the
protocol)

sport Source port (if the protocol is TCP or UDP)
itype ICMP type (if the protocol is ICMP)
dport_icode Destination port or ICMP code or “0” (depending on

the protocol)
dport Destination port (if the protocol is TCP or UDP)
icode ICMP code (if the protocol is ICMP)
proto Protocol number
protoname Protocol name
flags Record flags
msg Signature message
hostname Hostname
interface Interface name (from barnyard.conf)

For example, if you wanted to generate CSV output in the file alerts.csv and
have the format line contain a human-readable timestamp, the event message, and
the source and destination IP addresses as dotted quads, you would add the fol
lowing line to your Barnyard configuration file:

output alert_csv: alerts.csv timestamp,msg,srcip,dstip

With this configuration, we would get output like the following:
"2004-03-06 15:56:41",ICMP Destination Unreachable (Port

Unreachable),192.168.69.129,192.168.69.2

"2004-03-06 16:11:48",EXPLOIT ssh CRC32 overflow

filler,192.168.69.129,192.168.69.2

With the default configuration, this would look like:

1,402,4,29,3,3,1078588601,118618,3232253313,3232253186,3,3,3,1

1,1325,3,15,1,57,1078589508,334225,3232253313,3232253186,52543,52543,22,6

This output is for the same two alerts that we showed for the alert_fast
output plug-in. We will continue to use these two alerts for all of the sample

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 554

554 Chapter 11 • Mucking Around with Barnyard

output presented in this section. As can be seen from these two examples, the
alert_csv output plug-in can produce radically different output for the same
records. Of all the output plug-ins in Barnyard, this one is by far the most con
figurable in terms of how the output is formatted.

The alert_csv output plug-in is most useful when there is the need to convert
unified alert records into a format that can be easily imported into another pro
gram. Some users periodically create CSV output files and use them to do bulk
imports into databases (instead of adding alerts in real-time). Others import the
CSV output into a spreadsheet program in order to generate reports and graphs.

OINK!
When specifying the format, do not add any spaces between the dif
ferent fields. For example hostname,interface is correct, while hostname,
interface is wrong. This is a limitation of the format parser in the
alert_csv output plug-in.

alert_syslog
The alert_syslog output plug-in is used to dispatch unified alert records using the
local syslog subsystem. In addition to this syslog output plug-in, a new output
plug-in, alert_syslog2, also provides syslog notification but includes many more
configuration options.The alert_syslog output plug-in supports the same config
uration options as Snort’s syslog output plug-in. It supports specifying the facility,
priority, and a handful of options. If no options are specified, then the AUTH
facility and INFO priority will be used for syslog notifications.The supported
configuration line formats are:

output alert_syslog

output alert_syslog: <FACILITY> | <PRIORITY> | <OPTION>…

Any of these values may be omitted from the configuration and multiple
option values may be specified.The supported facility values are LOG_AUTH-
PRIV, LOG_AUTH, LOG_DAEMON, LOG_USER, LOG_LOCAL0,
LOG_LOCAL1, LOG_LOCAL2, LOG_LOCAL3, LOG_LOCAL4,
LOG_LOCAL5, LOG_LOCAL6, and LOG_LOCAL7.The supported priority
values are LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 555

Mucking Around with Barnyard • Chapter 11 555

LOG_WARNING, LOG_NOTICE, LOG_INFO, and LOG_DEBUG.The sup
ported option values and their actions are listed in Table 11.7.

Table 11.7 alert_syslog Options

Option values Actions

LOG_CONS

LOG_NDELAY

LOG_PERROR
LOG_PID

Display messages to the console if there is an
error sending the system logger.
Open the connection to the system logger
immediately.
Print to stderr as well as the system logger.
Include the process ID in messages.

For example, if you wanted messages to be reported to the syslog using the
LOCAL7 facility, have a priority of ALERT, and include the process ID, you
would include the following line in your Barnyard configuration file:

output alert_syslog: LOG_LOCAL7 | LOG_ALERT | LOG_PID

OINK!
The exact set of supported facilities, priorities, and options is dependent
on the operating system on which Barnyard is run. If you are receiving
the error message “Unrecognized argument for AlertSyslog plugin…,”
then the particular option you are using may not be supported by your
operating system. On Linux, the supported facilities, priorities, and
options can be found by reading the syslog(3) man page.

The message format for alert_syslog contains the same information as the
alert_fast output, but some of the fields are rearranged. Like alert_fast, the format
also differs if the alert is for a TCP or UDP packet. Here are the syslog entries
for our two alerts:

Mar 25 01:12:14 localhost barnyard: [1:402:4] ICMP Destination Unreachable

(Port Unreachable) [Classification: Misc activity] [Priority: 3] {ICMP}

192.168.69.129 -> 192.168.69.2

Mar 25 01:12:14 localhost barnyard: [1:1325:3] EXPLOIT ssh CRC32 overflow

filler [Classification: Executable code was detected] [Priority: 1] {TCP}

192.168.69.129:52543 -> 192.168.69.2:22

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 556

556 Chapter 11 • Mucking Around with Barnyard

The information in the syslog messages is similar to the output from the
alert_fast output plug-in, but with the data presented in a different order.The
first portion of the message is the information about the alert type, specifically
the generator ID, signature ID, revision, and alert message.This is followed by
information about the classification and priority. Finally, there is information
about the packet that generated the alert. For alerts generated by TCP or UDP,
the ports are included here. Syslog output messages do not include any of the
external references that may exist for the alert.The final thing to note for the
previous example alerts is that even though they are the same two alerts we
looked at before, the timestamps are wrong. Our original alerts showed that they
were detected on March 6; these two indicate March 25.This illustrates the pri
mary problem with the alert_syslog output plug-in. For messages generated by
this plug-in, the timestamps are added by the system logger and are not included
as part of the message.Thus, the timestamps here indicate when the messages
were logged, not when the events were detected.

Syslog output is useful in several circumstances. Of the output plug-ins dis
cussed so far, syslog is most likely to be used in a real deployment. Syslog is most
often used when there is the need to collect alert information on a central
system. Syslog can easily be configured to forward notifications to an external
host. Syslog output is also frequently used with other tools (such as swatch) that
are designed to monitor system messages and perform certain actions (such as
generating an e-mail message) when particular messages occur.

alert_syslog2
The alert_syslog2 output plug-in also dispatches unified alert records using syslog;
however, it is considerably more flexible in how those messages are sent.This
output plug-in is new for Barnyard 0.2 and addresses many deficiencies found in
the original syslog output plug-in. If you are configuring syslog notification from
Barnyard for the first time, it is highly recommended that you use alert_syslog2
instead of alert_syslog. Unlike alert_syslog, the alert_syslog2 output plug-in does
not use the standard syslog functions for generating syslog notifications. Instead, it
creates RFC3164 compliant messages and then delivers them using UDP.This
output plug-in supports a number of configuration options to specify the various
syslog message fields and identify where the messages should be sent.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 557

Mucking Around with Barnyard • Chapter 11 557

Notes from the Underground…

Internet standards are defined by a series of Request for Comments (RFC)

(IETF). RFC3164 defines the standard for the BSD syslog protocol. This
includes the format of the messages that are transmitted. Knowing how
these messages are constructed is important to properly understanding
many of the options that the alert_syslog2 output plug-in provides. While

determine the message format, we decided to make things easier for you
and summarize it here. In general, the syslog message generated by the
alert_syslog2 output plug-in will look like:

<PRI>TIMESTAMP HOSTNAME TAG[PID]: MESSAGE TEXT

The configuration options for alert_syslog2 provide control over
every part of that except .

The PRI field is a numerical value combination of the facility and
(facility * 8)

of the message would be <189>.

Mmm dd hh:mm:ss

Where Mmm is the English language abbreviation for the month, dd
is the day of the month (if less than 10, it is represented by a space and
a single digit), hh is the hour in 24-hour format (00 to 23), mm is the min
utes, and ss is the seconds.

The HOSTNAME field is used to indicate the host that generated the
syslog message.

the program that generated the message. This field can only consist of
alphanumeric characters and can be no more than 32 characters long.

The RFC3164 Message Format

documents that are maintained by the Internet Engineering Task Force

you could always read the standard at www.ietf.org/rfc/rfc3164.txt and

MESSAGE TEXT

severity. It is calculated using the equation: + severity. Thus,
if you were using the LOCAL7 facility and the NOTICE severity, this portion

The TIMESTAMP field is the timestamp of the message in the format:

The TAG is an alphanumeric field that usually indicates the name of

Continued

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 558

558 Chapter 11 • Mucking Around with Barnyard

The PID portion of the message is optional and is used to store the
process ID of the program that generated the message. If the process ID
is not included, the square brackets ([and]) will not be included.

The valid configuration line formats are:

output alert_syslog2

output alert_syslog2: [OPTIONS];…

One or more options may be specified. Each option is followed by a ”;”.The
following are all of the options supported by the alert_syslog2 output plug-in:

■	 facility Specifies the syslog facility to generate messages at.This can be
either an integer value from 0 to 23 or a facility name.The facility value
is combined with the severity to generate the priority portion of the
syslog message.The supported facility names are KERN, USER, MAIL,
DAEMON, AUTH, SYSLOG, LPR, NEWS, UUCP, CRON, AUTH
PRIV, FTP, NTP, AUDIT, ALERT, CLOCK, LOCAL0, LOCAL1,
LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, and LOCAL7.
Many of these facility names are intended to be used by particular pro
grams that typically run on a UNIX system. While any of them can be
specified, it is recommended to use AUTH or one of the LOCAL facili
ties. If no facility is specified, then LOCAL7 will be used.The numeric
value for each of these facilities can be found in RFC3164.This option
is specified as:

facility: <facility>;

■	 severity Used to specify the syslog severity to generate messages at.
This value is combined with the facility value to generate the priority
portion of the syslog message.The severity value must be an integer
value from 0 to 8 or a severity name.The supported severity names are
EMERG, ALERT, CRIT, ERROR, WARN, NOTICE, INFO, and
DEBUG. If this option is not specified, NOTICE will be used.The
numeric value for each of these severities can be found in RFC3164.
The option is specified as:

severity: <severity>;

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 559

Mucking Around with Barnyard • Chapter 11 559

■	 hostname Used to specify the value that will be used in the hostname
portion of the syslog message.This is traditionally the name or IP
address of the host that generated the message, but any valid hostname
or IP address may be used. If this option is not specified, Barnyard will
query the system for its configured hostname and use that.This option
is specified as:

hostname: <hostname>;

■	 tag Specifies the value that will be used for the tag portion of the
syslog message.This value may only consist of alphanumeric characters
and must be no more than 32 characters long. If this option is not speci
fied, then the name of the program (for example, “barnyard” unless the
binary has been renamed) will be used.This option is specified as:

tag: <tag>;

■	 withpid If this option is specified, then the process ID will be
included in the syslog message. By default, the process ID is not
included.This option does not take any arguments and is specified as:

withpid;

■	 syslog_host Used to specify the host to which the syslog messages
should be sent.This may be specified as a hostname or an IP address. If
this option is not specified, then the syslog messages will be delivered to
the local system.This option is specified as:

syslog_host: <hostname>;

■	 syslog_port Specifies the UDP port to which syslog messages will be
delivered.This must be an integer value from 1 to 65535. If this option
is not specified, then the default syslog port (514/UDP) will be used.
This option is specified as:

syslog_port: <port>;

With all these options, it may be confusing to figure out which ones to use.
In most cases, you will only need to specify the syslog_host, facility, and severity
options. For example, suppose you wanted notifications to be sent to your central
syslog server with an address of 192.168.1.2. Additionally, you want these

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 560

560 Chapter 11 • Mucking Around with Barnyard

notifications to have a severity of ALERT (and use the default facility of
LOCAL7).To configure alert_syslog2 for this situation, you would use the con
figuration line:

output alert_syslog2: severity: ALERT; syslog_host: 192.168.1.2;

Here are the syslog messages that are generated for our two alerts using the
default configuration for alert_syslog2:

Mar 6 15:56:41 phlegethon barnyard: [1:402:4] ICMP Destination Unreachable

(Port Unreachable) [Classification: Misc activity] [Priority: 3] {ICMP}

192.168.69.129 -> 192.168.69.2

Mar 6 16:11:48 phlegethon barnyard: [1:1325:3] EXPLOIT ssh CRC32 overflow

filler [Classification: Executable code was detected] [Priority: 1] {TCP}

192.168.69.129:52543 -> 192.168.69.2:22

The message text of the notifications generated by the alert_syslog2 output
plug-in is identical to those generated by the original alert_syslog plug-in.
However, you should notice that the timestamp for the event is now correct.The
syslog pri field has been stripped from these messages by the syslog service; how
ever, if we were to examine the packets as they traversed the network, we would
see it at the beginning of each message.

In addition to providing the correct timestamp, the alert_syslog2 output
plug-in provides for significantly more control over the other portions of the
syslog message. Additionally, alert_syslog2 allows the user to send notifications to
a remote system without the need to reconfigure the system logger on the local
system. Finally, alert_syslog2 is not dependent on the local operating system for
which facilities and severities are supported. With all these improvements, it is
highly recommended that users use this output plug-in instead of the original
alert_syslog when syslog alerting is required.

OINK!
This output plug-in knowingly violates one of the requirements of
RFC3164. The requirements state that the timestamp must be rendered
using the local time zone. By default, Barnyard will use UTC for ren
dering the timestamp. However, if the localtime option is specified, the
local time zone will be used and the messages will be RFC compliant.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 561

Mucking Around with Barnyard • Chapter 11 561

log_dump
The log_dump output plug-in renders (or dumps) unified log records to an
output file in a human-readable format.This output plug-in is an analogue to the
alert_fast output plug-in for unified log records. It works in very much the same
way as alert_fast.The possible configuration lines for the log_dump output plug-
in are:

output log_dump

output log_dump: <filename>

If the filename option is not specified, the output will be written to the file
dump.log in the logging directory. If the output file already exists, then new entries
will be appended to it. For example, if you want output to be written to the file
barnyard.logs, you would use the following line in your configuration file:

output log_dump: barnyard.logs

The output from log_dump contains both alert and packet information in a
human-readable format similar to Snort’s log_ascii output plug-in. Here is the
output from the log_dump output plug-in for the unified log records that corre
spond to the two alerts that we processed for the alert output plug-ins:

[**] [1:402:4] ICMP Destination Unreachable (Port Unreachable) [**]

[Classification: Misc activity] [Priority: 3]

Event ID: 3 Event Reference: 3

03/06/04-15:56:41.118618 192.168.69.129 -> 192.168.69.2

ICMP TTL:64 TOS:0xC0 ID:40927 IpLen:20 DgmLen:356

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

00 00 00 00 45 00 01 48 00 85 40 00 40 11 2D 4CE..H..@.@.-L

C0 A8 45 02 C0 A8 45 81 00 44 00 43 01 34 A3 7D ..E...E..D.C.4.}

01 01 06 00 2C C3 EC 4B 2E BC 00 00 C0 A8 45 20,..K......E

00 00 00 00 00 00 00 00 00 00 00 00 00 C0 F0 3E>

ED DB 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 562

562 Chapter 11 • Mucking Around with Barnyard

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 63 82 53 63c.Sc

35 01 03 37 07 01 1C 02 03 0F 06 0C FF 00 00 00 5..7............

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00

=+

[**] [1:1325:3] EXPLOIT ssh CRC32 overflow filler [**]

[Classification: Executable code was detected] [Priority: 1]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144]

[Xref => http://www.securityfocus.com/bid/2347]

Event ID: 57 Event Reference: 57

03/06/04-16:11:48.334225 192.168.69.129:52543 -> 192.168.69.2:22

TCP TTL:64 TOS:0x0 ID:14150 IpLen:20 DgmLen:596 DF

AP Seq: 0x5E74E6E9 Ack: 0xA5A0A85 Win: 0x1250 TcpLen: 32

TCP Options (3) => NOP NOP TS: 241226245 1093038893

00 00 02 1C 09 14 AA EA 2A C0 2C A1 13 8E 0B 0E

BD 62 D4 FC 95 E1 00 00 00 3D 64 69 66 66 69 65

2D 68 65 6C 6C 6D 61 6E 2D 67 72 6F 75 70 2D 65

78 63 68 61 6E 67 65 2D 73 68 61 31 2C 64 69 66

66 69 65 2D 68 65 6C 6C 6D 61 6E 2D 67 72 6F 75

70 31 2D 73 68 61 31 00 00 00 0F 73 73 68 2D 72

73 61 2C 73 73 68 2D 64 73 73 00 00 00 66 61 65

73 31 32 38 2D 63 62 63 2C 33 64 65 73 2D 63 62

63 2C 62 6C 6F 77 66 69 73 68 2D 63 62 63 2C 63

61 73 74 31 32 38 2D 63 62 63 2C 61 72 63 66 6F

75 72 2C 61 65 73 31 39 32 2D 63 62 63 2C 61 65

73 32 35 36 2D 63 62 63 2C 72 69 6A 6E 64 61 65

6C 2D 63 62 63 40 6C 79 73 61 74 6F 72 2E 6C 69

75 2E 73 65 00 00 00 66 61 65 73 31 32 38 2D 63

www.syngress.com

........*.,.....

.b.......=diffie

-hellman-group-e

xchange-sha1,dif

fie-hellman-grou

p1-sha1....ssh-r

sa,ssh-dss...fae

s128-cbc,3des-cb

c,blowfish-cbc,c

ast128-cbc,arcfo

ur,aes192-cbc,ae

s256-cbc,rijndae

l-cbc@lysator.li

u.se...faes128-c

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 563

Mucking Around with Barnyard • Chapter 11 563

62 63 2C 33 64 65 73 2D 63 62 63 2C 62 6C 6F 77 bc,3des-cbc,blow

66 69 73 68 2D 63 62 63 2C 63 61 73 74 31 32 38 fish-cbc,cast128

2D 63 62 63 2C 61 72 63 66 6F 75 72 2C 61 65 73 -cbc,arcfour,aes

31 39 32 2D 63 62 63 2C 61 65 73 32 35 36 2D 63 192-cbc,aes256-c

62 63 2C 72 69 6A 6E 64 61 65 6C 2D 63 62 63 40 bc,rijndael-cbc@

6C 79 73 61 74 6F 72 2E 6C 69 75 2E 73 65 00 00 lysator.liu.se..

00 55 68 6D 61 63 2D 6D 64 35 2C 68 6D 61 63 2D .Uhmac-md5,hmac-

73 68 61 31 2C 68 6D 61 63 2D 72 69 70 65 6D 64 sha1,hmac-ripemd

31 36 30 2C 68 6D 61 63 2D 72 69 70 65 6D 64 31 160,hmac-ripemd1

36 30 40 6F 70 65 6E 73 73 68 2E 63 6F 6D 2C 68 60@openssh.com,h

6D 61 63 2D 73 68 61 31 2D 39 36 2C 68 6D 61 63 mac-sha1-96,hmac

2D 6D 64 35 2D 39 36 00 00 00 55 68 6D 61 63 2D -md5-96...Uhmac-

6D 64 35 2C 68 6D 61 63 2D 73 68 61 31 2C 68 6D md5,hmac-sha1,hm

61 63 2D 72 69 70 65 6D 64 31 36 30 2C 68 6D 61 ac-ripemd160,hma

63 2D 72 69 70 65 6D 64 31 36 30 40 6F 70 65 6E c-ripemd160@open

73 73 68 2E 63 6F 6D 2C 68 6D 61 63 2D 73 68 61 ssh.com,hmac-sha

31 2D 39 36 2C 68 6D 61 63 2D 6D 64 35 2D 39 36 1-96,hmac-md5-96

00 00 00 09 6E 6F 6E 65 2C 7A 6C 69 62 00 00 00none,zlib...

09 6E 6F 6E 65 2C 7A 6C 69 62 00 00 00 00 00 00 .none,zlib......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Some of the information is these output examples should look familiar to you.
The first line in the log_dump output is the basic information about the alert.This
is followed by a line containing the alert classification and priority.The third line is
new and may not seem very important at first glance. It displays the event ID and
event reference ID. For both of our examples here, these two values are the same.
If, however, one of these packets had been logged as the result of tagging, the event
reference ID would refer to the first event of the tagged packet stream.The rest of
the output is detailed information about the captured packet.The first line in the
packet dump contains the packet timestamp and the source and destination IP
addresses.The next few lines display packet header information. Our first example
has two lines that provide details about the packet’s ICMP header.The second
example contains three lines of details for the TCP header found in that packet.
The rest of the packet dump is the packet payload in a combined hex dump and
ASCII format.The packet payload can be very useful when analyzing alerts. If we
examine the payload for the second alert, we can quickly determine that this

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 564

564 Chapter 11 • Mucking Around with Barnyard

packet is really just part of a normal SSH session negotiation and not the SSH
CRC32 overflow attack that the alert claims it is.

Like the alert_fast output plug-in, the primary advantage of log_dump is that
it generates human readable output. While this is useful if you want to examine
the contents of a particular unified log file, it is not particularly helpful for
normal analysis of Snort alerts. While we were able to use this information to
examine one of our sample alerts, if we had thousands of alerts in a single file,
manually reading each one would be too cumbersome of a task to be useful.

log_pcap
The log_pcap output plug-in extracts the packet data from unified log records
and stores it into a pcap format file. Pcap files can be read by many applications,
including tcpdump, Snort, and Ethereal.The possible configuration lines for the
log_pcap output plug-in are:

output log_pcap

output log_pcap: <filename>

If the filename option is not specified, then “barnyard.pcap” will be used.The
output file for log_pcap differs a bit from the other file-based output plug-ins we
have discussed. So far, all of the output plug-ins that write to a file will append
to the current file if it already exists.The log_pcap output plug-in, however, will
always create a new output file.This is because a pcap file must include specific
header information. So, what happens if the output file already exists? To avoid
overwriting any existing output file, Barnyard adds a timestamp extension to the
filename.The timestamp indicates when the output file was created using the
local time zone. For example, if log_pcap is configured with the default settings
and were to open an output file now (Thu Mar 18 21:44:12 EST 2004), then
the output file would be named barnyard.pcap.2004-03-18@21-44-12. It is
important to remember that the timestamp only indicates when the file was cre
ated and does not necessarily represent the timestamps of any of the data in it.

Since the pcap file does not contain any of the alert information associated
with the packet, the log_pcap output plug-in is most useful for extracting the
packet data for analysis in another tool.The resulting pcap file is the same as if
Snort had been run with the –b command-line option or the tcpdump output
plug-in.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 565

Mucking Around with Barnyard • Chapter 11 565

acid_db
This output plug-in stores unified record data into a database using the schema
developed for the ACID analysis console.This output plug-in is actually two dif
ferent output plug-ins (alert_acid_db and log_acid_db) that live together in a
single source file and share many implementation details.The alert_acid_db
output plug-in is used to process unified alert records, and the log_acid_db
output plug-in processes unified log records. Unlike the output plug-ins dis
cussed so far, the acid_db output plug-ins require configuration information in
order to be used. As of Barnyard 0.2, the acid_db output plug-in supports both
MySQL and PostgreSQL database servers.The configuration lines for the
acid_db output plug-ins are:

output alert_acid_db: <database type>, [OPTIONS]…

output log_acid_db: <database type>, [OPTIONS]…

The options for the acid_db output plug-ins are separated by a “,”.The
database type must be either “mysql” or “postgres.”The options for this output
plug-in are the same as those for the Snort database output plug-in.The fol
lowing are all the options supported by the acid_db output plug-ins:

■	 database Specifies the name of the database that contains the tables for
the ACID schema.There is no default value for this option.

■	 server Specifies the name of the database server to which the acid_db
output plug-in will connect.There is no default value for this option.

■	 user Specifies the username that the acid_db output plug-in will
authenticate to the database server as.There is no default value for this
option.

■	 password Specifies the password that will be used for authentication
with the database server.There is no default value for this option.

■	 detail Used to specify the amount of packet details inserted into the
database when processing unified log records.The only valid value for
this option is “full.” When the detail is set to full, additional packet
information is written to the database.This includes the packet payload
and additional IP,TCP, and UDP header information. By default, the
detail level is set to fast.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 566

566 Chapter 11 • Mucking Around with Barnyard

■	 sensor_id Used to specify the sensor ID that is used when inserting
records into the database. By default, the acid_db output plug-in will
automatically determine the appropriate value to use. It is not recom
mended that this option be specified. It exists because, when originally
implemented, the acid_db output plug-in did not have the capability to
determine what value should be used.

While the acid_db output plug-in will accept a configuration that only spec
ifies the database type, several of the other options must also be specified to pro
vide a working configuration. In particular, all configurations should specify the
database, server, and user options. For example, suppose you are using a MySQL
database server running on 192.168.1.2, the database was named “snort,” and you
had created a database user named “snort” with a password of “abc123.”
Additionally, you want to configure the acid_db output plug-in to process uni
fied log records and include packet payloads. In this case, you would use the fol
lowing line in your configuration file:

output log_acid_db: mysql, database snort, server 192.168.1.2, user snort,

password abc123, detail full

While this configuration is on two lines here, when entered into the config
uration file it will either need to be on a single line or have a line continuation

OINK!

character, ”\”, at the end of the first line.

In order to use either the acid_db or sguil output plug-in, Barnyard must
be built with database support. If you are trying to use one of the
output plug-ins and are seeing any of the following errors, then
Barnyard was not built with the appropriate database support:

Unknown output plugin "alert_acid_db_ referenced, ignoring!

Unrecognized argument for AcidDb plugin: postgres

Unrecognized argument for AcidDb plugin: mysql

Please refer to the Installing Barnyard section of this chapter for
more information on building Barnyard with the appropriate database
support.

The acid_db output plug-in is one of the most useful output plug-ins avail
able in Barnyard and is the only one used in many deployments.This is most

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 567

Mucking Around with Barnyard • Chapter 11 567

likely because it embodies one of the driving forces behind the creation of
Barnyard: the separation of (relatively) expensive data processing from processing
network traffic.The acid_db output plug-in is primarily used in conjunction
with either ACID or one of the other Snort analysis tools that use the ACID
database schema.

sguil
The sguil output plug-in (new in Barnyard 0.2) is a multifunction output plug-in
intended for use with the sguil network analysis console. It combines both
database logging and real-time event streaming functionality into a single output
plug-in. It only supports processing unified log records. Like the acid_db output
plug-ins, this output plug-in also requires configuration information if it is going
to be used. Currently, sguil only supports using MySQL as the database server.
Since the sguil output plug-in is based on the acid_db output plug-in, much of
the configuration is identical.The sguil output plug-in adds two new keywords
to those supported by the acid_db output plug-in: squild_host and squild_port.

■	 squild_host The name of the host that is running the squild event
server.This value must be specified as part of the sguil output plug-in
configuration.

■	 sguild_port The port to connect to on the sguild event server.This
value must be specified as part of the sguil output plug-in configuration.

More information on using sguil can be found on the sguil homepage at
http://sguil.sourceforge.net/.

Running Barnyard in
Batch-Processing Mode
Of Barnyard’s two operational modes, batch-processing mode is the easier to
understand (and has fewer configuration options). As already mentioned, in this
mode Barnyard processes all of the specified unified files and then exits. Batch
processing mode is enabled by specifying the –o command-line option.The gen
eral format for running Barnyard in batch-processing mode is:

barnyard –o [OPTIONS]… FILES…

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 568

568 Chapter 11 • Mucking Around with Barnyard

OINK!
The command line for batch processing mode has changed significantly
from Barnyard 0.1. While the old syntax still works, we recommend that
readers familiarize themselves with the new (hopefully improved) syntax.

In this format, FILES… indicates one or more unified files, and
[OPTIONS]… are any of the general configuration options we discussed earlier.
To learn more about running Barnyard in batch-processing mode, let’s try some
examples. Before we begin, let’s see what unified files we have available and what
the Barnyard configuration file looks like.

ls /var/log/snort

snort-unified.stats.1078588579

snort-unified.stats.1078673083

unified.alert.1078588579

unified.alert.1078673083

unified.log.1078588579

unified.log.1078673083

cat /etc/snort/barnyard.conf

output alert_fast

output log_dump

Processing a Single File
As seen in the preceding code, we have a couple of each of the types of unified
output files and a very simple configuration file.These unified files and configu
ration file will be used for all of the examples in this section.To get started using
Barnyard, let’s process one of the unified alert files. Since the configuration file is
in the default location, we do not need to specify it on the command line.

barnyard –o /var/log/snort/unified.alert.1078588589

Barnyard Version 0.2.0 (Build 32)

Exiting

OK, that wasn’t very interesting, but Barnyard actually did do something. If
we look in our current directory, we will see that we now have a file called
fast.alert in our current working directory. If we open this file, we will see that it

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 569

Mucking Around with Barnyard • Chapter 11 569

contains all the alerts from the unified file in a nice, easy-to-read format. If we
want Barnyard to provide us more information while it is running, we can
increase the verbosity level by adding a –v option.

barnyard –o –v /var/log/snort/unified.alert.1078588589

Barnyard Version 0.2.0 (Build 32)

Processing: /var/log/snort/unified.alert.1078588589

Number of records: 296

Exiting

That command did exactly the same thing as the previous one, but by adding
the –v option, Barnyard told us more about what it was doing. If we added
another –v option, Barnyard would tell us even more. Currently, Barnyard will
continue to log additional information for up to three –v options on a single
command line. After that, we would be just making the command line longer
without adding any value.

OINK!
Actually, that command did one thing slightly different from the first one.
When we ran the first command, we did not have a file named “fast.alert”
in our current working directory, so a new one was created and all the
events were written to it. When we ran the second command, this file
already existed, so the events were written to the end of it. Now our
fast.alert file has two sets of the events in it. Before we run this command
again, we are going to delete any existing output files first.

Using the Dry Run Option
While adding the –v option was nice, what if we wanted to know what Barnyard
was going to do without having it process any data?.The dry run option (–R) pro
vides us this functionality. Let’s run our command with –R and see what happens.

barnaryd –o –R /var/log/snort/unified.alert.1078588589

Barnyard Version 0.2.0 (Build 32)

Program Variables:

Batch processing mode

Config dir: /etc/snort

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 570

570 Chapter 11 • Mucking Around with Barnyard

Config file: /etc/snort/barnyard.conf

Sid-msg file: /etc/snort/sid-msg.map

Gen-msg file: /etc/snort/gen-msg.map

Class file: /etc/snort/classification.config

Hostname: phlegethon

Interface:

BPF Filter:

Log dir: /home/andrewb

Verbosity: 0

Localtime: 0

File list:

/var/log/snort/unified.alert.1078588579

Output plugins enabled for 'alert' records

OpAlertFast configured

Filename: fast.alert

===

Output plugins enabled for 'log' records

OpLogDump configured

Filename: dump.log

===

Output plugins enabled for 'stream_stat' records

None configured

===

As can easily be seen, the –R output provides a rich set of information about
how Barnyard is configured to run.The very first piece of information displayed
is the version of Barnyard that is being run.This is followed by sections detailing
the program variables and all of the configured output plug-ins.

The first thing listed in the program variables section is the mode in which
Barnyard is configured to run; since we used the –o option on our command
line, we expect Barnyard to be running in batch-processing mode, and the –R
output verifies this. After the processing mode, there are listed all of the various
pieces of configuration data that we discussed how to specify in the section on
configuring Barnyard.These include things such as the configuration file being

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 571

Mucking Around with Barnyard • Chapter 11 571

used, where the meta-data is being read from, the directory where output will be
written, and more.The last piece of the program variables section is the list of
files that Barnyard is going to process. Here we see listed the unified file that we
specified on the command line.

After the program variables section are three sections listing which alert, log,
and stream-stat output plug-ins have been configured. In our example, we have
only the alert_fast and log_dump output plug-ins. For each configured output
plug-in, details of how the plug-in has been configured are provided. In our cur
rent example, the alert_fast output plug-in has been configured to write its
output to the file alert.fast.

Now that you understand the –R output, we recommend using it before
trying a new set of command-line options. We would do the same for the rest of
the chapter, but that may get a bit tedious. Instead, we will just use it to illustrate
selected command-line configurations.

Processing Multiple Files
If we have multiple unified files to process at once, running Barnyard once for
each file may be a bit tedious.Thankfully, Barnyard can process multiple files in
batch-processing mode with a single command. All we have to do is to add the
additional files that we want processed to the end of the command line. For
example, if we wanted to use our default configuration to process all of the uni
fied alert files in the Snort log directory, we could run Barnyard as follows:

barnyard –v –o /var/log/snort/unified.alert.*

Barnyard Version 0.2.0 (Build 32)

Processing: /var/log/snort/unified.alert.1078588579

Number of records: 296

Processing: /var/log/snort/unified.alert.1078673083

Number of records: 1

Exiting

The command we used makes use of the shell to expand /var/log/snort/uni-
fied.alert.* to a list of all the files that match the pattern.This saves us consider
able typing. We chose to add the –v option to the command line so that
Barnyard would tell us which files it was processing. From the output, we see
that Barnyard processed 296 records from /var/log/snort/unified.alert.1078588579,
and a single record from /var/log/snort/unified.alert.1078673083. If we look in
our current working directory, we will find that we now have a file named
alert.fast containing 297 alerts.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 572

572 Chapter 11 • Mucking Around with Barnyard

Using the Continual-Processing Mode
Now that we are experienced in running Barnyard in batch-processing mode, let’s
see how to run it in continual-processing mode. In continual-processing mode,
instead of exiting when it is finished reading a unified file, Barnyard waits either
for new events to be written to the current file or for Snort to create a new uni
fied file.Thus, Barnyard continues to process unified events as they occur. Unlike the
batch-processing mode where we could tell Barnyard to process a mix of unified
alert and log files with a single command, in continual-processing mode, Barnyard
will only read one type or the other. In this section, we discuss the basics of run
ning Barnyard in continual-processing mode. After mastering the basics, we will
move on to the more advanced topics of enabling bookmark support, archiving
processed files, and running multiple Barnyard processes simultaneously.

The Basics of Continual-Processing Mode
To run Barnyard in continual-processing mode we will use the format:

barnyard [OPTIONS]… -f <base>

Where [OPTIONS]… are any of the general configuration options, and
<base> is the base filename portion of the unified files that will be processed. If
you remember from discussing the naming of unified output files earlier in the
chapter, each unified output filename has two portions: the base filename and the
timestamp extension. For example, the unified alert file named
unified.alert.1078588579 has a base filename portion of unified.alert and a times
tamp portion of 107855879.Therefore, if we wanted to process all of the unified
alert files in our directory, we would specify unified.alert as the argument to –f.To
illustrate, let’s look at the dry run output from the simplest continual-processing
mode command:

barnyard –R –f unified.alert

Barnyard Version 0.2.0 (Build 32)

Program Variables:

Continual processing mode

Config dir: /etc/snort

Config file: /etc/snort/barnyard.conf

Sid-msg file: /etc/snort/sid-msg.map

Gen-msg file: /etc/snort/gen-msg.map

Class file: /etc/snort/classification.config

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 573

Mucking Around with Barnyard • Chapter 11 573

Hostname: phlegethon

Interface:

BPF Filter:

Log dir: /var/log/snort

Verbosity: 0

Localtime: 0

Spool dir: /var/log/snort

Spool file: unified.alert

Start at end: 0

Output plugins enabled for 'alert' records

OpAlertFast configured

Filename: fast.alert

===

Output plugins enabled for 'log' records

OpLogDump configured

Filename: dump.log

===

Output plugins enabled for 'stream_stat' records

None configured

===

This output is similar to the output for batch-processing mode, but there are
a few differences in the program variables section since we are now running in
continual-processing mode.The list of unified files to process is now gone, and in
its place are the configuration details appropriate for running in continual mode.
The first of these is the spool directory.This indicates the directory from which
Barnyard will read the unified files.The next item, Spool file, indicates the base
filename of the unified files that will be processed. If the last value, Start at end, is
1, then Barnyard will only process new records. Otherwise, all of the existing
records will also be processed. As new options are added to the command line,
information related to those options is added to this output.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 574

574 Chapter 11 • Mucking Around with Barnyard

Running in the Background
Most of the time, when Barnyard is being used in continual-processing mode, we
want it to run in the background as a daemon process.This can be enabled either
by using the –D command-line option or by including config daemon in the con
figuration file. Daemon mode can only be used in continual-processing mode. In
addition to running in the background, enabling daemon mode produces a
couple of additional effects. First, when daemon mode is enabled, informational
messages will be logged using syslog instead of being printed to the screen.
Second, when running as a daemon, Barnyard will write its process ID to a PID
file (/var/run/barnyard.pid by default). Additionally, Barnyard will lock this PID
file to prevent another Barnyard process from also starting up in Barnyard mode.
Adding daemon support to our current command line modifies it to be:

barnyard –D –f unified.alert

Adding the –D option also causes the PID file to be displayed as part of the
dry run configuration output. For example, for this command line, the dry run
output would now include the following line:

Pid file: /var/run/by.pid

Enabling Bookmark Support
Bookmark support allows Barnyard to remember where it was when processing
unified files in continual mode.This allows it to “pick up where it left off ” when
it is restarted.This option is very useful when using Barnyard in continual mode
since it provides the capability to ensure that all of the records are processed
without the need to reprocess any old records. Bookmark support is enabled by
adding the –w option with the name of the bookmark file to use. For example, if
we wanted to enable bookmark support using the file /var/snort/run/by.book-
mark, then we would use the following command line:

barnyard –w /var/snort/run/by.bookmark –f unified.alert

If the bookmark file already exists, Barnyard will read it to determine which
at which file and record number it needs to start processing. After processing
each record, Barnyard will update the bookmark file to indicate the new file and
record number.This way, if Barnyard exits, it knows exactly which file and which
record it was processing the last time it ran.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 575

Mucking Around with Barnyard • Chapter 11 575

Enabling bookmark support adds three lines to the output generated with
the dry run option.This information includes details about which file is being
used for the bookmark, and the information contained in the bookmark file if it
already existed. For our command, the dry run output will have the following
three additional lines:

Bookmark file: /var/snort/run/by.bookmark

Record Number: 0

Timet: 0

The first item indicates the file that contains the bookmark information.The
record number indicates the last record in the unified file that had been processed
by Barnyard.The timet value indicates which unified file Barnyard was processing.
In our example, since the bookmark file did not already exist, both the record
number and timet values are 0.This indicates that Barnyard will process all of the
existing records and then continue to process new records as they arrive.

Only Processing New Events
Starting in Barnyard 0.2, there is a new option for continual-mode processing.
This option, –n, is used to specify that only new events are processed.This allows
us to configure Barnyard to ignore any existing events and only process events
that are received after it was started.This option has special interactions when
used with the bookmark option. Normally, when using the bookmark option
before a bookmark has been created, Barnyard will process all of the existing
records. Often times, this is not the desired behavior, and it would be convenient
if we could configure Barnyard to process only the new records.This can be
accomplished by combining the –n and –w options. If both the –n and –w
options are specified and the bookmark file does not exist, then Barnyard will
skip any existing records and only process new records as they arrive (and update
the bookmark file accordingly). However, if the bookmark file does exist,
Barnyard will start processing events as indicated by the contents of the book
mark file. It is common to use both the bookmark and new events-only options
together when running Barnyard in continual-processing mode.

Archiving Processed Files
Another advanced feature that can be used with continual-processing mode is
processed file archiving. When this is enabled, Barnyard will move each processed
file to the specified directory.This is a convenient way of making sure that your

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 576

576 Chapter 11 • Mucking Around with Barnyard

spool directory only contains files that have not yet been processed. Processed file
archiving is enabled by adding the –a option with the name of a directory to
archive the files to. For example, if we wanted to have all of the processed files
archived to the directory /var/snort/processed, we could use the following com
mand line:

barnyard –a /var/snort/processed -f unified.alert

If archive support is enabled, then the dry run output will have another line
that indicates the directory to which processed files will be archived. For our
previous command, this extra line would be:

Archive dir: /var/snort/processed

OINK!
It is not recommended to enable file archiving if you are going to run
multiple instances of Barnyard processing the same set of unified files. If
enabled in this type of deployment, there is a high probability that one
Barnyard process will archive a unified file before another starts reading
it. If this happened, then some of the events would be missed by some
of the Barnyard processes. In order to automatically archive unified files
in this scenario, it is necessary to write a program that will examine the
bookmark files, determine which files have already been processed, and
then move them to the archive location.

Running Multiple Barnyard Processes
Often times it will be desirable to run multiple instances simultaneously in con
tinuous processing mode. For example, we might want one instance sending
alerts via syslog and another inserting the alerts into a database. With these run
ning as two separate processes, even if the database slows down, our syslog alerts
will continue to be sent immediately.The problem with this scenario is that
when Barnyard is run in daemon mode, it uses a PID file to prevent multiple
instances from starting up simultaneously.Thus, if we want to run multiple
instances simultaneously, we will need to either not run in daemon mode or to
tell Barnyard to use a different PID file.The –X command-line option is used to
specify a PID file other than the default.This is also useful if you do not want to

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 577

Mucking Around with Barnyard • Chapter 11 577

use the default PID file /var/run/barnyard.pid. For example, if we wanted to run
Barnyard in daemon mode with a PID file of /var/run/by_database.pid, we
would use the command:

barnyard –D –X /var/run/by_database.pid –f unified.alert

We will cover some examples of running multiple instances of Barnyard
simultaneously when we discuss some example deployments.

Signal Handling
When Barnyard is running in continual-processing mode, it is possible to control
it in a simplified manner.This is accomplished by sending Barnyard one of sev
eral signals using the UNIX kill command.Table 11.8 lists the signals that
Barnyard processes and what it does when one is received.

Table 11.8 Processed Signals

Signal(s) Action

SIGTERM Causes Barnyard to stop processing records and exit
SIGINT Causes Barnyard to stop processing records and exit
SIGQUIT Causes Barnyard to stop processing records and exit
SIGHUP Causes Barnyard to reload its configuration file

Deploying Barnyard
Now that we have taught you everything you need to know about running and
configuring Barnyard, let’s apply that knowledge by deploying Barnyard in a
sample scenario. We will start with a relatively simple configuration and then add
more capabilities to it in order to address additional needs. We will presume that
you already have Snort running and that you have configured both the unified
log and unified alert output plug-ins.

Most Barnyard deployments consist of one or more Barnyard processes con
figured to process all data using the continual-processing mode. Additionally,
some deployments also include extra configuration files that are occasionally used
to perform additional processing. Our sample deployment will be no different.
We are going to start with configuring Barnyard to perform remote syslog
alerting.Then we are going to add database support. Next, we will add some

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 578

578 Chapter 11 • Mucking Around with Barnyard

configuration files that will allow us to occasionally extract specific data from the
unified files. Finally, we will add the configurations necessary to view alerts on
the console in real-time.

Remote Syslog Alerting
The first capability our system needs is to be able to send alerts to a remote
syslog server. While this could be accomplished by enabling syslog alerting
directly in Snort, we want to make use of some of the additional features found
in the alert_syslog2 output plug-in in Barnyard. For this output, we will be using
a syslog server with the hostname “chips.” However, this particular syslog server
has been configured to listen for syslog messages on a nondefault port; instead of
using UDP port 514, it listens for messages on port 25451. In addition, instead of
using the default tag for the alerts, we want to use the string IDS-Alert.
Additionally, instead of the default location, gen-msg.map and sid-msg.map are
installed in /var/snort/rules. We are going to specify these files in the Barnyard
configuration file instead of using the command-line options. For this configura
tion, our Barnyard configuration file looks like:

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_syslog2: syslog_host: chips; syslog_port: 25451; \

tag: IDS-Alert;

Since we anticipate having multiple Barnyard configurations, we have saved
this configuration to the file /etc/snort/bysyslog.conf.To verify that we config
ured the output plug-in correctly, we run Barnyard with the –R command and
look at the section for the output plug-ins enabled for alert records. Doing so, we
get the following output:

OpAlertSyslog2 configured

Syslog Host/Port: chips:25451/udp

Syslog Facility: LOCAL7(23)

Syslog Severity: NOTICE(5)

Hostname: phlegethon

Tag: IDS-Alert

This matches what we want for our syslog configuration so we know we
have the output plug-in configured correctly. If we wanted to verify that the

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 579

Mucking Around with Barnyard • Chapter 11 579

configuration works correctly, we could run Barnyard in batch-processing mode
to test it.

OINK!
When using batch-processing mode to test a configuration, it is wise to
use a test unified file that only has a small number of records in it. The
last thing that most administrators want is to test a particular alerting
configuration by sending thousands of alerts through it. Therefore, it is
recommended to generate some unified files that only have a handful of
records in them for testing purposes.

Now we need to determine the command-line options that we need to
specify. From our Snort configuration, we know that the base filename for the
unified alert files is unified.alert. We will need to specify this value as the argu
ment to the –f option. Additionally, since we plan to run multiple Barnyard pro
cesses simultaneously in the future, we are going to want to specify a nondefault
PID file. We are going to use /var/snort/run/bysyslog.pid for our PID file. Finally,
since we want Barnyard to run as a daemon process, we will specify the –D
option. Combining all of this with the option to specify the configuration file,
we get the following command line:

barnyard –c /etc/snort/bysyslog.conf –X /var/snort/run/bysyslog.pid –D \

–f unified.alert

Unfortunately, after trying to use this command we notice a problem. In par
ticular, every time we start it, all of the old alerts are also sent to the syslog server,
which is definitely not what we want.To solve this problem we need to either
enable bookmark support or configure Barnyard to only process new records (or
both). Deciding which we want to use depends on what data we want the syslog
server to see. For this scenario, our syslog server, chips, wants to see all of the
events since we installed this configuration.Thus, if this process is not running
for some reason, we still want to receive the events received during that time
period. However, we do not want to receive any events that existed before we
first added this alerting type.To accomplish this we will enable both the new
records only option and the bookmark option.This way, if there is no bookmark
file, as would be the case when we first install this configuration, Barnyard will
start processing at the most recently received event, and if there is a bookmark

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 580

580 Chapter 11 • Mucking Around with Barnyard

file, Barnyard will start processing at the first event after the ones it has already
processed. Keeping with the file naming we have used so far, we are going to use
/var/snort/run/bysyslog.bookmark as the bookmark file for this configuration.
Updating our command line accordingly gives us:

barnyard –c /etc/snort/bysyslog.conf –X /var/snort/run/bysyslog.pid –D \

-f unified.alert –w /var/snort/run/bysyslog.bookmark –n

This command line gives us exactly what we want for our syslog reporting
and we can now add it to our system startup scripts. If we ever need to stop this
Barnyard process from running, we can send a signal to tell it to exit. Since the
process ID is stored in the PID file, we can read it from there instead of having
to find it in a process listing.To stop the Barnyard process we’ve started, use this
command:

kill `cat /var/snort/run/bysyslog.pid`

Database Logging
After receiving syslog alerts for a while, we have decided that we want to start
using some of the analysis tools that require the data to be stored in a database.
While we still want to keep our syslog alerts, we now also need to insert the
alerts into a database using the standard Snort database schema. We have read the
Snort documentation and have managed to load the schema onto our MySQL
database server.The server is running on the host named pizza and we named
the database snort. Additionally, we created a database user named snortdb with a
password of abc123. We have used the mysql command-line tool to connect to
the remote database to verify that we can connect to the database server and
access the database. Now, all that is left is to configure Barnyard to send data to
the database. We have decided that in addition to the alert information, we also
want to have full packet details inserted into the database.

Creating the appropriate configuration file for database logging requires a
little more work than the one for syslog alerting. In addition to specifying the
output plug-in configuration and where to load the message maps from, we may
also need to configure the interface, BPF filter, and hostname values. For this
particular system, we are running Snort of eth1 and we are not using a BPF filter.
We want to use the default hostname, so we will not need to specify an alternate
value in the configuration file. Since we want packet logs, we know we need to
use the log_acid_db output plug-in. Combining all this information, we have
created the following configuration file and saved it to /etc/snort/bymysql.con.:

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 581

Mucking Around with Barnyard • Chapter 11 581

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

config interface: eth1

output log_acid_db: mysql, database snort, server pizza, \

user snortdb, password abc123, detail full

The command line for logging events to a database is similar to the com
mand line for syslog alerts. We still want to run in continual-processing mode, we
still need to specify an alternate PID file, we still want to enable bookmark sup
port to avoid reprocessing the same data, and we still want to run as a daemon.
There are a few changes that we must make. First, we will need to change the
filenames for the configuration file, PID file, and bookmark file. Second, since we
need to process unified log files instead of unified alert files, we need to change
the base filename specified with the –f option. Finally, unlike our syslog case,
when we first start processing data, we want to insert all of the old records into
the database.Therefore, we will omit the –n option. Making all these changes
gives us the following command line:

barnyard –c /etc/snort/bymysql.conf –X /var/snort/run/bymysql.pid –D \

-f unified.log –w /var/snort/run/bymysql.bookmark

This command line runs Barnyard in the configuration we want. If there is a
bookmark file present, then Barnyard starts processing the next record that has
been processed. If the bookmark file is not found, then Barnyard will process all
of the existing unified log files before processing new records. Of course, if there
are many existing unified files, it will take some time before current records are
added to the database.

Extracting Data
So far, we have configured syslog alerting for real-time notification and database
logging for our analysis console. While this provides us with considerable flexi
bility, we may also have the need to extract some of the alert data for other pur
poses. Suppose, for example, that we have a report generation tool that we want
to use to create periodic reports to show to management.This tool requires that
we provide it with data in a CSV file. We would like to be able to periodically
process the unified alert data to create CSV files to use with this reporting tool.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 582

582 Chapter 11 • Mucking Around with Barnyard

To do so, we can use the alert_csv output plug-in.This reporting program uses
the timestamp, event type, and source and destination IP addresses, and generates
statistics about the amount, the type, and the targets of the alerts that were
detected. While we could modify the reporting program to read this data from
the database, it is far easier to provide CSV file that it already supports.This fic
tional program expects each line of the CSV file to use the following format:

timestamp, event message, source IP address, destination IP address

Using our knowledge of the alert_csv output plug-in and the Barnyard con
figuration file format, we can quickly write a configuration file that can be used
to generate the correct output. We have written such a file and saved it as
/etc/snort/bycsv.conf.This file contains the following configuration:

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_csv: report.csv timestamp,msg,srcip,dstip

Since we only want to generate these CSV files occasionally, we do not need
to run Barnyard in continual-processing mode. Instead, we will use batch-pro-
cessing mode and only run it when we need to generate a CSV file to create a
report.The command line for this is much simpler than the ones we used for our
syslog alerting and database logging. In this case, we only need to specify the
config file to use, the directory we want the output to be written to, and the file
to process. Supposing that we want the output file to be written to the directory
/var/snort/report_input/, we would use the following command:

barnyard –o –c /etc/snort/bycsv.conf –L /var/snort/reports/ <filename>

This command will process the file <filename> and create the file
/var/snort/reports/report.csv. We can then call our reporting program and tell it to
use the CSV file as its input. If we wanted to process multiple unified alert files,
we could specify multiple filenames on the previous command line.

OINK!
When using this example, we have to remember that the alert_csv
output plug-in will append data to the output file if it already exists.
Therefore, we will want to run rm –f /var/snort/reports/report.csv
before we run Barnyard.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 583

Mucking Around with Barnyard • Chapter 11 583

Real-Time Console Alerting
The final thing we want from our sample deployment is the capability to log in
to our IDS system and display the events to the screen as they are received.The
output from the alert_fast output plug-in meets our needs since we only need a
limited amount of information about each alert and we want it in a human-read-
able format. However, there is a severe limitation to this output plug-in for what
we want to do. We want the information displayed to the screen, while the
alert_fast output plug-in writes information to a file. While we could modify the
alert_fast plug-in to write to the screen, instead we will work around this limita
tion by writing the output to a file and using another program, tail, to display the
events as they are written to the file.

The first thing we need to do is create the appropriate configuration file. By
now, you can probably guess what this file will look like, but will we include it
here anyway.The following is the configuration that we are going to use. We
have saved this to the file /etc/snort/byalertfast.conf.

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_fast: alerts.out

Now that we have our configuration file, we need to construct the command
line that we will use to run Barnyard. In this case, we want to run Barnyard in
continual-processing mode, but since we will only use this configuration occa
sionally, we do not need to enable bookmark support. However, since we only
care about new events, we will want to include the new records only option. In
addition, since we are going to run another command to view the contents of
alerts.out, we will need to background the Barnyard process.To do this we will
use the daemon mode option and specify a PID file as we did for the syslog
alerting and database logging configurations. Finally, we will need to specify the
log directory to which we want the output to be written.The command line we
are going to use for this configuration is:

barnyard –c /etc/snort/byalertfast.conf -X /var/snort/run/byalertfast.pid \

-D -f unified.alert –n -L /var/snort/log/

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 584

584 Chapter 11 • Mucking Around with Barnyard

Once we have started Barnyard, we will then want to start the process that
will display the events as they are written to the output file.To do this, we run
the following command:

tail –f /var/snort/log/alerts.out

Now all of the alerts will be displayed to the screen as they happen. When
we tire of watching the events scroll past at a mind-numbing rate, we simply exit
tail and then kill the Barnyard process by running:

kill `cat /var/snort/run/byalertfast.pid`

While this process works, it has several negative aspects. First, if there are any
problems with running Barnyard, all of the errors will go to syslog.Therefore,
before we start looking at the output, we need to make sure that Barnyard actually
started. Second, this process has the possibility to consume a large amount of disk
space if it is left running for a long time or we neglect to remove the output file
when we are finished. Additionally, the command line is overly complex for a
command we want to run only occasionally. In the next section, we will extend
Barnyard by adding a new output plug-in that is designed to solve these problems.

Writing a New Output Plug-In
In the previous section, we realized that displaying events from a unified alert file
to the screen was a complicated process with several deficiencies.This made the
final phase of our deployment much more complex and prone to error. It would
be much more convenient if Barnyard had a way to display the contents of a uni
fied alert file directly to the screen instead of requiring us to write the output to a
file and then process that file with another program. If Barnyard included an
output plug-in that rendered output to the screen instead of a file, we could just
run Barnyard with the proper configuration and not have to worry about using
any other programs. Additionally, the command line would become much simpler.

Since Barnyard is an open-source program, we have the ability to add new
functionality to it. Additionally, since Barnyard uses a modular design for the
implementation of output plug-ins, it is relatively easy to add one.Therefore, to
make things work the way we want, we can add a new output plug-in designed
to satisfy our particular needs. In this section, we will cover the basics of writing
a new output plug-in and adding it to Barnyard. Since this output plug-in is
going to display alert events to console output, we are going to name it
“alert_console.”

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 585

Mucking Around with Barnyard • Chapter 11 585

Implementing the Plug-In
As we shall see here, the basic implementation of a new output plug-in is not a
difficult task. All that is required is to set up the source files, implement a handful
of functions, and update op_plugbase to initialize the new plug-in when
Barnyard starts up.The plug-in we are implementing here is extremely simple. It
does not need to handle several of the tasks that a more complex output plug-in
may require.This level of simplicity was chosen to focus on the essentials of
writing an output plug-in instead of getting bogged down in the intricacies of
other tasks (such as connecting to a database). When implementing a new output
plug-in, it is always useful to refer to the existing output plug-ins to learn how to
handle some of the more complex tasks that may be needed.

Setting Up the Source Files
The first step when writing a new output plug-in is to create the source files.
Most of the output plug-ins contain two source files, a header file and a C file.
The alert_console output plug-in is no different and is composed of the files
op_alert_console.h (the header file) and op_alert_console.c (the C file). For manage
ability, all of the output plug-ins are grouped together in a single directory,
src/output-plugins. We have placed the source files for the alert_console output
plug-in in this directory as well.

The Header File
The header file is used to define functions and variables that are exported from
the .c file and made available to other parts of the program. Each Barnyard
output plug-in exports exactly one function, the initialization function.The
alert_console header file is displayed in the following code.The header files for
the other output plug-ins all look very much like this one.

/*

** Copyright (C) 2004 Andrew R. Baker <andrewb@snort.org>

**

** This program is distributed under the terms of version 1.0 of the

** Q Public License. See LICENSE.QPL for further details.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 586

586 Chapter 11 • Mucking Around with Barnyard

**

*/

#ifndef __OP_ALERT_CONSOLE_H__

#define __OP_ALERT_CONSOLE_H__

void OpAlertConsole_Init();

#endif /* __OP_ALERT_CONSOLE_H__ */

The C File
The C file contains the actual implementation of the output plug-in. It is in this
file that all of the required functions are implemented.This file contains include
directives, function prototypes, and function definitions.The next section, Writing
the Functions, explains all of the required functions and shows the implementation
of each for the alert_console output plug-in. However, before we can start
implementing these, we need to create a basic C file that contains the standard
set of include directives and the output plug-in API function prototypes.This
section of op_alert_csv.c is shown in the following code:

/*

** Copyright (C) 2004 Andrew R. Baker <andrewb@snort.org>

**

** This program is distributed under the terms of version 1.0 of the

** Q Public License. See LICENSE.QPL for further details.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

**

*/

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include "barnyard.h"

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 587

Mucking Around with Barnyard • Chapter 11 587

#include "util.h"

#include "input-plugins/dp_alert.h"

#include "output-plugins/op_plugbase.h"

#include "classification.h"

#include "sid.h"

#include <netinet/in.h>

/* Output plug-in API functions */

static int OpAlertConsole_Setup(OutputPlugin *, char *args);

static int OpAlertConsole_Exit(OutputPlugin *);

static int OpAlertConsole_Start(OutputPlugin *, void *);

static int OpAlertConsole_Stop(OutputPlugin *);

static int OpAlertConsole_LogConfig(OutputPlugin *);

static int OpAlertConsole(void *, void *);

Writing the Functions
The most difficult part of implementing a new output plug-in is writing the
seven required functions.These functions comprise the rest of the C file for the
alert_console output plug-in.

The Init Function
The initialization, or Init, function registers the output plug-in to Barnyard.The
registration procedure is fairly straightforward. First, we call RegisterOutputPlugin
specifying the name and type of the output plug-in.The name can be just about
anything, but most of the output plug-ins include the type of the output plug-in
in the name (for example, alert_fast, log_dump).The name of the output plug-in
is the keyword that is used when configuring the output plug-in in the Barnyard
configuration file.The type of the output plug-in identifies which type of uni
fied records the output plug-in will process.The supported types are alert, log, and
stream-stat.

This function returns a pointer to a newly created OutputPlugin object. Once
we have this object, we just need to add all of our plug-in specific functions to
it.The OutputPlugin object has member elements that are used to store references
to these functions, and we just use a simple assignment to associate them. Here is
the initialization function we wrote for the alert_console plug-in:

/* Initialize and register this output plug-in */

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 588

588 Chapter 11 • Mucking Around with Barnyard

void OpAlertConsole_Init()

{

OutputPlugin *outputPlugin;

/* Register the output plugin */

outputPlugin = RegisterOutputPlugin("alert_console", "alert");

/* Set the functions */

outputPlugin->setupFunc = OpAlertConsole_Setup;

outputPlugin->exitFunc = OpAlertConsole_Exit;

outputPlugin->startFunc = OpAlertConsole_Start;

outputPlugin->stopFunc = OpAlertConsole_Stop;

outputPlugin->logConfigFunc = OpAlertConsole_LogConfig;

outputPlugin->outputFunc = OpAlertConsole;

}

The Setup Function
The Setup function is called whenever the output plug-in is specified in the con
figuration file.This function must parse any arguments specified in the configura
tion file and allocate memory for any plug-in specific data. Since our new output
plug-in does not support any configuration arguments nor does it have any plug-
in specific data, this function does not need to do anything. However, it is likely
that any other output plug-in we write will at least have some instance specific
data.The OutputPlugin object has a pointer that can be used to associate instance
specific data with it. By allocating memory for the instance specific data and
storing the memory address into outputPlugin->data, this information can be used
by the other plug-in functions.The Setup function for the alert_console output
plug-in is included here. As mentioned, this function does not perform any
actions.

static int OpAlertConsole_Setup(OutputPlugin *outputPlugin, char *args)

{

/* No instance specific data to setup */

return 0;

}

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 589

Mucking Around with Barnyard • Chapter 11 589

For an example on processing configuration arguments and managing
instance specific data, it is recommended that you look at the implementation of
the alert_syslog2 output plug-in in the file src/output-plugins/op_alert_syslog2.c.

The Exit Function
The Exit function is related to the Setup function. While the Setup function is
used to process arguments and allocate memory for instance specific data, the
Exit function is responsible for freeing this memory. Since our output plug-in
does not have any instance specific data, this function does not have to perform
any actions. Here is the Exit function as it appears in the alert_console output
plug-in:

static int OpAlertConsole_Exit(OutputPlugin *outputPlugin)

{

/* No instance specific data to destroy */

return 0;

}

The Start Function
The Start function is used to start the output plug-in. It is in this function that
we handle all the tasks of opening output files, connecting to remote systems,
and so forth. Which of these tasks are performed and how they are accomplished
depends on what the output plug-in does. For the alert_console output plug-in,
none of these tasks is required.This function is also responsible for calling the
LogConfig function if the system verbosity is set high enough (>= 2).The Start
function for the alert_console output plug-in is listed here:

static int OpAlertConsole_Start(OutputPlugin *outputPlugin,

void *spool_header)

{

/* No instance specific handles to open */

if(pv.verbose >= 2)

OpAlertConsole_LogConfig(outputPlugin);

return 0;

}

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 590

590 Chapter 11 • Mucking Around with Barnyard

The Stop Function
The Stop function is the partner to the Start function.This function is responsible
for closing output files, disconnecting from remote systems, and so forth. Since
the alert_console output plug-in did nothing in the Start function, this function
does not need to perform any actions. Here is the Stop function for the
alert_console output plug-in:

static int OpAlertConsole_Stop(OutputPlugin *outputPlugin)

{

/* No instance specific handles to close */

return 0;

}

The LogConfig Function
The LogConfig function was added to the output plug-in API in Barnyard 0.2.
This function is responsible for all of the output plug-in configuration messages
we saw when we were running Barnyard with the –R option.The purpose of
this function is to display all of the instance specific configuration data in a
human-readable format. How the data is displayed is dependent on the specifics
of the particular output plug-in.The LogConfig function for the alert_console
output plug-in is listed in the following:

static int OpAlertConsole_LogConfig(OutputPlugin *outputPlugin)

{

if(!outputPlugin)

return -1;

LogMessage("OpAlertConsole configured\n");

/* No instance specific configuration to display */

return 0;

}

This function is fairly straightforward, but it does use a utility function that
we have not mentioned before, LogMessage.The LogMessage function is used to
display output to the appropriate logging facility. If Barnyard is running in
daemon mode, this function will use syslog; otherwise, it will display the content
of the message to the console using stderr.This function is used in a number of

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 591

Mucking Around with Barnyard • Chapter 11 591

places in Barnyard to report warnings and errors.The arguments to this function
are the same as the arguments to printf, a format string followed by a variable
number of arguments. It is important to remember to add “\n” to the end of the
format string. Otherwise, messages that are displayed to stderr will all run
together on a single line.

The Output Function
So far, we have implemented six functions that do either very little or nothing at
all. Now that we are on our final function, we have a considerable amount of
work to do.The output function is the function responsible for generating the
actual output.This function is called once for each unified record that Barnyard
processes. How the output is generated is dependent on the needs of the partic
ular output plug-in. For alert_console, we modified the output function from the
alert_fast output plug-in to suit our needs.The alert_console output function is
listed here:

static int OpAlertConsole(void *context, void *data)

{

char timestamp[256];

UnifiedAlertRecord *alert = (UnifiedAlertRecord *)data;

ClassType *class;

Sid *sid = NULL;

char sip[16];

char dip[16];

if(!data)

return -1;

sid = GetSid(alert->event.sig_generator, alert->event.sig_id);

class = GetClassType(alert->event.classification);

if(RenderTimeval(&alert->ts, timestamp, 256) == -1)

{

/* could not render the timeval */

LogMessage("ERROR: OpAlertConsole failed to render timeval\n");

return -1;

}

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 592

592 Chapter 11 • Mucking Around with Barnyard

snprintf(sip, 16, "%u.%u.%u.%u",

(alert->sip >> 24) & 0xff,

(alert->sip >> 16) & 0xff,

(alert->sip >> 8) & 0xff,

alert->sip & 0xff);

snprintf(dip, 16, "%u.%u.%u.%u",

(alert->dip >> 24) & 0xff,

(alert->dip >> 16) & 0xff,

(alert->dip >> 8) & 0xff,

alert->dip & 0xff);

if(alert->protocol == IPPROTO_TCP ||

alert->protocol == IPPROTO_UDP)

{

fprintf(stdout, "%s {%s} %s:%d -> %s:%d\n"

"[**] [%d:%d:%d] %s [**]\n"

"[Classification: %s] [Priority: %d]\n", timestamp,

protocol_names[alert->protocol], sip, alert->sp,

dip, alert->dp, alert->event.sig_generator,

alert->event.sig_id, alert->event.sig_rev,

sid ? sid->msg : "ALERT",

class ? class->name : "Unknown",

alert->event.priority);

}

else

{

fprintf(stdout, "%s {%s} %s -> %s\n"

"[**] [%d:%d:%d] %s [**]\n"

"[Classification: %s] [Priority: %d]\n", timestamp,

protocol_names[alert->protocol], sip, dip,

alert->event.sig_generator, alert->event.sig_id,

alert->event.sig_rev, sid ? sid->msg : "ALERT",

class ? class->name : "Unknown",

alert->event.priority);

}

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 593

Mucking Around with Barnyard • Chapter 11 593

PrintXref(alert->event.sig_generator, alert->event.sig_id, stdout);

fprintf(stdout, "---"

"-----------------------------\n");

fflush(stdout);

return 0;

}

This function illustrates a number of aspects of processing an alert record. At
various points within the function, we access member elements of the alert
record.These elements correspond to the alert record fields that we discussed
earlier in the chapter in the section Understanding the Snort Unified Files. The alert
record data structure is defined in the file src/input-plugins/dp_alert.h. Some of the
elements we access are components of the event substructure.This data structure
is used in both alert and log records and is defined in the file src/event.h.

In addition to accessing elements of the alert record, this function also uses
four utility functions: RenderTimeval, GetSid, GetClassType, and PrintXref.The
RenderTimeval function is used to render the record timestamp in a human-read-
able format.The GetSid and GetClassType functions query the meta-data that was
loaded from sid-msg.map, gen-msg.map, and classification.config and return a
SID and ClassType object, respectively.These objects contain information, such as
the message and classification description, that we use when generating output.
More information on the information available in the SID and ClassType objects
can be found by looking at the source files src/sid.h and src/classification.h.The
final function, PrintXref, prints the external references for this event.

Adding the Plug-In to op_plugbase.c
The final step in implementing the plug-in is updating op_plugbase.c to call the
initialization function. Once the function has been initialized, the output plug-in
system will handle calling all of the other functions whenever they are needed.
Adding the new output plug-in to op_plugbase.c only requires two simple modifi
cations. First, we need to add a reference to the new output plug-in header file.
If you remember, the header file contains the definition of the new plug-in’s

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 594

594 Chapter 11 • Mucking Around with Barnyard

initialization function.To make this modification, we add the following line
where the rest of the output plug-in include directives are found:

#include "op_alert_console.h"

The second modification that must be made is to update the
LoadOutputPlugins() to call our new initialization function.The
LoadOutputPlugins() function is called when Barnyard first starts up in order to
register all of the built-in output plug-ins. We update this function by adding the
following line before the return statement at the end of the function:

OpAlertConsole_Init();

With these two minor changes, our new output plug-in will now be available
once we have rebuilt Barnyard.

Finishing Up
Now that we have finished writing our new output plug-in, we need to rebuild
Barnyard to have it included.To do this, we are going to need a few additional
tools to those we needed when we built and installed Barnyard at the beginning
of this chapter.To ease portability across different platforms, Barnyard has been
developed using automake and autoconf. We will need both of these tools to finish
integrating our output plug-in into Barnyard.

Updating Makefile.am
Before the Barnyard build system will detect and compile our new output plug-
in, we have to tell it about the new source files (op_alert_console.c and op_alert_con-
sole.h).This is done by updating the Makefile.am file in the directory where the
new source files are located. Since we added the files in src/output-plugins, we will
need to edit src/output-plugins/Makefile.am. Let’s see what this file looks like
before we make our changes:

AUTOMAKE_OPTIONS=foreign no-dependencies

noinst_LIBRARIES = libop.a

libop_a_SOURCES = op_decode.c op_fast.c op_plugbase.c op_logdump.c \

op_decode.h op_fast.h op_plugbase.h op_logdump.h \

op_alert_syslog.c op_alert_syslog.h op_log_pcap.c op_log_pcap.h \

op_acid_db.c op_acid_db.h \

op_alert_csv.c op_alert_csv.h \

op_sguil.c op_sguil.h \

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 595

Mucking Around with Barnyard • Chapter 11 595

op_alert_syslog2.c op_alert_syslog2.h

INCLUDES = -I$(top_srcdir) -I$(top_srcdir)/src @extra_incl@

This file tells the Barnyard build system how the files in this directory are
supposed to be built. In order to add new files, we need to add the names of our
two new source files to the libop_a_SOURCES configuration line (which is
actually on multiple lines with continuation characters). After adding these files,
the new Makefile.am contains:

AUTOMAKE_OPTIONS=foreign no-dependencies

noinst_LIBRARIES = libop.a

libop_a_SOURCES = op_decode.c op_fast.c op_plugbase.c op_logdump.c \

op_decode.h op_fast.h op_plugbase.h op_logdump.h \

op_alert_syslog.c op_alert_syslog.h op_log_pcap.c op_log_pcap.h \

op_acid_db.c op_acid_db.h \

op_alert_csv.c op_alert_csv.h \

op_sguil.c op_sguil.h \

op_alert_syslog2.c op_alert_syslog2.h \

op_alert_console.c op_alert_console.h

INCLUDES = -I$(top_srcdir) -I$(top_srcdir)/src @extra_incl@

Building Barnyard
Once we have added our source files to Makefile.am, we need to get the build
system to incorporate those changes.To save us some time and effort, the
Barnyard source distribution includes a script that runs all the required com
mands in the correct order.Therefore, updating the build system only requires
that we run the script autojunk.sh. Once run, the build system will be updated
and we can proceed to building Barnyard.

Building Barnyard after these changes is the same process that was presented
earlier in this chapter. Basically, we now need to run the configure, make, and make
install commands. For more details on how to build Barnyard, see the section
Installing Barnyard.

Real-Time Console Alerting Redux
Now that we have our new output plug-in, we can revisit our real-time console
alerting scenario from our sample deployment. Our requirements have not
changed; we still want to be able to display new events to the console in a

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 596

596 Chapter 11 • Mucking Around with Barnyard

human-readable format as they are detected.The alert_console output plug-in
was written to render the events in the desired format. Since this output plug-in
does not require any additional configuration, our Barnyard configuration file is
very simple. We have saved this file to /etc/snort/byconsole.conf.

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_console

Now all we need to do is work out what command line we need to run
Barnyard in the desired manner. We still want to run in continual-processing
mode in order to see new alerts as they are detected by Snort. We also want to
ignore any alerts that had already been detected before we started. However,
since we no longer need to run a second program to read an output file, we no
longer need to run in the background and we do not need to specify a PID file.
Finally, we want Barnyard to display a little more information about what it is
doing so we are going to increase the verbosity by 1.The command line for real-
time console alerting using the new alert_console output plug-in is:

barnyard –c /etc/snort/byconsole.conf –f unified.alert –n –v

That is much simpler than the command line we had to use before.
Additionally, when before we had to issue another command to stop Barnyard,
now we can just press Ctrl-C and Barnyard will exit. We also no longer have to
worry about any extra files using up disk space.Thus, by adding a new output
plug-in, we have extended Barnyard to better fit our needs.

Secret Capabilities of Barnyard
While not necessarily a “secret capability,” one thing can be done with Barnyard
that many users do not realize is possible: localization of alert messages. One
thing many users want to be able to do is to localize the messages for Snort
alerts. While this can be done with Snort, it requires editing each rule individu
ally. Whenever the rules are updated, they all need to be edited again.To localize
the preprocessor alerts, you would have to edit the Snort source code. Obviously,
this is not the best use of an analyst’s time.

Barnyard provides a much easier way to localize these messages than is pos
sible with Snort. With Barnyard, all of the message information is loaded from
the sid-msg.map and gen-msg.map files. In Snort, the messages for rules are read

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 597

Mucking Around with Barnyard • Chapter 11 597

from the 48 rule files, and the messages for preprocessors are directly in the
source code. Moreover, the map files that Barnyard uses are primarily only the
message data. With Snort, there are also all of the other rule options as well.
Therefore, if we want to localize the alert messages when using Barnyard, we
only have to create new versions of sid-msg.map and gen-msg.map that contain
our localized messages. As new rules and preprocessor alerts are added, new
entries can simply be added to these files. However, we still need to be careful
when doing this, since Barnyard does not support the wide character encoding
that some localization may require.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 598

598 Chapter 11 • Mucking Around with Barnyard

Summary
Barnyard is an event-processing tool that was developed to assist Snort with the
task of generating event output. It allows the time-consuming tasks of output,
such as communicating with a database server, to be separated from the Snort
process, thus allowing Snort to spend its time processing network traffic. Snort
uses the unified file format to communicate event information to Barnyard.This
format can be used to spool Snort alert, log, and stream-stat records.

There is a multitude of configuration options available for Barnyard, both on
the command line and in the configuration file.The command-line options are
focused on how Barnyard will run.The configuration file is used to configure
the types of output that Barnyard will generate. Both the command line and the
configuration file include additional options to specify where to load event meta-
data from.The event meta-data is used to provide additional, human-readable
information about the event details.

Barnyard can run in either batch-processing mode or continual-processing
mode. In batch-processing mode, Barnyard processes all of the events contained
in the specified unified files. In continual-processing mode, new events are pro
cessed as they are generated by Snort. Continual-processing mode is the most
appropriate mode for real-time processing of data into a database or for real-time
notifications of events. Batch-mode processing is useful for extracting event
information into formats that can be processed by other programs.

A number of output plug-ins included in Barnyard can be used to format
data in a variety of ways.The output plug-ins are capable of processing both
Snort alert and log records.The capabilities of these plug-ins range from inserting
events into a database to printing human-readable packet dumps to a file. If there
is no existing plug-in suitable for a particular situation, then the modular archi
tecture of Barnyard allows for one to be added with a minimum of effort.

Solutions Fast Track

What Is Barnyard?

� Barnyard is a tool that was developed to assist Snort with generating
alert output.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 599

Mucking Around with Barnyard • Chapter 11 599

� Barnyard reads the Snort unified output files and generates output using
one of the many included output plug-ins.

� Barnyard allows Snort to spend its time processing network traffic
instead of formatting output.This allows Snort to process network traffic
at higher speeds than would otherwise be possible.

Understanding the Snort Unified Files

� The Snort unified files are used to spool event data from Snort to
Barnyard.

� Snort can generate three types of unified records: alerts, logs, and
stream-stats.

� Unified alert records contain the minimal information about an alert.

� Unified log records contain all of the event information contained in
the unified alert record, and include the packet that generated the alert.

� Unified stream-stat records are generated by the stream4 preprocessor
and include information about the TCP sessions that Snort detects.

Installing Barnyard

� Installing Barnyard requires that the source package be downloaded and
built.

� When built, Barnyard can be configured to include support for the
MySQL and PostgreSQL database servers.

� The latest released version of Barnyard can be downloaded from the
SourceForge project site.

Configuring Barnyard

� Barnyard is configured through a combination of command-line options
and configuration file directives.

� The command-line options are used to specify how Barnyard is going
to run.This includes specifying the mode of operation that will be used.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 600

600 Chapter 11 • Mucking Around with Barnyard

� The configuration file directives are used to specify configuration for
specific output plug-in configurations and information about where to
load event meta-data from.

Understanding the Output Plug-Ins

� The output plug-ins determine how Barnyard processes the unified
records. Barnyard includes output plug-ins for both alert and log
records.

� The alert output plug-ins available in Barnyard include alert_fast,
alert_csv, alert_syslog, alert_syslog2, and alert_acid_db.

� The log output plug-ins available in Barnyard include log_dump,
log_pcap, log_acid_db, and sguil.

Running Barnyard in Batch-Processing Mode

� Batch-processing mode is used to process all of the records in a set of
unified files.

� This mode is often used to extract information from specific unified
files for processing by another program.

� The alert_csv and log_pcap output plug-ins are most often used with
batch-processing mode.

Using the Continual-Processing Mode

� Continual-processing mode is used to process new events as they are
generated by Snort.

� Bookmark support can be used with continual-processing mode to allow
Barnyard to remember where it was while processing the unified files.

� When enabled, the new records only option causes Barnyard to process
only new events, skipping any events that already existed.

� The daemon mode option allows Barnyard to detach from the control
ling terminal and run in the background. Multiple Barnyard processes
can be run as daemons by using the PID file option.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 601

Mucking Around with Barnyard • Chapter 11 601

Deploying Barnyard

� Deployments of Barnyard may consist of multiple Barnyard configura
tions, each designed to process events in a different way.

� Barnyard can be deployed with continual-processing mode to support
real-time event notification and database logging.

� Some deployments will also use the batch-processing mode for occa
sional processing of the alert data in other ways.

Writing a New Output Plug-In

� While Barnyard includes many output plug-ins, they may not suit the
needs of a particular situation.

� The modular structure of Barnyard allows for new output plug-ins to be
added with relative simplicity.

� Adding a new output plug-in Barnyard consists of three steps: writing
the output plug-in functions, adding the new output plug-in to
op_plugbase.c, and updating the build system to compile the new
output plug-in.

Secret Capabilities of Barnyard

� Barnyard makes it easy to change the alert messages to localize them to
the particular environment.

� The sid-msg.map and gen-msg.map files can be modified to change the
messages that Barnyard will display without the need to update the
Snort rule files.

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 602

602 Chapter 11 • Mucking Around with Barnyard

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: I am having problems with the alert messages when I am running Barnyard.
Instead of seeing the message that is defined in the Snort rule, I see messages
like “Snort Signature ID: 1,2600.”The alerts look fine when generated
directly from Snort. What am I doing wrong?

A: Unlike Snort, which gets the alert messages directly from the rule files,
Barnyard reads the message information from the sid-msg.map file. If the
map file is not updated when rules are added to Snort, then Barnyard will
not know what message to display.Therefore, if the message is missing,
Barnyard displays the “Snort Signature ID: <generator ID>,<signature ID>”
for the event message.

Q: When I run Barnyard, I get the error message “Unknown magic 1a2b3c4d.”
Why won’t Barnyard process this file?

A: Barnyard identifies the Snort unified files by using a four-octet magic value
at the beginning of the file. If the value in the file does not match any of the
known types, Barnyard will generate an “Unknown magic” error message. In
the error message, the magic value of 1a2b3c4d indicates that this file is a
pcap file. In order to use Barnyard, you will need to generate unified output
files using either the log_unified or alert_unified Snort output plug-in.

Q: I am trying to process unified files on my Linux x86 server that were created
on my Solaris SPARC Snort sensor. Unfortunately, I see the error message
“Unknown magic 3741ADDE.” What is wrong?

A: When the Snort unified output format was first written, it was decided to
write all of the data using host byte order. At that time, it was envisioned that
users would be processing the unified files on the same system as the one on
which they were created.Therefore, Barnyard does not have the capability to
read unified files that were generated on a system using a different byte order

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 603

Mucking Around with Barnyard • Chapter 11 603

than the one on which it was created.Thus, the unified files cannot be pro
cessed in this way, since x86 and SPARC use different byte ordering.

Q: I have configured the log_acid_db output plug-in and have used the
sensor_id option.The events are being written to the database, but they are
not showing up in the ACID console. What is wrong?

A: When the ACID database output plug-in was first written, it did not support
the creation of a sensor ID like the Snort database output plug-in did.To
work around this problem, a configuration option was added to allow the
user to specify the sensor ID to use when inserting events.The problem with
this is that if the specified sensor ID is not present in the sensor table, the
ACID console will not display the events.This problem was quickly realized,
and the ACID database output plug-in was updated to create a new sensor
ID if necessary.To fix the noted problem you will need to either add an
entry into the database sensor table with the appropriate ID value or remove
the sensor_id option from the output plug-in configuration.

Q: I sent a question about Barnyard to the Snort Users mailing list and did not
receive a response. Is this the correct forum for asking questions about
Barnyard?

A: While posting Barnyard questions to the Snort Users mailing list generally
generates a response, the amount of traffic it receives in a single day often
causes some questions to be missed. If you have a Barnyard-specific question,
it is recommended that you post it to one of the Barnyard mailing lists
hosted at SourceForge.There are both a users’ mailing list and a devel mailing
list. Since these mailing lists receive a tiny fraction of the traffic that the Snort
mailing lists see, posts are more likely to be noticed and answered.

Q: I cannot get Barnyard to build under my operating system/distribution. What
is wrong?

A: Many things can go wrong while building Barnyard. Currently, Barnyard is
developed and tested on a Debian Linux system and should build correctly
on most operating systems.The most common error encountered during a
build is finding the appropriate database header files and libraries. If necessary,

www.syngress.com

295_Snort2e_11.qxd 5/5/04 6:58 PM Page 604

604 Chapter 11 • Mucking Around with Barnyard

you should explicitly specify these locations using the --with-mysql-includes,
--with-mysql-libraries, --with-postgres-includes, and --with-postgres-libraries options
to configure. If you have tried this and are still having problems, then you
should e-mail the output from the configure script to the Barnyard users’
mailing list.

Q: Where is the home page for the Barnyard project? I cannot seem to find it.

A: The Barnyard project does not currently have a home page. While the devel
opers have started to create a home page for it on several occasions, they have
yet to have enough spare time to finish one.Therefore, only the SourceForge
project site exists for Barnyard.This site can be found at
http://sourceforge.net/projects/barnyard/. When the developers for Barnyard
finally have the time to write a home page for the project, it will be available
from the SourceForge project site.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 605

Chapter 12

Active Response

Solutions in this Chapter:

■ Active Response vs. Intrusion Prevention

■ Snortsam

■ Fwsnort

■ Snort_inline

� Summary

� Solutions Fast Track

� Frequently Asked Questions

605

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 606

606 Chapter 12 • Active Response

Introduction
Up to this point we have concentrated on aspects of classic rule-based intrusion
detection with the Snort Intrusion Detection System (IDS). It has been shown
that Snort provides an effective sentry for anomalous traffic and is an important
addition to the security architecture of most computer networks.Through proper
installation, configuration, and administration, Snort can push the security enve
lope into the application layer where firewalls generally do not tread.

OINK!
Some commercial firewalls that do not fall into the application proxy
category (such as Check Point’s NG firewall) offer content inspection
and/or protocol validation at the application layer. Interestingly enough,
many vendors who previously insisted that in-depth application-layer
knowledge was unnecessary have started claiming that they’ve invented
a new idea that, when looked at closely, appears to be the equivalent of
an application-layer proxy.

However, detecting intrusions is a far cry from attempting to automatically
prevent them in the first place. None of the Snort configurations shown thus far
alter network traffic in any way as packets travel across the network. If a vulner
able system is successfully exploited by a malicious host, then Snort may detect
and send an alert about the exploit but take no steps to alter or block packets
from the attacker. Hence the attacker can have full access and control (to the
level the exploit permits) of the target system until an administrator can manually
intervene. With a network of several hundred systems, the time lag between suc
cessful compromise and such intervention can be quite long. Combine this with
the possibility that many similarly vulnerable systems may exist on the same net
work and it is easy to see why automatically blocking attacks can be an attractive
capability if it could be done effectively.

In this chapter, we explore the concept of active response to intrusion detec
tion events. Active response is the dynamic reconfiguration or alteration of net
work access control mechanisms, sessions, or even individual packets based on
alerts generated from an IDS.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 607

Active Response • Chapter 12 607

Active Response vs. Intrusion Prevention
If you are reading this chapter, then chances are good that you have heard the
term intrusion prevention in the context of network security. When referring to
network-based security techniques, the term network intrusion prevention is usually
applied to an inline device (such as an Ethernet bridge or firewall) that has the
capability of modifying or discarding individual attack packets as they traverse the
device interfaces. Unfortunately, this term has been redefined and abused by mar
keting and sales teams to the point that many security professionals have an
allergic reaction when hearing it and refuse to have anything to do with it.This
is a shame, since there are legitimate uses for the term.There are also a number
of host-based tools in the increasingly inclusive “intrusion prevention” category,
but they are beyond the scope of a book about Snort.

In terms of packet modification, the goal is to nullify attacks that are leveraged
against internal devices connected to the Intrusion Prevention System (IPS). By
contrast, the term active response applies to any function that alters or blocks net
work traffic as a result of intrusion detection events. Such functions do not neces
sarily have to be implemented by an inline device. For example,TCP sessions can
be torn down through the use of a spoofed reset packet sent by the IDS, or they can
be interrupted by modifying the access control lists (ACLs) on a router or firewall
to completely block the IP address from which attacks originate. However, such
capabilities are not considered strong enough to fall into the IPS realm since cer
tain types of attacks can accomplish just as much damage regardless of whether
such capabilities are deployed on a network. A good example of such an attack is
the Slammer worm of 2003.The entire attack was contained within a single 404
byte packet to UDP port 1434, which exploited a vulnerability in Microsoft’s SQL
Server (see www.cs.berkeley.edu/~nweaver/sapphire/ for a good analysis of the
propagation of the Slammer worm). Actively responding to such a packet after it
enters a network is not good enough in this case.The only way to mitigate the
effects of attack is to prevent the exploit packet from making it into the network in
the first place. SQL Slammer is also an example of the kind of attack that is ideal
for a Network IPS (NIPS) to deal with. It uses a small number of packets that
allow the NIPS to not have to maintain extensive state, while at the same time the
purpose of the packet(s) can be unambiguously identified. In general, the capabili
ties of an IPS can be thought of as the most potent and potentially hazardous
subset of active response functions.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 608

608 Chapter 12 • Active Response

Active Response Based on Layers
The goal of active response is to automatically respond to a detected attack and
minimize (or ideally nullify) the damaging effects of attempted computer intru
sions without requiring an administrator. In general, there are four different
strategies for network-based active response; each corresponding to a different
layer of the protocol stack starting with the data link layer:

■	 Data link Administratively disable the switch port over which the
attack is carried.

■	 Network Alter a firewall policy or router ACL to block all packets to
or from the attacker’s Internet Protocol (IP) address.

■	 Transport Generate Transmission Control Protocol (TCP) resets for
attacks using TCP protocol methods or Internet Control Message
Protocol (ICMP) port unreachable messages, for attacks sent over the User
Datagram Protocol (UDP). For ICMP, recall that ICMP is a network-
layer protocol, and hence it is only possible to block ICMP at the
network layer.

■	 Application Alter the data portion of individual packets from the
attacker. For example, if the attacker has provided a path to a shell
“/bin/sh,” then change the packet so that the path points to a location
that does not exist on the target system—such as “/ben/sh”—before the
packet reaches the target. Note that this method may require the recal
culation of the transport-layer checksum (mandatory for TCP and
optional for UDP unless the checksum was previously calculated).

This chapter discusses three software applications; Snortsam, Fwsnort, and
Snort_inline. Each of these implements active response capabilities based on the
Snort IDS.These applications alter or block traffic by IP address (Snortsam), by
transport-layer protocol (Fwsnort), and by application layer (Snort_inline). We
will show how each active response application deals with a reconnaissance attack
against the “WWWboard” discussion forum running on an Apache Web server,
and a buffer overflow exploit in the NFS mountd daemon.

Deploying active response capabilities on a network requires extremely
careful tuning and a healthy awareness of the risks involved. One of the chief
problems with IDSs today is that false positives are commonplace, even from the
most finely tuned IDS. It is simply impossible to avoid false positives when legiti
mate traffic can potentially contain some of the same characteristic signatures as

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 609

Active Response • Chapter 12 609

malicious traffic. Hence, there is always the possibility that an active response
system will block traffic that really should be allowed through. On a more sinister
note, if an attacker discovers that active response is in use on a network, it may
be possible for the attacker to subvert the response system into effectively cre
ating a denial of service (DoS) against the network by making it appear as
though attacks are coming from legitimate sources.The attacker accomplishes
this by sending attack packets (or attack-like packets) from faked sources, such
that the automated active response blocks legitimate traffic from those sources.

OINK!
This risk of self-imposed DoS is one of the primary reasons why many
corporations are hesitant to implement active response mechanisms.
Most tools that offer active response (including the ones mentioned
here) also offer the capability to define traffic that should never be
blocked (a.k.a. whitelists). If the product you choose to implement
doesn’t offer this capability, you might want to think twice about it.
Don’t make the cure worse than the disease.

Altering Network Traffic Based on IDS Alerts
As packets are routed from one network to another, a gateway device (either a fire
wall or router) will have the opportunity to examine the packets and decide
whether they are fit to be forwarded on to the next hop. Any active response
system must either interface locally or remotely with this gateway device in order
to influence the routing decision, or traffic must be routed through the active
response system itself.The former strategy is employed by Snortsam, while the
latter strategy is employed by both Fwsnort, which is deployed directly within an
IPtables firewall, and Snort_inline, which is usually deployed on a bridge between
two network segments. An inline active response system has the capability of nulli
fying attacks themselves instead of simply modifying router ACLs or firewall poli
cies to block an attacker’s source IP address. Hence, Snortsam is an active response
system, whereas both Fwsnort and Snort_inline fall into the IPS category.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 610

610 Chapter 12 • Active Response

OINK!
Just as the capability to directly interact with the flow of traffic increases
as we move from Snortsam to Fwsnort to Snort_inline, so does the
potential impact if the system monitoring traffic is compromised. Of the
three active response systems, Snortsam is the only one that lets you
stay relatively safe behind a network tap or a span port on a switch and
thus remain nearly inaccessible to an attacker. Be careful! The last thing
you want is to have your firewall/IPS compromised because of a newly
discovered vulnerability in IPtables, Snort_inline, or in the libraries each
of these applications use.

Snortsam
Snortsam is an active response system that interacts with both commercial and
open-source firewalls to block IP addresses at the direction of a modified version
of the Snort IDS. Snortsam supports a flexible time specification for blocked
addresses so that IPs can be blocked for a period of seconds, minutes, hours, days,
weeks, or even years. Snortsam runs as a daemon on the firewall host and accepts
commands from a special output plug-in for the Snort IDS over an encrypted
TCP session. Snortsam, written by Frank Knobbe, is free and open-source soft
ware released under the GNU Public License (GPL).

Fwsnort
Fwsnort translates the signature rules in the Snort IDS into an equivalent IPtables
ruleset in the Linux kernel.Through the capability of IPtables to filter packets
based on characteristics of the network and transport headers as well as applica-
tion-layer data, Fwsnort is capable of translating nearly 70 percent of all Snort
rules into an equivalent IPtables policy. Attacks are defined by the powerful Snort
ruleset and can then be logged and/or dropped directly by IPtables. Fwsnort
functions as a basic IPS, since it is deployed within IPtables and hence runs inline
with any network protected by the firewall. Michael Rash, a coauthor of this
book, wrote Fwsnort, based on William Stearns’ snort2iptables script.

Snort_inline
Snort_inline falls squarely into the intrusion prevention category. It is fundamen
tally built upon the Snort IDS to detect attacks, but it adds an important feature:

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 611

Active Response • Chapter 12 611

the capability to alter or drop packets as they flow through the host. Snort_inline
makes use of packet queuing in IPtables to allow Snort to make the decision about
what to do with individual packets as they traverse the interfaces of a Linux system
that is acting as either a router or an Ethernet bridge.The Honeynet Project
(http://project.honeynet.org) uses Snort_inline as an important research tool, and
has been released by Jed Haile under the GPL as open-source software.

Attack and Response
It is the goal of this chapter to show how Snortsam, Fwsnort, and Snort_inline
each protect a network from two specific attacks; the first against a Web server and
the second against an NFS server.The Web server attack is derived from Snort ID
(SID) 807, which Snort identifies as “WEB-CGI /wwwboard/passwd.txt access.”
The NFS attack is derived from SID 316 and is identified as an “EXPLOIT x86
Linux mountd overflow.”These two attacks generate relatively low rates of false
positives and hence make good candidates for the type of traffic to which an IPS
should be configured to respond. One caveat to note is that as in the case of the
Slammer worm, an active response system that is not inline will not be able to stop
either of these attacks from being successful initially, although subsequent access
from the attacker’s source IP address will be blocked. First, we will examine packet
traces of the attacks under normal conditions without any active response capa
bility enabled, and then we will execute the same set of attacks with each of our
three active response systems protecting the network in turn and see how the
packet traces are changed. We assume that the reader has some familiarity with the
TCP, UDP, and ICMP protocols. Complete information about these protocols can
be found in the protocol Request for Comments (RFC); specifically, numbers 793,
768, and 792, which can be downloaded from www.ibiblio.org/pub/docs/rfc.

For our attack simulations, we will refer to the network diagram in Figure
12.1.This network architecture will be used as a general guide throughout this
chapter, but significant modifications will be made where necessary and will be
accompanied by additional diagrams. In all cases, the attacks will be executed from
evilhost against either the Web server or the NFS server. Note that Figure 12.1 is
used strictly for illustration purposes and is relatively simple. All hosts in Figure
12.1, including the firewall, are Linux systems running kernel 2.4.24, and the fire
wall is running IPtables-1.2.9.The three network interfaces on the firewall are each
connected to a different network. One interface is connected to the external net
work with IP 68.48.x.x, a second is connected to the internal network for the Web
and NFS servers with IP 192.168.10.1, and the third is connected to a separate

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 612

612 Chapter 12 • Active Response

management network for the Snort box with IP 192.168.20.1.The line labeled
“sniffing link” connects one interface on the dual-homed Snort box to the Web
server network.There is no IP address assigned to this interface and no traffic is
sent out from it. For simplicity, a hub is used instead of a switch so the Snort
system will not have any trouble seeing packets from all connected systems.This
could also be done using a network TAP and then either aggregating the data via a
switch or by binding the ports on the sensor itself.The most likely architecture for
a larger network is to connect the Snort system into a span port on a switch.The
firewall performs Network Address Translation (NAT), both for the internal net
work to connect out to the Internet and for external connections to TCP port 80
and UDP ports 111 and 32000–34000 being sent to the Web server or NFS server,
respectively.

Figure 12.1 Network Architecture

evilhost
(207.174.x.x)

Intnernet

firewall (68.48.x.x)

(192.168.10.30)

Snort IDS
(192.168.20.2)

hub192.168.10.1

sniffing
link

192.168.20.1

switch

NFS server

Web server
(192.168.10.20)

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 613

tcpdump Options
All packet traces in this chapter are taken with the venerable tcpdump

–s
option, which allows us to extend the number of bytes tcpdump captures
for each packet beyond the default of 68, and the –X option, which prints
ASCII characters that correspond to hex codes in application-layer data.
Note that although we could have used Snort to generate our packet
traces, tcpdump is installed by default on more operating systems than
Snort so we chose to use tcpdump instead.

613

Tools & Traps…

Ethernet sniffer. Among the more important options used are the

Active Response • Chapter 12

Web Server WWWBoard passwd.txt Access
The WWWBoard passwd.txt access attack falls in the attempted-recon category in
the Snort rule file web-cgi.rules, and hence such an attack does not directly
result in remote access. It is an information-gathering attack that could be used
to eventually gain admin privileges to the WWWBoard forum software if the
administrator password contained within passwd.txt is weak and can be success
fully cracked. Executing this attack is particularly easy from the command line
with the program wget. wget has many command-line options to control nearly
every aspect of connecting to a Web server, from recursively archiving entire Web
sites to controlling connection timeouts. One of the most important features of
wget for our purposes is the capability to output verbose error codes and show
exactly what is happening at a connection level when interacting with a Web
server. It is the ideal tool to execute the attack in SID 807. First, let’s look at the
Snort rule for SID 807 from the Snort rules file web-cgi.rules (see Figure 12.2).

Figure 12.2 WWWBoard passwd.txt Access Snort Rule (SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI

/wwwboard/passwd.txt access"; flow:to_server,established;

uricontent:"/wwwboard/passwd.txt"; nocase; reference:arachnids,463;

reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;

classtype:attempted-recon; sid:807; rev:7;)

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 614

614 Chapter 12 • Active Response

In the msg field, we can see that Snort will send the alert string “WEB-CGI
/wwwboard/passwd.txt access” whenever any Web server on the internal net
work is sent the string “/wwwboard/passwd.txt” as part of a Web request.

Hence, to execute such an attack from evilhost against the Web server in
Figure 12.1, we issue the wget command in Figure 12.3. Note the use of the –O
option to instruct wget to store any output from the Web server in the local file
passwd.txt, and the –t option to tell wget to only try connecting once to the
Web server before it gives up.

Figure 12.3 WWWBoard passwd.txt Access Attack

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--10:31:14-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 23 [text/plain]

100%[==>] 23 22.46K/s

ETA 00:00

10:31:14 (22.46 KB/s) - `passwd.txt' saved [23/23]

The wget command results in the packet trace shown in Figure 12.4 taken on
the external interface of the firewall. Some packet content and header informa
tion has been removed for brevity.

Figure 12.4 WWWBoard passwd.txt Access Packet Trace

[firewall]# tcpdump –i eth0 –l –n –X –s 1500 port 80

204.174.x.x.53573 > 68.48.x.x.80: S 3728595109:3728595109(0) win 5840

68.48.x.x.80 > 204.174.x.x.53573: S 2523514769:2523514769(0) ack 3728595110

win 5792

204.174.x.x.53573 > 68.48.x.x.80: . ack 1 win 5840

204.174.x.x.53573 > 68.48.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 0000 0000 4000 3206 2a68 ccae df18 E....o@.2.*h....

0x0010 0000 0000 d145 0050 de3d d8a6 9669 c792=...i..

0x0020 8018 0000 0000 0000 0101 080a 0000 0000

0x0030 0064 55f3 4745 5420 2f77 7777 626f 6172 .dU.GET./wwwboar

Continued
www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 615

Active Response • Chapter 12 615

Figure 12.4 WWWBoard passwd.txt Access Packet Trace

0x0040

0x0050

0x0060

0x0070

0x0080

0x0090

0x00a0

642f 7061 7373 7764 2e74 7874 2048 5454

502f 312e 300d 0a55 7365 722d 4167 656e

743a 2057 6765 742f 312e 382e 320d 0a48

6f73 743a 2036 382e 3438 2e78 782e 7878

370d 0a41 6363 6570 743a 202a 2f2a 0d0a

436f 6e6e 6563 7469 6f6e 3a20 4b65 6570

2d41 6c69 7665 0d0a 0d0a

d/passwd.txt.HTT

P/1.0..User-Agen

t:.Wget/1.8.2..H

ost:.68.48.xx.xx

7..Accept:.*/*..

Connection:.Keep

-Alive....

68.48.x.x.80 > 204.174.x.x.53573: . ack 119 win 5792

68.48.x.x.80 > 204.174.x.x.53573: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 9270 4000 3f06 6778 0000 0000 E....p@.?.gx....

0x0010 ccae 0000 0000 d145 9669 c792 de3d d91cP.E.i...=..

0x0020 8018 16a0 2fa9 0000 0101 080a 0064 55fe/........dU.

0x0030 0000 0000 4854 5450 2f31 2e31 2032 3030HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3138 3a34 30.Mar.2004.18:4

0x0060 303a 3432 2047 4d54 0d0a 5365 7276 6572 0:42.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 616

616 Chapter 12 • Active Response

Figure 12.4 WWWBoard passwd.txt Access Packet Trace

204.174.x.x.53573 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.53573 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.53573: F 358:358(0) ack 120 win 5792

204.174.x.x.53573 > 68.48.x.x.80: . ack 359 win 6432

After we see the three-way TCP handshake that establishes the TCP connec
tion between the wget client and the Web server we see the client request fol
lowed by the Web server response.The most important feature to note about the
packet trace in Figure 12.4 (other than the obvious packet data) is the sequence
acknowledgment numbers. Each of these numbers is the expected sequence
number of the next data in the other direction of the TCP connection (more
information can be found in RFC 793 and in the tcpdump man page). In this
packet trace, the acknowledgment numbers indicate that the data from each
packet successfully traversed the TCP connection from the client to the server
and vice versa; no retransmissions are necessary. A quick examination of the con
tents of the file passwd.txt on evilhost shows that the attack packet(s) were given
carte blanche access to the Web server.

[evilhost]$ cat passwd.txt

WebAdmin:aepTOqxOi4i8U

One layer of security has been defeated.The attacker is now free to run his
favorite password-cracking software in an effort to recover the WWWBoard
admin password.

NFS Mountd Exploit
The mountd buffer overflow exploit is much more dangerous than the
WWWBoard passwd.txt access in the previous example. Successful exploitation
results in full remote root shell access to any system that is running a vulnerable
version of mountd. For our attack example, we will use an exploit that you can
download from:

http://downloads.securityfocus.com/vulnerabilities/exploits/linux-mountd.c

To get this exploit working, you will need access to both the rpcgen and gcc
compilers, and you will need to split the linux-mountd.c file into the files
makeit, nfsmount.x, and nfsmount.c according to the comments in the code
before running the makeit shell script. If it builds properly on your system after

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 617

Active Response • Chapter 12 617

running ./makeit (probably easiest on Linux), you will end up with a compiled
exploit binary mx in the local directory.The exploit itself executes a buffer over
flow attack against the logging code in mountd, which (ironically) is supposed to
log unauthorized mount attempts.The payload of the attack appends a new UID
0 (root) user to the /etc/passwd file and also appends the line “ALL:ALL” to the
file /etc/hosts.allow, but the exploit payload can be modified to instruct the hap
less server to perform arbitrary tasks as root. Executing the attack is as simple as
running the command:

./mx <target_host>

NFS is implemented as a binary protocol.This implies that Snort rules for
mountd exploits will frequently have to look for nonprintable characters in net
work traffic. As we discussed in Chapter 5, “Playing by the Rules,” such charac
ters can easily be included within the content field in a Snort rule as blocks of
hexadecimal codes enclosed within pipe “|” characters. Let’s take a look at the
Snort rule designed to detect when the mountd overflow exploit is being sent
across the network to an NFS server.

Figure 12.5 shows that if the hex codes “eb56 5E56 5656 31d2 8856 0b88
561e” travel across the network to UDP port 635 on the NFS server, we should
trigger the “EXPLOIT x86 Linux mountd overflow” alert from Snort. Note that
the exploit code we downloaded actually talks to the portmap daemon on the
NFS server first to be given a random high UDP port to then connect to the
mountd daemon via Remote Procedure Calls (RPCs) over UDP. Hence, the
stock Snort rule will not catch the attack as is, since it is strictly limited to traffic
that travels over port 635.Thus, for our configuration we change “635” to “any.”
Now let’s send our mountd attack across the network and examine a packet trace
taken on the external interface of the firewall in Figure 12.6. Again, some header
and packet data has been removed for brevity.

Figure 12.5 NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd

overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|";

reference:cve,CVE-1999-0002; reference:bugtraq,121; classtype:attempted-

admin; sid:316; rev:3;)

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 618

618 Chapter 12 • Active Response

Figure 12.6 Mountd Overflow Attack and Packet Trace

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 204.174.x.x.33854 > 68.48.x.x.sunrpc: udp 56 (DF)

15:53:59.267033 68.48.x.x.sunrpc > 204.174.x.x.33854: udp 28 (DF)

15:53:59.267662 204.174.x.x.33854 > 68.48.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 619

Active Response • Chapter 12 619

Figure 12.6 Mountd Overflow Attack and Packet Trace

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 68.48.x.x.32772 > 204.174.x.x.33854: udp 28 (DF)

tcpdump decodes the packet application layer and clearly shows us the hex
codes (shown in bold) Snort is looking for to detect the attack. Also displayed
are the buffer-filling hex codes “90” (some have been removed for brevity) fol
lowed by the exploit payload. Note that UDP is a connectionless protocol, so there
are no data sequence numbers or acknowledgement packets as in TCP.

Snortsam
Snortsam is the first of the three active response systems we will examine and is the
easiest to deploy and most flexible of the lot. Snortsam consists of two compo
nents: an output plug-in for Snort itself that is implemented as a patch to the Snort
source code, and an agent that runs on the firewall host and listens for commands
from the output plug-in over the network.The agent is responsible for interacting
with the firewall to dynamically block IP addresses from which Snort has detected
an attack. Supported firewalls include commercial offerings such as Check Point
FW-1, Cisco PIX, Netscreen, WatchGuard, and open-source firewalls that are built
in to many modern open-source kernels, including Ipf on FreeBSD, Pf on
OpenBSD, and IPtables on Linux. For a complete listing of all firewalls supported
by Snortsam, visit the Snortsam Web site at www.snortsam.net. An important fea
ture offered by Snortsam is the capability to define a whitelist of individual IP
addresses or entire networks that should never be blocked even if the Snort output
plug-in generates an alert with a source address falling within this list. As men
tioned later in this section, the whitelist is defined in the Snortsam config file using
the “dontblock” directive, but this feature is so important that we wanted to call
your attention to it early in the Snortsam discussion since this option is important
to tuning Snortsam to behave properly in your network. For example, good candi
date IP addresses that should potentially be included in a whitelist are the upstream
router from the firewall and the internal server IP addresses.

Installation
Snortsam is distributed as open-source software, and hence the most common
method of installation involves compiling the source code for the specific archi
tecture of the system(s) on which it will be deployed. However, precompiled

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 620

620 Chapter 12 • Active Response

binaries are distributed on the Snortsam Web site. For this discussion, we will
both compile Snortsam from source and apply the output plug-in patch to
Snort.

1. Download the source Snortsam source and Snort patch tarballs
(snortsam-src-2.23.tar.gz and snortsam-patch.tar.gz) from
www.snortsam.net/download.html, or copy them off the CD-ROM
that accompanies this book. As of this writing the latest version of
Snortsam is 2.23.

2.	 Copy snortsam-2.23.tar.gz to /usr/local/src on a machine running the
same operating system as the firewall host, extract it, and run
./makesnortsam.sh from the /usr/local/src/snortsam directory. Once the
compilation finishes, the resulting Snortsam binary can be copied to a
system directory such as /usr/local/sbin on the firewall host.You will
also need to create a configuration file for Snortsam. See Figure 12.8 for
a discussion of the more important Snortsam configuration options.
Note that since the daemon portion of Snortsam listens for connections
from the corresponding Snort output plug-in, you may need to modify
the firewall policy to allow such connections from the Snort system on
your internal network. By default, the connections travel over TCP port
898 to the firewall.

3.	 Copy snortsam-patch.tar.gz to /usr/local/src on the Snort box, extract
it, and run ./patchsnort.sh /usr/local/src/snort-2.1.This assumes that the
Snort-2.1 source is located in the /usr/local/src/snort-2.1 directory. If
the patch applies cleanly and the Snortsam output plug-in code has
been added, it is time to recompile Snort (Chapter 3, “Installing Snort,”
contains detailed information about how to compile and install Snort).

OINK!
As mentioned in previous chapters, a compiler should never be installed
on either the firewall or the IDS. Some options for implementing a hard
ened sensor are discussed in Chapter 3, but an in-depth discussion of
operating system security hardening is beyond the scope of this book.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 621

Active Response • Chapter 12 621

Architecture
Recall that Snortsam consists of two main components: an output plug-in for
Snort and a blocking agent that runs on the firewall host and interacts directly
with the firewall itself. For the remainder of the Snortsam section, we will use
the network diagram in Figure 12.1 as a reference.

Snort Output Plug-In
Snortsam output plug-in for Snort requires modification to both the Snort
config file and to individual Snort rules.The output plug-in will communicate to
the Snortsam agent running on the firewall over TCP port 898 whenever an IP
address trips a signature deemed heinous enough to make all other communica
tion from the IP unfit to enter the network.The output plug-in supports
encrypted communication to the blocking agent with a custom key defined
within config files at both ends of the communication channel.To make
Snortsam active, we add the following line to snort.conf:

output alert_fwsam: 192.168.10.1/sn0r3sam

Note that the password sn0r3sam is the encryption key used to set up com
munication to the blocking agent in this configuration. Obviously, you will need
to take special steps to protect the Snortsam config file since it now contains an
encryption key. In addition to this modification, we must now also have a way to
inform Snort about which specific rules should trigger a blocking action.This is
accomplished by adding a new rule option fwsam together with a timeout to
each such Snort rule. For example, suppose that we want to block all IP addresses
for a period of one hour that trigger the “WEB-CGI /wwwboard/passwd.txt
access” alert.To do so, we would append the string “fwsam: src, 1 hour;” to sid
807 in the web-cgi.rules file as in Figure 12.7.

OINK!
The length of time you have each block in place should be carefully con
sidered! You need to balance the impact that frequently modifying your
firewall policy will have against the potential impact of having a bad
blocking rule in place for a long time. A rule that temporarily blocks
important traffic may be okay if it only lasts a couple minutes, but you
usually don’t want it to be in place for days or weeks. When considering
this, it is important to remember that an attempted exploit will generally

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 622

622 Chapter 12 • Active Response

happen in seconds or minutes. This means that the block may not need
to last much longer than that to be effective. Moreover, there could be
potential network performance implications if Snortsam is configured to
block IP addresses based on DoS signatures that get tripped thousands
of times and your firewall ruleset grows past the number of rules that is
“healthy” for the firewall to handle. The question of proper tuning of
the Snort ruleset for Snortsam response raises its head again.

Figure 12.7 Modified WWWBoard passwd.txt Access Snort Rule (SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI

/wwwboard/passwd.txt access"; flow:to_server,established;

uricontent:"/wwwboard/passwd.txt"; nocase; reference:arachnids,463;

reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;

classtype:attempted-recon; sid:807; rev:7; fwsam: src, 1 hour;)

Blocking Agent
The Snortsam blocking agent is charged with interacting directly with the fire
wall software on behalf of the Snort output plug-in. If Snort detects an attack
that matches any Snort rule that has the fwsam field as in Figure 12.7, then an
encrypted TCP session will be established with the blocking agent and a message
will be sent that contains the source IP from the packets that caused the alert and
a timeout value that informs the blocking agent about the length of time the IP
should be blocked. Note that the firewall must allow the Snort output plug-in to
connect to TCP port 898 (or whatever port you configure it to communicate
over) for the Snortsam communication to work.The blocking agent maintains
the state of all blocked IP addresses within the file /var/log/snortsam.state.This
file is referenced during startup and is used to avoid duplicating blocking rules if
the agent has been stopped and restarted for any reason.

The Snortsam blocking agent accepts several directives in its configuration
file that control many aspects of operation, such as which firewall interface rules
should be applied, which local IP address the agent should listen on, an encryp
tion key for Snort sensor communications, and so forth.The configuration file is
normally located at /etc/snortsam.conf, and Figure 12.8 lists some of the more
important options that may be used in the configuration file.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 623

Active Response • Chapter 12 623

OINK!
It is critical to remember that Snortsam sends the source IP for the alert
that generates the firewall or router change. This means that you need to
be certain that all Snort rules to which you add active response list the
attacking host as the packet’s source. If you don’t, you may find that you
are blocking your own servers rather than the systems attacking them.

Figure 12.8 Snortsam Configuration Options

■	 Accept Allows specific Snort sensors to communicate with the
blocking agent on the firewall. Multiple Snort sensors can be specified
with this option, and each can have a different encryption key in the
following syntax: accept <host>/<mask>, <key>.

■	 Defaultkey Sets the default encryption key that will be used for all
Snort sensors if a custom key is not specified with the accept directive.

■	 Port Sets the port number the blocking agent will use to listen for
connections from Snort sensors.The default port is TCP 898.

■	 Dontblock Specify a host (or network) that will be ignored even if
Snort detects an attack originating from it.

■	 Logfile Specifies the path to a logfile to which Snortsam will write log
messages.This file will list all IP addresses that Snortsam blocks along
with the specified length of time.

■	 Daemon Runs the blocking agent as a daemon. Most administrators
will want to include this option if Snortsam is to be deployed on a pro
duction system.

■	 Bindip Limits the blocking agent to listen on (bind to) an IP address
associated with a single interface on the firewall instead of listening on
all interfaces.This decreases the chances that an attacker can compromise
the blocking agent itself since it decreases the number of accessible paths
to the blocking agent.You should almost always set this option.

■	 <firewall> <interface> Specifies the type of firewall the blocking
agent is running on and the interface to which blocking rules should be
added. Supported firewall types are IPtables, IPchains, Netscreen Ipf, Pf,
Pix, Ciscoacl, Opsec (for Check Point), and Watchguard.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 624

624 Chapter 12 • Active Response

Snortsam supports many additional configuration options that are not listed
in Figure 12.8, but a complete listing is beyond the scope of this book. More
information can be found in the file README.conf in the Snortsam sources.
Given the configuration options with which we are familiar, we construct a
sample Snortsam configuration file that we will refer to for the remainder of the
Snortsam section (see Figure 12.9). Recall that the IP addresses listed in this con
figuration file are taken from the network diagram in Figure 12.1.

Figure 12.9 /etc/snortsam.conf

accept 192.168.20.3, sn0r3sam

bindip 192.168.20.1

iptables eth0

logfile /var/log/snortsam.log

daemon

Snortsam in Action
Now that we have a clear understanding of the architecture employed by
Snortsam, let’s dive into two juicy examples. We will launch the same attacks
against the Web server and NFS server that we employed in Figures 12.3 and 12.6.
This time, Snortsam will be deployed and active on both the firewall host and the
Snort IDS box. We will examine packet traces of the attacks while Snortsam is
actively blocking IP addresses, and we will illustrate how the IPtables policy on the
firewall is modified. We will also show the logging and state capabilities of
Snortsam as the attacks are detected and blocked.The Snortsam blocking agent
requires the same level of privilege on a system as the administrative user who can
modify the firewall ruleset. Normally, this means Snortsam must run a root (or
other UID 0 account). In our configuration, Snortsam writes all logging messages
to the file /var/log/snortsam.log, and writes state information about the IP
addresses and lengths of time they are to be blocked to the file
/var/log/snortsam.state.Troubleshooting Snortsam frequently involves removing
the snortsam.state file and restarting Snortsam. If Snortsam has already blocked an
IP address because it has tripped a Snort rule, then Snortsam will not attempt to
block the IP again until the predetermined timeout has expired.This behavior sur
vives restarts of the Snortsam blocking agent through the use of the snortsam.state
file.To make Snortsam active at boot time, you will want to add a command like
“/usr/sbin/snortsam /etc/snortsam.conf” to the appropriate init script.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 625

625

Damage & Defense…

There are some difficult questions looming on the horizon that one can
raise about tuning active response. If someone leverages an attack against
a machine in a network where the target system is absolutely not vulner
able to the attack, should the attacker be automatically blocked? Should
the IDS even generate an alert for such an event? There are no easy
answers to these questions. On the one hand, it is important to reduce
the number of events produced by an IDS because false positives are com
monly generated, and yet at the same time, if someone is sending a
buffer overflow attack against a system, such an event might be impor
tant to know about even if it has no chance of working intru
sion detection system should only generate alerts for the events you care
about, and an active response should only be used in the case of events
where you are highly confident that you won’t see false positives and
where there is a clear need to prevent the attempted attack from being

you know that you aren’t vulnerable, it simply doesn’t make any sense to
reconfigure your firewall or router to respond to it. This is doubly true
when we consider the DoS possibilities, whereby an attacker who wants
to cut off your network’s access to a particular IP address sends attack
packets that match your active defense rules, with the packet’s source set

The bottom line is that the proper configuration of a network intru
sion detection system is highly dependent on both the network charac

and so forth) and the desires of the human administrators who will be
charged with taking actions based on IDS alerts. In the case of active
response, the humans are taken out of the loop, and so the burden of
perfection should be even higher on the data provided by the IDS. Having
said all of this, it is the goal of this chapter to illustrate the capabilities of
active response; the decision about whether to deploy such functionality

Tuning Active Response

. Ideally, an

completed. You may care that an attempted attack has taken place, but if

to that IP.

teristics (general topology, operating systems, versions of applications,

is highly subjective and is left to the IDS administrator.

Active Response • Chapter 12

Now, let’s fire up the Snortsam agent on the firewall and the patched version
of Snort on the IDS box (refer again to Figure 12.1) and see how this changes

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 626

626 Chapter 12 • Active Response

things. We will use the Snortsam configuration file in Figure 12.9, which tells
Snortsam to accept connections from the Snort box, listen only on the interface
associated with the 192.168.20.1 IP on the firewall, apply IPtables blocking rules
to the external interface (eth0), and run as a daemon. We start the Snortsam
agent on the firewall with the command in Figure 12.10.

Figure 12.10 Snortsam Startup

[firewall]# /usr/sbin/snortsam /etc/snortsam.conf

SnortSam, v 2.23.

Copyright (c) 2001-2003 Frank Knobbe <frank@knobbe.us>. All rights reserved.

Plugin 'fwsam': v 2.2, by Frank Knobbe

Plugin 'fwexec': v 2.2, by Frank Knobbe

Plugin 'pix': v 2.5, by Frank Knobbe

Plugin 'ciscoacl': v 2.4, by Ali Basel <alib@sabanciuniv.edu>

Plugin 'netscreen': v 2.2, by Frank Knobbe

Plugin 'ipchains': v 2.4, by Hector A. Paterno <apaterno@dsnsecurity.com>

Plugin 'iptables': v 2.1, by Fabrizio Tivano <fabrizio@sad.it>

Plugin 'watchguard': v 2.1, by Thomas Maier <thomas.maier@arcos.de>

Plugin 'email': v 2.3, by Frank Knobbe

Parsing config file /etc/snortsam.conf...

Linking plugin 'iptables'...

Checking for existing state file: Not present.

Starting to listen for Snort alerts.

WWWBoard passwd.txt Access Attack
At this point, the Snortsam blocking agent is ready to accept commands from the
Snort output plug-in running on the Snort IDS. We are now ready to execute
the wget command as before from evilhost and watch its output in Figure 12.11.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 627

--

Active Response • Chapter 12 627

Figure 12.11 WWWBoard passwd.txt Access Attack (Revisited)

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--10:36:19-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 23 [text/plain]

100%[==>] 23 22.46K/s

ETA 00:00

10:361:19 (22.46 KB/s) - `passwd.txt' saved [23/23]

This looks the same from the perspective of the client. Let us confirm this

by taking a look at the contents of the passwd.txt file:

$ cat passwd.txt

WebAdmin:aepTOqxOi4i8U

Indeed, the file is exactly the same, but let’s try now to access the index.html
file in the Web root on the Web server and see what happens.

$ wget -O passwd.txt -t 1 http://68.48.x.x/index.html

--10:36:19-- http://68.48.x.x/index.html

=> `passwd.txt'

Connecting to 68.48.x.x:80... failed: Connection timed out.

Giving up.

Now, this is a bit different.The client is completely unable to connect to the
Web server; in other words, the three-way TCP handshake is not allowed to
finish. Snortsam has successfully modified the IPtables policy on the firewall to
block the evilhost IP address in both the INPUT and FORWARD chains.This
means that IPtables will drop packets from evilhost that are destined for either
the firewall host itself or for any host connected to the firewall, and we can con
firm this by executing the following two commands on the firewall:

iptables -nL INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all evilhost 0.0.0.0/0

...

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 628

--

628 Chapter 12 • Active Response

iptables -nL FORWARD

Chain FORWARD (policy ACCEPT)

target prot opt source destination

DROP all evilhost 0.0.0.0/0

...

Note that the DROP rules are added as the very first rules in the policy.This
will make IPtables silently drop packets before they are matched against any
other rules, including potential connection tracking rules that would otherwise
allow packets through if they were part of an established session.The material
presented so far is specific to IPtables on Linux, but Snortsam reacts similarly on
all supported firewalls, although the method of communication with each fire
wall is different.Table 12.1 lists communication methods the Snortsam blocking
agent uses to communicate with each supported firewall.

Table 12.1 Snortsam Firewall Communication

Firewall Communication Method

IPtables IPtables binary
IPchains Raw socket
Ipf Ipf binary
Pf Ioctl call
Watchguard Watchguard binary
Netscreen Management port (TCP/23)
Cisco PIX Management port (TCP/23)
Check Point Check Point SDK

We can clearly see that the IP associated with evilhost is blocked in the
IPtables policy, but note that the first attack request in Figure 12.11 was allowed
to complete without hindrance.The passwd.txt is successfully downloaded from
the Web server. When exactly did Snortsam add these rules to the IPtables policy
relative to the first attack? Were these rules only added after the attack TCP ses
sion was allowed to complete, or were they added sometime while the session
was still active? A packet trace taken during the first attack answers this question
(see Figure 12.12).

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 629

Active Response • Chapter 12 629

Figure 12.12 WWWBoard passwd.txt Access Attack Packet Trace

[firewall]# tcpdump –i eth0 port 80 and host 204.174.x.x –X –l –n –s 1500

204.174.x.x.38862 > 68.48.x.x.80: S 2273499460:2273499460(0) win 5840

68.48.x.x.80 > 204.174.x.x.38862: S 741892038:741892038(0) ack 2273499461

win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 1 win 5840

204.174.x.x.38862 > 68.48.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa 8e78 4000 3206 795f ccae df18 E....x@.2.y_....

0x0010 0000 0000 97ce 0050 8782 d945 2c38 5fc7P...E,8_.

0x0020 8018 16d0 7cb8 0000 0101 080a 14e2 573c|.........W<

0x0030 006e a7ea 4745 5420 2f77 7777 626f 6172 .n..GET./wwwboar

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e78 782e 7878 ost:.68.48.xx.xx

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

68.48.x.x.80 > 204.174.x.x.38862: . ack 119 win 5792

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 f834 4000 3f06 01b4 0000 0000 E....4@.?.......

0x0010 ccae 0000 0000 97ce 2c38 5fc7 8782 d9bbP..,8_.....

0x0020 8018 16a0 ebca 0000 0101 080a 006e a7f4n..

0x0030 14e2 573c 4854 5450 2f31 2e31 2032 3030 ..W<HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3230 3a33 30.Mar.2004.20:3

0x0060 333a 3236 2047 4d54 0d0a 5365 7276 6572 3:26.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 630

630 Chapter 12 • Active Response

Figure 12.12 WWWBoard passwd.txt Access Attack Packet Trace

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

Iptables blocking rule is added here since the next packet

acknowledging sequence number 358 never makes it from the client to the

server so the server must re-transmit all data from sequence number 1

through 358. All communication from the client to the server (but not

vice-versa) has been cut at this point.

====> 204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

====> 204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

====> 68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 f834 4000 3f06 01b4 0000 0000 E....4@.?.......

0x0010 ccae 0000 0000 97ce 2c38 5fc7 8782 d9bbP..,8_.....

0x0020 8018 16a0 ebca 0000 0101 080a 006e a7f4n..

0x0030 14e2 573c 4854 5450 2f31 2e31 2032 3030 ..W<HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3230 3a33 30.Mar.2004.20:3

0x0060 333a 3236 2047 4d54 0d0a 5365 7276 6572 3:26.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

Continued
www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 631

Active Response • Chapter 12 631

Figure 12.12 WWWBoard passwd.txt Access Attack Packet Trace

0x0100

0x0110

0x0120

0x0130

0x0140

0x0150

0x0160

0x0170

0x0180

0x0190

7465 730d 0a43 6f6e 7465 6e74 2d4c 656e

6774 683a 2032 330d 0a4b 6565 702d 416c

6976 653a 2074 696d 656f 7574 3d31 352c

206d 6178 3d31 3030 0d0a 436f 6e6e 6563

7469 6f6e 3a20 4b65 6570 2d41 6c69 7665

0d0a 436f 6e74 656e 742d 5479 7065 3a20

7465 7874 2f70 6c61 696e 3b20 6368 6172

7365 743d 4953 4f2d 3838 3539 2d31 0d0a

0d0a 5765 6241 646d 696e 3a61 6570 544f

7178 4f69 3469 3855 0a

tes..Content-Len

gth:.23..Keep-Al

ive:.timeout=15,

.max=100..Connec

tion:.Keep-Alive

..Content-Type:.

text/plain;.char

set=ISO-8859-1..

..WebAdmin:aepTO

qxOi4i8U.

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

This trace is quite different from the trace in Figure 12.4, which was taken
while Snortsam was not active. First, we see the normal three-way handshake
that initiates the session as usual.Then, we see the client request for the /www-
board/passwd.txt Uniform Resource Identifier (URI) and the corresponding
Web server “WebAdmin:aepTOqxOi4i8U” response.This server response packet
makes it out to the client due to the fact that the first packet with the “====>”
shows that the client attempts to acknowledge sequence number 358 from the

and the second packet with the “====>” shows that the client is ready for any
data starting at sequence 358. However, this acknowledgment packet never makes

server. Hence, the client received all data ending at server sequence number 358,

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 632

632 Chapter 12 • Active Response

it to the server because the firewall is already blocking all traffic from evilhost.
We can see this in the trace by noting that the third packet with the “====>”is a
retransmission of the same “WebAdmin:aepTOqxOi4i8U” data to the client (the
data from sequence 1 to 358 is being sent again; see the 1:358(357)).This retrans
mission does make it back to the client since the specific rule added by Snortsam
to the FORWARD chain only blocks packets that come from evilhost; not those
destined for evilhost.Therefore, this retransmission elicits yet another acknowl
edgment of sequence number 358 from the client, which also does not reach the
server, and the process continues as mandated by the requirement that TCP
retransmit any data for which acknowledgments are not received.

At this point, we have seen Snortsam block all packets originating from evil-
host after Snort detected an attack signature matching SID 807, but we have not
seen any output of Snortsam itself. When the blocking agent on the firewall
receives a block request from the Snort IDS, a log message is generated that
includes the IP address to be blocked and the length of time the block is to
remain in effect. In our example configuration, we specified a logfile path of
/var/log/snortsam.log, and after our attack example we find the messages listed
in Figure 12.13 within this file.

Figure 12.13 Blocking Agent Messages

2004/03/02, 01:45:32, -, 1, snortsam, Starting to listen for Snort alerts.

2004/03/02, 01:45:50, 192.168.10.3, 2, snortsam, Blocking host 204.174.x.x

completely for 3600 seconds.

The general flow of events that Snortsam executes in the process of adding a
blocking rule to a firewall is as follows:

1.	 The modified version of Snort that contains the Snortsam output plug-
in detects an attack that matches a Snort rule that contains the fwsam
directive.

2.	 The Snort output plug-in contacts the Snortsam blocking agent running
on the firewall over TCP port 898.The contents of the message instruct
the agent to add a blocking rule to the firewall for the IP address that
generated the Snort alert.

3.	 The blocking agent checks its in-memory internal state (the
snortsam.state file is read at startup) to see if the source IP address has
already been blocked, and if so, whether its previous timeout has
expired.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 633

Active Response • Chapter 12 633

4.	 If the blocking timeout has expired or if the IP has not yet been
blocked, the agent adds the IP and timeout to the state file and then
interfaces with the underlying firewall to add the blocking rule. Log
messages are written to the logfile during these two operations.

NFS mountd Overflow Attack
For Snortsam to respond to the exploit for the NFS mountd overflow vulnera
bility, we must add the fwsam option to Snort SID 316 in the Snort rules file
exploit.rules just as we did for the passwd.txt access Snort rule in Figure 12.7.
The resulting Snort rule appears in Figure 12.14.

Figure 12.14 Modified NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd

overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|";

reference:cve,CVE-1999-0002; reference:bugtraq,121; classtype:attempted-

admin; sid:316; rev:3; fwsam: src, 1 hour;)

First, we reinstate network access to the evilhost IP address by clearing the
block rule from the previous passwd.txt access attack on the IPtables firewall. We
must also delete the file /var/log/snortsam.state on the firewall and restart
Snortsam so that Snortsam can react to the next attack. We start Snort with our
modified SID 316 rule and start the Snortsam blocking agent on the firewall
with the configuration file we built previously. We are now ready to execute the
mountd overflow attack against the NFS server from evilhost, and again we
watch the attack with a packet trace taken on the external interface of the fire
wall in Figure 12.15.

Figure 12.15 NFS mountd Overflow Attack (Revisited)

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 204.174.x.x.33854 > 68.48.x.x.sunrpc: udp 56 (DF)

15:53:59.267033 68.48.x.x.sunrpc > 204.174.x.x.33854: udp 28 (DF)

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 634

634 Chapter 12 • Active Response

Figure 12.15 NFS mountd Overflow Attack (Revisited)

15:53:59.267662 204.174.x.x.33854 > 68.48.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 68.48.x.x.32772 > 204.174.x.x.33854: udp 28 (DF)

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 635

--

--

Active Response • Chapter 12 635

So far, so good.The packet trace is identical to the first trace we took of this
exploit in Figure 12.6, so we see that the attack packet itself was allowed through
the firewall. However, now if we try to view the index.html page on the Web
server from evilhost after the attack has been completed, we again discover that
our connection attempt is blocked. We can confirm that Snortsam has again
added the same block rules to the INPUT and FORWARD chains on the fire
wall (see Figure 12.16).

Figure 12.16 IPtables Block Rules

iptables -nL INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all evilhost 0.0.0.0/0

...

iptables -nL FORWARD

Chain FORWARD (policy ACCEPT)

target prot opt source destination

DROP all evilhost 0.0.0.0/0

...

It should be noted that for our network configuration in Figure 12.1,
Snortsam will never stop the initial exploit packets from entering the network
and being forwarded to the internal servers because Snort does not have the
opportunity to detect the attack until the exploit packets are already on the same
subnet. Unfortunately, this means that for attacks that require a small number of
packets, the attacker may be able to successfully complete the attack and then
move to another source IP address to take advantage of the newly compromised
system. However, consider the relative speed of a fast 100MB internal network,
with the normal low latency of one to three hops, versus Internet links that are
1/100 to 1/2 that speed, and much higher latency stemming from the average
hop count of 15 hops between arbitrary hosts on the Internet. Provided the IDS
triggers quickly, most attackers should be unable to get many packets to the
target host before being blocked. In our passwd.txt access example, the attacker’s
TCP session was not even allowed to finish before the IPtables policy was modi-
fied.This, combined with Snortsam’s ease of deployment, its capability to avoid
causing a resource conflict between your IDS and your firewall, its granular rule
specification, and its capability to interact with many different firewalls, make it
an attractive candidate for implementing active response.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 636

636 Chapter 12 • Active Response

OINK!
If you want to prevent even the initial exploit from reaching the target
(as you may want to do for things like single-packet exploits, worms, or
DoS attacks that don’t depend on many packets), then read the next
two sections for methods that should be just what you are looking for.

Fwsnort
Fwsnort is an open-source project that aims to take the wonderful signature ruleset
developed by the Snort community and translate as many rules as possible into an
equivalent IPtables ruleset that can log and even block packets. Fwsnort is loosely
based on the shell script snort2iptables (see www.stearns.org/snort2iptables/)
written by William Stearns. Since 90 percent of all Snort rules depend on
searching for telltale patterns in packet application-layer data, an important prereq
uisite to accomplishing any useful translation is the ability of IPtables to at least
perform string matches in kernel space.The IPtables string match module provides
this capability. One of the most significant features of Fwsnort is the addition of an
option –hex-string to the userland portion of IPtables itself.This option was
accepted as a patch to the IPtables code by the IPtables maintainers as of IPtables
version 1.2.8. Combined with the IPtables string match module, this option allows
content fields in Snort rules that contain hex codes to be easily included within
IPtables rulesets without modification. Fwsnort also parses existing IPtables rulesets
in order to determine which Snort rules can (optionally) be excluded from the
translation. If an IPtables policy has been configured to block all traffic over say, the
ICMP protocol, then it may not be useful to translate ICMP rules from Snort. In
addition, Fwsnort offers the capability of translating individual Snort rules by their
individual SID value, which means that if there are only specific rules that you
want included, you can identify them and have them added explicitly. Having said
all of this, there are several Snort rule options such as dsize, byte_test, and distance
whose use in a rule prevents it from being translated into an equivalent IPtables
rule. After taking these options into account, Fwsnort is able to translate nearly 70
percent of all rules included in Snort-2.1. Lest there be any doubt in your mind,
Fwsnort really is a simple NIPS. It may not have all the capabilities of either a
commercial product or the open-source Snort_inline program, but it definitely
does land squarely in the category of NIPS.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 637

Active Response • Chapter 12 637

OINK!
As mentioned in previous chapters, options like dsize, byte_test, and dis
tance are used extensively in the newer rules and are very valuable in
making rules more accurate and flexible. Before you import every rule
that can be imported, take the time to look at how likely they are to
generate false positives. Then remember what we said before about the
high potential for Very Bad™ side effects if you aren’t excruciatingly
careful about tuning the rules you implement for active response.

Installation
The installation of Fwsnort is accomplished in two main steps. First, you must
install the IPtables string match module.This normally requires a kernel recom
pile, since this module is not included in the stock Linux kernel sources.The
string match module is implemented as a patch to the kernel and is classified in
the extra modules category according to the Netfilter project.The easiest way to
install this module is to use the patch-o-matic system distributed at
www.netfilter.org/downloads.html#pom-20031219. After untarring the patch-o-
matic tarball, execute the following command from the patch-o-matic directory:

KERNEL_DIR=/usr/src/linux-2.4.24 ./runme extra

Note that this command assumes that /usr/src/linux-2.4.24 directory is
where the kernel sources are located. Eventually, the following screen will be
presented that will allow the string module patch to be applied:

Kernel: /usr/src/linux

Userspace: /usr/local/src

Each patch is a new feature: many have minimal impact, some do not.

Almost every one has bugs, so I don't recommend applying them all!

Already applied: submitted/01_2.4.19

submitted/02_2.4.20

submitted/03_2.4.21

submitted/04_2.4.22

submitted/05_2.4.23

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 638

638 Chapter 12 • Active Response

submitted/90_fw_compat_local-nullbinding

pending/59_ip_nat_h-unused-var

Testing... string.patch NOT APPLIED (2 missing files)

The extra/string patch:

Author: Emmanuel Roger <winfield@freegates.be>

Status: Working, not with kernel 2.4.9

This patch adds CONFIG_IP_NF_MATCH_STRING which allows you to

match a string in a whole packet.

THIS PATCH DOES NOT WORK WITH KERNEL 2.4.9 !!!

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?]

Although a detailed explanation of the kernel compilation process is beyond
the scope of this book, the essential piece of the puzzle is to make sure that
CONFIG_IP_NF_MATCH_STRING=y is in the kernel .config file before
compilation.This is most easily accomplished by using either make xconfig or
make menuconfig and selecting the String match support option under the Netfilter
Configuration section. Like many kernel options, string match support can either
be compiled directly into the kernel or compiled as a module. However, on a
production firewall, security is enhanced by removing support for loadable kernel
modules, so for our particular configuration we will compile the string match
extension into the kernel.

Next, we install Fwsnort itself.The latest Fwsnort tarball (0.6.3 as of this
writing) can be downloaded from www.cipherdyne.org/fwsnort/download/ or
found on the accompanying CD-ROM. After extracting the tarball, the install.pl
script should be executed from the fwsnort-0.6.3 directory.The install.pl script will
place Fwsnort in the filesystem at /usr/sbin/fwsnort, present the user with the
option to download the latest Snort rules located at www.snort.org/dl/rules/
snortrules-stable.tar.gz, and create the directory /etc/fwsnort where the Fwsnort
configuration file and rules files will be placed. After completing these steps,
Fwsnort is ready to be executed.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 639

Active Response • Chapter 12 639

OINK!
As we said before, you should not be compiling things on your firewall.
Compile elsewhere and move binaries over to the firewall. In addition,
the advice mentioned in the patch-o-matic text previously is worth
remembering—almost all of the patches offered have bugs! Think seri
ously about whether you trust this code and need this functionality
enough to justify the risk of adding it to your firewall’s kernel.

Configuration
By default, Fwsnort references the configuration file /etc/fwsnort/fwsnort.conf
for all configuration directives. Although the installation script handles nearly all
aspects of getting Fwsnort to a functional state as far as the filesystem is con
cerned, there are three variables within the Fwsnort configuration file that need
to be manually edited before Fwsnort can function properly.These variables con
trol which interfaces are external, internal, or part of a screened subnet (fre
quently, and incorrectly, called a de-militarized zone (DMZ)) on the firewall and
are clearly denoted at the top of the fwsnort.conf file and initially have the value
CHANGEME. For our discussion we will assume that eth0 is the external
network interface of the IPtables firewall, and eth1 is the internal interface.There
is no DMZ interface. See Figure 12.17 for a sample Fwsnort configuration file.
Note that the HOME_NET and EXTERNAL_NET variables are similar to the
same variables found in the configuration file for Snort itself, but instead of spec
ifying networks, these variables specify interfaces. Fwsnort also supports whitelists
in the same manner as Snortsam through the use of the IGNOREIP and
IGNORENET variables shown commented out at the end of the example
config file in Figure 12.17.

Figure 12.17 Fwsnort Configuration File /etc/fwsnort/fwsnort.conf

Interface variables

EXTERNAL_INTF eth0;

INTERNAL_INTF eth1;

#DMZ_INTF _CHANGEME_;

HOME_NET INTERNAL_INTF;

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 640

640 Chapter 12 • Active Response

Figure 12.17 Fwsnort Configuration File /etc/fwsnort/fwsnort.conf

EXTERNAL_NET EXTERNAL_INTF;

By default the SERVER variables are linked to the

internal interface on the firewall, but can contain a

comma separated list of IP addresses or networks.

IMPORTANT: If you are running IPtables on an ordinary

host without multiple network interfaces, then you

will need to point the following variables to

"EXTERNAL_INTF". For example:

HTTP_SERVERS EXTERNAL_INTF;

HTTP_SERVERS

SMTP_SERVERS

DNS_SERVERS

SQL_SERVERS

TELNET_SERVERS

INTERNAL_INTF;

INTERNAL_INTF;

INTERNAL_INTF;

INTERNAL_INTF;

INTERNAL_INTF;

Use the following variables to define hosts and/or networks that

should never illicit a response from fwsnort. These variable can be

specified multiple times to whitelist as many hosts/networks as

needed. For example to whitelist the ip 192.168.10.1 and the

network 10.10.10.0/24, you would specify IGNOREIP and IGNORENET

variables like so:

#IGNOREIP 192.168.10.1;

#IGNORENET 10.10.10.0/24;

Execution
Fwsnort supports several command-line arguments to alter its behavior as it is
executed from the command line. A complete listing of all supported options is
available n the Fwsnort man page.The general strategy employed by Fwsnort is
to first parse the IPtables ruleset that is currently running on the local system,
then translate any Snort rules that the policy may actually permit through, and
lastly to create a Bourne shell script /etc/fwsnort/fwsnort.sh that implements the
new resulting IPtables ruleset.This script creates a custom IPtables FORWARD

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 641

Active Response • Chapter 12 641

chain and a custom INPUT chain for each interface, and adds a jump rule to the
built-in FORWARD and INPUT chains that jumps packets into the custom
chains for examination by Fwsnort. By default, Fwsnort only logs the Snort SID
value corresponding to specific attacks; it does not implement active response
without the use of either the –ipt-reject or –ipt-drop command-line options.

Figure 12.18 Sample Fwsnort Execution

[firewall]# fwsnort –-ipt-reject

=-=

Snort Rules File Success Fail Ipt_apply Total

.. snmp.rules

.. finger.rules

.. info.rules

.. ddos.rules

.. virus.rules

.. icmp.rules

.. dns.rules

.. rpc.rules

.. backdoor.rules

.. scan.rules

.. x11.rules

.. oracle.rules

.. web-frontpage.rules

.. misc.rules

.. shellcode.rules

.. web-misc.rules

.. policy.rules

.. p2p.rules

.. ftp.rules

.. experimental.rules

.. porn.rules

.. deleted.rules

.. sql.rules

.. pop2.rules

.. imap.rules

17 0 0 17

13 0 0 13

6 1 0 7

18 15 0 33

1 18 0 19

7 15 7 22

13 6 2 19

0 128 0 128

52 6 0 58

15 10 1 25

2 0 0 2

19 6 0 25

33 1 33 34

23 21 1 44

0 19 0 19

257 35 246 292

10 12 0 22

14 2 0 16

13 39 0 52

0 0 0 0

20 1 0 21

185 32 11 217

40 3 0 43

3 1 0 4

0 16 0 16

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 642

642 Chapter 12 • Active Response

Figure 12.18 Sample Fwsnort Execution

.. smtp.rules 18 7 0 25

.. web-coldfusion.rules 35 0 35 35

.. local.rules 0 0 0 0

.. bad-traffic.rules 3 11 2 14

.. dos.rules 8 10 1 18

.. web-client.rules 5 1 2 6

.. web-cgi.rules 284 60 282 344

.. other-ids.rules 3 0 0 3

.. pop3.rules 5 14 0 19

.. exploit.rules 27 9 4 36

.. multimedia.rules 2 4 1 6

.. rservices.rules 11 2 0 13

.. web-iis.rules 100 11 100 111

.. mysql.rules 2 0 0 2

.. icmp-info.rules 16 77 16 93

.. web-php.rules 39 23 39 62

.. telnet.rules 12 2 0 14

.. chat.rules 7 11 0 18

.. netbios.rules 10 17 0 27

.. nntp.rules 0 2 0 2

.. attack-responses.rules 13 3 0 16

.. tftp.rules 4 5 0 9

.. web-attacks.rules 47 0 47 47

==

1412 656 830 2068

.. Generated iptables rules for 1412 out of 2068 signatures: 68.28%

.. Found 830 applicable snort rules to your current iptables

policy.

.. Logfile: /var/log/fwsnort.log

.. Iptables script: /etc/fwsnort/fwsnort.sh

=-=

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 643

Active Response • Chapter 12 643

In Figure 12.18, for each Snort rules file we see the number of rules Fwsnort
was able to translate into equivalent IPtables rules, the number that could not be
translated, the number of applicable rules to the IPtables policy that is currently
running on the host (this feature may be disabled with the –no-ipt-sync option),
and the total number of rules in the Snort rules file. At the end of the output,
statistics are displayed about the total number of rules that were successfully
translated and the total number of rules that are applicable to the IPtables policy.
Note that for our policy there are no applicable NetBIOS or Telnet rules even
though 10 and 12 NetBIOS and Telnet Snort rules were successfully translated,
respectively. Fwsnort supports the translation of an individual Snort rules file or
even of a single Snort rule through the use of the –type or –snort-sid <sid> com-
mand-line options.

OINK!
The IPtables string match module uses the Boyer Moore string search
algorithm, which is extremely fast. However, converting the entire Snort
ruleset into an equivalent IPtables policy would result in (conservatively)
around 4000 rules (2000 for each Fwsnort chain), which is excessive for
any firewall policy. Your results may vary, but Fwsnort works best when a
few choice Snort rules are converted that are tuned for your particular
network configuration. In addition, remember that potential bugs in
kernel-level code can have much more damaging results to a system
than bugs in a userland application. By the way, generating some hard
benchmarking numbers for Fwsnort would be a great contribution to
the open-source community since such numbers don’t exist yet!

WWWBoard passwd.txt
Access Attack (Revisited)
Now that we have our brand new Fwsnort software installed on the firewall, it is
time to see how it handles a real attack. Specifically, we will employ the network
diagram in Figure 12.19 and execute the same WEB-CGI /wwwboard/passwd.txt
access attack we used against the Snortsam network.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 644

644 Chapter 12 • Active Response

Figure 12.19 Fwsnort Network

evilhost
(207.174.x.x)

Intnernet

firewall (68.48.x.x)

(192.168.10.20)

(192.168.10.30)

switch
192.168.10.1

Fwsnort

Web server

NFS server

Evilhost is once again our villain, and the Web server our not-so-hapless
victim.This time, there is no separate Snort system and no dedicated management
network hanging off the firewall. All IDS detection functions and IPS drop/reject
functions are implemented by Fwsnort directly in the IPtables policy running on
the firewall. Effectively, the completeness of IPtables allows us to put a significant
portion of the functionality provided by Snort directly into the Linux kernel. We
first run Fwsnort from the command line and have it generate an IPtables ruleset
designed to both log and reset any Web session that matches the string “/www-
board/passwd.txt” from Snort SID 807.The output of this command along with
the Bourne shell script it produces is listed in Figure 12.20.

Figure 12.20 Fwsnort Command for SID 807

[firewall]# fwsnort --snort-sid 807 --ipt-reject

=-=

.. Generated iptables rules for 1 out of 2068 signatures: 0.05%

.. Found 1 applicable snort rules to your current iptables

policy.

.. Logfile: /var/log/fwsnort.log

.. Iptables script: /etc/fwsnort/fwsnort.sh

=-=

[firewall]# cat /etc/fwsnort/fwsnort.sh

#!/bin/sh

Continued
www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 645

Active Response • Chapter 12 645

Figure 12.20 Fwsnort Command for SID 807

#==================== config ====================

ECHO=/bin/echo

IPTABLES=/sbin/iptables

#================== end config ==================

###

############ Create fwsnort iptables chains. ############

###

$IPTABLES -N fwsnort_INPUT_eth1 2> /dev/null

$IPTABLES -F fwsnort_INPUT_eth1

$IPTABLES -N fwsnort_INPUT_eth0 2> /dev/null

$IPTABLES -F fwsnort_INPUT_eth0

$IPTABLES -N fwsnort_FORWARD 2> /dev/null

$IPTABLES -F fwsnort_FORWARD

###

############ web-cgi.rules ############

###

$ECHO " .. Adding web-cgi rules."

msg: "WEB-CGI /wwwboard/passwd.txt access", classtype: "attempted

recon", reference: "arachnids,463"

$IPTABLES -A fwsnort_FORWARD -p tcp -d 192.168.10.0/24 —dport 80 —tcp

flags ACK ACK -m string —string “/wwwboard/passwd.txt” -j LOG —log-prefix

“SID807 “

$IPTABLES -A fwsnort_FORWARD -p tcp -d 192.168.10.0/24 —dport 80 —tcp-flags

ACK ACK -m string —string “/wwwboard/passwd.txt” -j REJECT —reject-with

tcp-reset

###

############ Jump traffic to the fwsnort chains. ############

###

$IPTABLES -I INPUT 1 -i eth1 -j fwsnort_INPUT_eth1

$IPTABLES -I INPUT 1 -i eth0 -j fwsnort_INPUT_eth0

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 646

646 Chapter 12 • Active Response

Figure 12.20 Fwsnort Command for SID 807

$IPTABLES -I FORWARD 1 -j fwsnort_FORWARD

EOF

The two most important IPtables commands in the fwsnort.sh script in Figure
12.20 are listed in bold.The first of these commands instructs IPtables to generate
a log message for any TCP packet with the ack flag set that is destined for an
address within the 192.168.10.0/24 subnet that also contains the string “/www-
board/passwd.txt”.The log message will contain all of the standard information
included within an IPtables log message (see http://logi.cc/linux/netfilter-log-
format.php3 for more information), but will also include the readily identifiable
string SID807.The next IPtables command will have IPtables generate a TCP reset
packet for any matching Web session. It would be just as easy to drop the packets
without sending a reset through the use of the –ipt-drop option to Fwsnort—this
example was generated with the –ipt-reject option. Generating a reset packet has the
advantage that TCP will not attempt retransmitting packets, as we saw in when
Snortsam added the block rule to the firewall. However, since the IPtables
ipt_REJECT code sends the reset packet to the client instead of the server, the
client could ignore the effort by Fwsnort to tear down the session by either run
ning a modified TCP stack that ignores resets or intercept the reset before it can
reach the TCP stack. Without further ado, let’s run the fwsnort.sh shell script on the
firewall and see what actually happens on the network when we run the attack.

[firewall]# /etc/fwsnort/fwsnort.sh

.. Adding web-cgi rules.

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--12:44:51-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt.5'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response...

Read error (Connection reset by peer) in headers.

Giving up.

This time, the session is allowed to be established, but then as soon as the
HTTP request is sent it appears that the session is torn down by the server. We
can confirm this by examining a packet trace taken on the external interface of
the firewall as usual.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 647

Active Response • Chapter 12 647

[firewall]# tcpdump -l -X -s 1500 -n -i eth0 port 80 and tcp and host

204.174.x.x

tcpdump: listening on eth0

204.174.x.x.40491 > 68.48.x.x.80: S 3376765297:3376765297(0) win 5840

68.48.x.x.80 > 204.174.x.x.40491: S 1814833248:1814833248(0) ack

204.174.x.x.40491 > 68.48.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa a927 4000 3206 5eb0 ccae df18 E....'@.2.^.....

0x0010 0000 0000 9e2b 0050 c945 5972 6c2c 2861+.P.EYrl,(a

0x0020 8018 16d0 7980 0000 0101 080a 14e3 f05ey..........^

0x0030 0070 4122 4745 5420 2f77 7777 626f 6172 .pA"GET./wwwboar

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e78 782e 7878 ost:.68.48.xx.xx

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

15:44:50.093323 68.48.x.x.80 > 204.174.x.x.40491: R 1814833249:1814833249(0)

win 0

204.174.x.x.40491 > 68.48.x.x.80: . ack 1 win 5840

We see from the trace that the three-way TCP handshake has no problems
being established just as one would expect.Then, as soon as the HTTP request is
sent, the server sends a reset packet (listed in bold) to the client, which tears
down the session. From the server’s perspective we see the following:

[webserver]# tcpdump –i eth0 –l –n –X –s 1500 port 80 and tcp and host

204.174.x.x

204.174.x.x.40491 > 192.168.10.20.80: S 3376765297:3376765297(0) win 5840

192.168.10.20.80 > 204.174.x.x.40491: S 1814833248:1814833248(0) ack

3376765297 win 5792

204.174.x.x.40491 > 192.168.10.20.80: . ack 1 win 5840

The most important thing to notice in this trace is that the HTTP request
never actually makes it through to the Web server. Had our server actually been
vulnerable to the exploit, the attack would have been blocked at the firewall and
been completely unsuccessful. No retransmissions are ever generated because the
server never sees any application request from the client, and the client never has
the opportunity to retransmit the original request because the TCP reset packet

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 648

648 Chapter 12 • Active Response

generated by the firewall forces the entire session to be destroyed. Note that the
packet trace taken on the Web server shows its internal address on the network
instead of the external address on the firewall to which the client connects. So,
we have succeeded in thwarting this attack, but what about a completely dif
ferent attack from the same IP address? Due to the fact that the IPtables policy
generated by Fwsnort is static, the client still has connectivity to the Web server.
Only those specific Snort rules that have been translated into equivalent IPtables
rules are blocked. However, Fwsnort by default uses the IPtables log-prefix option
to log the Snort rule SID to the system log whenever a matching packet
attempts to traverse the interfaces on the firewall. In the specific case of the
WEB-CGI /wwwboard/passwd.txt access shown previously, the following log
message appears in /var/log/messages:

Feb 22 19:42:57 firewall kernel: SID807 IN=eth0 OUT=eth1 SRC=204.174.x.x

DST=192.168.10.20 LEN=200 TOS=0x00 PREC=0x00 TTL=49 ID=7419 DF PROTO=TCP

SPT=40491 DPT=80 WINDOW=5840 RES=0x00 ACK PSH URGP=0

Once such a message is written to the system log, it can be analyzed by psad,
Michael Rash’s Port Scan Attack Detector, (see www.cipherdyne.org/psad),
which has the capability of sending alerts and automatically blocking IP addresses
based on the SIDxxx component of IPtables log messages such as the one just
displayed. A sample e-mail alert generated by psad from the previous IPtables log
message appears in Figure 12.21. whois information about the source IP address
has been removed for brevity.

Figure 12.21 Sample psad Alert Generated from SID 807 Attack

From: root <root@cipherdyne.org>

Subject: ** psad: [DL2] SCAN from: evilhost

To: mbr@cipherdyne.org

X-Original-To: mbr@cipherdyne.org

Delivered-To: mbr@cipherdyne.org

Date: Wed, 31 Mar 2004 00:38:35 -0500 (EST)

=-=-=-=-=-=-=-=-=-=-=-= Wed Mar 31 00:38:35 2004 =-=-=-=-=-=-=-=-=-=-=-=

** psad: Suspicious traffic detected against 192.168.10.20

Danger level: [2] (out of 5)

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 649

Active Response • Chapter 12 649

Figure 12.21 Sample psad Alert Generated from SID 807 Attack

Scanned tcp ports: [80: 1 packets]

tcp flags: [ACK PSH: 1 pkts]

Source: 204.174.x.x

Destination:192.168.10.20

DNS: webserver

Syslog host: syslog_host

Current interval:	 Wed Mar 31 00:38:35 2004 (start)

Wed Mar 31 00:38:40 2004 (end)

Overall stats since: Fri Feb 20 17:59:13 2004

Complete tcp range: [80]

chain: interface: tcp: udp: icmp:

forward eth0 16 0 0

** tcp scan signatures: **

"WEB-CGI /wwwboard/passwd.txt access"

classtype: web-application-attack

sid: 807

content: "/wwwboard/passwd.txt"

chain: forward

packets: 1

** Whois Information: **

=-=-=-=-=-=-=-=-=-=-=-= Wed Mar 31 00:38:35 2004 =-=-=-=-=-=-=-=-=-=-=-=

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 650

650 Chapter 12 • Active Response

Notes from the Underground…

Fwsnort Evasion
The IPtables string match module strictly attempts to match strings
against the content portion of individual packets. Hence, any IDS evasion
technique that breaks an attack string across multiple packets or alters an
attack string in any way will defeat the string match module. Such tech
niques include packet fragmentation, URL encoding, polymorphic shell
code, session splicing (see
txt/whiskerids.html), and so forth. Some of Snort’s preprocessors, dis
cussed in Chapter 6, “Preprocessors,” combat these techniques by
attempting to either canonicalize data or alert on anomalies—Fwsnort is
obviously simpler and thus cannot perform these functions. There are
many worms and viruses that make no effort to hide their tracks, how

network baddies as well as for those attackers who neglect to use these

reference for evading detection by a NIDS is
“Insertion, Evasion, and Denial of Service: Eluding Network

Intrusion Detection” by Thomas H. Ptacek & Timothy N. Newsham

whisker-style www.wiretrip.net/rfp/

ever, so Fwsnort can be useful as a basic active response system for such

more advanced techniques. You will see the following URL in other places
in this book, but just in case you haven’t seen it until now, the canonical

(www.insecure.org/stf/secnet_ids/secnet_ids.html).

NFS mountd Overflow Attack (Revisited)
We have seen how Fwsnort reacts to the Web server passwd.txt access attack by
generating a TCP reset packet that tears down the offending TCP session. Now,
let’s explore how Fwsnort reacts to an attack that is sent over the UDP protocol.
Naturally, we use the same mountd overflow exploit, which is detected by Snort
SID 316. First, we need to have Fwsnort generate a shell script that is designed
to react to the attack and apply it to the firewall (see Figure 12.22).

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 651

Active Response • Chapter 12 651

Figure 12.22 Fwsnort Command for SID 316

[firewall]# fwsnort --snort-sid 316 --ipt-reject

=-=

.. Generated iptables rules for 1 out of 2068 signatures: 0.05%

.. Found 1 applicable snort rules to your current iptables

policy.

.. Logfile: /var/log/fwsnort.log

.. Iptables script: /etc/fwsnort/fwsnort.sh

=-=

[firewall]# /etc/fwsnort/fwsnort.sh

.. Adding exploit rules.

The resulting Fwsnort shell script is identical to the script for SID 807 in
Figure 12.20, except for the two IPtables commands that are designed to log and
react to the attack. Due to the fact that the Snort rule for the mountd exploit
makes use of hex codes in the content field, the new IPtables commands make
use of the –hex-string option (see Figure 12.23).

Figure 12.23 Fwsnort SID 316 IPtables Commands

$IPTABLES -A fwsnort_FORWARD -p udp -d 192.168.10.0/24 -m string —hex

string

"|eb56 5E56 5656 31d2 8856 0b88 561e|" -j LOG --log-prefix "SID316 "

$IPTABLES -A fwsnort_FORWARD -p udp -d 192.168.10.0/24 -m string --hex

string

“|eb56 5E56 5656 31d2 8856 0b88 561e|” -j REJECT --reject-with icmp-port-

unreachable

Now we execute the attack again and watch a packet trace on the external
interface of the firewall in Figure 12.24. Note that the initial request immediately
elicits an ICMP port unreachable response from the firewall and no more packets
are transmitted.The server never has an opportunity to be hit by the overflow
attack packet.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 652

652 Chapter 12 • Active Response

Figure 12.24 NFS mountd Overflow Attack and Packet Trace

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

204.174.x.x.33854 > 68.48.x.x.sunrpc: udp 56 (DF)

68.48.x.x.sunrpc > 204.174.x.x.33854: udp 28 (DF)

204.174.x.x.33854 > 68.48.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 653

Active Response • Chapter 12 653

Figure 12.24 NFS mountd Overflow Attack and Packet Trace

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

68.48.x.x > 204.174.x.x: icmp: 68.48.x.x udp port 53 unreachable [tos 0xc0]

This section explored how Fwsnort implements active response to two dif
ferent attacks over the TCP and UDP protocols. Fwsnort is highly specific to
IPtables and its string matching kernel module, but as Linux adoption accelerates
there are continually more and more systems capable of deploying Fwsnort.The
strategy employed by Fwsnort does not lend itself to the wholesale blocking of
IP addresses, but rather takes a targeted approach to individual attacks as defined
by the Snort rules files.This is very similar to the approach taken by
Snort_inline, as we will see in the next section.

Snort_inline
The phrase intrusion prevention has enjoyed much publicity of late in the security
community. Many commercial vendors are scrambling to make it to the top of the
IPS market.The open-source community always seems to provide quality alterna
tives to commercially available software, and the intrusion prevention arena is no
exception. Snort_inline is an open-source IPS that is based fundamentally on Snort
and can be freely downloaded from http://snort-inline.sourceforge.net/. It can also
be found on the CD-ROM accompanying this book. Jed Haile initially wrote
Snort_inline, which is now maintained by Rob McMillen.

The primary distinguishing factor that promotes an active response system to
a full IPS is the capability to modify packets in real time as they enter and/or
exit a network.This means that packets must travel through the IPS, so it must be
an inline device. Hence, the IPS must either be a hop in the route packets tra
verse as they enter or exit the network, or must act as a bridge between two
Ethernet network segments (for our discussion we will assume Ethernet is our
data-link layer protocol). If the IPS acts as a bridge, then it will not be recogniz
able as an additional hop since Time To Live (TTL) values are not decremented
as packets are processed across its interfaces. An inline device is in a position to
not only drop or reject individual packets based on the application layer, but also
alter application data within the device and before sending the packet on its way.
In many cases, this capability allows an IPS to nullify attacks in such a way that it

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 654

654 Chapter 12 • Active Response

may be difficult to detect the application modification at the client side (for
example, buffer overflow attacks frequently involve trial and error before hitting
the offsets correctly), and before the attack is able to cause any damage.This is
even more interesting considering that most attacks that can result in an actual
compromise instead of a DoS of a target system exploit an application-level vul
nerability. Snort_inline is meant to run on a Linux system that is running in
bridging mode, and as such is an inline device. Snort_inline make use of a packet
queuing library called libipq that is provided by IPtables to allow the kernel to
queue packets from kernel space to an application running in user space. In our
case, this application will be Snort_inline, which is a version of Snort that has
been modified to use libipq as its packet collection mechanism instead of the
standard libpcap (see www.tcpdump.org). After examining each packet in turn,
Snort_inline will make a decision about whether to drop, reject, or alter the
packet before sending on it way via libnet (see
www.packetfactory.net/Projects/Libnet/).

OINK!
Both libpcap and libnet are two extremely important libraries used by
many projects in the open-source community. Libpcap is a packet cap
ture library that can be used to assist in the creation of everything from
a custom Ethernet sniffer to an IDS. Libnet is a low-level interface used
to create packets and put them on the wire. Libnet can be used to
create network testing or scanning tools, and is useful for answering
questions like, “I wonder how the IP stack on host X will handle a
strange packet like Y.”

So far, with Snortsam and Fwsnort we have seen two implementations of
active response, but neither of these pieces of software touched packet applica-
tion-layer data. Snortsam implemented active response at the network layer
through the wholesale blocking of IP addresses. Fwsnort implemented active
response at the transport layer through the use of TCP reset packets for indi
vidual TCP sessions or issuing ICMP port-unreachable messages in response to
UDP packets. In this section, we will revisit the passwd.txt access and mountd
overflow attacks from the previous sections and show how Snort_inline responds
to such exploits at the application layer.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 655

Active Response • Chapter 12 655

Installation
The installation of Snort_inline is somewhat involved. It requires a kernel recom
pile and the installation of bridge-utils and libipq (which is classified as a devel
opment library by the Netfilter project). In addition, Snort_inline requires a 1.0.x
version of libnet instead of a later version in the 1.1.x series, so you may need to
install the older libnet if your Linux distribution shipped with a recent version.

A stock Linux kernel in the 2.4 series (and higher) can be compiled to act as
an Ethernet bridge and act as a firewall with IPtables. However, Linux cannot
support both capabilities at the same time.Therefore, Linux cannot apply IPtables
restrictions to packets that are to traverse interfaces that have been configured to
be part of a bridge. Fortunately, the open-source community has not neglected
this nagging detail. A patch to the kernel sources is provided by the Ebtables pro
ject (see http://ebtables.sourceforge.net/) and adds the capability to firewall
packets sent through an Ethernet bridge. Although a thorough treatment of the
kernel compilation process is beyond the scope of this book, the general steps in
Figure 12.25 are required to correctly configure and compile the kernel for our
needs. Note that for this discussion, we will assume the sources for kernel 2.4.24
are already installed in the directory /usr/src/linux-2.4.24.

Figure 12.25 Compilation Steps for Bridging Linux Kernel

1.	 Download the Ebtables kernel patch against Linux kernel 2.4.24 from
http://ebtables.sourceforge.net/download.html#latest. Copy the
resulting file ebtables-brnf-5_vs_2.4.24.diff to the kernel sources direc
tory /usr/src/linux-2.4.24.

2.	 Run the following command to apply the patch to the kernel sources:

patch -p1 < ebtables-brnf-5_vs_2.4.24.diff

3.	 Configure the kernel with your favorite kernel configuration interface,
such as “make menuconfig.”The important kernel options to enable
under the Networking options tree are:

■	 802.1d Ethernet Bridging

■	 Network packet filtering (replaces IPchains)

■	 Userspace queuing via NETLINK

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 656

656 Chapter 12 • Active Response

Figure 12.25 Compilation Steps for Bridging Linux Kernel

■	 IP tables support (required for filtering/masq/NAT)

■	 Packet filtering

4.	 Compile and install the kernel in the usual way (see the kernel-HOWTO
for more information: www.tldp.org/HOWTO/Kernel-HOWTO/
index.html).

Now that we have a properly built kernel available to power the Snort_inline
Linux system, we need to install libipq, bridge-utils, and finally Snort_inline itself
(we assume that a 1.0.x version of libnet is already installed). For libipq, we
download the latest release of IPtables (1.2.9 as of this writing) from www.net-
filter.org or copy it from the accompanying CD-ROM. Unpack the tarball and
issue the following commands from the resulting IPtables-1.2.9 directory:

make KERNEL_DIR=/usr/src/linux-2.4.24

make install KERNEL_DIR=/usr/src/linux-2.4.24

make install-devel

Similarly, download bridge-utils from http://bridge.sourceforge.net/down-
load.html or copy it from the accompanying CD-ROM, unpack the tarball, and
issue the following commands from the bridge-utils sources directory:

./configure –prefix=/usr

make

make install

Lastly, we download the latest release of Snort_inline (2.1.0a as of this
writing) from http://snort-inline.sourceforge.net/ or copy it from the accompa
nying CD-ROM, unpack the tarball, and run the following commands from the
snort_inline-2.1.0a directory:

./configure –-prefix=/usr --enable-inline

make

make install

The installation is now complete and we have a functional IPS at our disposal.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 657

Active Response • Chapter 12 657

Configuration
The configuration of Snort_inline involves three main steps. We must configure
the Linux system to bridge two Ethernet segments, set up an IPtables policy that
sends packets into the QUEUE target, and edit the Snort configuration
(including the rules).This discussion will illustrate a basic configuration that gets
Snort_inline up and running. For a more complete implementation of a script to
automate this process, refer to Rob McMillen’s rc.firewall script (see www.hon-
eynet.org/papers/honeynet/tools/). We will assume that the Snort_inline Linux
system has two Ethernet interfaces, eth0 and eth1.The basic script in Figure
12.26 configures a bridge called br0, sets up forwarding, and starts IPtables packet
queuing in the FORWARD chain. An important thing to note about the config
uration script is that forwarding is turned off.The reason for this is that
Snort_inline is responsible for constructing packets (via libnet) on the egress
interface instead of the native IP stack of the underlying system.This allows
Snort_inline to only forward those packets that do not trip a rule in the Snort
detection engine, or alter those packets that do.This also means that if the
Snort_inline process dies or is killed, all network connectivity will be severed for the
network segments bridged by the system on which Snort_inline is deployed.

Figure 12.26 Basic Bridge Configuration Script

#!/bin/sh

BRIDGE=/usr/sbin/brctl

IFCONFIG=/sbin/ifconfig

IPTABLES=/usr/sbin/iptables

ECHO=/bin/echo

remove any potential IP addresses on interfaces

$IFCONFIG eth0 0.0.0.0 up -arp

$IFCONFIG eth1 0.0.0.0 up -arp

build the bridge br0 out of the eth0 and eth1 interfaces

$BRIDGE addbr br0

$BRIDGE addif br0 eth0

$BRIDGE addif br0 eth1

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 658

658 Chapter 12 • Active Response

Figure 12.26 Basic Bridge Configuration Script

activate the bridge (note the use of ifconfig just like

for any other normal networking interface)

$IFCONFIG br0 0.0.0.0 up -arp

clear any existing iptables ruleset and then send all packets

in the FORWARD chain to the QUEUE target so that Snort_inline

can examine them.

$IPTABLES -F

$IPTABLES -A FORWARD -j QUEUE

turn forwarding OFF!!!

$ECHO 0 > /proc/sys/net/ipv4/ip_forward

Most Snort rules have a default rule action of alert. Snort_inline adds three new
rule actions that can be specified in Snort rules: drop, reject, and sdrop.The action
drop instructs Snort_inline to drop the packet via IPtables and log it as Snort nor
mally does. A rule action of reject is similar to the functionality provided by Fwsnort
where a TCP reset is generated for TCP sessions and an ICMP port-unreachable
message is generated for UDP packets. A rule action of sdrop is the same as the drop
action, but this time Snort will not log the packet. Finally, Snort_inline implements
the new rule option replace that will substitute matching content with specific con
tent specified by the administrator.The remainder of our discussion will concen
trate on using the replace option with the normal alert rule action, since the drop,
reject, and sdrop options are fairly self-explanatory.The following two modified
Snort rules taken from the file README.INLINE in the Snort_inline sources
illustrate this new option:

alert tcp any any <> any 80 (msg: "tcp replace"; content:"GET";

replace:"BET";)

alert udp any any <> any 53 (msg: "udp replace"; content: "yahoo"; replace:

"xxxxx";)

Note that the replace option can only replace packet contents with new data
of exactly the same length as the original data. Otherwise, Snort_inline would
break both the TCP and UDP protocols. In the case of TCP, if Snort_inline sub
stituted a series of characters with a different length from the original content,
then the data sequence acknowledgment numbers would not match across the

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 659

Active Response • Chapter 12 659

session and would force retransmissions to take place (recall Figure 12.12). In the
case of UDP, there is a length field in the UDP header that specifies the length
in bytes of both the UDP header and the data it encapsulates. If a different
length series of bytes were substituted, then the length field would no longer be
correct. Snort_inline must not break protocols. Even with the requirement that the
replace option contain data of the same length as contained in the content option,
Snort_inline must still recalculate transport-layer checksums.This recalculation is
mandatory for TCP, and is optional for UDP unless the UDP checksum was
previously calculated by the client.

The only remaining task is to configure the snort.conf file. We leave this as
an exercise for the reader, since Chapters 2 and 3 cover this in detail.

Architecture
Now that we have Snort_inline installed on a system that is configured to act as
a bridge, how do we place this system in our original network in Figure 12.1?
The answer is that we use the bridge to connect the Ethernet segment between
the Web and NFS servers to the firewall itself. All packets that are destined for
either server must go through the bridge where they will be processed by
Snort_inline.The network architecture that makes this possible is shown in
Figure 12.27. Note that there are no IP addresses assigned to the Snort_inline
system.This emphasizes the fact that this system is acting as a bridge. In a real-life
scenario, there would most likely be a management network to which the
Snort_inline system would be connected via a third interface. For the sake of
pedagogical simplicity, we’ll leave this out.The fact that the Web and NFS servers
are connected via a switch makes no difference to the Snort_inline system, since
the only packets that make it through to this section of the network have already
been processed through the Snort detection engine.This is one of the key advan
tages of using an inline solution—you can absolutely guarantee that it will see
every packet, since every packet destined for the protected machines must tra
verse the inline device.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 660

660 Chapter 12 • Active Response

Figure 12.27 Snort_Inline Network Architecture

evilhost
(207.174.x.x)

NFS server
(192.168.10.30)

Intnernet

firewall (68.48.x.x)

switch

Snort_inline

192.168.10.1

Web server
(192.168.10.20)

Web Server Attack
Let’s revisit the WWWBoard passwd.txt access attack one last time and see how
Snort_inline mitigates its effects. We add the replace directive to Snort SID 807 so
that any Web traffic that contains the suspect string /wwwboard/passwd.txt will be
altered by Snort_inline before such traffic hits the Web server.The Web server
will actually see a request to /wwwboard/nofile.txt that corresponds to a file that
does not exist. See Figure 12.28 for the modified signature. Note the removal of
the flow option, since Snort_inline does not yet support the stream4 preprocessor.
In addition, the uricontent option has been changed to just content, since the uricon
tent directive corresponds to the httpinspect preprocessor, which Snort_inline also
does not support.

Figure 12.28 Modified WWWBoard passwd.txt Access Snort Rule (SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI

/wwwboard/passwd.txt access"; content:"/wwwboard/passwd.txt";

replace:"/wwwboard/nofile.txt"; nocase; reference:arachnids,463;

reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;

classtype:attempted-recon; sid:807; rev:7;)

Let’s execute our attack and see what happens (see Figure 12.29).

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 661

Active Response • Chapter 12 661

Figure 12.29 wget Attack Request

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--17:38:32-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt.6'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response... 404 Not Found

17:38:33 ERROR 404: Not Found.

This time, the attack appears to be completely unsuccessful and the request
seems to indicate that the /wwwboard/passwd.txt URL is not even a valid URI.
Instead of viewing a packet trace taken on the external interface of the firewall as
before, we examine a trace taken on the Web server itself in Figure 12.30 (some
packet data and header information has been removed for brevity).

Figure 12.30 wget Attack Packet Trace

[webserver]# tcpdump -i eth0 -s 1500 -l -n -X port 80

tcpdump: listening on eth0

204.174.x.x.48662 > 192.168.10.20.80: S 783689484:783689484(0) win 5840

192.168.10.20.80 > 204.174.x.x.48662: S 2323945504:2323945504(0) ack

783689485 win 5792

204.174.x.x.48662 > 192.168.10.20.80: . ack 1 win 5840

204.174.x.x.48662 > 192.168.10.20.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa 801b 4000 3106 3ec1 ccae df18 E.....@.1.>.....

0x0010 c0a8 1e02 be16 0050 2eb6 270d 8a84 9821P..'....!

0x0020 8018 16d0 dc5a 0000 0101 080a 150b a733Z.........3

0x0030 0097 fa17 4745 5420 2f77 7777 626f 6172GET./wwwboar

0x0040 642f 6e6f 6669 6c65 2e74 7874 2048 5454 d/nofile.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e78 782e 7878 ost:.68.48.xx.xx

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

192.168.10.20.80 > 204.174.x.x.48662: . ack 119 win 5792

192.168.10.20.80 > 204.174.x.x.48662: P 1:572(571) ack 119 win 5792

0x0000 4500 026f 6215 4000 4006 4c02 c0a8 1e02 E..ob.@.@.L.....

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 662

662 Chapter 12 • Active Response

Figure 12.30 wget Attack Packet Trace

0x0010 ccae 0000 0000 be16 8a84 9821 2eb6 2783P.....!..'.

0x0020 8018 16a0 8fd9 0000 0101 080a 0097 fa355

0x0030 150b a733 4854 5450 2f31 2e31 2034 3034 ...3HTTP/1.1.404

0x0040 204e 6f74 2046 6f75 6e64 0d0a 4461 7465 .Not.Found..Date

0x0050 3a20 5765 642c 2033 3120 4d61 7220 3230 :.Wed,.31.Mar.20

0x0060 3034 2030 343a 3034 3a34 3620 474d 540d 04.04:04:46.GMT.

0x0070 0a53 6572 7665 723a 2041 7061 6368 652f .Server:.Apache/

0x0080 322e 302e 3438 2028 556e 6978 2920 6d6f 2.0.48.(Unix).mo

0x0090 645f 7373 6c2f 322e 302e 3438 204f 7065 d_ssl/2.0.48.Ope

0x00a0 6e53 534c 2f30 2e39 2e37 630d 0a43 6f6e nSSL/0.9.7c..Con

0x00b0 7465 6e74 2d4c 656e 6774 683a 2033 3235 tent-Length:.325

0x00c0 0d0a 4b65 6570 2d41 6c69 7665 3a20 7469 ..Keep-Alive:.ti

0x00d0 6d65 6f75 743d 3135 2c20 6d61 783d 3130 meout=15,.max=10

0x00e0 300d 0a43 6f6e 6e65 6374 696f 6e3a 204b 0..Connection:.K

0x00f0 6565 702d 416c 6976 650d 0a43 6f6e 7465 eep-Alive..Conte

0x0100 6e74 2d54 7970 653a 2074 6578 742f 6874 nt-Type:.text/ht

0x0110 6d6c 3b20 6368 6172 7365 743d 6973 6f2d ml;.charset=iso-

204.174.x.x.48662 > 192.168.10.20.80: . ack 572 win 6852

204.174.x.x.48662 > 192.168.10.20.80: F 119:119(0) ack 572 win 6852

192.168.10.20.80 > 204.174.x.x.48662: F 572:572(0) ack 120 win 5792

204.174.x.x.48662 > 192.168.10.20.80: . ack 573 win 6852

We see that our attack request displayed in bold in Figure 12.30 has been fun
damentally altered.The HTTP GET against the URL /wwwboard/passwd.txt has
become a GET request for /wwwboard/nofile.txt. Of course, this new path does
not even exist on the Web server and so the client receives the standard “404 File
Not Found” error.The client has no way of knowing whether the remote
passwd.txt file even exists without further investigation.The attack was thwarted in
such a way that the TCP stream remained intact. It should be noted that in this
particular case, there is in general no legitimate reason why anyone should be
accessing the passwd.txt file. Hence, this attack is a good example of the type of
attack that an IPS should be configured to stop. However, there is one possible
exception: the case of the administrator who is trying to troubleshoot admin-level
access if things are not working properly by verifying that the Web server has per
mission to open the passwd.txt file. Snort_inline effectively disables the ability to

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 663

Active Response • Chapter 12 663

troubleshoot in this way across all source networks contained within the Snort rule
$EXTERNAL_NET variable. No external client can query any URI on the Web
server that contains the string “/wwwboard/passwd.txt”.There is always a tradeoff
between offering a vulnerable service to untrusted networks versus disabling use of
the service altogether with an IPS such as Snort_inline.This just teaches us to be
very careful when deploying this type of technology—we must audit every single
rule that will actively interfere with the network.

NFS mountd Overflow Attack
For our last example, we revisit the NFS mountd overflow attack. First, we
modify Snort SID 316 to replace the content of the mountd attack with the hex
code 0x65, which happens to correspond to the ASCII code for the letter “e”.

Again, we launch our attack from evilhost against the NFS server, but this
time, we take a packet trace from the server itself as shown in Figure 12.31. As
we expect, the critical portion of the attack that instructs the remote system to
point back into the exploit payload has been translated into a harmless series of
“e” characters completely unrelated to the original attack by Snort_inline (see
Figure 12.32).

Figure 12.31 Modified NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd

overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|"; replace:"|6565

6565 6565 6565 6565 6565 6565|"; reference:cve,CVE-1999-0002;

reference:bugtraq,121; classtype:attempted-admin; sid:316; rev:3;)

Figure 12.32 NFS mountd Overflow Attack

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[nfs_server]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 204.174.x.x.33854 > 192.168.10.30.sunrpc: udp 56 (DF)

15:53:59.267033 192.168.10.30.sunrpc > 204.174.x.x.33854: udp 28 (DF)

15:53:59.267662 204.174.x.x.33854 > 192.168.10.30.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

Continued
www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 664

664 Chapter 12 • Active Response

Figure 12.32 NFS mountd Overflow Attack

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 6565 6565 6565 6565 6565 6565eeeeeeeeeeee

0x0380 6565 8856 2788 5638 b20a 8856 1d88 5626 ee.V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 192.168.10.30.32772 > 204.174.x.x.33854: udp 28 (DF)

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 665

Active Response • Chapter 12 665

Damage & Defense…

Intrusion Prevention: An Opinion

about the dichotomy between firewalls and IDSs. Network-based intru
sion prevention systems (NIPS) are the subject of much debate and strong
emotions. This sidebar presents those of this book’s editors.

The core purpose of a firewall is to allow or block network traffic
based on how that traffic matches a policy the firewall has been given.
This means it needs to be able to make decisions about whether traffic is

learned, customers want firewalls that don’t block traffic for any reason
except policy (for example, not because the firewall is too slow or over

make a decision quickly and then pass or drop packets as quickly as pos
sible. In contrast, the core purpose of a network intrusion detection

traffic. This means that the IDS must not miss packets because there is too
much traffic. The IDS must not misunderstand a protocol or assume that

must not decide if traffic is malicious or not without seeing all of it (for
example, allowing traffic to pass after seeing that there is nothing mali
cious in the TCP connection setup, as a firewall might). In short, an IDS
must not miss any traffic and must constantly recheck its conclusions (for
example, look for a match against a single packet and then look for
matches against the entire stream).

vendors who are advertising their products as NIPS think that decisions
can all be made based on simple decisions and that network traffic is
never ambiguous (because at Layer 4 and below it is generally not). They
forget that applications are horribly eccentric and that evading detection
is easy when you can play in the application-layer protocols. IDS vendors
who are advertising their products as NIPS think that making decisions
after the entire connection is completed is an effective way to prevent the
attack, and that false positive rates that customers accept from an IDS will
also be acceptable for an IPS. In our opinion, such viewpoints from IDS
vendors are simply misguided.

Before we end the chapter, it is worth spending a few paragraphs talking

allowed through (or not), very quickly and predictably. As vendors have

loaded or misunderstood a protocol). Additionally, it should not block
traffic that the policy creator intended to allow. In short, a firewall must

system is to find attacks/intrusions/events-of-interest in your network

the protocol in use is the one normally used on that port. Finally, the IDS

Unfortunately, these two core functions are essentially in opposition
to each other. As such, NIPS are difficult to implement properly. Firewall

Continued

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 666

666 Chapter 12 • Active Response

An example of a good place for deployment of a NIPS is in front of
critical servers that have application-layer vulnerabilities that can’t be
patched for some reason and are easily and clearly definable. Whatever
you do, understand that IPS cannot be a “silver bullet” that removes the
requirement that you patch and harden systems, apply policy-based fire
walls, and monitor the network with an IDS.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 667

Active Response • Chapter 12 667

Summary
In this chapter, we explored the concept of active response to intrusion detection
events. We presented three software applications—Snortsam, Fwsnort, and
Snort_inline—that employ a different strategy for reacting to Snort IDS events.
Snortsam is the most flexible of the three in terms of the tools it interacts with
and the Snort rules it can use. It facilitates the modification of various firewall
rulesets in order to block the IP address of an attacker for a configurable period
of time. Snortsam runs as an output plug-in to the Snort IDS, which sends block
requests to a separate daemon that runs on the firewall host and is responsible for
interacting with the firewall at the host level. Attackers are blocked on a per-rule
basis through the use of a new rule directive fwsam. Fwsnort makes use of the
powerful and flexible firewalling code IPtables within the Linux kernel to imple
ment Snort rules directly within kernel space. Application-layer inspection, a crit
ical component of most Snort rules, is accomplished through the use of the
IPtables string match module. Fwsnort effectively blocks individual attacks at the
transport layer through the use of TCP resets for TCP sessions or ICMP port-
unreachable messages for UDP packets. Snort_inline acts as a true Intrusion
Prevention System (IPS) and can alter packet data at the application layer in real
time.The most common deployment of Snort_inline is on a Linux system that
has been configured to bridge two Ethernet segments and is therefore not identi
fiable as a separate hop in the routing path into or from a network. Snort_inline
is based on Snort for its detection engine, but uses the packet-queuing facility of
IPtables for its data source instead of the usual libpcap library.

This chapter simulated two attacks, one against a Web server and the other
against an NFS server, and showed how Snortsam, Fwsnort, and Snort_inline
each implemented a change to the network policy or to individual sessions or
packets as a result of the attack.The open-source community has developed the
technology to actively respond to attempted intrusions; however, actually
deploying this capability requires extremely careful tuning and a healthy respect
for the fact that a network so endowed has the capability to (temporarily) recon
figure itself.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 668

668 Chapter 12 • Active Response

Solutions Fast Track

Active Response vs. Intrusion Prevention

� The capability to actively respond to an event generated by an Intrusion
Detection System (IDS) requires a mechanism by which packets can be
blocked or altered at the direction of the IDS.

� Deploying active response on a network requires careful tuning in order
to not cause more harm than good due to the fact that false positives are
commonly generated by IDSs.

� Attack simulations coupled with the use of a good Ethernet sniffer
provide a good way to test the exact response that may be elicited from
an active response system.

Snortsam

� Snortsam modifies various firewall rulesets to actively block an attacker
based on the detection of certain specially modified Snort rules that
contain the fwsam field.

� Snortsam is implemented both as a Snort output plug-in and as a
daemon that runs on the firewall host system. Both components are
required for Snortsam to function properly.

� Snortsam blocks attackers at the network layer based on IP address.

Fwsnort

� Fwsnort constructs an IPtables ruleset designed to mimic the rules
contained within the Snort rules files.

� Application-layer attacks are detected by Fwsnort by performing simple
string matches on application-layer data.

� Fwsnort blocks specific attacks at the transport layer through the use of
TCP reset packets or ICMP port-unreachable messages.

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 669

Active Response • Chapter 12 669

Snort_inline

� Snort_inline blocks or alters packets in real time as they traverse the
interfaces of a Linux system that bridges together two segments of an
Ethernet network.

� The payload of an attack can be nullified through the modification of
application-layer data by Snort_inline.

� Snort_inline acts as an IPS that is based on the Snort detection engine.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Should an active response system be configured to block port scans?

A: Contrary to popular belief, port scans, while extremely common, are
becoming less and less prevalent as a precursor to a more advanced attack. A
smart attacker will “hide in plain sight” by initially only making legitimate
connections to those services for which the attacker actually possesses
exploits. After all, there is no need to set off alarm bells with a broad port
scan, especially when the knowledge that some arbitrary service is open may
not be particularly useful to the attacker. Hence, this, combined with the fact
that port scans may easily be spoofed, make port scans a perfect example of a
type of “attack” that should not set off an active response system.

Q: What is the optimal length of time an attacker should be blocked by an
active response system such as Snortsam?

A: This depends on several factors, including the severity of the attack, the local
security policy, and the nature of the applications running on the network
being attacked. For most situations, it makes sense to try to minimize the
length of time a blocking rule is in effect. For example, if an attacker is on a
large corporate network that is NAT’ed behind a firewall, then blocking the
IP address from which the attack originates will not only block the real cul-

www.syngress.com

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 670

670 Chapter 12 • Active Response

prit of the attack but also everyone else who is behind the same firewall. If
you are a company and this large corporate network happens to belong to a
client of yours, then there could be real problems.

Q: Does an active response system make my network more vulnerable to a
denial-of-service DoS) attack?

A: Potentially. Not only is the network susceptible to the standard DoS attacks
that are designed to chew up available bandwidth, but a clever attacker may
be able to fool the active response system into altering traffic or access con
trols to work against legitimate systems.

Q: Can an active response system effectively protect a network from worms and
viruses that are transmitted via e-mail attachments?

A: While blocking virus and worm propagation is normally better accomplished
by specialized code deployed in the mail gateway itself, an inline active
response system can assist in this process. Once a Snort rule can be developed
based on the content of a worm binary, an inline active response system such
as Snort_inline or Fwsnort can alter the packets containing the worm or
force TCP sessions containing the worm to be destroyed.

Q: If Snort_inline can protect against inbound threats from outside my network,
can it also nullify outbound attacks originating from within my network?

A: Yes.The difference between protecting against inbound vs. outbound attacks
is essentially only of configuration. In fact, the Honeynet Project (see
www.honeynet.org) uses Snort_inline as a tool for protecting outside net
works from being attacked by compromised systems on a honeynet.

Q: How widely deployed are IPSs today?

A: This is a tough one to answer, but let’s just mention a couple of things. First,
in April 2003, Network Associates purchased IntruVert Networks (a commer
cial IPS manufacturer) for $100 million in cash.This acquisition took place at
a time when the U.S. economy was not at its best, and so demonstrates that
there is significant interest in the marketplace for intrusion prevention tech
nology. Second, the actual deployment of IPSs most likely varies from
industry to industry. Widespread adoption among financial institutions is
probably lower than in other areas, since any legitimate sessions that are
blocked erroneously could end up costing such institutions money.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 671

Chapter 13

Advanced Snort

Solutions in this Chapter:

■ Network Operations

■ Forensics/Incident Handling

■ Snort and Honeynets

■ Really Cool Stuff

� Summary

� Solutions Fast Track

� Frequently Asked Questions

671

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 672

672 Chapter 13 • Advanced Snort

Introduction
So far, we’ve discussed the concepts behind Snort, installation, configuration, and
many other topics. While many of these topics covered some elaborate and
detailed information, this chapter is dedicated to the more advanced features of
Snort and how it can be used to provide an even greater degree of information
security.

Snort can perform the same extensive intrusion detection tasks for which
many companies are charging tens of thousands of dollars. With proper and
knowledgeable configuration, Snort can be used to increase the effective security
in your organization while at the same time saving a great deal of money.This
might seem in contrast to most information technology solutions, but that’s the
power of the open-source community.

In this chapter, we discuss log and reporting capabilities, honeypots and Snort,
dealing with law enforcement, policy-based intrusion detection, and inline intrusion detec-
tion.These additional functions work alongside Snort’s normal intrusion detection
capabilities. By using some or all of these functions, you can leverage the capabili
ties of Snort to help make your systems even more secure. Keep in mind that the
technologies that we are using in this chapter all use Snort, we are just changing
the views and output of the information being presented. After all, we’re using
Snort for all of these implementations. Policy-based intrusion detection and inline
intrusion detection are simply variants of normal intrusion detection and differ
only in their implementation. As always, intrusion detection is the concept of
detecting intrusions on your systems or networks. Whether you’re using standard
signature-based intrusion detection techniques or anomaly-based intrusion detection,
the result is the same—a more secure network environment.

Network Operations
IT security groups are often short on budget as well as people. One of the uses
for your Snort sensors is to come to the aid of your operations groups in terms
of helping to debug network issues, and document such items as top talkers, top
protocols, and protocols in use on the network.The deployment of an IDS
infrastructure makes it ideal for such information as finding out where an IP is
blocked in a layered network architecture or helping to show the flow of data
across different route points.This data is all gathered from the Snort engine and is
only a matter of enabling or parsing the data into meaningful information that
stands in the way of using Snort’s full potential.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 673

Advanced Snort • Chapter 13 673

Flow Preprocessor Family
One of the new parts of the Snort 2.1.x engine is the move to flow-based
tracking of packets.This is a move away from the old conversation- or connec-
tion-based tracking of packets. Eventually, all of the preprocessors will be flow-
based, but for now, only the portscan preprocessor has been built to the flow
preprocessor format.

For example, because the flow preprocessor is keeping track of information
passing through the Snort engine in term of flow data, the types of data can be
broken down into a very granular level. Figure 13.1 shows the top talkers on the
network and the protocol breakdowns in terms of the percent of the total traffic
observed.

Figure 13.1 Example Output from a Snort Sensor

Apr 27 22:07:00 localhost Snort: Snort Realtime Performance : Tue Apr

27 22:07:00 2004

Apr 27 22:07:00 localhost Snort: -------------------------

Apr 27 22:07:00 localhost Snort: Pkts Recv: 9997

Apr 27 22:07:00 localhost Snort: Pkts Drop: 0

Apr 27 22:07:00 localhost Snort: % Dropped: 0.00%

Apr 27 22:07:00 localhost Snort: KPkts/Sec: 0.01

Apr 27 22:07:00 localhost Snort: Bytes/Pkt: 409

Apr 27 22:07:00 localhost Snort: Mbits/Sec: 0.03 (wire)

Apr 27 22:07:00 localhost Snort: Mbits/Sec: 0.00 (rebuilt)

Apr 27 22:07:00 localhost Snort: Mbits/Sec: 0.03 (total)

Apr 27 22:07:00 localhost Snort: PatMatch: 79.82%

Apr 27 22:07:00 localhost Snort: CPU Usage: 0.19% (user) 0.05% (sys)

99.76% (idle)

Apr 27 22:07:00 localhost Snort: Alerts/Sec : 0.0

Apr 27 22:07:00 localhost Snort: Syns/Sec : 0.0

Apr 27 22:07:00 localhost Snort: Syn-Acks/Sec : 0.0

Apr 27 22:07:00 localhost Snort: New Sessions/Sec: 0.0

Apr 27 22:07:00 localhost Snort: Del Sessions/Sec: 0.0

Apr 27 22:07:00 localhost Snort: Total Sessions : 2

Apr 27 22:07:00 localhost Snort: Max Sessions : 1460

Apr 27 22:07:00 localhost Snort: Stream Flushes/Sec : 0.0

Apr 27 22:07:01 localhost Snort: Stream Faults/Sec : 0

Continued

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 674

674 Chapter 13 • Advanced Snort

Figure 13.1 Example Output from a Snort Sensor

Apr 27 22:07:01 localhost Snort: Stream Timeouts : 24

Apr 27 22:07:01 localhost Snort: Frag Completes()s/Sec: 0.0

Apr 27 22:07:01 localhost Snort: Frag Inserts()s/Sec : 0.0

Apr 27 22:07:01 localhost Snort: Frag Deletes/Sec : 0.0

Apr 27 22:07:01 localhost Snort: Frag Flushes/Sec : 0.0

Apr 27 22:07:01 localhost Snort: Frag Timeouts : 0

Apr 27 22:07:01 localhost Snort: Frag Faults : 0

Apr 27 22:07:01 localhost Snort: Protocol Byte Flows - %Total Flow

Apr 27 22:07:01 localhost Snort: -------------------------------------

Apr 27 22:07:01 localhost Snort: TCP: 92.16%

Apr 27 22:07:01 localhost Snort: UDP: 0.19%

Apr 27 22:07:01 localhost Snort: ICMP: 0.00%

Apr 27 22:07:01 localhost Snort: OTHER: 7.65%

Apr 27 22:07:01 localhost Snort: PacketLen - %TotalPackets

Apr 27 22:07:01 localhost Snort: ------------------------

Apr 27 22:07:01 localhost Snort: Bytes[60] 72.54%

Apr 27 22:07:01 localhost Snort: Bytes[66] 1.93%

Apr 27 22:07:01 localhost Snort: Bytes[134] 0.21%

Apr 27 22:07:02 localhost Snort: Bytes[142] 0.37%

Apr 27 22:07:02 localhost Snort: Bytes[214] 0.21%

Apr 27 22:07:02 localhost Snort: Bytes[314] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[394] 0.25%

Apr 27 22:07:02 localhost Snort: Bytes[474] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[554] 0.21%

Apr 27 22:07:02 localhost Snort: Bytes[634] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[714] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[814] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[894] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[974] 0.21%

Apr 27 22:07:02 localhost Snort: Bytes[1054] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[1134] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[1214] 0.20%

Apr 27 22:07:02 localhost Snort: Bytes[1314] 0.21%

Apr 27 22:07:02 localhost Snort: Bytes[1394] 0.21%

Apr 27 22:07:02 localhost Snort: Bytes[1474] 21.19%

Continued
www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 675

Advanced Snort • Chapter 13 675

Figure 13.1 Example Output from a Snort Sensor

Apr 27 22:07:02 localhost Snort: TCP Port Flows

Apr 27 22:07:02 localhost Snort: -------------

Apr 27 22:07:03 localhost Snort: Port[80] 0.11% of Total, Src: 31.67% Dst:

68.33%

Apr 27 22:07:03 localhost Snort: Port[706] 0.31% of Total, Src: 51.52%

Dst: 48.48%

Apr 27 22:07:03 localhost Snort: Ports[High<->High]: 99.58%

Apr 27 22:07:03 localhost Snort: UDP Port Flows

Apr 27 22:07:03 localhost Snort: -------------

Apr 27 22:07:03 localhost Snort: Port[53] 12.55% of Total, Src: 81.28%

Dst: 18.72%

Apr 27 22:07:03 localhost Snort: Port[67] 87.45% of Total, Src: 100.00%

Dst: 0.00%

Apr 27 22:07:03 localhost Snort: ICMP Type Flows

Apr 27 22:07:03 localhost Snort: --------------

Apr 27 22:07:03 localhost Snort: Type[8] 100.00% of Total

Apr 27 22:07:03 localhost Snort: Snort Setwise Event Stats

Apr 27 22:07:03 localhost Snort: ------------------------

Apr 27 22:07:03 localhost Snort: Total Events: 17818

Apr 27 22:07:03 localhost Snort: Qualified Events: 0

Apr 27 22:07:03 localhost Snort: Non-Qualified Events: 17818

Apr 27 22:07:03 localhost Snort: %Qualified Events: 0.0000%

Apr 27 22:07:03 localhost Snort: %Non-Qualified Events: 100.0000%

This breakdown of information can be used for network planning in terms
of capacity planning and traffic shaping if the network segments are small
enough.

Perfmon Preprocessor
The perfmon preprocessor is one of the most recommended preprocessors, as it
provides a passively gathered breakdown of the characteristics of network traffic.
You can combine it with the perfmon-graph tool (discussed in Chapter 9,
“Keeping Everything Up to Date,” and available for download from
people.su.se/~andreaso/perfmon-graph/) to generate several graphs of the data
from the perfmon preprocessor log. For example, Figure 13.2 is a sample report

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 676

676 Chapter 13 • Advanced Snort

showing graphs of the percent of traffic that was dropped based on incomplete
flows, a graph of the amount of traffic passing the sensor in both megabits per
second and kilobits per second, and a graph of the number of alerts triggered
within a set timeframe.

Figure 13.2 perfmon-graph Example Report

One of the uses for this data and graph could be as a part of an IDS team’s
reporting structure. One of the coauthors has found it very useful in determining
undocumented outages, network segment usage, and the last graphic generated
shows Snort sensor utilization. Placing a sensor at all network segment break
points to their core can provide the owners of each segment a “report card” of
their segment. Several commercial security firms are already using data like this
to provide customers with a metric or repeatable measurement of their traffic.

As discussed in Chapter 6, “Preprocessors,” Snort uses a set of components
called preprocessors that perform various functions before Snort loads the signa
ture detection rules.These components vary from decoding certain protocols
such as Telnet and RPC traffic into a format understandable by the signature
rules, to reassembling packets that are broken into fragments.The perfmon pre
processor in question relies on the flow preprocessor to load first in order to pro
cess the information about the packets.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 677

Advanced Snort • Chapter 13 677

The Snort manual that arrives with source code provides the best reference
on how to use the preprocessor and the options available for it.The following is
a copy of the instructions from the Snort manual (doc/snort_manual.pdf) in the
Snort source available on the CD-ROM.

“This preprocessor measures Snort’s real-time and theoretical max
imum performance. Whenever this preprocessor is turned on, it
should have an output mode enabled, either “console,” which
prints statistics to the console window, or “file“ with a filename,
where statistics get printed to the specified filename. The default
statistics that are processed are Snort’s real-time statistics. This
includes:

1. Packets received

2. Packets dropped

3. % packets dropped

4. Packets Received

5. Kpackets per second 52

6. Average bytes per packets

7. Mbits per second (wire)

8. Mbits per second (rebuilt) [this is the average Mbits that Snort
injects after rebuilding packets]

9. Mbits per second (total)

10. Pattern matching percent [the average percent of data received
that Snort processes in pattern matching]

11. CPU usage (user time) (system time) (idle time)

12. Alerts per second

13. SYN packets per second

14. SYN/ACK packets per second

15. New sessions per second

16. Deleted sessions per second

17. Total Sessions

18. Max Sessions during time interval

19. Stream Flushes per second

20. Stream Faults per second

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 678

678 Chapter 13 • Advanced Snort

21. Stream Timeouts

22. Frag Completes per second

23. Frag Inserts per second

24. Frag Deletes per second

25. Frag Flushes per second

26. Frag Timeouts

27. Frag Faults

When the keyword flow is enabled, statistics are printed out about
the type of traffic and protocol distributions that Snort is seeing.
This option can produce large amounts of output.

The keyword events turns on event reporting. This prints out statis
tics as to the number of signatures that were matched by the set-
wise pattern matcher and the number of those matches that were
verified with the signature flags. We call these nonqualified and
qualified events. It shows the users if there is a problem with the
ruleset they are running.

The keyword max turns on the theoretical maximum performance
that Snort calculates given the processor speed and current perfor
mance. This is only valid for uniprocessor machines, since many oper
ating systems don’t keep accurate kernel statistics for multiple CPUs.

The keyword console prints statistics at the console, and is on by
default.

The keyword file prints statistics in a comma-delimited format to
the file that is specified. Not all statistics are output to this file. You
can also use Snortfile, which will output into your defined Snort
log directory.

The keyword pktcnt adjusts the number of packets to process
before checking for the time sample. This boosts performance,
since checking the time sample reduces Snort’s performance. By
default, this is 10000.

The keyword time represents the number of seconds between
intervals.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 679

Advanced Snort • Chapter 13 679

Examples:

preprocessor perfmonitor: time 30 events flow file stats.profile max \

console pktcnt 10000

preprocessor perfmonitor: time 300 file /var/tmp/Snortstat pktcnt

10000"

OINK!
This preprocessor will take some tuning that is going to be unique for
each network. For example, on a T1 connection the Snort example of
triggering data after more than 10,000 packets in 30 seconds might not
get reached unless under heavy load. Moreover, at this time there is no
way to run two instances of the perfmon preprocessor simultaneously.

Unusual Network Traffic
One of the more unknown features of Snort is the capability to monitor all 255
IP protocols, not just TCP, UDP, and ICMP traffic.There is a Snort rule option
called “ip_proto,” which can take either the IP protocol number or its respective
name in the sensors /etc/protocols file. For example, there was a recent vulnera
bility in the Cisco IOS version that would cause a denial-of-service (DoS) in
several pieces of Cisco equipment (Cisco document ID 44020).This vulnera
bility, www.cisco.com/warp/public/707/cisco-sa-20030717-blocked.shtml, and
its respective exploit code, which came out soon after the initial report, didn’t
follow the standard exploit path. In order to detect this attack coming to a net
work, the IDS team would have to place these rules on their outside sensors. For
example, to detect this attack, these might be these signatures from the official
Snort ruleset an IDS team would use.

alert ip any any -> any any (msg:"BAD-TRAFFIC IP Proto 53 (SWIPE)";

ip_proto:53; reference:bugtraq,8211; reference:cve,CAN-2003-0567;

classtype:non-standard-protocol; sid:2186; rev:1;)

alert ip any any -> any any (msg:"BAD-TRAFFIC IP Proto 55 (IP Mobility)";

ip_proto:55; reference:bugtraq,8211; reference:cve,CAN-2003-0567;

classtype:non-standard-protocol; sid:2187; rev:1;)

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 680

680 Chapter 13 • Advanced Snort

alert ip any any -> any any (msg:"BAD-TRAFFIC IP Proto 77 (Sun ND)";

ip_proto:77; reference:bugtraq,8211; reference:cve,CAN-2003-0567;

classtype:non-standard-protocol; sid:2188; rev:1;)

alert ip any any -> any any (msg:"BAD-TRAFFIC IP Proto 103 (PIM)";

ip_proto:103; reference:bugtraq,8211; reference:cve,CAN-2003-0567;

classtype:non-standard-protocol; sid:2189; rev:1;)

Another example of using Snort to detect odd network traffic on a network
would be the typot Trojan, more commonly called the “55808 Trojan” (see securi-
tyfocus.com/archive/1/326149/2003-06-19/2003-06-25/0 for more information).
The Trojan in question would come from randomly generated source IPs/ports
and destined for whole IP blocks. In those blocks, the Trojan would send network-
mapping information about networks the Trojan was port scanning.The only
commonality in the packets was that they all had a TCP window size of 55808
bytes. Again, using the flexibility of the Snort rule language, this example rule was
able to detect the Trojan traffic.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BACKDOOR typot trojan

traffic"; stateless; flags:S,12; window:55808; classtype:trojan-activity;

sid:2182; rev:3;)

Notice the “window:55808;” value; this is a part of the rule language that
allows Snort to search through a TCP packet’s window size, much like the dsize
keyword allows Snort to search for packet sizes.

Using all or some of these advanced features of Snort will help your organi
zation realize a greater return-on-investment (ROI), and help the operations and
security teams have a more complete and thorough understanding of a network.
The possibilities for using this new data in an IDS reporting structure should
help some IDS teams to show usefulness even when there are no major incidents
or crises. Realistically, however, it’s only a matter of time before an IDS team and
Snort’s advanced reporting, logging, and detection capabilities are called in for
assistance in an incident.

Forensics/Incident Handling
Sooner or later, almost all intrusion analysts are going to be involved in some
kind of investigation. Incidents can range in severity from “slap on the wrist”
policy violations to matters of legal/national security. If an IDS team has an
established process and procedures for handling incidents and incident data,
accommodating law enforcement will be smooth and easy.The Snort logto

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 681

Advanced Snort • Chapter 13 681

keyword allows for any event that triggers within that rule to be written to a
separate file.This can be useful in an investigation and for keeping track of a sus-
pect’s network use. Another extremely useful keyword is session, or more specifi
cally session:printable.This keyword allows Snort to output all ASCII characters in
connection or flow information to a file such as a readable format for a Web,
FTP, or Telnet connection.

Logging and Filtering
Almost all law enforcement agencies are going to ask for from an IDS team is a
separate filter and log for the data in question.This is where the Snort rule lan
guage value “logto” will help. For example, during a recent case, one law
enforcement agency asked us to place all events from the suspect in a separate
directory.The filter and the timestamp of when an event was added to our
ruleset was also placed in a file in that directory.This way, when we had gathered
all of the evidence, we generated hash files (md5 checksums are often good
enough for your team to hand off to actual law enforcement) that were handed
over to the agency. In terms of their evidence from us, they could admit it into
their case assuming all other protocols for maintaining chain of evidence were
followed.

For example, the following is what one example of using Snort might look
like.These rules log all Telnet sessions from the suspect’s IP address in a text
printable file case_300_tcp.txt:

log tcp $suspect_ip any -> any 23 (session:printable;

logto:"case_300_tcp.txt"; flags:A+;)

log udp any 23 -> $suspect_ip any (session:printable;

logto:"case_300_udp.txt";)

These rules log all IP packets to or from the suspect’s IP address to the pcap
file case_300.pcap:

log ip $suspect_ip any <> any any (logto:"case_300_tcp.pcap";)

The law enforcement agents are going to request both files, but the
session:printable files are going to place all transactions your suspect has done
over the network in a human-readable format that you can readily print out (see
Figure 13.3).

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 682

682 Chapter 13 • Advanced Snort

Figure 13.3 Snort Sensor Example Session:Printable Output

GET / HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-powerpoint, application/vnd.

ms-excel, application/msword, application/x-shockwave-flash, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR

1.0.3705)

Host: www.google.com

Connection: Keep-Alive

Cookie:

PREF=ID=368fd63f4bb83427:TB=2:TM=1065290223:LM=1065290223:S=HkeYzFFLBTQhASYk

These logs are great for printing out only to walk into a suspect’s interview
or interrogation with what look like mountains of evidence. However, if a sus-
pect’s traffic is harder to prove or there was data that is lost other than in transit,
then traffic reconstruction is the method to use.

Traffic Reconstruction
One other use of capturing network traffic in the full snap length is for traffic
reconstruction. During this age of multi-attack vector Trojans and worms such as
agobot and phatbot, the traces of evidence are becoming increasingly hard to
find. One of the little known capabilities of tools like Snort, Ethereal (found at
www.ethereal.com), and tcpdump is to reconstruct and gather files transmitted to
a victim host such as the zipped rootkit before it was erased from the host
system, or, in the case of a law enforcement investigation, the proof of files and
their contents sent out of a company’s network.

For example, to reconstruct a file downloaded from an FTP server by an
attacker, a tcpdump formatted file (the extension for tcpdump files can vary
depending on operating system) would be passed to Ethereal. Once opened in
Ethereal (for more detailed instructions on Ethereal usage, check out the
Syngress publishing book Ethereal Packet Sniffing, ISBN 1932266828), find the
FTP connection information during the time in question.Then, choose the
option “Follow TCP Stream,” which will open a new window showing the FTP
session with username, password, and both sides’ (client and server) responses (see
Figure 13.4).

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 683

Advanced Snort • Chapter 13 683

Figure 13.4 Ethereal FTP Follow TCP Stream Output Example

Once the name of the file and its file size is discovered, take that information
and look for the ftp-data connection.This is going to be the packets within the
timeframe of the FTP connection over TCP port 20. Find the first connection to
port 20 TCP, choose the “Follow TCP Stream” again, and the output this time
will be the contents of the FTP download. Choose one side of the connection
and save the displayed garbage output to a file (see Figure 13.5).

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 684

684 Chapter 13 • Advanced Snort

Figure 13.5 Ethereal Display of the FTP Data Connection or File to
Reconstruct

OINK!

This is much safer and easier to perform on a *nix-based computer. Not
only aren’t the commands discussed not natively on a Windows system,
but this also makes the possibility of executing the Trojan file less likely.

Once the file is saved to a *nix system users folder, verify the size against the
file size downloaded from the FTP transcript. If that looks about even with the
garbage file that is on the system, check it to make sure it’s the full file with no
corruption (see Figure 13.6).

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 685

Advanced Snort • Chapter 13 685

Figure 13.6 Output Showing the Complete File Information

If this appears complete, feel free to examine the contents of the unknown
Trojan file, once a backup copy is made and stored in a safe place.

OINK!
One of the flaws most often observed in performing this part of a
recovery and reconstruction is skipping the part of the process to make a
copy of the data before the CIRT, IDS, or Law Enforcement specialists
start looking through the data.

Interacting with Law Enforcement
One way to get involved with your local FBI field office is attend the monthly
Infraguard (www.infragard.net/fieldoffice.htm) meetings.These are an informal
way for private industry and the federal law enforcement officials to meet and
discuss issues and hot topics such as threats, legal issues, and so forth. Attending
the meetings will this help your organization become familiar with the agents in
your area, and provide the private industry the ability to gain information about
threats facing other networks and organizations.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 686

686 Chapter 13 • Advanced Snort

Snort and Honeynets
Honeypots are computers whose purpose is to be attacked and compromised for
intelligence information, evidence collection, or even geo-location mapping. A
honeynet is groups of honeypots usually set up to simulate a production net
work. One of the main points of deploying a honeynet is to record all traffic
going in to and out of the network. For a complete introduction to honeypots,
find more information about the Honeynet Project at project.honeynet.org.
Before deploying a honeypot in an organization, consult with your legal depart
ment and have written permission to operate on your organization’s network.
One of the worst possible situations to be in is to have to explain to the
CEO/director why his or her network is now overrun with hackers and Trojans.
As one of the main goals of deploying a honeypot is to gather information about
attacks, it only makes sense to use some type of IDS to log as much traffic as
possible. Snort and the Honeynet Project among others have come up with a
pretty good method to log and record traffic entering and leaving the honeynet.

When capturing traffic on a network, there are two modes in which to run
Snort: passive and inline. Both modes have their pros and cons.

Conventional network sniffers such as Snort are usually placed on a network
by looking at a virtual mirror of the traffic such as in the case of a switch span
port. Alternatively, they are run in a failover condition called taps.Taps are inline
network devices that are used for virtual inline traffic sniffing.These devices are
physically configured so that it if their power is cut, for example, the network
will continue to function.

Bridging intrusion detection is a new form of intrusion detection and attack
mitigation that is best for honeynets. A network bridge is a network device that
acts at Layer 2 of the Open System Interconnection (OSI) model passing only
hardware or Media Access Control (MAC) addresses back and forth from net
work to network. In this form, the device is virtually untraceable to an attack in
the honeynet due to the device not adding a hop count or having an IP on
either side of the honeynet.

With the goal of allowing attackers to exploit and root the machines, a
method to limit attacks as well as hide that fact from attackers was developed.

Snort-Inline
Snort-Inline was the creation of Jed Haile, but has since been taken over by Rob
McMillien, both of whom are now members of the Honeynet Project.This is a

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 687

Advanced Snort • Chapter 13 687

modification of the basic Snort design of detect attack traffic switching to a
proactive and packet mangling stance.There is a “queue” value in the newest
copy of IPTABLES firewall software in Linux.This value allows a packet to pass
from one network interface to a user-space buffer that any userland application
can then manipulate or drop before placing it back on the network through the
output network interface. Snort-Inline runs within this “queue” buffer per
forming several functions, such as detection-only, block of hostile packets, or
changing data within packets.

Snort-Inline is kept up to date with the latest stable Snort official version, so
preprocessors and rules should be the same as on a production IDS sensor. Snort-
Inline can be downloaded from Snort-inline.sourceforge.net/. With the rise in
attention to the media-hungry so-called IPS, or Intrusion Protection System, one
possible use of deploying Snort-Inline on a production network is to perform
blocking of application-level attacks. For example, on any given Internet-facing
network, how much traffic to an organization’s network servers would drop if all
of the Unicode attack traffic was being dropped at gateway entries into a net
work or if they were placed at another choke point closer to the servers? By
using Inline-Snort to block the packets, only those packets identified by Snort as
attack packets are dropped. Another use is in information control on outgoing
packets. For example, if an organization uses private IP space (RFC1918) for its
production servers while the Internet facing traffic only found a network address
translation (NAT) of the public side IP. In this instance, if the Snort-Inline had a
mangle rule, which detected any of the servers’ private IPs in a packet payload, it
would be replaced with a bogus IP entry. If a Snort-Inline mangle rule were
monitoring for any use of that IP space in the packet payload, it would change
the IP space to an incorrect one and possibly slow the attacker’s probing of the
organization’s network.

Blocking attack packets is one of the capabilities that could be leveraged to
control outgoing packets from a honeynet or a production network. Because
Snort-Inline uses the queue portion of IPTABLES, the traffic that passes through
that flow has to come out with one of the three options PASS, DROP, or
REJECT.

■	 PASS Places the same packet that entered the queue back on the net
work without any changes.

■	 DROP Removes the packet from the queue and places the packet in
the bit bucket with no response.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 688

688 Chapter 13 • Advanced Snort

■	 REJECT Removes the packet from the queue and places the packet in
the bit bucket sending an ICMP port unreachable event back on the
source interface.

While these don’t provide much feedback from attacker tools that need out
side input, they will provide a log of the attack and some of the details.

Countermeasures and Logging
Finally, advanced users will appreciate the capability to mangle the packets in the
queue and then pass them on. For example, during a successful compromise of a
honeyhost, the attacker launches a TTYPROMPT Telnet attack in the form of :

netcat <victim IP> <port 23> <buffer overflow attack>

which attempts to launch a shell “/bin/sh” on TCP port 2323.
Snort-Inline has an alarm for the Sun Solaris TTY prompt buffer overflow

attack.This attack is triggered in the queue function; however, instead of one of
the previous examples, a different action is performed.This capability to replace
payloads of packets is performed in Snort as a new keyword, replace.This keyword
allows Snort-Inline to search through a packet for specific content, either
wording or hex values. For the previous example, an appropriate Snort-Inline
rule could look like this.

alert tcp $HONEYNET any -> $OUTSIDE 23 (msg:" EXAMPLE bin shell access";

content:"\/bin\/sh"; replace:"\/ben\/sh"; flow: established,

to_server;rev:1;)

This allows Snort on the bridge to log the attack attempt and stops the
attacker from realizing two things:

■	 They are on a honeypot being logged.

■	 Their attacks aren’t working, leaving the IDS team to gather intelligence
about threats that they wouldn’t otherwise be able to see.

With the attacks blocked and logging all blocks, passes, and mangles of
packets, this will provide a wealth of information to the organization.This will
range from types of attacks being targeted against their servers, to the skill level
of the attackers and their common toolsets. With this type of information, an
organization can perform ingress blocking access control lists (ACLs) on their
border networks to stop even more traffic, or use this information to process
people who try to attack and exploit their networks. However, this gets into the
legal battles over the use of tracking and content analysis tools like Snort-Inline.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 689

Advanced Snort • Chapter 13 689

Legal Concerns
One of the most popular concerns about honeypots is the legal concern they
place on an organization.These concerns are best passed on to an organization’s
legal department with the information from the leading expert in the law con
cerning honeypots, Richard Salgado of the Department of Justice. Mr. Salgado is
the point of legal contact that manages to keep the members of the Honeynet
Project out of jail as well as helping the federal government and military agencies
understand the issues brought to bear on an agency.You can find the most cur
rent briefing on the legal issues of honeypots at http://project.honeynet.org/
speaking/legal-issues.ppt.zip.The information defined in the brief will help pos
sible owners of honeypots and honeynets decide what benefits their deployment
is going to bring them and with what concerns.

Really Cool Stuff
We have seen Snort be used for such things as helping network operations,
reporting, honeypots, and dealing with law enforcement. Now it’s time to look
under Snort’s hood and find out some of the features new to Snort 2.1.x that are
used for intrusion detection. For example, with all of the hype about “behavioral
IDS,” did you know that Snort now has the capability to perform rudimentary
“behavioral” traffic detection? Or that Snort can be useful in showing
patch/IAVA verifications? Or even to use a retuned Snort sensor to enforce
policy across a network? No? Well then, read on and discover just what the little
piggy can do.

Behavioral Tracking
As we have already seen, Snort has proven that it can do more than just alarm on
a generic set of signatures. However, we have only scratched the surface of
Snort’s capabilities. One of the newest capabilities of Snort rules is to use the
PCRE, or Perl Compatible Regular Expression, library for content searches
through packets (see the following example). A full explanation of regular expres
sions is beyond the scope of this book. However, Mastering Regular Expressions
from O’Reilly Books covers only regular expressions, for those who want to
know more about how to use regular expressions or “regex” searches.This is dif
ferent from searching through a packet payload with the content keyword, because
that rule option cannot handle variations such as case-sensitive characters or
combined number or letter combinations or even sequences of numbers.This is a

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 690

690 Chapter 13 • Advanced Snort

very basic example of what can be searched within a packet versus a fast pro
cessing, although confusing, rule that was submitted to the snort-sigs mailing list.

This example looks for the string BLAH, ignoring the case of BLAH.

alert ip any any -> any any (pcre:"/BLAH/i";)

In this example, using the pcre keyword is actually faster at searching through
a packet than using the content and nocase keywords combined.This example
demonstrates a simple word search through a packet, but this is a case-insensitive
search as determined by the “/i” in the pcre string. One of the values that this
should be registering with anyone who has programmed is that there is an entire
method to detect more than one payload with a single rule. For example, Figure
13.7 is actually a rule that will detect 25 DIFFERENT attachment types with a
single rule! Not only is that 24 less rules to have to write into your local rules
file but this is actually processed faster than the 25 single attachment rules.

Figure 13.7 Crazy-Looking pcre Rule Example from the snort-sigs Mailing
List Volume #878 Written by Brian Caswell

There is now one rule that looks for any of the following attachment

types:

ade, adp, asd, asf, asx, bat, chm, cli, cmd, com, cpp, diz, dll,

dot, emf, eml, exe, hlp, hsq, hta, ini, js, jse, lnk, mda, mdb, mde,

mdw, msi, msp, nws, ocx, pif, pl, pm, pot, pps, ppt, reg, rtf, scr,

shs, swf, sys, vb, vbe, vbs, vcf, vxd, wmd, wmf, wms, wmz, wpd, wpm,

wps, wpz, wsc, wsf, wsh, xls, xlt, xlw

alert tcp $HOME_NET any -> $EXTERNAL_NET 25 (msg:"VIRUS OUTBOUND bad file

attachment"; flow:to_server,established;

content:"Content-Disposition|3a|";

nocase;

pcre:"/filename\s*=\s*.*?\.(?=[abcdehijlmnoprsvwx])(a(d[ep]|s[dfx])|c([ho]m|

li|md|pp)|d(iz|ll|ot)|e(m[fl]|xe)|h(lp|sq|ta)|jse?|m(d[abew]|s[ip])|p(p[st]|

if|[lm]|ot)|r(eg|tf)|s(cr|[hy]s|wf)|v(b[es]?|cf|xd)|w(m[dfsz]|p[dmsz]|s[cfh]

)|xl[stw]|bat|ini|lnk|nws|ocx)[\x27\x22\n\r\s]/iR";

classtype:suspicious-filename-detect; sid:721; rev:6;)

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 691

Advanced Snort • Chapter 13 691

As mentioned previously, one of the advantages of writing a PCRE rule is
that it is processed fast while giving the rule creator the full flexibility of
searching using regular expressions.

Another Snort capability is to use the keyword react to block and send a vis
ible message back to the offending browser.The “blocking” of the connection is
actually not what happens to the connection. If the connection is a TCP connec
tion, Snort sends a TCP Reset (RST) packet to both the source and destination
IP that causes the connection to break. If the connection is a UDP connection,
Snort sends ICMP errors messages to both the source and destination showing
both IPs that either the port was unreachable or the host was unreachable.

OINK!
To enable the flex-response engine in snort, a --enable-flex-response
needs to be passed to the configure command during build time. This
would be part of the normal build process if Snort were compiled from
source.

Even the official Snort documentation talks about the dangers of turning
on flex-response rules, as they are some of the easiest ways to get into
reporting and flooding loops that cause network issues.

Tools and Traps…

Turning on flex-response Rules

Finally, with all of the available rule options, actions, and triggers, Snort’s
ruleset can become large. One of the answers to this problem is the “activate”
and “dynamic” rule options.This “activate” rule is placed on a rule such as the
content “root” in the payload of a TCP packet bound for Telnet port 23. Once
that rule is triggered, a reactionary “dynamic” rule is turned on to capture the
next 30 packets heading to the Telnet port of our “activate” rule.This rule option
is being phased out of service, only to have that functionality passed on with the

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 692

692 Chapter 13 • Advanced Snort

keyword tag, which allows for the sequenced packet trail and can now handle
timeframes and direction of the flow in question to be captured.

Patch/IAVA Verifications
Another uses for Snort is to help verify that network users and servers have been
patched correctly. For example, use a set of signatures that trigger on vulnerabili
ties that are patched and should not be found on a network after patching is
complete. Using something such as detection of a vulnerable IIS Web server SSL
attack with a vulnerable response after the network space was supposed to be
patched is invaluable.

Another example would be enabling a set of rules to detect version informa
tion about Web servers in the network.This information could be logged to a
file on the sensors that could then be flagged for version numbers/names until all
servers are patched.

Policy Enforcement
The same type of information can be logged to find unapproved software such as
spyware reporting home or even use of older Web browsers. For example, to
create a log of all Web browsers and their versions on the network, a rule such as
this should work to detect them:

Log tcp $HOME_NET any -> any $HTTP_PORTS (msg:"Web client log";

content:"USER-AGENT\:"; flags:PA+; logto:"web_browsers.txt";)

The preceding rule is going to detect the use of almost any Web-based soft
ware that identifies itself. For example, to filter out the common browsers,
“MSIE” is Microsoft Internet Explorer,” while “Mozilla” is the Netscape browser.
However, if the user agent is “Gator,” this means that spyware from the GAIN
network is installed on a user’s machine.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 693

Advanced Snort • Chapter 13 693

Notes from the Underground…

Many people get confused over the difference between a virus, a worm,

really three very distinct entities. They each use different ways to infect
computers, and each has different motivations behind its use.

A virus is a program that can infect files by attaching to them, or

often attaches to executable files, known as host files. Viruses travel from
computer to computer when users transmit infected files or share storage
media, such as a floppy disk. Viruses may be benign or malicious. A
benign virus does not have any destructive behavior; it presents more of

CPU time, and disk space. Malignant viruses are the most dangerous
because they can cause widespread damage, such as altering software

no viruses that can physically damage your computer hardware. There are
several types of viruses, including the following:

■ File infector A virus that attaches to an executable file.
■ Boot sector A virus that places code in the disk sector of a

computer so that it is executed every time the computer is
booted.

■ Master boot record A virus that infects the first physical
sector of all disks.

■ Multi-partite A virus that will use a number of infection
methods.

■ Macro A virus that attaches itself to documents in the form
of macros.

cious, program. The trojan is often created to appear as something fun or

cutes the program, the hidden malicious program is also executed

Trojan, Virus, and Worm: What is the difference?

and a trojan. The terms tend to be used interchangeably, but they are

replacing them, without the knowledge of the user. A virus can execute
itself, and replicate itself to other files within the system. To do this, it

an annoying or inconvenient behavior, such as displaying messages on the
computer at certain times. A benign virus still consumes valuable memory,

and data, removing files or erasing the entire system. However, there are

A trojan is a program that is covertly hiding another, potentially mali

beneficial, such as a game or helpful utility. However, when a user exe

Continued

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 694

694 Chapter 13 • Advanced Snort

without the user’s knowledge. The malicious program is then running in

destroying system files or data. A trojan could also contain a virus or a

spread by unknowing users who open an e-mail attachment to execute a
file downloaded from the Internet.

A worm is a program much like a virus that has the added function
ality of being able to replicate itself without the use of a host file. With a
worm, you don’t have to receive an infected file, or use an infected floppy
to become infected; the worm does this all on its own. A worm actively
replicates itself and propagates itself throughout computer networks. Not
only will a worm consume valuable system resources, it can also consume
network bandwidth while it is propagating or attempting to propagate.

memory and could be controlling backdoor access for the intruder, or

worm. Trojans do not replicate or propagate themselves; they are often

Watchlists
One of the most powerful uses of Snort variables comes with policy enforce
ment. For example, if your organization is of ISP size, you might have a daily
changing rule with the top attack IPs from dshield.org list.

In Snort.conf file place an entry such as:

Dshield_list = [ip.ran.ge.1\32, ip.ran.ge.2\32,etc]

Alert tcp $dshield_list any -> $HOME_NET any (msg:"INBOUND DSHIELD TOP 10

IP TCP TRAFFIC"; flags:A+; rev:1;)

Then, for each day the list changes, modify the variable definition in
Snort.conf and restart Snort. Another example is for policy enforcement and
watching for connections to known Instant Messenger server IPs. In this case,
even if the users manage to install a different program, the alarm will still be
raised for any connection to those IPs.

Policy-Based IDS
Policy-based IDS is almost a complete reversal of normal intrusion detection. With
policy-based IDS, the IDS administrator defines what is normal and acceptable
behavior for the network.This can include communication of specific types
between specific hosts, specific protocols, and so forth.The benefit of defining
this policy is that the administrator is able to set baselines of what “normal”
operations for the network should look like.This information can then be used
to determine what unusual behavior is.The concept behind policy-based IDS is

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 695

Advanced Snort • Chapter 13 695

that whatever is not included as part of the list of acceptable behavior is poten
tially an intrusion.The IDS administrator goes through the often long and
arduous process of determining what should not trigger an alert.Then, the IDS
sends an alert on anything not previously defined by the administrator as accept
able traffic. Using a policy-based IDS has several advantages over normal IDSs. A
policy-based IDS can be used to determine whether your firewall is performing
properly by checking the network to see if traffic that should have been blocked
at the firewall has made it to the internal network.This provides an added layer
of redundancy to your existing security system by allowing you to be notified in
the event of an unexpected failure.This also works with other security systems in
place besides firewalls, such as ensuring that switches have not become suscep
tible to an ARP spoofing attack, and so forth.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 696

696 Chapter 13 • Advanced Snort

Summary
In this chapter, we saw Snort used for much more than just simple signature-
based intrusion detection; for example, in helping to calculate network perfor
mance and measurements of network load. It can also be used for generating
reports of different information such as protocol use,Top Talkers, network drops,
packet size, and distribution. We saw several of the advanced preprocessors being
used to diagnose protocol use, discover chatty hosts on a network, and provide a
reporting methodology for the IDS team.This data in turn, with help from
another preprocessor, can be graphed in order to be presented to other groups
and possibly customers.

Snort can also be used for detecting unusual traffic such as odd IP-based pro-
tocols.This can be helpful for infrastructure level attacks such as those against
routers and high-end switches. Another use is in policy-based detections, such as
when a Web server starts generating traffic other than Web traffic and generating
an alarm, or for capturing advanced Trojan traffic such as in the 55808 Trojan.

Snort can be used to stop attacks from happening, thanks to use of Snort-
Inline and its mangling of packets.This can also become almost mandatory for
any owners of a honeynet in order to address some of the legal concerns.

Lastly, Snort can help an IDS team interact with law enforcement investiga-
tions.The use of some of the keywords from the Snort language such as logto to
keep investigation traffic and alarms separate from normal day-to-day alarms or
session can be useful in displaying contents of Web traffic or the contents of an
investigation suspect’s traffic. Snort, when combined with tools like Ethereal, can
be used to recover the contents of network downloads such as in the case of a
rootkit that, once installed, deletes itself from the drive.

With all of the these hidden jewels, Snort should help an IDS team detect
and more importantly understand the functions of their network, and provide
management and other groups with a structure of displayable information about
their organization’s IDS tools.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 697

Advanced Snort • Chapter 13 697

Solutions Fast Track

Network Operations

� Using the flow preprocessor can help report a detailed log of the break
down of traffic and protocols.

� Using the perfmon preprocessor combined with a charting tool can
provide a visual reading of the network traffic in less granular levels.

� Snort has the capability to detect IP-based traffic other than the
common three protocols using the ip_proto keyword.

Forensics/Incident Handling

� Logging and filtering of traffic is important for law enforcement, as this
data shouldn’t be tampered with once collected.

� Traffic and file reconstruction from tcpdump and Snort binary logs are
made possible with tools like tethereal for the commandline and
ethereal for a graphical user interface (GUI).

� There are plenty of resources online and in print for a security team to
find out how best to interact with law enforcement. However, most U.S.
cities have monthly meetings with their local FBI field office called
Infraguard chapters. Almost all are free to attend and are the authorities
on most questions an organization might have.

Snort and Honeynets

� Snort-Inline is made for running on a bridged machine because it
allows for mangling of packets and blocking attacks passing the bridge.
This also provides for a virtually undetectable platform to run on a net
work in order to protect the network.

� Countermeasures and blocking or limiting attack traffic leaving a
honeynet is extremely important to protect the owners of the honeynet
from turning into a botnet.

� Before deploying a honeynet, an organization’s legal department should

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 698

698 Chapter 13 • Advanced Snort

review all current information from the Department of Justice to verify
legality of placing a device on the network.

Really Cool Stuff

� Behavioral or reaction signatures can play a large part in detecting hos
tile traffic on a network while limiting the performance load on a net
work sensor.

� One of the uses for Snort is for IAVA/patch verification; for example,
using Snort to track all browsers and version on the network.This data
could then be searched for spyware types of applications running as well
as making sure that no machine on the network is running a
noncompliant version of the software.

� Snort can also help enforce policies such as helping to enforce a ban on
Instant Messenger of all types.This might be an example of looking for
traffic to or from any of a watchlist of IPs that are known to be servers
for IM logon and chat.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 699

Advanced Snort • Chapter 13 699

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: When using the flow preprocessor, where is the flow log information sent?

A: The flow log will send its information to a specified output module. One
suggestion would be to enable the syslog output so that the information can
be gathered to files or to a central syslog server for analysis.

Q: When using the perfmon preprocessor, there are large periods of dropped
packets, yet our network hasn’t had an outage in months?

A: Every stop, start, and restart of the Snort process is marked as a dropped
packet session.This might be accounting for your drops. A feature request
that has been made to the Snort development community is a filter that
would stop calculating as drops all Snort stops and starting events. Another
item to check would be the last field in the Snortstat, or your named, file for
a high CPU usage count.

Q: Where can I find more information about Ethereal’s use?

A: From the book Ethereal Packets Sniffing, ISBN: 1-932266-82-8, from Syngress.

Q: Are there more examples of using Snort-Inline to block and mangle packets
leaving a honeynet?

A: Yes, there is a whole list of new rules in the latest download of Snort-Inline.
These have examples of drop rules, mangle rules, and standard detect rules.

www.syngress.com

295_Snort2e_13.qxd 5/5/04 6:01 PM Page 700

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 701

Index

--?, 150

0-day worms, 464

-1 option, 504, 505

%3F Web Directory Traversal attack,

219–220

A
--A <alert>, 147

AB (ad hoc benchmarks), 494

abort_invalid_hex option, 261

Absolute OpenBSD, UNIX for the

Practical Paranoid (Lucas), 151

access control lists (ACLs), 464

ACID. See Analysis Console for

Intrusion Detection

acid_conf.php file, 394

acid_db

Barnyard output plug-in, 565–567
troubleshooting, 603

ACK field, 208

ACK flag, 236–237

ACLs (access control lists), 464

action events for rules, 216–217

activate keyword, 196

activate rules

being phased out, 198

described, 197

active response

altering traffic based on IDS alerts,

609–619

based on layers, 608–609

Fwsnort, 636–653

IDS, 26–27

vs. intrusion prevention, 607

NIPS and, 665–666

overview of, 606

Snort_inline, 653–664

Snortsam, 619–636

active response option, 214–215

ad hoc benchmarks (AB), 494

add-ons

recommended for Snort, 61

to Snort, 55

for Snort alerts, 70–72

AddFuncToPreprocList() function,
285–286

Address Resolution Protocol (ARP)
spoofing, 269–270

ADMutate tool, 271

ADODB library

for ACID, 391

for ACID installation, 393

AG (Alert Group) Maintenance,

402–404

aggregate, 222

AIM (AOL Instant Messaging),

464–465

AirCERT, 386

Aitel, Dave, 521

Aleph1, 271

alert, 381

Alert Group (AG) Maintenance,

402–404

alert groups, in ACID, 402–404

alert keyword, 196

alert messages

analysis of, 431–434

localization of in Barnyard,

596–597

alert records, 532–535

alert rules, 68

alert traffic, 90

alert_console plug-in

adding to op_plugbase.c, 593–594

implementing, 585

overview of, 584

updating Barnyard with, 594–596

writing functions for, 587–593

alert_csv
Barnyard output plug-in, 551–554
output plug-ins, 581–582

alert_fast, 550–551

alertfile, 191

alert_fragments parameter, 264

alerting component, Snort, 70, 72–73

alerts

ACID alert databases, managing,
406–407

ACID alert graphing, 404–406

in ACID, displaying, 398–400

add-ons for, 70–72

disk space for, 60

false alerts, 88

intrusion analysis of, 381–386

intrusion analysis timeframe,

487–488
rule actions and, 196–197
Snort’s system requirements and,

57, 58

summary scripts for, 418–427

Swatch for monitoring, 428–430

thresholding, 69–70

alert_syslog, 554–556
alert_syslog output plug-in, 324–325
alert_syslog2, 556–560
alert_with_interface_name feature,

191

Analysis Console for Intrusion

Detection (ACID)

configuring, 394–398

features, 386–387

installing, 387–394

overview of, 435

questions about, 438

for Snort alerts, 70

Snort software requirements, 61

for testing, 460

using, 398–407

analysis, Snort IDS events, 431–434

ancillary logs, 385

anomaly-based detection, preprocessor

options
Back Orifice preprocessor, 268–269
overview of, 305–306
portscan preprocessor, 265–267
preprocessors for, 276–277

anomaly detection

described, 24–25

in preprocessors, 307

preprocessors for, 232, 234

with rpc_decode preprocessor, 264

Antisniff, 90

AOL Instant Messaging (AIM),

464–465

Apache 1.3 Web server, 390

application

security, 34

stripping from Linux, 107

application layer, 608

application-level attacks, 687

application-specific information,

17–18
apt-get

emerge and, 109

Snort installation using, 134–137

syntax, 108

apt-get install packagename, 108

apt-get remove packagename, 108

architecture

IDS, 51

security, fitting Snort into, 42–44

Snort output plug-in, 313

Snort_inline, 659–660

Snortsam, 621–624

archiving
alert database management with,

406–407
processed files in Barnyard,

575–576
argument parsing code,Telnet

negotiation preprocessor,
293–300

argument parsing, Snort plug-in, 314

ARP (Address Resolution Protocol)

spoofing, 269–270

arpspoof, 64

arpspoof preprocessor, 269–270

The Art of Deception (Mitnick), 31

ASCII

content in rule, 199, 200

dangers of logging in, 75

701

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 702

702 Index

logging, 317–318

logging packet data in, 382

logging packets in, 84

ASN.1 parsing vulnerability, 92

ASN1_decode preprocessor, 270–271

assymetric routing, 86, 87

asymmetric routing, 129–132

attack groups, in IDS Informer,

497–498

attack log dump, 499–500

attack mechanism, identifying,

383–384, 433

attackers, 74

attacks

active response to, 611–619

automatically blocking, 606

blocking duration, 669–670

detection engines, 167–171

IDS alerts to, 38–39

IDS identification of, 39–40

IDS response to, 25–27

live, 9

outbound, Snort_inline and, 670

paths, multiple, 6–7

preprocessors and, 64

prevention of, 40–42

against Snort, 91

Snortsam examples of, 624–636

system security with Snort, 89–92

autoconf, 594–595

installing libpcap from source with,

114–116

Snort requirement, 61, 62

automake, 594–595

installing libpcap from source with,

114–116

Snort requirement, 61

B
--b, 147

−b option, 84

Back Orifice preprocessor

anomaly-based detection with, 276

described, 268

back up

forensic data, 377

storage medium choice for, 476

before upgrading Snort, 88–89

backdoors, 32

background running, 574

bad rule, 223

Bailey, Don, 502

Baker, Andrew, 326

bandwidth

alert logging to remote databases,

effect on, 376

as attack target, 29

CPU usage tests and, 478

NIC choice and, 477

Barnyard

in batch-processing mode, 567–571

capabilities of, 596–597

configuring, 541–549

continual-processing mode,

572–577

deploying, 577–584

ensuring quality in, 340

installing, 537–540

to load logs into database, 124

output plug-in choice and, 493

output plug-ins, 549–567

output plug-ins, writing, 584–596

overview of, 341–342, 530–532

SGUIL installation and, 414–415

system resources and, 322

unified files and, 532–537

for unified log processing, 339

unified output format and, 72, 73

Bastille hardening scripts, 93

batch-processing mode, Barnyard

described, 541, 598

dry run option, 569–571

multiple file processing, 571

overview of, 567–568, 600

single file processing, 568–569

unified files and, 579

BBC (Linux Bootable Business Card),

34

behavioral tracking, 689–692

benchmarking deployment

benchmark characteristics, 494–496

Berkeley Packet Filter tests,

521–522

HPING and Cenzic, 517–519

IDS Informer, 496–500

IDS Wakeup, 501–502

overview of, 525–526

rule tests, 521

Sneeze, 502–503

Stick, Ftester, 519

stress testing, 520–521

TCPReplay, 504–513

THC’s Netdude, 513–517

Berkeley Packet Filter (BPF) format

filtering packets with, 85

preanalysis packet filters in, 199

tests, 521–522

binary content, in rule, 199–200

binary format, 84

binary logging, 317–318, 370

binutils, 114–116

Bird,Tina, 21

Black Software, IDS Informer,

496–500, 524

bleeding-edge versions of Snort, 159

blocking agent, 622–624

bookmark

in remote syslog alerting, 579–580

support in Barnyard, 574–575

boot sector virus, 693

bootable devices, 33–34

bottlenecks

benchmarking and, 494

finding/eliminating, 525

Boyer Moore string search algorithm,

643

BPF. See Berkeley Packet Filter (BPF)

format

bpf_file, 191

bridge configuration script, 657–658

bridges, 653, 659

BSD licensing, 334

buffer overflow, 91

Bugtraq, 93

builds, compiled vs. source, 444–445

bus speed, 477

bytes, 200

byte_test, 637

C
--C, 147

--c <cf>, 147

C compiler, 538

C file, 586–587

Caswell, Brian, 202, 502

Central Processing Unit (CPU), 476,

478

Cenzic, Hailstorm, 517–518

Cerebus, 340–341

CERT/CC, 7

CGB (commercial-grade

benchmarks), 494

chain-of-command, 463, 468

change control rules, 456–457,

467–468

Chart Period parameter, 405

Chart Type parameter, 405

Checkinstall, 120

checksum_mode, 191

checksums, 515

Chen,Yen-Ming, 335, 419

chroot, 191

CIDR addresses, 220–221

CIRT Carnegie Mellon, 463

CIRT (Computer Incident Response

Team), 461–462

Cisco vulnerability, 679–680

class-file configuration directive, 548

classification, 191

classification identifier option

alert record field, 533

default classtype IDs, 211–212

function/format, 210

classtype IDs, 211–212

cleanups, Snort plug-in, 315

clear-text data, 201

client bytes, 537

client IP address, 537

client packets, 537

client port, 537

clientonly option, 246

code

example of W3C, 353–366

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 703

remote execution of, 91
W3C source, 350–353

Coleridge, Samuel Taylor, 386
Comma-separated values (CSV) files,

581–582
command-line options

Barnyard, 541–544
for Snort rules configuration,

191–195
switches of Snort, 147–150

commercial-grade benchmarks
(CGB), 494

common sense test, of output plug-
ins, 493

compiled builds, 444–445
compilers

options for Linux, 104

removing from system, 93

use of, 620

compromise, scanning vs., 5–6
Computer Incident Response Team

(CIRT), 461–462
Concurrent Version System (CVS)

GUI applications for, 160
rules updates and, 452
Snort installation, 159
updates downloads and, 446

config <instruction>:<value>, 190
configuration

of ACID, 394–398
of Barnyard, 599–600
Fwsnort, 639–640
of Snort to work with SnortSnarf,

424–425

Snort_inline, 657–659

configuration, Barnyard
command-line options, 541–544
configuration file, 546–549
message map files, 545
overview of, 541

configuration file
Snort configuration options,

191–195
variables for rules and, 190

configuration file option (-c), 543
configure script

Barnyard, 539–540
enabling features via, 131–132
installing libpcap from source with,

122
libpcap installation from source

with, 114
for Snort installation from source,

129–130
software installation with, 118–119

console alerting, 583–584
console keyword, 678
console mode, 132
continual-processing mode, Barnyard

background running, 574

bookmark support, enabling,

574–575

described, 541, 598
multiple process running, 576–577
new events processing only, 575
overview of, 572–573, 600
processed files, archiving, 575–576
signal handling, 577

contrib directory, 331–333
conversation preprocessor

configuring, 273–274
with portscan2 preprocessor,

271–272

stream4 preprocessor and, 308

copyright
detection plug-ins and, 174–175
Snort plug-in, 314

correlation
of IDS sources, 35
scanning and, 6, 7
Snort IDS events, analyzing,

433–434
cost

of hardware, 473
of IDS Informer, 498

CPU (Central Processing Unit), 476,
478

create_mysql
archiving and, 406
for setting up database logging, 393

create_postgresql, 406
critical threats, 489
crontab

SnortSnarf configuration and, 424
snort_stat.pl and, 421

CSV (Comma-separated values) files,
581–582

Ctrl-C, 77
Cult of the Dead Cow, 268
custom rules actions, 197
CVS. See Concurrent Version System

D
--D, 147
--d, 147
−d switch, 74
daemon

Barnyard configuration directive,
548

mode, continual-processing and,
574

for Snort configuration, 192
Danyliw, Roman, 386
data

ACID, configuring, 394–398
ACID, features, 386–387
ACID, installing, 387–394
ACID, using, 398–407
extracting in Barnyard, 581–582
IDS, 36–37
integrity, 34
intrusion analysis, defined, 380–386
SGUIL, 407–418

Index 703

Snort IDS events, analyzing,
431–434

structures, detection plug-ins and,
175–176

summary scripts, 418–427

Swatch, 428–430

data collection, 20–21
data extraction, 581–582
data flow, 66–67
data integrity, 34
data link layer, 608
data management, with ACID, 387
data processor plug-in, Barnyard, 546
Data Source parameter, 405
database

ACID installation and, 393–394
in ACID, querying, 400–401
alert databases in ACID, managing,

406–407
Barnyard support for, 566
logging in Barnyard, 580–581
logging to multiple, 376–377
MySQL installation, 124–127
MySQL vs. PostgreSQL, 333–338
SGUIL database creation, 409–410
Snort compatible, 163
Snort, pros/cons of, 368
Snortdb, 327–333

database front ends
ACID, configuring, 394–398
ACID, features, 386–387
ACID, installing, 387–394
ACID, using, 398–407
SGUIL components, 407–409
SGUIL, installing, 409–416
SGUIL, using, 416–418

database logging, 393–394
database parameters, 394–395
database permissions, 438
database searching, 387
database support, 390–391
Debian GNU/Linux

described, 108

Snort installation using apt,

134–137
DebugMessage(), 290
decode_arp, 192
DecodeBuffer, 288, 290
decode_data_link, 192
decoders, 166–167
decoding, 62

. See also packet decoder
decoding/normalizing protocols,

preprocessor options
HTTP normalization, 256–262
overview of, 305
rpc_decode preprocessor, 262–265
Telnet negotiation preprocessor,

254–255
decoding protocols, 276
default logging, 316–321
defense in depth, 31, 37–38

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 704

134

704 Index

DELETE privilege, 398

Dell, 475

denial of service (DoS)

active response and, 609, 670

frag2 preprocessor for, 248

dependencies

RPM system and, 123

Snort installation from SRPM and,

deployment, Barnyard

data extraction, 581–582

database logging, 580–581

described, 601

overview of, 577–578

real-time console alerting, 583–584

remote syslog alerting, 578–580

depth content option, 200

design analysis, 44–48, 51

destination information, 195–196

destination IP address, 534

destination port, 534

detection

engine, features, 67–70

engines, 182

engines, multi-pattern, 183

engines, new, 169–171

engines, old, 168–169

logging, 173

overview of, 167–168

plug-ins, 173–181

rules suppression, 173

tagging, 171–172

thresholding, 172–173

detection function, 178–179

detect_scans parameter, 239

detect_state_problems parameter

false positives and, 240

flow configuration with, 253

in frag2 preprocessor, 250

of stream4 preprocessor, 239

device driver, 105

.DIFF file, 446

directives, 547–549

disable_decode_alerts, 192

disable_evasion_alerts setting, 240–241

disk space

for alerts, 60

as attack target, 29

distance, 637

distributed IDS

information collection with, 20

overview of, 14–16

documentation, rules testing, 456–457

DOS. See denial of service

double_encode option, 260

downloads

ACID, 387

Barnyard, 538–539

Fwsnort tarball, 638

Perl, 419

Snort_inline, 653

Snortsam, 620

. See also Web site resources

Doyle, Arthur Conan, 380

drop rules, 628

drop_url_param option, 261

“dry run” option (-R), 543, 569–571

Dshield, 8

dsize option

false positives and, 637

function/format, 213–214

dump_chars_only, 192

dump_payload, 192

dump_payload_verbose, 192

dynamic keyword, 196

dynamic rules, 197–198

dynamic variables, 189–190

E
--e, 147

−e switch, 74

EagleX, 460

Ebtables project, 655

eEye Iris, 318

Electronic Communications Privacy

Act of 1986, 3–4

emerge, 109–110

emotions, 30

enable-mysql, 539

enable-postgres, 539

encryption

of alert traffic, 90

in IDS, 15–16, 18

NIDS/HIDS and, 41

end time, 537

Engarde Linux, 111

equivalent source/destination IP

option, 205

errors

Barnyard configuration, 540

when running Snort, 87–89

−etc/fstab, 106

/etc/inittab file, 106

Ethereal

for Snort rule content, 217–220
traffic reconstruction with, 682–685

Ethereal Network Analyzer, 217–220
Ethernet cable

one way, 59

sensing interface protection and, 91

Ethernet packets, 166–167

Ethernet taps, 59

evasion, 42–44, 45–47

event ID, 533

event queueing, 171

event reference ID

alert record field, 534

unified log record field, 536

event reference timestamp, 534, 536

event suppression, 70

event timestamp, 533

event types, 384

events

processing only new in Barnyard,

575

in SGUIL, 417–418

events keyword, 678

events-of-interest, 464

execution, Fwsnort, 640–643

experimental preprocessors, 269–275

arpspoof preprocessor, 269–270
ASN1_decode preprocessor,

270–271
conversation preprocessor, 271–272,

273–274

Fnord preprocessor, 271

overview of, 306

perfmonitor preprocessor, 274–275

portscan2 preprocessor, 271–273

exploit code, 224

exploit tools, 43–44

Extensible Markup Language (XML),

322, 370–371

external Intranet, 427

external reference option, 212

F
--F <bpf>, 147

−f option, 504

facility

alert_syslog2 output plug-in option,

558

supported by AlertSyslog plug-in,

554

false alerts, tuning out, 88

false negatives, 216, 233

false positives

active response and, 608–609

detect_state_problems parameter

and, 240

disable_evasion_alerts setting and,

241

vs. false negatives, 44

good rule and, 216

packets for intrusion analysis and,

382

pass rule and, 197

signature/rule-matching IDS and,

233

Sneeze for eliminating, 503

Fast Alert mode, 381

FBI (Federal Bureau of Investigation),

685

FedCIRC, 463

Federal Bureau of Investigation (FBI),

685

fields

unified alert record, 532–535
unified log record, 535–536

fifty percent test, for CPU usage, 478

file infector virus, 693

file keyword, 678

file systems, stripping, 106

filenames, output plug-in, 550

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 705

files
archiving processed in Barnyard,

575–576
Barnyard C, 586–587
Barnyard configuration, 546–549
processing multiple in Barnyard,

571

processing single in Barnyard,

568–569

source, setup in Barnyard, 585–587

filesystem watching, 21–22
filter configuration directive, Barnyard,

548–549
filtering

for incident handling, 681–682
Snort options, 84–85

FIRE, 33

firewalls

application layer and, 606

compiling on, 639

vs. IDS, 52

IDS and, 665–666

policy modification, 621–622

Snortsam agent on, 626

stateless, attacks on, 237

vs.IDSs, 28

WWWBoard passwd.txt access

attack and, 626–633

FIRST (Forum of Incident Response

and Security Teams), 8

flags

alert record field, 535

TCP flags option, 207–208

TCP statefulness and, 236–238

unified log record field, 536

flat-files, 369

flex-response rules, 691

flow control, in rule, 203–204

flow keyword

functionality with, 238

with perfmon preprocessor, 678

flow module

configuring flow, 251–253

purpose of, 251

flow option

to analyze stateless data, 202

function of/examples of, 203–204

flow-portscan preprocessor

detection engine and, 67

flow preprocessor and, 251

operation of, 66–67

flow preprocessor

flow log information, 699

flow-portscan preprocessor and, 66

output from, 673–674

perfmon preprocessor relies on, 676

flowbits detection plugin, 251

Fnord preprocessor, 271

FOO!, 88

force multiplier, 38

forensic rules, 465

forensics. See incident handling

format

logging packet data, 382

RFC3164 message, 557–558

SnortSnarf log file, 422

specifying in alert_csv, 554

W3C output log, 367

FormatGuard, 93

Forum of Incident Response and

Security Teams (FIRST), 8

Foster, James C., 353

fpEvalHeaderSW, 170

frag2 preprocessor

configuring, 249–250

Flow module, 251–253

function of, 248

getting data into Snort, 300

output, 250, 254

overview of, 303

packet reassembly and, 275

fragment bit option, 204–205

Fragment Size, 432–433

fragmentation, 248–253

fragroute, 40, 248

FreeBSD

packet decoder configuration,
63–64

for Snort, 61

Snort as packet sniffer on, 75–84

front ends

ACID, 460

for viewing Snort data, 469

FScan, 520

Ftester, 519

FTP connection, 682–685

Full Alert mode

alert analysis in, 381–382
alert, analyzing, 431–434

Full Disclosure, 93

full_whitespace option, 261

functions

of detection plug-ins, 176–180

Snort plug-in, 314

writing in Barnyard, 587–593

fwsam option, 633

Fwsnort

configuration, 639–640

described, 608, 610, 668

evasion, 650

execution, 640–643

installation, 637–639

NFS mountd overflow attack and,

650–653
overview of, 636–637
www.board passwd.txt access attack

and, 643–650

G
--G, 147

--g <gname>, 147

-g option, 544

Gateway IDS, 48

Index 705

gcc
installing libpcap from source with,

114–116
Snort requirement, 61, 62

GD library, 390, 391

gen-msg-map configuration directive,

548

general regular expression parser

(GREP), 527

generator message map, 545

generic variables, 492

Gentoo Linux, 109–110

GetClassType function, 593

GetSid function, 593

Giovanni, Coretez, 238, 246

global section, HTTPInspect, 65

GNU General Public License (GPL),

143, 334

goals, benchmark, 495

good rule, 216

Google

for identifying attack mechanism,
384

Linux search on, 103–104

search in Ethereal Network

Analyzer, 218–219
GPL (GNU General Public License),

143, 334

GPL licensing, 174–175, 183

gpm, disabling, 105

graphical features, ACID, 404–406

graphical interface, stripping, 102

Graphical User Interface (GUI)-free

environment, 117–118,
120–122

graphs, perfmon-graph report,
675–676

Gray, Patrick, 59

GREP (general regular expression

parser), 527

groups, 497–498

GUI (Graphical User Interface)-free

environment, 117–118,

120–122

GUI server, 408

H
--h <hn>, 147–148

−h switch, 84

hackers, Indian vs. Pakistani, 30

Haile, Jed, 611, 653, 686

Hailstorm Cenzic, 517–518

hard drive

choice for Snort optimization,
473–474, 476

disk space for alerts, 60

testing, 478

harden, operating system, 388

hardened Linux distributions, 110–111

hardware

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 706

526

706 Index

operating system choice and, 479,

outsourcing, 527

requirements for Snort, 58–60, 96

hardware choices for Snort

optimization, 472–479

considerations, 472–474

network interface card, 477

overview of, 523, 524

processor, 474–475

RAM requirements, 475–476

storage medium, 476

testing hardware, 477–479

hardware tests, 485

hdparm, 106

header file

alert_console plug-in, 585–586
of Telnet negotiation preprocessor,

281–282
headers

detection plug-ins and, 175

Snort plug-in, 314

Herve’ Schauer Consulting, 501

HIPS (Host Intrusion Prevention

Systems), 49

. See also Intrusion Prevention

Systems

Honeynet Project, 611

honeynets

in general, 686

overview of, 697–698

Snort-Inline, 686–689

honeypots, 686

hops, 241

host byte order, 602–603

Host Intrusion Prevention Systems

(HIPS), 49

. See also Intrusion Prevention

Systems

host-specific information, 18

host-based IDS, 13–14

hostname, 559

hostname configuration directive,

548–549

HPING, 517, 518–519

HPing2, 501

HTTP decode preprocessor

configuring, 260–262

decoding protocols with, 276

output, 262

overview of, 303

HTTP (Hypertext Transfer Protocol)

decoding, preprocessor speed and,

491

HTTPInspect preprocessor and,

65–66

normalization, 256–258, 308

“HTTP IDS Evasions Revisited”

(Roelker), 256–258

HTTP normalization preprocessor,

259–260

httpd daemon, 396

httpd.conf file, 396

HTTPInspect preprocessor, 65–66

Hyper-Threading technology, 475

Hypertext Preprocessor (PHP)

ACID installation and, 390–391

acronym history, 17

version for ACID, 438

Hypertext Transfer Protocol (HTTP)

decoding, preprocessor speed and,

491

HTTPInspect preprocessor and,

65–66

normalization, 256–258, 308

I

--I, 148

--i <if>, 148

IAVAs (Information Assurance

Vulnerability Alerts), 463

ICMP (Internet Control Message

Protocol), 316–317

ICMP options, rule, 208–209

icode option, 209

ID option

function of, 206

ICMP, 208–209

identification, IDS, of intrusion

attempts, 22–25

idling test, 478

IDS. See Intrusion Detection System

IDS Center, 71, 455–456

IDS Informer, Black Software,

496–500, 524

IDS Policy Manager, 71

IDS Wakeup, 501–503

iis_alt_unicode option, 260

iis_flip_slash option, 261

Immunix

advantage of, 110

Web site, 111

incident categories, in SGUIL, 439

incident handling

keywords for, 680–681

law enforcement interaction, 685

logging and filtering, 681–682

overview of, 697

traffic reconstruction, 682–685

incident reports, 426

Incident.pl, 71

/include, 423

includes, 175

individual rule tests, 521

information

application-specific, 17–18

as attack target, 30

Information Assurance Vulnerability

Alerts (IAVAs), 463

Information Sharing and Analysis

Centers (ISACs), 8

Infraguard meetings, 685

Init function, 587–588

initialization function, 176–178

InitTelNeg(), 291

inline devices, 607

inline IDS, 27

inline intrusion detection, 672

input file, 512–513

“Insertion, Evasion, and Denial of

Service: Eluding Network

Intrusion Detection”, 40, 650

installation

ACID, 387–394

of Barnyard, 537–540, 599

Fwsnort, 637–639

of SGUIL, 409–416

Snort_inline, 655–656

Snortsam, 619–620

of SnortSnarf, 422–423

. See also Snort installation

Installation Options dialog, 143–144

integer overflow, 91

Intel Pentium IV 3.40Ghz processor,

474–475

Intel Xeon Processor, 475

inter-release patches, 446

interface

customized, 368

function of, 192

interface configuration directive,

548–549

internal_alerts option, 261–262
Internet Control Message Protocol

(ICMP), 316–317

Internet Protocol (IP) addresses, 371

intrusion

described, 2–3

legal definitions, 3–4

live attacks/sendmail buffer

overflow, 9

scanning vs. compromise, 5–6

viruses/worms/SQL Slammer, 6–8

intrusion analysis

analysis results follow-up, 385–386

attack mechanism, 383–384

defined, 380

intrusion data correlation, 384–385

overview of, 436

rule examination, 383

Snort alerts, 381–382

Snort packet data, 382

timeframe for, 487–488

traffic validation, 383

intrusion analysis tools
ACID, configuring, 394–398
ACID, features, 386–387
ACID, installing, 387–394
ACID, using, 398–407
overview of, 436–437
SGUIL, 407–418
SGUIL components, 407–409
SGUIL, installing, 409–416
SGUIL, using, 416–418
summary scripts, 418–427
Swatch, 428–430

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 707

intrusion data correlation, 384–385

Intrusion Detection System (IDS)

application security/data integrity,

34

application-specific information,

17–18

attack response, 25–27

benefits of, 35–39

data collection methods, 20–21

defense in depth, 31

design/investment analysis, 44–48

distributed, 14–16, 20

events, analyzing, 431–434

firewalls and, 665–666

firewalls vs., 28

host-based, 13–14

host-specific information, 18

IDS Informer, 496–500

IDS Wakeup, 501–503

importance of, 28

intrusion attempt identification,

22–25

intrusion described, 2–9

limits of, 39–42

method of, 9–10

motives for attacks, 28–30

need for, scenarios, 54–55

OS security, 32

other uses for, 42

overview of, 2

physical security, 32–34

security plans and, 31

Sneeze, benchmarking with,

502–503

Snort in security architecture,

42–44
stateless, 237–238
stress testing, 520–521
subnet-specific information, 19–20
terminology, 48–49

intrusion prevention

vs. active response, 607–619

active response and, 668

Intrusion Prevention Systems (IPSs),
48

investment analysis, 44–48

IP address

IDS Informer configuration and,
496–497

SnortSnarf and, 425–426
IP options, rule

equivalent source/destination IP
option, 205

fragment bit option, 204–205

ID option, 206

IP protocol options, 205

Time-to-Live (TTL) option, 206

Type-of-Service (TOS) option, 206

IP protocol options, 205

ip_proto option, 679–680

IPSEC, 480–484

IPSs (Intrusion Prevention Systems),

48

IPtables
Fwsnort and, 610, 636–637,

640–643
NFS mountd overflow exploit and,

635
Snort_inline and, 610–611,

624–630
WWWBoard passwd.txt access

attacks and, 643–650
ISACs (Information Sharing and

Analysis Centers), 8

itype option, 209

IWU utility, 501

J
Jayanthi, K., 321

JPGraph library, 392

K
--k <checksum mode>, 148

Keeni, Glenn Mansfield, 321

keepstats option, 241

kernel compilation

in Fwsnort, 638

in Snort_inline, 655–656

kernel tuning, 104–105
keyword registration, Snort plug-in,

314

keywords

for incident handling, 680–681

PCRE, 69

with perfmon preprocessor,

678–679
for rule actions, 196–197

Kiwi Software, 325

Knoppix, 33, 111

known bad, network traffic, 22–23

known good, network traffic, 22–23

Kubesh, Blaine, 259

L
--L <fn>, 148

--l <ld>, 148

−L option, 84

−l option, 84

−l switch, 504

lab. See test lab

large-scale deployment, 103

law enforcement agency

incident handling and, 681

interaction with, 685

Layer 2 protocol mapping, 19–20

layers, 608–609

−ldir option, 439

legal concerns, honeypot, 689

lex, 61

Libnet, 501

libnet, 654

libpcap, 326, 327, 654

libpcap, installing, 112–123

Index 707

in general, 112–113
in GUI-free environment, 117–118,

120–122
from RPM, 122–123
software installation from source,

118–120
from source, 113–117

libpcap, Snort requirement, 61, 163

libpcre, installing, 123–124

libraries, for ACID installation,

391–393
licensing

of databases, 334

detection plug-ins and, 174–175

of plug-ins, 183

limits, of IDS, 39–42

link-layer decoders, 166

Linux

Barnyard and, 538

OS choice for Snort, 479, 484, 527

reasons to use with Snort

installation, 102–103

Snort_inline and, 655–656

software installation on, 118–120

stripping, 104–106

stripping out candy, 106–107

support for, 103–104

Syslog and, 323

. See also SUSE Linux 9.1

Linux 2.6, 61

Linux Bootable Business Card (BBC),

34

Linux distributions, 108–112

Debian GNU/Linux, 108

Gentoo Linux, 109–110

hardened/specialized, 110–112

overview of, 162

Slackware Linux, 108–109

LinuxRed Hat 8.0, 389–394

local rules file, 449–450

localtime, 560

localtime configuration directive, 547

lock down, OpenBSD, 150–151

log directory option (-L), 544

log file formats, 422

log files, 36

log keyword, 196

log management tests, 485–486

log monitoring, 428–430

log parsing, 21

log records, 535–536

LogConfig function, 590–591

logdir, 193

log_dump, 561–564

log_flushed_streams option, 242

logging

alert, 173

default Snort output plug-in,

316–321

formats, 96

for incident handling, 681–682

intrusion analysis timeframe,

487–488

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 708

708 Index

PCAP, 326–327

Snort as packet sniffer/logger,

75–85

by Snort-Inline, 688

Snort unified, 338–342

tests, 478–479

XML, 322

logging component, of Snort, 70,

72–73

logging format syntax, 89

logging option, 213

LogMessage function, 295

LogMessage function, 590–591

log_packets.sh, 408, 415

logparser, 93

log_pcap, 564

logsnorter, 387

log_tcpdump output plug-in, 326–327

logto keyword

incident handling with, 680–681

for logging, filtering, 681–682

Lucas, Michael W., 151

M
--m <mask>, 148

--M <wkstn>, 148

MAC address, 496–497

macro virus, 693

magic value, 602

mailing lists

Barnyard, 603

for operating systems, 93

security/anti-virus, 462

SecurityFocus IDS mailing list, 259

make command

installing libpcap from source with,

122

libpcap installation from source

with, 114

for Snort installation from source,

130

for Snort installation using

OpenBSD ports, 152–153

software installation with, 118–119

make install command

installing libpcap from source with,

122

libpcap installation from source

with, 114

for Snort installation from source,

130

for Snort installation using

OpenBSD ports, 152,

153–155

software installation with, 118–120
makefile, 119–120
Makefile.am, 594–595
management, for CIRT organizations,

463

management questions, 57–58

master boot record virus, 693

matching ports, 187–188

max keyword, 678

Maximum Transfer Unit (MTU), 248

Mayers, Phil, 371

McMillen, Rob, 653, 686

memcap option

flow configuration with, 251–252

in frag2 preprocessor, 249

of stream4 preprocessor, 242–244,

247

memory

frag2 preprocessor and, 249

stream4 preprocessor’s use of,

242–244

memory fault, 243

memory space, 464

message map files, 545

message option, 212–213

messages

alert, localization of in Barnyard,
596–597, 601

alert_syslog, 554–556

alert_syslog2, 556–560

blocking agent, 632–633

error, Barnyard configuration, 540

meta-data options, rule, 209–212

Metasploit, 459

Microsoft Windows

for ACID, 389

detect_state_problems parameter

and, 239

OS choice for Snort, 479, 484

Snort installation on, 140–146

Snort rus reliably on, 102

milestones, benchmark, 495

minimal threats, 489, 490

min_ttl parameter

flow configuration with, 252–253

in frag2 preprocessor, 249–250

function of, 193

Mitnick, Kevin, 31

mobile sensors, 526–527

mobile workstations, 376

moderate threats, 489

mod_ssl module, 397

monitoring

of system calls, 21

for updates, 462–465, 468

motherboard, 473–474

motives, attack, 28–30

mountd buffer overflow exploit. See

NFS mountd overflow exploit

MS SQL, 333

mSplit() function, 295

MTU (Maximum Transfer Unit), 248

multi-partite virus, 693

multiple address variable, 190

multiple attack paths, 6–7

multiple file processing, 571

multiple process running, 576–577

multiprocessor support, Linux, 102

multitasking, 475

MyDoom worm, 30

myPluginAlert, 350

myPluginCleanExit, 350

myPluginInit, 349–350

myPluginRestart, 350

myPluginSetup, 349

MySQL

ACID installation and, 393–394

ACID supports, 388

compacting, 438

installing from RPM, 124–126

installing from source, 126–127

PHP support, 390–391

vs. PostgreSQL, 333–338

Snort installation from SRPM and,

134

Snort script, 333

mysqltcl, 411

N
--N, 148

--n <num>, 148

Nazario, Jose, 151

nc.exe, 88

Neped, 90

Nessus, 520

NetBSD, 61

Netdude,THC’s, 513–517

Net::RawIP Perl module, 503

Netsky virus, 443

network

architecture, Snort and, 86–87

Barnyard and, 531

IDS, 10–13

IDS data collection and, 20–21

size, hardware choice and, 472

sniffing tools, 11

Network-Based Intrusion Detection
Systems (NIDSs), 10–13, 50

network bridge, 686

network card, 136

network connectivity testing, 477

Network File System (NFS) server

attack, 611

network impact, 490

network interface card (NIC)

choice for Snort optimization, 474,

477

network connectivity testing, 477

Snort hardware requirement, 58–59

Network Intrusion Detection System
(NIDS)

invoking Snort as, 85–86
network architecture and, 86–87
stress testing, 520–521
using Snort as, 62–63, 73–74

Network Intrusion Prevention
Systems (NIPS)

described, 49

firewalls and, 665–666

Slammer worm and, 607

. See also Intrusion Prevention

Systems

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 709

Index 709

network layer, 608

Network Node IDS (NNIDS), 48

network operations, 672–680

flow preprocessor family, 673–675

in general, 672

network traffic, unusual, 679–680

overview of, 697

perfmon preprocessor, 675–679

network reconnaissance attack,
187–188

network traffic
known good vs. known bad, 22–23
unusual, monitoring, 679–680

network, using Snort on

in general, 73–74

network architecture and, 86–87

as NIDS, 85–86

overview of, 95

as packet sniffer/logger, 74–85

pitfalls when running Snort, 87–89

Network Virtual Terminal (NVT), 280

Newsham,Tim, 434, 650, 40

NFS mountd overflow exploit

Fwsnort and, 650–653

overview of, 616–619

Snort_inline and, 663–664

Snortsam and, 633–636

NFS (Network File System) server
attack, 611

NIC. See network interface card

NIDS. See Network Intrusion

Detection System
NIDSs (Network-Based Intrusion

Detection Systems), 10–13, 50

Nikto, 520

NIPS, 665–666. See Network

Intrusion Prevention Systems
NMAP

IDS and, 47

link to, 520

TCP ACK option and, 208

NMAP TCP ping scan, 208

NNIDS (Network Node IDS), 48

no_alert_incomplete parameter, 264

no_alert_large_fragments parameter,

264

no_alert_multiple_requests parameter,

264

noalerts option, 247

nocase option

to match content strings, 229

in rule, 201

noinspect option, 241

nolog, 193

nonpromiscuous mode, 10

nonrule detection, 269

. See also anomaly-based detection,
preprocessor options

no_promisc, 193

(NormalizeTelnet()) function, 283

Norton, Marc, 169, 258

NTOMax, 520

NVT (Network Virtual Terminal), 280

O
--o, 148

--O, 149

obfuscate, 193

OBSD. See OpenBSD

Offline NT Password & Registry

Editor, 34

offset option content, 201

Oinkmaster

function of, 71

for rules updates, 451–455

Omnibus Crime Control and Safe

Streets Act of 1968, 3–4

“One Way Cable Preparation Guide”

(Gray), 59

Online Update tool (YOU), 111

open-source software, 530

OpenBSD (OBSD)

Linux advantages over, 102

Linux has more support, 103–104

ports, Snort installation using,

152–157
Snort installation on, 150–159

operating system for Snort
optimization

considerations, 479

“good” OS selection, 480

hardware and, 526

leveraging Win32 IPSEC via Snort,

480–484

Linux, 527

measuring OS selection, 484–485

overview of, 523, 524

testing, 485–486

operating system (OS)

for ACID, 388

for ACID installation, 389

attacks on, 92

Barnyard and, 538, 603–604

compatible with Snort, 96

mailing lists for, 93

security, 32

security tips for, 93

for Snort installation, 101–107, 161,

163

Snort requirements, 60–61

op_plugbase.c, 593–594
optimizing Snort

benchmark characteristics, 494–496
benchmarking options, 496–519
Berkeley Packet Filter tests,

521–522

hardware choices, 472–479

operating system choice, 479–486

rule tests, 521

speeding up, 486–493

stress testing, 520–521

tuning rules, 522

OptTreeNodes (OTN), 168–169

Oracle, 333

order, 193

organizations, testing within, 459–462

OS. See operating system

OTN (OptTreeNodes), 168–169

output

of frag2 preprocessor, 250

HTTP decode preprocessor, 262

rpc_decode preprocessor, 265

Snort plug-in, 367–371

Snort plug-in, problems with,

371–372

Snort vs. tcpdump, 78

of stream4 preprocessor, 247

Telnet negotiation preprocessor, 255

Output function, 591–593
output plug-ins

choice for speed, 492–493

configuration for Snort, 139

selection of/configuration of, 72

Snortsam, 621–622

. See also Snort output plug-ins

output plug-ins, Barnyard

acid_db, 565–567

adding to op_plugbase.c, 593–594

alert_csv, 551–554

alert_fast, 550–551

alert_syslog, 554–556

alert_syslog2, 556–560

build system update, 595

described, 598

directives, 549

log_dump, 561–564

log_pcap, 564

Makefile.am update, 594–595

overview of, 549–550

real-time console alerting, 595–596

sguil, 567

source files setup, 585–587

writing functions, 587–593

writing, overview of, 584, 601

outsourcing, 8

P
--p, 149

-p option, 544

--P <snaplen>, 149

package management

with Debian GNU/Linux, 108

with Gentoo Linux, 109

with Slackware Linux, 109

packet analysis
with Ethereal Network Analyzer,

217–220
for rule development, 224

packet browser, ACID, 387

Packet Capture Library (PCAP),

326–327

packet captured length, 536

packet data

intrusion analysis and, 382

unified log record field, 536

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 710

710 Index

packet decoder

function of/configuration, 63–64

in Snort’s process, 62

packet generation, 517–518

packet headers, 78

packet length, 536

packet logger, 62, 74–85

packet logs, analysis of, 431–434

packet loss

hardware choice and, 472, 473, 474

NIC choice and, 477

packet matching, 232

packet reassembly. See reassembling

packets
packet sniffer

for rule content, 229

for Snort rule content, 217–220

using Snort as, 74–85

packet sniffing, 20–21

packet timestamp, 536

packets

attack detection and, 167–173

decoders, 166–167

IDS and, 35

Netdude and, 513–517

overview of, 166

preprocessors and, 64

tagged in unified log records, 535

Paketto Keiretsu, 520

Palmer, Brendan, 151

parser function, 178–179

parsing, 21, 64

partition

separation of log and database

partitions, 389

Snort installation on OpenBSD

and, 151

pass keyword, 196

pass rules

alert rules and, 68

when to use, 197

passive response, 24–25, 26

passwords

ACID installation, 393, 394

ACID security and, 398

Back Orifice and, 268

for SGUIL database, 409

Web server password for ACID, 396

patch-o-matic, 637

patches

for Linux security, 111–112

patch/IAVA verifications, 692

for securing Snort system, 92

for SGUIL installation, 413–414

Snort installation and, 101

pattern matching

failures, 254

GREP and, 527

PCRE for, 69

rule matching, 67–68

speed and, 490

payload size, 213–214

pcap

installing, 112–123

Snort requirement, 163

Pcap binary format, 382

PCAP file, 513, 517

PCAP (Packet Capture Library),

326–327

PCI bus speed, 473

PCRE. See Perl Compatible Regular

Expressions

PCRE library package, 123–124

Pen Register,Trap and Trace Statute, 4

perfmon-graph tool, 457–458,

675–676
perfmon preprocessor

dropped packets, 699

how to use/options of, 677–679

uses for, 675–676

perfmonitor, 457–458
perfmonitor preprocessor, 274–275
performance, stripping Linux for,

104–106
Perl

leveraging Win32 IPSEC via Snort,
480–484

SnortSnarf, 422–427

snort_stat.pl, 419–422

Perl Compatible Regular Expressions
(PCRE)

for behavioral tracking, 689–692

described, 69

regular expressions for, 202–203

Phlak

described, 110

Web site, 111

PHP (Hypertext Preprocessor)

ACID installation and, 390–391

acronym history, 17

version for ACID, 438

PHPlot library, 391–392

physical security, 32–34

PigSentry, 72

pipe characters (|), 199–200

pkgtool, 109

pktcnt keyword, 678

pkt_count, 194

plan, security, 31

playback mode, 318–321

plug-ins

adding preprocessor into Snort,
300–302

detection, 183

detection, writing, 173–181

preprocessors as, 233

. See also output plug-ins, Barnyard

policy
company, monitoring with Snort,

44

firewall, 621–622

security, IDS and, 50

policy-based intrusion detection
described, 694–695

security with, 672

policy enforcement, 692, 694–695

policy enforcement rules, 464–465

policy-based IDS, 19

politics, as attack motivations, 30

Pomraning, Michael, 202

port density, 461

port matching, 187

Port Scan Attack Detector, 648

port scans, 669

Portage tree, 109, 110

portmapper, 263

ports

rpc_decode preprocessor
configuration, 263–264

Snort hardware requirement, 59–60

Snort in switched network and, 87

Snort installation using OpenBSD

ports, 152–157

specifying for Snort, 164

Telnet negotiation codes and, 255

Telnet negotiation preprocessor

code and, 293–299

ports option, 247

portscan preprocessor

configuring, 267

function/process, 265–267

SGUIL installation and, 413–414

portscan2 preprocessor
configuring, 272–273
conversation preprocessor with,

271–272

portscans, stealth mode, 96

PostgreSQL

ACID installation and, 393–394

ACID supports, 388

vs. MySQL, 333–338

PHP support, 390–391

Snort installation from SRPM and,

134

Snort script, 333

Preprocess, 167–168

preprocessor arguments, 315

preprocessor output, 188

preprocessor stream4_reassemble,

244–247
preprocessors

configuration for Snort, 139

configuring for speed, 490–491

decoding/normalizing protocols,

options for, 254–265

defined, 233–234

experimental, 269–275

flow-portscan, 66–67

frag2, 248–254

function of, 64

functionality of, 232

HTTPInspect, 65–66

nonrule/anomaly-based detection

options, 265–269

overview of, 303–306

as plug-ins, 233

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 711

SGUIL installation and, 413–414
stream4 preprocessor, 234–247

preprocessors, writing
adding preprocessor into Snort,

300–302

decoding protocols, 276

nonrule or anomaly-based

detection, 276–277

overview of, 306

preprocessor’s code, 280–300

reassembling packets, 275

setting up my preprocessor,

277–280

prevention, attack, 40–42

print statements, 190

PrintXref function, 593

priorities, 554

priority, 533

privacy

IDS and, 3–4
regulations, 12–13

prmfindrulegroup, 170

processors

choice for Snort optimization,
474–475

speed/architecture for Snort
optimization, 473

ProcessPacket, 166

production environment, benchmark

in, 496

production systems, 444–446

promiscuous interfaces, 90–91

promiscuous mode

NIDS, 10

port in, for switched network, 87

protected trade secrets, 4

protocol

active response and, 611

alert record field, 534

analysis, 24–25, 49

normalization, 308

rule header category, 195–196

Ptacek,Tom, 434, 650, 40

Q
--q, 149

query building, with ACID, 387

querying

ACID database, 400–401
alert groups in ACID, 402–404

queueing, event, 171

quiet, 194

R
-R argument, 504

-R (“dry run” option), 543, 569–571

−r switch, 84–85

--r <tf>, 149

Random Access Memory (RAM),
475–476

Rash, Michael, 648

rawbytes, 255, 282

Razorback, 71

react keyword, 691

real-time console alerting, 583–584,

595–596
reassembling packets

frag2 for, 249–254

preprocessor options for, 305

preprocessors for, 234, 275

stream4 preprocessor for, 235–247

Red Hat Linux, 112

Red Hat Package Manager (RPM)

installing SQL from, 124–126

libpcap installation from, 122–123

Linux distributions that use, 108

rpm2targz utility, 109

Snort installation from, 132–134

reference_net, 194

RegisterPreprocessor() function,

284–285

regular expressions

PCRE for behavioral tracking,

689–692

in rule, 202–203

regulations, privacy, 12–13

relational database plug-ins, 368

remote administration test, 485

Remote Procedure Call (RPC)

protocol, 262–265

remote syslog alerting, 578–580

RenderTimeval function, 593

replace keyword, 688

Request for Comments (RFC)

protocol information from, 383

Telnet protocol, 279

resources

as attack targets, 29–30

locking down OpenBSD, 151

for Snort, 56

system, Barnyard and, 322

TCP/IP Illustrated, Volume 1

(Stevens), 236

. See also shared resources; Web site

resouces

resp option, 215

response. See active response

return on investment (ROI), 47–48

RFC (Request for Comments)

protocol information from, 383

Telnet protocol, 279

RFC3164 message format

overview of, 557–558

timestamp and, 560

“The Rime of the Ancient Mariner”
(Coleridge), 386

Roelker, Daniel, 169, 256–258

Roesch, Martin, 326

detection engines and, 169

Index 711

development of Snort, 56

preprocessor design by, 233

on sequence number option, 206

on stream4 preprocessor, 235

stream4 preprocessor and, 246

ROI (return on investment), 47–48

“root” permissions, 150

rpc option, 214

RPC preprocessor, 443

RPC (Remote Procedure Call)

protocol, 262–265
rpc_decode preprocessor

configuring, 263–264

decoding protocols with, 276

functions of, 234

output, 265

overview of, 303

reasons for, 262–263

RPM. See Red Hat Package Manager

rpm2targz utility, 109

rrdtool, 458

RTN (RulesTreeNodes), 168–169

Ruiu, Dragos, 271

rule

difference from signature, 307

examination of, 383

rule actions

activate and dynamic rules,

197–198

custom rule actions, 197

pass rule, 197

rule header category, 195–196

types of, 196–197

rule-based analysis, IDS, 24–25
rule body

format, 198–199

function of, 186

rule content

ASCII and binary content, 200

ASCII content, 199

binary content, 199–200

depth content option, 200

flow control, 203–204

nocase option, 201

offset option content, 201

regular expressions, 202–203

session option, 201

stateless option, 202

Uniform Resource Identifier

content option, 201–202
rule headers

categories, 195–196

function of, 186

overview of, 227

rule actions, 196–198

rule matching

with detection engine, 67–69

in Snort, 232

rule options, 198–215
ICMP options, 208–209
IP options, 204–206

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 712

712 Index

meta-data options, 209–212

miscellaneous, 212–215

overview of, 227

rule body, 198–199

rule content, 199–204

TCP options, 206–208

rule revision number, 210

rules

actions in Snort_inline, 658–659

blocking, 621–622

dissecting, 187–188

drop, 628

engine, 545

file, local, 449–450

forensic, 465

frequency of installation, 469

Fwsnort and, 636

in general, 186–187

for mobile sensors, 526–527

order of, 183

policy enforcement, 464–465

removing from ruleset, 450–451

rule headers, 195–198

rule options, 198–215

rule type order and, 171

short-term, 464

Snort configuration, 191–195

suppression, 173

testing, 521–522

tuning, 522

updating, 467

variables for, 188–190

writing good rules, 215–225

rules updates

overview of, 447–448, 466

removing rules from ruleset,

450–451

using IDSCenter for rules merging,

455–456

using local rules file, 449–450

using Oinkmaster, 451–455

using variables, 448–449

rules, writing

action events, 216–217

bad rule, elements of, 223

capabilities with, 186

evolution of, 224–225

in general, 215

good rule, elements of, 216

overview of, 227

proper content, 217–220

questions about, 228–229

steps of, 224–225

subnet masks, merging, 220–222

ruleset

configuration for Snort, 139–140

determining, 488–490

removing rules from, 450–451

upgrading Snort and, 89

RulesTreeNodes (RTN), 168–169

S
--s, 149

--S <n=v>, 149

-s option, 544

Salgado, Richard, 689

SAM (Snort Alert Monitor), 336–338

Samhain, 93

Sarbanes-Oxley requirements, 47–48

SATA drive, 476

scale, 57

A Scandal in Bohemia (Doyle), 380

scanning

compromise vs., 5–6

IDS and, 29

scripts

Barnyard configuration options,

539–540

contrib directory, 331–333

SCSI, 476

search, 400–401

Secure Architectures with OpenBSD

(Palmer and Nazario), 151

Secure Shell (SSH), 91

securing Snort system, 92–93, 97

security

ACID, 397–398

of Linux distribution, 111–112

physical, 32–34

plan, IDS and, 31

securing Snort system, 92–93, 97

Snort’s advanced features for, 672

security fixes, 92

security holes, 518, 519

security plans, 31

security, system, 328

SecurityFocus IDS mailing list, 259

SELinux, 111

sendmail buffer overflow, 9

sensor placement, 478

sensor scripts, 408, 413–415

sensor_agent.tcl, 408, 415

sensors

attacks on, 443

deploying Snort as NIDS, 73–74

deployment and network

architecture, 86–87

detection of Snort system on

network, 90–91

in DIDS, 14–16

memory space and, 464

SGUIL and, 408

in switched network, 87

variables and, 448–449

SENTINIX GNU/Linux, 128–129

September 11 terrorist attacks, 30

sequence number option, 206

sequence option, 209

server bytes, 537

server configuration section, 65–66

server IP address, 537

server packets, 537

server port, 537

server-specific variables, 139

serveronly option, 246–247

services, 105

session

stream4 preprocessor and, 247

TCP, 235–237

session keyword, 681

session option, 201

session reassembly, 244–247

session:printable keyword, 681–682

set_gid, 194

SetTelnetPorts() function, 293–294

set_uid, 194

Setup() function, 301

Setup function

of detection plug-ins, 176

overview of, 588–589

SetupTelNeg() function, 284

setwise pattern match, 68

severity, 558

severity identifier option, 210

SGUIL. See Snort GUI for Lamers

sguil, Barnyard output plug-in, 567

SGUIL client

function of, 408–409

installation, 413

SGUIL database, 409–410

Sguild (SGUIL server)

function of, 408

installing, 410–412

sguild.conf, 411–412

sguil.tk, 413, 416

Shadow Sensor/OS, 111

shared resources, 42

shellcode, 271

short-term rules, 464

show tables command, 334–335

show_year, 194

sid-msg-map configuration directive,

548, 602

SID (Snort event ID), 545

SID (Snort signature ID), 69–70

signal handling, 577

signature, 307

signature-based analysis, 24–25

signature generator ID, 533

signature ID, 533

signature revision, 533

signatures

Snort and, 52

updating, 443

writing for Snort, 44

Simple Network Management

Protocol (SNMP), 321

simple string matching, 187–188

single file processing, 568–569

single point of failure, 89

Slackware Linux, 108–109

Slammer worm, 607

“Smashing the Stack for Fun and

Profit” (Aleph1), 271

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 713

SMB alerting, 326

Sneeze

benchmarking with, 502–503

testing with, 459

sniffing link, 612

sniffing tools, 11

SNMP (Simple Network

Management Protocol), 321

Snort

configuration to work with

SnortSnarf, 424–425

exploit tools and, 43–44

preprocessor, adding into, 300–302

rules engine, 545

in security architecture, 42–44, 51

Stick/Snot and, 46

unified alert records, 532–535

unified files, overview of, 532

unified log records, 535–536

unified stream-stat records, 536–537

updates, 444–446

worms/viruses and, 40–42

writing signatures with, 44

Snort 2.1
defined, 55–56
features, 62–73
need for, scenarios, 54–55
system requirements, 57–62
system security with, 89–93
using on network, 73–89

Snort 2.1 features, 62–73

add-ons to, 70–72

alerting/logging components, 70,

72–73

detection engine, 67–70

in general, 62–63

overview of, 95

packet decoder, 63–64

preprocessors, 64–67

Snort 2.1.3 Release Candidate 1, 68

Snort 3, 445–446

Snort, advanced features

behavioral tracking, 689–692

forensics/incident handling,

680–685

honeynets and, 686–689

network operations, 672–680

patch/IAVA verifications, 692

policy enforcement, 692, 694–695

trojan, virus, worm, differences,

693–694

Snort Alert Monitor (SAM), 336–338

Snort event ID (SID), 545

Snort GUI for Lamers (SGUIL)

components, 407–409

function of, 71

installing, 409–416

overview of, 435

questions about, 439

using, 416–418

Snort ID option, 209–210

Snort ID (SID) 316, 611, 617,

663–664

Snort ID (SID) 807

Fwsnort command for, 644–646

Web server attacks and, 611,

613–616

Snort-Inline, 686–689, 699

Snort installation

command-line switches, 147–150

CVS, 160

in general, 100–101

getting Snort for installation,

127–128

installatiion of bleeding-edge

versions of Snort, 159

installation from RPM, 132–134

installation from source, 129–132

installation on MS Windows

platform, 140–146
Linux distributions, 108–112
on OpenBSD, 150–159
operating system for, 101–107
preparation for, 112–127
SENTINIX GNU/Linux, 128–129
snort.conf file, editing, 138–140
using apt, 134–137

Snort output plug-ins

default logging, 316–321

described, 312–315

MySQL vs. PostgreSQL, 333–338

options, 315

output problems with, 371–372

overview of, 312

PCAP logging, 326–327

post-Snort data modification,

367–371

setting up, 345–348

SMB alerting, 326

SNMP traps, 321

Snortdb, 327–333

Syslog, 322–326

unified logs, 338–342

W3C, 348–350

W3C code example, 353–366

W3C, running/testing, 367

W3C source code, 350–353

writing, overview of, 342–345

XML logging, 322

Snort signature ID (SID), 69–70

Snortalog, 71

snort.conf file

alerting/logging components called
from, 70

detection engine and, 67

editing, 138–140

in Snort process, 63

stream4 preprocessor activation in,

238–239
using Snort as NIDS and, 85–86

Snortdb, 327–333
Snort_inline

architecture, 659–660

Index 713

configuration, 657–659

described, 608, 610–611, 669

installation, 655–656

NFS mountd overflow attack and,

663–664

overview of, 653–654

Web server attack, 660–663

Snortplot.php, 71

Snortsam

in action, 624–636

architecture, 621–624

described, 608, 610, 668

installation, 619–620

overview of, 619

SnortSnarf

browsing packet contents in, 439

configuring Snort to work with,

424–425

function of, 71, 435

for high-level information, 418

installing, 422–423

using, 425–427

snort_stat.pl

for high-level information, 418

running, 419–422

Snot

IDS and, 46

Snort attacks with, 91

testing with, 459

Web site for information on, 519

software

open-source, 530

operating system for ACID

installation, 389

Snort requirements, 60–62

stripping Linux, 105

Song, Dug, 248, 40

source

compiling from, 118–120

intrusion data correlation and, 384,

385

libpcap installation from, 113–117

Snort installation from, 129–132

Snort installation on OpenBSD

from, 157–159
SQL installation from, 126–127

source builds, 444–445

source files, 585–587

source information, 195–196

source IP address, 534

source port, 534

source RPM (SRPM), 133–134

Sourcefire, 56

SourceFire, 169–170

SourceForge, 160

speed

hardware choices for, 473

preprocessors slow down speed,

232–233

speed, Snort, 486–493

analysis timeframe, 487–488

generic variables, 492

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 714

714 Index

goals/methods, 486–487

output plug-in choice, 492–493

overview of, 525

pattern matching and, 490

preprocessors, configuring for,

490–491
rulesets, determining, 488–490

SPIKE, 520, 521

spo_alert_full output plug-in, 345–348

spoofing, 269–270

spool directory option (-d), 543–544

spp frag2 message, 431

spp_portscan, 413

spp_stream4, 413

SQL database, 75

SQL Slammer, 6–8

SRPM (source RPM), 133–134

SSH (Secure Shell), 91

StackGuard

to harden operating system, 93

for Snort protection, 92

Start function, 589

start time, 537

stateful, 194–195

stateful inspection, 238–244

statefulness,TCP, 235–244

stateless option, 202

stealth interfaces, 90–91

stealth mode, 16

stealth mode portscans, 96

stealth packets, 266

Stearn, Bill, 382

Stearns, William, 636

Stevens, Richard, 236, 279

stick

IDS and, 46

pros/cons of, 519

Snort attacks with, 91

stateful monitoring with, 238

stream4 preprocessor and, 246

Stop function, 590

storage medium, for Snort, 476

stream-stat records, 536–537

stream4 preprocessor

applying patch to, 413

conversation preprocessor and, 308

function of, 235

functions of, 234

output, 247

overview of, 303

packet reassembly and, 275

session reassembly, 244–247

SGUIL installation and, 414

speed and, 491

TCP statefulness with, 235–244

stress testing

for operating system tests, 485

tools for, 520–521

string match module, 637–638
stripping Linux, 104–106
SubDomain

to harden operating system, 93

for Snort protection, 92

subnet masks

common, 139

merging, 220–222

subnet-specific information, 19–20

sudo make install, 152, 153–155

Summary screen, of SnortSnarf, 425

summary scripts

function of, 418

SnortSnarf, 422–427

snort_stat.pl, 419–422

Sun Solaris TTY prompt buffer
overflow attack, 688

suppression, rules, 173

SUSE Linux 9.1

installing pcap, 112–123

installing SQL, 124–127

libpcre installation, 123–124

security, 111

Snort installation on, 100

swapping, 243–244
Swatch

configuration, 428–430

function of, 71, 435

monitor log files with, 93

process stopped, 438–439

switched networks

sensor placement tests on, 478

using Snort in, 87, 97

switches, 75

SYN flag, 236–237

Syslog, 322–326

syslog alerts

remote, 578–580
Swatch configuration for, 428–430

syslog_host, 559

syslog_port, 559

system administration tests, 486

system call monitoring, 21

system requirements, Snort 2.1, 57–62

hardware, 58–60

operating system, 60–61

overview of, 94

questions of management, 57–58

questions of scale, 57

software, 61–62

system security, Snort 2.1, 89–93

attacks, 90–92

in general, 89

overview of, 95

securing Snort system, 92–93

system services, 105

system, stripping Linux, 106–107

systems production, 444

T
--T, 149

--t <chroot>, 149

tag, 559

tag option, 213

tagging

activate/dynamic roles phased out

by, 198

packet, 171–172

taps, 686

tar command, 121

tarball

configure, make, make install,
118–120

defined, 108

downloads, 638

installing libpcap from, 113–117

Snortsam, 620

target, 384

target-based IDS, 49

tcl, 410–411

tclx, 411

TCP ACK option, 208

TCP flags option, 207–208

TCP/IP Illustrated, Volume 1

(Stevens), 236, 279

TCP/IP (Transmission Control

Protocol/Internet Protocol),

55–56, 61

TCP options, rule

sequence number option, 206

TCP ACK option, 208

TCP flags option, 207–208

TCP packets, 170

TCP session reassembly, 244–247

TCP statefulness, 235–244

TCPDump, 327

tcpdump

BPF rules testing with, 521–522
Netdude designed to work with,

513

options, 613

output format, 78

output formats, 432

tcpdump binary format, 75

TCPReplay

benchmarking with, 504–513

Netdude works with, 513

teardrop attack, 431–434
technologies, for IDS implementation,

24–25

TelNegInit() function, 283, 284, 294

Telnet

decoding, 491

session reassembly, 244–245

Telnet negotiation preprocessor

adding preprocessor into Snort,

300–302

code, 280–300

configuring, 255

decoding protocols with, 276

function of, 254

getting data into Snort, 300

output, 255

overview of, 303

setting up my preprocessor,

277–280
Telnet protocol, 279–280

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 715

template, preprocessor, 277–280
terminology, IDS, 48–49
test lab

compiled builds and, 445

in large organizations, 461

single box/nonproduction, 460

for testing Snort/rules, 457

testing, 456–457

with batch-processing mode, 579

Berkeley Packet Filter tests,

521–522

of detection plug-ins, 180–181

hardware, 477–479

operating system, 485–486

rule content, 220

rule tests, 521

rules, 225

Snort/rules, 457–462, 466, 468

stress testing, 520–521

. See also benchmarking deployment

text case, 201

THC’s Netdude, 513–517

threats, ruleset configuration and,

489–490
thresholding

detection engine, 172–173
with Snort, 69–70

time, 384, 385

time keyword, 678–679

Time to Live (TTL)

feature of IDS Wakeup, 501

flow configuration and, 252–253

frag2 preprocessor and, 249–250

option, 206

Time::JulianDay module, 422

timeout option, 241–242

timeout parameter, 249

timestamp, 560

tools

bootable, 33–34

EagleX, 460

exploit, 43–44

Metasploit, 459

network sniffing, 11

perfmon-graph, 457–458

perfmonitor, 457

rrdtool, 458

Sneeze, 459

Snot, 459

Stick/Snot/Snort, 45–46

for updates management, 463

User-Mode Linux, 458

Virtual PC, 458

VMware, 458

top tool, 243

TOS (Type-of-Service) option, 206

trace analysis, 516

trace area management, 513, 514

traffic

altering based on IDS alerts,

609–619

effects of active response on, 610

encrypted, IDS and, 18

reconstruction, 682–685

rules for, 186

Snort sensor deployment and,

86–87

validation, 383

validation for analyzing IDS events,

431–433

traffic scrubber, 434

Transmission Control

Protocol/Internet Protocol
(TCP/IP), 55–56, 61

transport layer, 608

trimming, 406

Trinux, 110, 111

Tripwire, 93

trojan

55808 Trojan, 680

defined, 693–694

IDS and, 32

Trustix, 110, 111

TTL. See Time to Live

ttl_limit parameter

flow configuration with, 253

in frag2 preprocessor, 250

of stream4 preprocessor, 241

tuning, rules, 225, 522

twenty-five percent test, 478

Type-of-Service (TOS) option, 206

U
--U, 150

--u <uname>, 150

UCD-SNMP, 134

UDP bomb attack, 187

UDP (User Datagram Protocol),

323–324

UltraSPARC processor, 475

UM (User-Mode) Linux, 458

Unicode, 260

unicode option, 260

Unified binary format

logging packet data in, 382

SGUIL installation and, 414–415

unified files

alert records, 532–535

file archiving and, 576

host byte order and, 602–603

log records, 535–536

magic value, 602

overview of, 532, 599

stream-stat records, 536–537

unified logs

Snort, 338–342

storing, pros/cons of, 370

unified output format, 72–73
unified.alert

continual-processing mode and,
572–573

in remote syslog alerting, 579–580

Index 715

Uniform Resource Identifier (URI)
content option, 201–202,
219–220

Uniform Resource Locator (URL),

256–259, 303

UNIX

for ACID, 389

Barnyard and, 537–538

OS choice for Snort, 484–485

Sneeze runs in, 503

Syslog and, 323

unmask, 195

up2date, 111

updates

of build system in Barnyard, 595

change control, 456–457

frequency of, 469

overview of, 442–444

rules, 447–455

Snort, 444–446

testing Snort/rules, 457–462

watching for, 462–465, 468

upgrade, Snort, 88–89
URI (Uniform Resource Identifier)

content option, 201–202,
219–220

URL Encoder command-line tool, 258

URL (Uniform Resource Locator),

256–259, 303

user

ACID installation and, 393

IDS and, 3

user-agent field, 450

User Datagram Protocol (UDP),

323–324

User-Mode (UM) Linux, 458

utc, 195

V

--V, 150

--v, 150

-v option, 569

−v switch, 74, 79

validation

of traffic, 383

of traffic, analyzing IDS events,

431–433

var EXTERNAL_NET variable, 139

var HOME_NET variable, 138

variables

defining for rules, 228

local rules file and, 449

rules, 448–449, 469

rules updates and, 448–449

for rulesets, 188–190, 226–227

Snort configuration options,

191–195

verbose, function of, 195

verbose mode, 140

virtual consolers, 106

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 716

716 Index

virtual local area networks (VLANs),
87

Virtual PC, 458

viruses

active response and, 670

defined, 693

overview of, 6–8

Snort and, 40–42

VisualCVS, 160

VLANs (virtual local area networks),

87

VMware, 458

vulnerabilities

operating system attacks and, 92

remote vulnerabilities in Snort, 91

rule development and, 224

vulnerability assessors, 74

W
W3C, 375

W3C Snort output plug-in

code example, 353–366

myPluginAlert, 350

myPluginCleanExit, 350

myPluginInit, 349–350

myPluginRestart, 350

myPluginSetup, 349

overview of, 348–349

running/testing, 367

source code, 350–353

watchlists, 694

Web-based configuration, of

SENTINIX, 128–129

Web server

ACID installation and, 388–389,

390

password for ACID protection, 396

PHP4 support for, 390–391

SnortSnarf and, 427

Web server attack

active response and, 611

Snort_inline, 660–663

Web site resources

ADODB library, 393

aggregate, 222

Barnyard, 538–539

Barnyard/SourceForge, 604

BSD/MIT license, 334

Checkinstall, 120

Chen’s script, 335

correlation information, 434

CVS, 159

EagleX, 460

Ethereal, 217

FIRE, 33

fragroute, 40

Ftester, 519

Fwsnort, 636

GD library, 391

hardened Linux distributions, 111

Honeynet Project, 611, 686

honeypot legal issues, 689

HPing2, 501

“HTTP IDS Evasions Revisited”

(Roelker), 256

IDS Informer, 496

IDS Wakeup, 501

intrusion attempt log analysis, 21

Iris, 318

Kiwi Software Syslog, 325

Knoppix, 33

libpcap, 112

libpcap/TCPDump, 327

Linux-BBC, 34

Metasploit, 459

MySQL archive, 126

Net::RawIP Perl module, 503

Nmap, 47

Offline NT Password & Registry

Editor, 34

“One Way Cable Preparation

Guide” (Gray), 59

Packet Factory, 501

patch-o-matic, 637

Pcap-aware tools, 382

PCRE package, 123

perfmon-graph, 457

perfmon-graph tool, 675

PHP, 17

PHPlot library, 392

Port Scan Attack Detector, 648

promiscuous interface detection

programs, 90

for protocol-based analysis IDS, 24

Request for Comments, 383

RFC3164 message format, 557–558

RPMs, 132, 133

rrdtool, 458

rules updates, 442

for rules updates, 452

SAM, 336

for security, 93

SecurityFocus IDS mailing list, 259

sguil, 567

Sneeze, 502

Snort, 127

Snort add-ons, 70–72

Snort preprocessors, 64

Snort resources, 56

Snort source code, 157

SnortSnarf, 422

Snot, 46, 519

software downloads, 61

StackGuard and SubDomain, 92

Stick, 46

stress-test tools, 520

SUSE Linux download, 100

target-based IDSs, 40

tcl tools, 411

TCP/IP stack system benchmarks,

61

Telnet protocol, 279

for updates, 462

updates management, 463

User-Mode Linux, 458

Virtual PC, 458

VMware, 458

wget command, 614

Whisker, 520

Win32, 480–484

WinCVS, 160

WinPcap, 141–142

winvnc.exe, 88

with-mysql-includes=<dir>, 539

with-mysql-libraries=<dir>, 539

with-postgres-includes=<dir>, 539

withpid, 559

witty worm, 443

worms

active response and, 670

defined, 694

MyDoom, 30

overview of, 6–8

Slammer, 607

Snort and, 40–42

thresholding and, 172

write speed, of hard drives, 476

writing rules. See rules, writing

WWWBoard passwd.txt access attack

Fwsnort and, 643–650

overview of, 613–616

Snort_inline and, 660–663

Snortsam and, 626–643

X

--X, 150

X Windows, 132–133

Xcriptd, 416

XML (Extensible Markup Language),

322, 370–371

Y
--y, 150

yacc, 61, 62

Yet Another Setup Tool (YaST)

adding tools in GUI-free
environment, 117–118

adding tools with, 114–116
Linux stripping with, 106–107
Snort installation from RPM,

132–133

SQL installation with, 124–126

YOU (Online Update tool), 111

Z
--z, 150

-z option, 246

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 717

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and change free software—to make sure the soft
ware is free for all its users.This General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the
GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make
sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender
the rights.These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the
rights that you have.You must make sure that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal per
mission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not reflect on the original authors’ reputa
tions.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a
free program will individually obtain patent licenses, in effect making the program proprietary.To prevent this, we have
made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public License.The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another lan
guage. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is addressed as
“you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.The
act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in
exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 718

change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the
Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for
such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the

terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to

be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alterna

tive is allowed only for noncommercial distribution and only if you received the program in object code or executable

form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work,

complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus

the scripts used to control compilation and installation of the executable. However, as a special exception, the source code dis

tributed need not include anything that is normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies

the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equiv
alent access to copy the source code from the same place counts as distribution of the source code, even though third par
ties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to
modify or distribute the Program or its derivative works.These actions are prohibited by law if you do not accept this
License.Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a
license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions.You may
not impose any further restrictions on the recipients’ exercise of the rights granted herein.You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to
patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the condi
tions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 719

by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this

License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section

is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest

validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution

system, which is implemented by public license practices. Many people have made generous contributions to the wide

range of software distributed through that system in reliance on consistent application of that system; it is up to the

author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted inter
faces, the original copyright holder who places the Program under this License may add an explicit geographical distribu
tion limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which
applies to it and “any later version”, you have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of pre
serving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,THERE IS NO WARRANTY FOR THE
PROGRAM,TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM
ITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,YOU ASSUME THE COST OF ALL NECESSARY SER
VICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this
is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where
the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) yyyy name of author

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 720

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of

course, the commands you use may be called something other than ‘show w’ and ‘show c’; they could even be mouse-clicks

or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright disclaimer”

for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program `Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a

subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is

what you want to do, use the GNU Library General Public License instead of this License.

SYNGRESS PUBLISHING LICENSE AGREEMENT

THIS PRODUCT (THE “PRODUCT”) CONTAINS PROPRIETARY SOFTWARE, DATA AND INFORMATION
(INCLUDING DOCUMENTATION) OWNED BY SYNGRESS PUBLISHING, INC. (“SYNGRESS”) AND ITS
LICENSORS.YOUR RIGHT TO USE THE PRODUCT IS GOVERNED BY THE TERMS AND CONDITIONS
OF THIS AGREEMENT.

LICENSE: Throughout this License Agreement,“you” shall mean either the individual or the entity whose agent opens this
package.You are granted a limited, non-exclusive and non-transferable license to use the Product subject to the following
terms:

(i) If you have licensed a single user version of the Product, the Product may only be used on a single computer (i.e., a single
CPU). If you licensed and paid the fee applicable to a local area network or wide area network version of the Product, you
are subject to the terms of the following subparagraph (ii).

(ii) If you have licensed a local area network version, you may use the Product on unlimited workstations located in one
single building selected by you that is served by such local area network. If you have licensed a wide area network version,
you may use the Product on unlimited workstations located in multiple buildings on the same site selected by you that is

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 721

served by such wide area network; provided, however, that any building will not be considered located in the same site if it is more than
five (5) miles away from any building included in such site. In addition, you may only use a local area or wide area network version of
the Product on one single server. If you wish to use the Product on more than one server, you must obtain written authorization from
Syngress and pay additional fees.

(iii) You may make one copy of the Product for back-up purposes only and you must maintain an accurate record as to the location of
the back-up at all times.

PROPRIETARY RIGHTS; RESTRICTIONS ON USE AND TRANSFER: All rights (including patent and copyright) in and
to the Product are owned by Syngress and its licensors.You are the owner of the enclosed disc on which the Product is recorded.You
may not use, copy, decompile, disassemble, reverse engineer, modify, reproduce, create derivative works, transmit, distribute, sublicense,
store in a database or retrieval system of any kind, rent or transfer the Product, or any portion thereof, in any form or by any means
(including electronically or otherwise) except as expressly provided for in this License Agreement.You must reproduce the copyright
notices, trademark notices, legends and logos of Syngress and its licensors that appear on the Product on the back-up copy of the Product
which you are permitted to make hereunder. All rights in the Product not expressly granted herein are reserved by Syngress and its
licensors.

TERM: This License Agreement is effective until terminated. It will terminate if you fail to comply with any term or condition of this
License Agreement. Upon termination, you are obligated to return to Syngress the Product together with all copies thereof and to purge
and destroy all copies of the Product included in any and all systems, servers and facilities.

DISCLAIMER OF WARRANTY: THE PRODUCT AND THE BACK-UP COPY OF THE PRODUCT ARE LICENSED “AS
IS”. SYNGRESS, ITS LICENSORS AND THE AUTHORS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO
RESULTS TO BE OBTAINED BY ANY PERSON OR ENTITY FROM USE OF THE PRODUCT AND/OR ANY
INFORMATION OR DATA INCLUDED THEREIN. SYNGRESS, ITS LICENSORS AND THE AUTHORS MAKE NO
EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR
USE WITH RESPECT TO THE PRODUCT AND/OR ANY INFORMATION OR DATA INCLUDED THEREIN. IN
ADDITION, SYNGRESS, ITS LICENSORS AND THE AUTHORS MAKE NO WARRANTY REGARDING THE
ACCURACY, ADEQUACY OR COMPLETENESS OF THE PRODUCT AND/OR ANY INFORMATION OR DATA
INCLUDED THEREIN. NEITHER SYNGRESS, ANY OF ITS LICENSORS, NOR THE AUTHORS WARRANT THAT THE
FUNCTIONS CONTAINED IN THE PRODUCT WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE PRODUCT WILL BE UNINTERRUPTED OR ERROR FREE.YOU ASSUME THE ENTIRE RISK WITH RESPECT
TO THE QUALITY AND PERFORMANCE OF THE PRODUCT.

LIMITED WARRANTY FOR DISC: To the original licensee only, Syngress warrants that the enclosed disc on which the Product
is recorded is free from defects in materials and workmanship under normal use and service for a period of ninety (90) days from the
date of purchase. In the event of a defect in the disc covered by the foregoing warranty, Syngress will replace the disc.

LIMITATION OF LIABILITY: NEITHER SYNGRESS, ITS LICENSORS NOR THE AUTHORS SHALL BE LIABLE FOR
ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, CONSEQUENTIAL OR SIMILAR DAMAGES, SUCH AS BUT NOT
LIMITED TO, LOSS OF ANTICIPATED PROFITS OR BENEFITS, RESULTING FROM THE USE OR INABILITY TO USE
THE PRODUCT EVEN IF ANY OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS
LIMITATION OF LIABILITY SHALL APPLY TO ANY CLAIM OR CAUSE WHATSOEVER WHETHER SUCH CLAIM OR
CAUSE ARISES IN CONTRACT,TORT, OR OTHERWISE. Some states do not allow the exclusion or limitation of indirect, special
or consequential damages, so the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS. If the Product is acquired by or for the U.S. Government then it is provided with
Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in FAR 52.227-19.The
contractor/manufacturer is Syngress Publishing, Inc. at 800 Hingham Street, Rockland, MA 02370.

GENERAL: This License Agreement constitutes the entire agreement between the parties relating to the Product. The terms of any
Purchase Order shall have no effect on the terms of this License Agreement. Failure of Syngress to insist at any time on strict compliance
with this License Agreement shall not constitute a waiver of any rights under this License Agreement. This License Agreement shall be
construed and governed in accordance with the laws of the Commonwealth of Massachusetts. If any provision of this License Agreement is
held to be contrary to law, that provision will be enforced to the maximum extent permissible and the remaining provisions will remain in
full force and effect.

*If you do not agree, please return this product to the place of purchase for a refund.

295_Snort2e_Ind.qxd 5/6/04 2:27 PM Page 722

Syngress: The Definition of a
Serious Security Library

Syn•gress (sin-gres): noun, sing. Freedom
from risk or danger; safety. See security.

order @
www.syngress.com

AVAILABLE NOW Ethereal Packet Sniffing
Ethereal offers more protocol decoding and reassembly
than any free sniffer out there and ranks well among the

commercial tools. You’ve all used tools like tcpdump or windump to examine indi
vidual packets, but Ethereal makes it easier to make sense of a stream of ongoing
network communications. Ethereal not only makes network troubleshooting work
far easier, but also aids greatly in network forensics, the art of finding and exam
ining an attack, by giving a better “big picture” view. Ethereal Packet Sniffing will
show you how to make the most out of your use of Ethereal.
ISBN: 1-932266-82-8

Price: $49.95 U.S. $77.95 CAN

Nessus Network Auditing
Crackers constantly probe machines looking for
both old and new vulnerabilities. In order to avoid
becoming a casualty of a casual cracker, savvy sys admins audit their own
machines before they're probed by hostile outsiders (or even hostile
insiders). Nessus is the premier Open Source vulnerability assessment tool,
and was recently voted the “most popular” open source security tool of any
kind. This is the first book available on Nessus and it is written by the
world's premier Nessus developers led by the creator of Nessus, Renaud
Deraison.

order @
www.syngress.com

AVAILABLE JUNE, 2004

ISBN: 1-931836-08-6

Price: $49.95 U.S. $69.95 CAN

order @
www.syngress.com

AVAILABLE NOW

Stealing the Network: How to Own a Continent
Last year, Stealing the Network: How to Own the Box became a blockbuster best-
seller and garnered universal acclaim as a techno-thriller firmly rooted in reality
and technical accuracy. Now, the sequel is available and it's even more contro
versial than the original. Stealing the Network: How to Own a Continent does for
cyber-terrorism buffs what “Hunt for Red October” did for cold-war era military
buffs, it develops a chillingly realistic plot that taps into our sense of dread and
fascination with the terrible possibilities of man's inventions run amuck.
ISBN: 1-931836-05-1

Price: $49.95 U.S. $69.95 CAN

	Snort 2 1 Intrusion Detection, Second Edition
	Cover

	Contents
	Foreword
	Chapter 1 Intrusion Detection Systems
	Introducing Intrusion Detection Systems
	What Is an Intrusion?
	Legal Definitions
	Scanning vs Compromise
	Viruses and Worms-SQL Slammer
	Live Attacks-Sendmail Buffer Overflow

	How an IDS Works
	What the IDS Is Watching
	How the IDS Watches Your Network
	How the IDS Takes the Data It Gathers and Finds Intrusion Attempts
	What the IDS Does When It Finds an Attack Attempt

	Answering Common IDS Questions
	Why Are Intrusion Detection Systems Important?
	Why Doesn't My Firewall Serve as an IDS?
	Why Are Attackers Interested in Me?
	Automated Scanning/Attacking Doesn't Care Who You Are
	Desirable Resources Make You a Target
	Political or Emotional Motivations

	Where Does an IDS Fit with the Rest of My Security Plan?
	Where Should I Be Looking for Intrusions?
	Operating System Security-Backdoors and Trojans
	Physical Security
	Application Security and Data Integrity
	Correlation of All These Sources

	What Will an IDS Do for Me?
	Continuously Watch Packets on Your Network and Understand Them
	Read Hundreds of Megs of Logs Daily and Look for Specific Issues
	Create Tremendous Amounts of Data No Matter How Well You Tune It
	Create So Much Data that If You Don't Tune It, You Might as Well Not Have It
	Find Subtle Trends in Large Amounts of Data that Might Not Otherwise Be Noticed
	Supplement Your Other Protection Mechanisms
	Act as a Force Multiplier Competent System/ Network Administrator
	Let You Know When It Looks Like You Are Under Attack

	What Won't an IDS Do for Me?
	Replace the Need for Someone Who Is Knowledgeable about Security
	Catch Every Attack that Occurs
	Prevent Attacks from Occurring
	Prevent Attacks from Succeeding Automatically (in Most Cases)
	Replace Your Other Protection Mechanisms
	What Else Can Be Done with Intrusion Detection?

	Fitting Snort into Your Security Architecture
	Viruses, Worms, and Snort
	Known Exploit Tools and Snort
	Writing Your Own Signatures with Snort
	Using an IDS to Monitor Your Company Policy

	Analyzing Your IDS Design and Investment
	False Positives versus False Negatives
	Fooling an IDS
	IDS Evasion Techniques

	Return on Investment-Is It Worth It?

	Defining IDS Terminology
	Intrusion Prevention Systems (HIPS and NIPS)
	Gateway IDS
	Network Node IDS
	Protocol Analysis
	Target-Based IDS

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 2 Introducing Snort 2 1
	Introduction
	What Is Snort?
	Understanding Snort's System Requirements
	Hardware
	Operating System
	Other Software

	Exploring Snort's Features
	Packet Decoder
	The Preprocessors
	Example: HTTPInspect
	Example: flow-portscan

	The Detection Engine
	Flow-Portscan as Example Feature
	Rules and Matching
	Thresholding and Suppression

	The Alerting and Logging Components
	Output Plug-Ins
	Unified Output

	Using Snort on Your Network
	Using Snort as a Packet Sniffer and Logger
	Using Snort as a NIDS
	Snort and Your Network Architecture
	Snort and Switched Networks

	Pitfalls When Running Snort
	False Alerts
	Upgrading Snort

	Considering System Security While Using Snort
	Snort Is Susceptible to Attacks
	Detecting a Snort System on the Network
	Attacking Snort
	Attacking the Underlying System

	Securing Your Snort System

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 3 Installing Snort
	Introduction
	Making the Right Choices
	Linux over OpenBSD?
	Stripping Linux
	Stripping out the Candy

	A Brief Word about Linux Distributions
	Debian
	Slackware
	Gentoo
	A Word about Hardened/Specialized Linux Distributions

	Preparing for the Installation
	Installing pcap
	Installing libpcap from Source
	Look Ma! No GUI!
	Installing libpcap from RPM
	Installing libpcre
	Installing MySQL
	Installing from RPM
	Installing from Source

	Installing Snort
	A Brief Word about Sentinix GNU/Linux
	Installing Snort from Source
	Enabling Features via configure

	Installing Snort from RPM
	Installing Snort Using apt
	Configuring Snort IDS
	Customizing Your Installation: Editing the snort conf File
	Installation on the MS Windows Platform
	Command-Line Switches

	Installing on OpenBSD
	Option 1: Using OpenBSD Ports
	Option 2: Using Prepackaged OpenBSD Ports
	Option 3: Installing Snort from Source

	Installing Bleeding-Edge Versions of Snort

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 4 Inner Workings
	Introduction
	The Life of a Packet Inside Snort
	Decoders

	The Detection Engine
	The Old Detection Engine
	The New Detection Engine
	Tagging
	Thresholding
	Suppression
	Logging

	Adding New Functionality
	What Is a Detection Plug-In?
	Writing Your Own Detection Plug-In
	Copyright and License
	Includes
	Data Structures
	Functions
	Setup
	Initialization
	Parser
	Detection Function
	What Do I Add to the Rest of the System?
	Testing

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 5 Playing by the Rules
	Introduction
	Dissecting Rules
	Matching Ports
	Matching Simple Strings
	Using Preprocessor Output

	Using Variables
	Snort Configuration

	Understanding Rule Headers
	Rule Actions
	When Should You Use a Pass Rule?
	Custom Rules Actions
	Using Activate and Dynamic Rules

	Rule Options
	Rule Content
	ASCII Content
	Including Binary Content
	The depth Option
	The offset Option
	The nocase Option
	The session Option
	Uniform Resource Identifier Content
	The stateless Option
	Regular Expressions
	Flow Control

	IP Options
	Fragmentation Bits
	Equivalent Source and Destination IP Option
	IP Protocol Options
	ID Option
	Type of Service Option
	Time-To-Live Option

	TCP Options
	Sequence Number Options
	TCP Flags Option
	TCP ACK Option

	ICMP Options
	ID
	Sequence
	The icode Option
	The itype Option

	Meta-Data Options
	Snort ID Options
	Rule Revision Number
	Severity Identifier Option
	Classification Identifier Option
	External References

	Miscellaneous Rule Options
	Messages
	Logging
	TAG
	dsize
	RPC
	Real-Time Countermeasures

	Writing Good Rules
	What Makes a Good Rule?
	Action Events
	Ensuring Proper Content
	Merging Subnet Masks
	What Makes a Bad Rule?
	The Evolution of a Rule: From Start to Finish

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 6 Preprocessors
	Introduction
	What Is a Preprocessor?
	Preprocessor Options for Reassembling Packets
	The stream4 Preprocessor
	TCP Statefulness
	Session Reassembly
	Stream4's Output

	Frag2-Fragment Reassembly and Attack Detection
	Configuring Frag2
	Frag2 Output

	Flow
	Configuring Flow
	Frag2 Output

	Preprocessor Options for Decoding and Normalizing Protocols
	Telnet Negotiation
	Telnet Negotiation Output

	HTTP Normalization
	Configuring the HTTP Normalization Preprocessor
	HTTP Decode's Output

	rpc_decode
	Configuring rpc_decode
	rpc_decode Output

	Preprocessor Options for Nonrule or Anomaly-Based Detection
	Portscan
	Configuring the Portscan Preprocessor

	Back Orifice
	Configuring the Back Orifice Preprocessor

	General Nonrule-Based Detection

	Experimental Preprocessors
	arpspoof
	ASN1_decode
	Fnord
	preprocessor fnordPreprocessor fnordportscan2 and conversation
	Configuring the portscan2 Preprocessor
	Configuring the conversation Preprocessor

	perfmonitor

	Writing Your Own Preprocessor
	Reassembling Packets
	Decoding Protocols
	Nonrule or Anomaly-Based Detection
	Setting Up My Preprocessor
	What Am I Given by Snort?
	Examining the Argument Parsing Code
	Getting the Preprocessor's Data Back into Snort

	Adding the Preprocessor into Snort

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 7 Implementing Snort Output Plug-Ins
	Introduction
	What Is an Output Plug-In?
	Key Components of an Output Plug-In

	Exploring Output Plug-In Options
	Default Logging
	SNMP Traps
	XML Logging
	Syslog
	SMB Alerting
	PCAP Logging
	Snortdb
	MySQL versus PostgreSQL
	Unified Logs
	Why Should I Use Unified Logs?
	What Do I Do with These Unified Files?

	Writing Your Own Output Plug-In
	Why Should I Write an Output Plug-In?
	Setting Up Your Output Plug-In
	Creating Snort's W3C Output Plug-In
	myPluginSetup (AlertW3CSetup)
	myPluginInit (AlertW3CInit)
	myPluginAlert (AlertW3C)
	myPluginCleanExit (AlertW3CCleanExit)
	myPluginRestart (AlertW3CRestart)
	Running and Testing the Snort W3C Output Plug-in

	Dealing with Snort Output

	Tackling Common Output Plug-In Problems
	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 8 Dealing with the Data
	Introduction
	What Is Intrusion Analysis?
	Snort Alerts
	Snort Packet Data
	Examine the Rule
	Validate the Traffic
	Attack Mechanism
	Intrusion Data Correlation
	Following Up on the Analysis Results

	Intrusion Analysis Tools
	Database Front Ends
	ACID

	Installing ACID
	Prerequisites for Installing ACID

	Configuring ACID
	Using ACID
	Querying the Database
	Alert Groups
	Graphical Features of ACID
	Managing Alert Databases

	SGUIL
	Installing SGUIL
	Step 1: Create the SGUIL Database
	Step 2: Installing Sguild, the Server
	Step 3: Install a SGUIL Client
	Step 4: Install the Sensor Scripts
	Step 5: Install Xscriptd

	Using SGUIL
	Summary Scripts
	snort_stat pl

	Using SnortSnarf
	Installing SnortSnarf
	Configuring Snort to Work with SnortSnarf
	Basic Usage of SnortSnarf
	Swatch

	Analyzing Snort IDS Events
	Begin the Analysis by Examining the Alert message
	Validate the Traffic
	Identify the Attack Mechanism
	Correlations

	Conclusions
	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 9 Keeping Everything Up to Date
	Introduction
	Updating Snort
	Production Choices
	Compiled Builds vs Source Builds 2
	Patching Snort 3

	Updating Rules
	How Can Updating Be Easy?
	Using Variables
	Using the Local Rules File
	Removing Rules from the Ruleset
	Using Oinkmaster
	Using IDSCenter to Merge with Your Existing Rules

	The Importance of Documentation
	Why a Security Team Should Be Concerned with Rule Documentation

	Testing Snort and the Rules
	Testing within Organizations
	Small Organizations
	Large Organizations

	Watching for Updates
	The Importance of Security Mailing Lists and Web Sites
	Chain-of-Command and Outside Management for CIRT Organizations
	Use in Events-of-Interest, 0-Day, and Other Short-Term Use
	Short-Term Rules
	Policy Enforcement Rules
	Forensics Rules

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 10 Optimizing Snort
	Introduction
	How Do I Choose the Hardware to Use?
	What Constitutes "Good" Hardware?
	Processors
	RAM Requirements
	Storage Medium
	Network Interface Card

	How Do I Test My Hardware?

	How Do I Choose the Operating System to Use?
	What Makes a "Good" OS for an NIDS?
	What OS Should I Use?
	How Do I Test My OS Choice?

	Speeding Up Snort
	The Initial Decision
	Deciding Which Rules to Enable
	Notes on Pattern Matching
	Configuring Preprocessors for Speed
	Using Generic Variables
	Choosing an Output Plug-In

	Benchmarking Your Deployment
	Benchmark Characteristics
	Attributes of a Good Benchmark
	Attributes of a Poor Benchmark

	What Options Are Available for Benchmarking?
	IDS Informer
	IDS Wakeup
	Sneeze
	TCPReplay
	THC's Netdude
	Other Packet-Generation Tools
	Additional Options

	Stress Testing the Pig!
	Stress Tests
	Individual Snort Rule Tests
	Berkeley Packet Filter Tests

	Tuning Your Rules
	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 11 Mucking Around with Barnyard
	Introduction
	What Is Barnyard?
	Understanding the Snort Unified Files
	Unified Alert Records
	Unified Log Records
	Unified Stream-Stat Records

	Installing Barnyard
	Downloading
	Building and Installing

	Configuring Barnyard
	The Barnyard Command-Line Options
	The Configuration File
	Configuration Directives
	Output Plug-In Directives

	Understanding the Output Plug-Ins
	alert_fast
	alert_csv
	alert_syslog
	alert_syslog2
	log_dump
	log_pcap
	acid_db
	sguil

	Running Barnyard in Batch-Processing Mode
	Processing a Single File
	Using the Dry Run Option
	Processing Multiple Files

	Using the Continual-Processing Mode
	The Basics of Continual-Processing Mode
	Running in the Background
	Enabling Bookmark Support
	Only Processing New Events
	Archiving Processed Files
	Running Multiple Barnyard Processes
	Signal Handling

	Deploying Barnyard
	Remote Syslog Alerting
	Database Logging
	Extracting Data
	Real-Time Console Alerting

	Writing a New Output Plug-In
	Implementing the Plug-In
	Setting Up the Source Files
	Writing the Functions
	Adding the Plug-In to op_plugbase c

	Finishing Up
	Updating Makefile am
	Building Barnyard

	Real-Time Console Alerting Redux

	Secret Capabilities of Barnyard
	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 12 Active Response
	Introduction
	Active Response vs Intrusion Prevention
	Active Response Based on Layers
	Altering Network Traffic Based on IDS Alerts
	Snortsam
	Fwsnort
	Snort_inline
	Attack and Response

	Snortsam
	Installation
	Architecture
	Snort Output Plug-In
	Blocking Agent

	Snortsam in Action
	WWWBoard passwd txt Access Attack
	NFS mountd Overflow Attack

	Fwsnort
	Installation
	Configuration
	Execution
	WWWBoard passwd txt Access Attack (Revisited)
	NFS mountd Overflow Attack (Revisited)

	Snort_inline
	Installation
	Configuration
	Architecture
	Web Server Attack
	NFS mountd Overflow Attack

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 13 Advanced Snort
	Introduction
	Network Operations
	Flow Preprocessor Family
	Perfmon Preprocessor
	Unusual Network Traffic

	Forensics/Incident Handling
	Logging and Filtering
	Traffic Reconstruction
	Interacting with Law Enforcement

	Snort and Honeynets
	Snort-Inline
	Countermeasures and Logging

	Really Cool Stuff
	Behavioral Tracking
	Patch/IAVA Verifications
	Policy Enforcement

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Index
	Team DDU

