
macromedia

™

®

Extending Dreamweaver MX



Trademarks

Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver, 
Authorware, Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage 
Designer, Backstage Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, Design in Motion, Director, 
Director Multimedia Studio, Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000, Extreme 
3D, Fireworks, Flash, Fontographer, FreeHand, FreeHand Graphics Studio, Generator, Generator Developer’s Studio, Generator 
Dynamic Graphics Server, Knowledge Objects, Knowledge Stream, Knowledge Track, Lingo, Live Effects, Macromedia, 
Macromedia M Logo & Design, Macromedia Flash, Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker, 
Object Authoring, Power Applets, Priority Access, Roundtrip HTML, Scriptlets, SoundEdit, ShockRave, Shockmachine, 
Shockwave, Shockwave Remote, Shockwave Internet Studio, Showcase, Tools to Power Your Ideas, Universal Media, Virtuoso, 
Web Design 101, Whirlwind and Xtra are trademarks of Macromedia, Inc. and may be registered in the United States or in other 
jurisdictions including internationally. Other product names, logos, designs, titles, words or phrases mentioned within this 
publication may be trademarks, servicemarks, or tradenames of Macromedia, Inc. or other entities and may be registered in 
certain jurisdictions including internationally.

This guide contains links to third-party Web sites that are not under the control of Macromedia, and Macromedia is not 
responsible for the content on any linked site. If you access a third-party Web site mentioned in this guide, then you do so at your 
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia 
endorses or accepts any responsibility for the content on those third-party sites. 

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE 
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY 
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME 
STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH 
SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM 
STATE TO STATE.

Copyright © 1997-2002 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, 
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of 
Macromedia, Inc. Part Number ZDW60M200

Acknowledgments

Project Management: Sheila McGinn

Writing: Robert Berry, David Jacowitz, Elisa Ma, and Jerry Pope

Editing: Mary Ferguson, Mary Kraemer, and Lisa Stanziano

Production Management: Patrice O’Neill

Multimedia Design and Production: Aaron Begley, Benjamin Salles, and Noah Zilberberg

Print and Help Design and Production: Caroline Branch and John Francis

Web Editing and Production: George Brown, Rebecca Godbois, Jeff Harmon, and Jon Varese

Special thanks to Winsha Chen, Jake Cockrell, George Comninos, Kristin Conradi, David Deming, Chris Denend, 
Randy Edmunds, Dave George, Nick Halbakken, Lori Hylan, Narciso (nj) Jaramillo, Craig Jennings, Ken Karleskint, 
Amit Kishnani, Sho Kuwamoto, David Lenoe, Jay London, Bonnie Loo, Sam Matthews, Susan Morrow, Masayo Noda, 
Jeff Schang, Sam Schillace, Mike Sundermeyer, Jorge Taylor, Venu Venugopal, Heidi Bauer Williams and the entire 
Dreamweaver engineering and QA teams.

First Edition: June 2002

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103



CONTENTS
Part I
Overview

CHAPTER 1

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Customizing or extending?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Installing an extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Additional resources available to extension writers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Errata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Conventions used in this guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
What’s new in Extending Dreamweaver MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2

Extending Dreamweaver MX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

What makes extending possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Application programming interfaces in Dreamweaver . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Extension folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Types of extension APIs in Dreamweaver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
How Dreamweaver processes JavaScript in extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Working with the Extension Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Extensible document types in Dreamweaver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 3

User Interfaces for Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Designing an extension UI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Dreamweaver HTML rendering control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Using custom UI controls in extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 4

The Dreamweaver Document Object Model. . . . . . . . . . . . . . . . . . . . . . . . . . 41

Which document DOM?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
The Dreamweaver DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3



Part II
Extension APIs

CHAPTER 5

Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

How object files work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Defining the Insert bar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Insert bar definition tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Insert bar tag attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Adding Objects to the Insert menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
The Objects API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER 6

Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

How commands work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
The Command API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Adding commands to the Commands menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

CHAPTER 7

Menu Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

How menu commands work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
The Menu Commands API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 8

Toolbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

How toolbars work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
The toolbar definition file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Toolbar item tags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Item Tag Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
The Toolbar Command API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 9

Reports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

How site reports work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
How stand-alone reports work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
The Reports API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

CHAPTER 10

Tag Libraries and Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Tag Library file format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
The Tag Chooser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Creating a new tag editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Tag editor APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

CHAPTER 11

Property Inspectors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

How Property inspector files work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
The Property inspector API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Contents4



CHAPTER 12

Floating Panels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

How floating panel files work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
The Floating panel API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

CHAPTER 13

Behaviors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

How Behaviors work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
The Behaviors API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

CHAPTER 14

Server Behaviors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Dreamweaver architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
How the Server Behavior API functions are called . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
The Server Behavior API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Server behavior implementation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Editing EDML files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Group EDML file tags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Participant EDML files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Using the Extension Data Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Server behavior techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

CHAPTER 15

Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

How data sources work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
The Data Sources API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

CHAPTER 16

Server Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

How data formatting works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
When the data formatting functions are called  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
The Data Formatting API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

CHAPTER 17

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Component panel files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Component panel API functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

CHAPTER 18

Server Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

The Server Model API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

CHAPTER 19

Data Translators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

How data translators work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Determining what kind of translator to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Adding a translated attribute to a tag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Locking translated tags or blocks of code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Finding bugs in your translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Contents 5



CHAPTER 20

JavaScript Debugger Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

How the JavaScript Debugger module works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
The JavaScript Debugger module API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

CHAPTER 21

C-Level Extensibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

C-level extensibility and the JavaScript interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
The C-level API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
File Access and Multiuser Configuration API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Calling a C function from JavaScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Part III
Utility APIs

CHAPTER 22

The File I/O API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Accessing configuration folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
The File I/O API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

CHAPTER 23

The HTTP API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

The HTTP API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

CHAPTER 24

The Design Notes API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

How Design Notes work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
The Design Notes JavaScript API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
The Design Notes C API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

CHAPTER 25

The Fireworks Integration API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

CHAPTER 26

The Flash Objects API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

CHAPTER 27

The Database API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Database connection functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Database access functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

CHAPTER 28

The Database Connectivity API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

The Connection API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
The generated include file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
The definition file for your connection type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Contents6



CHAPTER 29

The JavaBeans API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

CHAPTER 30

The Source Control Integration API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Integration with Dreamweaver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Adding source control system functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
The Source Control Integration API required functions  . . . . . . . . . . . . . . . . . . . . . . . 350
The Source Control Integration API optional functions  . . . . . . . . . . . . . . . . . . . . . . . 355
Enablers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Part IV
JavaScript API

CHAPTER 31

The Dreamweaver JavaScript API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Understanding the objects in the API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
How this chapter is organized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
About enablers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Assets panel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Behavior functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Clipboard functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Code hints functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Command functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Components functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Conversion functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
CSS Styles functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Data source functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Enablers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
External application functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
File manipulation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Find/replace functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Frame and frameset functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
General editing functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Global application functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Global document functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
History functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
HTML style functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
JavaScript debugger functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Keyboard functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Layer and image map functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Layout environment functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Layout view functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Library and template functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Live data functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
Menu functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
Path functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
Print function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Quick Tag Editor Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Contents 7



Report Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
Results window functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Selection functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
Server behavior functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Server model functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Site functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
Snippets panel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
String manipulation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Source view functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
Table editing functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Tag editor and tag library functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
Tag inspector functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
Timeline functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Toggle functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
Toolbar functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
Translation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
Window functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

APPENDIX A

Deprecated JavaScript API functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Contents8



P
art I
Part I
Overview

Orient yourself to concepts fundamental to writing 
Dreamweaver extensions These concepts include 
understanding available API categories, creating new 
document types, working effectively with the Dreamweaver 
user interface, and understanding the Dreamweaver 
Document Object Model (DOM).

• Chapter 1, “Introduction”

• Chapter 2, “Extending Dreamweaver MX”

• Chapter 3, “User Interfaces for Extensions”

• Chapter 4, “The Dreamweaver Document Object 
Model”





CHAPTER 1
Introduction

This book contains descriptions of the tools that are available for developers to extend 
Dreamweaver using Dreamweaver application programming interfaces (APIs) and provides basic 
information about their use. It assumes that you are familiar with Dreamweaver, HTML and 
XML markup, and JavaScript programming. For users who are implementing C extensions, the 
book assumes that you know how to create and use C dynamic linked libraries (DLLs). If you are 
interested in writing extensions for building web applications, you should also be familiar with 
server-side scripting on at least one platform, such as Active Server Pages (ASP), ASP.net, PHP: 
Hypertext Preprocessor (PHP), ColdFusion, or Java Server Pages (JSP). 

Customizing or extending? 
Before you begin writing Macromedia Dreamweaver MX extensions, please review “Customizing 
Dreamweaver” on the Macromedia Support Center. In addition to procedures for changing 
Dreamweaver panels, menus, dialog boxes, and HTML formats, “Customizing Dreamweaver” 
contains information about the most common Dreamweaver extensions—how to edit 
Dreamweaver commands and how to add third-party tags. If you plan to create extensions that 
work with databases, you might also want to review the sections in Getting Started with 
Dreamweaver MX about making connections to databases.

Installing an extension
As you become familiar with the process of writing extensions, you might want to explore the 
extensions and resources that are available through the Macromedia Exchange website (http://
www.macromedia.com/exchange/). Installing an existing extension introduces you to some of the 
tools that you need to use when working with your own extensions.

To install an extension, use the following procedure: 

1 Download and install the Extension Manager, which is available on the Macromedia 
Downloads website (http://www.macromedia.com/software/downloads/).

2 Log on to the Macromedia Exchange website (http://www.macromedia.com/exchange). 

3 From the available extensions, select one that you want to use. Click the download link to 
download the extension package.
11



4 Save the extension package in the Dreamweaver MX\Downloaded Extensions folder of your 
installed Dreamweaver folder. 

5 In the Extension Manager, select File > Install Extension. In Dreamweaver, select Commands > 
Manage Extensions to launch the Extension Manager.

The Extension Manager automatically installs the extension from the Downloaded Extension 
folder into Dreamweaver.

Some extensions need Dreamweaver to restart before you can use them. If you are running 
Dreamweaver when you install the extension, you might be prompted to quit and restart 
the application. 

To view basic information on the extension after its installation, go to the Extension Manager 
(Commands > Manage Extensions) in Dreamweaver.

Additional resources available to extension writers
To communicate with other developers who are involved in extension writing, you might want to 
join the Dreamweaver extensibility newsgroup. You can access the web site for this newsgroup at 
this URL: http://www.macromedia.com/go/extending_newsgrp/.

Errata
A current list of known issues can be found in the Extensibility section of the Dreamweaver 
Support Center http://www.macromedia.com/go/extending_errata.

Conventions used in this guide
The following typographical conventions are used in this guide:

• Code font indicates code fragments and API literals, including class names, method names, 
function names, type names, scripts, SQL statements, and both HTML and XML tag and 
attribute names.

• Italic code font indicates replaceable items in code.

• The continuation symbol (¬) indicates that a long line of code has been broken across two or 
more lines. Due to margin limits in this book’s format, what is otherwise a continuous line of 
code must be split. When copying the lines of code, eliminate the continuation symbol and 
type the lines as one line.

• Curly braces ({ }) surrounding a function argument indicate that the argument is optional.

The following naming conventions are used in this guide:

• You—the developer who is responsible for writing extensions.

• The user—the person using Dreamweaver.

• The visitor—the person who views the web page that the user created.
Chapter 112



What’s new in Extending Dreamweaver MX
Dreamweaver MX includes the following new features and interfaces that you can access to 
develop extensions for the product:

• An enhanced user interface

• Multiple user configurations

• Enhanced code editing

• Expanded document type support

• Enhanced server model extensibility

• Improved database connection handling

• Enhanced external application integration

The following sections describe how you can use these features and interfaces to extend 
Dreamweaver MX.

Enhanced user interface

Toolbars

Dreamweaver MX adds support for extensible toolbars, which lets you customize the 
functionality of the existing document toolbars or add your own. The Toolbars API lets you 
control the functions of the various fields and buttons on a toolbar. See “Toolbars” on page 77, 
and “Toolbar functions” on page 637.

Tag Dialogs

Users can use Tag Dialogs to insert new tags, edit existing tags, access reference information about 
tags, and validate tags. Tag Dialogs reference Tag Libraries that come with Dreamweaver, which 
catalogs the tags that are used in different markup languages. Tag Dialogs can also be extended to 
work with customized implementations of markup and scripting languages. You can create 
custom Tag Libraries to contain custom Tags, create files for related reference information, and 
make fully functional sets of custom Tag Dialogs available to users. You can also customize how 
the Tag Chooser organizes tags for display. See “Tag Libraries and Editors” on page 107.

Multiple document interface mode

Dreamweaver MX introduces a new type of user interface, or workspace, known as the 
Dreamweaver MX workspace. The Dreamweaver MX workspace, also known as the multiple 
document interface (MDI), organizes many of the floating and overlapping Dreamweaver 
windows within a frame. In the Dreamweaver MX workspace, new functions let you cascade 
and tile document windows. See “Window functions” on page 642 and “The Floating panel API” 
on page 126.

You can also choose to continue operating in the Dreamweaver 4 workspace, which is known as 
classic mode.

Results windows

Dreamweaver MX implements a more traditional multiple-document results window that 
resides, by default, at the bottom part of the workspace. New functions let you browse, locate, 
select, save, cut, copy, and paste the contents of a results window. See “Results window functions” 
on page 537.
Introduction 13



Importing/exporting sites

You can programmatically export a Dreamweaver MX site to an XML file, which can then be 
imported by any Dreamweaver instance on any computer. This feature lets users share sites and 
move them among host computers. For more information on importing and exporting sites, see 
“Site functions” on page 558.

Resource cloaking

In Dreamweaver MX, you can hide from view (cloak) selected files and folders. Cloaking selected 
site resources excludes them from site operations that Dreamweaver MX performs, which makes 
those operations more efficient. Dreamweaver also lets developers uncloak previously cloaked 
resources. You can programmatically cloak and uncloak files and folders by using functions 
described in “Site functions” on page 558.

File browsing

A new function has been added to the Site object, which lets you get the name of the site that is 
associated with a specific URL. For more information on this function, see “Site functions” on 
page 558.

Individual configurations

Multiple users

Dreamweaver MX supports multiple user configurations for the multiuser operating systems of 
Windows XP, Windows 2000, Windows NT, and Macintosh OS X. Users can customize 
Dreamweaver to best fit their needs without disturbing the customizations that other users have 
made on the same system. API functions let you create, remove, and access configuration files as 
well as access and set configuration attributes.

Enhanced code editing

Print code

Dreamweaver MX lets you print code in Code view from the File > Print menu and from the 
context menu. A new JavaScript function lets you open the print dialog box in Code view. See 
“Print function” on page 534.

Code Hints

When the user types a certain sequence in Code view (such as ’<’), a pop-up menu shows a list of 
possible text entries, such as a list of tag names. You can select a Code Hint entry from the menu 
as a typing shortcut. 

The CodeHints.xml file, and a set of XML tags, let you create new Code Hints menus. New 
JavaScript functions let you dynamically add menus and functions to a Code Hints menu. You 
can also pop up a Code Hints menu at the current location in Code view when Code Hints are 
not enabled. See “Code hints functions” on page 392.

Snippets panel 

Dreamweaver MX users can edit and save reusable blocks of code in the new Snippets panel and 
retrieve them as needed. New JavaScript functions let you edit existing and create new snippets, 
organize them, and store them folders with user-friendly names.
Chapter 114



New document types

Extensible document types

Dreamweaver MX lets you create new document types, including types that have file extensions 
that are identical to those of built-in Dreamweaver document types (such as .asp, which is 
associated with the default ASP-JS document type). You can define a new JavaScript function 
(canRecognizeDocument()) to help Dreamweaver determine which server model (when more 
than one server model claims a particular file extension) Dreamweaver should use to control a 
new document. For more information on this new function, see “The Server Model API” on page 
217. For more information on extensible document types, see “Extensible document types in 
Dreamweaver” on page 22.

Also, a new property has been added to the document object model (DOM) to facilitate working 
with new document types. 

XHTML document types

Using four new JavaScript functions, you can create a new or clean up an existing XHTML 
document, determine whether a document is an XHTML document, and convert an HTML 
document to XHTML. For more information on XHTML functions, see “File manipulation 
functions” on page 447.

Enhanced server model extensibility

Dreamweaver MX makes it easier to add new server models. A new JavaScript function 
(serverModel.getServerIncludeUrlPatterns()) lets the code that translates include file 
statements access the translator URL patterns. You can also add server-side set-up instructions for 
users. For more information on these new functions, see “Server model functions” on page 552.

Improved database connection handling

Implementing new connection types

Dreamweaver MX simplifies the process of defining new types of database connections and 
handling connections at runtime, as described in the following list:

• The following associations are now implicit within Dreamweaver MX: ASP sites use ADO 
connections, JSP sites use JDBC connections, and ColdFusion sites use ColdFusion data 
sources that are accessed through Remote Development Service (RDS). 

• The Define Connection dialog box has been replaced by server-model-specific dialog boxes 
that are defined in the Extensibility layer. 

• Connections are shared through use of an include file that contains the connection parameters, 
which automatically reflects changes to connection parameters everywhere the connection is 
used.

There are three new functions that you can define to implement a new connection type. 
Dreamweaver uses these functions to create a shared include file that defines the parameters that 
are needed to make a database connection. For more information on these new functions, see 
“The Connection API” on page 338.
Introduction 15



Enhanced database exploration

Dreamweaver MX enhances database exploration in the following ways.

• For ColdFusion, you have the option of accessing the RDS server using ColdFusion 
data sources.

• When working with connection dialog boxes you can create new types of connections and let 
users duplicate or edit an existing connection.

• When you manage connections for a particular table, you can get a list of column objects, each 
of which holds the name and type of a column, or you can get a list of columns comprising the 
primary key. For a particular connection, you can get a list of procedure objects. For a 
particular procedure, you can get a list of parameter objects. 

You can also delete a connection. 

There are 24 new functions supporting this new feature. Some of these functions handle database 
connections and the others handle database access. For more information on these new functions, 
see “The Database API” on page 311.

Enhanced external application integration

Flash Integration

Dreamweaver MX lets you determine whether Flash 6 is installed and, if it is, it gets the name of 
the Flash editor and its location so you can launch the Flash editor programmatically. For more 
information on these two new functions, see “External application functions” on page 441.
Chapter 116



CHAPTER 2
Extending Dreamweaver MX

Most Dreamweaver extensions are written in HTML and JavaScript. Extensions typically 
perform the following types of tasks:

• Automating changes to the user’s current document, such as inserting HTML, CFML, or 
JavaScript; changing text or image properties; or sorting tables

• Interacting with the application to automatically open or close windows, open or close 
documents, change keyboard shortcuts, and more

• Connecting to data sources, which lets Dreamweaver users create data-driven pages

• Inserting and managing blocks of server code in the current document

You might want to write an extension to handle a commonly used, and therefore repetitive, task, 
so this type of extension could be useful to many web developers. You might have a unique need 
that can be solved by writing an extension, which might be used only within a specific setting. In 
either case, Dreamweaver provides an extensive set of tools that you can use for adding to or 
customizing its functionality.

What makes extending possible
There are three main components to Dreamweaver extensibility:

• An HTML parser (also called a renderer), which makes it possible to design user interfaces for 
extensions using form fields, layers, images, and other HTML elements. Dreamweaver has its 
own HTML parser.

• A JavaScript interpreter, which executes the JavaScript code in extension files. Dreamweaver 
MX uses the Netscape Navigator JavaScript 1.5 interpreter. For more information about 
changes between this version of the interpreter and previous versions, see “How Dreamweaver 
processes JavaScript in extensions” on page 21.

• A series of APIs that provide access to Dreamweaver functionality through JavaScript.

Application programming interfaces in Dreamweaver
Three types of application programming interfaces (API)s are documented in Extending 
Dreamweaver:

• Extension APIs, which are discussed in the section, “Extending Dreamweaver MX” on page 17

• Utility APIs, which are discussed in the section, “Utility APIs” on page 269

• Dreamweaver JavaScript APIs, which are discussed in the section, “The Dreamweaver 
JavaScript API” on page 371
17



Extension APIs

The extension APIs provide the framework that you use to add functionality to Dreamweaver. 
You write the bodies of the functions as described in these APIs, and you specify the return values 
as required. After writing an extension, you must save it to the correct folder for it to work 
properly. The Extension Manager facilitates the process of saving extensions correctly. 

Dreamweaver automatically calls any extension that exists in an appropriate Configuration folder 
when specified conditions are met. In most cases, this means that a user initiates a task, and then 
Dreamweaver identifies a related extension in the Configuration folder, calls the various functions 
in the extension, and expects a valid return value from each.

For developers who want to work directly in the C programming language, there is a C 
extensibility API that lets you create DLLs. The functionality that is provided in these APIs wraps 
your C DLLs in JavaScript so that your extension can work seamlessly within Dreamweaver.

The documentation of extension APIs outlines what each function does when it is called and 
what it is expected to return.

Utility APIs

The utility APIs provide functions that can assist you with specialized tasks. You should use 
the functions that are available within these APIs if your extension needs to do any of the 
following actions:

• Connect with databases

• Create Flash or Fireworks files

• Read and write files on disk

• Read and write Design Notes

• Get and send information to and from a remote web server using HTTP

• Work with JavaBeans

JavaScript API

The JavaScript API provides JavaScript access to Dreamweaver. You can call any function that is 
available in this core JavaScript API from your extension, and Dreamweaver returns the 
appropriate value. In some cases, functions within this API make use of corollary functions that 
you write to determine the return value. For example, the 
dom.serverModel.getDisplayName() function in the core JavaScript API 
(“dom.serverModel.getDisplayName()” on page 553) calls and makes use of the value that the 
getServerModelDisplayName() function returns (“getServerModelDisplayName()” on page 
222) that you write.

Extension folders
The folders and files that are stored in the Configuration folder contain the extensions that come 
with Dreamweaver. When you write an extension, you must save the files in the proper folder for 
Dreamweaver to recognize them. If you download and install an extension from the Macromedia 
Exchange website (www.macromedia.com/exchange), the Extension Manager automatically saves 
the extension files to the proper folders. 
Chapter 218



You can use the files that come with the product within the Configuration folder as examples, but 
these files are generally more complex than the average extension that is available on the 
Macromedia Exchange website. For more information on the contents of each subfolder within 
the Configuration folder, view the Configuration_ReadMe.htm file. 

One folder within the Configuration folder does not correspond to a specific extension type. 
The Configuration/Shared folder is the central repository for utility functions, classes, and images 
that are used by more than one extension. The files in the Configuration/Shared/Common folder 
are designed to be useful to a broad range of extensions. Look here first for the functions that 
perform specific tasks, such as creating a valid DOM reference to an object, testing whether the 
current selection is inside a particular tag, escaping special characters in strings, and more. If you 
create common files, you should create a separate subfolder within the Configuration/Shared/
Common folder. 

Configuration/Shared/Common/Scripts file structure

Each file within the Configuration/Shared folder is fully commented. These files are useful both 
as examples of JavaScript techniques and as utilities.

Multiuser configuration folders

For the multiuser operating systems of Windows XP, Windows 2000, Windows NT, and 
Macintosh OS X, Dreamweaver MX creates a separate configuration folder for each user in 
addition to the Dreamweaver Configuration folder. Any time Dreamweaver MX or a JavaScript 
extension writes to the Configuration folder, Dreamweaver MX automatically writes to the user 
configuration folder instead. In this way, Dreamweaver MX lets each user customize the 
Dreamweaver MX configuration settings without disturbing the customized configurations of 
other users. See “File Access and Multiuser Configuration API” on page 260 for more 
information.
Extending Dreamweaver MX 19



Types of extension APIs in Dreamweaver
The following list describes the types of extension APIs that are documented in this guide:

Object extensions create changes in the Insert bar. An object is typically used to automate the 
inserting code into a document. It can also contain a form that gathers input from the user and 
JavaScript that processes the input. Object files are stored in the Configuration/Objects folder.

Command extensions can perform almost any specific task, with or without input from the user. 
Command files are typically invoked from the menu system, but they can also be called from 
other extensions. Command files are stored in the Configuration/Commands folder.

Tag Dialog extensions work with Tag Dialog and the associated Tag Library files. Tag Dialog 
extensions can modify attributes of existing Tag Dialogs, create new Tag Dialogs, and add tags to 
the Tag Library. Tag dialog and tag library extension files are stored in the Configuration/
TagLibraries folder. 

Code Snippet extensions add new code snippets to the Snippets panel. You can create code 
snippets (CSN) files and install them into the Snippets directory so they appear in the Snippets 
panel. Code Snippets files are sorted in the Configuration/Snippets folder. 

Code Hint extensions add new code hints for tags, objects, or script key words. Code hints provide 
information about HTML, XML and script tags that the user can view as they edit their documents. 
New code hints are incorporated into the *.vtm files that you create for new tags. Code hints 
extensions are stored in the Configuration/TagLibraries/servermodel folder. 

Toolbar extensions can add menu items to existing toolbars or create new toolbars in the 
Dreamweaver user interface. Editing the toolbar is usually used to add new menu items to the 
site, browser, and code option pop-up menus. New toolbars appear below the default toolbar in 
the user interface. Toolbar files are stored in the Configuration/Toolbars folder.

Panel extensions add floating panels to the Dreamweaver user interface. Panels can interact with 
the selection, the document, or the task, or they can display useful information. Floating panel 
files are stored in the Configuration/Floaters folder.

Inspector extensions appear in the Property inspector panel. Most of the inspectors in 
Dreamweaver are part of the core product code and cannot be modified, but custom Property 
inspector files can override the built-in Dreamweaver Property inspector interfaces or create new 
ones to inspect custom tags. Inspectors are stored in the Configuration/Inspectors folder.

Behavior extensions let users add JavaScript code to their documents. The JavaScript code 
performs a specific task in response to an event when the document is viewed in a browser. 
Behavior extensions appear in the plus (+) menu in the Dreamweaver Behaviors panel. Behavior 
files are stored in the Configuration/Behaviors/Actions folder.

Server Behavior extensions add blocks of server-side code (ASP, JSP, or ColdFusion) to the 
document. The server-side code performs tasks on the server when the document is viewed in a 
browser. Server behaviors appear in the plus (+) menu in the Dreamweaver Server Behaviors 
panel. Server behavior files are stored in the Configuration/Server Behaviors folder.

Help Book extensions implement Integrated OS Help by installing a new compiled help (*.chm) 
file into the Help directory and adding a new <book-id> tag to the help.xml file. All help files are 
stored in the Dreamweaver MX/Help folder. 
Chapter 220



Data Translator extensions convert non-HTML code into HTML that appears in the Design 
view of the Document window. These extensions also lock the non-HTML code to prevent it 
from being parsed by Dreamweaver. Translator files are stored in the Configuration/Translators 
folder.

Data Source extensions let you build a connection to a custom data source. Data source 
extensions appear in the plus (+) menu of the Bindings panel. Data source files are stored in the 
Configuration/Data Sources folder.

Server Model extensions let you add support for new server models. Dreamweaver supports the 
most common server models (ASP, JSP, ColdFusion, PHP, and ASP.NET). Server model 
extensions are needed only for custom server solutions, different languages, or a customized 
server. Server model files are stored in the Configuration/ServerModels folder.

Document Type extensions define how Dreamweaver works with different document types. 
Information about document types for server models is stored in the Configuration/
DocumentTypes folder. 

How Dreamweaver processes JavaScript in extensions
Dreamweaver checks Configuration/Extensions during startup. If it encounters an extension file 
within the folder, Dreamweaver processes the JavaScript by completing the following steps:

• Compiling everything between the opening and closing SCRIPT tags. 

• Executing any code within SCRIPT tags that is not part of a function declaration.

Note: This procedure is necessary during startup because some extensions may require initialization of global 
variables.

For any external JavaScript files that are specified in the SRC attributes of SCRIPT tags, 
Dreamweaver performs the following actions:

• Reads in the file

• Compiles the code

• Executes the procedures

Note: If any JavaScript code in your extension files contains the string ’</SCRIPT>’, the JavaScript 
interpreter reads this as an actual closing SCRIPT tag and reports an unterminated string literal error. 
To avoid this problem, break the string into pieces and concatenate them, as shown in the following example: 
’<’ + ’/SCRIPT>’.

Dreamweaver executes code in the onLoad event handler (if one appears in the BODY tag) when 
the user chooses the command or action from a menu for the following extension types:

• Command 

• Behavior action

Dreamweaver executes code in the onLoad event handler on the BODY tag if the body of the 
document contains a form for object extensions. 

Dreamweaver ignores the onLoad handler on the BODY tag in the following extensions:

• Data translator 

• Property inspector 

• Floating panel 
Extending Dreamweaver MX 21



For all extensions, Dreamweaver executes code in other event handlers (for example, 
onBlur="alert(’This is a required field.’)") when the user interacts with the form 
fields to which they are attached. 

Dreamweaver MX supports the use of links within extensions. Event handlers in links must use 
syntax as shown in the following example: 

<aref=”#” onMouseDown=”alert(‘hi’)”>link text</a>

Plug-ins (set to play at all times) are supported in the BODY of extensions. The 
document.write() statement, Java applets, and ActiveX controls are not supported in 
extensions.

Running scripts at startup or shutdown

If you place a command file in the Configuration/Startup folder, the command runs as 
Dreamweaver starts up. Startup commands load before the menus.xml file, before the files in the 
ThirdPartyTags folder, and before any other commands, objects, behaviors, inspectors, floating 
panels, or translators. You can use startup commands to modify the menus.xml file or other 
extension files. You can also show warnings, prompt the user for information, or call 
“dreamweaver.runCommand()” on page 400. However, from within the Startup folder, you 
cannot call a command that expects a valid DOM.

Similarly, if you place a command file in the Configuration/Shutdown folder, the command runs 
as Dreamweaver shuts down. From the shutdown commands, you can call 
“dreamweaver.runCommand()” on page 400, show warnings, or prompt the user for 
information, but you cannot stop the shutdown process.

For more information about commands, see “Commands” on page 61.

Working with the Extension Manager
If you are creating extensions for others users, you must package them according to the guidelines 
on the Macromedia Exchange website under Help > How to Create an Extension. After you have 
written and tested an extension in the Extension Manager, choose File > Package Extension. After 
the extension is packaged, you can submit it to the Exchange from the Extension Manager by 
choosing File > Submit Extension.

The Extension Manager comes with Dreamweaver MX. Details about its use are available in its 
Help files and on the Macromedia Exchange website.

Extensible document types in Dreamweaver
XML provides a rich system for defining complex documents and data structures. 
Dreamweaver MX uses several different XML schemas to organize information about server 
behaviors, tags and tag dialogs, components, document types, and reference information. 

When you create and work with extensions in Dreamweaver, you find there are many instances in 
which you can create or modify existing XML files to manage the data that your extension uses. 
In many cases, you can copy an existing file from the appropriate subfolder within the 
Configuration folder to use as a template that you can change according to your needs.
Chapter 222



Document type definition file

The central component of extensible document types is the document type definition file. There 
might be several definition files, all of which are located in the Configuration/DocumentTypes 
folder. Each definition file contains information about at least one document type. For each 
document type, essential information such as server model, color coding style, descriptions, and 
so forth, is described.

Note: Do not confuse Dreamweaver MX document type definition files with what are called DTDs in XML literature. 
Document type definition files in Dreamweaver MX contain a set of <documenttype> elements, each of which 
defines a predefined collection of tags and attributes that are associated with a document type. When it launches, 
Dreamweaver parses the document type definition files and creates an in-memory database of information 
regarding all defined document types.

Dreamweaver MX provides an initial document type definition file. This file, named 
MMDocumentTypes.xml, contains all Macromedia-provided document type definitions: 

Document Type Server Model Internal Type File Extensions Previous Server Model 

ASP.NET C# ASP.NET-Csharp Dynamic aspx, ascx

ASP.NET VB ASP.NET-VB Dynamic aspx, ascx

ASP JavaScript ASP-JS Dynamic asp

ASP VBScript ASP-VB Dynamic asp

ColdFusion ColdFusion Dynamic cfm, cfml UltraDev 4 ColdFusion 

ColdFusion Component Dynamic cfc

JSP JSP Dynamic jsp

PHP PHP Dynamic php, php3

Library Item DWExtension lbi

ASP.NET C# Template DWTemplate axcs.dwt

ASP.NET VB Template DWTemplate axvb.dwt

ASP JavaScript Template DWTemplate aspjs.dwt

ASP VBScript Template DWTemplate aspvb.dwt

ColdFusion Template DWTemplate cfm.dwt

HTML Template DWTemplate dwt

JSP Template DWTemplate jsp.dwt

PHP Template DWTemplate php.dwt

HTML HTML htm, html

ActionScript Text as

CSharp Text cs

CSS Text css

Java Text java

JavaScript Text js

VB Text vb

VBScript Text vbs
Extending Dreamweaver MX 23



If you need to create a new document type, you can either add your entry to the document 
definition file that Macromedia provides (MMDocumentTypes.xml) or add your own definition 
file to the Configuration/DocumentTypes folder. 

Note: The NewDocuments subfolder resides in the Configuration/DocumentTypes folder. This subfolder contains 
default pages (templates) for each document type.

Structure of document type definition files

The following example shows what a typical document type definition file might look like:

<?xml version="1.0" encoding="utf-8"?>
<documenttypes 

xmlns:MMString="http://www.macromedia.com/schemes/data/string/">
<documenttype 

id="dt-ASP-JS"
servermodel="ASP-JS"
internaltype="Dynamic"
winfileextension="asp,htm, html"
macfileextension=asp, html"
previewfile="default_aspjs_preview.htm"
file="default_aspjs.htm"
priorversionservermodel="UD4-ASP-JS" >
<title>

<loadString id="mmdocumenttypes_0title" />
</title>
<description>

<loadString id="mmdocumenttypes_0descr" />
</description>

</documenttype>
... 

</documenttypes>

Note: Color coding for document types are specified in the XML files that reside in the Configuration/CodeColoring 
folder.

In the preceding example, the <loadstring> element identifies the localized strings that 
Dreamweaver MX should use for the title and description for ASP-JS type documents. For more 
information on localized strings, see “Localized strings” on page 28.

Text Text txt

EDML XML edml

TLD XML tld

VTML XML vtm, vtml 

WML XML wml

XML XML xml

Document Type Server Model Internal Type File Extensions Previous Server Model 
Chapter 224



The following table describes the tags and attributes that you can use within a document type 
definition file.  

Element Type

Tag Attribute Required Description 

documenttype
(root)

Yes Parent node

id Yes Unique identifier across all document type 
definition files.

servermodel No Specify the associated server model (case 
sensitive); by default, these are the valid values:
ASP.NET C#
ASP.NET VB
ASP VBScript
ASP JavaScript
ColdFusion
JSP
PHP MySQL
These names are the names returned by a call to 
the getServerModelDisplayName() functions 
that are defined in the server model 
implementation files, which are located in the 
Configuration/ServerModels folder.
Extension developers can create new server 
models, which would extend this list.

internaltype Yes A broad classification of how a file is treated in 
Dreamweaver. The internal type identifies whether 
the Design view is enabled for this document and 
handles special cases such as 
Dreamweaver Templates or Extensions.
Valid values are:

Dynamic
DWExtension (has special display regions)
DWTemplate (has special display regions)
HTML
HTML4 
Text (Code view only)
XHTML1 
XML (Code view only)

All server model-related document types should 
map to Dynamic. HTML should map to HTML. 
Script files such as .css, .js, .vb, and .cs should map 
to Text.
If internaltype is DWTemplate, you should also 
specify dynamicid. If you omit dynamicid in this 
case, the new blank template that is created from 
the New Document dialog box does not have its 
document type recognized by the Server Behavior 
or Bindings panel. Instances of this template do 
not know they are supposed to be anything 
besides HTML.

dynamicid No A reference to the unique identifier of a dynamic 
document type. This attribute is meaningful only 
when internaltype is DWTemplate. This 
attribute lets you associate a dynamic template 
with a dynamic document type. 
Extending Dreamweaver MX 25



Note: When the user saves a new document, Dreamweaver MX examines the list of extensions for the current 
platform that are associated with the document type (winfileextension and macfileextension). Dreamweaver 
selects the first string in the list and uses it as the default file extension. To change this default file extension, you 
need to reorder the extensions in the comma-separated list so that the new default is listed first.

winfileextension Yes The file extension that is associated with the 
document type on Windows. You specify multiple 
file extensions by using a comma-separated list. 
The first extension in the list is the extension that 
Dreamweaver MX uses when the user saves a 
document of type documenttype.
If two nonserver model-associated document 
types have the same file extension, Dreamweaver 
recognizes the first one as the document type for 
the extension. 

macfileextension Yes The file extension that is associated with the 
document type on the Macintosh. You specify 
multiple file extensions by using a comma-
separated list. The first extension in the list is the 
extension Dreamweaver MX uses when the user 
saves a document of type documenttype.
If two nonserver model-associated document 
types have the same file extension, Dreamweaver 
recognizes the first one as the document type for 
the extension. 

previewfile No The file that is rendered in the Preview area of the 
New Document dialog box.

file Yes The file located in the DocumentTypes/
NewDocuments folder that contains template 
content for new documents of type 
documenttype. 

priorversionservermodel No If this document’s server model has a 
Dreamweaver UltraDev 4 equivalent, specify the 
name of the older version of the server model. 
UltraDev 4 ColdFusion is a valid prior server 
model.

title
(subtag)

Yes The string that appears as a category item under 
Blank Document in the New Document dialog box. 
You can place this string directly in the definition 
file or point to it indirectly for localization purposes. 
For more information on localizing this string, see 
“Localized strings” on page 28.
Formatting is not allowed, so HTML tags cannot 
be specified.

description
(subtag)

No The string that describes the document type. You 
can place this string directly in the definition file or 
point to it indirectly for localization purposes. For 
more information on localizing this string, see 
“Localized strings” on page 28.
Formatting is allowed, so HTML tags can be 
specified.

Element Type

Tag Attribute Required Description 
Chapter 226



When Dreamweaver MX launches, it reads all document type definition files and builds a list of 
valid document types. Dreamweaver treats any entries within the definition files that have 
nonexistent server models as nonserver model document types. Dreamweaver ignores entries that 
have bad contents or IDs that are not unique. 

If, while scanning the Configuration/DocumentTypes folder, Dreamweaver MX finds no 
document type definition files or if any of the definition files appear to be corrupt, Dreamweaver 
closes with an error message.

Dynamic templates

You can create templates that are based on dynamic document types. These templates are called 
dynamic templates. The following two elements are essential to defining a dynamic template:

• The value of the internaltype attribute for the new document type must be DWTemplate.

• The dynamicid attribute must be set and the value must be a reference to the identifier of an 
existing dynamic document type.

If, for example, you have defined the following dynamic document type: 

<documenttype 
id="PHP_MySQL" 
servermodel="PHP MySQL" 
internaltype="Dynamic" 
winfileextension="php,php3" 
macfileextension="php,php3"
file="Default.php"

>
<title>PHP</title> 
<description><![CDATA[PHP document]]></description>

</documenttype> 

You can then define the following dynamic template, which is based on this PHP_MySQL dynamic 
document type:

<documenttype 
id="DWTemplate_PHP" 
internaltype="DWTemplate" 
dynamicid="PHP_MySQL" 
winfileextension="php.dwt" 
macfileextension="php.dwt" 
file="Default.php.dwt"

>
<title>PHP Template</title> 
<description><![CDATA[Dreamweaver PHP Template document]]></description>

</documenttype> 

When a Dreamweaver MX user creates a new blank template of type DWTemplate_PHP, 
Dreamweaver lets the user create PHP server behaviors in the file. Furthermore, when the user 
creates instances of the new template, the user can create PHP server behaviors in the instance. 

In the previous example, when the user saves the template, Dreamweaver MX automatically adds 
a .php.dwt extension to the file. When the user saves an instance of the template, Dreamweaver 
adds the .php extension to the file. 
Extending Dreamweaver MX 27



Document extensions

After creating a new document type, extension developers need to update the appropriate 
Extensions.txt file. If the user is on a system that supports multiple users (such as Windows XP, 
Windows 2000, or Mac OS X), the user has another Extensions.txt file in their Configuration 
folder. This Extensions.txt file is the one that the user needs to update because this file is the 
instance that Dreamweaver looks for and parses. 

The location of the user’s Configuration folder depends on the user’s platform.

For Windows 2000 and Windows XP platforms: 

<drive>:\Documents and Settings\<username>\ ¬
Application Data\Macromedia\Dreamweaver MX\Configuration

For Windows NT platforms: 

<drive>:\WinNT\profiles\<username>\ ¬
Application Data\Macromedia\Dreamweaver MX\Configuration 

For Mac OS X platforms:

<drive>:Users:<username>:Library:Application Support: ¬
Macromedia:Dreamweaver MX:Configuration

If Dreamweaver MX cannot find Extensions.txt in the user’s Configuration folder, Dreamweaver 
looks for it in the Dreamweaver Configuration folder. 

Note: On multiuser platforms, if you edit the copy of Extensions.txt that resides in the Dreamweaver Configuration 
folder and not the one located in the user’s Configuration folder, Dreamweaver is not aware of the changes because 
Dreamweaver parses the copy of Extensions.txt in the user’s Configuration folder, not in the Dreamweaver 
Configuration folder.

Sometimes you might want to create a new document extension. To create a new document 
extension, you can either add the new extension to an existing document type or create a new 
document type, which is explained in preceding paragraphs. 

To add a new extension to an existing document type, perform the following steps:

1 Edit MMDocumentTypes.xml.

2 Add the new extension to the winfileextension and macfileextension attributes of the 
existing document type.

3 Add the new extension to the appropriate Extensions.txt file, as described at the beginning of 
this section. Suppose you have a new document type called FOO and that it has three file 
extensions that are associated with it: FE, FI, and FO. The following example shows how to 
add those extensions to the Extensions.txt file:

HTM,HTML,...,VTML,FE,FI,FO:All Documents
...
FE,FI,FO:FOO Files

Localized strings

Within a document type definition file, the <title> and <description> subtags specify the 
display title and description for the document type. You can use the MMString:loadstring 
directive in the subtags as a placeholder for providing localized strings for the two subtags. This 
process is similar to server-side scripting where you specify a particular string to use in your page 
by using a string identifier as a placeholder. For the placeholder, you can use a special tag or you 
can specify a tag attribute whose value is replaced.
Chapter 228



To provide localized strings, perform the following steps:

1 Place the following statement at the top of the document type definition file:

<?xml version="1.0" encoding="utf-8"?>

2 Declare the MMString name space in the <documenttypes> tag:

<documenttypes 
xmlns:MMString="http://www.macromedia.com/schemes/data/string/">

3 At the location in the document type definition file where you want to provide a localized 
string, use the MMString:loadstring directive to define a placeholder for the localized string. 
You can specify this placeholder in one of two ways:

<description>
<loadstring>myJSPDocType/Description</loadstring>

</description>

or

<description>
<loadstring id="myJSPDocType/Description" />

</description>

In these examples, myJSPDocType/Description is a unique string identifier that acts as a 
placeholder for the localized string. The localized string is defined in the next step.

4 In the Configuration/Strings folder, create a new XML file (or edit an existing file) 
that defines the localized string. For example, the following code, when placed in the 
Configuration/Strings/strings.xml file, defines the myJSPDocType/Description string:

<strings>
...

<string id="myJSPDocType/Description" 
value=
"<![CDATA[JavaServer&nbsp;Page with <em>special</em> features]]>" 

/>
...
</strings>

Note: String identifiers, such as myJSPDocType/Description in the preceding example, must be unique 
within the Dreamweaver MX application. Dreamweaver, when it launches, parses all XML files within the 
Configuration/Strings folder and loads these unique strings.

Rules for document type definition files

Dreamweaver MX lets document types that are associated with a server model share file 
extensions. For example: ASP-JS and ASP-VB can claim .asp as their file extension. (For 
information on which server model gets preference, see “canRecognizeDocument()” on page 
217.)

Dreamweaver MX does not let document types that are not associated with a server model share 
file extensions.

If a file extension is claimed by two document types where one type is associated with a server 
model and the other is not, the latter document type gets preference. Suppose you have a 
document type called SAM, which is not associated with a server model, that has a file extension 
of .sam, and you add this file extension to the ASP-JS document type. When a Dreamweaver MX 
user opens a file that has a .sam extension, Dreamweaver assigns the SAM document type to it, 
not ASP-JS.
Extending Dreamweaver MX 29



Opening a document in Dreamweaver

When a user opens a file, Dreamweaver MX follows a series of steps to identify the document 
type based on the file’s extension.

If Dreamweaver successfully finds a unique document type, Dreamweaver uses that type and 
loads the associated server model (if any) for the document that the user is opening. If the user has 
selected to use Dreamweaver UltraDev 4 server behaviors, Dreamweaver MX loads the 
appropriate UltraDev 4 server model.

If the file extension maps to more than one document type, Dreamweaver performs the 
following actions: 

• If a static document type is among the list of document types, it gets preference. 

• If all the document types are dynamic, Dreamweaver MX creates an alphabetical list of the 
server models that are associated with these document types and then calls the 
canRecognizeDocument() function in each server model (see “canRecognizeDocument()” on 
page 217). Dreamweaver collects the return values and determines which server model 
returned the highest valued positive integer. The document type whose server model returns 
the highest integer is the document type that Dreamweaver assigns to the document being 
opened. If, however, more than one server model returns the same integer, Dreamweaver goes 
through the alphabetical list of those server models, picks the first in the list, and uses that 
document type. For example, if both ASP-JS and ASP-VB claim an .asp document and if their 
respective canRecognizeDocument() functions return equal values, Dreamweaver assigns the 
document to ASP-JS (because, alphabetically, ASP-JS is first).

If Dreamweaver MX cannot map the file extension to a document type, Dreamweaver opens the 
document as a text file.
Chapter 230



CHAPTER 3
User Interfaces for Extensions

Most extensions are built to receive information from the user through a user interface (UI). If 
you plan to submit your extension for Macromedia certification, you need to follow the 
guidelines that are available within the Extension Manager files (http://www.macromedia.com/
exchange/). These guidelines are not intended to limit your creativity; their purpose is to ensure 
that certified extensions work effectively within the Dreamweaver UI, and that the extension UI 
design does not detract from its functionality.

Designing an extension UI
Typically, an extension is built to perform a task that a set of users encounters frequently. Certain 
parts of the task are repetitive and, therefore, can be automated. Some steps in the task can 
change, or specific attributes of the code that the extension processes can change. You build the 
UI to handle user inputs for these variable values. 

As an example, an extension could automate updates for a web catalog where users need to change 
values for image sources, item descriptions, and prices periodically, but the procedures for taking 
these values and formatting the information for display on the website remains the same. A 
simple extension can automate the formatting while letting users manually input the new, 
updated values for the three variables. A more advanced extension could automate the process of 
pulling a set of values for image sources, item descriptions, and prices directly from a database, 
with variables for time intervals input by the user. 

So the purpose of your extension UI is to receive the user inputs that are needed to handle the 
variable aspects of a repetitive task that the extension performs. Dreamweaver supports HTML 
and JavaScript form elements as the basic building blocks for creating extension UI controls and 
displays the UI using its own HTML renderer. Therefore, an extension UI can be as simple as an 
HTML file that contains a two-column table with text descriptions and form input fields. 

Most extension developers design their extension UI after coding most of the functionality of 
their extension in JavaScript. After you begin writing code, it is often easy to discern what 
variables are necessary and what form inputs can best handle them.
31



Consider the following basic guidelines as you design an extension UI:

• If you want a name for your extension, place the name in the Title Tag of your HTML file. 
Dreamweaver displays the name in the Extension title bar. 

• Keep text labels on the left side of your UI, aligned right, with text boxes on the right side, 
aligned left. This arrangement lets the user’s eyes easily locate the beginning of any text box. 
Minimal text can follow the text box as explanation or units of measure.

• Keep checkbox and radio button labels on the right side of your UI, aligned left.

• For readable code, assign logical names to your text boxes. If you use Dreamweaver to create 
your extension UI, you can use the Property inspector or the Quick tag editor to assign names 
to the fields. 

In a typical scenario, after you create the UI, test the extension code to see that it properly 
performs the following UI-related tasks:

• Getting the values from the text boxes

• Setting default values for the text boxes or gathering values from the selection

• Applying changes to the user document

Dreamweaver HTML rendering control
For versions through Dreamweaver 4, Dreamweaver rendered more space around form controls 
than do Microsoft Internet Explorer and Netscape Navigator. This means that form controls in 
extension UIs are rendered with extra space around them, because Dreamweaver uses its HTML 
rendering engine to display extension UIs.

Form control rendering has been improved in Macromedia Dreamweaver MX to more closely 
match the browsers. You can see the difference when you create documents that contain forms in 
Dreamweaver. However, to prevent extension developers from having to update existing 
extensions, form controls in extensions render the same way as they did in Dreamweaver 4. To 
take advantage of the rendering improvements, you must use one of three new DOCTYPE 
statements in your extension files, as shown in the following example:

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//floater">

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">

In most cases, DOCTYPE statements must go on the first line of a document. However, to avoid 
conflicts with extension-specific directives that, in previous versions, were required to be on the 
first line of a file (such as the comment at the top of a Property inspector file, or the MENU-
LOCATION=NONE directive in a command), in Dreamweaver MX DOCTYPE statements and 
directives can be in any order as long as they appear before the opening html tag.
Chapter 332



In addition to letting you make extension UIs more closely match the built-in dialog boxes and 
panels, the new DOCTYPE statements also let you view your extensions in the Dreamweaver Design 
view as they appear when viewed by users.

The Base Property inspector as it appears in Design view without the DOCTYPE statement.

The Base Property inspector as it appears in Design view with the DOCTYPE statement (and after a few 
adjustments to accommodate the new rendering).

Using custom UI controls in extensions 

In addition to the standard HTML form elements, Dreamweaver supports custom controls to 
help you create flexible, professional-looking interfaces, as described in the following list: 

• Editable select lists (also known as combo boxes) that let you combine the functionality of a 
select list with that of a text box

• Database controls that facilitate the display of data hierarchies and fields

• Tree controls that organize information into expandable and collapsible nodes

• Color button controls that let you add color picker interfaces to your extensions

Editable select lists

Extension UIs often contain pop-up lists that are defined using the <select> tag. In 
Dreamweaver, pop-up lists in extensions can be made editable by adding editable="true" to 
the <select> tag. To set a default value, set the editText attribute and the value that you want 
the select list to display. 
User Interfaces for Extensions 33



The following example illustrates the settings for an editable select list: 

<select name="travelOptions" style="width:250px" editable="true" 
editText="other (please specify)">

<option value="plane">plane</option>
<option value="car">car</option>
<option value=""bus">bus</option>
</select>

When you use select lists in your extensions, you can check for the presence and value of the 
editable attribute. If no value is present, the select list returns the default value of false, which 
indicates that the select list is not editable.

As with normal (noneditable) select lists, editable select lists have a selectedIndex property (see 
“Objects, properties, and methods of the Dreamweaver DOM” on page 42). This property 
returns -1 if the text box is selected.

To read the value of an active editable text box into an extension, read the value of the editText 
property. editText returns the string that the user entered into the editable text box, the value of 
the editText attribute, or an empty string if no text has been entered and no value has been 
specified for editText. 

Dreamweaver adds the following custom attributes for <select> to control editable pop-up lists:

Note: Editable select lists are available in Dreamweaver MX.

Attribute Name Description Accepted Values

editable Declares that the pop-up list has an 
editable text area

Boolean value of true or false

editText Holds or sets text within the editable text 
area

A string of any value
Chapter 334



The following example creates a command that contains an editable select list using common 
JavaScript functions:

<html>
<head>

<title>Editable Dropdown Test</title>
<script language="javascript">
function getAlert()
{

var i=document.myForm.mySelect.selectedIndex;
alert ("selectedIndex: " + i);
if (i>=0)

alert("selected text " +document.myForm.mySelect.options[i].text);
else 

alert("selected text " + document.myForm.mySelect.editText);
else

alert("nothing is selected");
}
function commandButtons()
{

return new Array("OK", "getAlert", "Cancel", "window.close()");
}

</script>
</head>

<body>
<div name="test">
<form name="myForm">
<table> 
<tr> <td>button to click:</td><td>
<input type="button" value="button 1" onclick="getAlert();"></td>
</tr>
<tr>
<td>Editable DropDown with default text:</td>
<td><select name="mySelect" editable="true" style="width:150px" 

editText="Editable Text">
<option> opt 1 </option>
<option> opt 2 </option>
<option> opt 3 </option>
</select></td></tr>
<tr> <td>Editable DropDown without default text:</td>
<td><select name="mySelect_no" editable="true" style="width:150px">
<option value="1"> opt 1 </option>
<option value="2"> opt 2 </option>
<option value="3"> opt 3 </option>
</select></td></tr>
</table>

</form>
</div>

</body>
</html>

To use this sample, save it to the Dreamweaver Configuration/Commands folder as 
EditableSelectTest.htm. Restart Dreamweaver, and select EditableSelectTest from the Command 
menu. 
User Interfaces for Extensions 35



Database controls

Using Dreamweaver, you can extend the HTML <select> tag to create a database tree control. 
You can also add a variable grid control. The database control is useful for displaying database 
schema. The variable grid control displays tabular information. 

The following illustration shows an advanced Recordset dialog box that uses a database control 
and a variable grid control:

Adding a database tree control

The database control has the following attributes:

Any option tags that are placed inside the <select> tag are ignored.

To add a database tree control to a dialog box, you can use the following sample code with 
appropriate substitutions:

<select name="DBTree" style="width:400px;height:110px" ¬
type="mmdatabasetree" connection="connectionName" noexpandbuttons 

showHeaders></select>

You can change the connection attribute to retrieve selected data and display it in the tree. You 
can use DBTreeControl as a JavaScript wrapper object for the new tag. For more examples, see 
the DBTreeControlClass.js file in the Configuration\Shared\Scripts folder.

Attribute Name Description

name Name of the database control

control.style Width and height, in pixels

type Type of control

connection Name of the database connection that is defined in the Connection Manager; if empty, 
the control is empty.

noexpandbuttons When this attribute is specified, the tree control does not draw the plus (+) or collapse 
minus (-) indicators or the associated triangle arrows on the Macintosh. This attribute 
is useful for drawing multicolumn list controls.

showheaders When this attribute is specified, the tree control displays a header at the top that lists 
the name of each column.
Chapter 336



Adding a variable grid control

The variable grid control has the following attributes:

The following example adds a simple variable grid control to a dialog box:

<select name="ParamList" style="width:515px;" ¬
type="mmparameterlist columns"="Name,SQL Data ¬
Type,Direction,Default Value,Run-time Value" size=6></select>

The following example creates a variable grid control that is 500 pixels wide, with five columns of 
various widths: 

<select name="ParamList" style="width:500px;" ¬
type=mmparameterlist columns="Name,SQL Data Type,Direction, ¬
Default Value,Run-time Value" columnWidth="100,25,11," size=6>¬
</select>

This example creates two blank columns that are 182 pixels wide. (The specified columns total 
136. The total width of the control is 500. The remaining space after the first three columns have 
been placed is 364. There are two columns left; 364 divided by 2 is 182.)

This grid control also has a JavaScript wrapper object that should be used to access and 
manipulate the grid control’s data. You can find the implementation within the 
GridControlClass.js file in the Configuration\Shared\MM\Scripts\Class folder.

Attribute Name Description

name Name of the variable grid control

style Width of the control, in pixels

type Type of control

columns Each column must have a name, separated by a comma

columnWidth Width of each column, each separated by a comma. If no widths are specified, the 
columns are of equal width.
User Interfaces for Extensions 37



Adding tree controls

Tree controls display data in a hierarchical format and let users expand and collapse nodes in the 
tree. The mm:treecontrol tag lets you create tree controls for any type of information; unlike the 
database tree control described in “Adding a database tree control” on page 36, no association 
with a database is required.The Dreamweaver Keyboard Shortcuts editor uses the tree control, as 
shown in the following illustration:

Creating a tree control

The MM:TREECONTROL tag creates a tree control and can use one or more additional tags to add 
structure, as described in the following list:

• MM:TREECOLUMN is an empty, optional tag that defines a column in the tree control.

• MM:TREENODE is an optional tag that defines a node in the tree. It is a nonempty tag that can 
contain only other MM:TREENODE tags.

MM:TREECONTROL tags have the following attributes: 

Attribute Name Description

name Name of the tree control

size Optional. Number of rows that show in the control; default is 5 rows

theControl Optional. If the number of nodes in theControl exceeds the value of the size 
attribute, scrollbars appear

multiple Optional. Allows multiple selections; default is single-selection

style Optional. Style definition for height and width of tree control; if specified, 
takes precedence over SIZE attribute

noheaders Optional. Specifies that the column headers should not display
Chapter 338



MM:TREECOLUMN tags have the following attributes:

For readability, TREECOLUMN tags should follow immediately after the MM:TreeControl tag, as 
shown in the following example:

<MM:TREECONTROL name="tree1">
<MM:TREECOLUMN name="Column1" width="100" state="visible">
<MM:TREECOLUMN name="Column2" width="80" state="visible">
... 
</MM:TREECONTROL> 

The MM:TREENODE attributes are described in the following table:

The following example creates a tree control:

<mm:treecontrol name="CtrlName" [size=N] [style="[width:#px];[height:#px]"]>
<mm:treecolumn name="Column1" value="Items"> 
<mm:treenode value="Item1" selected></mm:treenode>
<mm:treenode value="Item2|Item3" expanded></mm:treenode>
<mm:treenode value="Item4|Item5"></mm:treenode>
</mm:treecolumn>
</mm:treenode> 
</mm:treecontrol>

Manipulating content within a tree control

Tree controls and the nodes within them are implemented as HTML tags. They are parsed by 
Dreamweaver and stored in the document tree. These tags can be manipulated in the same way as 
any other document node. For more information on dom functions and methods, see “The 
Dreamweaver Document Object Model” on page 41. 

Attribute Name Description

name Name of the column

value String to appear in column header

width Width of the column in pixels (percentage not supported); 
default is 100

align Optional. Specifies whether the text in the column should be 
aligned left, right, or center; default is left

state Specifies whether the column is visible or hidden

Attribute Name Description

name Name of the node

value Contains the content for the given node. For more than one column, this is a pipe-
delimited string. To specify an empty column, place a single space character before 
the pipe (|).

expanded An empty attribute that specifies the node is expanded by default

selected You can select multiple nodes by setting this attribute on more than one tree node, if 
the tree has a MULTIPLE attribute.

icon Optional. The index of built-in icon to use, starting with 0, as follows:
0 = no icon
1 = DW document icon
2 = Multidocument icon
User Interfaces for Extensions 39



Adding nodes To add a node to an existing tree control programmatically, set the innerHTML 
property of the mm:treecontrol tag or one of the existing mm:treenode tags. Setting the inner 
HTML property of a tree node creates a nested node. 

The following example adds a node to the top level of a tree:

var tree = document.myTreeControl;
//add a top-level node to the bottom of the tree
tree.innerHTML = tree.innerHTML + ‘<mm:treenode name="node3"¬ 

value="node3">’; 

Adding a child node To add a child node to the currently selected node set the innerHTML 
property of the selected node. 

The following example adds a child node to the currently selected node:

var tree = document.myTreeControl;
var selNode = tree.selectedNodes[0];
//deselect the node, so we can select the new one
selnode.removeAttribute("selected");
//add the new node to the top of the selected node’s children
selNode.innerHTML = '<mm:treenode name="item10" value="New item11" ¬ 

expanded selected>' + selNode.innerHTML;

Deleting nodes To delete the currently selected node from the document structure, use the 
innerHTML or outerHTML properties.

The following example deletes the entire selected node and any children:

var tree = document.myTreeControl;
var selNode = tree.selectedNodes[0];
selNode.outerHTML = "";

A color button control for extensions 

In addition to the standard input types such as text, checkbox, and button, Dreamweaver 
supports mmcolorbutton, an additional input type in extensions. 

To cause a color picker to appear in the UI, specify <input type="mmcolorbutton"> in your 
extension. You can set the default color for the color picker by setting a value attribute on the 
input tag. If no value is set, the color picker appears grey by default and the value property of the 
input object returns an empty string.

The following example shows a valid mmcolorbutton tag: 

<input type="mmcolorbutton" name="colorbutton" value="#FF0000"> 
<input type="mmcolorbutton" name="colorbutton" value="teal"> 

A color button has one event, onChange, which is triggered when the color is changed.

You might want to keep a text box and a color picker synchronized. The following example 
creates a text box that synchronizes the color of the text box with the color of the color picker:

<input type = "mmcolorbutton" name="fgcolorPicker" 
onChange="document.fgcolorText.value=this.value">

<input type = "test" name="fgcolorText" 
onBlur="document.fgColorPicker.value=this.value">

In this example, when the user changes the value of the text box and then tabs or clicks 
elsewhere, the color picker updates to show the color that is specified in the text box. Whenever 
the user chooses a new color with the color picker, the text box updates to show the hex value for 
that color.
Chapter 340



CHAPTER 4
The Dreamweaver Document Object Model

In Dreamweaver, the Document Object Model (DOM) is a critically important tool for extension 
builders. It is used to gain access to and manipulate elements within the user’s document and 
within the extension file. For this reason, understanding the Dreamweaver DOM is important to 
extension developers.

A DOM defines the structure of documents that are created using a markup language. By 
representing tags and attributes as objects and properties, the DOM provides a way for 
documents and their components to be accessed and manipulated by programming languages. 

The structure of an HTML document can be seen as a document tree. The root is the HTML tag, 
and the two largest trunks are HEAD and BODY. Offshoots of HEAD include TITLE, STYLE, SCRIPT, 
ISINDEX, BASE, META, and LINK, and offshoots of BODY include headings (H1, H2, and so on), 
block-level elements (P, DIV, FORM, and so on), text-level elements, (FONT, BR, IMG, etc.) and 
other element types. Leaves on these offshoots include attributes such as WIDTH, HEIGHT, ALT, 
and others.

In a DOM, the tree structure is preserved and presented as a hierarchy of parent nodes and child 
nodes. The root node has no parent, and leaf nodes have no children. At each level within the 
HTML structure, the HTML element can be exposed to JavaScript as a node. Using this 
structure, you can access the document or any element within it. 

In JavaScript, you can call any document object by name or by index, as described in the 
following list:

• By name, as in document.myForm.myButton 

• By index, as in document.forms[0].elements[1] 

Objects with the same name are collapsed into an array. You can access a particular object in the 
array by incrementing the index with zero as the origin (for example, the first radio button with 
the name myRadioGroup in myForm is referenced as document.myForm.myRadioGroup[0]).

Which document DOM?
It is important to distinguish between the DOM of the user’s document and the DOM of the 
extension. The information in this chapter applies to both types of Dreamweaver documents, but 
the way that you reference each DOM is different.

If you are familiar with JavaScript in browsers, you can reference objects in the active document 
by writing document. (for example, document.forms[0]), the same way that you reference 
objects in extension files. To reference objects in the user’s document, however, you must call 
dw.getDocumentDOM(), dw.createDocument(), or another function that returns a user 
document object.
41



For example, to refer to the first image in the active document you can write 
dw.getDocumentDOM().images[0]. You can also store the document object in a variable and use 
that variable in future references, as shown in the following example:

var dom = dw.getDocumentDOM(); //get the dom of the current document
var firstImg = dom.images[0];
firstImg.src = “myImages.gif”;

This kind of notation is common in files throughout the Configuration folder, especially in 
command files. For more information about dw.getDocumentDOM(), see 
“dreamweaver.getDocumentDOM()” on page 453.

The Dreamweaver DOM 
The Dreamweaver DOM contains a subset of objects, properties, and methods from the World 
Wide Web Consortium (W3C) (http://www.w3.org/TR/REC-DOM-Level-1/) DOM Level 1, 
which are combined with some properties of the Microsoft Internet Explorer 4.0 DOM.

Objects, properties, and methods of the Dreamweaver DOM

The following table lists the objects, properties, methods, and events that the Dreamweaver 
DOM supports. Some properties are read-only when they are accessed as properties of a specific 
object. A bullet (•) indicates properties that are read-only when used in the listed context. 

Object Properties Methods Events

window navigator •
document •
innerWidth •
innerHeight •
screenX •
screenY •

alert()
confirm()
escape()
unescape()
close()
setTimeout()
clearTimeout()
setInterval()
clearInterval()
resizeTo()

onResize

navigator platform • None None

document forms • (an array of form 
objects)
images • (an array of image 
objects)
layers • (an array of 
LAYER, ILAYER, and 
absolutely positioned DIV 
and SPAN objects)
child objects by name •
nodeType •
parentNode •
childNodes •
documentElement •
body •
URL •
parentWindow •

getElementsBy TagName()
hasChildNodes()

onLoad
Chapter 442



all tags/elements nodeType •
parentNode •
childNodes •
tagName •
attributes by name
innerHTML
outerHTML

getAttribute()
setAttribute()
removeAttribute()
getElementsByTagName()
hasChildNodes()

form In addition to the properties 
available for all tags: 
tags:elements • (an array 
of button, checkbox, 
password, radio, reset, 
select, submit, text, 
file, hidden, image, 
and textarea objects)
mmcolorbutton
child objects by name •

Only those methods 
available to all tags.

None

layer In addition to the properties 
available for all tags:
visibility
left
top
width
height
zIndex

Only those methods available 
to all tags.

None

image In addition to the properties 
available for all tags:
src

Only those methods available 
to all tags.

onMouseOver
onMouseOut
onMouseDown
onMouseUp

button
reset
submit

In addition to the properties 
available for all tags:
form  •

In addition to the methods 
available for all tags:
blur()
focus()

onClick

checkbox
radio

In addition to the properties 
available for all tags:
checked
form  •

In addition to the methods 
available for all tags:
blur()
focus()

onClick

password
text
file
hidden
image (field)
textarea

In addition to the properties 
available for all tags:
form •
value

In addition to the methods 
available for all tags:
blur()
focus()
select()

onBlur
onFocus

select In addition to the properties 
available for all tags:
form •
options • (an array of 
option objects)
selectedIndex

In addition to the methods 
available for all tags:
blur() (Windows only)
focus() (Windows only)

onBlur (Windows 
only)
onChange
onFocus 
(Windows only)

option In addition to the properties 
available for all tags:
text

Only those methods available 
to all tags.

None

Object Properties Methods Events
The Dreamweaver Document Object Model 43



Properties and methods of the document object 

The following table details the properties and methods of the document object that are taken 
from DOM Level 1 and used in Dreamweaver. A bullet (•) marks read-only properties.

mmcolorbutton In addition to the properties 
available for all tags:
name
value

None onChange

array
boolean
date
function
math
number
object
string
regexp

MatchesNetscape 
Navigator 4

Matches Netscape 4 None

text nodeType •
parentNode •
childNodes •
data

hasChildNodes() None

comment nodeType •
parentNode •
childNodes •
data

hasChildNodes() None

NodeList length • item() None

NamedNodeMap length • item() None

Property or method Return value

nodeType • Node.DOCUMENT_NODE

parentNode • null

parentWindow • The JavaScript object that corresponds to the document’s parent 
window. (This property is not included in DOM Level 1; however, it is 
supported by Microsoft Internet Explorer 4.0.)

childNodes • A NodeList that contains all the immediate children of the document 
object. Typically the document has a single child: the HTML object.

documentElement • The JavaScript object that corresponds to the HTML tag. This property is 
shorthand for getting the value of document.childNodes and extracting 
the HTML tag from the NodeList.

body • The JavaScript object that corresponds to the BODY tag. This property is 
shorthand for calling document.documentElement.childNodes and 
extracting the BODY tag from the NodeList. For frameset documents, this 
property returns the node for the outermost frameset.

URL • The file://URL for the document or, if the file has not been saved, an 
empty string.

Object Properties Methods Events
Chapter 444



Properties and methods of HTML tag objects 

Every HTML tag is represented by a JavaScript object. Tags are organized in a tree hierarchy, 
where tag x is a parent of tag y, if y falls completely within x’s opening and closing tags (<x>x 
content <y>y content</y> more x content.</x>). For this reason, your code should be 
well-formed. 

The following table lists the properties and methods of tag objects in Dreamweaver, along with 
their return values or explanations. A bullet (•) marks read-only properties.

getElementsByTagName(tagName) A NodeList that can be used to step through tags of type tagName (for 
example, IMG, DIV, and so on). 
If the tag argument is LAYER, the function returns all LAYER and ILAYER 
tags and all absolutely positioned DIV and SPAN tags. 
If the tag argument is INPUT, the function returns all form elements. (If a 
name attribute is specified for one or more tagName objects, it must begin 
with a letter as required by the HTML 4.01 specification, or the length of 
the array that this function returns is incorrect.)

hasChildNodes() true

Property or method Return value

nodeType • Node.ELEMENT_NODE

parentNode • The parent tag. If this is the HTML tag, the document object returns.

childNodes • A NodeList that contains all the immediate children of the tag.

tagName • The HTML name for the tag, such as IMG, A, or BLINK. This value 
always returns in uppercase letters.

attrName A string that contains the value of the specified tag attribute. 
tag.attrName cannot be used if attrName is a reserved word in the 
JavaScript language (for example, class). In this case, use 
getAttribute() and setAttribute().

innerHTML The source code that is contained between the beginning tag and the 
end tag.For example, in the code <p><b>Hello</b>, World!</p>, 
p.innerHTML returns <b>Hello</b>, World!. If you write to this 
property, the DOM tree immediately updates to reflect the new 
structure of the document. (This property is not included in DOM 
Level 1; however, it is supported by Internet Explorer 4.0.)

outerHTML The source code for this tag, including the tag. For the previous 
example code, p.outerHTML returns <p><b>Hello</b>, World!</
p>. If you write to this property, the DOM tree immediately updates to 
reflect the new structure of the document. (This property is not 
included in DOM Level 1; however, it is supported by Internet Explorer 
4.0.)

getAttribute(attrName) The value of the specified attribute if it is explicitly specified; otherwise, 
null.

getTranslatedAttribute(attrName) The translated value of the specified attribute, or the same value that 
getAttribute() returns if the attribute’s value is not translated. (This 
property is not included in DOM Level 1; it was added to Dreamweaver 
3 to support attribute translation.)

setAttribute(attrName, attrValue) Does not return a value. Sets the specified attribute to the specified 
value: for example, img.setAttribute("src", "image/
roses.gif").

Property or method Return value
The Dreamweaver Document Object Model 45



Properties and methods of text objects 

Each contiguous block of text in an HTML document (for example, the text within a P tag) is 
represented by a JavaScript object. Text objects never have children. The following table describes 
the properties and methods of text objects that are taken from DOM Level 1 and used in 
Dreamweaver. A bullet (•) marks read-only properties.

Properties and methods of comment objects 

Each HTML comment is represented by a JavaScript object. The following table details the 
properties and methods of comment objects that are taken from DOM Level 1 and are used in 
Dreamweaver. A bullet (•) marks read-only properties.

removeAttribute(attrName) Does not return a value. Removes the specified attribute and its value 
from the HTML for this tag.

getElementsByTagName(tagName) A NodeList that can be used to step through child tags of type 
tagName (for example, IMG, DIV, and so on). 
If the tag argument is LAYER, the function returns all LAYER and 
ILAYER tags and all absolutely positioned DIV and SPAN tags. 
If the tag argument is INPUT, the function returns all form elements. (If 
a name attribute is specified for one or more tagName objects, it must 
begin with a letter as required by the HTML 4.01 specification, or the 
length of the array returned by this function is incorrect.)

hasChildNodes() A Boolean value that indicates whether the tag has any children.

hasTranslatedAttributes() A Boolean value that indicates whether the tag has any translated 
attributes. (This property is not included in DOM Level 1; it was added 
to Dreamweaver 3 to support attribute translation.)

Property or method Return value

nodeType • Node.TEXT_NODE

parentNode • The parent tag

childNodes • An empty NodeList

data The actual text string. Entities in the text are represented as a single 
character (for example, the text Joseph &amp; I is returned as 
Joseph & I).

hasChildNodes() false

Property or method Return value

nodeType • Node.COMMENT_NODE

parentNode • The parent tag

childNodes • An empty NodeList

data The text string between the comment markers (<!-- and -->)

hasChildNodes() false

Property or method Return value
Chapter 446



The dreamweaver and site objects

Dreamweaver implements the standard objects that are accessible through the DOM and adds 
two custom objects: dreamweaver and site. Both of these custom objects are widely used within 
the APIs and in writing extensions. For additional information on the methods of the 
dreamweaver and site objects, see “The Dreamweaver JavaScript API” on page 371.

Properties of the dreamweaver object

The dreamweaver object has two read-only properties, as described in the following list:

• appName has the value "Dreamweaver".

• appVersion has a value of the form "versionNumber.releaseNumber.buildNumber 
[languageCode] (platform)".

As an example, the value of the appVersion property for the Swedish Windows version of 
Dreamweaver MX would be "6.0.XXXX [se] (Win32)"; the value for the English Macintosh 
version would be "6.0.XXXX [en] (MacPPC)".

Note: The build number for the version that comes as Dreamweaver MX was not known when this documentation 
was printed. You can find the build number under Help > About.

The appName and appVersion properties were implemented in Dreamweaver 3 and are not 
available in earlier versions of Dreamweaver. You might want to check whether the user of your 
extension has Dreamweaver version 3 or later. To do this, check for the existence of the 
appVersion or appName property. 

To check for a specific version of Dreamweaver, check first for the existence of appVersion and 
then for the version number, as shown in the following example:

if (dreamweaver.appVersion && ¬
dreamweaver.appVersion.indexOf('3.01') != -1){

// execute code
}

The dreamweaver object has a property called systemScript that lets you query the language of 
the user’s operating system. Use this property if you need to include special cases in your 
extension code for localized operating systems, as shown in the following example:

if (dreamweaver,systemScript && (dreamweaver.systemScript.indexOf(’ja’)!=-1){
SpecialCase
}

systemScript returns the following values for localized operating systems:

Operating systems for all European languages return ’en’.

Language Value

Japanese ja

Korean ko

TChinese zh_tw

SChinese zh_cn
The Dreamweaver Document Object Model 47



The site object

The site object has no properties. For information about the methods of the dreamweaver and 
site objects, see “The Dreamweaver JavaScript API” on page 371.
Chapter 448



P
art II
Part II
Extension APIs

Understand about functions that you need to write when 
you create new objects, toolbars, tag editors, floating panels, 
server behaviors, components, or server models.

• Chapter 5, “Objects”

• Chapter 6, “Commands”

• Chapter 7, “Menu Commands”

• Chapter 8, “Toolbars”

• Chapter 9, “Reports”

• Chapter 10, “Tag Libraries and Editors”

• Chapter 11, “Property Inspectors”

• Chapter 12, “Floating Panels”

• Chapter 13, “Behaviors”

• Chapter 14, “Server Behaviors”

• Chapter 15, “Data Sources”

• Chapter 16, “Server Formats”

• Chapter 17, “Components”

• Chapter 18, “Server Models”

• Chapter 19, “Data Translators”

• Chapter 21, “C-Level Extensibility”





CHAPTER 5
Objects

Objects are designed to insert a specific string of code into a user’s document. An object appears 
in a tab in the Insert bar and in the Insert menu when its Object file is stored in a subfolder 
within the Configuration/Objects folder. If you add a new object to the Insert bar, you must add 
a new subfolder for it within the Configuration/Objects folder and also edit the insertbar.xml file.

Objects have three components: the Object file that defines what is inserted in your document, 
the 18 x 18 pixel image that appears on the Insert bar, and the insertbar.xml file that defines 
where the object appears on the Insert bar.

Objects are HTML files. The BODY of an Object file can contain an HTML form that accepts 
parameters for the object (for example, the number of rows and columns to insert in a table). The 
HEAD of an Object file contains JavaScript functions that process form input from the BODY and 
control what is added to the user’s document.

Note: The simplest objects contain only the HTML to insert, without a BODY and HEAD tag. See “Customizing 
Dreamweaver” on the Macromedia Support Center for more information.

How object files work
When a user selects an object by clicking an icon in the Insert bar or by selecting an item in the 
Insert menu, the following events occur:

1 Dreamweaver calls the canInsertObject() function to determine whether to show a dialog box.

2 The Object file is scanned for a FORM tag. If a form exists and if the Show Dialog When 
Inserting Objects option is selected in the General preferences, Dreamweaver calls the 
windowDimensions() function, if defined, to determine the size of the dialog box in which to 
display the form. If no form exists in the Object file, Dreamweaver does not display a dialog 
box, and skips step 2.

3 If Dreamweaver displays a dialog box in step 1, the user enters parameters for the object (such 
as the number of rows and columns in a table) in the dialog box and clicks OK.

4 The objectTag() function is called, and its return value is inserted into the document after 
the current selection (it does not replace the current selection).

5 If Dreamweaver does not find the objectTag() function, it looks for an insertObject() 
function and calls that function instead.
51



Adding objects to the Insert bar

Each Object file has an associated 18 x 18 pixel image that appears in the Insert bar. 

If you create a larger object image, Dreamweaver scales it to 18 x 18 pixels. If you do not create an 
image for your object, a default object icon appears in the Insert bar.

Note: Although Object files can be stored in separate folders, it’s important that each filename be unique. The 
“dom.insertObject()” on page 471, for example, looks for a specified file anywhere within the Objects folder without 
regard to subfolders. If a file called Button.htm exists in the Forms folder and also in the MyObjects folder, 
Dreamweaver cannot distinguish between them.

Defining the Insert bar
The Insert bar is defined by the insertbar.xml file that is found in the Configurations/Objects 
folder. 

The XML file contains definitions for each individual object, in the order that the objects appear. 

The first time that the user launches Dreamweaver, the Insert bar appears horizontally above the 
document. After that, its visibility and position are saved in the registry. 

The following example illustrates the format for the insertbar.xml file: 

<?xml version="1.0"?>
<insertbar >  

<category id="DW_Insertbar_Common" folder="Common">    
<button id="DW_TagDialog"

image="Objects/Common/tagDialog.gif"
enabled="true"
showIf="_VIEW_CODE"
command="dw.getDocumentDOM().setView(’code’)"/>    

<separator showIf="_VIEW_CODE"/>
        

<button id="DW_BR"
image="Objects/Common/BR.gif"
enabled="true"
file="Objects/Common/br.htm"/> 

... 
</category >

</insertbar>

Insert bar definition tags 
The Insert bar has category, button, checkbutton, and separator items. The following sections 
describe the tags for these items.

<insertbar>

Description

Signals the beginning of the Insert bar definition file.

Attributes

None.

Contents

The category tag and its contents.
Chapter 552



Container

None.

Example

<insertbar>

<category>

Description

Defines a tab on the Insert bar. 

Attributes

id, folder, {showif}

Contents

Contains button, checkbutton, and separator tags.

Container

The insertbar tag.

Example

<category id="DW_Insertbar_Text" folder="Text"> 

<button>

Description

Defines a pushbutton. Executes the code that the command or file attributes specify.

Attributes

id, image, {disabledImage}, {showif}, {enabled}, {command}, {file}, {tag}, 
{name}, {codeOnly}

Contents

None.

Container

The category tag.

Example

<button id="DW_Anchor"
image="Common\Anchor.gif"
enabled="true"
showIf=""
file="Common\Anchor.htm"/>

<checkbutton>

Description

A button that has a checked or unchecked state. When you click it, a checkbutton displays as 
pressed in and highlighted. When it is unchecked, a checkbutton displays as flat. Dreamweaver 
has mouse-over, pressed, mouse-over-while-pressed, and disabled-while-pressed states. The 
command must ensure that clicking the checkbutton causes its state to change.
Objects 53



Attributes

id, image, {disabledImage}, {showIf}, {enabled}, {checked}, {command}, {file}, 
{tag}, {name}

Contents

None.

Container

The category tag.

Example

<checkbutton id="DW_StandardView"
name = "Standard View"
image="Tools\Standard View.gif"
checked="_View_Standard"
command="dw.getDocumentDOM().setShowLayoutView(false)"/>

<separator>

Description

Displays a vertical line on the Insert bar.

Attributes

(showIf }

Contents

None.

Container

The category tag.

Example

<separator showIf="_VIEW_CODE"/>

Insert bar tag attributes
The attributes for the Insert bar tags have the following meanings:

id="unique_id"

Required. The id is an identifier for tags in the insertbar.xml file. The id must be unique 
identifier for the element within the file. 

Example

<category id="DW_Insertbar_Layout" . . .>

folder="category_folder" 

Specifies a folder in the Dreamweaver Configuration/Objects folder. Dreamweaver takes the 
name of the category from the _folderinfo.txt file inside the folder, or from the folder name if the 
_folderinfo.txt file does not exist.

Example

folder="Tools"
Chapter 554



image="image_path" 

Required. Specifies the path, relative to the Dreamweaver Configuration folder, to the icon file 
that appears on the Insert bar. The icon can be in any format that Dreamweaver can render, but 
typically it is a GIF or JPEG file format. 

Example

image="Common/Table.gif"

showIf="DW_enabler" 

Optional. Specifies that this item should appear on the Insert bar only if the given Dreamweaver 
enabler is true. If you do not specify showIf, the item always appears. The possible enablers are 
_SERVERMODEL_ASP, _SERVERMODEL_ASPNET, _SERVERMODEL_JSP, _SERVERMODEL_CFML (for 
both new and old versions of ColdFusion), _SERVERMODEL_CFML_UD4 (true only for UltraDev 
version 4 of ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, 
_VIEW_LAYOUT, and _VIEW_STANDARD. 

You can specify multiple enablers by placing a comma (which means AND) between the enablers. 
For example, if you want an object to appear only in Code view for an ASP page, specify the 
enablers as showIf="_VIEW_CODE, _SERVERMODEL_ASP". You can also specify NOT with "!".

Example

showIf="_VIEW_CODE, _SERVERMODEL_CFML"

enabled="DW_enabler" 

Optional. Specifies that the item is enabled if DW_enabler is true. If you do not specify enabled, 
the item defaults to always enabled. The possible enablers are _SERVERMODEL_ASP, 
_SERVERMODEL_ASPNET, _SERVERMODEL_JSP, _SERVERMODEL_CFML (for both new and old 
versions of ColdFusion), _SERVERMODEL_CFML_UD4 (true only for UltraDev version 4 of 
ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, 
_VIEW_LAYOUT, and _VIEW_STANDARD. 

You can specify multiple enablers by placing a comma (which means AND) between the enablers. 
You can also specify NOT with "!".

Example

enabled="_View_Standard"

checked="DW_enabler" 

Required for checkbuttons. The item is checked if DW_enabler is true. The possible enablers are 
_SERVERMODEL_ASP, _SERVERMODEL_ASPNET, _SERVERMODEL_JSP, _SERVERMODEL_CFML (for 
both new and old versions of ColdFusion), _SERVERMODEL_CFML_UD4 (only for UltraDev version 
4 of ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, and 
_VIEW_LAYOUT. 

You can specify multiple enablers by placing a comma (which means AND) between 
them.You can also specify NOT with "!".

Example

checked="_View_Layout"
Objects 55



command="script " 

Required unless the command attribute is specified. Do not specify both the command and the 
file attributes for an object. The command attribute specifies JavaScript code to execute when the 
user clicks the button. 

Example

command="dw.getDocumentDOM().setShowLayoutView(true)"

file="object_file_path" 

Required unless the command attribute is specified. The file attribute specifies the path, relative 
to the Dreamweaver Configuration folder, of an object file. Dreamweaver takes the tooltip for the 
object from the title of the object file.

Example

file="Templates/Editable.htm"

tag="tagStr" 

Optional. Defines the tag for which to invoke a tag editor. In Code view, if the tag attribute is 
defined and the user clicks on the object, Dreamweaver invokes the Tag dialog box. In Code view, 
if both tag and command are specified, Dreamweaver invokes the tag editor. In Design view, if 
codeOnly="TRUE” and the file attribute is not specified, Dreamweaver MX invokes Split view, 
places focus in the code, and invokes the tag editor.

Example

tag = "form"

name="nameStr" 

Optional. The name attribute specifies the tooltip that appears when the mouse cursor hovers over 
the object. If you specify an object file but do not specify the name attribute, Dreamweaver uses 
the name of the object file for the tooltip.

Example

name = "cfoutput"

codeOnly = "boolStr"

Optional. Specifies whether the object is only meant for Code view because it has no visual 
representation in Design view. The value of boolStr must be "true" or "false". 

Adding Objects to the Insert menu
Dreamweaver automatically adds any files that are inside one of the subfolders in the 
Configuration/Objects folder to the bottom of the Insert menu.

To control the position of an object in the Insert menu or any other menu, or to add an object to 
multiple menus, you can modify the menus.xml file. This file controls the entire menu structure 
for Dreamweaver. For more information about modifying the menus.xml file, see “Customizing 
Dreamweaver” on the Macromedia Support Center.
Chapter 556



The Objects API
This section describes the functions in the Objects API. You must define either the 
insertObject() function or the objectTag() function. The remaining functions are optional.

canInsertObject() 

Availability

Dreamweaver MX

Description 

Determines whether to display the Object dialog box. 

Arguments

None. 

Returns 

Dreamweaver expects a Boolean value.

Example 

function canInsertObject(){    
   var docStr = dw.getDocumentDOM().documentElement.outerHTML;
   var patt = /hava/;
   var found = ( docStr.search(patt) != -1 );
   var insertionIsValid = true; 
 
   if (!found){
    insertionIsValid = false;
    alert("the document must contain a ’hava’ string to use this object.\nHa 

Ha.");  }
   return insertionIsValid;} 

displayHelp()

Description

If this function is defined, displays a Help button below the OK and Cancel buttons in the 
Parameters dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
’/ExtensionsHelp/superDuperHelp.htm’;

  dw.browseDocument(myHelpFile);
}

Objects 57



isDomRequired()

Description

Determines whether the object requires a valid DOM to operate. If this function returns true or 
if the function is not defined, Dreamweaver assumes that the command requires a valid DOM 
and synchronizes the Code and Design views for the document before executing. 
Synchronization causes all edits in the Code view to be updated in the Design view.

Arguments

None.

Returns

Dreamweaver expects true if a command requires a valid DOM to operate; false otherwise.

insertObject() 

Availability

Dreamweaver MX

Description 

Required if objectTag() is not defined. Called when the user clicks OK; either inserts code into 
the user’s document and dismisses the dialog box, or displays an error message and leaves the 
dialog box open. This works as an alternate function to use in objects instead of objectTag(). It 
does not assume that the user is inserting text at the current insertion point and allows for data 
validation when the user clicks OK. You should use insertObject() if one of the following 
conditions exists: 

• You need to insert code in more than one place.

• You need to insert code somewhere other than the insertion point.

• You need to validate input before inserting. 

If none of these conditions apply, use objectTag().

Arguments 

None. 

Returns

Dreamweaver expects a string that contains an error message or an empty string. If it returns an 
empty string, the Object dialog box closes when the user clicks OK. If it is not empty, 
Dreamweaver displays the error message and the dialog box remains.

Enabler

canInsertObject()
Chapter 558



Example 

function insertObject() { 
var theForm = document.forms[0];
var nameVal = theForm.firstField.value;
var passwordVal = theForm.secondField.value;
var errMsg = "", 
var isValid = true; 

// ensure that field values are complete and valid 
if (nameVal == "" || passwordVal == "") {

errMsg = "Complete all values or click Cancel."
} else if (nameVal.length < 4 || passwordVal.length < 6) {

errMsg = "Your name must be at least four characters, and your password at 
least six";

} 

if (!errMsg) {
// do some document manipulation here. Exercise left to the reader
} 
return errMsg;
}

objectTag()

Description

The functions objectTag() and insertObject() are mutually exclusive; if both are defined in a 
document, then objectTag() is used. See the insertObject() function for more information.

Inserts a string of code into the user’s document. In Dreamweaver 4, if the focus was in Code view 
and the selection was a range (meaning not an insertion point), the range was replaced by the 
string that objectTag() returns. This is true, even if objectTag() returned an empty string or 
returned nothing. Because the main reason for returning an empty string, or null, from 
objectTag() was because edits to the document have already been made manually, having the 
selection be replaced by "" often deleted the edit. In Dreamweaver MX, returning an empty 
string, or null (also known as "Return;"), is a signal to Dreamweaver to do nothing.

Note: The assumption is that edits have been made manually prior to the return statement, so doing nothing in 
this case is not equivalent to clicking Cancel. 

Arguments

None.

Returns

Dreamweaver expects the string to be inserted in the user’s document.

Example

The following instance of objectTag() inserts an OBJECT/EMBED combination for a specific 
ActiveX control and plug-in:

function objectTag() {
return ’\n’ +
'<OBJECT CLASSID="clsid:166F1OOB-3A9R-11FB-8075444553540000" \n'¬
+ 'CODEBASE="http://www.mysite.com/product/cabs/¬
myproduct.cab#version=1,0,0,0" \n' + 'NAME="MyProductName"> \n' ¬
+ '<PARAM NAME="SRC" VALUE=""> \n' + '<EMBED SRC="" HEIGHT="" ¬
WIDTH="" NAME="MyProductName"> \n' + '</OBJECT>'
}

Objects 59



windowDimensions()

Description

Sets specific dimensions for the Options dialog box. If this function is not defined, the window 
dimensions are computed automatically.

Note: Do not define this function unless you want an Options dialog box that is larger than 640 x 480 pixels.

Arguments

platform

The value of the argument is either "macintosh" or "windows", depending on the user’s 
platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not 
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate 
all options, scroll bars appear.

Example

The following instance of windowDimensions() sets the dimensions of the Parameters dialog box 
to 648 x 520 pixels for Windows and 660 x 580 pixels for the Macintosh:

function windowDimensions(platform){
var retval = ""
if (platform = = "windows"){
retval = "648, 520";
}else{
retval = "660, 580";
}
return retval;

}

Chapter 560



CHAPTER 6
Commands

Commands can be used to perform almost any kind of edit to a user’s current document, other 
open documents, or to any HTML document on a local drive. Commands can insert, remove, or 
rearrange HTML tags and attributes, comments, and text.

Commands are HTML files. The BODY of a Command file can contain an HTML form that 
accepts options for the command (for example, how a table should be sorted and by which 
column). The HEAD of a Command file contains JavaScript functions that process form input 
from the BODY and control what edits are made to the user’s document.

How commands work
When a user clicks a menu that contains a command, the following events occur: 

1 Dreamweaver calls the canAcceptCommand() function to determine whether the menu 
item should be disabled. If canAcceptCommand() returns false, the command is dimmed 
in the menu, and the procedure stops. If canAcceptCommand() returns true, the procedure 
can continue.

2 The user selects a command from the menu.

3 Dreamweaver calls the receiveArguments() function, if defined, in the selected Command 
file to let the command process any arguments that are passed from the menu item or from the 
function “dreamweaver.runCommand()” on page 400.

4 Dreamweaver calls the commandButtons() function, if defined, to determine which buttons 
appear on the right side of the Options dialog box and what code should execute when the user 
clicks the buttons.

5 Dreamweaver scans the Command file for a FORM tag. If a form exists, Dreamweaver calls the 
windowDimensions() function, which sizes the Options dialog box that contains the BODY 
elements of the file. If windowDimensions() is not defined, Dreamweaver automatically sizes 
the dialog box.

6 If the Command file’s BODY tag contains an onLoad handler, Dreamweaver executes it (whether 
or not a dialog box appears). If no dialog box appears, the remaining steps do not occur.

7 The user selects options for the command. Dreamweaver executes event handlers that are 
associated with the fields as the user encounters them.

8 The user clicks one of the buttons that is defined by commandButtons(). 

9 Dreamweaver executes the associated code. The dialog box remains visible until one of the 
scripts in the command calls window.close().
61



The Command API
The custom functions in the Command API are not required.

canAcceptCommand()

Description

Determines whether the command is appropriate for the current selection.

Note: Do not define canAcceptCommand() unless it returns false in at least one case. If the function is not 
defined, the command is assumed to be appropriate; making this assumption saves time and improves performance.

Arguments

None.

Returns

Dreamweaver expects true if the command is allowed; false otherwise, dimming the command 
in the menu.

Example

The following instance of canAcceptCommand() makes the command available only when the 
selection is a table:

function canAcceptCommand(){
var retval=false;
var selObj=dw.getDocumentDOM.getSelectedNode();
return (selObj.nodeType == Node.ELEMENT_NODE && ¬
selObj.tagName=="TABLE");{

retval=true;
}
return retval;
}

commandButtons()

Description

Defines the buttons that should appear on the right side of the Options dialog box and their 
behavior when they are clicked. If this function is not defined, no buttons appear, and the BODY of 
the Command file expands to fill the entire dialog box.

Arguments

None.

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is a 
string that contains the label for the topmost button. The second element is a string of JavaScript 
code that defines the behavior of the topmost button when it is clicked. Remaining elements 
define additional buttons in the same way.

Example

The following instance of commandButtons() defines three buttons: OK, Cancel, and Help.

function commandButtons(){
return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

Chapter 662



isDomRequired()

Description

Determines whether the command requires a valid DOM to operate. If this function returns 
true or if the function is not defined, Dreamweaver assumes that the command requires a valid 
DOM and synchronizes the Design and Code views of the document before executing. 
Synchronization causes all edits in the Code view to be updated in the Design view.

Arguments

None.

Returns

Dreamweaver expects true if a command requires a valid DOM to operate; false otherwise.

receiveArguments()

Description

Processes any arguments that are passed from a menu item or from dw.runCommand(), if any 
arguments are passed via the dw.runCommand() function.

Arguments

{arg1}, {arg2},...{argN}

If the arguments attribute is defined for a menuitem tag, the value of that attribute passes to the 
receiveArguments() function as one or more arguments. Arguments can also be passed to a 
command by the dw.runCommand() function.

Returns

Dreamweaver expects nothing.
Commands 63



windowDimensions()

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the window 
dimensions are computed automatically.

Note: Do not define this function unless you want an Options dialog box that is larger than 640 x 480 pixels.

Arguments

platform

The value of the argument is either "macintosh" or "windows", depending on the user’s 
platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not 
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate 
all options, scroll bars appear.

Example

The following example of windowDimensions() sets the dimensions of the Parameters dialog box 
to 648 x 520 pixels:

function windowDimensions(){
return "648,520";

}

Chapter 664



A simple command example

The following command converts the selected text to all lowercase characters. The command is 
very simple. It does not display a dialog box, so the commandButtons() function is not defined.

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">
<HTML>
<HEAD>
<TITLE>Make Lower Case</TITLE>
<SCRIPT LANGUAGE="javascript">

function canAcceptCommand(){
  // Get the DOM of the current document
  var theDOM = dw.getDocumentDOM();
  // Get the offsets of the selection
  var theSel = theDOM.getSelection();
  // Get the selected node
  var theSelNode = theDOM.getSelectedNode();
  // Get the children of the selected node
  var theChildren = theSelNode.childNodes;

  // If the selection is not an insertion point, and
  // either the selection or its first child is a
  // text node, return true.

return (theSel[0] != theSel[1] && (theSelNode.nodeType == ¬
Node.TEXT_NODE || theChildren[0].nodeType == Node.TEXT_NODE));

}

function changeToLowerCase() {
  // Get the DOM again
  var theDOM = dw.getDocumentDOM();
  // Get the offsets of the selection
  var theSel = theDOM.getSelection();

  // Get the outerHTML of the HTML tag (the
  // entire contents of the document)
  var theDocEl = theDOM.documentElement;
  var theWholeDoc = theDocEl.outerHTML;

  // Extract the selection
  var selText = theWholeDoc.substring(theSel[0],theSel[1]);

  // Re-insert the modified selection into the document
theDocEl.outerHTML = theWholeDoc.substring(0,theSel[0]) + ¬
selText.toLowerCase() + theWholeDoc.substring(theSel[1]);

  // Set the selection back to where it was when you
  // started
  theDOM.setSelection(theSel[0],theSel[1]);
}

</SCRIPT>
</HEAD>

<BODY onLoad="changeToLowerCase()">

<!-- The function that does all the work in this command is
called from the onLoad handler on the BODY tag. There is no form
in the BODY, so no dialog box appears. -->

</BODY>
</HTML>
Commands 65



Adding commands to the Commands menu
Dreamweaver automatically adds any files that are inside the Configuration/Commands folder to 
the bottom of the Commands menu. To prevent a command from appearing in the Commands 
menu, put the following comment on the first line of the file:

<!-- MENU-LOCATION=NONE -->
Chapter 666



CHAPTER 7
Menu Commands

Menu commands make menus more flexible and dynamic. As with regular commands, menu 
commands can be used to perform almost any kind of edit to the current document, other open 
documents, or any HTML document on a local drive. The Menu Commands API expands the 
regular command API to accomplish several tasks that are related to displaying and calling the 
command from the menu system.

Note: Because menu commands are directly related to the menu system in Dreamweaver, you should read 
“Customizing Dreamweaver,” in Using Dreamweaver before continuing in this chapter.

Menu commands are HTML files that are referenced in the file attribute of a menuitem tag in 
the menus.xml file. The BODY of a Menu Commands file can contain an HTML form that 
accepts options for the command (for example, how a table should be sorted and by which 
column). The HEAD of a Menu Commands file contains JavaScript functions that process form 
input from the BODY and control the edits that are made to the user’s document.

Menu commands are stored in the Configuration/Menus folder inside the Dreamweaver 
application folder.

Note: If you add custom menu commands to Dreamweaver, add them at the top level of the Menus folder or create 
a subfolder. The MM folder is reserved for the menu commands that come with Dreamweaver.

How menu commands work
When the user clicks a menu with a menu item that contains a menu command, the following 
events occur:

1 If any menuitem tag in the menu contains the dynamic attribute, Dreamweaver calls the 
getDynamicContent() function in the associated Menu Commands file to populate the menu.

2 Dreamweaver calls the canAcceptCommand() function in each Menu Commands file that is 
referenced in the menu to check whether the command is appropriate for the selection. 

• If canAcceptCommand() returns false, the menu item is dimmed.

• If canAcceptCommand() returns true or is not defined, Dreamweaver calls the 
isCommandChecked() function to determine whether to display a check mark next to the 
menu item. If isCommandChecked() is not defined, no check mark appears.

3 Dreamweaver calls the setMenuText() function to determine the text that should appear in 
the menu. 

If setMenuText() is not defined, Dreamweaver uses the text that is specified in the menuitem 
tag.

4 The user selects an item from the menu.
67



5 Dreamweaver calls the receiveArguments() function, if defined, in the selected Menu 
Commands file to let the command process any arguments that are passed from the menu item.

Note: If it is a dynamic menu item, the ID of the menu item is passed as the only argument.

6 Dreamweaver calls the commandButtons() function, if defined, to determine which buttons 
appear on the right side of the Options dialog box and what code should execute when the user 
clicks the buttons.

7 Dreamweaver scans the Menu Commands file for a FORM tag. 

If a form exists, Dreamweaver calls the windowDimensions() function to determine the size of 
the Options dialog box that contains the BODY elements of the file. 

If windowDimensions() is not defined, Dreamweaver automatically sizes the dialog box.

8 If the Menu Commands file’s BODY tag contains an onLoad handler, Dreamweaver executes the 
associated code (whether or not a dialog box appears). If no dialog box appears, the remaining 
steps do not occur.

9 The user selects options in the dialog box. Dreamweaver executes event handlers that are 
associated with the fields as the user encounters them.

10 The user clicks one of the buttons that are defined by commandButtons(). 

11 Dreamweaver executes the code that is associated with the clicked button. 

12 The dialog box remains visible until one of the scripts in the Menu Commands calls 
window.close().

The Menu Commands API
The custom functions in the Menu Commands API are not required. 

canAcceptCommand()

Description

Determines whether the menu item should be active or dimmed.

Arguments

{arg1}, {arg2},...{argN}}

If it is a dynamic menu item, the unique ID given in getDynamicContents() is the only 
argument. Otherwise, if the arguments attribute is defined for a menuitem tag, the value of that 
attribute passes to the canAcceptCommand() function (and to the “isCommandChecked()” on 
page 70, “receiveArguments()” on page 70, and “setMenuText()” on page 71 functions) 
as one or more arguments. The arguments attribute is useful for distinguishing between two 
menu items that call the same menu command.

Note: The arguments attribute is ignored for dynamic menu items.

Returns

Dreamweaver expects a Boolean value that indicates whether the item should be enabled.
Chapter 768



commandButtons()

Description

Defines the buttons that should appear on the right side of the Options dialog box and their 
behavior when they are clicked. If this function is not defined, no buttons appear, and the BODY of 
the Menu Commands file expands to fill the entire dialog box.

Arguments

None.

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is a 
string that contains the label for the topmost button. The second element is a string of JavaScript 
code that defines the behavior of the topmost button when it is clicked. The remaining elements 
define additional buttons in the same manner.

Example

The following example of commandButtons() defines three buttons: OK, Cancel, and Help.

function commandButtons(){
return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

getDynamicContent()

Description

Retrieves the content for the dynamic portion of the menu.

Arguments

menuID

The argument is the value of the id attribute in the menuitem tag that is associated with the item.

Returns

Dreamweaver expects an array of strings where each string contains the name of a menu item and 
its unique ID, separated by a semicolon. If the function returns null, the menu does not change.

Example

The following example of getDynamicContent() returns an array of four menu items (My 
Menu Item 1, My Menu Item 2, and so on):

function getDynamicContent(){
var stringArray= new Array();
var i=0;
var numItems = 4;

    
for (i=0; i<numItems;i++)

stringArray[i] = new String("My Menu Item " + i + ";¬
id=’My-MenuItem" + i + “‘”);

return stringArray;
}

Menu Commands 69



isCommandChecked()

Description

Determines whether to display a check mark next to the menu item

Arguments

{arg1}, {arg2},...{argN}

If it is a dynamic menu item, the unique ID given in getDynamicContents() is the only 
argument. Otherwise, if the arguments attribute is defined for a menuitem tag, the value of that 
attribute passes to the isCommandChecked() function (and to the “canAcceptCommand()” on 
page 68, “receiveArguments()” on page 70, and “setMenuText()” on page 71 functions) 
as one or more arguments. The arguments attribute is useful for distinguishing between two 
menu items that call the same menu command.

Note: The arguments attribute is ignored for dynamic menu items.

Returns

Dreamweaver expects a Boolean value that indicates whether a check mark should appear next to 
the menu item.

Example

function isCommandChecked()
{
  var bChecked = false;

var cssStyle = arguments[0];

if (dw.getDocumentDOM() == null) 
  return false;

if (cssStyle == "(None)")
{

return dw.cssStylePalette.getSelectedStyle() == '';
}
else
{

return dw.cssStylePalette.getSelectedStyle() == cssStyle;
}

return bChecked;
}

receiveArguments()

Description

Processes any arguments that are passed from a menu item or from dw.runCommand(). If it is a 
dynamic menu item, it processes the dynamic menu item ID.

Arguments

{arg1}, {arg2},...{argN}

If it is a dynamic menu item, the unique ID that is given in getDynamicContents() is the only 
argument. Otherwise, if the arguments attribute is defined for a menuitem tag, the value of that 
attribute passes to the receiveArguments() function (and to the “canAcceptCommand()” on 
page 68, “isCommandChecked()” on page 70, and “setMenuText()” on page 71 functions) 
as one or more arguments. The arguments attribute is useful for distinguishing between two 
menu items that call the same menu command.

Note: The arguments attribute is ignored for dynamic menu items.
Chapter 770



Returns

Dreamweaver expects nothing.

Example

function receiveArguments()
{

var styleName = arguments[0];
if (styleName == "(None)")

dw.getDocumentDOM(’document’).applyCSSStyle(’’,’’);
else

dw.getDocumentDOM(’document’).applyCSSStyle(’’,styleName);
}

setMenuText()

Description

Specifies the text that should appear in the menu.

Note: Do not use this function if you are using “getDynamicContent()” on page 69.

Arguments

{arg1}, {arg2},...{argN}

If the arguments attribute is defined for a menuitem tag, the value of that attribute passes to the 
setMenuText() function (and to the “canAcceptCommand()” on page 68, 
“isCommandChecked()” on page 70, and “receiveArguments()” on page 70 functions) as 
one or more arguments. The arguments attribute is useful for distinguishing between two menu 
items that call the same menu command.

Returns

Dreamweaver expects the string that should appear in the menu.

Example

function setMenuText()
{

if (arguments.length != 1) return "";

var whatToDo = arguments[0];
if (whatToDo == "undo")

return dw.getUndoText();
else if (whatToDo == "redo")

return dw.getRedoText();
else return "";

}

Menu Commands 71



windowDimensions()

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the window 
dimensions are computed automatically.

Note: Do not define this function unless you want a dialog box larger than 640 x 480 pixels.

Arguments

platform

The value of the argument is either "macintosh" or "windows", depending on the user’s 
platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not 
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate 
all options, scroll bars appear.

Example

The following example of windowDimensions() sets the dimensions of the Parameters dialog box 
to 648 x 520 pixels:

function windowDimensions(){
return "648,520";

}

Chapter 772



A simple menu command

The following menu command is associated with two menu items: Undo and Redo. It checks the 
arguments attribute of the menuitem tag and performs a dw.undo() or a dw.redo() operation, 
depending on the value of the first (and only) argument.

<HTML>
<HEAD>
<!-- Copyright 1999 Macromedia, Inc. All rights reserved. -->
<TITLE>Edit Clipboard</TITLE>
<SCRIPT LANGUAGE="javascript">
function receiveArguments()
{
  if (arguments.length != 1) return;

  var whatToDo = arguments[0];
  if (whatToDo == "undo")
  {
    dw.undo();
  }
  else if (whatToDo == "redo")
  {
    dw.redo();
  }
}

function canAcceptCommand()
{
  var selarray;
  if (arguments.length != 1) return false;
  var bResult = false;

  var whatToDo = arguments[0];
  if (whatToDo == "undo")
  {
    bResult = dw.canUndo();
  }
  else if (whatToDo == "redo")
  {
    bResult = dw.canRedo();
  }
  return bResult;
}

function setMenuText()
{
  if (arguments.length != 1) return "";

  var whatToDo = arguments[0];
  if (whatToDo == "undo")
    return dw.getUndoText();
  else if (whatToDo == "redo")
    return dw.getRedoText();
  else return "";
}

</SCRIPT>
</HEAD>
<BODY>
</BODY>
</HTML>
Menu Commands 73



In this command, the receiveArguments() function processes the arguments and executes the 
command. More complex menu commands might call different functions to execute the 
command. For example, the following code checks whether the first argument is "foo"; if it is, it 
calls the doOperationX() function and passes it the second argument. If the first argument is 
"bar", it calls the doOperationY() function and passes it the second argument. 
doOperationX() or doOperationY() is responsible for executing the command.

function receiveArguments(){
  if (arguments.length != 2) return;

  var whatToDo = arguments[0];

  if (whatToDo == "foo"){
    doOperationX(arguments[1]);
  }else if (whatToDo == "bar"){
    doOperationX(arguments[1]);
  }
}

Chapter 774



A simple dynamic menu

The following menu command generates the Preview in Browser submenu, and it launches the 
current file (or the selected files in the Site panel) in the browser that the user chooses from the 
submenu.

<HTML>
<HEAD>
<!-- Copyright 1999 Macromedia, Inc. All rights reserved. -->
<TITLE>Preview Browsers</TITLE>
<SCRIPT LANGUAGE="javascript">
<!--
  // getDynamicContent returns the contents of a dynamically  
  // generated menu. 
  // returns an array of strings to be placed in the menu, with a unique
  // identifier for each item separated from the menu string by a 
  // semicolon.
  //
  // return null from this routine to indicate that you are not 
  // adding any
  // items to the menu
  function getDynamicContent(itemID)
  {
    var browsers = null;
    var PIB = null;
    var i;
    var j=0;
    var bUpdate = dw.getMenuNeedsUpdating(itemID);

    if (bUpdate)
    {
      browsers = new Array();
      PIB = dw.getBrowserList();
      // each browser pair has the name of the browser and the path
      // that leads to the application on disk. We only put the
      // names in the menus.
      for (i=0; i<PIB.length; i=i+2)
      {
        browsers[j] = new String(PIB[i]);

        if (dw.getPrimaryBrowser() == PIB[i+1])
           browsers[j] += "\tF12";
        if (navigator.platform == "MacPPC")
        {
           if (dw.getSecondaryBrowser() == PIB[i+1])
            browsers[j] += "\t ?F12";
        }
        else
        {
          if (dw.getSecondaryBrowser() == PIB[i+1])
            browsers[j] += "\t Ctrl+F12";
        }

        browsers[j] += ";id=’"+PIB[i]+"’";
        j = j+1;
      }
      dw.notifyMenuUpdated(itemID, "dw.getBrowserList()");
    }
    return browsers;
  }

function canAcceptCommand()
Menu Commands 75



  {
    var bHaveDocument;
    
    if (dw.getFocus() == ’site’)
      bHaveDocument = site.getSelection().length > 0;
    else
      bHaveDocument = dw.getDocumentDOM(’document’) != null;

    return bHaveDocument;
  }

function receiveArguments()
  {
    var theBrowser = arguments[0];
    if (dw.getFocus() == ’site’)
      dw.browseDocument(site.getSelection(),theBrowser);
    else
      dw.browseDocument(dw.getDocumentPath(’document’),theBrowser);
  }

// -->   
</SCRIPT>
</HEAD>
<BODY>
</BODY>
</HTML>
Chapter 776



CHAPTER 8
Toolbars

You can create a toolbar for Macromedia Dreamweaver MX simply by creating a file that defines 
the toolbar and placing that file in the Configuration/Toolbars folder. Within a toolbar file, you 
can define items such as check buttons, radio buttons, text boxes, and pop-up menus using a 
few custom XML tags. You can assign attributes and commands to toolbar items to specify how 
they look and behave, include other toolbar files, and reference toolbar items that are defined in 
other toolbars.

How toolbars work
Toolbars are defined by XML and image files that are stored in the Toolbars folder of the main 
Dreamweaver Configuration folder. The default Dreamweaver toolbars are stored in the 
Configuration/Toolbars/toolbars.xml file. At start up, Dreamweaver loads all the toolbar files in 
the Toolbars folder. You can add new toolbars simply by copying a file into the Toolbars folder, 
rather than modifying the main toolbars.xml file.

Toolbar XML files define one or more toolbars and their toolbar items. A toolbar is a list of items 
such as buttons, text boxes, pop-up menus, and so on. A toolbar item represents a single control 
that a user can access in a toolbar. 

Some types of toolbar controls, such as push buttons and pop-up menus, have icon images 
associated with them. Icon images are stored in an images folder below the Toolbars folder. 
Images can be in any format that Dreamweaver can render but are typically GIF or JPEG file 
formats. Images for Macromedia-authored toolbars are stored in the Toolbars/images/MM folder.

As with menus, you can specify the functionality of individual toolbar items either through the 
item attributes or through a command file. Macromedia-authored toolbar command files are 
stored in the Toolbars/MM folder. 

Tip: The Toolbar API is compatible with the Menu Commands API, so toolbar controls can reuse menu command 
files.

Unlike menus, you can define toolbar items independently from the toolbars that use them. This 
flexibility lets you use toolbar items in multiple toolbars by using the itemref tag. 

The first time Dreamweaver loads a toolbar, its visibility and position are set by the toolbar 
definition. After that, its visibility and position are saved in and restored from the registry 
(Windows) or the Dreamweaver MX Preferences file (Macintosh).
77



How toolbars behave

In Windows, Dreamweaver MX toolbars generally act the same as standard Windows toolbars. 
Dreamweaver MX toolbars have the following characteristics:

• You can drag and drop toolbars to dock them, undock them, and reposition them relative to 
other toolbars. 

• You can horizontally dock toolbars to the top or bottom of the frame window. 

In the Dreamweaver 4 workspace, which refers to the traditional or classic look of the 
Dreamweaver interface, where the user manages separate, floating windows, toolbars dock 
inside the document window. In classic mode, each window has its own set of toolbars. If you 
undock a toolbar, it is visible only when its document is in front. 

In the Dreamweaver MX workspace (also known as multiple document interface [MDI] 
mode), which integrates all the Dreamweaver document windows within a single parent frame, 
you can specify whether toolbars dock to the Dreamweaver MX workspace frame or to the 
document window. 

For toolbars that dock to the Dreamweaver MX workspace frame, there is only one instance of 
each toolbar. In this case, the toolbars always operate on the document in front. In the 
Dreamweaver MX workspace, you can dock toolbars above, below, or to the left or right of the 
Insert toolbar. Toolbars that are attached to the Dreamweaver MX workspace frame do not 
automatically disable when there is no document window. The toolbar items determine 
whether they are enabled when no document is open. 

Toolbars that stay docked to the document window work the same as toolbars in the 
Dreamweaver 4 workspace. There is one instance for each window. Toolbars that are attached 
to a document window, in either the Dreamweaver 4 workspace or the Dreamweaver MX 
workspace, completely disable themselves when their window is not the front document, and 
re-run all their update handlers when their window comes to the front. 

You cannot drag and drop toolbars between the document window and the Dreamweaver MX 
workspace frame. 

• If you switch between the Dreamweaver 4 workspace and the Dreamweaver MX workspace, all 
toolbars revert to their default positions. 

• Toolbars remain a fixed size. A toolbar does not shrink if the container shrinks or if other 
toolbars are placed next to it. 

• You can show or hide toolbars from the View >Toolbars menu.

• Toolbars cannot overlap. 

• Only the outline of the toolbar appears while you are dragging it. 

On the Macintosh, toolbars are always attached to the document window. They can be shown or 
hidden from the menu, but you cannot drag and drop them, rearrange them, or undock them.
Chapter 878



How toolbar commands work

When Dreamweaver draws a toolbar, the following events occur: 

1 For each toolbar control item, Dreamweaver determines whether the file attribute exists.

2 If the file attribute exists, Dreamweaver calls canAcceptCommand() to determine whether it 
should enable the control in the current context of the document. 

For the Document Title text box in the Dreamweaver toolbar, for example, 
canAcceptCommand() checks to see if there is a current DOM and if the current document is 
an HTML file. If both these conditions are true, the function returns true and Dreamweaver 
enables the text box on the toolbar.

3 If the file attribute exists, Dreamweaver ignores the following attributes, if they are specified: 
checked, command, DOMRequired, enabled, script, showif, update, and value.

4 If the file attribute does not exist, Dreamweaver processes the attributes that are set for the 
toolbar control item: checked, command, DomRequired, and so on.

For more information on specific item tag attributes, see “Item Tag Attributes” on page 88.

5 Dreamweaver calls the getCurrentValue() function on every update cycle, as specified by the 
update attribute, to determine what value to display for the control.

6 The user selects an item on the toolbar.

7 Dreamweaver calls the receiveArguments() function to process any arguments that are 
specified by the arguments attribute of the toolbar item.

For more information on the purpose of specific functions in the Toolbar Command API, see 
“The Toolbar Command API” on page 93. 

The toolbar definition file
A toolbar is simply a list of toolbar items, optionally separated by separators. Each toolbar item 
can be either a reference to an item using the itemref tag, a separator using the separator tag, 
or a complete toolbar item definition, as described in “Toolbar item tags” on page 83. 

Each toolbar definition file starts with the following declarations:

<?xml version="1.0" encoding="optional_encoding"?>
<!DOCTYPE toolbarset SYSTEM "-//Macromedia//DWExtension toolbar 5.0">
If the encoding is omitted, Dreamweaver defaults to the default encoding of the operating system. 
Toolbars 79



After the declarations, the file consists of a single toolbarset tag, which contains any number of 
the following tags: toolbar, itemref, separator, include, and itemtype tags, where 
itemtype is a button, checkbutton, radiobutton, menubutton, dropdown, combobox, 
editcontrol, or colorpicker. The following example, which is an abbreviated excerpt from the 
toolbars.xml file, illustrates the hierarchy of tags in the toolbar file. The example substitutes 
ellipses (. . .) for the toolbar item attributes that are described in the following sections.

<?xml version="1.0"?>
<!DOCTYPE toolbarset SYSTEM "-//Macromedia//DWExtension toolbar 5.0">
<toolbarset>

<!-- main toolbar -->
<toolbar id="DW_Toolbar_Main" label="Document">

<radiobutton id="DW_CodeView" . . ./>
<radiobutton id="DW_SplitView" . . ./>
<radiobutton id="DW_DesignView" . . ./>
<separator/>
<checkbutton id="DW_LiveDebug" . . ./>
<checkbutton id="DW_LiveDataView" . . ./>
<separator/>
<editcontrol id="DW_SetTitle" . . ./>
<menubutton id="DW_FileTransfer" . . ./>
<menubutton id="DW_Preview" , , ,/>
<separator/>
<button id="DW_DocRefresh" . . ./>
<button id="DW_Reference" . . ./>
<menubutton id="DW_CodeNav" . . ./>
<menubutton id="DW_ViewOptions" . . ./>

</toolbar>
</toolbarset>

The following section describes each of the toolbar tags.

<toolbar>

Description

Defines a toolbar. Dreamweaver displays the items and separators from left to right in the 
specified order, laying out items automatically. The toolbar file does not specify control over the 
spacing between the items, but you can specify the widths of certain kinds of items.

Attributes

id, label, {container}, {initiallyVisible}, {initialPosition}, {relativeTo}

id="unique_id" Required. An identifier string must be unique within a given file; this also 
applies to all files that are included by that file. The JavaScript API functions that manipulate a 
toolbar refer to it by its ID. For more information on these functions, see “Toolbar functions” on 
page 637. If two toolbars that are included in the same file have the same ID, Dreamweaver 
displays an error.

label="string" Required. The name of the toolbar that Dreamweaver displays to the user. The 
label appears in the View >Toolbars menu and in the title bar of the toolbar when it’s floating.

container="mainframe" or "document" Defaults to "mainframe". Specifies where the toolbar 
should dock in the Dreamweaver MX workspace on Windows. If set to "mainframe", the toolbar 
appears in the outer Dreamweaver MX workspace frame and operates on the front document. If it 
is set to "document", the toolbar appears in each document window. In the Dreamweaver 4 
workspace and on the Macintosh, all toolbars appear in each document window.
Chapter 880



initiallyVisible="true" or "false". Specifies whether the toolbar should be visible the first 
time Dreamweaver loads it from the Toolbars folder. After the first time, the user controls 
visibility. Dreamweaver saves the current state to the system registry (Windows) or the 
Dreamweaver MX Preferences file (Macintosh) when the user quits Dreamweaver. Dreamweaver 
restores the setting from the registry or the Preferences file when it restarts. You can manipulate 
toolbar visibility using the dom.getToolbarVisibility() and dom.setToolbarVisibility() 
functions, as described in “Toolbar functions” on page 637. If you do not set the 
initiallyVisible attribute, it defaults to true. 

initialPosition="top", "below", or "floating". Specifies where Dreamweaver initially 
positions the toolbar, relative to other toolbars, the first time that Dreamweaver loads it. The 
possible values for intialPosition are described in the following list:

top This is the default. The toolbar appears at the top of the document window. If multiple 
toolbars specify top for a given window type, the toolbars appear in the order that 
Dreamweaver encounters them during loading, which might not be predictable, if the toolbars 
reside in separate files. 

below The toolbar appears at the beginning of the row immediately below the toolbar that is 
specified in the relativeTo attribute. Dreamweaver reports an error if the relativeTo 
toolbar isn’t found. If multiple toolbars specify below relative to the same toolbar, they appear 
in the order that Dreamweaver encounters them during loading, which might not be 
predictable if the toolbars reside in separate files. 

floating Toolbar is not be initially docked to the window; it floats above the document. 
Dreamweaver automatically places the toolbar so it is offset from other floating toolbars. On 
the Macintosh, floating is treated the same as top.

As with initiallyVisible, this attribute applies only the first time that Dreamweaver loads the 
toolbar. After that, the toolbar’s position is saved to the registry or the Dreamweaver MX 
Preferences file. You can reset the position of the toolbar by using the 
dom.setToolbarPosition() function. For more information on dom.setToolbarPosition(), 
see “dom.setToolbarPosition()” on page 638.

If you do not specify initialPosition, Dreamweaver positions the toolbar in the order that it is 
encountered during loading.

relativeTo="toolbar_id" Required if initialPosition specifies below. Otherwise, it is 
ignored. Specifies the ID of the toolbar below which this toolbar should be positioned. 

Contents

Contains include tags, itemref tags, separator tags, and individual item definitions such as 
button, combobox, dropdown, and so on. For descriptions of the item definitions that you can 
specify, see “Toolbar item tags” on page 83.

Container

The toolbarset tag.

Example

<toolbar id="MyDWedit_toolbar" label="Edit">
Toolbars 81



<include/>

Description

Loads toolbar items from the specified file before continuing to load the current file. Toolbar 
items that are defined in the included file can be referenced in the current file. If a file attempts to 
recursively include another file, Dreamweaver displays an error message and ignores the recursive 
include. Any toolbar tags in the included file are skipped, although toolbar items in those 
toolbars are available for reference in the current file.

Attributes

file The pathname, relative to the Toolbars folder, of the toolbar XML file to include.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<include file="mine/editbar.xml"/>

<itemtype/>

Description

Defines a single toolbar item. Toolbar items include buttons, radio buttons, check buttons, 
combo boxes, pop-up menus, and so on. For a list of the types of toolbar items that you can 
define, see “Toolbar item tags” on page 83.

Attributes

The attributes vary, depending on the item you are defining. For a complete list of the attributes 
that you can specify for toolbar items, see “Item Tag Attributes” on page 88.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<button id="strikeout_button" .../> 

<itemref/>

Description

The itemref tag refers to (and includes in the current toolbar) a toolbar item that was defined 
either inside a previous toolbar or outside of all toolbars.

Attributes

id, {showIf}

id="id_reference" Required. Must be the ID of an item that was previously defined or 
included in the file. Dreamweaver does not allow forward references. If a toolbar item tag 
references an ID that hasn’t been defined, Dreamweaver reports an error and ignores the reference. 
Chapter 882



showIf="script" Specifies that this item appears only on the toolbar if the specified script 
returns true. For example, you can use showIf to show certain buttons only in a given 
application or only when a page is written in a server-side language such as ColdFusion, ASP, or 
JSP. If you do not specify showIf, the item always appears. Dreamweaver checks this property 
whenever the item’s enabler runs; that is, according to the value of the update attribute. You 
should use this attribute sparingly. The showIf attribute can be used either in the item definition 
or in a reference to the item from a toolbar. If both the definition and the reference specify the 
showIf attribute, Dreamweaver shows the item only if both conditions are true. The showIf 
attribute is equivalent to the showIf() function in a command file.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example

<itemref id="strikeout_button">

<separator/>

Description

Inserts a separator at the current location in the toolbar.

Attributes

{showIf}

showif Specifies that the separator should appear only on the toolbar if the given script returns 
true. For example, you can use showIf to show the separator only in a given application or only 
when the page has a certain document type. If unspecified, the separator always appears.

Contents

None.

Container

The toolbar tag.

Example

<separator/>

Toolbar item tags
Each type of toolbar item has its own tag and its own set of required and optional attributes. You 
can define toolbar items either inside or outside of toolbars. In general, it is better to define 
them outside of toolbars and refer to them within toolbars using the itemref tag.

You can define the following types of items in a toolbar.

<button>

Description

A pushbutton that executes a specific command when pressed. Looks and acts the same as the 
Reference button on the Dreamweaver toolbar. 
Toolbars 83



Attributes

id, image, tooltip, command, {showif}, {disabledImage}, {overimage}, {label}, 
{file}, {domRequired}, {enabled}, {update}, {arguments}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.

Example

<BUTTON ID="DW_DocRefresh"
image="Toolbars/images/MM/refresh.gif"
disabledImage="Toolbars/images/MM/refresh_dis.gif"
tooltip="Refresh Design View (F5)"
enabled="((dw.getDocumentDOM() != null) && (dw.getDocumentDOM().getView() != 
’browse’) && (!dw.getDocumentDOM().isDesignViewUpdated()))"
command="dw.getDocumentDOM().synchronizeDocument()"
update="onViewChange,onCodeViewSyncChange"/>

<checkbutton>

Description

A button that has a checked or unchecked state and that executes a specific command when 
pressed. When it is checked, it appears pressed in and highlighted. When it is not checked, it 
appears flat. Dreamweaver implements the following states for the check button: mouse-over, 
pressed, mouse-over-while-pressed, and disabled-while-pressed. The handler that is specified by 
the checked attribute or the isCommandChecked() function must ensure that clicking the check 
button causes the button’s state to toggle. 

Attributes

id, {showif}, image, {disabledImage}, {overimage}, tooltip, {label}, {file}, 
{domRequired}, {enabled}, checked, {update}, command, {arguments}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.

Example

<CHECKBUTTON ID="DW_LiveDebug"
image="Toolbars/images/MM/debugview.gif"
disabledImage="Toolbars/images/MM/globe_dis.gif"
tooltip="Live Debug"
enabled="dw.canLiveDebug()"
checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() == 
’browse’"
command="dw.toggleLiveDebug()"
showIf="dw.canLiveDebug()"
update="onViewChange"/>
Chapter 884



<radiobutton>

Description

A radio button is exactly the same as a check button, except that when it is off, it appears as a 
raised button. Dreamweaver implements the following states for the radio button: mouse-over, 
pressed, mouse-over-while-pressed, and disabled-while-pressed. Dreamweaver does not enforce 
mutual exclusion between radio buttons. The handler that is specified by the checked attribute or 
the isCommandChecked() function must ensure that the checked and unchecked states of radio 
buttons are consistent with each other. 

Radio buttons act the same as the Code view, Design view, and Split view buttons on the 
Dreamweaver document toolbar.

Attributes

id, image, tooltip, checked, command, {showif}, {disabledImage}, {overimage}, 
{label}, {file}, {domRequired}, {enabled}, {update}, {arguments}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.

Example

<RADIOBUTTON ID="DW_CodeView"
image="Toolbars/images/MM/codeView.gif"
disabledImage="Toolbars/images/MM/codeView_dis.gif"
tooltip="Show Code View"
domRequired="false"
enabled="dw.getDocumentDOM() != null"
checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() == 
’code’"
command="dw.getDocumentDOM().setView(’code’)"
update="onViewChange"/>

<menubutton>

Description

A button that pops up the context menu that is specified by the menuid attribute. Dreamweaver 
implements mouse-over and pressed states for menu buttons. Dreamweaver does not draw the 
menu arrow; you must include it in your icon. 

Attributes

id, image, tooltip, menuID, domRequired, enabled, {showif}, {disabledImage}, 
{overimage}, {label}, {file}, {update}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.
Toolbars 85



Example

<MENUBUTTON ID="DW_CodeNav"
image="Toolbars/images/MM/codenav.gif"
disabledImage="Toolbars/images/MM/codenav_dis.gif"
tooltip="Code Navigation"
enabled="dw.getFocus() == ’textView’ || dw.getFocus() == ’html’"
menuID="DWCodeNavPopup"
update="onViewChange"/>

<dropdown>

Description

A noneditable pop-up menu that executes a specific command when you choose an entry and it 
updates itself, based on an attached JavaScript function. It looks and acts the same as the Format 
control in the Text Property inspector, except it’s a standard size instead of the small Property 
inspector size. 

Attributes

id, tooltip, file, enabled, checked, value, command, {showif}, {label}, 
{width}, {domRequired}, {update}, {arguments}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.

Example

<dropdown id="Font_Example"
width="115"
tooltip="Font"
domRequired="false"
file="Toolbars/mine/fontExample.htm"
update="onSelChange"/>

<combobox>

Description

An editable pop-up menu that executes its command when you choose an entry or when the user 
makes an edit in the text box and switches focus. It looks and acts the same as the Font control on 
the Text Property inspector, except it’s a standard size instead of the small Property inspector size. 

Attributes

id, file, tooltip, enabled, value, command, {showif}, {label}, {width}, 
{domRequired}, {update}, {arguments}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.
Chapter 886



Example

<COMBOBOX ID="Address_URL"
width="300"
tooltip="Address"
label="Address: "
file="Toolbars/MM/AddressURL.htm"
update="onBrowserPageBusyChange"/>

<editcontrol>

Description

A text editing box that executes its command when the user makes a change in the text box and 
switches focus. 

Attributes

id, tooltip, file, value, command, {showif}, {label}, {width}, {domRequired}, 
{enabled}, {update}, {arguments}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.

Example

<EDITCONTROL ID="DW_SetTitle"
label="Title: "
tooltip="Document Title"
width="150"
file="Toolbars/MM/EditTitle.htm"/>

<colorpicker>

Description

A panel of colors, without an associated text box that executes its command when the user selects 
a new color. It looks and acts the same as the color picker on the Dreamweaver Property inspector. 
You can specify a different icon to replace the default icon.

Attributes

id, tooltip, value, command, {showif}, {image}, {disabledImage}, {overimage}, 
{label}, {colorRect}, {file}, {domRequired}, {enabled}, {update}, 
{arguments}

For a description of each attribute, see “Item Tag Attributes” on page 88.

Contents

None.

Container

Either the toolbar tag or the toolbarset tag.
Toolbars 87



Example

<colorpicker id="Color_Example"
image="Toolbars/images/colorpickerIcon.gif"
disabledImage="Toolbars/images/colorpickerIconD.gif"
colorRect="0 12 16 16"
tooltip="Text Color"
domRequired="false"
file="Toolbars/mine/colorExample.htm"
update="onSelChange"/>

Item Tag Attributes
The attributes for toolbar item tags have the following meanings: 

id="unique_id"

Required. The id is an identifier for the toolbar item. The id must be unique within the current 
file and all files that are included within the current file. The itemref tag uses the item id to refer 
to and include an item within a toolbar. 

Example

<button id=”DW_DocRerefresh” . . . >

showIf="script"

Optional. Specifies that the item appears on the toolbar only if the script returns true. For 
example, you can use showIf to show certain buttons only when a page is written in a certain 
server-side language such as ColdFusion, ASP, or JSP. If you do not specify showIf, the item 
always appears.

The showIf attribute is checked whenever the item’s enabler runs; that is, according to the value 
of the update attribute. You should use showIf sparingly. 

You can specify the showIf attribute in the item definition and in a reference to the item on an 
itemref tag. If the definition and the reference specify the showIf attribute, the item shows only 
if both conditions are true. The showIf attribute is the same as the showIf() function in a 
toolbar command file. If you specify both the showIf attribute and the showif() function, 
showIf() overrides the attribute.

Example

showIf="dw.canLiveDebug()"

image="image_path"

Required for buttons, check buttons, radio buttons, menu buttons, and combo buttons. The 
image attribute is optional for color pickers and is ignored for other item types. The image 
attribute specifies the path, relative to the Configuration folder, of the icon file that displays on 
the button. The icon can be in any format that Dreamweaver can render, but typically it is a GIF 
or JPEG file format.

If an icon is specified for a color picker, the icon replaces the color picker entirely. If the 
colorRect attribute is also set, the current color appears on top of the icon in the specified 
rectangle.

Example

image="Toolbars/images/MM/codenav.gif"
Chapter 888



disabledImage="image_path"

Optional. Dreamweaver ignores the disabledImage attribute for items other than buttons, check 
buttons, radio buttons, menu buttons, color pickers, and combo buttons. This attribute specifies 
the path, relative to the Configuration folder, of the icon file that Dreamweaver displays if the 
button is disabled. If you do not specify disabledImage, Dreamweaver displays the image that is 
specified in the image attribute when the button is disabled. 

Example

disabledImage="Toolbars/images/MM/codenav_dis.gif"

overImage="image_path"

Optional. Dreamweaver ignores the overImage attribute for items other than buttons, check 
buttons, radio buttons, menu buttons, color pickers, and combo buttons. This attribute specifies 
the path, relative to the Configuration folder, of the icon file that Dreamweaver displays when the 
user moves the mouse over the button. If you do not specify overImage, the button does not 
change when the user moves the mouse over it, except for a ring that Dreamweaver draws around 
the button.

Example

overImage="Toolbars/images/MM/codenav_ovr.gif"

tooltip="tooltip string"

Required. Specifies the identifying text, or tooltip, that appears when the mouse cursor hovers 
over the toolbar item. 

Example

tooltip="Code Navigation"

label="label string"

Optional. The label attribute specifies a label that displays next to the item. Dreamweaver does 
not automatically add a colon to labels. Labels for nonbutton items are always positioned on the 
left of the item. Dreamweaver places labels for buttons, check buttons, radio buttons, menu 
buttons, and combo buttons inside the button and to the right of the icon. Dreamweaver shows 
labels for buttons only if Show Icon Labels is checked on the View >Toolbars menu. Labels for 
other types of controls are always visible, regardless of whether this menu item is checked.

Example

label="Title: "

width="number"

Optional. The width attribute applies only to text box, pop-up menu, and combo box items. 
This attribute specifies the width of the item in pixels. If you do not specify the width attribute, 
Dreamweaver uses a reasonable default width.

Example

width="150"
Toolbars 89



menuID="menu_id"

Required for menu buttons and combo buttons, unless you specify getMenuID() in an associated 
command file. Dreamweaver ignores the menuID attribute for other types of items. This attribute 
specifies the ID of the menu bar that contains the context menu to pop up when the user presses 
the button, menu button, or combo button. The ID comes from the ID attribute of a menubar 
tag in menus.xml.

Example

menuID="DWCodeNavPopup"

colorRect="left top right bottom"

Optional for color pickers that have an image attribute. The colorRect attribute is ignored for 
other types of items and for color pickers that do not specify an image. If you specify the 
colorRect attribute, Dreamweaver displays the color that is currently selected in the color picker 
in the rectangle, relative to the left or top of the icon. If you do not specify the colorRect 
attribute, Dreamweaver does not display the current color on the image.

Example

colorRect=”0 12 16 16”

file="command_file_path"

Required for pop-up menus and combo boxes. The file attribute is optional for other types of 
items. The file attribute specifies the path, relative to the Configuration folder, of a command 
file that contains JavaScript functions to populate, update, and execute the item. The file 
attribute overrides the enabled, checked, value, update, domRequired, menuID, showIf, and 
command attributes. In general, if you specify a command file with the file attribute, 
Dreamweaver ignores all the equivalent attributes that are specified in the tag. For more 
information about command files, see “The Toolbar Command API” on page 93.

Example

file="Toolbars/MM/EditTitle.htm"

domRequired="true" or "false"

Optional. As with menus, the domRequired attribute specifies whether the Design view should be 
synchronized with the Code view before Dreamweaver runs the associated command. If you do 
not specify this attribute, it defaults to true. This attribute is equivalent to isDOMRequired() in 
a toolbar command file.

Example

domRequired="false"

enabled="script"

Optional. As with menus, the script returns a value that specifies whether the item is enabled. If 
you do not specify this attribute, it defaults to enabled. The enabled attribute is equivalent to 
canAcceptCommand() in a toolbar command file.

Example

enabled="dw.getFocus() == ’textView’ || dw.getFocus() == ’html’"
Chapter 890



checked="script"

Required for check buttons and radio buttons. Dreamweaver ignores the checked attribute for 
other types of items. As with menus, the script returns a value that specifies whether the item is 
checked or unchecked. The checked attribute is equivalent to isCommandChecked() in a toolbar 
command file. If you do not specify this attribute, it defaults to unchecked.

Example

checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() == 
’code’"

value="script"

Required for pop-up menus, combo boxes, text boxes, and color pickers. Dreamweaver ignores 
the value attribute for other types of items. 

To determine what value to display for pop-up menus and combo boxes, Dreamweaver first calls 
isCommandchecked() for each item in the menu. If isCommandchecked() returns true for any 
items, Dreamweaver displays the value for the first one. If no items return true, or 
isCommandChecked() is not defined, Dreamweaver calls getCurrentValue() or executes the 
script that the value attribute specifies. If the control is a combo box, Dreamweaver displays the 
returned value. If the control is a pop-up menu, Dreamweaver temporarily adds the returned 
value to the list and displays it. 

In all other cases, the script returns the current value to display. For pop-up menus or combo 
boxes, this value should be one of the items in the menu list. For combo boxes and text boxes, the 
value can be any string that the script returns. For color pickers, the value should be a valid color 
but Dreamweaver does not enforce this. 

The value attribute is equivalent to getCurrentValue() in a toolbar command file.

update="update_frequency_list"

Optional. Specifies how often the enabled, checked, showif, and value handlers should run to 
update the visible state of the item. The update attribute is equivalent to 
getUpdateFrequency() in a toolbar command file.

You must specify the update frequency for toolbar items because these items are always visible, 
unlike menu items. For this reason, you should always choose the lowest frequency possible and 
make sure your handlers for enabled, checked, and value are as simple as possible.
Toolbars 91



The following table lists the possible values for update_frequency_list, from least to most 
frequent. If you do not specify the update attribute, the update frequency defaults to onEdit 
frequency. You can specify multiple update frequencies, separated by commas. The handlers run 
on any of the specified events. 

onServerModelChange executes when the server model of the current page changes.

onCodeViewSyncChange executes when the Code view becomes in or out of sync with the 
Design view.

onViewChange executes whenever the user switches focus between Code view and Design view 
or when the user changes between Code view, Design view, or Split view. 

onEdit executes whenever the document is edited in Design view. Changes that you make in 
Code view do not trigger this event.

onSelChange executes whenever the selection changes in Design view. Changes that you make 
in Code view do not trigger this event.

onEveryIdle executes regularly when the application is idle. This can be very expensive, because 
this means the enabler/checked/showif/value handlers are running often. It should only 
be used for buttons that need to have their enable state changed at special times, and handlers 
should be quick.

Note: In all these cases, Dreamweaver actually executes the handlers after the specified event occurs, when the 
application is in a quiescent state. You are not guaranteed that your handlers will run after every edit or selection 
change; your handlers run “soon after” a batch of edits or selection changes occur. The handlers are guaranteed to 
run when the user clicks on a toolbar item.

Example

update="onViewChange"

command="script"

Required for all items except menu buttons. Dreamweaver ignores the command attribute for 
menu buttons. Specifies the JavaScript function to execute when the user performs one of the 
following actions:

• Clicks a button 

• Selects an item from a pop-up menu or combo box 

• Tabs out of, presses Return in, or clicks away from a text box or combo box 

• Selects a color from a color picker

The command attribute is equivalent to the receiveArguments() function in a toolbar 
command file.

Example

command="dw.toggleLiveDebug()"
Chapter 892



arguments="argument_list" 

Optional. The arguments attribute specifies the comma-separated list of arguments to pass to 
the receiveArguments() function in a toolbar command file. If you do not specify the 
arguments attribute, Dreamweaver passes the ID of the toolbar item. In addition, pop-up menus, 
combo boxes, text boxes, and color pickers pass their current value as the first argument, before 
any arguments that the arguments attribute specifies, and before the item ID if no arguments 
are specified. 

Example

On a toolbar with Undo and Redo buttons on it, each button calls the menu command file, 
Edit_Clipboard.htm, and passes an argument that specifies the action.

<button id="DW_Undo"
 image="Toolbars/images/MM/undo.gif"
 disabledImage="Toolbars/images/MM/undo_dis.gif"
 tooltip="Undo"
 file="Menus/MM/Edit_Clipboard.htm"
 arguments="’undo’"
 update="onEveryIdle"/>

<button id="DW_Redo"
 image="Toolbars/images/MM/redo.gif"
 disabledImage="Toolbars/images/MM/redo_dis.gif"
 tooltip="Redo"
 file="Menus/MM/Edit_Clipboard.htm"
 arguments="’redo’"
 update="onEveryIdle"/>

The Toolbar Command API
In many cases where you specify a script for an attribute, you can also implement the attribute 
through a JavaScript function in a command file. This is necessary when the functions need to 
take arguments, as in the command handler for a text box. It is required for pop-up menus and 
combo boxes. 

The command file API for toolbar items is an extension of the menu command file API, so you 
can reuse menu command files directly as toolbar command files, perhaps with some additional 
functions that are specific to toolbars. 

canAcceptCommand()

Description

Determines whether the toolbar item is enabled. The enabled state is the default condition for an 
item, so you should not define this function unless it returns false in at least one case. 

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the current 
value within the control. The getDynamicContent() function can optionally attach individual 
IDs to items within a pop-up menu. If the selected item in the pop-up menu has an ID attached, 
Dreamweaver passes that ID to canAcceptCommand() instead of the value. For combo boxes, if 
the current contents of the text box do not match an entry in the pop-up menu, Dreamweaver 
passes the contents of the text box. Dreamweaver compares against the pop-up menu without 
case-sensitivity to determine whether the contents of the text box match an entry in the list. 
Toolbars 93



If you specified the arguments attribute for this toolbar item in the toolbars.xml file, those 
arguments are passed next. If you did not specify the arguments attribute, Dreamweaver passes 
the ID of the item.

Returns

Dreamweaver expects a Boolean value that indicates whether the item is enabled.

Example

function canAcceptCommand()
{

return (dw.getDocumentDOM() != null);
}

getCurrentValue()

Description

Returns the current value to display in the item. Dreamweaver calls getCurrentValue() for pop-
up menus, combo boxes, text boxes, and color pickers. For pop-up menus, the current value 
should be one of the items in the menu. If the value is not in the pop-up menu, Dreamweaver 
selects the first item. For combo boxes and text boxes, this value can be any string that the 
function returns. For color pickers, the value should be a valid color, but Dreamweaver does not 
enforce this. This function is equivalent to the value attribute. 

Arguments

None.

Returns

Dreamweaver expects a string that contains the current value to display. For the color picker, the 
string contains the RGB form of the selected color, for example “#FFFFFF” for the color white. 

Example

function getCurrentValue()
{

var title = "";
var dom = dw.getDocumentDOM(); 
if (dom)

title = dom.getTitle();
return title;

}

getDynamicContent()

Description

Required for pop-up menus and combo boxes. As with menus, this function returns an array of 
strings that populate the pop-up menu. Each string can optionally end with ";id=id". If an ID is 
specified, Dreamweaver passes the ID to the receiveArguments() function instead of the actual 
string to appear in the menu. 
Chapter 894



The name getDynamicContent() is a misnomer because this function should be used even if the 
list of entries in the menu is fixed. For example, the Menus/MM/Text_Size.htm file is not a 
dynamic menu; it is designed to be called from each one of a set of static menu items. By adding 
a getDynamicContent() function that simply returns the list of possible font sizes, however, the 
same command file can also be used for a toolbar pop-up menu. Toolbar items ignore 
underscores in the strings in a returned array so you can reuse menu command files. In the menu 
command file, Dreamweaver ignores the getDynamicContent() function because the menu item 
is not marked as dynamic. 

Arguments

None.

Returns

Dreamweaver expects an array of strings with which to populate the menu.

Example

function getDynamicContent()
{

var items = new Array;
var filename = dw.getConfigurationPath() + "/Toolbars/MM/AddressList.xml";
var location = MMNotes.localURLToFilePath(filename);
if (DWfile.exists(location))
{

var addressData = DWfile.read(location);
var addressDOM = dw.getDocumentDOM(dw.getConfigurationPath() + 

’/Shared/MM/Cache/empty.htm’);
addressDOM.documentElement.outerHTML = addressData;
var addressNodes = addressDOM.getElementsByTagName("url");
if (addressNodes.length)
{

for (var i=0; i < addressNodes.length ; i++ )
{  

items[i] = addressNodes[i].address + ";id=’" +
addressNodes[i].address + "’";

}
}

}
return items;

getMenuID()

Description

Only valid for menu buttons. Dreamweaver calls getMenuID() to get the ID of the menu that 
should appear when the user clicks the button.

Arguments

None.

Returns

Dreamweaver expects a string that contains a menu ID, which is defined in menus.xml.
Toolbars 95



Example

function getMenuID()
{

var dom = dw.getDocumentDOM();
var menuID = ’’;
if (dom)
{

var view = dom.getView();
var focus = dw.getFocus();
if (view == ’design’)
{

menuID = ’DWDesignOnlyOptionsPopup’;
}
else if (view == ’split’)
{

if (focus == ’textView’)
{

menuID = ’DWSplitCodeOptionsPopup’;
}
else
{

menuID = ’DWSplitDesignOptionsPopup’;
}

}
else if (view == ’code’)
{

menuID = ’DWCodeOnlyOptionsPopup’;
}
else
{

menuID = ’DWBrowseOptionsPopup’;
}

}
return menuID;

}

getUpdateFrequency()

Description

Specifies how often to run the handlers for the enabled, checked, showIf, and value attributes 
to update the visible state of the item.

You must specify the update frequency for toolbar items because they are always visible, unlike 
menus. For this reason, you should always choose the lowest frequency possible and make sure 
your handlers for enabled, checked, and value are as simple as possible.

This function is equivalent to the update attribute in a toolbar item. 

Arguments

None.

Returns

Dreamweaver expects a string that contains a comma-separated list of update handlers. For a 
complete list of the possible update handlers, see “update="update_frequency_list"” on page 91.
Chapter 896



Example

function getUpdateFrequency()
{

return onSelChange”;
}

isCommandChecked()

Description

Returns a value that specifies whether the item is selected. For a button, checked means that the 
button appears on or depressed. The isCommandChecked() function is equivalent to the checked 
attribute in a toolbar item tag. 

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the current 
value within the control. The getDynamicContent() command can optionally attach individual 
IDs to items within a pop-up menu. If the selected item in the menu has an ID attached, 
Dreamweaver passes that ID to isCommandChecked() instead of the value. For combo boxes, if 
the current contents of the text box do not match an entry in the pop-up menu, Dreamweaver 
passes the contents of the text box. For determining whether the text box matches, Dreamweaver 
compares against the menu without case-sensitivity. 

If you specified the arguments attribute, those arguments are passed next. If you do not specify 
the arguments attribute, Dreamweaver passes the ID of the item.

Returns

Dreamweaver expects a Boolean value that indicates whether the item is checked.
Toolbars 97



Example

The following example determines which item, if any, should be checked in a pop-up menu of 
paragraph formats and CSS styles.

function isCommandChecked()
{
  var bChecked = false;
  var style = arguments[0];
  var textFormat = dw.getDocumentDOM().getTextFormat();

  if (dw.getDocumentDOM() == null)
    bChecked = false;

  if (style == "(None)")
    bChecked = (dw.cssStylePalette.getSelectedStyle() == ’’ || textFormat ==
"" || textFormat == "P" || textFormat == "PRE");
  else if (style == "Heading 1")
    bChecked =  (textFormat == "h1");
  else if (style == "Heading 2")
    bChecked =  (textFormat == "h2");
  else if (style == "Heading 3")
    bChecked =  (textFormat == "h3");
  else if (style == "Heading 4")
    bChecked =  (textFormat == "h4");
  else if (style == "Heading 5")
    bChecked =  (textFormat == "h5");
  else if (style == "Heading 6")
    bChecked =  (textFormat == "h6");
  else
    bChecked = (dw.cssStylePalette.getSelectedStyle() == style);

  return bChecked;
}

isDOMRequired()

Description

The isDOMRequired() function specifies whether the toolbar command requires a valid DOM 
to operate. If this function returns true or if the function is not defined, Dreamweaver assumes 
that the command requires a valid DOM and synchronizes the Code view and Design view for 
the document before executing the associated command. This function is equivalent to the 
domRequired attribute in a toolbar item tag.

Arguments

None.

Returns

Dreamweaver expects true if the DOM is required; false if the DOM is not required.

Example

function isDOMRequired()
{

return false;
}

Chapter 898



receiveArguments()

Description

Processes any arguments that are passed from a toolbar item. The receiveArguments() function 
is equivalent to the command attribute in a toolbar item tag.

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the current 
value within the control. The getDynamicContent() command can optionally attach individual 
IDs to items within a pop-up menu. If the selected item in the pop-up menu has an ID attached, 
Dreamweaver passes that ID to receiveArguments() instead of the value. For combo boxes, if 
the current contents of the text box do not match an entry in the pop-up menu, Dreamweaver 
passes the contents of the text box. To determine whether the text box matches, Dreamweaver 
compares against the pop-up menu without case-sensitivity. 

If you specified the arguments attribute, those arguments are passed next. If you did not specify 
the arguments attribute, Dreamweaver passes the ID of the item.

Returns

Dreamweaver expects nothing.

Example

function receiveArguments(newTitle)
{

var dom = dw.getDocumentDOM();
if (dom)

dom.setTitle(newTitle);
}

showIf()

Description

Specifies that an item appears on the toolbar only if the function returns true. For example, you 
could use showIf() to show certain buttons only when the page has a certain server model. If 
showif() is not defined, the item always appears. The showIf() function is the same as the 
showIf attribute in a toolbar item tag.

The showIf() function is called whenever the item’s enabler runs; that is, according to the value 
that getUpdateFrequency() returns. 

Arguments

None.

Returns

Dreamweaver expects a Boolean value that indicates whether the item will show.
Toolbars 99



Example

function showif()
{

var retval = false;
var dom = dw.getDocumentDOM();

if(dom)
{

var view = dom.getView();
if(view == ‘design’)
{

retval = true;
}

}
return retval;

}

A simple toolbar command file

The following text box item lets the user enter a name for the current Dreamweaver document. 

<EDITCONTROL ID="DW_SetTitle"
label="Title: "
tooltip="Document Title"
width="150"
file="Toolbars/MM/EditTitle.htm"/>
Chapter 8100



The file attribute in this text box item causes Dreamweaver to invoke the Toolbars/MM/
EditTitle.htm command file when the user interacts with the text box. 

<html>
<head>
<title>Edit Title</title>

<script language="JavaScript">
function receiveArguments(newTitle)
{

var dom = dw.getDocumentDOM();
if (dom)

dom.setTitle(newTitle);
}

function canAcceptCommand()
{

return (dw.getDocumentDOM() != null && dw.getDocumentDOM().getParseMode() == 
’html’);

}

function getCurrentValue()
{

var title = "";
var dom = dw.getDocumentDOM(); 
if (dom)

title = dom.getTitle();
return title;

}
</script>
</head>

<body>
</body>
</html>

For the Document Title text box, the getCurrentValue() function calls the JavaScript API 
function dom.getTitle() to obtain and return the current title. Until the user enters a title for 
the document, the getCurrentValue() function returns “Untitled Document,” which 
Dreamweaver displays in the text box. After the user enters a title, Dreamweaver displays the new 
document title.

Dreamweaver invokes the receiveArguments() function when the user enters a value in the 
Document Title text box and presses the Enter key or moves the focus away from the control. 
Dreamweaver passes receiveArguments() newTitle, which is the value that the user enters. 
The receiveArguments() function first checks to see if a current DOM exists. If it does, 
receiveArguments() sets the new document title by passing it to the dom.setTitle() function 
and then returning it to Dreamweaver. 
Toolbars 101



Chapter 8102



CHAPTER 9
Reports

You can use the Reports API functions to create custom site reports or modify the set of 
prewritten reports that come with Dreamweaver. You can access site reports only through the Site  
Reports dialog box.

You can use the Results Window API to create a stand-alone report. Stand-alone reports are 
regular commands that directly use the Results Window API rather than the Reports API. You 
can access a stand-alone report the same way as any other command, through the menus or 
through another command. 

Site reports reside in the Dreamweaver Configuration/Reports folder. The Reports folder has 
subfolders that represent report categories. Each report can belong to only one category. The 
category name cannot exceed 31 characters. Each subfolder can have a file in it named 
_foldername.txt. If this file is present, Dreamweaver uses its contents as the category name. If 
_foldername.txt is not present, Dreamweaver uses the folder name as the category name. 

Stand-alone reports reside in the Dreamweaver Configuration/Commands folder.

When the user chooses multiple site reports from the Site Reports dialog box, Dreamweaver 
places all the results in the same results window under the Site Reports tab. Dreamweaver replaces 
these results the next time the user runs any site report. 

In contrast, Dreamweaver creates a new Results window each time the user runs a new stand-
alone report.

How site reports work
1 Reports are accessible through the Site > Reports... menu. When it is selected, this menu item 

displays a dialog box from which the user selects reports to run on a choice of targets. 

2 The user selects which files to run the selected reports on using the Report On: menu. This 
menu contains Current Document, All Files in Current Local Site, Selected Files In Local Site, 
and Folder. When the user selects the Folder option, a Browse button and text field appear, so 
the user can select a folder.

3 The user can customize reports that have parameters by selecting the Settings button and 
entering values for the parameters. Each report is responsible for displaying its own Settings 
dialog box. This dialog box is optional; not every report requires the user to set the report’s 
parameters. If a report does not have a Settings dialog box, then the Report Settings... button is 
dimmed when the report is selected in the list.
103



4 After the reports are selected and their settings are set, the user clicks the Run button. 

At this point, Dreamweaver clears all items from the Site Reports tab of the Results panel. 
Dreamweaver calls the beginReporting() function in each report before the reporting 
process begins. If a report returns false from this function, it is removed from the report run. 

5 Each file is passed to each report that was selected in the Reports dialog box using the 
processFile() function. If the report needs to include information about this file in the 
results list, it should call the dw.resultsPalette.siteReports.addResultItem() function. 
This process continues until all files that pertain to the user’s selection are processed, or the 
user clicks the Stop button in the bottom of the window. Dreamweaver displays the name of 
each file being processed and the number of files that remain to be processed.

Dreamweaver calls the endReporting() function in each report after all the files have been 
processed and the reporting process completes.

How stand-alone reports work
1 The custom command opens a new results window by calling  dw.createResultsWindow and 

storing the returned results object in a window variable. The remaining functions in this 
process should be called as methods of this object. 

2 The custom command initializes the title and format of the Results window by calling 
setTitle() and SetColumnWidths() as methods of the results window object.

3 The command can either start adding items to the Results window immediately by calling 
addItem(), or it can begin iterating through a list of files by calling setFileList() and 
startProcessing() as methods of the Results window object.

4 When the command calls resWin.startProcessing(), Dreamweaver calls the function 
processFile() for each file URL in the list. Define the processFile() function in the 
stand-alone command. It receives the file URL as its only argument. Use the 
setCallbackCommands() function of the Results window object if you want Dreamweaver to 
call processFile() in some other command.

5 To call addItem(), the processFile() function needs to have access to the Results window 
that was created by the stand-alone command. The processFile() function can also call the 
stopProcessing() function of the Results window object to stop processing the list of files.

The Reports API
The only required function for the Reports API is the processFile() function. All other 
functions are optional.

processFile()

Description

Called when there is a file to process. The Report command should process the file without 
modifying it and use the dw.ResultsPalette.SiteReports() function, the addResultItem() 
function, or the resWin.addItem() function to return information about the file. Dreamweaver 
automatically releases each file’s DOM when it is finished.

Arguments

strFilePath 

strFilePath is the full path and filename of the file to process.
Chapter 9104



Returns

Dreamweaver expects nothing.

beginReporting()

Description

Called at the start of the reporting process, before any reports are run. If the Report command 
returns false from this function, the Report command is excluded from the report run. 

Arguments

target

target is a string that indicates the target of the report session. It can be one of the following 
values: "CurrentDoc", "CurrentSite", "CurrentSiteSelection" (for the selected files in a 
site), or "Folder:+ the path to the folder the user selected" (for example, 
"Folder:c:temp").

Returns

Dreamweaver expects true if the report runs successfully; false if target is excluded from the 
report run. 

endReporting()

Description

Called at the end of the Report process.

Arguments

None.

Returns

Dreamweaver expects nothing.

commandButtons()

Description

Defines the buttons that should appear on the right side of the Options dialog box and their 
behavior when they are clicked. If this function is not defined, no buttons appear, and the BODY of 
the report file expands to fill the entire dialog box.

Arguments

None.

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is a 
string that contains the label for the topmost button. The second element is a string of JavaScript 
code that defines the behavior of the topmost button when it is clicked. Remaining elements 
define additional buttons in the same manner.
Reports 105



Example

The following instance of commandButtons() defines three buttons: OK, Cancel, and Help.

function commandButtons(){
return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

configureSettings()

Description

Determines whether the Report Settings button should be enabled in the Reports dialog box 
when this report is selected. 

Arguments

None.

Returns

Dreamweaver expects true if the Report Settings button should be enabled; false otherwise. 

windowDimensions()

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the window 
dimensions are computed automatically.

Note: Do not define this function unless you want an Options dialog box larger than 640 x 480 pixels.

Arguments

platform

The value of the argument is either "macintosh" or "windows", depending on the user’s 
platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not 
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate 
all options, scroll bars appear.

Example

The following instance of windowDimensions() sets the dimensions of the Parameters dialog box 
to 648 x 520 pixels:

function windowDimensions(){
return "648,520";

}

Chapter 9106



CHAPTER 10
Tag Libraries and Editors

Dreamweaver MX users can use tag editors to insert new tags, edit existing tags, and access 
reference information about tags. Dreamweaver comes with editors for the following languages: 
HTML, ASP.Net, CFML, JRun, and JSP. You can customize tag editors that come with 
Dreamweaver, and you can create new tag editors. You can also add new tags to the Tag Libraries.

The Tag Chooser uses information that is stored in the Tag Libraries to let Dreamweaver users 
view available tags and select them to use in the active document.

Dreamweaver stores information about each tag, including all tag attributes, in a set of subfolders 
that reside in the Configuration/TagLibraries folder. The tag editor and Tag Chooser functions 
use the information that is stored in this folder when manipulating and editing tags. Before you 
can create custom tag editors, you should understand the Tag Library structure.

Tag Library file format
A Tag Library consists of a single root file, the TagLibraries.vtm file, that lists every installed tag, 
plus a .vtm (VTML) file for each tag in the Tag Library. The TagLibraries.vtm file functions as a 
table of contents and contains pointers to each individual tag’s .vtm file. The following 
illustration shows how Dreamweaver organizes the .vtm files by markup language:

HomeSite users will recognize the .vtm file structure, but they should be aware that Dreamweaver 
does not use .vtm files in exactly the same way as HomeSite. The most important difference is 
that Dreamweaver contains its own HTML renderer that displays extension UIs, so the .vtm files 
are not used in the GUI rendering process.
107



The following example illustrates the structure of the TagLibraries.vtm file:

<taglibraries>
<taglibrary name="Name of tag library" doctypes="HTML,ASP-JS,ASP-VB" 

tagchooser="relative path to TagChooser.xml file" id="DWTagLibrary_html">
    <tagref name="tag name" file="relative path to tag .vtm file"/>
</taglibrary>

<taglibrary name="CFML Tags" doctypes="ColdFusion" servermodel="Cold Fusion" 
tagchooser="cfml/TagChooser.xml" id="DWTagLibrary_cfml">

    <tagref name="cfabort" file="cfml/cfabort.vtm"/>
</taglibrary>

<taglibrary name="ASP.NET Tags" doctypes="ASP.NET_CSharp,ASP.NET_VB"¬ 
servermodel="ASPNet" prefix="<asp:" tagchooser="ASPNet/TagChooser.xml"¬ 
id="DWTagLibrary_aspnet">

    <tagref name="dataset" file="aspnet/dataset.vtm" prefix="<mm:dataset"/>
</taglibrary>    
</taglibraries>

The taglibrary tag groups one or more tags into a Tag Library. When you import tags or create 
a new set of tags, you can group them into Tag Libraries. Typically, a taglibrary grouping 
corresponds to a set of tags that are defined in a JavaServer Pages (JSP) TLD file, an XML 
document type definition (DTD) file, an ASP.Net name space, or some other logical grouping.

The following table lists taglibrary  attributes:

Attribute Description Mandatory/
optional

taglibary.name Used to refer to the Tag Library in the 
user interface.

Mandatory

taglibrary.doctypes Indicates the document types for which this 
library is active. When active, library tags appear 
in the Code Hints pop-up menu. Not all Tag 
Libraries can be active at the same time because 
name conflicts can occur (for example, HTML 
and WML files are incompatible).

Mandatory

taglibrary.prefix When specified, tags within the Tag Library have 
the form taglibrary.prefix + tagref.name 
For example, if the taglibrary.prefix is 
"<jrun:" and the tagref.name is "if" then 
the tag is of the form "<jrun:if". 
This can be overridden for a particular tag. See 
the information on “taglibrary.prefix” on 
page 108 below.

Optional

taglibrary.servermodel If the tags in the Tag Library execute on an 
application server, servermodel identifies the 
server model of the tag. If the tags are client-side 
tags (not server-side tags), the servermodel 
attribute is omitted. servermodel is also used for 
Check Target Browsers.

Optional

taglibrary.id This can be any string that is different from the 
taglibrary.ID attributes of other Tag 
Libraries in the file. The ID attribute is used by the 
Extension Manager, so the MXP files can insert 
new <taglibrary> and the tags files into the 
TagLibraries.vtm file.

Optional

taglibrary.tagchooser A relative file path to the TagChooser.xml file that 
is associated with this Tag Library. 

Optional
Chapter 10108



The following table lists tagref attributes:

Because the tagref.prefix attribute can override taglibrary.prefix, the relationship 
between the two attributes can be confusing. The following table shows the relationship between 
the taglibrary.prefix and tagref.prefix attributes:

To define tags, Dreamweaver MX uses a modified version of Macromedia’s VTML file format. The 
following example demonstrates all the elements that Dreamweaver MX must use to define an 
individual tag:

<tag name="input" bind="value" casesensitive="no" endtag="no">
  <tagformat indentcontents="yes" formatcontents="yes" nlbeforetag ¬ 

nlbeforecontents=0 nlaftercontents=0 nlaftertag=1 />
  <tagdialog file = "input.HTM"/>
  <attributes>
    <attrib name="name"/>
    <attrib name="wrap" type="Enumerated">
       <attriboption value="off"/>
       <attriboption value="soft"/>
       <attriboption value="hard"/>
    </attrib>
    <attrib name="onFocus" casesensitive="yes"/>
    <event name="onFocus"/>
  </attributes>
</tag>

Attribute Description Mandatory/
optional

tagref.name Used to refer to the tag in the user interface. Mandatory

tagref.prefix Specifies how the tag appears in Source view. 
When used, tagref.prefix determines the 
prefix of the current tag. When the attribute is 
defined, it overrides the value specified for 
taglibrary.prefix.

Optional

tagref.file References the VTML file for the tag. Optional

Is the taglibrary.prefix 
defined? 

Is the tagref.prefix defined? Resulting tag prefix

No No ’<’ + tagref.name

Yes No taglibrary.prefix + 
tagref.name

No Yes tagref.prefix

Yes Yes tagref.prefix
Tag Libraries and Editors 109



The following table lists the attributes that define tags: 

Attribute Description Mandatory/
optional

tag.bind Used by the Data Binding panel. When you select 
a tag of this type, the BIND attribute indicates the 
default attribute for data binding. 

Optional

tag.casesensitive Specifies whether the tag name is case-sensitive. 
If the tag is case-sensitive, it is inserted into the 
user’s document using exactly the case that is 
specified in the Tag Library. If the tag is not case-
sensitive, it is inserted using the default case that 
is specified in the Code Format tab of the 
Preferences dialog box. If casesensitive is 
omitted, the tag is assumed to be case-
insensitive. 

Optional

tag.endtag Specifies whether the tag has both a beginning 
and an end tag. For example, <input> has no 
end tag; there is no matching </input> tag. If the 
end tag is optional, the ENDTAG attribute should 
be set to Yes.

Optional

tagformat Specifies the tag’s formatting rules. In 
Dreamweaver versions before Dreamweaver MX, 
these rules were stored in SourceFormat.txt. 

Optional

tagformat.indentcontents Specifies whether the contents of this tag should 
be indented.

Optional

tagformat.formatcontents Specifies whether the contents of this tag should 
be parsed. This attribute is set to No for tags such 
as <SCRIPT> and <STYLE>, for which content 
is something other than HTML.

Optional

tagformat.nlbeforetag The number of newline characters to insert before 
this tag.

Optional

tagformat.nlbeforecontents The number of newline characters to insert before 
the contents of this tag. 

Optional

tagformat.nlaftercontents The number of newline characters to insert after 
the contents of this tag. 

Optional

tagformat.nlaftertag The number of newline characters to insert after 
this tag. 

Optional

attrib.name The name of the attribute, as it appears in the 
source code.

Mandatory
Chapter 10110



Note: In versions before Dreamweaver MX, tag information is stored in the Configuration/TagAttributeList.txt file. 

The Tag Chooser
The Tag Chooser lets the user view tags in functional groups so that they can easily access 
frequently used tags. In order to add a tag or a set of tags to the Tag Chooser, a user must add 
them to the Tag Library. This can be done using the tag library editor dialog box or by installing 
a Dreamweaver extension (an MXP file).

tagchooser.xml files

The tagchooser.xml file provides the metadata for organizing tag groupings that appear in the Tag 
Chooser. Each tag that comes with Dreamweaver is stored in a functional grouping and is 
available in the Tag Chooser. By editing the TagChooser.xml file, you can regroup existing tags 
and group new tags. You can customize how tags are organized for your users by creating 
subcategories so they can easily access their most important tags. 

The TagLibraries.vtm file supports the use of the TAGLIBRARY.TAGCHOOSER attribute, which 
points to the tagchooser.xml file. If you change existing tagchooser.xml files or create new ones, 
the TAGLIBRARY.TAGCHOOSER attribute must point to the correct location for the Tag Chooser to 
be fully functional.

If there is no TAGLIBRARY.TAGCHOOSER attribute, the Tag Chooser displays the tree structure that 
is in the TagLibraries.vtm file.

attrib.type If omitted, attrib.type is "text". 
It can have the following values:
TEXT—free text content 
ENUMERATED—a list of enumerated values 
COLOR—a color value (name or hex) 
FONT—font name or font family 
STYLE—CSS styles attribute 
FILEPATH —a full file path 
DIRECTORY—a directory path 
FILENAME—filename only 
RELATIVEPATH —a relative representation of the 
path 
FLAG —an ON/OFF attribute that contains no 
value 

Optional

attrib.casesensitive Specifies whether the attribute name is case-
sensitive. If the CASESENSITIVE attribute is 
missing, the attribute name is case-insensitive.

Optional

Attribute Description Mandatory/
optional
Tag Libraries and Editors 111



TagChooser.xml files are stored in Configuration/TagLibraries/TagLibraryName folder. The 
following example illustrates the structure of TagChooser.xml files:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<tclibrary name="Friendly name for library node" desc=’Description for 

incorporated reference’ reference="Language[,Topic[,Subtopic]]">
  <category name="Friendly name for category node" desc=’Description for 

incorporated reference’ reference="Language[,Topic[,Subtopic]]" 
id="Unique id">

    <category name="Friendly name for subcategory node" ICON="Relative path" 
desc=’Description for incorporated reference’ 
reference="Language,Topic[,Subtopic]" id="Unique id">

      <element name="Friendly name for list item" value=’Value to pass to 
visual dialog editors’ desc=’Description for incorporated reference’ 
reference="Language[,Topic[,Subtopic]]" id="Unique id"/>

      ... more elements to display in the list view ...
    </category>
    ... more subcategories ...
  </category>
  ... more categories ...
</tclibrary>

The following table lists the tags that are available for use in the TagChooser.xml files:

The CATEGORY tag represents all other nodes in the Tree view under the TCLIBRARY’s node, as 
shown in the following table:

Tag Description Mandatory/
Optional

tclibrary The tag is the outermost tag, which encapsulates 
this Tag Library’s Tag Chooser structure.

Mandatory

tclibrary.name Value appears in the Tree view node. Mandatory

tclibrary.desc Value is an HTML string and is displayed in the 
Tag Info section of the Tag Chooser dialog box. If 
there is no DESC attribute, the information for Tag 
Info comes from the Reference panel. 
Interchangeable with tclibrary.reference.

Optional
(desc and 
reference are 
mutually exclusive)

tclibrary.reference Value describes the language, topic, and subtopic 
to display in the Tag Info section of the Tag 
Chooser dialog box. Interchangeable with 
tclibrary.desc.

Optional
(desc and 
reference are 
mutually exclusive)

Tag Description Mandatory/
Optional

category.name Value appears in the tree view node. Mandatory

category.desc Value is an HTML string that appears in the tag 
info section of the Tag Chooser dialog box. If 
neither desc nor reference attr is specified, 
nothing appears in the Tag info section.

Optional
(desc and 
reference are 
mutually exclusive)

category.reference Value describes the language, topic, and subtopic 
to display in the Tag info section.

Optional
(desc and 
reference are 
mutually exclusive)
Chapter 10112



The ELEMENT tag represents the tag to insert, with attributes as described in the following table:

Creating a new tag editor
The examples in this section use CFWEATHER, a hypothetical ColdFusion tag that was written to 
extract the current temperature from a weather database, to illustrate the steps necessary to create 
a new tag editor.

The attributes for CFWEATHER are as described in the following table:  

Registering the tag in the tag library

For Dreamweaver to recognize the new tag, it must be identified in the TagLibraries.vtm file, 
which is located in the Configuration/TagLibraries folder. However, if the user is on a system 
that supports multiple users (such as Windows XP, Windows 2000, or Mac OS X), the user has 
another TagLibraries.vtm file in their Configuration folder. This file is the one that needs to be 
updated because this file is the instance that Dreamweaver looks for and parses. 

The location of the user’s Configuration folder depends on the user’s platform.

For Windows 2000 and Windows XP platforms: 

<drive>:\Documents and Settings\<username>\ ¬
Application Data\Macromedia\Dreamweaver MX\Configuration

category.icon Value is a relative path to an icon GIF. Optional

category.id Any string that is different from the category.id 
attributes of other categories in this file.

Mandatory

Attribute Description Mandatory/
Optional

element.name Value appears as a List view item. Mandatory

element.value Value that is either placed directly into the code or 
a parameter that passes into visual dialog editors.

Mandatory

element.desc Value is an HTML string and appears in the 
incorporated Reference panel. If not specified, 
the REFERENCE attribute displays reference 
content in the incorporated Reference panel. 

Optional
(desc and 
reference are 
mutually exclusive)

element.reference As many as three strings separated by commas 
that describes the language, topic, and subtopic 
respectively. This information appears in the 
Reference panel. The first string is mandatory. 
The second string is mandatory for the ELEMENT 
tag only; optional for CATEGORY and TCLIBRARY 
tags. The third string is optional.

Optional 
(desc and 
reference are 
mutually exclusive)

element.id Any string that is different from the element.id 
attributes of other elements in this file.

Optional

Attribute Description

zip A five-digit ZIP code

tempaturescale The temperature scale (Celsius or Farhenheit)

Tag Description Mandatory/
Optional
Tag Libraries and Editors 113



For Windows NT platforms: 

<drive>:\WinNT\profiles\<username>\ ¬
Application Data\Macromedia\Dreamweaver MX\Configuration 

For Mac OS X platforms:

<drive>:Users:<username>:Library:Application Support: ¬
Macromedia:Dreamweaver MX:Configuration

If Dreamweaver MX cannot find TagLibraries.vtm in the user’s Configuration folder, 
Dreamweaver looks for it in the Dreamweaver Configuration folder. 

Note: On multiuser platforms, if you edit the copy of TagLibraries.vtm that resides in the Dreamweaver 
Configuration folder and not the one located in the user’s Configuration folder, Dreamweaver is not aware of the 
changes because Dreamweaver parses the copy of TagLibraries.vtm in the user’s Configuration folder, not in the 
Dreamweaver Configuration folder.

cfweather is a ColdFusion tag, so an appropriate Tag Library group already exists that you can 
use to register the <cfweather> tag.

To register the tag: 

1 Open the TagLibraries.vtm file in a text editor.

2 Scroll through the existing Tag Libraries to find the CFML tags <taglibrary> group. 

3 Add a new tag reference element, as shown in the following example:

<tagref name="cfweather" file="cfml/cfweather.vtm"/>

4 Save the file.

The tag is now registered in the tag library. It has a file pointer to the cfweather.vtm tag 
definition file. 

Creating a tag definition (.vtm) file 

When a user selects a registered tag using the Tag Chooser or a tag editor, Dreamweaver looks for 
a corresponding .vtm file for the tag definition.

To create a tag definition file:

1 In a text editor, create a file with the following contents:

<TAG NAME="cfweather" endtag="no">
<TAGFORMAT NLBEFORETAG="1" NLAFTERTAG="1"/>
<TAGDIALOG FILE="cfweather.htm"/>

   
<ATTRIBUTES>

<ATTRIB NAME="zip" TYPE="TEXT"/>
<ATTRIB NAME="tempaturescale" TYPE="ENUMERATED">

<ATTRIBOPTION VALUE="Celsius"/>
<ATTRIBOPTION VALUE="Fahrenheit"/>

</ATTRIB>
</ATTRIBUTES>    

</TAG>

2 Save the file as Configuration/Taglibraries/CFML/cfweather.vtm. 

Using the tag definition file, Dreamweaver can perform code hinting, code completion, and 
tag formatting functionality for the <cfweather> tag. 
Chapter 10114



Creating a tag editor UI

To create the CFWEATHER tag editor user interface:

1 Save the following file as Configuration/Taglibraries/CFML/cfweather.htm: 

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">
<html>
<head>
<title>CFWEATHER</title>
<script src="../../Shared/Common/Scripts/dwscripts.js"></script>
<script src="../../Shared/Common/Scripts/ListControlClass.js"></script>
<script src="../../Shared/Common/Scripts/tagDialogsCmn.js"></script>
<script>

/************************* GLOBAL VARS **************************/
var TEMPATURESCALELIST;   // tempaurelist control (initialized in 

initializeUI()) 
var theUIObjects;         // array of UI objects used by common API functions 

/****************************************************************/

// inspectTag() API function defined (required by all tag editors)  
function inspectTag(tagNodeObj)
{
  // call into a common library version of inspectTagCommon defined
  // in tagDialogCmns.js (note that it’s been included) 
  // For more information about this function, look at the comments
  // for inspectTagCommon in tagDialogCmn.js 
  tagDialog.inspectTagCommon(tagNodeObj, theUIObjects); 
}

function applyTag(tagNodeObj)
{
  // call into a common library version of applyTagCommon defined
  // in tagDialogCmns.js (note that it’s been included) 
  // For more information about this function, look at the comments
  // for applyTagCommon in tagDialogCmn.js 
  tagDialog.applyTagCommon(tagNodeObj, theUIObjects); 
}

function initializeUI()
{
  // define two arrays for the values and display captions for the list control
  var theTempatureScaleCap = new Array("celsius","fahrenheit"); 
  var theTempatureScaleVal = new Array("celsius","fahrenheit"); 
  
  // instantiate a new list control 
  TEMPATURESCALELIST = new ListControl("thetempaturescale"); 

  // add the tempaturescalelist dropdown list control to the uiobjects
  theUIObjects  = new Array(TEMPATURESCALELIST); 

  // call common populateDropDownList function defined in tagDialogCmn.js to
  // populate the tempaturescale list control 
  tagDialog.populateDropDownList(TEMPATURESCALELIST, theTempatureScaleCap, 

theTempatureScaleVal, 1); 
}
</script>

</head>
<body onLoad="initializeUI()">
Tag Libraries and Editors 115



<div name="General"> 
  <table border="0" cellspacing="4">
    <tr> 
      <td valign="baseline" align="right" nowrap="nowrap">Zip Code: </td>
      <td nowrap="nowrap"> 
        <input type="text" id="attr:cfargument:zip" name="thezip" attname="zip" 

style="width:100px"  />&nbsp;
      </td>
    </tr>
    <tr> 
      <td valign="baseline" align="right" nowrap="nowrap">Type: </td>
      <td nowrap="nowrap"> 
          <select name="thetempaturescale" id="attr:cfargument:tempaturescale" 

attname="tempaturescale" editable="false" style="width:200px">
          </select>
      </td>
    </tr>
  </table>
</div>
</body> 
</html>

2 Verify that the tag editor is working by performing the following steps: 

• Launch Dreamweaver MX. 

• Type <cfweather> in Code view.

• Right click on the tag.

• Select Edit Tag <cfweather> from the Context menu. 

If the tag editor launches, it has been created successfully. 

Adding a tag to Tag Chooser 

To add the CFWEATHER tag to the Tag Chooser:

1 Modify the Configuration/Taglibraries/CFML/tagchooser.xml file by adding a new category 
called Third Party Tags, which features the <cfweather> tag, as shown in the following 
example: 

<category name="Third Party Tags" icon="icons/Elements.gif" 
reference=’CFML’>
<element name="cfweather" value=’cfweather zip="" 
temperaturescale="fahrenheit">’ />

</category> 

Note: On multiuser platforms, the tagchooser.xml file also exists in the user’s Configuration folder. For more 
information regarding multiuser platforms, see the discussion in “Registering the tag in the tag library” on page 113.

2 Verify the <cfweather> tag now appears in the Tag Chooser by performing the following 
steps: 

• Select Insert > Tag.

• Expand the CFML Tags group. 

• Select the Third Party Tags group that appears at the bottom of the Tag Chooser.
Chapter 10116



• The <cfweather> tag appears in the list box on the right. 

• Select cfweather, and click the Insert button. 

The tag editor should appear.

Tag editor APIs
In order to create a new tag editor, you must provide an implementation for the three functions 
inspectTag(), validateTag(), and applyTag(). For an example of an implementation, see 
“Creating a tag editor UI” on page 115. 

inspectTag()

Availability

Dreamweaver MX

Description

When the tag editor first pops up, the function is called. The function is passed the tag that the 
user is editing, which is expressed as a dom object. The function extracts attribute values from the 
tag that is being edited and uses these values to initialize form elements in the tag editor.

Arguments

Accepts dom node of the edited tag.

Returns

Dreamweaver expects nothing. 

Example

Suppose the user is editing the following tag:

<crfweather zip = “94065”/>

If the editor contains a text field for editing the zip attribute, the function needs to initialize the 
form element so that the user sees the actual ZIP code in the text field, rather than an empty field.

The following code performs the initialization:

function inspectTag(tag)
{

document.forms[0].zip.value = tag.zip
}

validateTag()

Availability

Dreamweaver MX

Description

When user clicks on a node in the tree control or clicks OK, the function performs input 
validation on the currently displayed HTML form elements.

Arguments

None.
Tag Libraries and Editors 117



Returns

Dreamweaver expects a Boolean value: true if the input for HTML form elements is valid; false 
if input values are not valid. 

Example

While the user creates a table, a negative integer is entered for the number of table rows. 
validateTag() detects the invalid input, pops up an alert message, and returns false.

applyTag()

Availability

Dreamweaver MX

Description

When the user clicks OK, Dreamweaver calls validateTag(). If validateTag() returns true, 
Dreamweaver calls this function and passes the dom object that represents the current tag (the tag 
that is being edited). The function reads the values out of the form elements and writes them into 
the dom object.

Arguments

Accepts the dom node of the tag being edited. 

Returns

Dreamweaver expects nothing. 

Example

Continuing the cfweather example, if the user changes the zip from 94065 to 53402, in order to 
update the user’s document to use the new ZIP code, the dom object must be updated: 

function applyTag(tag)
{

tag.zip = document.forms[0].zip.value
}

Chapter 10118



CHAPTER 11
Property Inspectors

The Property inspector is perhaps the most familiar floating panel in the Dreamweaver interface. It is 
indispensable for defining, reviewing, and changing the name, size, appearance, andother attributes 
of the selection as well as for launching internal and external editors for the selected element.

Dreamweaver has several built-in interfaces for the Property inspector that let you set properties 
for many standard HTML tags. These built-in inspectors are part of the core Dreamweaver code; 
for this reason, you cannot find corresponding Property inspector files for them in the 
Configuration folder. With custom Property inspector files, you can override these built-in 
interfaces or create new ones to inspect custom tags.

Custom Property inspector files are HTML files that reside in the Configuration/Inspectors 
folder inside the Dreamweaver application folder. Property inspector files must contain a 
comment (in addition to the doctype comment for Dreamweaver MX) immediately preceding 
the opening HTML tag in the following format:

<!-- tag:tagNameOrKeyword,priority:1to10,selection:¬
exactOrWithin,hline,vline, serverModel-->
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">

where:

• tagNameOrKeyword is the tag to be inspected or one of the following keywords: *COMMENT* 
(for comments), *LOCKED* (for locked regions), or *ASP* (for ASP tags).

• 1to10 is the priority of the Property inspector file: 1 indicates that this inspector should be 
used only when no others can inspect the selection; 10 indicates that this inspector takes 
precedence over all others that can inspect the selection.

• exactOrWithin indicates whether the selection can be within the tag (within) or must exactly 
contain the tag (exact).

• hline (optional) indicates that a horizontal gray line should appear between the upper and 
lower halves of the inspector in expanded mode. 

• vline (optional) indicates that a vertical gray line should appear between the tag name field 
and the rest of the properties in the inspector (see an HTML file in the Configuration/
Inspectors folder for an example).

• serverModel (optional) indicates the server model of the Property inspector. If the server 
model of the Property inspector is not the same as the server model for the document, the 
Property inspector is not used to display the properties of the current selection.

The following comment is appropriate for an inspector that is designed to inspect the HAPPY tag:

<!-- tag:HAPPY, priority:8,selection:exact,hline,vline, ¬
serverModel:ASP -->
119



In some cases, you might want to specify that your extension use only Dreamweaver MX 
extension rendering (and not the previous rendering engine) by inserting the following line 
immediately before the Tag comment, as shown in the following example:

<!--DOCTYPE HTML SYSTEM “-//Macromedia//DWEtension layout-engine 5.0//pi”-->

The BODY of a Property inspector file contains an HTML form. Instead of displaying the form 
contents in a dialog box, however, Dreamweaver uses the form to define the input areas and 
layout of the inspector.

How Property inspector files work
At start up, Dreamweaver reads the first line of each .htm and .html file in the Configuration/
Inspectors folder, looking for the comment string that defines the type, priority, and selection 
type of a Property inspector. Files that do not have this comment as their first line are ignored.

When the user makes a selection in Dreamweaver or moves the insertion point to a different 
location, the following events occur:

1 Dreamweaver looks for any inspectors that have a within selection type. 

2 If there are any within inspectors, Dreamweaver searches up the document tree from the 
currently selected tag to check whether there are inspectors for any tags that surround the 
selection. If—and only if—there are no within inspectors, Dreamweaver looks for any 
inspectors that have a selection type of exact.

3 For the first tag found that has one or more inspectors, Dreamweaver calls each inspector’s 
canInspectSelection() function. If this function returns false, Dreamweaver no longer 
considers the inspector a candidate for inspecting the selection.

4 If more than one potential inspector remains after calling canInspectSelection(), 
Dreamweaver sorts the remaining inspectors by priority.

5 If more than one potential inspector shares the same priority, Dreamweaver selects an 
inspector alphabetically by name.

6 The selected inspector appears in the Property inspector floating panel. If the Property 
inspector file defines the displayHelp() function, a small question mark (?) icon appears in 
the upper-right corner of the inspector.

7 Dreamweaver calls the inspectSelection() function to gather information about the 
current selection and populate the inspector’s fields.

8 Event handlers attached to the fields in the Property inspector interface execute as the user 
encounters them. (For example, you might have an onBlur event that calls setAttribute() 
to set an attribute to the value that the user entered.)
Chapter 11120



The Property inspector API
Two of the Property inspector API functions (canInspectSelection() and 
inspectSelection()) are required. 

canInspectSelection()

Description

Determines whether the Property inspector is appropriate for the current selection.

Arguments

None.

Use “dom.getSelectedNode()” on page 546 to get the current selection as a JavaScript object.

Returns

Dreamweaver expects true if the inspector can inspect the current selection; false otherwise.

Example

The following instance of canInspectSelection() returns true if the selection contains the 
CLASSID attribute, and the value of that attribute is "clsid:D27CDB6E-AE6D-11cf-96B8-
444553540000" (the class ID for Flash Player):

function canInspectSelection(){
var theDOM = dw.getDocumentDOM();
var theObj = theDOM.getSelectedNode();
return (theObj.nodeType == Node.ELEMENT_NODE && ¬ 
theObj.hasAttribute("classid") && ¬
theObj.getAttribute("classid").toLowerCase()== ¬
"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000");

}

displayHelp()

Description

If this function is defined, a question mark (?) icon appears in the upper-right corner of the 
Property inspector. This function is called when the user clicks the icon.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

The following example of displayHelp() opens a file in a browser window that explains the 
fields of the Property inspector:

function displayHelp(){
dw.browseDocument(‘http://www.hooha.com/dw/inspectors/inspHelp.html’);

}

Property Inspectors 121



inspectSelection()

Description

Refreshes the contents of the text fields based on the attributes of the current selection.

Arguments

maxOrMin

The argument is either max or min, depending on whether the Property inspector is in its 
expanded or contracted state.

Returns

Dreamweaver expects nothing.

Example

The following example of inspectSelection() gets the value of the CONTENT attribute and uses 
it to populate a form field called keywords:

function inspectSelection(){
var dom = dreamweaver.getDocumentDOM();
var theObj = dom.getSelectedNode();
document.forms[0].keywords.value = ¬
theObj.getAttribute("content");

}

Chapter 11122



A simple Property inspector example

The following Property inspector inspects a fictional tag called INTJ. The INTJ tag is empty (it 
has no closing tag), so its selection type is exact. As long as the selection is an INTJ tag, the 
Property inspector appears—so the canInspectSelection() function returns true every time. 
To have a different inspector appear, depending on the value of the INTJ tag’s TYPE attribute, for 
example, the canInspectSelection() function must check the value of the TYPE attribute to 
determine which Property inspector is the right one. (This is how the keywords and description 
Property inspectors work, because “keywords” and “description” are not tags but values of the 
META tag’s NAME attribute.) 

<!-- tag:INTJ,priority:5,selection:exact,vline,hline -->
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">
<HTML>
<HEAD>
<TITLE>Interjection Inspector</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function canInspectSelection(){
  return true;
}

function inspectSelection(){
  // Get the DOM of the current document var 
  // theDOM = dw.getDocumentDOM();
  // Get the selected node var theObj = theDOM.getSelectedNode();

  // Get the value of the TYPE attribute on the INTJ tag var 
  // theType = theObj.getAttribute(’type’);
  // Initialize a variable called typeIndex to -1. This will be
  // used to store the menu index that corresponds to
  // the value of the TYPE attribute
  var typeIndex = -1;
  
  // If there was a TYPE attribute
  if (theType){
    // If the value of TYPE is "jeepers", set typeIndex to 0
    if (theType.toLowerCase() == "jeepers"){
      typeIndex = 0;
    // If the value of TYPE is "jinkies", set typeIndex to 1
    }else if (theType.toLowerCase() == "jinkies"){
      typeIndex = 1;
    // If the value of TYPE is "zoinks", set typeIndex to 2
    }else if (theType.toLowerCase() == "zoinks"){
      typeIndex = 2;
    }
  }
  
  // If the value of the TYPE attribute was "jeepers",
  // "jinkies", or "zoinks", choose the corresponding
  // option from the pop-up menu in the interface
  if (typeIndex != -1){
    document.topLayer.document.topLayerForm.intType.¬
    selectedIndex = typeIndex;
  }
}

function setInterjectionTag(){
  // Get the DOM of the current document
  var theDOM = dw.getDocumentDOM();
  // Get the selected node
Property Inspectors 123



  var theObj = theDOM.getSelectedNode();
  
  // Get the index of the selected option in the pop-up menu
  // in the interface
  var typeIndex = document.topLayer.document.¬
  topLayerForm.intType.selectedIndex;
  // Get the value of the selected option in the pop-up menu
  // in the interface
  var theType = document.topLayer.document.¬
  topLayerForm.intType.options[typeIndex].value;

  // Set the value of the TYPE attribute to theType
  theObj.setAttribute('type',theType);
}

</SCRIPT>
</HEAD>

<BODY>
<SPAN ID="image" STYLE="position:absolute; width:23px; ¬
height:17px; z-index:16; left: 3px; top: 2px">
<IMG SRC="interjection.gif" WIDTH="36" HEIGHT="36" ¬
NAME="interjectionImage">
</SPAN> 
<SPAN ID="label" STYLE="position:absolute; width:23px; ¬
height:17px; z-index:16; left: 44px; top: 5px">Interjection</SPAN>

<!-- If your form fields are in different layers, you must ¬
create a separate form inside each layer and reference it as ¬
shown in the inspectSelection() and setInterjectionTag() ¬
functions above. -->

<SPAN ID="topLayer" STYLE="position:absolute; z-index:1; ¬
left: 125px; top: 3px; width: 431px; height: 32px">
<FORM NAME="topLayerForm">
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0">
<TR> 
<TD VALIGN="baseline" ALIGN="right">Type:</TD>
<TD VALIGN="baseline" ALIGN="right"> 
<SELECT NAME="intType" STYLE="width:86" ¬
onChange="setInterjectionTag()">
<OPTION VALUE="jeepers">Jeepers</OPTION>
<OPTION VALUE="jinkies">Jinkies</OPTION>
<OPTION VALUE="zoinks">Zoinks</OPTION>
</SELECT>
</TR>
</TABLE>
</FORM>
</SPAN> 

</BODY>
</HTML>
Chapter 11124



CHAPTER 12
Floating Panels

You can create any kind of floating panel or inspector without the size and layout limitations of 
Property inspectors. 

Although a custom Property inspector should be your first choice for setting the properties of the 
current selection, custom floating panels offer more room and flexibility for displaying 
information about the entire document or multiple selections.

Custom Floating Panel files are HTML files that reside in the Configuration/Floaters folder 
inside the Dreamweaver application folder. The BODY of a Floating Panel file contains an HTML 
form; event handlers that are attached to form elements can call JavaScript code that performs 
arbitrary edits to the current document.

Dreamweaver has several built-in floating panels that are accessible from the Window menu. 
(These built-in panels are part of the core Dreamweaver code and do not have corresponding 
Floating Panel files for them in the Configuration/Floaters folder.) 

You can create custom panels and add them to the Window menu. For more information on 
adding items to the menu system, see “Customizing Dreamweaver,” in the Dreamweaver MX 
Support Center.

How floating panel files work
Custom floating panels can be moved, resized, and tabbed together the same way that the floating 
panels that are built into Dreamweaver. Custom floating panels differ from built-in floating 
panels in the following ways:

• It is not possible to display an icon in the tab of a custom floating panel; the tab always shows 
the contents of the floating panel’s TITLE tag.

• Custom floating panels display in the default gray. Setting the BGCOLOR attribute in the BODY 
tag has no effect.

• All custom floating panels either appear always on top of the Document window or float 
behind it when inactive, depending on the setting for All Other Floaters in the Floating 
panels preferences.

Floating panel files also differ somewhat from other extensions. Unlike other extension files, 
Dreamweaver does not load floating panel files into memory at startup unless the floating panels 
were visible when Dreamweaver last shut down. If the floating panels were not visible when 
Dreamweaver last shut down, the files that define them are loaded only when referenced from one 
of the following functions: “dreamweaver.getFloaterVisibility()” on page 644, 
“dreamweaver.setFloaterVisibility()” on page 647, or “dreamweaver.toggleFloater()” on page 650.
125



When one of the files inside the Configuration folder calls 
dw.getFloaterVisibility(floaterName), dw.setFloaterVisibility(floaterName), or 
dw.toggleFloater(floaterName), the following events occur:

1 If floaterName is not one of the reserved floating panel names, Dreamweaver searches the 
Configuration/Floaters folder for a file called floaterName.htm. (For a complete list of 
reserved floating panel names, see “dreamweaver.getFloaterVisibility()” on page 644.) If 
floaterName.htm is not found, Dreamweaver searches for floaterName.html. If no file is 
found, nothing happens.

2 If the Floating Panel file is being loaded for the first time, the initialPosition() function 
is called, if defined, to determine the floating panel’s default position on the screen, and 
the initialTabs() function is called, if defined, to determine the floating panel’s default 
tab grouping.

3 The selectionChanged() and documentEdited() functions are called on the assumption 
that changes probably occurred while the floating panel was hidden.

4 When the floating panel is visible, the following actions occur:

• When the selection changes, the selectionChanged() function is called, if it is defined.

• When the user makes changes to the document, the documentEdited() function is called, if it 
is defined.

• Event handlers that are attached to the fields in the floating panel interface execute as the user 
encounters them. (For example, a button with an onClick event handler that calls 
dw.getDocumentDOM().body.innerHTML=’’ removes everything between the opening and 
closing BODY tags in the document when it is clicked.)

5 When the user quits Dreamweaver, the current visibility, position, and tab grouping of the 
floating panel are saved. The next time Dreamweaver starts up, it loads the floating panel files 
for any floating panels that were visible at the last shutdown and displays the floating panels in 
their last position and tab grouping.

The Floating panel API
All the custom functions in the Floating panel API are optional. 

Dreamweaver MX introduces a new user interface in Windows, known as the Dreamweaver MX 
workspace or multiple document interface (MDI). This interface, or type of workspace, is 
optional, but it is also the default workspace. In the Dreamweaver MX workspace, 
Dreamweaver MX integrates all documents into one parent container in which you can dock all 
objects and panels. 

If you prefer, in Windows you can choose to work in the Dreamweaver 4 workspace, in which 
you manage separate, floating windows. The Dreamweaver 4 workspace is called the classic 
workspace. 

In Windows, you can switch from one type of workspace to the other through the Preferences 
item on the Edit menu. 

Some of the functions in this section operate only in the Dreamweaver MX workspace and 
only on the Windows operating system. The description of the function indicates whether this 
is the case.
Chapter 12126



displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in your 
dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
’/ExtensionsHelp/superDuperHelp.htm’;

dw.browseDocument(myHelpFile);
}

documentEdited()

Description

Called when the floating panel becomes visible and after the current series of edits is complete; 
that is, multiple edits might occur before this function is called. This function should be defined 
only if the floating panel must track edits to the document.

Note: Define documentEdited() only if you absolutely require it because its existence impacts performance.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

The following example of documentEdited() scans the document for layers and updates a text 
field that displays the number of layers in the document:

function documentEdited(){
/* create a list of all the layers in the document */
var theDOM = dw.getDocumentDOM();
var layersInDoc = theDOM.getElementsByTagName("layer");
var layerCount = layersInDoc.length;

/* update the numOfLayers field with the new layer count */
document.theForm.numOfLayers.value = layerCount;

}

Floating Panels 127



getDockingSide()

Availability

Dreamweaver MX (Windows only)

Description

Specifies the locations at which a floating panel can dock. The function returns a string that 
contains some combination of the words "left", "right", "top", and "bottom". If the label is 
in the string, you can dock to that side. If the function is missing, you cannot dock to any side.

You can use this function to prevent certain panels from docking on a certain side of the 
Dreamweaver MX workspace or to each other.

Arguments

None.

Returns

Dreamweaver expects a string containing the words "left", "right", "top", and "bottom", or a 
combination of them, that specifies where Dreamweaver can dock the floating panel.

Example

getDockingSide()
{

return dock_side = “left top”;
}

initialPosition()

Description

Determines the initial position of the floating panel the first time it is called. If this function is 
not defined, the default position is the center of the screen.

Arguments

platform

Possible values for platform are "Mac" and "Win".

Returns

Dreamweaver expects a string of the form "leftPosInPixels,topPosInPixels".

Example

The following example of initialPosition() specifies that the first time the floating panel 
appears, it should be 420 pixels from the left and 20 pixels from the top in Windows, and 390 
pixels from the left side of the screen and 20 pixels from the top of the screen on the Macintosh:

function initialPosition(platform){
var initPos = "420,20";
if (platform == "macintosh"){

initPos = "390,20";
}
return initPos;

}

Chapter 12128



initialTabs()

Description

Determines which other floating panels are tabbed together the first time that this floating panel 
appears. If any listed floating panel has appeared previously, it is not included in the tab group.To 
ensure that two custom floating panels are tabbed together, each panel should reference the other 
with the initialTabs() function.

Arguments

None.

Returns

Dreamweaver expects a string of the form "floaterName1,floaterName2,...floaterNameN".

Example

The following example of initialTabs() specifies that the first time the floating panel appears, 
it should be tabbed together with the scriptEditor floating panel:

function initialTabs(){
return "scriptEditor";

}

isATarget()

Availability

Dreamweaver MX (Windows only)

Description

Specifies whether other panels can dock to this panel. If isATarget() is not specified, the default 
is false, which prevents other panels from trying to dock to this one. 

Arguments

None.

Returns

Dreamweaver expects a Boolean value that indicates whether other panels can dock to this panel.

Example

IsATarget()
{

return true;
}

Floating Panels 129



isAvailableInCodeView()

Description

Defined by a floating panel to determine whether the floating panel should be enabled when 
Code view is selected. If this function is not defined, the floating panel is disabled in the 
Code view.

Arguments

None.

Returns

Dreamweaver expects a Boolean value that indicates whether the floating panel should be enabled 
in Code view.

isResizable()

Availability

Dreamweaver 4 

Description

Determines whether a user can resize a floating panel. If the function is not defined or returns a 
value of true, the user can resize the floating panel. If the function returns false, the user is 
unable to resize the floating panel. 

Arguments

None. 

Returns

true if the user can resize the floating panel, otherwise returns false. 

Example

The following example prevents the user from resizing the floating panel. 

function isResizable()
{

return false;
}

selectionChanged()

Description

Called when the floating panel becomes visible and when the selection changes (when focus 
switches to a new document or when the insertion pointer moves to a new location in the current 
document). This function should be defined only if the floating panel must track the selection.

Note: Define selectionChanged() only if you absolutely require it because its existence impacts performance.

Arguments

None.

Returns

Dreamweaver expects nothing.
Chapter 12130



Example

The following example of selectionChanged() shows a different layer in the floating panel, 
depending on whether the selection is a script marker. If the selection is a script marker, 
Dreamweaver makes the script layer visible. Otherwise, Dreamweaver makes the blank 
layer visible: 

function selectionChanged(){
/* get the selected node */
var theDOM = dw.getDocumentDOM();
var theNode = dw.getSelectedNode();

/* check to see if the node is a script marker */
if (theNode.nodeType == Node.ELEMENT_NODE && ¬
theNode.tagName == "SCRIPT"){
document.layers['blanklayer'].visibility = 'hidden';
document.layers['scriptlayer'].visibility = 'visible';

  }else{
document.layers['scriptlayer'].visibility = 'hidden';
document.layers['blanklayer'].visibility = 'visible';

}
}

About performance

Declaring the selectionChanged() or documentEdited() function in your custom floating 
panels risks impacting Dreamweaver performance adversely. Consider that documentEdited() 
and selectionChanged() are called after every keystroke and mouse click when Dreamweaver is 
idle for more than one-tenth of a second. It’s important use different scenarios to test your 
floating panel, using large documents (100K or more of HTML) whenever possible, to test 
performance impact. 

To help avoid performance penalties, setTimeout() was implemented as a global method in 
Dreamweaver 3. As in the browsers, setTimeout() takes two arguments: the JavaScript to be 
called and the amount of time in milliseconds to wait before calling it.

The setTimeout() method lets you build pauses into your processing. These pauses let the user 
continue interacting with the application. You must build in these pauses explicitly because the 
screen freezes while scripts process, which prevents the user from performing further edits. The 
pauses also prevent you from updating the interface or the floating panel.
Floating Panels 131



The following example is from a floating panel that displays information about every layer in the 
document. It uses setTimeout() to pause for half a second after processing each layer:

/* create a flag that specifies whether an edit is being processed, and set it 
to false. */

document.running = false;

/* this function called when document is edited */
function documentEdited(){
  /* create a list of all the layers to be processed */
  var dom = dw.getDocumentDOM();
  document.layers = dom.getElementsByTagName("layer");
  document.numLayers = document.layers.length;
  document.numProcessed = 0;

  /* set a timer to call processLayer(); if we didn’t get
   * to finish processing the previous edit, then the timer
   * is already set. */
  if (document.running = false){
    setTimeout("processLayer()", 500);
  }

  /* set the processing flag to true */
  document.running = true;
}

/* process one layer */
function processLayer(){
  /* display information for the next unprocessed layer.
      displayLayer() is a function you would write to 
      perform the "magic".  */
   displayLayer(document.layers[document.numProcessed]);

  /* if there’s more work to do, set a timeout to process
   * the next layer.  If we’re finished, set the document.running
   * flag to false. */
  document.numProcessed = document.numProcessed + 1;
  if (document.numProcessed < document.numLayers){
    setTimeout("processLayer()", 500);
  }else{
    document.running = false;
  }
}

Chapter 12132



A simple floating panel example

The following floating panel example contains a text field that shows the contents of the selected 
Script marker (the yellow icon that appears in the Document window to mark the location of a 
script). If no Script marker is selected, a layer that contains the text (no script selected) appears.

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//floater">
<html>
<head>
<title>Script Editor</title>
<script language="JavaScript">

function selectionChanged(){
  /* get the selected node */
  var theDOM = dw.getDocumentDOM();
  var theNode = theDOM.getSelectedNode();
  
  /* check to see if the node is a script marker */
  if (theNode.nodeType == Node.ELEMENT_NODE && ¬
  theNode.tagName == "SCRIPT"){
    document.layers['scriptlayer'].visibility = 'visible';
    document.layers['scriptlayer'].document.theForm.¬
    scriptCode.value = theNode.innerHTML;
    document.layers['blanklayer'].visibility = 'hidden';
  }else{
    document.layers['scriptlayer'].visibility = 'hidden';
    document.layers['blanklayer'].visibility = 'visible';
  }
}

/* update the document with any changes made by
   the user in the textarea */
function updateScript(){
  var theDOM = dw.getDocumentDOM();
  var theNode = dw.getSelectedNode();
  theNode.innerHTML = document.layers['scriptlayer'].document.¬
  theForm.scriptCode.value;
}

</script>
</head>

<body>
<div id="blanklayer" style="position:absolute; width:422px; ¬
height:181px; z-index:1; left: 8px; top: 11px; ¬
visibility: hidden">
<center>
<br>
<br>
<br>
<br>
<br>
(no script selected)
</center>
</div>

<div id="scriptlayer" style="position:absolute; width:422px; ¬
height:181px; z-index:1; left: 8px; top: 11px; ¬
visibility: visible">
<form name="theForm">
<textarea name="scriptCode" cols="80" rows="20" wrap="VIRTUAL" ¬
onBlur="updateScript()"></textarea>
Floating Panels 133



</form>
</div>

</body>
</html>

Remember that it is not sufficient to save this code in a file called scriptEditor.htm in the 
Configuration/Floaters folder; you must also call 
dw.setFloaterVisibility(’scriptEditor’,true) or 
dw.toggleFloater(’scriptEditor’) to load the floating panel and make it visible. The most 
obvious place from which to do this is the Window menu in the menus.xml file. The menuitem 
tag to toggle the script editor panel might look like this:

<menuitem name="Script Editor" enabled="true" ¬
command="dw.toggleFloater('scriptEditor')"¬
checked="dw.getFloaterVisibility('scriptEditor')" />
Chapter 12134



CHAPTER 13
Behaviors

Behaviors let users make their HTML pages interactive. They offer web designers an easy way to 
assign actions to page elements by filling in an HTML form. 

You should write behavior actions when you want to share functions with users or when you want 
to insert the same JavaScript function repeatedly but change the parameters each time.

Note: You cannot use behaviors to insert VBScript functions directly; however, you can add a VBScript function 
indirectly by editing the DOM in the applyBehavior() function.

The term behavior refers to the combination of an event (such as onClick, onLoad, or onSubmit) 
and an action (such as Check Plugin, Go to URL, Swap Image). The browser determines which 
HTML elements accept which events. Files that list events that each browser supports are stored 
in the Configuration/Behaviors/Events folder within the Dreamweaver application folder.

Actions are the part of a behavior that you can control; so when you write a behavior, you’re really 
writing an Action file. Actions are HTML files. The BODY of an Action file generally contains an 
HTML form that accepts parameters for the action (for example, parameters that indicate which 
layers are to be shown or hidden). The HEAD of an Action file contains JavaScript functions that 
process form input from the BODY and control the functions, arguments, and event handlers that 
are inserted into a user’s document. 

Note: For information about server behaviors that provide web application functionality, see “Server Behaviors” on 
page 145.

How Behaviors work
When a user selects an HTML element in a Dreamweaver document and clicks the plus (+) 
button, the following events occur:

1 Dreamweaver calls the canAcceptBehavior() function in each Action file to see whether this 
action is appropriate for the document or the selected element. 

If the return value of this function is false, Dreamweaver dims the action in the Actions pop-
up menu. (For example, the Control Shockwave action is dimmed when the user’s document 
has no Shockwave movies.) If the return value is a list of events, Dreamweaver compares each 
event with the valid events for the currently selected HTML element and target browser until 
it finds a match. Dreamweaver populates the Events pop-up menu with the matched event 
from canAcceptBehavior() at the top of the list; if no match exists, the default event for the 
HTML element (marked in the Event file with an asterisk [*]) becomes the top item. The 
remaining events in the menu are assembled from the Event file.

2 The user selects an action from the Actions pop-up menu.
135



3 Dreamweaver calls the windowDimensions() function, if defined, to determine the 
size of the Parameters dialog box. If windowDimensions() is not defined, the size is 
determined automatically.

A dialog box always appears, with OK and Cancel buttons appearing at the right edge, 
regardless of the contents of the Body element.

4 Dreamweaver displays a dialog box that contains the BODY elements of the Action file. If the 
Action file’s BODY tag contains an onLoad handler, Dreamweaver executes it.

5 The user fills in the parameters for the action. Dreamweaver executes event handlers that are 
associated with the form fields as the user encounters them.

6 The user clicks OK.

7 Dreamweaver calls the behaviorFunction() and applyBehavior() functions in the selected 
Action file. These functions return strings that are inserted into the user’s document.

8 If the user later double-clicks the action in the Actions column, Dreamweaver reopens the 
Parameters dialog box and executes the onLoad handler. Dreamweaver then calls the 
inspectBehavior() function in the selected Action file, which fills in the fields with the data 
that the user previously entered.

Inserting multiple functions in the user’s file

Actions can insert multiple functions—the main behavior function plus any number of helper 
functions—into the HEAD. Two or more behaviors can even share helper functions, as long as the 
function definition is exactly the same in each Action file. One way of ensuring that shared 
functions are identical is to store each helper function in an external JavaScript file and insert it 
into the appropriate Action files using <SCRIPT SRC="externalFile.js">.

When the user deletes a behavior, Dreamweaver attempts to remove any unused helper functions 
that are associated with the behavior. If other behaviors are using a helper function, it is not 
deleted. Because the algorithm for deleting helper functions errs on the side of caution, 
Dreamweaver might occasionally leave an unused function in the user’s document.

The Behaviors API
Two Behaviors API functions are required (applyBehavior() and behaviorFunction()); the 
rest are optional. 

applyBehavior()

Description

Inserts into the user’s document an event handler that calls the function that 
behaviorFunction() inserts. This function can also perform other edits on the user’s document, 
but it must not delete the object to which the behavior is being applied or the object that receives 
the action.

Arguments

uniqueName

The argument is a unique identifier among all instances of all behaviors in the user’s document. 
Its format is functionNameInteger, where functionName is the name of the function that 
behaviorFunction() inserts. This argument is useful if you insert a tag into the user’s 
document and you want to assign a unique value to its NAME attribute.
Chapter 13136



Returns

Dreamweaver expects a string that contains the function call to be inserted in the user’s 
document, usually after accepting parameters from the user. If applyBehavior() determines that 
the user made an invalid entry, the function can return an error string instead of the function call. 
If the string is empty (return "";), Dreamweaver does not report an error; if the string is not 
empty and not a function call, Dreamweaver displays a dialog box with the text: Invalid input 
supplied for this behavior: [the string returned from applyBehavior()]. If the 
return value is null (return;), Dreamweaver indicates that an error occurred but gives no 
specific information.

Note: Quotation marks within the returned string must be preceded by a backslash (\) to avoid errors that the 
JavaScript interpreter reports.

Example

The following instance of applyBehavior() returns a call to the function MM_openBrWindow() 
and passes parameters that are given by the user (the height and width of the window; whether 
the window should have scroll bars, a toolbar, a location bar, and other features; and the URL 
that should open in the window):

function applyBehavior() {
var i,theURL,theName,arrayIndex = 0;
var argArray = new Array(); //use array to produce correct ¬
number of commas w/o spaces
var checkBoxNames = new Array("toolbar","location",¬
"status","menubar","scrollbars","resizable");

for (i=0; i<checkBoxNames.length; i++) {
theCheckBox = eval("document.theForm." + checkBoxNames[i]);
if (theCheckBox.checked) argArray[arrayIndex++] = ¬
(checkBoxNames[i] + "=yes");

}
if (document.theForm.width.value)

argArray[arrayIndex++] = ("width=" + ¬
document.theForm.width.value);

if (document.theForm.height.value)
argArray[arrayIndex++] = ("height=" + ¬
document.theForm.height.value);

theURL = escape(document.theForm.URL.value);
theName = document.theForm.winName.value;
return "MM_openBrWindow('"+theURL+"',¬
'"+theName+"','"+argArray.join()+"')";

}

behaviorFunction()

Description

Inserts one or more functions—surrounded by <SCRIPT LANGUAGE="JavaScript"></SCRIPT> 
tags, if none yet exist—into the HEAD of the user’s document.

Arguments

None.

Returns

Dreamweaver expects either a string that contains the JavaScript functions or a string that 
contains the names of the functions to be inserted in the user’s document. This value must be 
exactly the same every time (it cannot depend on input from the user). The functions are inserted 
only once, regardless of how many times the action is applied to elements in the document.
Behaviors 137



Note: Quotation marks within the returned string must be preceded by a backslash (\) to avoid errors that the 
JavaScript interpreter reports.

Example

The following instance of behaviorFunction() returns a function called MM_popupMsg():

function behaviorFunction(){
return ""+
"function MM_popupMsg(theMsg) { //v1.0\n"+
"  alert(theMsg);\n"+
"}";

}

The following example is equivalent to the preceding behaviorFunction() declaration and is 
the method used to declare behaviorFunction() in all behaviors that come with Dreamweaver:

function MM_popupMsg(theMsg){ //v1.0
alert(theMsg);

}

function behaviorFunction(){
return "MM_popupMsg";

}

canAcceptBehavior()

Description

Determines whether the action is allowed for the selected HTML element and specifies the 
default event that should trigger the action. Can also check for the existence of certain objects 
(such as Shockwave movies) in the user’s document and not allow the action if these objects 
do not appear.

Arguments

HTMLElement

The argument is the selected HTML element.

Returns

Dreamweaver expects one of the following values:

• true if the action is allowed but has no preferred events.

• A list of preferred events (in descending order of preference) for this action. Specifying 
preferred events overrides the default event (as denoted with an asterisk [*] in the Event file) 
for the selected object. See step 1 in “How Behaviors work” on page 135.

• false if the action is not allowed. 

If canAcceptBehavior() returns false, the action is dimmed in the Actions pop-up menu in 
the Behaviors panel.
Chapter 13138



Example

The following instance of canAcceptBehavior() returns a list of preferred events for the 
behavior if the document has any named images:

function canAcceptBehavior(){ 
var theDOM = dreamweaver.getDocumentDOM();
// Get an array of all images in the document
var allImages = theDOM.getElementsByTagName(’IMG’); 
if (allImages.length > 0){

return "onMouseOver, onClick, onMouseDown";
}else{

return false;
}

}

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the 
Parameters dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
’/ExtensionsHelp/superDuperHelp.htm’;

  dw.browseDocument(myHelpFile);
}

deleteBehavior()

Description

Undoes any edits that applyBehavior() performed.

Note: Dreamweaver automatically deletes the function declaration and the event handler that are associated with a 
behavior when the user deletes the behavior in the Behaviors panel. It is necessary to define deleteBehavior() 
only if the applyBehavior() function performs additional edits on the user’s document (for example, if it 
inserts a tag).

Arguments

applyBehaviorString

This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects nothing.
Behaviors 139



identifyBehaviorArguments()

Description

Identifies arguments from a behavior function call as navigation links, dependent files, URLs, 
Netscape Navigator 4.0-style references, or object names so that URLs in behaviors can update if the 
user saves the document to another location and so the referenced files can appear in the site map 
and be considered dependent files for the purposes of uploading to and downloading from a server.

Arguments

theFunctionCall

This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects a string that contains a comma-separated list of the types of arguments in 
the function call. The length of the list must equal the number of arguments in the function call. 
Argument types must be one of the following types: 

• nav specifies that the argument is a navigational URL, and therefore, it should appear in 
the site map.

• dep specifies that the argument is a dependent file URL, and therefore, it should be included 
with all other dependent files when a document that contains this behavior is downloaded 
from or uploaded to a server.

• URL specifies that the argument is both a navigational URL and a dependent URL or that it is 
a URL of an unknown type, and therefore, that it should appear in the site map and be 
considered a dependent file when uploading to or downloading from a server.

• NS4.0ref specifies that the argument is a Netscape Navigator 4.0-style object reference.

• IE4.0ref specifies that the argument is an Internet Explorer DOM 4.0-style object reference.

• objName specifies that the argument is a simple object name, as specified in the NAME attribute 
for the object. This type was added in Dreamweaver 3.

• other specifies that the argument is none of the above types.

Example

This simple example of identifyBehaviorArguments() works for the Open Browser Window 
behavior action, which returns a function that always has three arguments (the URL to open, the 
name of the new window, and the list of window properties):

function identifyBehaviorArguments(fnCallStr) {
return "URL,other,other";

}

Chapter 13140



A more complex version of identifyBehaviorArguments() is necessary for behavior functions 
that have a variable number of arguments (such as Show/Hide Layer). For this version of 
identifyBehaviorArguments(), there is a minimum number of arguments, and additional 
arguments always come in multiples of the minimum number. In other words, a function 
with a minimum number of arguments of 4 may have 4, 8, or 12 arguments, but it cannot 
have 10 arguments.

function identifyBehaviorArguments(fnCallStr) {
var listOfArgTypes;
var itemArray = dreamweaver.getTokens(fnCallStr, ’(),’);

// The array of items returned by getTokens() includes the 
// function name, so the number of *arguments* in the array 
// is the length of the array minus one. Divide by 4 to get the 
// number of groups of arguments.
var numArgGroups = ((itemArray.length - 1)/4);
// For each group of arguments
for (i=0; i < numArgGroups; i++){

// Add a comma and "NS4.0ref,IE4.0ref,other,dep" (because this 
// hypothetical behavior function has a minimum of four 
// arguments the Netscape object reference, the IE object 
// reference, a dependent URL, and perhaps a property value 
// such as "show" or "hide") to the existing list of argument 
// types, or if no list yet exists, add only
// "NS4.0ref,IE4.0ref,other,dep"
var listOfArgTypes += ((listOfArgTypes)?",":"") + ¬
"NS4.0ref,IE4.0ref,other,dep";
}

}

inspectBehavior()

Description

Inspects the function call for a previously applied behavior in the user’s document and sets the 
values of the options in the Parameters dialog box accordingly. If inspectBehavior() is not 
defined, the default option values appear.

Note: inspectBehavior() must rely solely on information that the applyBehaviorString argument passes to it. 
Do not attempt to obtain other information about the user’s document (for example, using 
dreamweaver.getDocumentDOM()) within this function.

Arguments

applyBehaviorString

This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects nothing.
Behaviors 141



Example

The following instance of inspectBehavior(), taken from Display Status Message.htm, fills in 
the Message field in the parameters form with the message that the user selected when the 
behavior was originally applied:

function inspectBehavior(msgStr){
var startStr = msgStr.indexOf("’") + 1;
var endStr = msgStr.lastIndexOf("’");
if (startStr > 0 && endStr > startStr) {

document.theForm.message.value = ¬
unescQuotes(msgStr.substring(startStr,endStr));

}
}

Note: For more information about the unescQuotes() function, see the dwscripts.js file in the Configuration/
Shared/Common/Scripts/CMN folder.

windowDimensions()

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the window 
dimensions are computed automatically.

Note: Do not define this function unless you want an Parameters dialog box that is larger than 640 x 480 pixels.

Arguments

platform

The value of the argument is either "macintosh" or "windows", depending on the user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not 
include the area for the OK and Cancel buttons. If the returned dimensions do not accommodate 
all options, scroll bars appear.

Example

The following instance of windowDimensions() sets the dimensions of the Parameters dialog box 
to 648 x 520 pixels:

function windowDimensions(){
return "648,520";

}

What to do when an action requires a return value

Sometimes an event handler must have a return value (for example, 
onMouseOver="window.status=’This is a link’; return true"). But if Dreamweaver 
inserts "return behaviorName(args)" into the event handler, behaviors later in the list 
are skipped.

To get around this limitation, set a variable called document.MM_returnValue to the desired 
return value within the string that behaviorFunction() returns. This setting causes 
Dreamweaver to insert return document.MM_returnValue at the end of the list of actions in 
the event handler. See the Validate Form.js file in the Configuration/Behaviors/Actions folder 
within the Dreamweaver application folder for an example of the use of MM_returnValue.
Chapter 13142



A simple behavior example

To understand how behaviors work and how you can create one, it’s helpful to look at an 
example. The Configuration/Behaviors/Actions folder inside the Dreamweaver application folder 
contains many examples; however, many are likely to be too complex a starting point for all but 
the most advanced developers. The simplest Action file to start with is Call JavaScript.htm (along 
with its counterpart, Call JavaScript.js, which contains all the JavaScript functions).

The following code presents a relatively simple example. It checks the brand of the browser and 
goes to one page if the brand is Netscape Navigator and another if the brand is Microsoft Internet 
Explorer. This code can easily be expanded to check for other brands such as Opera and WebTV 
and modified to perform other actions than going to URLs.

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//dialog">
<html>
<head>
<title>behavior "Check Browser Brand"</title>
<meta http-equiv="Content-Type" content="text/html">
<script language="JavaScript">

// The function that will be inserted into the 
// HEAD of the user’s document
function checkBrowserBrand(netscapeURL,explorerURL) {
  if (navigator.appName == "Netscape") {
    if (netscapeURL) location.href = netscapeURL;
  }else if (navigator.appName == "Microsoft Internet Explorer") {
    if (explorerURL) location.href = explorerURL;
  }
}

//******************* API **********************

function canAcceptBehavior(){
  return true;
}

// Return the name of the function to be inserted into
// the HEAD of the user’s document
function behaviorFunction(){
    return "checkBrowserBrand";
}

// Create the function call that will be inserted 
// with the event handler
function applyBehavior() {
  var nsURL = escape(document.theForm.nsURL.value);
  var ieURL = escape(document.theForm.ieURL.value);
  if (nsURL && ieURL) {
    return "checkBrowserBrand(\'" + nsURL + "\',\'" + ieURL + ¬
    "\')";
  }else{
    return "Please enter URLs in both fields."
  }
}

// Extract the arguments from the function call
// in the event handler and repopulate the
// parameters form
function inspectBehavior(fnCall){
  var argArray = getTokens(fnCall, "()',");
  var nsURL = unescape(argArray[1]);
Behaviors 143



  var ieURL = unescape(argArray[2]);
  document.theForm.nsURL.value = nsURL;
  document.theForm.ieURL.value = ieURL;
}

//***************** LOCAL FUNCTIONS  ******************

// Put the cursor in the first text field
// and select the contents, if any
function initializeUI(){
  document.theForm.nsURL.focus();
  document.theForm.nsURL.select();
}

// Let the user browse to the Navigator and
// IE URLs
function browseForURLs(whichButton){
  var theURL = dreamweaver.browseForFileURL();
  if (whichButton == "nsURL"){
    document.theForm.nsURL.value = theURL;
  }else{
    document.theForm.ieURL.value = theURL;
  }
}

//*************** END OF JAVASCRIPT *****************
</script>
</head>
<body>
<form method="post" action="" name="theForm">
<table border="0" cellpadding="8">
<tr>
<td nowrap="nowrap">&nbsp;&nbsp;Go to this URL if the browser is ¬
Netscape Navigator:<br>
<input type="text" name="nsURL" size="50" value=""> &nbsp; 
<input type="button" name="nsBrowse" value="Browse..." ¬
onClick="browseForURLs('nsURL')"></td>
</tr>
<tr>
<td nowrap="nowrap">&nbsp;&nbsp;Go to this URL is the browser is ¬
Microsoft Internet Explorer:<br>
<input type="text" name="ieURL" size="50" value=""> &nbsp; 
<input type="button" name="ieBrowse" value="Browse..." ¬
onClick="browseForURLs('ieURL')"></td>
</tr>
</table>
</form>
</body>
</html>
Chapter 13144



CHAPTER 14
Server Behaviors

Dreamweaver MX provides users with an interface for adding server behaviors into their 
documents to perform server-side tasks such as filtering records based on user criteria, paging 
through records, linking result lists to details pages, and inserting records into a result set. If a 
Dreamweaver user repeatedly inserts the same runtime code into documents, you can create a 
new extension to automate updating a document with these frequently used code blocks. See 
“Adding Custom Server Behaviors” in Getting Started with Dreamweaver MX for details about 
working with the Server Behavior Builder interface to implement a custom server behavior. Then, 
refer to this chapter for details about working with the supporting server behavior files and the 
functions that are available for interacting with established server behaviors. Dreamweaver 
currently supports server behavior extensions that add runtime code for the following server 
models: ASP.Net/C#, ASP.Net/VisualBasic, ASP/JavaScript, ASP/VBScript, ColdFusion, JSP, 
and PHP/MySQL.

The following terms are used throughout this chapter:

• Server Behavior extension: The server behavior extension is the interface between server-side 
code and Dreamweaver. A server behavior extension consists of JavaScript, HTML, and 
Extension Data Markup Language (EDML), which is XML that is created specifically for 
extension data. Examples of these files reside in your installation directory in the 
Configuration/ServerBehaviors folder, arranged according to server model. When you script 
an extension, use dwscripts.applySB() to instruct Dreamweaver to read the EDML files, 
retrieve the components of your extension, and add the appropriate code blocks to the 
user’s document.

• Server behavior instance: When Dreamweaver adds code blocks to a user’s document, the 
inserted code constitutes an instance of the server behavior. The user can apply most server 
behaviors more than once, which results in multiple server behavior instances. Each server 
behavior instance is listed in the Server Behaviors panel of the Dreamweaver interface.

• Runtime code: Runtime code is the set of code blocks that are added to a document when a 
server behavior is applied. These code blocks usually include some server-side code, such as 
ASP script that is enclosed in <% ... %> tags.

• Participants: Your server behavior extension inserts code blocks into the user’s document. A 
code block is a single, continuous block of script, such as a server-side tag, an HTML tag, or an 
attribute that adds server-side functionality to a web page. An EDML file defines each code 
block as a participant. All the participants (code blocks) for a given server behavior comprise 
one participant group.

Note: For information about participants, participant groups, and how Dreamweaver EDML files are structured, see 
“Extension Data Markup Language” on page 146.
145



Dreamweaver architecture
When you use the Server Behavior Builder to create a Dreamweaver-specific extension, 
Dreamweaver creates several files (EDML and HTML script files) that support inserting the 
Server Behavior code into a Dreamweaver document (some behaviors also reference JavaScript 
files for additional functionality). The architecture simplifies your implementation of the API and 
also separates your runtime code from how Dreamweaver deploys it. This chapter discusses ways 
of modifying these files.

Server behavior folders and files

The user interface for each server behavior resides in the Configuration/ServerBehaviors/
ServerModelName folder, where ServerModelName is one of the following server types: 
ASP.NET_Csharp, ASP.NET_VB (Visual Basic), ASP_Js (JavaScript), ASP_Vbs (VBScript), 
ColdFusion (Dreamweaver MX compatible), JSP, PHP_MySQL, Shared (UltraDev 4 
ColdFusion and Dreamweaver MX ColdFusion) or UD4-ColdFusion (Ultradev 4-compatible 
ColdFusion). 

Note: A distinction between Dreamweaver MX and Ultradev 4 ColdFusion compatibility is required because the 
document type/server model for ColdFusion has changed since the release of Ultradev 4. For example, a server 
behavior in Dreamweaver MX inserts CFML code that is different from the CFMLthat is inserted by the same server 
behavior from Ultradev 4.

Extension Data Markup Language 

Dreamweaver generates two EDML files when you use the Server Behavior Builder: a group EDML 
file and a participant EDML file that correspond to the names that you provide in the Server 
Behavior Builder. The group file defines the relevant participants, which represent code blocks, and 
the groups define which participants are combined to make an individual server behavior. 

Group files

Group files contain a list of participants, and participant files have all server-model-specific code 
data. Participant files can be used by more than one extension, so several group files can refer to 
the same participant file.

The following example shows a high-level view of the Server Behavior Group EDML file. For a 
complete list of elements and attributes, see “Group EDML file tags” on page 160.

<group serverBehavior="Go To Detail Page.htm" dataSource="Recordset.htm">
  <groupParticipants selectParticipant="goToDetailPage_attr">
    <groupParticipant name="moveTo_declareParam"  partType="member"/> 
    <groupParticipant name="moveTo_keepParams"  partType="member"/> 
    <groupParticipant name="goToDetailPage_attr" partType="identifier" /> 
  </groupParticipants>
</group>

In the groupParticipants block tag, each groupParticipant tag indicates the EDML 
participant file that contains the code block to use. The value of the name attribute is the 
participant file name minus the .edml extension (for example, moveTo_declareParam). 

Participant files

A participant represents a single code block on the page, such as a server tag, an HTML tag, or an 
attribute. A participant file must be listed in a group file to be available to a Dreamweaver 
document author. A single participant file can be used by several group files.
Chapter 14146



For example, the moveTo_declareParam.edml file contains the following code:

<participant>
     <quickSearch><![CDATA[MM_paramName]]></quickSearch>
     <insertText location="aboveHTML+80">
<![CDATA[
<% var MM_paramName = ""; %>
]]>
     </insertText>
     <searchPatterns whereToSearch="directive">
       <searchPattern><![CDATA[/var\s*MM_paramName/]]></searchPattern>
     </searchPatterns>
</participant>

When Dreamweaver adds a server behavior to a document, it needs to have detailed information, 
including where to insert the code, what the code looks like, and what parameters the 
Dreamweaver author or data replaced at runtime. Each participant EDML file describes these 
details for each block of code. Specifically, the participant file describes the following data:

• The code and where to put the unique instance. These are defined by the insertText tag 
parameters, as shown in the following example:

<insertText location="aboveHTML+80">

• How to recognize instances already on the page, as shown in the following example:

<searchPatterns whereToSearch="directive">
       <searchPattern><![CDATA[/var\s*MM_paramName/]]></searchPattern>

</searchPatterns>

In the searchPatterns block tag, each searchPattern contains a pattern that finds instances of 
runtime code and extracts specific parameters. For more details, see “Server behavior techniques” 
on page 183. 

The script file

Each server behavior also has an HTML file that contains functions and links to the scripts that 
manage the integration of the server behavior code with the Dreamweaver interface. The 
functions that are available for editing in this file are discussed in “Server behavior 
implementation functions” on page 156.

Hello World example

This example takes you through the creation of a new server behavior so you can see the files that 
Dreamweaver creates and how to handle them. Again, see “Adding Custom Server Behaviors” in 
the Getting Started with Dreamweaver MX manual for details about working with the Server 
Behavior Builder interface. The example displays “Hello World” from the ASP server. The Hello 
World behavior has only one participant (a single ASP tag) and does not modify or add anything 
else on the page. 

Note: This example refers to functions that are defined later in this chapter.

Create a new dynamic page document.

1 In Dreamweaver, select the File > New menu option.

2 In the New Document dialog box, select: 

Category: Dynamic Page

Dynamic Page: ASP JavaScript
Server Behaviors 147



3 Click Create.

Use the Server Behavior Builder to define your new server behavior.

Note: If the Server Behaviors panel is not open and visible, select the Window > Server Behaviors menu option.

1 In the Server Behaviors panel, select the plus (+) button and select the New Server Behavior 
menu option.

2 In the New Server Behavior dialog box, select:

Document Type: ASP JavaScript 

Name: Hello World

(Leave the “Copy existing server behavior” checkbox unchecked.)

3 Click OK.

Define the code to insert.

1 Select the plus (+) button for Code Blocks to Insert.

2 In the Create a New Code Block dialog box, enter Hello_World_block1 (Dreamweaver 
might automatically enter this information for you).

3 Click OK.

4 In the Code Block field, enter <% Response.Write(“Hello World”) %>.

5 In the Insert Code pop-up menu, select Relative to the Selection so the user can control where 
this code goes in the document.

6 In the Relative Position pop-up menu, select After the Selection.

7 Click OK.

In the Server Behaviors panel, you can see that the plus (+) menu contains the new server 
behavior in the pop-up list. Also, in the installation directory for your Dreamweaver MX files, the 
Configuration/ServerBehaviors/ASP_Js directory now contains three files:

Note: If you are working in a multiuser configuration, these files will appear in your Application Data folder.

• The group file: Hello World.edml

• The participant file: Hello World_block1.edml

• A script file: Hello World.htm
Chapter 14148



How the Server Behavior API functions are called
The Server Behavior API functions are called in the following scenarios:

• The findServerBehaviors() function is called when the document opens and again when 
the participant is edited. It searches the user’s document for instances of the server behavior. 
For each instance it finds, findServerBehaviors() creates a JavaScript object, and uses 
JavaScript properties to attach state information to the object.

• If it is implemented, Dreamweaver calls the analyzeServerBehavior() function for each 
behavior instance that is found in the user’s document after all the findServerBehaviors() 
functions are called. 

When the findServerBehaviors() function creates a behavior object, it usually sets the four 
properties (incomplete, participants, selectedNode, and title). However, it is 
sometimes easier to delay setting some of the properties until all the other server behaviors find 
instances of themselves. For example, the Move To Next Record behavior has two 
participants, a link object and a recordset object. Rather than finding the recordset object in its 
findServerBehaviors() function, wait until the recordset behavior’s 
findServerBehaviors() function runs because the recordset finds all instances of itself.

When the Move To Next Record behavior’s analyzeServerBehavior() function is called, it 
gets an array that contains all the server behavior objects in the document. The function can 
look through the array for its recordset object.

Sometimes during analysis, a single tag in the user’s document is identified by two or more 
behaviors as being an instance of that behavior. For example, the findServerBehaviors() 
function for the Dynamic Attribute behavior might detect an instance of the Dynamic 
Attribute behavior that is associated with an <input> tag in the user’s document. At the same 
time, the findServerBehaviors() function for the Dynamic Textfield behavior might look 
at the same <input> tag and detect an instance of the Dynamic Textfield behavior.

As a result, the Server Behaviors panel shows the Dynamic Attribute block and the Dynamic 
Textfield. To correct this problem, the analyzeServerBehavior() functions need to delete 
all but one of these redundant server behaviors.

To delete a server behavior, an analyzeServerBehavior() function can set the "deleted" 
property of any server behavior to be true. If the deleted property is still true when 
Dreamweaver finishes calling the analyzeServerBehavior() functions, the behavior is 
deleted from the list.
Server Behaviors 149



• When the user clicks the plus (+) button in the Server Behaviors panel, the pop-up menu 
appears.

To determine the content of the menu, Dreamweaver first looks for a ServerBehaviors.xml file 
in the same folder as the behaviors. ServerBehaviors.xml references the HTML files that should 
appear in the menu.

If the referenced HTML file contains a title tag, the contents of the title tag appear in the 
menu. For example, if the ServerBehaviors/ASP_Js/ GetRecords.htm file contains the tag 
<title>Get More Records</title>, Get More Records appears in the menu.

If the file does not contain a title tag, the filename appears in the menu. For example, if 
GetRecords.htm does not contain a title tag, GetRecords appears in the menu.

If there is no ServerBehaviors.xml file or the folder contains one or more HTML files that are 
not mentioned in ServerBehaviors.xml, Dreamweaver checks each file for a title tag and uses 
the title tag or filename to populate the menu. 

If you do not want a file in the ServerBehaviors folder to appear in the menu, put the following 
statement on the first line in the HTML file:

<!-- MENU-LOCATION=NONE --> 

• When the user chooses an item from the menu, the canApplyServerBehavior() function is 
called. If that function returns true, a dialog box appears. When the user clicks OK, the 
applyServerBehavior() function is called.

• If the user edits an existing server behavior by double-clicking it, Dreamweaver displays the 
dialog box, executes the onLoad handler on the BODY tag, if one exists, and then calls 
inspectServerBehavior(). The inspectServerBehavior() function populates the form 
elements with the current parameter values. When the user clicks OK, Dreamweaver calls 
applyServerBehavior() again.

• If the user clicks the minus (-) button, the deleteServerBehavior() function is called. The 
deleteServerBehavior() function removes the behavior from the document.

• When the user selects a server behavior and uses the Cut or Copy commands, Dreamweaver 
passes the object that represents the server behavior to its copyServerBehavior() function. 
The copyServerBehavior() function adds any additional properties to the server behavior 
object that are needed to paste it later.

After the copyServerBehavior() function returns, Dreamweaver converts the server behavior 
object to a form that can be put on the Clipboard. When Dreamweaver converts the object, it 
deletes all the properties that reference objects; every property on the object that is not a 
number, Boolean value, or string is lost.

When the user uses the Paste command, Dreamweaver unpacks the contents of the Clipboard 
and generates a new server behavior object. The new object is identical to the original, except 
that it does not have properties that reference objects. Dreamweaver passes the new server 
behavior object to pasteServerBehavior(). The pasteServerBehavior() function adds 
the behavior to the user’s document. After pasteServerBehavior() returns, Dreamweaver 
calls the findServerBehaviors() function to get a new list of all the server behaviors in the 
user’s document.

Users can copy and paste behaviors from one document to another. The copyServerBehavior() 
and pasteServerBehavior() functions should rely only on properties on the behavior object to 
exchange information.
Chapter 14150



The Server Behavior API
You can manage server behaviors with the following API functions.

analyzeServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Lets server behaviors set their incomplete and deleted flags.

After the findServerBehaviors() function is called for every server behavior on the page, an 
array of all the behaviors in the user’s document appears. The analyzeServerBehavior() 
function is called for each JavaScript object in this array. For example, for a Dynamic Text 
behavior, Dreamweaver calls the analyzeServerBehavior() function in DynamicText.htm (or 
DynamicText.js). 

One purpose of the analyzeServerBehavior() function is to finish setting all the properties 
(incomplete, participants, selectedNode, and title) on the behavior object. Sometimes it’s 
easier to perform this task after findServerBehaviors() generates the complete list of server 
behaviors in the user’s document.

The other purpose of the analyzeServerBehavior() function is to notice when two or more 
behaviors refer to the same tag in the user’s document. In this case, the deleted property removes 
all but one behavior from the array.

Suppose the following three server behaviors are on a page: Recordset1, DynamicText1, and 
DynamicText2. Both DynamicText server behaviors need Recordset1 to exist on the page. After 
the server behaviors are found with findServerBehaviors(), Dreamweaver calls 
analyzeServerBehavior() for the three server behaviors. When analyzeServerBehavior() is 
called for DynamicText1, the function searches the array of all the server behavior objects on the 
page, looking for the one that belongs to Recordset1. If a server behavior object that belongs to 
Recordset1 cannot be found, the incomplete property is set to true so that an exclamation point 
appears in the Server Behaviors panel, which alerts the user that a problem exists. Similarly, when 
analyzeServerBehavior() is called for DynamicText2, the function searches for the object that 
belongs to Recordset1. Because Recordset1 does not depend on other server behaviors, it does not 
need to define the analyzeServerBehavior() function in this example.

Arguments

serverBehavior, [serverBehaviorArray]

• serverBehavior is a JavaScript object that represents the behavior to analyze.

• [serverBehaviorArray] is an array of JavaScript objects that represents all the server 
behaviors that are found on a page.

Returns

Nothing.
Server Behaviors 151



applyServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Reads values from the form elements in the dialog box and adds the behavior to the user’s 
document.  Dreamweaver calls this function when the user clicks OK in the Server Behaviors 
dialog box. If this function returns successfully, the Server Behaviors dialog box closes. If this 
function fails, it displays the error message without closing the Server Behaviors dialog box. This 
function can edit a user’s document.

For more information, see “dwscripts.applySB()” on page 157. 

Arguments

serverBehavior 

serverBehavior is a JavaScript object that represents the server behavior; it is necessary to 
modify an existing behavior. If this is a new behavior, the argument is null. 

Returns

An empty string if successful. An error message returns if this function fails.

canApplyServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Determines whether a behavior can be applied.  Dreamweaver calls this function before 
displaying the Server Behaviors dialog box. If this function returns true, the Server Behaviors 
dialog box appears. If this function returns false, the Server Behaviors dialog box does not 
appear and the attempt to add a server behavior stops.

Arguments

serverBehavior

serverBehavior is a JavaScript object that represents the behavior; it is necessary to modify an 
existing behavior. If this is a new behavior, the argument is null.

Returns

true if the behavior can be applied; false otherwise.
Chapter 14152



copyServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Implementing copyServerBehavior() is optional. Users can copy instances of the specified 
server behavior. In the following example, this function is implemented for recordsets. If a user 
selects a recordset in the Server Behaviors panel or the Data Binding panel, using the Copy 
command copies the behavior to the Clipboard; using the Cut command cuts the behavior to the 
Clipboard. For server behaviors that do not implement this function, the Copy and Cut 
commands do nothing. For more information, see “How the Server Behavior API functions are 
called” on page 149.

The copyServerBehavior() function should rely only on behavior object properties that can be 
converted into strings to exchange information with the pasteServerBehavior() function. The 
Clipboard stores only raw text, so participant nodes in the document should be resolved and 
the resulting raw text should be saved into a secondary property. 

Note: The pasteServerBehavior() function must also be implemented to enable the user to paste the 
behavior into any Dreamweaver document.

Arguments

serverBehavior

serverBehavior is a JavaScript object that represents the behavior. 

Returns

true if the behavior copies successfully to the Clipboard; false otherwise.

deleteServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Removes the behavior from the user’s document. This function is called when the user clicks the 
minus (-) button in the Server Behaviors panel. It can edit a user’s document.

For more information, see “dwscripts.deleteSB()” on page 157.

Arguments

serverBehavior

serverBehavior is a JavaScript object that represents the behavior.

Returns

Nothing.
Server Behaviors 153



displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the dialog 
box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Nothing.

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
’/ExtensionsHelp/superDuperHelp.htm’;

  dw.browseDocument(myHelpFile);
}

findServerBehaviors()

Availability

Dreamweaver UltraDev 1

Description

Searches the user’s document for instances of itself. For each instance it finds, 
findServerBehaviors() creates a JavaScript object, and it attaches state information as 
JavaScript properties of the object.

The four required properties are incomplete, participants, title, and selectedNode. You 
can set additional properties as necessary. 

For more information, see “dwscripts.findSBs()” on page 156 and 
“dreamweaver.getParticipants()” on page 155.

Arguments

None.

Returns

An array of JavaScript objects; the length of the array is equal to the number of behavior instances 
that are found in the page. 

inspectServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Determines the settings for the Server Behavior dialog box, based on the specified behavior 
object. Dreamweaver calls this function when a user displays a Server Behavior dialog box. 
Dreamweaver calls this function only when a user edits an existing behavior.
Chapter 14154



Arguments

serverBehavior

serverBehavior is a JavaScript object that represents the behavior. It is the same object that 
findServerBehaviors() returns.

Returns

Nothing.

pasteServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

If it is implemented, users can paste instances of the specified server behavior using 
pasteServerBehavior(). When the user pastes the server behavior, Dreamweaver organizes the 
contents of the Clipboard and generates a new behavior object. The new object is identical to the 
original, except that it lacks pointer properties. Dreamweaver passes the new behavior object to 
pasteServerBehavior(). The pasteServerBehavior() function relies on the properties of the 
behavior object to determine what to add to the user’s document. The pasteServerBehavior() 
function then adds the behavior to the user’s document. After pasteServerBehavior() returns, 
Dreamweaver calls the findServerBehaviors() functions to get a new list of all the server 
behaviors in the user’s document.

Implementing pasteServerBehavior() is optional. For more information, see “How the Server 
Behavior API functions are called” on page 149.

Note: If you implement this function, you must also implement the copyServerBehavior() function.

Arguments

behavior is a JavaScript object that represents the behavior. 

Returns

true if the behavior pastes successfully from the Clipboard; false otherwise.

dreamweaver.getParticipants()

Availability

Dreamweaver UltraDev 4

Description

The JavaScript function, dw.getParticipants(), gets a list of participants from the user’s 
document. After Dreamweaver finds all the behavior’s participants, it stores those lists. Typically, 
you use this function with the findServerBehaviors() function to locate instances of a 
behavior in the user’s document. 

Arguments

edmlFilename

edmlFilename is the name of the group or participant file that contains the names of the 
participants to locate in the user’s document. This string is the filename, without the .edml 
extension.
Server Behaviors 155



Returns

The function returns an array that contains all instances of the specified participant (or, in the 
case of a group file, any instance of any participant in the group) that appear in the user’s 
document. The array contains JavaScript objects, with one element in the array for each instance 
of each participant that is found in the user’s document. The array is sorted in the order that the 
participants appear in the document. Each JavaScript object has the following properties:

• participantNode is a pointer to the participant node in the user’s document. 

• participantName is the name of the participant’s EDML file (without the .edml extension).

• parameters is a JavaScript object that stores all the parameter/value pairs.

• matchRangeMin defines the character offset from the participant node of the document to the 
beginning of the participant content.

• matchRangeMax is an integer of the participant that defines the offset from the beginning of 
the participant node to the last character of the participant content.

Server behavior implementation functions
These functions can be added or edited within the HTML script files or the specified JavaScript 
files that are listed within the HTML script file.

dwscripts.findSBs()

Availability

Dreamweaver MX (this function replaces findSBs() from earlier versions of Dreamweaver)

Description

Finds all instances of a server behavior and all the participants on the current page. Sets the title, 
type, participants array, weights array, types array, selectedNode, and incomplete flag. This 
method also creates a parameter object that holds an array of user-definable properties such as 
recordset, name, and column name. You can return this array from the findServerBehaviors() 
function. 

Arguments

serverBehaviorTitle is an optional title string that is used if no title is specified in the EDML 
title (useful for localization). 

Returns

An array of JavaScript objects where the required properties are defined. Returns an empty array 
if no instances of the server behavior appear on the page.

Example

The following code searches for all instances of a particular server behavior in the current user 
document:

function findServerBehaviors() {
allMySBs = dwscripts.findSBs();
return allMySBs;

}

Chapter 14156



dwscripts.applySB()

Availability

Dreamweaver MX (this function replaces applySB() from earlier versions of Dreamweaver)

Description

Inserts or updates runtime code for the server behavior. If the sbObj parameter is null, it inserts 
new runtime code; otherwise, it updates existing runtime code that is indicated by the sbObj 
object. User settings should be set as properties on a JavaScript object and passed in as paramObj. 
These settings should match all the parameters that are declared as @@paramName@@ in the EDML 
insertion text.

Arguments

paramObj, sbObj

• paramObj is the object that contains the user parameters. 

• sbObj is the prior server behavior object if you are updating an existing server behavior; null 
otherwise.

Returns

true if the server behavior is added successfully to the user’s document; false otherwise.

Example

In the following example, you fill the paramObj with the user’s input and call 
dwscripts.applySB, passing in the input and your server behavior, sbObj.

function applyServerBehaviors(sbObj) {

// get all UI values here...
paramObj = new Object();
paramObj.rs      = rsName.value;
paramObj.col     = colName.value;
paramObj.url     = urlPath.value;
paramObj.form__tag = formObj;

dwscripts.applySB(paramObj, sbObj);
}

dwscripts.deleteSB()

Availability

Dreamweaver MX (this function replaces deleteSB() from earlier versions of Dreamweaver)

Description

Deletes all the participants of the sbObj server behavior instance. The entire participant is 
deleted, unless the EDML file indicates special delete instructions with the <delete> tag. It 
does not delete participants that belong to more than one server behavior instance (reference 
count > 1).

Arguments

sbObj is the server behavior object instance that you want to remove from the user’s document.

Returns

Nothing.
Server Behaviors 157



Example

The following example deletes all the participants of the sbObj server behavior, except the 
participants that are protected by the EDML file’s <delete> tag.

function deleteServerBehavior(sbObj) {
dwscripts.deleteSB(sbObj);

}

Editing EDML files
You must maintain Dreamweaver coding conventions when you edit a file. Pay attention to the 
dependency of one element upon another. For example, if you update the tags that are being 
inserted, you might also need to update the search patterns.

Note: EDML files are new in Dreamweaver MX. If you are working with legacy server behaviors, see the earlier 
versions of the Extending Dreamweaver manuals.

Regular expressions

You must understand regular expressions as they are implemented in JavaScript 1.5. Also, you 
must know when it is appropriate to use them in the server behavior EDML files. For example, 
regular expressions cannot be used in quickSearch values, but they are used in searchPattern 
to find and extract data.

Regular expressions describe text strings by using characters that are assigned with special 
meanings (metacharacters) to represent the text, break it up, and process it according to 
predefined rules. Regular expressions are powerful parsing and processing tools because they 
provide a generalized way to represent a pattern.

Good reference books on JavaScript 1.5 have a regular expression section or chapter. This section 
examines how Dreamweaver server behavior EDML files use regular expressions in order to find 
parameters in your runtime code and extract their values. Each time a user edits a server behavior, 
prior parameter values need to be extracted from the instances of the runtime code. This 
extraction process is done by using regular expressions. 

You should understand a few metacharacters and metasequences (special character groupings) 
that are useful in server behavior EDML files, as described in the following table. 

The EDML tag <searchPatterns whereToSearch="directive"> declares that runtime code 
needs to be searched. Each <searchPattern>...</searchPattern> subtag defines one pattern 
in the runtime code that must be identified. For the Redirect If Empty example, there are two 
patterns.

Regular Expression Description

\ Escapes special characters. For example: \. reverts the metacharacter back to a 
literal period; \/ reverts the forward slash to its literal meaning; and, \) reverts the 
parenthesis to its literal meaning.

/ ... /i Ignore case when searching for the metasequence

( ...) Creates a parenthetical subexpression within the metasequence

\s* Searches for white spaces 
Chapter 14158



To extract parameter values from <% if (@@rs@@.EOF) 
Response.Redirect("@@new__url@@"); %>,write a regular expression that identifies any string 
rs and new__url:

<searchPattern paramNames="rs,new__url">
/if d ((\w+)\.EOF\) Response\.Redirect\("([^\r\n]*)"\)/i

</searchPattern>

This process searches the user’s document, and if there is a match, extracts the parameter values. 
The value for rs is extracted using the first parenthetical subexpression (\w+). The value for 
new__url is extracted using the second subexpression ([^\r\n]*). 

Note: The character sequence "[^\r\n]*" matches any character that is not a linefeed, for both Macintosh and 
Windows.

Notes about EDML structure

You should use a unique filename to identify your server behavior group. If an associated 
participant file is used by only one group file, match the participant filename with the group 
name. Using this convention, the server behavior group file updateRecord.edml works with the 
participant file updateRecord_init.edml. When participant files might be shared between 
server behavior groups, assign unique descriptive names.

Note: The EDML name space is shared, regardless of folder structure, so be careful to keep names unique when 
you make them descriptive. Filenames should not exceed 31 characters (including the .edml extension), due to 
Macintosh limitations.

The runtime code for your server behavior resides inside the EDML files. The EDML parser 
should not confuse any of your runtime code with EDML markup, so CDATA must wrap around 
your runtime code. CDATA represents character data and is any text that is not EDML markup. 
When you use the CDATA tag, the EDML parser won’t try to interpret it as markup, but instead, 
considers it as a block of plain text. CDATA marked blocks begin with <![CDATA[ and end with ]]>.

If you insert the text Hello, World, it is simple to specify your EDML, as shown in the following 
example:

<insertText>Hello, World</insertText>

However, if you insert content that has tags in it, such as <img src=’foo.gif’>, it can confuse the 
EDML parser. In that case, embed it in the CDATA construct, as shown in the following example:

<insertText><![CDATA[<img src=’foo.gif’>]]></insertText>

The ASP runtime code is wrapped within the CDATA tag set, as shown in the following example:

<![CDATA[
<% if (@@rs@@.EOF) Response.Redirect("@@new__url@@"); %>

]]

Because of the CDATA tag, the ASP tags <%= %>, along with the other content within the tag, 
aren’t processed. Instead, the Extension Data Manager (EDM) receives the uninterpreted text, as 
shown in the following example:

<% if (Recordset1.EOF) Response.Redirect("http://www.macromedia.com"); %>

In the following EDML definitions, the locations where CDATA is recommended are indicated in 
the examples. 
Server Behaviors 159



Group EDML file tags
These tags and attributes are valid within the EDML group files.

EDML Tag: group

Description

Contains all specifications for a group of participants.

Parent

None.

Type

Block tag.

Required

Yes.

Attribute: version

Description

Defines the version of Dreamweaver that is current with the group file. For Dreamweaver MX, 
the version number is 6. If no version is specified, Dreamweaver assumes 4, or the prior release. 
All groups and participants that the Server Behavior Builder creates have the version attribute set 
to 6. The group version of this attribute currently has no effect.

Parent

group

Type

Attribute.

Required

No.

Attribute: serverBehavior

Description

The serverBehavior attribute indicates which server behavior can use the group. When any of 
the group’s participant quickSearch strings are found in the document, the server behavior that 
is indicated by the serverBehavior attribute has Dreamweaver call findServerBehaviors().

In some cases, if multiple groups are associated with a single server behavior, the server behavior 
must resolve which particular group to use.

Parent

group

Type

Attribute.

Required

No.
Chapter 14160



Value

The exact name (without a path) of any server behavior HTML file within a Configuration/
ServerBehaviors folder, as shown in the following example:

<group serverBehavior="redirectIfEmpty.htm">

Attribute: dataSource

Description

This advanced feature supports new data sources that can be added to Dreamweaver.

Multiple versions of a server behavior can differ, depending on which data source you use. For 
example, the Repeat Region Server Behavior is designed for the standard Recordset.htm data 
source. If Dreamweaver is extended to support a new type of data source (such as a COM object), 
you can set dataSource="COM.htm" in a Group file with a different implementation of Repeat 
Region. The Repeat Region Server Behavior then applies the new implementation of Repeat 
Region if the new data source is selected.

Parent

group

Type

Attribute.

Required

No.

Value

The exact name of a data source file within a Configuration/DataSources folder, as shown in the 
following example:

<group serverBehavior="Repeat Region.htm" ¬
dataSource="myCOMdataSource.htm">

This group defines a new implementation of Repeat Region to use if you use the COM data 
source. In applyServerBehaviors(), you can indicate that this group should be applied by 
setting the MM_dataSource property on the parameter object, as shown in the following example:

function applyServerBehavior(ssRec) {
var paramObj = new Object();
paramObj.rs = getComObjectName();
paramObj.MM_dataSource = "myCOMdataSource.htm";

dwscripts.applySB(paramObj, sbObj);
}

Attribute: subType

Description

This advanced feature supports multiple implementations of a server behavior.

Multiple versions of a server behavior might differ, depending on user selection. When a server 
behavior is applied, but multiple group files are relevant, the correct group file can be selected by 
passing in a subType value. The group with that specific subType is applied.

Parent

group
Server Behaviors 161



Type

Attribute.

Required

No.

Value

A unique string that determines which group to apply, as shown in the following example:

<group serverBehavior="myServerBehavior.htm" ¬
subType="longVersion">

This group defines a the long version of myServerBehavior. You would also have a version with 
subType="shortVersion". In applyServerBehaviors(), you can indicate which group should 
be applied by setting the MM_subType property on the parameter object, as shown in the 
following example:

function applyServerBehavior(ssRec) {
var paramObj = new Object();
if (longVersionChecked) {

paramObj.MM_subType = "longVersion";
} else {

paramObj.MM_subType = "shortVersion";
}
dwscripts.applySB(paramObj, sbObj);

}

EDML Tag: title

Description

The string that appears in the Server Behaviors panel for each server behavior instance that is 
found in the current document.

Parent

group

Type

Block tag.

Required

No.

Value

A plain text string that can include parameter names to make each instance unique, as shown in 
the following example:

<title>Redirect If Empty (@@recordsetName@@)</title>

EDML Tag: groupParticipants

Description

Contains an array of groupParticipant declarations.

Parent

group
Chapter 14162



Type

Block tag.

Required

Yes.

Attribute: selectParticipant

Description

Indicates which participant should be selected and highlighted in the document when an 
instance is selected in the Server Behaviors panel. The server behavior instances that are listed in 
this panel are ordered by the selected participant, so set selectParticipant even if the 
participant is not visible. 

Parent

groupParticipants

Type

Attribute.

Required

No.

Value

participantName is the exact name (without the .edml extension) of a single participant file that is 
listed as a group participant, as shown in the following example. See “Attribute: name” on page 163. 

<groupParticipants selectParticipant="redirectIfEmpty_link">

EDML Tag: groupParticipant

Description

Represents the inclusion of a single participant in the group.

Parent

groupParticipants

Type

Tag.

Required

Yes (at least one).

Attribute: name

Description

Names a particular participant to be included in the group. The name attribute on the 
groupParticipant tag should be the same as the filename of the participant (without the .edml 
file extension). 

Parent

groupParticipant
Server Behaviors 163



Type

Attribute.

Required

Yes.

Value

The exact name (without the .edml extension) of any participant file, as shown in the 
following example:

<groupParticipant name="redirectIfEmpty_init">

This example refers to the redirectIfEmpty_init.edml file.

Attribute: partType

Description

Indicates the type of participant.

Parent

groupParticipant

Type

Attribute.

Required

No.

Values

identifier, member, option, multiple, data

• identifier is a participant that identifies the entire group. If this participant is found in the 
document, the group is considered to exist whether or not other group participants are found. 
This is the default value if partType is not specified.

• member is a normal member of a group. If it is found by itself, it does not identify a group. If it 
is not found in a group, the group is considered incomplete. 

• option indicates that the participant is optional. If it is not found, the group is still considered 
complete and no incomplete flag is set in the Server Behaviors panel. 

• multiple indicates that the participant is optional and multiple copies of it can be associated 
with the server behavior. Any parameters that are unique to this participant are not used when 
grouping participants because they might have different values.

• data is a nonstandard participant that is used by programmers as a repository for additional 
group data. It is ignored by everything else.
Chapter 14164



Participant EDML files
These tags and attributes are valid within the EDML participant files.

EDML Tag: participant

Description

Contains all specifications for a single participant.

Parent

None.

Type

Block tag.

Required

Yes.

Attribute: version

Description

Defines the version of Dreamweaver that is current with the participant file. For Dreamweaver 
MX, the version number is 6. If no version is specified, then Dreamweaver assumes 4, or the prior 
release. All groups and participants that the Server Behavior Builder creates have the version 
attribute set to 6. 

For participant files, this attribute determines if code block merging should occur. For 
participants without this attribute (or have it set to 4 or earlier), the inserted code blocks are not 
merged with other code blocks on the page. Participants that have this set to 5 or later are merged 
with other code blocks on the page when possible. Please note that code-block merging occurs 
only for participants above and below the HTML tag.

Parent

participant

Type

Attribute.

Required

No.

EDML Tag: quickSearch

Description

A simple search string that is used for performance reasons. It cannot be a regular expression. If 
the string is found in the current document, the rest of the search patterns are called to locate 
specific instances. This string can be empty to always use the search patterns. 

Parent

participant

Type

Block tag.
Server Behaviors 165



Required

No.

Value

searchString is a literal string that exists on the page if the participant exists. It should be as 
unique as possible, but it does not have be definitively unique. It is not case-sensitive, but be careful 
with nonessential spaces that can be changed by the user, as shown in the following example:

<quickSearch>Response.Redirect</quickSearch>

If quickSearch is empty,  it is considered to match, and more precise searches use the regular 
expressions that are defined in the <searchPattern> tags. This is helpful if a simple string 
cannot be used to express a reliable search pattern and regular expressions are required.

EDML Tag: insertText

Description

Provides information about what to insert in the document and where to insert it. Contains the 
text to be inserted in the document. Parts of the text that are customized should be indicated by 
@@parameterName@@.

In some cases, such as a translator-only participant, you might not need this tag. 

Parent

implementation

Type

Block tag.

Required

No.

Value

The text to be inserted in the document. If any parts of the text need customizing, they can be 
passed in later as parameters. Parameters should be embedded in two at (@@) signs. Because this 
text can interfere with the EDML structure, it should use the CDATA construct, as shown in the 
following example:

<insertText location="aboveHTML">
<![CDATA[<%= @@recordset@@).cursorType %>]]>

</insertText>

When the text is inserted, the @@recordset@@ is replaced by a recordset name that the user 
supplies. For more information on conditional and repeating code blocks, see the “Adding 
Custom Server Behaviors” chapter of Getting Started with Dreamweaver MX.

Attribute: location

Description

Specifies where the participant text should be inserted. The insert location is related to the 
whereToSearch attribute of the searchPatterns tag, so be sure to set both carefully (see 
“Attribute: whereToSearch” on page 169).

Parent

insertText
Chapter 14166



Type

Attribute.

Required

Yes.

Values

aboveHTML[+weight], belowHTML[+weight], beforeSelection, replaceSelection, 
wrapSelection, afterSelection, beforeNode, replaceNode, afterNode, 
firstChildOfNode, lastChildOfNode, nodeAttribute[+attribute]

• aboveHTML[+weight] inserts the text above the <HTML> tag (suitable only for server code). The 
weight can be an integer from 1 to 99 and is used to preserve relative order among different 
participants. By convention, recordsets have weight 50, so if a participant refers to recordset 
variables, it needs a heavier weight, such as 60, so the code is inserted below the recordset, as 
shown in the following example:

<insert location="aboveHTML+60">

If no weight is provided, it is internally assigned a weight of 100 and is added below all 
specifically weighted participants, as shown in the following example:

<insert location="aboveHTML">

• belowHTML[+weight] is similar to the aboveHTML location, except that participants are added 
below the closing </HTML> tag.

• beforeSelection inserts the text before the current selection or insertion point. If there is no 
selection, it inserts the text at the end of the <BODY> tag.

• replaceSelection replaces the current selection with the text. If there is no selection, it 
inserts the text at the end of the <BODY> tag.

• wrapSelection balances the current selection, inserts a block tag before the selection, and 
adds the appropriate closing tag after the selection. 

• afterSelection inserts the text after the current selection or insertion point. If there is no 
selection, it inserts the text at the end of the <BODY> tag.

• beforeNode inserts the text before a node, which is a specific location in the DOM. When a 
function such as dwscripts.applySB() is called to make the insertion, the node pointer must 
pass in as a parameter of the paramObj. The user-definable name of this parameter must be 
specified by the nodeParamName attribute (see “Attribute: nodeParamName” on page 168).

In summary, if your location includes the word node, make sure that you declare the 
<nodeParamName> tag. 

• replaceNode replaces a node with the text. 

• afterNode inserts the text after a node. 

• firstChildOfNode inserts the text as the first child of a block tag; for example, if you want to 
insert something at the beginning of a FORM tag.
Server Behaviors 167



• lastChildOfNode inserts the text as the last child of a block tag; for example, if you want to 
insert something at the end of a FORM tag (useful for adding hidden form fields).

• nodeAttribute[+attribute] sets an attribute of a tag node. If the attribute does not already 
exist, it is created. 

For example, use <insert location="nodeAttribute+ACTION" nodeParamName="form"> 
to set the ACTION attribute of a form. This changes the user’s FORM tag from <form> to 
<form action="myText">.

If no attribute is given, the nodeAttribute location causes the text to be added directly to the 
open tag. For example, use insert location="nodeAttribute" to add an optional attribute 
to a tag. This can be used to change a user’s INPUT tag from 
<input type="checkbox"> to <input type="checkbox" 
<%if(foo)Reponse.Write("CHECKED")%>> .

Note: For location="nodeAttribute", the last search pattern is used to determine where the attribute 
starts and ends. Make sure that the last pattern finds the entire statement.

Attribute: nodeParamName

Description

Used only for node-relative insert locations; indicates the name of the parameter that is used to 
pass in the node at insertion time.

Parent

insertText

Type

Attribute.

Required

Only if the insert location has the word node in it.

Value

tagtype__Tag is a user-specified name for the node parameter that passes with the parameter 
object to the dwscripts.applySB() function. For example, if you insert some text into a form, 
you might use a parameter called form__tag. In your server behavior applyServerBehavior() 
function, you could use form__tag to indicate the exact form to update, as shown in the 
following example:

function applyServerBehavior(ssRec) {
var paramObj = new Object();
paramObj.rs = getRecordsetName();
paramObj.form__tag = getFormNode();
dwscripts.applySB(paramObj, sbObj);

}

You would indicate the form__tag node parameter in your EDML file, as shown in the 
following example:

<insertText location="lastChildOfNode" nodeParamName="form__tag">
<![CDATA[<input type="hidden" name="MY_DATA">]]>

</insertText>

The text is inserted as the lastChildOfNode, and the specific node passes in using the 
form__tag property of the parameter object. 
Chapter 14168



EDML Tag: searchPatterns

Description

Provides information about how to find the participant text in the document and contains a list 
of patterns that are used when searching for a participant. If multiple search patterns are defined, 
they all must be found within the text being searched (the search patterns have a logical AND 
relationship), unless they are marked as optional using the isOptional flag. 

Parent

implementation

Type

Block tag.

Required

No.

Attribute: whereToSearch

Description

Specifies where to search for the participant text. This is related to the insert location, so be sure 
to set them both carefully (see “Attribute: location” on page 166).

Parent

searchPatterns

Type

Attribute.

Required

Yes.

Values

directive, tag+tagName, tag+*, comment, text

• directive searches all server directives (server-specific tags). For ASP and JSP, this means 
search all <% ... %> script blocks.

Note: Tag attributes are not searched, even if they contain directives. 

• tag+tagName searches the contents of a specified tag, as shown in the following example:

<searchPatterns whereToSearch="tag+FORM">

This example indicates that only form tags should be searched. By default, the entire 
outerHTML is searched. For INPUT tags, specify the type after a slash (/). In this example, to 
search all submit buttons, enter the following code: 

<searchPatterns whereToSearch="tag+INPUT/SUBMIT">.

• tag+* searches the contents of the any tag, as shown in the following example:

<searchPatterns whereToSearch="tag+*">

This example indicates that all tags should be searched. 
Server Behaviors 169



• comment searches only within the HTML comments <! ... >, as shown in the 
following example:

<searchPatterns whereToSearch="comment">

This example indicates that tags such as <!-- my comment here --> are searched.

• text searches only within raw text sections, as shown in the following example:

<searchPatterns whereToSearch="text">
<searchPattern>XYZ</searchPattern>

</searchPatterns>

This example finds a text node that contains the text XYZ.

EDML Tag: searchPattern

Description

A pattern that is used to identify participant text and extract parameter values from it. Each 
parameter subexpression must be wrapped in parentheses ().

You can have patterns with no parameters (which is used to identify participant text), patterns 
with one parameter, or patterns with many parameters. All non-optional patterns must be found, 
and each parameter must be named and found exactly once.

For more information about using searchPattern, see “Finding server behaviors” on page 183.

Parent

searchPatterns

Type

Block tag.

Required

Yes.

Values

searchString, /regularExpression/, <empty>

• searchString is a simple search string that is case-sensitive. It cannot be used to 
extract parameters.

• /regularExpression/ is a regular expression search pattern. 

• <empty> is if no pattern is given. It is always considered a match, and the entire value is 
assigned to the first parameter.

For example, to identify the participant text <%= RS1.Field.Items("author_id") %>, 
you could define a simple pattern, followed by a precise pattern that also extracts the two 
parameter values:

<searchPattern>Field.Items</searchPattern>
<searchPattern paramNames="rs,col">

<![CDATA[
/<%=\s*(\w+)\.Field\.Items\("(\w+)"\)/
]]>

</searchPattern>

This matches the pattern precisely and assigns the value of the first subexpression (\w+) to 
parameter "rs" and the second subexpression (\w+) to parameter "col".
Chapter 14170



Note: It is important that the regular expression start and end with a slash (/). Otherwise it is used as a literal string 
search. Regular expressions can be followed by the regular expression modifier "i" to indicate case-
insensitivity (as in /pattern/i). For example, VBScript is not case-sensitive, so it should use /pattern/i. 
JavaScript is case-sensitive and should use /pattern/.

Sometimes you might want to assign the entire contents of the limited search location to a 
parameter. In that case, provide no pattern, as shown in the following example:

<searchPatterns whereToSearch="tag+OPTION">
<searchPattern>MY_OPTION_NAME</searchPattern>
<searchPattern paramNames="optionLabel" limitSearch="innerOnly">
</searchPattern>

</searchPatterns>

This sets parameter "optionLabel" to the entire innerHTML of an OPTION tag.

Attribute: paramNames

Description

A comma-separated list of parameter names whose values are being extracted. These are assigned 
in the order of the subexpression. You can assign single parameters or use a comma-separated list 
to assign multiple parameters. If other parenthetical expressions are used but do not indicate 
parameters, extra commas can be used as placeholders in the Parameter Name list.

The parameter names should match the ones that are specified in the insertion text and the 
update parameters.

Parent

searchPattern

Type

Attribute.

Required

Yes.

Values

paramName1, paramName2, ...

Each parameter name should be the exact name of a parameter that is used in the insertion text. 
For example, if the insertion text contains @@p1@@, you should define exactly one parameter 
with that name:

<searchPattern paramNames="p1">patterns</searchPattern>

To extract multiple parameters using a single pattern, use a comma-separated list of parameter 
names, in the order that the subexpressions appear in the pattern. Suppose the following example 
shows your search pattern:

<searchPattern paramName="p1,,p2">/(\w+)_(BIG|SMALL)_(\w+)/¬
</searchPattern>

There are two parameters (with some text in between them) to extract. Given the text:
<%= a_BIG_b %>, the first subexpression in the search pattern matches "a", so p1="a". The 
second subexpression is ignored (note the ,, in the paramName value). The third subexpression 
will match "b", so p2="b".
Server Behaviors 171



Attribute: limitSearch

Description

Limits the search to some part of the whereToSearch tag.

Parent

searchPattern

Type

Attribute.

Required

No.

Values

all, attribute+attribName, tagOnly, innerOnly

• all (default) searches the entire tag that is specified in the whereToSearch attribute.

• attribute+attribName searches only within the value of the specified attribute, as shown in 
the following example:

<searchPatterns whereToSearch="tag+FORM">
<searchPattern limitSearch="attribute+ACTION">

/MY_PATTERN/
</searchPattern>

</searchPatterns>

This example indicates that only the value of the ACTION attribute of FORM tags should be 
searched. If that attribute is not defined, the tag is ignored.

• tagOnly searches only the outer tag and ignores the innerHTML. It is valid only if 
whereToSearch is a tag.

• innerOnly searches only the innerHTML and ignores the outer tag. It is valid only if 
whereToSearch is a tag.

Attribute: isOptional

Description

A flag that indicates that the search pattern is not required to find the participant. This is useful 
for complex participants that might have noncritical parameters to extract. You can create some 
patterns for distinctly identifying a participant and have some optional patterns for extracting 
noncritical parameters.

Parent

searchPattern

Type

Attribute.

Required

No.

Values

true, false
Chapter 14172



• true if the searchPattern does not have to be found to identify the participant.

• false (default) if the searchPattern must be found.

For example, consider the following simple recordset string:

<%
var Recordset1 = Server.CreateObject("ADODB.Recordset");
Recordset1.ActiveConnection = "dsn=andescoffee;";
Recordset1.Source = "SELECT * FROM PressReleases";
Recordset1.CursorType = 3;
Recordset1.Open();
%>

The search patterns must identify the participant and extract several parameters. However, 
if a parameter such as cursorType is not found, you should still recognize this as a recordset. 
The cursor parameter is optional. In the EDML, the search patterns might look like the 
following example: 

<searchPattern paramNames="rs">/var (\w+) = Server.CreateObject/
</searchPattern>
<searchPattern paramNames="src">/ActiveConnection = "([^\r\n]*)"/¬
</searchPattern>
<searchPattern paramNames="conn">/Source = "([^\r\n]*)"/¬
</searchPattern>
<searchPattern paramNames="cursor" isOptional="true">¬
/CursorType = (\d+)/
</searchPattern>

The first three patterns are required to identify the recordset. If the last parameter is not found, 
the recordset is still identified. 

EDML Tag: updatePatterns

Description

This optional advanced feature allows precise updates of the participant. Without this tag, the 
participant is updated automatically by replacing the entire participant text each time. If you 
specify an <updatePatterns> tag, it must contain specific patterns to find and replace each 
parameter within the participant.

This tag is beneficial if the user edits the participant text. It performs precise updates only to the 
parts of the text that need changing.

Parent

implementation

Type

Block tag.

Required

No.
Server Behaviors 173



EDML Tag: updatePattern

Description

A specific type of regular expression that allows precise updates of participant text. There should 
be at least one update pattern definition for every unique parameter that is declared in the 
insertion text (of the form @@paramName@@).

Parent

updatePatterns

Type

Block tag.

Required

Yes (at least one, if the updatePatterns tag is declared).

Values

A regular expression that finds a parameter between two parenthetical subexpressions, in the form 
/(pre-pattern)parameter-pattern(post-pattern)/. You need at least one update pattern 
defined for each unique @@paramName@@ in the insertion text. The following example shows how 
your insertion text might look:

<insertText location="afterSelection">
<![CDATA[<%= @@rs@@.Field.Items("@@col@@") %>]]>

</insertText>

A particular instance of it on a page might look like the following example:

<%= RS1.Field.Items("author_id") %>

There are two parameters, rs and col. To update this text after it is inserted on the page, you 
need two update pattern definitions:

<updatePattern paramName="rs" >
/(\b)\w+(\.Field\.Items)/

</updatePattern>
<updatePattern paramName="col">

/(\bItems\(")\w+("\))/
</updatePattern>

The literal parentheses, as well as other special regular expression characters, are escaped by 
preceding them with a backslash (\). The middle expression, defined as \w+, is updated with the 
latest value that passed in for parameters "rs" and "col", respectively. The values "RS1" and 
"author_id" can be precisely updated with new values.

Multiple occurrences of the same pattern can be updated simultaneously by using the regular 
expression global flag "g" after the closing slash, such as /pattern/g. 

If the participant text is long and complex, you might need multiple patterns to update a single 
parameter, as shown in the following example:

<% ...
Recordset1.CursorType = 0;
Recordset1.CursorLocation = 2;
Recordset1.LockType = 3;

%>
Chapter 14174



To update the recordset name in all three positions, you need three update patterns for a single 
parameter, as shown in the following example:

<updatePattern paramName="rs">
/(\b)\w+(\.CursorType)/

</updatePattern>
<updatePattern paramName="rs">

/(\b)\w+(\.CursorLocation)/
</updatePattern>
<updatePattern paramName="rs">

/(\b)\w+(\.LockType)/
</updatePattern>

Now you can pass in a new value for the recordset, and it is precisely updated in three locations. 

Attribute: paramName

Description

Indicates the name of the parameter whose value is used to update the participant. This parameter 
should match the ones that are specified in the insertion text and search parameters.

Parent

updatePattern

Type

Attribute.

Required

Yes.

Values

The exact name of a parameter that is used in the insertion text. For example, if the insertion text 
contains an @@rs@@, you should have a parameter with that name:

<updatePattern paramName="rs">pattern</updatePattern>

EDML Tag: delete

Description

This optional advanced feature gives control over how a participant is deleted. Without this tag, 
the participant is deleted by removing it completely but only if no server behaviors refer to it. By 
specifying a <delete> tag, you can specify that it should never be deleted or that only portions 
should be deleted.

Parent

implementation

Type

Tag.

Required

No.
Server Behaviors 175



Attribute: deleteType

Description

Used to indicate the type of delete to perform. It has different meanings, depending on whether 
the participant is a directive, a tag, or an attribute. By default, the entire participant is deleted.

Parent

delete

Type

Attribute.

Required

No.

Values

all, none, tagOnly, innerOnly, attribute+attribName, attribute+*

• all (default) deletes the entire directive or tag. For attributes, it deletes the entire definition.

• none is never automatically deleted.

• tagOnly removes only the outer tag but leaves the contents of the tag, innerHTML, intact. For 
attributes, it also removes the outer tag if it is a block tag. It is meaningless for directives.

• innerOnly when applied to tags, it removes only the contents (the innerHTML). For attributes, 
it removes only the value. It is meaningless for directives.

• attribute+attribName when applied to tags, it removes only the specified attribute. It is 
meaningless for directives and attributes.

• attribute+* removes all attributes for tags. It is meaningless for directives and attributes.

For example, if your server behavior converts selected text into a link, you can remove the link by 
removing the outer tag only:

<delete deleteType="tagOnly"/>

This changes a link participant from <A HREF="...">HELLO</A> to HELLO.

EDML Tag: translator

Description

Provides information for translating a participant so that it can be rendered differently and have a 
custom Property inspector. 

Parent

implementation

Type

Block tag.

Required

No.
Chapter 14176



EDML Tag: searchPatterns

Description

Provides a way for Dreamweaver to find each specified instance in a document. If multiple search 
patterns are defined, they all must be found within the text being searched (the search patterns 
have a logical AND relationship), unless they are marked as optional using the isOptional flag. 

Parent

translator

Type

Block tag.

Required

Yes.

EDML Tag: translations

Description

Contains a list of translation instructions where each instruction indicates where to look for the 
participant and what to do with the participant.

Parent

translator

Type

Block tag.

Required

No.

EDML Tag: translation

Description

Contains a single translation instruction that includes the location for the participant, what type 
of translation to perform, and the content that should replace the participant text.

Parent

translations

Type

Block tag.

Required

No.
Server Behaviors 177



Attribute: whereToSearch

Description

Specifies where to search for the text. This is related to the insert location, so be sure to set both 
carefully (see “Attribute: location” on page 166).

Parent

translation

Type

Attribute.

Required

Yes.

Attribute: limitSearch

Description

Limits the search to some part of the whereToSearch tag.

Parent

translation

Type

Attribute.

Required

No.

Attribute: translationType

Description

Indicates the type of translation to perform. These types are preset and give the translation 
specific functionality. For example, if you specify "dynamic data", anything that is translated 
should behave the same as Dreamweaver dynamic data. That is, it should have the dynamic data 
placeholder look in the Design view (curly brace ({}) notation with dynamic background color) 
and appear in the Server Behaviors panel.

Parent

translation

Type

Attribute.

Required

Yes.
Chapter 14178



Values

dynamic data, dynamic image, dynamic source, tabbed region start, tabbed region 
end, custom

• dynamic data indicates that the translated directives look and behave the same as 
Dreamweaver dynamic data, as shown in the following example:

<translation whereToSearch="tag+IMAGE"
limitSearch="attribute+SRC"
translationType="dynamic data">

• dynamic image indicates that the translated attributes should look and behave the same as 
Dreamweaver dynamic images, as shown in the following example:

<translation whereToSearch="IMAGE+SRC"
translationType="dynamic image">

• dynamic source indicates that the translated directives should behave the same as 
Dreamweaver dynamic sources, as shown in the following example:

<translation whereToSearch="directive" 
translationType="dynamic source">

• tabbed region start indicates that the translated <CFLOOP> tags define the beginning of a 
tabbed outline, as shown in the following example:

<translation whereToSearch="CFLOOP" 
translationType="tabbed region start">

• tabbed region end indicates that the translated </CFLOOP> tags define the end of a tabbed 
outline, as shown in the following example:

<translation whereToSearch="CFLOOP" 
translationType="tabbed region end">

• custom is the default case in which no internal Dreamweaver functionality is added to the 
translation. It is often used when specifying a tag to insert for a custom Property inspector, as 
shown in the following example:

<translation whereToSearch="directive"
translationType="custom">

EDML Tag: openTag

Description

An optional tag that can be inserted at the beginning of the translation section. This tag lets 
certain other extensions find the translation, such as custom Property inspectors.

Parent

translation

Type

Block tag.

Required

No.
Server Behaviors 179



Values

tagName is a valid tag name. It should be unique to prevent conflicts with known tag types. For 
example, if you specify <openTag>MM_DYNAMIC_CONTENT</openTag> the dynamic data is 
translated to the tag <MM_DYNAMIC_CONTENT>.

EDML Tag: attributes

Description

Contains a list of attributes to add to the translated tag that is specified by openTag. 
Alternatively, if openTag is not defined and the searchPattern specifies tag, this tag contains a 
list of translated attributes to add to the tag that is found.

Parent

translation

Type

Block tag.

Required

No.

EDML Tag: attribute

Description

Specifies a single attribute (or translated attribute) to add to the translated tag.

Parent

attributes

Type

Block tag.

Required

Yes (at least one).

Values

attributeName="attributeValue" is an attribute set to a value. Typically, the attribute name 
is fixed, and the value contains some parameter references that are extracted by the parameter 
patterns, as shown in the following example:

<attribute>SOURCE="@@rs@@"</attribute>
<attribute>BINDING="@@col@@"</attribute>

or 

<attribute>
mmTranslatedValueDynValue="VALUE={@@rs@@.@@col@@}"

</attribute>
Chapter 14180



EDML Tag: display

Description

An optional display string that should be inserted in the translation.

Parent

translation

Type

Block tag.

Required

No.

Values

displayString is any string comprising text and HTML. It can include parameter references 
that are extracted by the parameter patterns. For example, <display>{@@rs@@.@@col@@}</
display> causes the translation to render as {myRecordset.myCol}.

EDML Tag: closeTag

Description

An optional tag that should be inserted at the end of the translated section. This enables certain 
other extensions to find the translation, such as custom Property inspectors.

Parent

translation

Type

Block tag.

Required

No.

Values

tagName is a valid tag name; it should match a translation openTag.

Example

If you specify <closeTag>MM_DYNAMIC_CONTENT</closeTag>, the dynamic data is translated to 
end with the </MM_DYNAMIC_CONTENT> tag. 

Using the Extension Data Manager
The APIs in this section comprise the Extension Data Manager (EDM). You can 
programmatically access and manipulate the data that is contained in the group and participant 
files by calling these functions. The EDM performs in the following manner:

• The EDM performs all EDML file input/output for group and participant files.

• The EDM acts as a server model filter by performing all data requests for the current server 
model.
Server Behaviors 181



dreamweaver.getExtDataValue()

Availability

Dreamweaver UltraDev 4

Description

Retrieves the field values from an EDML file for the specified nodes.

Arguments

qualifier(s) is a variable-length list of comma-separated node qualifiers that includes group or 
participant name, subblock (if any), and field name. 

Returns

Field value is returned. If value is not specified, then the default value returns.

dreamweaver.getExtDataArray()

Availability

Dreamweaver UltraDev 4

Description

Retrieves an array of values from an EDML file for the specified nodes.

Arguments

qualifier(s) is a variable-length list of comma-separated node qualifiers, including group or 
participant name, subblock (if any), and field name.

Returns

Array of child node names. 

dreamweaver.getExtParticipants()

Availability

Dreamweaver UltraDev 4

Description

Retrieves the list of participants from an EDML group file or participant files. 

Arguments

value, qualifier(s)

• value is a property value or blank to ignore. 
For example dw.getExtParticipants("", "participant");

• qualifier(s) is a variable-length list of comma-separated node qualifiers of required 
property.

Returns

Array of participant names that have the specified property, if given, and the property matches 
the specified value, if given.
Chapter 14182



dreamweaver.getExtGroups()

Availability

Dreamweaver UltraDev 4

Description

Retrieves the name of the group, which is the equivalent to the server behavior’s name, from an 
EDML group file. 

Arguments

value, qualifier(s)

• value is a property value or blank to ignore.

• qualifier(s) is a variable length list of comma-separated node qualifiers of required 
property.

Returns

Array of group names that have the specified property, if given, and the property matches the 
specified value, if given.

dreamweaver.refreshExtData()

Availability

Dreamweaver UltraDev 4

Description

Reloads all extension data files. 

Tip: You can make a useful command from this function, letting edits to server behavior EDML files be reloaded 
without restarting Dreamweaver MX. 

Arguments

None.

Returns

Reloaded data.

Server behavior techniques
This section covers the common and advanced techniques that are used to create and edit server 
behaviors. Most of the suggestions involve specific settings in the EDML files.

Finding server behaviors

Writing search patterns In order to update or delete server behaviors, you must provide a way 
for Dreamweaver to find each instance in a document. This requires a quickSearch tag and at 
least one searchPattern tag, which is contained within the searchPatterns tag. 

The quickSearch tag should be a string, not a regular expression, that indicates that the server 
behavior might exist on the page. It is not case-sensitive. It should be short and unique, and avoid 
spaces and other sections that can be changed by the user. The following example shows a 
participant that consists of the simple ASP JavaScript tag:

<% if (Recordset1.EOF) Response.Redirect("some_url_here") %>
Server Behaviors 183



In this case, the following quickSearch string checks for it:

<quickSearch>Response.Redirect</quickSearch>

For performance reasons, the quickSearch pattern is the beginning of the process of finding 
server behavior instances. If this string is found in the document and the participant identifies a 
server behavior (in the group file, partType="identifier" for this participant), the related 
server behavior files are loaded and findServerBehaviors() is called. If your participant has no 
reliable strings for which to search (or for debugging purposes), you can leave the quickSearch 
string empty, as shown in the following example:

<quickSearch></quickSearch>

In this case, the server behavior is always loaded and can search the document.

Next, the searchPattern tag searches the document more precisely and extracts parameter 
values from the participant code. The search patterns specify where to search (the 
whereToSearch attribute) with a series of searchPattern tags that contain specific patterns. 
These patterns can use simple strings or regular expressions. The previous example code is an ASP 
directive, so whereToSearch="directive", and a regular expression identifies the directive and 
extracts the parameters, as shown in the following example:

<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs,new__url">
/if\s*\((\w+)\.EOF\)\s*Response\.Redirect\("([^\r\n]*)"\)/i

</searchPattern>
</searchPatterns>

The search string is defined as a regular expression by starting and ending with a slash (/), and is 
followed by i so that it is not case-sensitive. Within the regular expression, special characters such 
as parentheses () and periods (.) are escaped by preceding them with a backslash (\). The two 
parameters rs and new__url are extracted from the string by using parenthetical subexpressions. 
(The parameters must be enclosed in parentheses.) In this example, they are indicated by (\w+) 
and ([^\r\n]*): These values correspond to the regular expression values that are normally 
returned by $1 and $2.

Optional search patterns There might be cases where you want to identify a participant even if 
some parameters are not found. You might have a participant that stores some optional information 
such as a telephone number. For such an example, you could use the following ASP code:

<% //address block
LNAME = "joe";
FNAME = "smith";
PHONE = "123-4567";

%>

You could use the following search patterns:

<quickSearch>address</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="lname">/LNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="fname">/FNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>

<searchPattern paramNames="phone">/PHONE\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
</searchPatterns>
Chapter 14184



In the previous example, the telephone number must be specified. However, you can make the 
telephone number optional, by adding the isOptional attribute, as shown in the following example:

<quickSearch>address</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="lname">/LNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="fname">/FNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="phone" isOptional="true">¬
/PHONE\s*=\s*"([^\r\n]*)"/i
</searchPattern>

</searchPatterns>

Now the participant is recognized, even if the telephone number is not found. 

How participants are matched If a server behavior has more than one participant, the participants 
must be identified in the user’s document and matched. If the user applies multiple instances of 
the server behavior to a document, each group of participants must be matched accordingly. To 
ensure participants are matched correctly, you might need to change or add parameters and 
construct participants so they can be uniquely identified. 

Matching requires some rules. Participants are matched when all parameters with the same name 
have the same value. Above and below the <html> tag, there can be only one instance of a 
participant with a given set of parameter values. Within the <html>...</html> tags, participants 
are also matched by their position relative to the selection or to common nodes that are used for 
insertion.

Participants without parameters are automatically matched, as shown in this example of a server 
behavior with group file: 

<group serverBehavior="test.htm">
<title>Test</title>
<groupParticipants>

<groupParticipant name="test_p1" partType="identifier" />
<groupParticipant name="test_p2" partType="identifier" />

</groupParticipants>
</group>

This example inserts two simple participants above the <html> tag: 

<% //test_p1 %>
<% //test_p2 %>
<html>

These participants are found and matched, and Test appears once in the Server Behaviors panel. 
If you add the server behavior again, nothing is added because the participants already exist.

If the participants have unique parameters, multiple instances can be inserted above the <html> 
tag. For example, by adding a name parameter to the participant, a user can enter a unique name 
in the Test Server Behavior dialog box. If the user enters name "aaa", the following participants 
are inserted:

<% //test_p1 name="aaa" %>
<% //test_p2 name="aaa" %>
<html>
Server Behaviors 185



If you add the server behavior again with a different name, such as "bbb", the document now 
looks like this:

<% //test_p1 name="aaa" %>
<% //test_p2 name="aaa" %>
<% //test_p1 name="bbb" %>
<% //test_p2 name="bbb" %>
<html>

There are two instances of Test listed in the Server Behaviors panel. If the user tries to add a third 
instance to the page and names it "aaa", nothing is added because it already exists.

Within the <html> tag, matching can also use position information. In the following example, 
there are two participants, one that is added before the selection and another that is added after 
the selection:

<% if (expression) { //mySBName %>
Random HTML selection here

<% } //end mySBName %>

These are two participants without parameters, so they are grouped together. However, you 
can add another instance of this server behavior elsewhere in the HTML, as shown in the 
following example:

<% if (expression) { //mySBName %>
Random HTML selection here

<% } //end mySBName %>
More HTML here...

<% if (expression) { //mySBName %>
Another HTML selection here

<% } //end mySBName %>

Now there are two identical instances of each participant, which is allowed within the HTML. 
They are matched by the order in which they occur in the document. 

The following example shows a matching problem and how to avoid it. You can create a 
participant that computes the tax on some dynamic data and displays the result at the selection. 

<% total = Recordset1.Fields.Item("itemPrice").Value * 1.0825 %>
<html>
<body>

The total (with taxes) is $<%=total%>
</body>
</html>

The two participants are matched because they have no common parameters. However, if you 
add a second instance of this server behavior, you should have the following code:

<% total = Recordset1.Fields.Item("itemPrice").Value * 1.0825 %>
<% total = Recordset1.Fields.Item("salePrice").Value * 1.0825 %>
<html>
<body>

The total  (with taxes) is $<%=total%>
Sale price (with taxes) is $<%=total%>

</body>
</html>
Chapter 14186



This server behavior no longer works correctly because only one parameter is named total. To 
solve this problem, make sure that there is a parameter with a unique value and can be used to 
match the participants. In the following example, you could make the total variable name 
unique using the column name: 

<% itemPrice_total = Recordset1.Fields.Item("itemPrice").¬
Value * 1.0825 %>
<% salePrice_total = Recordset1.Fields.Item("salePrice").¬
Value * 1.0825 %>
<html>
<body>

The total  (with taxes) is $<%=itemPrice_total%>
Sale price (with taxes) is $<%=salePrice_total%>

</body>
</html>

The search patterns now uniquely identify and match the participants.

Search pattern resolution

Dreamweaver MX supports the following actions by using the participant 
searchPatterns functionality:

• File transfer dependency

• Updating the file paths for any file reference (such as those for include files)

When Dreamweaver MX creates server models, it builds lists of patterns by scanning all the 
participants for special paramNames. To find URLs to check file dependency and to fix the 
pathname, Dreamweaver MX uses each searchPattern tag in which one of the paramNames 
attribute ends with _url. Multiple URLs can be specified in a single searchPattern.

For each translator searchPattern that has a paramNames attribute value that ends with 
_includeUrl, Dreamweaver MX uses that searchPattern to translate include file statements on 
the page. Dreamweaver MX uses a different suffix string to identify include file URLs because not 
all URL references are translated. Also, only a single URL can be translated as an include file.

In resolving a searchPatterns tag, Dreamweaver uses the following algorithm:

1 Look for whereToSearch attribute within the searchPatterns tag.

2 If the attribute value starts with tag+, the remaining string is assumed to be the tag name (no 
spaces are allowed in the tag name).

3 Look for limitSearch attribute within the searchPattern tag.

4 If the attribute value starts with attribute+, the remaining string is assumed to be the 
attribute name (no spaces are allowed in the attribute name).

If these four steps are successful, Dreamweaver MX assumes a tag/attribute combination; 
otherwise, Dreamweaver starts looking for searchPattern tags with a paramName that has a 
_url suffix and a regular expression that is defined. (For information about regular expressions, 
see the “Regular expressions” on page 158.)

The following example of a searchPatterns tag has no search pattern because it combines a tag 
(cfinclude) with an attribute (template) to isolate the URL for dependency file checking, path 
fixing, and so forth:

<searchPatterns whereToSearch="tag+cfinclude">
<searchPattern paramNames="include_url" limitSearch="attribute+template" />

</searchPatterns>
Server Behaviors 187



The tag/attribute combination (see the previous example) does not apply to translation because 
Dreamweaver always translates to straight text in the JavaScript layer, whereas file dependency 
checking, path fixing, and so on occurs in the C layer. In the C layer, Dreamweaver internally 
splits the document into directives (straight text) and tags (parsed into an efficient tree structure).

Updating server behaviors

Replacement update By default, participant EDML files do not have an <updatePatterns> tag, 
and instances of the participant are updated in the document by replacing them entirely. When a 
user edits an existing server behavior and clicks OK, any participant that contains a parameter 
whose value has changed is removed and reinserted with the new value in the same location. 

If the user customizes participant code in the document, the participant might not be recognized 
if the search patterns look for the old code. Shorter search patterns can let the user customize the 
participant code in their document; however, updating the server behavior instance can cause the 
participant to be replaced, which loses the custom edits. 

Precision update In some cases, it can be desirable to let users customize the participant code after 
it is inserted in the document. This can be achieved by limiting the search patterns and providing 
update patterns in the EDML file. After the participant is added to the page, only specific parts 
of it are updated by the server behavior. The following example shows a simple participant with 
two parameters: 

<% if (Recordset1.EOF) Response.Redirect("some_url_here") %>

The example might use the following search patterns: 

<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs,new__url">
/if\s*\((\w+)\.EOF\)\s*Response\.Redirect\("([^\r\n]*)"\)/i

</searchPattern>
</searchPatterns>

The user might add another test to a particular instance of this code, as shown in the following 
example:

<% if (Recordset1.EOF || x > 2) Response.Redirect("some_url_here") %>

The search patterns fail because they are looking for a parenthesis after the EOF. To make the 
search patterns more forgiving, you can shorten them by splitting them up: 

<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs">/(\w+)\.EOF/</searchPattern>
<searchPattern paramNames="new__url">

/if\s*\([^\r\n]*\)\s*Response\.Redirect\("([^\r\n]*)"/i
</searchPattern>

</searchPatterns>
Chapter 14188



These shortened search patterns are flexible, so the user can add to the code. However, if the 
server behavior changes the URL, when the user clicks OK, the participant is replaced, and the 
customizations are lost. To update more precisely, add an updatePatterns tag that contains a 
pattern for updating each parameter:

<updatePatterns>
<updatePattern paramNames="rs">/(\b)\w+(\.EOF)/¬
</updatePattern>
<updatePattern paramNames="new__url">

/(Response\.Redirect\(")[^\r\n]*(")/i
</updatePattern>

</updatePatterns>

In update patterns, the parentheses are reversed and are placed around the text before and after 
the parameter. For search patterns, use textBeforeParam(param)textAfterParam.  For update 
patterns, use (textBeforeParam)param(textAfterParam). All the text between the two 
parenthetical subexpressions is replaced with the new value for the parameter.

Deleting server behaviors

Default deletion and dependency counts The user can delete an instance that is selected in the 
Server Behaviors panel by clicking the minus (-) button or pressing Delete. All the participants are 
removed except for the ones that are shared by other server behaviors. Specifically, if more than 
one server behavior has a participant pointer to the same node, the node is not deleted.

By default, participants are deleted by removing an entire tag. If the insert location is 
"wrapSelection", only the outer tag is removed. For attributes, the entire attribute declaration is 
removed. The following example shows an attribute participant on the ACTION attribute of 
a form tag: 

<form action="<% my_participant %>">

After deleting, only <form> remains.

Using delete flags to limit participant deletion There might be cases where you want to limit the 
way that participants are deleted. This can be achieved by adding a delete tag to the EDML file. 
The following example shows a participant that is an href attribute of a link: 

<a href="<%=MY_URL%>">Link Text</a>

When this attribute participant is deleted, the resulting tag is <a>Link Text</a>, which no 
longer appears as a link in Dreamweaver. It might be preferable to delete only the attribute value, 
which can be done by adding the following tag to the participant EDML file:

<delete deleteType="innerOnly"/>

Another approach is to remove the entire tag when the attribute is deleted by typing <delete 
deleteType="tagOnly"/>, and the resulting text is Link Text.
Server Behaviors 189



Avoiding conflicts with share-in-memory JavaScript files

If several HTML files reference a particular JavaScript file, Dreamweaver loads the JavaScript into 
a central location where the HTML files can share the same JavaScript source. These files contain 
the following line:

//SHARE-IN-MEMORY=true

If a JavaScript file has the SHARE-IN-MEMORY directive and an HTML file references it (by using 
the SCRIPT tag with the SRC attribute), Dreamweaver loads the JavaScript into a memory location 
where the code is implicitly included in all HTML files thereafter.

Note: Because JavaScript files loaded into this central location share memory, the files cannot duplicate any 
declarations. If a share-in-memory file defines a variable or function and any other JavaScript file defines the same 
variable or function, a name conflict occurs. When writing new JavaScript files, be aware of these files and their 
naming conventions.
Chapter 14190



CHAPTER 15
Data Sources

The Dreamweaver MX Data Sources API functions let you add data sources, which appear in the 
plus (+) menu of the Bindings panel (see “dreamweaver.dbi.getDataSources” on page 408). 

Data source files are stored in the Configuration/DataSources folder. Each of the following server 
models has its own folder: ASP.Net/C#, ASP.Net/VisualBasic, ASP/JavaScript, ASP/VBScript, 
ColdFusion, JSP, and PHP/MySQL. Within each server model subfolder are HTML and EDML 
files that are associated with the data sources for that server model.

How data sources work 
Dreamweaver users can add dynamic data by using the Bindings panel. The dynamic data objects 
shown on the plus (+) menu are based on the server model that is specified for the page. For 
example, users can insert recordsets, commands, request variables, session variables, and 
application variables for ASP applications.

The following steps describe the process that is involved in adding dynamic data:

1 When the user clicks the plus (+) menu in the Bindings panel, a pop-up menu appears.

To determine the contents of the menu, Dreamweaver first looks for a DataSources.xml file in 
the same folder as the data sources (for example, Configuration/DataSources/ASP_Js/
DataSources.xml). The DataSources.xml file describes the contents of the pop-up menu; it 
contains references to the HTML files that should be placed in the pop-up menu. 

Dreamweaver checks each referenced HTML file for a title tag. If the file contains a title tag, 
the content of the title tag appears in the menu. If the file does not contain a title tag, the 
filename is used in the menu. 

After Dreamweaver finishes reading the DataSources.xml file or if the file does not exist, 
Dreamweaver scans the rest of the folder to find other items that should appear in the menu. If 
Dreamweaver finds files in the main folder that aren’t in the menu, it adds them to the menu. 
If subfolders contain files that aren’t in the menu, Dreamweaver creates a submenu and adds 
those files to the submenu.

2 When the user chooses an item from the plus (+) menu, Dreamweaver calls the 
addDynamicSource() function, so that code for the data source is added to the user’s document. 
191



3 Dreamweaver goes through each file in the appropriate server model folder, calling 
findDynamicSources() in each file. For each value in the returned array, Dreamweaver calls 
the generateDynamicSourceBindings() function in the same file to get a fresh list of all the 
fields in each data source for the user’s document. Those fields are presented to the user as a 
tree control in the Dynamic Data or Dynamic Text dialog box or the Bindings panel. The data 
source tree for an ASP document might appear as shown in the following example:

Recordset (Recordset1)
ColumnOneInRecordset
ColumnTwoInRecordset

Recordset (Recordset2)
ColumnOfRecordset

Request
NameOfRequestVariable
NameOfAnotherRequestVariable

Session
NameOfSessionVariable

4 If the user double-clicks on a data source name in the Bindings panel to edit the data source, 
Dreamweaver calls editDynamicSource() to handle user edits within the tree. 

5 If the user clicks the minus (-) button, Dreamweaver gets the current node selection from the 
tree and passes it to deleteDynamicSource(), which deletes the code that was added earlier 
with addDynamicSource(). If it does not make sense to delete the current selection, the 
function returns an error message. After deleteDynamicSource() returns, Dreamweaver 
refreshes the data source tree by calling findDynamicSources() and 
generateDynamicSourceBindings().

6 If the user chooses a data source and clicks OK in the Dynamic Data or Dynamic Text dialog 
box, or clicks Insert or Bind in the Bindings panel, Dreamweaver calls 
generateDynamicDataRef(). The return value is inserted in the document at the current 
insertion point. 

7 If the user displays the Dynamic Data or Dynamic Text dialog box to edit an existing dynamic 
data object, the selection in the data source tree needs to be initialized to the dynamic data 
object. To initialize the tree control, Dreamweaver goes through each file in the appropriate 
server model folder (for example, the Configuration/DataSources/ASP_Js folder), calling the 
implementation of inspectDynamicDataRef() in each file.

Dreamweaver calls the inspectDynamicDataRef() function to convert the dynamic data 
object back from the code in the user’s document to an item in the tree. (This process is the 
reverse of what occurs when generateDynamicDataRef() is called.) If 
inspectDynamicDataRef() returns an array that contains two elements, Dreamweaver 
provides a visual cue, showing which item in the tree is bound to the current selection.

8 Every time the user changes the selection, Dreamweaver calls the inspectDynamicDataRef() 
function to determine whether the new selection is dynamic text or a tag with a dynamic 
attribute.  If it is dynamic, Dreamweaver displays the bindings for the current selection in the 
Bindings panel.

9 Using the Bindings panel or the Dynamic Data or Dynamic Text dialog box, it’s possible to 
change the data format for a dynamic text object or a dynamic attribute that the user has 
already added to the page. When the format is changed, Dreamweaver calls 
generateDynamicDataRef() to get the string to insert into the user’s document and passes 
that string to formatDynamicDataRef() (described in “Server Formats” on page 199). The 
string that returns from formatDynamicDataRef() is inserted in the user’s document.
Chapter 15192



The Data Sources API

addDynamicSource()

Availability

Dreamweaver UltraDev 1

Description

Adds a dynamic data source. Because there is one implementation of this function in each data 
source file, Dreamweaver calls the appropriate implementation of the addDynamicSource() 
function when a data source is selected from the plus (+) menu. 

For example, for recordsets or commands, Dreamweaver calls 
dw.serverBehaviorInspector.popupServerBehavior(), which inserts a new server behavior 
into the document. For request, session, and application variables, Dreamweaver displays an 
HTML/JavaScript dialog box to collect the name of the variable; the behavior stores the variable 
name for future use.

After the addDynamicSource() function returns, Dreamweaver erases the contents of the data 
source tree and calls the findDynamicSources() and generateDynamicSourceBindings() 
functions to repopulate the data source tree.

Returns

Dreamweaver expects nothing.

deleteDynamicSource()

Availability

Dreamweaver UltraDev 1

Description

Called when a Dreamweaver user selects a data source in the tree and clicks the minus (-) button. 

For example, in Dreamweaver, if the selection is a recordset or command, 
deleteDynamicSource() calls dw.serverBehaviorInspector.deleteServerBehavior(). If 
the selection is a request, session, or application variable, the function remembers that the variable 
was deleted and does not display it any more. After the deleteDynamicSource() function 
returns, Dreamweaver erases the contents of the data source tree and calls 
findDynamicSources() and generateDynamicSourceBindings() to get a fresh list of all the 
data sources for the user’s document.

Arguments

sourceName, bindingName

• sourceName is the name of the top-level node to which the child node is associated.

• bindingName is the name of the child node.

Returns

Dreamweaver expects nothing.
Data Sources 193



displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the dialog 
box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
’/ExtensionsHelp/superDuperHelp.htm’;

  dw.browseDocument(myHelpFile);
}

editDynamicSource() 

Availability

Dreamweaver MX

Description

Called when the user double clicks on a data source name in the Bindings panel to edit the data 
source. An extension developer can implement this function to handle user edits within the tree. 
Otherwise, the server behavior that matches the data source is automatically invoked. The 
extension developer can use this function to override the default implementation of server 
behaviors and provide a custom handler.

Arguments

sourceName, bindingName

• sourceName is the name of the top-level node to which the child node is associated.

• bindingName is the name of the child node.

Returns

Dreamweaver expects a Boolean value that indicates whether the function has handled the edit 
(true) or not (false).

findDynamicSources() 

Availability

Dreamweaver UltraDev 1
Chapter 15194



Description

Returns the top-level nodes from the data source tree that appears in the Dynamic Data or 
Dynamic Text dialog box or the Bindings panel. Each data source file has an implementation of 
the findDynamicSources() function. When Dreamweaver refreshes the tree, Dreamweaver 
reads through all the files in the DataSources folder and calls the findDynamicSources() 
function in each file.

Returns

Dreamweaver expects an array of JavaScript objects where each object can have as many as 
five attributes:

1 The title property is the label string that appears to the right of the icon for each parent 
node. The title property is always required. 

2 The imageFile property is the path of a file that contains the icon (a GIF image), which 
represents the parent node in the tree control in the Bindings panel or the Dynamic Data or 
Dynamic Text dialog box. The imageFile property is required.

3 The allowDelete property is optional. If this property is set to false, when the user clicks on 
this node in the Bindings panel, the minus (-) button is disabled. If set to true, the minus (-) 
button is enabled. If the property is not defined, the default is true. 

4 The dataSource property is the simple name of the file in which the findDynamicSources() 
function is defined. For example, the findDynamicSources() function in Configuration/
DataSources/ASP_Js/Session.htm sets the dataSource property to session.htm. The 
dataSource property is required.

5 The name property is the name of the server behavior that is associated with the data source, if 
one exists. Some data sources, such as recordsets, are associated with server behaviors. When 
you create a recordset and give it the name rsAuthors, the name property must equal 
rsAuthors. The name property is always defined, but can be an empty string (““) if no server 
behavior is associated with the data source (such as a session variable). 

Note: A JavaScript class that defines these properties exists in Configuration/Shared/Common/Scripts/
DataSourceClass.js.

generateDynamicDataRef()

Availability

Dreamweaver UltraDev 1

Description

Generates the dynamic data object for a child node.

Arguments

sourceName, bindingName

• sourceName is the name of the top-level node that is associated with the child node.

• bindingName is the name of the child node from which you want to generate a dynamic 
data object.

Returns

Dreamweaver expects a string, which can be passed to formatDynamicDataRef() to format it 
before inserting it in a user’s document.
Data Sources 195



generateDynamicSourceBindings() 

Availability

Dreamweaver UltraDev 1

Description

Returns the children of a top-level node.

Arguments

sourceName

sourceName is the name of the top-level node whose children you want to return.

Returns

Dreamweaver expects an array of JavaScript objects where each object can have as many as 
four properties:

1 The title property is the label string that appears on the right of the icon for each parent 
node. The title property is required. 

2 The allowDelete property is an optional property. If this property is set to false, when the 
user clicks on this node in the Bindings panel, the minus (-) button is disabled. If this 
property is set to true, the minus (-) button is enabled. If the property is not defined, the 
default is true. 

3 The dataSource property is the simple name of the file in which the findDynamicSources() 
function is defined. For example, the findDynamicSources() function in Configuration/
DataSources/ASP_Js/Session.htm sets the dataSource property to session.htm. This is a 
required property.

4 The name property is the name of the server behavior that is associated with the data source, if 
one exists. It is a required property. Some data sources, such as recordsets, are associated with 
server behaviors. When you create a recordset and give it the name rsAuthors, the name 
property must equal rsAuthors. Other data sources, such as session variables, do not have a 
corresponding server behavior. Their name property must be the empty string ("").

Note: A JavaScript class that defines these properties exists in Configuration/Shared/Common/Scripts/
DataSourceClass.js.
Chapter 15196



inspectDynamicDataRef() 

Availability

Dreamweaver UltraDev 1

Description

From a dynamic data object, determines the corresponding node in the data source tree. The 
inspectDynamicDataRef() function compares the passed-in string to the string that 
generateDynamicDataRef() returns for each node in the tree. If a match is found, the 
inspectDynamicDataRef() function indicates which node in the tree matches the passed-in 
string. The function identifies the node by using an array that contains two elements. The first 
element is the parent name of the parent node, and the second element is the name of the child 
node. If no match is found, inspectDynamicDataRef() returns an empty array. 

Each implementation of inspectDynamicDataRef() checks only for matches of its own object 
type. For example, the recordset implementation of inspectDynamicDataRef() finds a match 
only if the passed-in string matches a recordset node in the tree.

Arguments

string

string is the dynamic data object.

Returns

Dreamweaver expects an array of two elements (parent name and child name) for the matched 
node; null if no matches are found.
Data Sources 197



Chapter 15198



CHAPTER 16
Server Formats

“Data Sources” on page 191 discusses how Dreamweaver MX inserts dynamic data into the user’s 
document by adding a server expression at the appropriate location. When a visitor requests the 
user’s document from the web server, that server expression is converted to a value from a 
database, the contents of a request variable, or some other dynamic value. The Dreamweaver user 
can format how this dynamic value is presented to the visitor.

This chapter discusses the API that is used to format the dynamic data returned by the functions 
that are described in “Data Sources” on page 191. Functions that are described in both chapters 
work together to format dynamic data. If the user chooses a format for the dynamic data, 
Dreamweaver calls the Data Source function generateDynamicDataRef(), which is described in 
“Data Sources” on page 191, to get the string to be inserted into the user’s document. Before 
inserting the string into the user’s document, Dreamweaver passes that string to 
formatDynamicDataRef(), which is described in this chapter. The string that the 
formatDynamicDataRef() function returns is the formatted dynamic data that is finally inserted 
in the user’s document.

The user can format dynamic data several ways. By using the Format menu in the Dynamic Data 
or Dynamic Text dialog box or the Bindings panel, the user can format the data before inserting 
it into an HTML document. If the user wants to create a format, he or she can select the Edit 
Format List command from the Format menu and select a format type from the plus (+) menu. 
The plus (+) menu contains a list of format types. Format types are basic format categories, such 
as Currency, DateTime, or AlphaCase. Format types collect all the common parameters for a 
category of format, letting you streamline the work to create a new format. 

To illustrate, suppose you want to create a new currency format. Essentially, all currency 
formatting consists of converting a number to a string, inserting commas and decimal points, and 
inserting a currency symbol, such as a dollar ($) sign. The Currency format data type collects all 
the common parameters and prompts you for their values. When you create a new currency 
format, you’re prompted for the required values. 

Dreamweaver users can format data with built-in formats, create new formats that are based on 
built-in format types, or create new formats that are based on format types they created.
199



How data formatting works 
All format files reside in the ServerFormats folder within the Configuration folder. Each server 
model has its own subfolder: ASP.Net_Csharp, ASP.Net_VB, ASP_Js, ASP_Vbs, ColdFusion, 
JSP, Shared, and UD4-ColdFusion. Each subfolder contains one XML file and multiple HTML 
files. 

Formats.xml describes all the choices in the Format menu. None and Edit Format List are added 
automatically by Dreamweaver.

The folder also contains one HTML file for each currently installed format type. Format types 
include AlphaCase, Currency, DateTime, Math, Number, Percent, Simple, and Trim. 

More about the Formats.xml file

The Formats.xml file contains one <format> tag for each item in the Format menu. Each 
<format> tag contains the following mandatory attributes:

• file=fileName is the HTML file for this format type, such as "Currency".

• title=string is the string that appears in the Format menu, such as "Currency - 
default".

• expression=regexp is a regular expression that matches the dynamic data objects that use this 
format. The expression is used to determine what format is currently applied to a dynamic data 
object. For example, the expression for the "Currency - default" format would be 
"<%\s*=\s*FormatCurrency\(.*, -1, -2, -2, -2\)\s*%>|<%\s*=\s*DoCurrency\(.*, 
-1, -2, -2, -2\)\s*%>". The value of the expression attribute must be unique among all 
<format> tags in the file; it must be specific enough to guarantee that only instances of this 
format match the expression.

• visibility=[hidden | visible] indicates whether the value appears in the Format menu. 
If the value of visibility is hidden, the format does not appear in the Format menu.

The <format> tag can optionally contain additional, arbitrarily named attributes. 

Some data formatting functions require an argument, format, which is a JavaScript object. This 
object is the node that corresponds to the <format> tag in the Formats.xml file. The object has a 
JavaScript property for each attribute of the corresponding <format> tag.

The following example shows the <format> tag for "Currency - default":

<format file="Currency" title="Currency - default" ¬
expression="<%\s*=\s*FormatCurrency\(.*, -1, -2, -2, -2\)\s*%>|¬
<%\s*=\s*DoCurrency\(.*, -1, -2, -2, -2\)\s*%>" 
NumDigitsAfterDecimal=-1 IncludeLeadingDigit=-2 ¬
UseParensForNegativeNumbers=-2 GroupDigits=-2/>

The format type for this format is Currency. The string "Currency - default" appears on the 
Format menu. The expression <%\s*=\s*FormatCurrency\(.*, -1, -2, -2, -
2\)\s*%>|<%\s*=\s*DoCurrency\(.*, -1, -2, -2, -2\)\s*%> is used to find occurrences 
of this format in the user’s document. 

NumDigitsAfterDecimal, IncludeLeadingDigit, UseParensForNegativeNumbers, and 
GroupDigits are parameters for the Currency format type; they are not required. These 
parameters appear in the Parameters dialog box for the Currency format type. The Parameters 
dialog box appears when a user chooses the Currency format type from the plus (+) menu of the 
Edit Format List dialog box. The values that are specified for these parameters are used to define 
the new format.
Chapter 16200



The Edit Format List plus (+) menu

If you do not want a file in the ServerFormats folder to appear in the Edit Format List plus (+) 
menu, add the following statement as the first line in the HTML file:

<!-- MENU-LOCATION=NONE --> 

To determine the contents of the menu, Dreamweaver first looks for a ServerFormats.xml file in 
the same folder as the data formats (for example, 
\Configuration\ServerFormats\ASP\ServerFormats.xml). The ServerFormats.xml file describes 
the contents of the Edit Format List plus (+) menu; it contains references to the HTML files that 
it lists in the menu. 

Dreamweaver checks each referenced HTML file for a title tag. If the file contains a title tag, the 
content of the title tag appears in the menu. If the file does not contain a title tag, the filename is 
used in the menu. 

After Dreamweaver finishes, or if this file does not exist, Dreamweaver scans the rest of the folder 
to find other items that should appear in the menu. If Dreamweaver find files in the main folder 
that aren’t already in the menu, it adds them to the menu. If subfolders contain files that aren’t 
already in the menu, Dreamweaver creates a submenu and adds those files to it.

When the data formatting functions are called
The data formatting functions are called in the following scenarios:

• In the Dynamic Data or Dynamic Text dialog box, the user chooses a node from the data 
source tree and a format from the Format menu. When the user selects the format, 
Dreamweaver calls generateDynamicDataRef() and passes the return value from 
generateDynamicDataRef() to formatDynamicDataRef(). The return value from 
formatDynamicDataRef() appears in the Code setting of the dialog box. After the user clicks 
OK, the string of code is inserted into the user’s document. Next, Dreamweaver calls the 
applyFormat() function to insert a function declaration. See “generateDynamicDataRef()” 
on page 195 for more information. A similar process occurs when the user works with the 
Bindings panel.

• If the user changes the format or deletes the dynamic data item, the deleteFormat() function 
is called. The deleteFormat() function removes the support scripts from the document.

• When the user clicks the plus (+) button in the Edit Format List dialog box, Dreamweaver 
displays a menu that contains all the format types for the given server model. Each format type 
corresponds to a file in the Configuration\ServerFormats\currentServerModel folder. 

If the user chooses a format from the plus (+) menu that requires a user-specified parameter, 
Dreamweaver executes the onload handler on the body tag and displays the Parameters dialog 
box, which shows the parameters for the format type. In this dialog box, the user chooses 
parameters for the format and clicks OK, and Dreamweaver calls the 
applyFormatDefinition() function. 

If the selected format does not need to display a dialog box and lets the user choose parameters, 
Dreamweaver calls applyFormatDefinition() when the user chooses the format type from 
the plus (+) menu.

• Later, if the user edits the format by selecting it in the Edit Format List dialog box and clicking 
the Edit button, Dreamweaver calls inspectFormatDefinition() before displaying the 
Parameters dialog box, so the form controls can be initialized to the correct values. 
Server Formats 201



The Data Formatting API 

applyFormat()

Availability

Dreamweaver UltraDev 1

Description

Adds a format function declaration to the user’s document. When a user chooses a format from 
the Format field in the Dynamic Data or Dynamic Text dialog box or the Bindings panel, 
Dreamweaver makes two changes to the user’s document: It adds the appropriate format function 
before the HTML tag (if it’s not already there) and it changes the dynamic data object to call the 
appropriate format function.

Dreamweaver adds the function declaration by calling the applyFormat() JavaScript 
function in the data format file. It changes the dynamic data object by calling the 
formatDynamicDataRef() function.

The applyFormat() function should use the DOM to add function declarations to the top of the 
user’s document. For example, if the user chooses Currency - Default, the function adds the 
declaration of the Currency function.

This function can edit a user’s document. 

Arguments

format

format is a JavaScript object that describes the format to be applied. The JavaScript object is the 
node that corresponds to the <format> tag in the Formats.xml file. The object has a JavaScript 
property for each attribute of the corresponding <format> tag.

Returns

Dreamweaver expects nothing.

applyFormatDefinition()

Availability

Dreamweaver UltraDev 1

Description

Commits the changes to a format created with the Edit Format dialog box.

Users can create, edit, or delete formats with the Edit Format List dialog box. This function is 
called to commit any modifications that are made. It can also set other, arbitrarily named 
properties on the object. Each property is stored as an attribute of the <format> tag in the 
Formats.xml file.

Arguments

format

format is a JavaScript object that corresponds to this format. The function must set the 
expression property of the JavaScript object to be the regular expression for the format. The 
function can also set other, arbitrarily named properties of the object. Each property is stored as 
an attribute of the <format> tag.
Chapter 16202



Returns

Dreamweaver expects the format object, if the function completes successfully. If an error occurs, 
the function returns an error string. If it returns an empty string, the form is closed, but the new 
format is not created, which is the same as a Cancel operation.

deleteFormat()

Availability

Dreamweaver UltraDev 1

Description

Removes the format function declaration from the top of the user’s document.

When the user changes the format of a dynamic data object (in the Dynamic Data or Dynamic 
Text dialog box or the Bindings panel) or deletes a formatted dynamic data object, Dreamweaver 
removes the function declaration from the top of the document and removes the function call 
from the dynamic data object by calling the deleteFormat() function.

The deleteFormat() function should use the DOM to remove the function declaration from 
the top of the current document.

Arguments

format

format is a JavaScript object that describes the format to be removed. The JavaScript object is the 
node that corresponds to the <format> tag in the Formats.xml file. 

Returns

Dreamweaver expects nothing.

formatDynamicDataRef()

Availability

Dreamweaver UltraDev 1

Description

Adds the format function call to the dynamic data object. When a user chooses a format from the 
Format field in the Dynamic Data or Dynamic Text dialog box or the Bindings panel, 
Dreamweaver makes two changes to the user’s document: It adds the appropriate format function 
before the HTML tag (if it’s not already there), and it changes the dynamic data object to call the 
appropriate format function.

Dreamweaver adds the function declaration by calling the applyFormat() JavaScript 
function in the data format file. It changes the dynamic data object by calling the 
formatDynamicDataRef() function.

The formatDynamicDataRef() function is called when the user selects a format from the Format 
field in the Bindings panel or the Dynamic Data or Dynamic Text dialog box. It does not edit the 
user’s document.
Server Formats 203



Arguments

dynamicDataObject, format

• dynamicDataObject is a string that contains the dynamic data object.

• format is a JavaScript object that describes the format to be applied. The JavaScript object is 
the node that corresponds to the <format> tag in the Formats.xml file. The object has a 
JavaScript property for each attribute of the corresponding <format> tag.

Returns

Dreamweaver expects the new value for the dynamic data object.

If an error occurs, the function displays an alert message under certain conditions. If the function 
returns an empty string, the Format field is set to None.

inspectFormatDefinition()

Availability

Dreamweaver UltraDev 1

Description

Initializes form controls when a user tries to edit a format in the Edit Format List dialog box.

Arguments

format

format is a JavaScript object that describes the format to be applied. The JavaScript object is the 
node that corresponds to the <format> tag in the Formats.xml file. The object has a JavaScript 
property for each attribute of the corresponding <format> tag.

Returns

Dreamweaver expects nothing.
Chapter 16204



CHAPTER 17
Components

Components are modularized groups of functions, or objects, that can be used as building blocks 
for applications and web pages. Some component types adhere to established sets of protocols, 
letting developers connect components that adhere to the same protocols. Each component has a 
reflection API that contains metadata that describes the component functionality to the systems 
upon which it is loaded. Component types usually run only on specific server models that support 
the specifications for handling them. Web Services, ColdFusion Components, and JavaBeans are 
good examples of component architecture.

Each component contains generic methods through which it informs the system upon which it is 
loaded about the functionality that it supports (in other words, meta discovery that uses a 
reflection API). Adherence to component architecture lets objects be loaded dynamically.

Dreamweaver’s Component panel lets users load and work with components. It lists all the 
available component types that are compatible with each enabled server model. For instance, 
because JavaBeans can work only on a JSP page, JavaBeans components appear only in the JSP 
server model within the Component panel. Likewise, because CFCs can work only on a 
ColdFusion page, they appear only in ColdFusion within the Component panel.

Extensibility lets you add new component types into the panel. After you add the new 
components, they appear in the Components pop-up list. You can also add instructions for 
setting up components that appear in the Component panel or in a dialog box (depending on the 
extension for which the steps are implemented) as numbered steps. The Setup Steps then display 
interactively as users load the new components, with checkmarks appearing next to any step that 
is already completed.

Component panel files
Component files are stored in the Configuration/Components/server-model/ServerType folder. 

Creating a custom component that can work in the Component panel involves the 
following procedures:

• Preparing the files to display the component in the user interface. 

• Enabling the component in JavaScript.

If you want the component type to display in tree control view, you also need to create the 
associated optional files and populate the tree control.
205



You can set a component type to work at the level of an individual web page, to a set of web 
pages, or to an entire site. Your JavaScript code must include the logic for component 
persistence—for saving itself between sessions and reloading at the start of a new session. For 
example, JavaBeans should contain the logic for saving themselves in the multiuser configuration 
directory as JavaBeansList.xml. 

<javabeans>
<javabean classname="TestCollection.MusicCollection" 
classlocation="d:\music\music.jar"></javabean>
</javabeans>

Note: The Configuration/Components folder has a subfolder for each implemented server model. Components are 
filtered, based on their server model. You can refer to the existing server models and server behaviors when creating 
a new component type (for more information on server models, see “Server Models” on page 217; for more 
information on server behaviors, see “Server Behaviors” on page 145).

Adding a service component

To add a new lightweight directory access protocol (LDAP) service using Dreamweaver MX: 

1 Using existing component type files as a model, create all the required files, plus the optional 
files that you want, to display the new component type, as shown in the following table:

Note: Keep the same prefix throughout all the files that correspond to one component so that each file and its 
corresponding component can easily be identified.

2 Write the JavaScript code to implement the new server component. For details of 
the Component API functions that are available, see “Component panel API functions” on 
page 207.

Tip: When adding a new service, you might want to use the Components panel to browse meta information so that 
the information is readily available as you create the extension. Dreamweaver can browse added components and 
display nodes in the component tree. It provides drag-and-drop support and keyboard support in Code view.

Filename Description Required/Optional

LDAP.htm The extension file Required

LDAP.js The extension file that implements the Component 
API callback

Required

LDAP.gif The image that appears in the Components pop-up 
list

Required

LDAPMenus.xml The repository for metadata that organizes the 
Components panel structure

Optional

LDAP*.gif Toolbar images, which can be enabled or disabled, 
as shown in the following example:
ToolBarImageUp.gif
ToolBarImageDown.gif
ToolBarImageDisabled.gif.

Optional

LDAP*.gif Tree node images Optional
Chapter 17206



Populating the tree control

Use the ComponentRec property to populate a Component panel tree control, so that it appears 
within the Component panel in the proper location.

Every node in a tree control must have the following properties: 

Component panel API functions

displayInstructions()

Availability

Dreamweaver MX

Description

If there are no component instances (in other words the tree is empty), it displays instructions to 
add a new one.

Arguments

None.

Returns

Dreamweaver expects a string.

Example

function displayInstructions()
{
       return MM.MSG_WebServicesInstructions;
}

Property name Description Required/Optional

name Name of the tree node item Required

image Icon of the tree node item. If not specified a default icon is used. Optional

hasChildren Responds to clicks on the plus (+) and minus (-) buttons in the 
tree control by loading children.This lets you work with a tree 
that is not prepopulated.

Required

toolTipText Tooltip text of the tree node item Optional

isCodeViewDraggable Determines whether the item can be dragged and dropped into 
the code view.

Optional

isDesignViewDraggable Determines whether the item can be dragged and dropped into 
the design view.

Optional
Components 207



displayHelp()

Availability

Dreamweaver MX

Description

Displays help text for the current tree node item using the Help System using the help document.

Arguments

componentRec

componentRec is an object.

Returns

Dreamweaver expects nothing.

Example

function displayHelp(componentRec)
{

displayHelp();
}

getComponentChildren()

Availability

Dreamweaver MX

Description

Returns a list of child ComponentRec objects for the active parent ComonentRec. To load the 
root-level tree items, this function needs to read its metadata from its persistent store. 

Arguments

{parentComponentRec}

parentComponentRec is the componentRec of the parent. If it is omitted, Dreamweaver expects a 
list of ComponentRec objects for the root node.

Returns

Dreamweaver expects an array of ComponentRec objects.
Chapter 17208



Example

function getComponentChildren(componentRec)
{

var cs_Children = new Array();

if (!componentRec)
{

//read saved entries for java beans.
var javabeanListPath = dw.getSiteRoot() + JavaBeanListFile;
if (DWfile.exists(javabeanListPath))
{
}

}
else
{

if (componentRec.objectType == "Class")
{

var propertiesCompInfo = new ComponentRec("Properties", 
PROPERTIES_FILENAME, true,true,"Properties","DWJavaBeansContextProperty");

propertiesCompInfo.objectType = "Properties";

var methodsCompInfo = new ComponentRec("Methods", METHODS_FILENAME, 
true,true,"Methods","DWJavaBeansContextMethod");

methodsCompInfo.objectType = "Methods";

cs_Children.push(propertiesCompInfo);
cs_Children.push(methodsCompInfo);

}
else if (componentRec.objectType == "Properties")
{

 var Properties = 
MMJB.getProperties(componentRec.parent.getName(),componentRec.parent.classl
ocation);

 if (Properties.length)
 {

for (var j = 0;j < Properties.length; j++)
{

var propertiesCompInfo = new ComponentRec(Properties[j], 
PROPERTIES_FILENAME, true,false,Properties[j]);

propertiesCompInfo.objectType = "Property";
cs_Children.push(propertiesCompInfo);

}
 }

}
}

return cs_Children;
}

Components 209



getContextMenuId()

Availability

Dreamweaver MX

Description: 

An optional function that gets the Context Menu ID for the component type. Every component 
type can have a context menu associated with it. The Context Menu pop-up menus are defined in 
ComponentNameMenus.xml, and they work the same way as menu.xml. The menu string can be 
static or dynamic. Shortcut keys (accelerator keys) are supported.

Arguments

None.

Returns

Dreamweaver expects a string.
Chapter 17210



Example

function getContextMenuId()
{

return "DWConnectionsContext";
}

<shortcutlist app="ultradev" id="DWConnectionsContext">
<shortcut key="Cmd+I"   domRequired="false"command="clickedInsert();" 
id="DWShortcuts_ServerComponent_Insert" />
<shortcut key="Del"domRequired="false"   
enabled="(dw.serverComponents.getSelectedNode() != null && 
(dw.serverComponents.getSelectedNode().objectType==’Connection’))" 
command="clickedDelete();"  id="DWShortcuts_ServerComponent_Delete" /> 

</shortcutlist>

<menubar name="" app="ultradev" id="DWConnectionsContext">
    <menu name="" id="DWContext_Connections">
        <menuitem name="_Edit Connection..." key="Cmd+I" 

enabled="(dw.serverComponents.getSelectedNode() != null && 
(dw.serverComponents.getSelectedNode().objectType==’Connection’))" 
command="clickedEdit();" id="DWContext_Connections_TestConnection" />

        <menuitem name="Du_plicate Connection..." key="Cmd+P" 
enabled="(dw.serverComponents.getSelectedNode() != null && 
(dw.serverComponents.getSelectedNode().objectType==’Connection’))" 
command="clickedDuplicate();" id="DWContext_Connections_TestConnection" />

        <menuitem name="_Delete Connection..." key="Cmd+D" 
enabled="(dw.serverComponents.getSelectedNode() != null && 
(dw.serverComponents.getSelectedNode().objectType==’Connection’))" 
command="clickedDelete();" id="DWContext_Connections_TestConnection" />

        <menuitem name="_Test Connection..." key="Cmd+T" 
enabled="(dw.serverComponents.getSelectedNode() != null && 
(dw.serverComponents.getSelectedNode().objectType==’Connection’))" 
command="clickedTest();" id="DWContext_Connections_TestConnection" />

<separator/>
      <menuitem name="New Recordset..." 

enabled="(dw.serverComponents.getSelectedNode() != null && 
(dw.serverComponents.getSelectedNode().objectType==’Table’))" key="Cmd+Q" 
command="clickedRecordset();" id="DWContext_Connections_TestConnection" />

  <menuitem name="View _Data..." key="Cmd+D"command="clickedViewData();" 
enabled="(dw.serverComponents.getSelectedNode() != null && 
(dw.serverComponents.getSelectedNode().objectType==’Table’))" 
id="DWContext_Tables_ViewData" />

<separator/>
<menuitem name="_Insert" key="Cmd+I"   domRequired="false

"command="clickedInsert();" id="DWShortcuts_ServerComponent_Insert" />
      <menuitem name="_Refresh" key="Cmd+R" 

command="dw.serverComponents.refresh()" 
id="DWContext_Connections_TestConnection" />

    </menu>
</menubar>

<menubar name="" app="ultradev" id="DWConnectionsChoosersContext">
    <menu name="" id="DWContext_ConnectionsChooser">

<menuitem dynamic name="Choosers"app="ultradev" file="Menus/MM/
DB_Connections.htm" id="DWContext_Connections_Chooser_List" />

    </menu>
</menubar>
Components 211



getCodeViewDropCode()

Availability

Dreamweaver MX

Description

Gets the code that is dragged and dropped in Code view from the Component panel or the code 
that is cut, copied, or pasted from the Component panel. 

Arguments

Dreamweaver expects componentRec.

Returns

Dreamweaver expects a string.

Example

function getCodeViewDropCode(componentRec)
{

var codeToDrop="";
if (componentRec)

codeToDrop =  componentRec.name;
return codeToDrop;

}

getSetupSteps()

Availability

Dreamweaver MX

Description

Dreamweaver calls this function if setupStepsCompleted() returns zero or a positive integer. 
Controls the function of server-side setup instructions, which can be implemented using 
extensions that use a modal dialog box and extensions that use server components.

Returns an array string for Dreamweaver to display in either the Setup Steps dialog box or the 
Components panel, depending on the extension type. 

Arguments

None.

Returns

Dreamweaver expects an array of n+1 strings, where n is the number of steps, as described in the 
following list:

• The title that appears above the list of setup steps.

• For each step, the text instructions, which can include any HTML markup that is legal inside a 
<li> tag.

You can include hypertext links (<a> tags) in the list of steps by using the following form:

<a ref=”#” onMouseDown="handler">Blue Underlined Text</a>

"handler" can be replaced by any of the following strings: 

• Any JavaScript expression, such as "dw.browseDocument(’http://
www.macromedia.com’)".
Chapter 17212



• "Event:SetCurSite" pops up a dialog box to set the current site. 

• "Event:CreateSite" pops up a dialog box to create a new site.

• "Event:SetDocType" pops up a dialog box to change the document type of the user’s 
document.

• "Event:CreateConnection" pops up a dialog box to create a new database connection.

• "Event:SetRDSPassword" pops up a dialog box to set the Remote Development Service 
(RDS) user name and password (ColdFusion only).

• "Event:CreateCFDataSource" pops up the ColdFusion administrator in a browser.

setupStepsCompleted()

Availability

Dreamweaver MX

Description

Dreamweaver calls this function before the Components tab becomes visible. Dreamweaver then 
calls getSetupSteps() if this function returns zero or a positive integer.

Arguments

None.

Returns

Dreamweaver expects an integer that represents the number of setup steps the user has already 
completed, as described in the following list:

• A value of either zero or a positive integer indicates the number of steps already completed. 

• A value of -1 indicates that all the necessary setup steps have been completed, so the 
instruction list does not appear. 

handleDoubleClick()

Availability

Dreamweaver MX

Description

When the user double clicks the node in the tree, the event handler is called to allow editing. This 
function is optional. The function can return false, which indicates that the event handler is 
not handled. In that event, double clicking causes the default behavior, which is expanding or 
collapsing the tree nodes. 

Arguments

componentRec

componentRec is an object that contains the following properties:

• name Name of the tree node item.

• image Optional icon for the tree node item. If omitted, Dreamweaver uses a default icon.

• hasChildren  A Boolean value that indicates whether the tree node item is expandable. If 
true, Dreamweaver displays the plus (+) and minus (-) buttons for the tree node item.
Components 213



• toolTipText Optional tool tip text for the tree node item.

• isCodeViewDraggable A Boolean value that indicates whether the tree node item can be 
dragged and dropped into the code view.

• isDesignViewDraggable A Boolean value that indicates whether the tree node item can be 
dragged and dropped into the design view.

Returns

Dreamweaver expects nothing.

Example

function handleDoubleClick(componentRec)
{
  if (componentRec && 
  ((componentRec.objectType=="Table")||

(componentRec.objectType=="View")))
  {

var objname = componentRec.name;
var connname = componentRec.parent.parent.parent.name;
var sqlstatement = "Select * from " + objname;
MMDB.showResultset(connname,sqlstatement);
return true;

  }
return false;

}

toolbarControls()

Availability

Dreamweaver MX

Description

Every component type returns a list of toolBarButtonRec objects, which represents the toolbar 
icons, in left to right order. Each toolBarButtonRec object contains these properties:

Property Name Description

image Path to image file

disabledImage Optional; path to disabled image looks for the toolbar button

pressedImage Optional; path to pressed image looks for the toolbar button

toolTipText Tooltip for the toolbar button

toolStyle Left /right 

enabled JavaScript code that returns a Boolean value (true or false). The enablers are 
called when the following conditions exist: 
- When dreamweaver.serverComponents.refresh() is called
- When the selection in the tree changes
- When server model changes

command The JavaScript code to execute. The command handler can force a refresh using 
dreamweaver.serverComponents.refresh().

menuId The menu ID for pop-up menu button when a button is clicked. When this ID is 
present, it overrides the command handler. Ideally, they should be mutually 
exclusive. 
Chapter 17214



Arguments

None.

Returns

Dreamweaver expects an array of toolbar buttons in left-to-right order.

Example

function toolbarControls()
{

var toolBarBtnArray = new Array();

var plusButton = new ToolbarControlRec();
plusButton.image= PLUSDROPBUTTONUP;
plusButton.pressedImage= PLUSDROPBUTTONDOWN;
plusButton.disabledImage= "DWWebServicesChoosersContext";
plusButton.toolStyle= "left";
plusButton.toolTipText= MM.MSG_WebServicesAddToolTipText;
plusButton.menuId = "DWWebServicesChoosersContext";
toolBarBtnArray.push(plusButton);

  
var minusButton = new ToolbarControlRec();
minusButton.image= MINUSBUTTONUP;
minusButton.pressedImage= MINUSBUTTONDOWN;
minusButton.disabledImage= MINUSBUTTONDISABLED;
minusButton.toolStyle= "left";
minusButton.toolTipText= MM.MSG_WebServicesDeleteToolTipText;
minusButton.command = "clickedDelete()";
minusButton.enabled = "(dw.serverComponents.getSelectedNode() != null && 
dw.serverComponents.getSelectedNode() && 
(dw.serverComponents.getSelectedNode().objectType==’Root’))";
toolBarBtnArray.push(minusButton);

var editWServiceButton = new ToolbarControlRec();
editWServiceButton.image= EDITWSERVICEBUTTONUP;
editWServiceButton.pressedImage= EDITWSERVICEBUTTONDOWN;
editWServiceButton.disabledImage= EDITWSERVICEBUTTONDISABLED;
editWServiceButton.toolStyle= "right";
editWServiceButton.toolTipText= MM.MSG_WebServicesEditToolTipText ;
editWServiceButton.command = "editWebService()";
editWServiceButton.enabled = "(dw.serverComponents.getSelectedNode() != null 
&& dw.serverComponents.getSelectedNode() && 
(dw.serverComponents.getSelectedNode().objectType==’Root’))";
toolBarBtnArray.push(editWServiceButton);

var proxyButton = new ToolbarControlRec();
proxyButton.image= PROXYBUTTONUP;
proxyButton.pressedImage= PROXYBUTTONDOWN;
proxyButton.disabledImage= PROXYBUTTONDISABLED;
proxyButton.toolStyle= "right";
proxyButton.toolTipText= MM.MSG_WebServicesRegenToolTipText;
proxyButton.command = "reGenerateProxy()";
proxyButton.enabled = "(dw.serverComponents.getSelectedNode() != null && 
dw.serverComponents.getSelectedNode() && 
(dw.serverComponents.getSelectedNode().objectType==’Root’))";
toolBarBtnArray.push(proxyButton);

  
  return toolBarBtnArray;

}

Components 215



Chapter 17216



CHAPTER 18
Server Models

Server models are the technologies that run scripts on a server. When users define a new site, they 
can identify the server model that they want to use at the site level and at the individual document 
level. This server model is used to handle any dynamic elements that the user adds to the document.

Server model configuration files are stored in the Configuration/ServerModels folder. Within 
that folder, each server model has its own HTML file that implements a set of functions that are 
required by the server model.

The Server Model API
You can customize some features of a server model using the functions that are available in the 
Server Model API. 

Dreamweaver MX asks new users to identify server models when they first start Dreamweaver. 
For cases when the user does not identify a server model, you can create a dynamic dialog box that 
prompts the user to complete the necessary steps. This dialog box appears when the user attempts 
to insert a server object. For information on creating such a dialog box, refer to the functions 
“getSetupSteps()” on page 212 and “setupStepsCompleted()” on page 213. 

You might want to create a specialized server model. Macromedia suggests that you create a new 
server model rather than editing any of the ones that come with Dreamweaver MX. (For 
information regarding creating new document types that are supported by your server model, 
refer to “Extensible document types in Dreamweaver” on page 22.) 

When creating a new server model, you need to include an implementation of the 
canRecognizeDocument() function in your server model file. This function tells Dreamweaver 
the level of preference that it should give to your server model for handling that file extension 
when multiple server models claim a particular file extension.

canRecognizeDocument()

Availability

Dreamweaver MX

Description

When opening a document (and when more than one server model claims a file extension), 
Dreamweaver MX calls this function for each of the extension-associated server models to see 
whether any of the functions can identify whether the document is their file. If more than one 
server model claims the file extension, Dreamweaver gives priority to the server model that 
returns the highest integer. 
217



Note: All Dreamweaver MX-defined server models return a value of 1 so third-party server models can override the 
file-extension association.

Arguments

dom

dom is the Macromedia document object, which is returned by the function 
dreamweaver.getDocumentDOM().

Returns

Dreamweaver expects an integer that indicates the priority that the developer gives to the server 
model for the file extension. This function should return a value of -1 if the server model does 
not claim the file extension; otherwise, this function should return a value greater than zero.

Example

In the following example, if the user opens a JavaScript document for the current server model, 
the sample code returns a value of 2. This value lets the developer’s server model take precedence 
over that of Macromedia.

var retVal = -1;
var langRE = /@\s*language\s*=\s*(\"|\’)?javascript(\"|\’)?/i;
// Search for the string language="javascript"
var oHTML = dom.documentElement.outerHTML;
if (oHTML.search(langRE) > -1)

retVal = 2;
return retVal;

getFileExtensions() 

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX

Description

Returns the document file extensions with which a server model can work. For example, the ASP 
server model supports .asp and .htm file extensions. This function returns an array of strings, and 
Dreamweaver uses these strings to populate the Default Page Extension list that is found in the 
App Server category of the Site Definition dialog box.

Note: The Default Page Extension list exists only in Dreamweaver 4 and earlier. For Dreamweaver MX, the Site 
Definition dialog box does not list file extension settings. Instead, Dreamweaver MX reads the Extensions.txt file and 
parses the <documenttype> element in the mmDocumentTypes.xml file. (For more information on these two files 
and the <documenttype> element, see “Extensible document types in Dreamweaver” on page 22.) 

Arguments

None.

Returns

Dreamweaver expects an array of strings that represent the allowed file extensions. 
Chapter 18218



getLanguageSignatures()

Availability

Dreamweaver MX

Description

Returns an object that describes the method and array signatures that the scripting language uses. 
The getLanguageSignatures() function helps the developer map generic signature mapping to 
language-specific mapping for the following elements:

• The function

• Constructors

• Drop code (return values)

• Arrays

• Exceptions

• Data type mappings for primitive data types

The getLanguageSignatures() function returns a map of these signature declarations. 
Extension developers can use this map to generate language-specific code blocks that 
Dreamweaver drops on the page (based on the appropriate server model for the page) when the 
user drags and drops, for example, a Web Services method.

For examples of how to write this function, see the HTML implementation files for the JSP and 
the ASP.Net server models. Server model implementation files are located in the Configuration/
ServerModels folder.

Arguments

None.

Returns

Dreamweaver expects an object that defines the scripting language signatures. This object should 
map the generic signatures to language-specific ones.

getServerExtension()

Availability

Dreamweaver UltraDev 4, deprecated in Dreamweaver MX

Description

Returns the default file extension of files that use the current server model. The serverModel 
object is set to the server model of the currently selected site if no user document is currently 
selected.

Arguments

None.

Returns

Dreamweaver expects a string that represents the supported file extensions. 
Server Models 219



getServerInfo()

Availability

Dreamweaver MX

Description

Returns a JavaScript object, which can be accessed from within the JavaScript code. You can 
retrieve this object by calling the dom.serverModel.getServerInfo() JavaScript function. 
Furthermore, serverName, serverLanguage, and serverVersion are special properties, which 
you can access through these JavaScript functions:

dom.serverModel.getServerName()
dom.serverModel.getServerLanguage()
dom.serverModel.getServerVersion()

Arguments

None.

Returns

Dreamweaver expects an object that contains the properties of your server model.

Example

var obj = new Object();
obj.serverName = "ASP";
obj.serverLanguage = "JavaScript";
obj.serverVersion = "2.0";
...
return obj;

getServerLanguages() 

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX

Description

Returns the supported scripting languages of a server model. This function returns an array of 
strings. Dreamweaver uses these strings to populate the Default Scripting Language list that is 
found in the App Server category of the Site Definition dialog box.

Note: The Default Scripting Language list exists only in Dreamweaver 4 and earlier. For Dreamweaver MX, the Site 
Definition dialog box does not list supported scripting languages nor does Dreamweaver MX use the 
getServerLanguages() function. Dreamweaver MX does not use this function because each server model has 
only one server language in Dreamweaver MX.

In versions of Dreamweaver other than MX, a server model can support multiple scripting 
languages. For example, the ASP server model supports JavaScript and VBScript. 

Note: If you want a file in the ServerFormats folder to apply only to a specific scripting language, add the following 
statement so it is the first line in the HTML file:

<!-- SCRIPTING-LANGUAGE=XXX --> 

In this example, XXX represents the scripting language. This statement causes the server behavior 
to appear in the plus (+) menu of the Server Behaviors panel only when the currently selected 
scripting language is XXX.
Chapter 18220



Arguments

None.

Returns

Dreamweaver expects an array of strings that represent the supported scripting languages. 

getServerModelExtDataNameUD4()

Availability

Dreamweaver MX

Description

Returns the server model implementation name that Dreamweaver should use when accessing 
UltraDev 4 extension data files that reside in the Configurations/ExtensionData folder.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP/JavaScript".

getServerModelDelimiters()

Availability

Dreamweaver MX

Description

Returns the script delimiters that are used by the application server and indicates whether each 
can participate in merging code blocks. You can access this returned value from JavaScript by 
calling the dom.serverModel.getDelimiters() function.

Arguments

None.

Returns

Dreamweaver expects an array of objects where each object contains the following three 
properties: 

• startPattern is a regular expression that matches the opening script delimiter (such as "<%").

• endPattern is a regular expression that matches the closing script delimiter (such as "%>").

• participateInMerge is a Boolean value that specifies whether the content enclosed in the 
listed delimiters should (true) or should not (false) participate in block merging.
Server Models 221



getServerModelDisplayName()

Availability

Dreamweaver MX

Description

Returns the name that should appear in the user interface for this server model. You can access 
this value from JavaScript by calling the dom.serverModel.getDisplayName() function.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP JavaScript".

getServerModelFolderName()

Availability

Dreamweaver MX

Description

Returns the folder name to be used for this server model within the Configuration folder. You can 
access this value from JavaScript by calling the dom.serverModel.getFolderName() function.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP_JS".

getServerSupportsCharset()

Availability

Dreamweaver MX

Description

Returns true if the current server supports the given character set. From JavaScript, you can 
determine whether the server model supports a particular character set by calling the 
dom.serverModel.getServerSupportsCharset() function.

Arguments

metaCharSetString

metaCharSetString is a string that holds the value of the documents "charset=" attribute.

Returns

Dreamweaver expects a Boolean value.
Chapter 18222



getVersionArray() 

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX

Description

Provides a mapping of server technologies to version numbers. This function is called by 
dom.serverModel.getServerVersion(). 

Arguments

None.

Returns

Dreamweaver expects an array of version objects, each with a version name and version value, as 
listed in the following examples:

• ASP version 2.0

• ADODB version 2.1
Server Models 223



Chapter 18224



CHAPTER 19
Data Translators

Data translators translate specialized markup—server-side includes, conditional JavaScript 
statements, or other code such as PHP3, JSP, CFML, or ASP—into code that can be read and 
displayed by Dreamweaver. In Dreamweaver, you can translate attributes within tags as well as 
entire tags or blocks of code. All data translators—block/tag or attribute—are HTML files.

Translated tags or blocks of code must be enclosed in locked regions to preserve the original 
markup. Translated attributes do not require locks, which makes inspecting the tags that contain 
them a simple process.

Data translation—especially for entire tags or blocks of code—might involve complex operations 
that either cannot be done with JavaScript or that can be done more efficiently using C. If you are 
familiar with C or C++, you should also read “C-Level Extensibility” on page 251.

How data translators work
Dreamweaver handles all translator files the same way, regardless of whether they translate entire 
tags or only attributes. At startup, Dreamweaver reads all the files in the Configuration/
Translators folder and calls the getTranslatorInfo() function to obtain information about the 
translator. Dreamweaver ignores any file in which getTranslatorInfo() does not exist or 
contains an error that causes it to be undefined.

Note: To prevent JavaScript errors from interfering with startup, errors in any translator file are reported only after 
all translators are loaded. For more information on debugging translators, see “Finding bugs in your translator” on 
page 241.

Dreamweaver also calls the translateMarkup() function in all applicable translator files (as 
specified in the Translation preferences) whenever the user might have added new or changed 
existing content that needs translation. Dreamweaver calls translateMarkup() when the user 
performs one of the following actions:

• Opens a file in Dreamweaver

• Switches back to Design view after making changes in the HTML panel or in Code view

• Changes the properties of an object in the current document

• Inserts an object (using either the Objects panel or the Insert menu)

• Refreshes the current document after making changes to it in another application

• Applies a template to the document

• Pastes or drags content into or within the Document window

• Saves changes to a dependent file
225



• Invokes a command, behavior, server behavior, Property inspector, or other extension that sets 
the innerHTML or outerHTML property of any tag object or the data property of any comment 
object

• Selects File > Convert > 3.0 Browser Compatible

• Selects Modify > Convert > Convert Tables to Layers

• Selects Modify > Convert > Convert Layers to Tables

• Changes a tag or attribute in the Quick tag editor and presses Tab or Enter

getTranslatorInfo()

Description

Provides information about the translator and the files it can affect.

Arguments

None.

Returns

An array of strings. The elements of the array must appear in the following order:

1 translatorClass uniquely identifies the translator. This string must begin with a letter and 
can contain only alphanumeric characters, hyphens (-), and underscores (_).

2 title describes the translator in no more than 40 characters. 

3 nExtensions specifies the number of file extensions to follow. If nExtensions is zero, the 
translator can run on any file. If nExtensions is zero, nRegExps is the next element in the 
array.

4 extension specifies a file extension (for example, "htm" or "SHTML") that works with this 
translator. This string is case-insensitive and should not contain a leading period. The array 
should contain the same number of extension elements as are specified in nExtensions.

5 nRegExps specifies the number of regular expressions that follow. If nRegExps is zero, 
runDefault is the next element in the array.

6 regExps specifies a regular expression that you can check. The array should contain the same 
number of regExps elements as are specified in nRegExps, and at least one of the regExps 
must match a piece of the document’s source code before the translator can act on a file.
Chapter 19226



7 runDefault specifies when this translator executes. The following table lists the possible values:

If you set runDefault to "byExtension" but do not specify any extensions (see step 4), the 
effect is the same as setting "allFiles". If you set runDefault to "byExpression" but do 
not specify any expressions (see regExps, above), the effect is the same as setting "noFiles". 

• priority specifies the default priority for running this translator. The priority is a number 
between 0 and 100. If you do not specify a priority, the default priority is 100. The highest 
priority is 0 and 100 is lowest. When multiple translators apply to a document, this setting 
controls the order in which the translators are applied. The highest priority is applied first. 
When multiple translators have the same priority, they are applied in alphabetical order by 
translatorClass.

Example

The following instance of getTranslatorInfo() gives information about a translator for 
server-side includes:

function getTranslatorInfo(){
var transArray = new Array(11);

  
transArray[0] = "SSI";
transArray[1] = "Server-Side Includes";
transArray[2] = "4";
transArray[3] = "htm";
transArray[4] = "stm";
transArray[5] = "html";
transArray[6] = "shtml";
transArray[7] = "2";
transArray[8] = "<!--#include file";
transArray[9] = "<!--#include virtual";
transArray[10] = "byExtension";
transArray[11] = "50";

return transArray;
}

Value Description

"allFiles" Sets the translator to always execute

"noFiles" Sets the translator to never execute

"byExtension" Sets the translator to execute for files that have one of the file extensions that are 
specified in the extension

"byExpression" Sets the translator to execute if the document contains a match for one of the 
specified regular expressions

"bystring" Sets the translator to execute if the document contains a match for one of the 
specified strings
Data Translators 227



translateMarkup()

Description

Performs the translation.

Arguments

docName, siteRoot, docContent

• docName is a string that contains the file:// URL for the document to be translated.

• siteRoot is a string that contains the file:// URL for the root of the site that contains the 
document to be translated. If the document is outside a site, this string might be empty.

• docContent is a string that contains the contents of the document.

Returns

A string that contains the translated document or an empty string if nothing is translated.

Example

The following instance of translateMarkup() calls the C function translateASP(), which is 
contained in a DLL (Windows) or a code library (Macintosh) called ASPTrans:

function translateMarkup(docName, siteRoot, docContent){
var translatedString = "";
if (docContent.length > 0){
translatedString = ASPTrans.translateASP(docName, siteRoot, ¬
docContent);
}
return translatedString;

}

For an all-JavaScript example, see “A simple attribute translator example” on page 230 or “A 
simple block/tag translator example” on page 235.

liveDataTranslateMarkup function()

Availability

Dreamweaver UltraDev 1

Description

Translates documents when users are in the Live Data window. When the user chooses the 
View > Live Data menu item or clicks the Refresh button, Dreamweaver calls the 
liveDataTranslateMarkup() function instead of the translateMarkup() function. 

Arguments

docName, siteRoot, docContent

• docName is a string that contains the file:// URL for the document to be translated.

• siteRoot is a string that contains the file:// URL for the root of the site that contains the 
document to be translated. If the document is outside a site, this string might be empty.

• docContent is a string that contains the contents of the document.
Chapter 19228



Returns

A string that contains the translated document or an empty string if nothing is translated.

Example

The following instance of liveDataTranslateMarkup() calls the C function translateASP(), 
which is contained in a DLL (Windows) or a code library (Macintosh) called ASPTrans:

function liveDataTranslateMarkup(docName, siteRoot, docContent){
var translatedString = "";
if (docContent.length > 0){
translatedString = ASPTrans.translateASP(docName, siteRoot, docContent);
}
return translatedString;

}

Determining what kind of translator to use
All translators are the same to a certain extent: They must contain the getTranslatorInfo() 
and translateMarkup() functions, and they must reside in the Configuration/Translators 
folder. They differ, however, in the kind of code that they insert into the user’s document and in 
how that code must be inspected.

• To translate small pieces of server markup that determine attribute values or that conditionally 
add attributes to a standard HTML tag, write an attribute translator. Standard HTML tags 
that contain translated attributes can be inspected with the Property inspectors that are built 
into Dreamweaver. It is not necessary to write a custom Property inspector (see “Adding a 
translated attribute to a tag” on page 229).

• To translate an entire tag (for example, a server-side include) or a block of code (for example, 
JavaScript, ColdFusion, PHP, or other scripting), write a block/tag translator. The code that is 
generated by a block/tag translator cannot be inspected with the Property inspectors that are 
built into Dreamweaver. You must write a custom Property inspector for the translated 
content if you want users to be able to change the properties of the original code (see “Locking 
translated tags or blocks of code” on page 234).

Adding a translated attribute to a tag
Attribute translation relies heavily on the ability of the Dreamweaver parser to ignore server 
markup. Dreamweaver already ignores the most common kinds of server markup (including ASP, 
CFML, and PHP) by default; if you use server markup that has different start and end markers, 
you must modify the third-party tag database to ensure that your translator works properly. For 
more information on modifying the third-party tag database, see “Customizing Dreamweaver” in 
Using Dreamweaver.

When Dreamweaver handles the preservation of the original server markup, the translator 
generates a valid attribute value that can be viewed in the Document window. (If you use server 
markup only for attributes that do not have a user-visible effect, you do not need a translator.) 

The translator creates an attribute value that has a visible effect in the Document window by 
adding a special attribute, mmTranslatedValue, to the tag that contains the server markup. The 
mmTranslatedValue attribute and its value are not visible in the HTML panel or in Code view, 
nor are they saved with the document.
Data Translators 229



The mmTranslatedValue attribute must be unique within the tag. If it is likely that your 
translator needs to translate more than one attribute in a single tag, you must add a routine in the 
translator that appends numbers to mmTranslatedValue (for example, mmTranslatedValue1, 
mmTranslatedValue2, and so on). 

The value of the mmTranslatedValue attribute must be a URL-encoded string that contains at 
least one valid attribute/value pair. This means that 
mmTranslatedValue="src=%22open.jpg%22" is a valid translation for both src="<? if 
(dayType == weekday) then open.jpg else closed.jpg" ?> and <? if (dayType == 
weekday) then src="open.jpg" else src="closed.jpg" ?>.  
mmTranslatedValue="%22open.jpg%22" is not valid for either example because it contains only 
the value, not the attribute. 

Translating more than one attribute at a time

The mmTranslatedValue can contain more than one valid attribute/value pair. Consider the 
following untranslated code:

<img <? if (dayType==weekday) then src="open.jpg" width="320" ¬
height="100" else

src="closed.jpg" width="100" height="320" ?> alt="We're open 24 ¬
hours a day from
12:01am Monday until 11:59pm Friday">

The following example shows how the translated markup might appear:

<img <? if (dayType==weekday) then src="open.jpg" width="320" ¬
height="100" else
src="closed.jpg" width="100" height="320" ?>
mmTranslatedValue="src=%22open.jpg%22 width=%22320%22 ¬

height=%22100%22" 
alt="We're open 24 hours a day from 12:01am Monday until 11:59pm ¬
Friday">

Notice that the spaces between the attribute/value pairs in the mmTranslatedValue are not 
encoded. Because Dreamweaver looks for these spaces when it attempts to render the translated 
value, each attribute/value pair in the mmTranslatedValue must be encoded separately and then 
pieced back together to form the full mmTranslatedValue. For an example of how to do this, see 
“A simple attribute translator example” on page 230.

A simple attribute translator example

To better understand attribute translation, it’s helpful to look at an example. The following 
translator is “Pound Conditional” (Poco) markup, a syntax that’s somewhat similar to ASP or 
PHP. The first step in making this translator work properly is to create a tagspec for Poco 
markup, which prevents Dreamweaver from parsing the untranslated Poco statements.

The following example shows the tagspec for Poco markup:

<tagspec tag_name="poco" start_string="<#" end_string="#>"
detect_in_attribute="true" icon="poco.gif" icon_width="17" 
icon_height="15"></tagspec>
Chapter 19230



The poco.xml file that contains this tagspec is stored in the Configuration/ThirdPartyTags folder, 
along with the icon for Poco tags.

<html>
<head>
<title>Conditional Translator</title>
<meta http-equiv="Content-Type" content="text/html; charset=">
<script language="JavaScript">

/*************************************************************
 * This translator handles the following statement syntaxes: *
 * <# if (condition) then foo else bar #>                    *
 * <# if (condition) then att="foo" else att="bar" #>        *
 * <# if (condition) then att1="foo" att2="jinkies"          *
 * att3="jeepers" else att1="bar" att2="zoinks" #>           *
 *                                                           *
 * It does not handle statements with no else clause.        *
 *************************************************************/

var count = 1;

function translateMarkup(docNameStr, siteRootStr, inStr){
var count = 1;        

// Counter to ensure unique mmTranslatedValues
var outStr = inStr;   

// String that will be manipulated
var spacer = "";      

// String to manage space between encoded attributes
var start = inStr.indexOf(’<# if’); // 1st instance of Pound Conditional code

// Declared but not initalized. //
var attAndValue;      

// Boolean indicating whether the attribute is part of
// the conditional statement

var trueStart;        
// The beginning of the true case

var falseStart;       
// The beginning of the false case

var trueValue;        
// The HTML that would render in the true case

var attName;          
// The name of the attribute that is being’
// set conditionally.

var equalSign;        
// The position of the equal sign just to the
// left of the <#, if there is one

var transAtt;        
// The entire translated attribute

var transValue;       
// The value that must be URL-encoded

var back3FromStart;   
// Three characters back from the start position
// (used to find equal sign to the left of <#

var tokens;           
// An array of all the attributes set in the true case

var end;              
// The end of the current conditional statement.

 
 

// As long as there’s still a <# conditional that hasn’t been 
// translated

while (start != -1){
Data Translators 231



   back3FromStart = start-3;
   end = outStr.indexOf(’ #>’,start);
   equalSign = outStr.indexOf(’="<# if’,back3FromStart);
   attAndValue = (equalSign != -1)?false:true;
   trueStart = outStr.indexOf(’then’, start);
   falseStart = outStr.indexOf(’ else’, start);
   trueValue = outStr.substring(trueStart+5, falseStart);
   tokens = dreamweaver.getTokens(trueValue,’ ’);
   
   
   // If attAndValue is false, find out what attribute you’re
   // translating by backing up from the equal sign to the
   // first space. The substring between the space and the
   // equal sign is the attribute.

if (!attAndValue){
     for (var i=equalSign; i > 0; i--){
       if (outStr.charAt(i) == " "){
         attName = outStr.substring(i+1,equalSign);
         break;
       }
     }
     transValue = attName + ’="’ + trueValue + ’"’;
     transAtt = ' mmTranslatedValue' + count + '="' + ¬
     escape(transValue) + '"';
     outStr = outStr.substring(0,end+4) + transAtt + ¬
     outStr.substring(end+4);
 
   // If attAndValue is true, and tokens is greater than
   // 1, then trueValue is a series of attribute/value
   // pairs, not just one. In that case, each attribute/value
   // pair must be encoded separately and then added back
   // together to make the translated value.
   }else if (tokens.length > 1){
     transAtt = ' mmTranslatedValue' + count + '="'
     for (var j=0; j < tokens.length; j++){
       tokens[j] = escape(tokens[j]);
       if (j>0){
         spacer=" ";
       }
       transAtt += spacer + tokens[j]; 
     }
     transAtt += '"';
     outStr = outStr.substring(0,end+3) + transAtt + ¬
     outStr.substring(end+3)

   // If attAndValue is true and tokens is not greater
   // than 1, then trueValue is a single attribute/value pair.
   // This is the simplest case, where all that is necessary is
   // to encode trueValue.
   }else{
     transValue = trueValue;
     transAtt = ' mmTranslatedValue' + count + '="' + ¬
     escape(transValue) + '"';
     outStr = outStr.substring(0,end+3) + transAtt + ¬
     outStr.substring(end+3);
   }
   
   // Increment the counter so that the next instance
   // of mmTranslatedValue will have a unique name, and
   // then find the next <# conditional in the code.
   count++;
   start = outStr.indexOf('<# if',end);
Chapter 19232



  }
 
 // Return the translated string.
 return outStr
}

function getTranslatorInfo(){
 returnArray = new Array(7);
 
 returnArray[0] = "Pound_Conditional";     // The translatorClass
 returnArray[1] = "Pound Conditional Translator"; // The title
 returnArray[2] = "2";               // The number of extensions
 returnArray[3] = "html";            // The first extension
 returnArray[4] = "htm";             // The second extension
 returnArray[5] = "1";               // The number of expressions
 returnArray[6] = "<#";              // The first expression
 returnArray[7] = "byString";              // 
 returnArray[8] = "50";              // 

   
 return returnArray
}

</script>
</head>

<body>
</body>
</html>

Inspecting translated attributes

When server markup specifies a single attribute and the attribute is represented in a Property 
inspector, Dreamweaver displays the server markup in the Property inspector.

The markup appears whether a translator is associated with it. The translator runs whenever the 
user edits the server markup that is shown in the panel.

Note: The lightning bolt icon does not appear when text or table cells, rows, or columns are selected. Translation 
continues if the user edits server markup in the panel, and a translator exists to handle that type of markup.

When server markup controls more than one attribute in a tag, the server markup does not appear 
in the Property inspector. However, the lightning bolt shows that translated markup exists for the 
selected element.
Data Translators 233



The fields in the Property inspector are still editable; users can enter values for attributes that 
might be controlled by server markup, which results in duplicate attributes. If both a translated 
value and a regular value are set for a particular attribute, Dreamweaver displays the translated 
value in the Document window. You must decide whether your translator looks for duplicate 
attributes and remove them.

Locking translated tags or blocks of code
In most cases, you want a translator to change markup so that Dreamweaver can display it, but 
you want the original markup—not the changes—to be saved. To address this need, 
Dreamweaver provides special XML tags in which to wrap translated content and to refer to the 
original code. 

When you use these XML tags, the contents of the original attributes are duplicated in Code 
view. If the file is saved, the original, untranslated markup is written to the file. The untranslated 
content is what Dreamweaver displays in Code view.

The syntax of the XML tags is shown in the following example:

<MM:BeginLock translatorClass="translatorClass" ¬
type="tagNameOrType" depFiles="dependentFilesList" ¬
orig="encodedOrignalMarkup">
Translated content
<MM:EndLock>

where:

translatorClass is the unique identifier for the translator (the first string in the array that 
getTranslatorInfo() returns).

tagNameOrType is a string that identifies the type of markup (or the tag name that is associated 
with the markup) that is contained in the lock. The string can contain only alphanumeric, 
hyphen (-), or underscore (_) characters. You can check this value in the 
canInspectSelection() function of a custom Property inspector to determine if the Property 
inspector is the right one for the content. For more information, see “Creating Property 
inspectors for locked content” on page 239. Locked content cannot be inspected by any of the 
Dreamweaver built-in Property inspectors. For example, specifying type="IMG" does not make 
the Image panel appear.

dependentFilesList is a string that contains a comma-separated list of files on which the locked 
markup depends. Files are referenced as URLs, relative to the user’s document. If the user updates 
one of the files in the dependentFilesList, Dreamweaver automatically retranslates the content 
in the document that contains the list.

encodedOriginalMarkup is a string that contains the original, untranslated markup, encoded 
using a small subset of URL encoding (use %22 for ", %3C for <, %3E for >, and %25 for 
%). The quickest way to URL-encode a string is to use the escape() method. For example, if 
myString equals ’<img src="foo.gif">’, escape(myString) returns 
%3Cimg%20src=%22foo.gif%22%3E.
Chapter 19234



The following example shows the locked portion of code that might be generated from the 
translation of the server-side include <!--#include virtual="/footer.html" -->:

<MM:BeginLock translatorClass="MM_SSI" type="ssi" ¬
depFiles="C:\sites\webdev\footer.html" orig="%3C!--#include ¬
virtual=%22/footer.html%22%20--%3E">
<!-- begin footer -->
<CENTER>
<HR SIZE=1 NOSHADE WIDTH=100%>

<BR>

[<A TARGET="_top" HREF="/">home</A>]
[<A TARGET="_top" HREF="/products/">products</A>]
[<A TARGET="_top" HREF="/services/">services</A>]
[<A TARGET="_top" HREF="/support/">support</A>]
[<A TARGET="_top" HREF="/company/">about us</A>]
[<A TARGET="_top" HREF="/help/">help</A>] 
</CENTER>
<!-- end footer -->
<MM:EndLock>

A simple block/tag translator example

To better understand translation, it’s helpful to look at a translator that is written entirely in 
JavaScript (that is, one that does not rely on a C library for any functionality). The following 
translator would be more efficient if it was written in C, but the JavaScript version is simpler, 
which makes it perfect for demonstrating how translators work.

As with most translators, this one is designed to mimic server behavior. Assume that your web 
server is configured to replace the KENT tag with a different picture of an engineer, depending on 
the day of the week, the time of day, and the user’s platform. The translator does the same thing, 
only locally.

<html>
<head>
<title>Kent Tag Translator</title>
<meta http-equiv="Content-Type" content="text/html; charset=">
<script language="JavaScript">
/**********************************************************
 * The getTranslatorInfo() function provides information  *
 * about the translator, including its class and name,    *
 * the types of documents that are likely to contain the  *
 * markup to be translated, the regular expressions that  *
 * a document containing the markup to be translated      *
 * would match (whether the translator should run on all *
 * files, no files, in files with the specified *
 * extensions, or in files matching the specified *
 * expressions). *
 **********************************************************/
function getTranslatorInfo(){
  //Create a new array with 6 slots in it
  returnArray = new Array(6);
Data Translators 235



  
  returnArray[0] = "DREAMWEAVER_TEAM"// The translatorClass
  returnArray[1] = "Kent Tags"// The title
  returnArray[2] = "0" // The number of extensions
  returnArray[3] = "1"// The number of expressions
  returnArray[4] = "<kent"// Expression
  returnArray[5] = "byExpression"// run if the file contains "<kent"

return returnArray; 
}

/************************************************************************
* The translateMarkup() function performs the actual translation.         *
* In this translator, the translateMarkup() function is written           *
* entirely in JavaScript (that is, it does not rely on a C library) --    *
* and it’s also extremely inefficient. It’s a simple example, however,    *
* which is good for learning.                                             *
**************************************************************************/
function translateMarkup(docNameStr, siteRootStr, inStr){
  var outStr = "";                 // The string to be returned after 

translation
  var start = inStr.indexOf(’<kent>’);     // The first position of the KENT 

tag
                                           // in the document.
  var replCode = replaceKentTag();        // Calls the replaceKentTag() 

function
                                        // to get the code that will replace KENT.
  var outStr = "";                 // The string to be returned after 

translation

   //If the document does not contain any content, terminate the translation.
  if ( inStr.length <= 0 ){
     return "";
  }
  
  // As long as start, which is equal to the location in inStr of the
  // KENT tag, is not equal to -1 (that is, as long as there is another
  // KENT tag in the document)
  while (start != -1){
     // Copy everything up to the start of the KENT tag.
     // This is very important, as translators should never change
     // anything other than the markup that is to be translated.
     outStr = inStr.substring(0, start);
     // Replace the KENT tag with the translated HTML, wrapped in special 
     // locking tags. For more information on the replacement operation, see 
     // the comments in the replaceKentTag() function.
     outStr = outStr + replCode;

     // Copy everything after the KENT tag.
     outStr = outStr + inStr.substring(start+6);

     // Use the string you just created for the next trip through
     // the document. This is the most inefficient part of all.
     inStr = outStr;
     start = inStr.indexOf(’<kent>’);

  }
  // When there are no more KENT tags in the document, return outStr.
  return outStr;
}

Chapter 19236



/**************************************************************
* The replaceKentTag() function assembles the HTML that will  *
* replace the KENT tag and the special locking tags that will *
* surround the HTML. It calls the getImage() function to      *
* determine the SRC of the IMG tag.                           *
**************************************************************/
function replaceKentTag(){
  // The image to display.
  var image = getImage();   
  // The location of the image on the local disk.
  var depFiles = dreamweaver.getSiteRoot() + image;
  // The IMG tag that will be inserted between the lock tags.   
  var imgTag = ’<IMG SRC="/’ + image + ’" WIDTH="320" HEIGHT="240" 

ALT="Kent">\n’;
  // 1st part of the opening lock tag. The remainder of the tag is assembled 

below.
  var start = ’<MM:BeginLock translatorClass="DREAMWEAVER_TEAM" type="kent"’;
  // The closing lock tag.
  var end = ’<MM:EndLock>’;
     
  //Assemble the lock tags and the replacement HTML.
  var replCode = start + ’ depFiles="’ + depFiles + ’"’;
  replCode = replCode + ’ orig="%3Ckent%3E">\n’;
  replCode = replCode + imgTag;
  replCode = replCode + end;
  
  return replCode;
}

/******************************************************************
 * The getImage() function determines which image to display      *
 * based on the day of the week, the time of day and the          *
 * user’s platform. The day and time are figured based on UTC     *
 * time (Greenwich Mean Time) minus 8 hours, which gives          *
 * Pacific Standard Time (PST). No allowance is made for Daylight *
 * Savings Time in this routine.                                  *
******************************************************************/
function getImage(){
  var today = new Date();            // Today’s date & time.
  var day = today.getUTCDay();       // Day of the week in the GMT time zone.
                                     // 0=Sunday, 1=Monday, and so on.
  var hour = today.getUTCHours();    // The current hour in GMT, based on the
                                     // 24-hour clock.
  var SFhour = hour - 8;             // The time in San Francisco, based on the
                                     // 24-hour clock.
  var platform = navigator.platform; // User’s platform. All Windows machines
                                     // are identified by Dreamweaver as "Win32",
                                     // all Macs as "MacPPC".
  var imageRef;                      // The image reference to be returned.
// If SFhour is negative, you have two adjustments to make. 
   // First, subtract one from the day count because it is already the wee 
   // hours of the next day in GMT. Second, add SFhour to 24 to
   // give a valid hour in the 24-hour clock. 
   if (SFhour < 0){
     day = day - 1;
       // The day count back one would make it negative, and it’s Saturday,
       // so set the count to 6.
       if (day < 0){
           day = 6;
       }
     SFhour = SFhour + 24;
   }
Data Translators 237



   
  // Now determine which photo to show based on whether it’s a workday or a 
  // weekend; what time it is; and, if it’s a time and day when Kent is 
  // working, what platform the user is on.
  
  //If it’s not Sunday
  if (day != 0){
     //And it’s between 10am and noon, inclusive
     if (SFhour >= 10 && SFhour <= 12){
        imageRef = "images/kent_tiredAndIrritated.jpg";
      //Or else it’s between 1pm and 3pm, inclusive
     }else if (SFhour >= 13 && SFhour <= 15){
        imageRef =  "images/kent_hungry.jpg";
     //Or else it’s between 4pm and 5pm, inclusive
     }else if (SFhour >= 16 && SFhour <= 17){
        //If user is on Mac, show Kent working on Mac
        if (platform == "MacPPC"){ 
           imageRef = "images/kent_gettingStartedOnMac.jpg";
        //If user is on Win, show Kent working on Win
        }else{
           imageRef = "images/kent_gettingStartedOnWin.jpg";
        }
     //Or else it’s after 6pm but before the stroke of midnight
     }else if (SFhour >= 18){
         //If it’s Saturday
         if (day == 6){
           imageRef = "images/kent_dancing.jpg";
        //If it’s not Saturday, check the user’s platform
        }else if (platform == "MacPPC"){ 
           imageRef = "images/kent_hardAtWorkOnMac.jpg";
        }else{
           imageRef = "images/kent_hardAtWorkOnWin.jpg";
        }
     }else{
        imageRef = "images/kent_sleeping.jpg";
     }
  //If it’s after midnight and before 10am, or anytime on Sunday
  }else{
     imageRef = "images/kent_sleeping.jpg";
  }
  
  return imageRef;
}

</script>
</head>

<body>
</body>
</html>
Chapter 19238



Creating Property inspectors for locked content

After you’ve created a translator, you need to create a Property inspector for the content so the 
user can change its properties (for example, the file to be included or one of the conditions in a 
conditional statement). Inspecting translated content is a unique problem for several reasons:

• The user might want to change the properties of the translated content, and those changes 
must be reflected in the untranslated content.

• The DOM contains the translated content (that is, the lock tags and the tags they surround are 
nodes in the DOM), but the outerHTML property of the documentElement and the 
dreamweaver.getSelection() and dreamweaver.nodeToOffsets() functions act on the 
untranslated source.

• The tags you inspect are different before and after translation.

A Property inspector for the HAPPY tag might have a comment that looks similar to the following 
code:

<!-- tag:HAPPY,priority:5,selection:exact,hline,vline, attrName:xxx,¬ 
attrValue:yyy -->

The Property inspector for the translated HAPPY tag, however, would have a comment that looks 
similar to the following code:

<!-- tag:*LOCKED*,priority:5,selection:within,hline,vline -->

The canInspectSelection() function for the untranslated HAPPY Property inspector is simple: 
Because the selection type is exact, it can return true without further analysis. For the translated 
HAPPY Property inspector, this function is more complicated; the keyword *LOCKED* indicates 
that the Property inspector is appropriate when the selection is within a locked region, but 
because a document can have several locked regions, further checks must be performed to 
determine if the Property inspector matches this particular locked region.

Another problem is inherent in inspecting translated content. When you call 
dom.getSelection(), the values that return by default are offsets into the untranslated source. 
To expand the selection properly so that the locked region (and only the locked region) is 
selected, use the following method:

var currentDOM = dw.getDocumentDOM();
var offsets = currentDOM.getSelection();
var theSelection = currentDOM.offsetsToNode(offsets[0],offsets[0]+1);

Using offsets[0]+1 as the second argument ensures that you remain within the opening lock 
tag when you convert the offsets to a node. If you use offsets[1] as the second argument, you 
risk selecting the node above the lock.

After you make the selection (after ensuring that its nodeType is node.ELEMENT_NODE), you can 
inspect the type attribute to see if the locked region matches this Property inspector, as shown in 
the following example:

if (theSelection.nodeType == node.ELEMENT_NODE && ¬
theSelection.getAttribute('type') == 'happy'){

return true;
}else{

return false
}

Data Translators 239



To populate the fields in the Property inspector for the translated tag, you must parse the value of 
the orig attribute. For example, if the untranslated code is <HAPPY TIME="22"> and the Property 
inspector has a field that is labeled Time, you must extract the value of the TIME attribute from 
the orig string.

function inspectSelection() {
var currentDOM = dw.getDocumentDOM();
var currSelection = currentDOM.getSelection();
var theObj = currentDOM.offsetsToNode¬
(curSelection[0],curSelection[0]+1);

if (theObj.nodeType != Node.ELEMENT_NODE) {
return;

}

// To convert the encoded characters back to their
// original values, use the unescape() method.
var origAtt = unescape(theObj.getAttribute("ORIG"));

  
// Convert the string to lower case for processing
var origAttLC = origAtt.toLowerCase();

var timeStart = origAttLC.indexOf('time="');
var timeEnd = origAttLC.indexOf('"',timeStart+6);
var timeValue = origAtt.substring(timeStart+6,timeEnd);

document.layers['timelayer'].document.timeForm.timefield.¬
value = timeValue;

}

After you parse the orig attribute in order to populate the fields in the Property inspector for the 
translated tag, your next step is probably to set the value of the orig attribute if the user changes 
the value in any of the fields. You might find restrictions against making changes in a locked 
region. You can avoid this problem by changing the original markup and retranslating.
Chapter 19240



The Property inspector for translated server-side includes (Configuration/Inspectors/
ssi_translated.js) demonstrates this technique in its setComment() function. Rather than 
rewriting the orig attribute, the Property inspector assembles a new SSI comment. It inserts that 
comment into the document in place of the old one by rewriting the entire document contents, 
which generates a new orig attribute. The following code summarizes this technique:

// Assemble the new include comment. radioStr and URL are 
// variables defined earlier in the code.
newInc = "<!--#include " + radioStr + "=" + '"' + URL + '"' ¬
+" -->";

// Get the contents of the document.
var entireDocObj = dreamweaver.getDocumentDOM();
var docSrc = entireDocObj.documentElement.outerHTML;

// Store everything up to the SSI comment and everything after
// the SSI comment in the beforeSelStr and afterSelStr variables.
var beforeSelStr = docSrc.substring(0, curSelection[0] );
var afterSelStr  = docSrc.substring(curSelection[1]);

// Assemble the new contents of the document.
docSrc = beforeSelStr + newInc + afterSelStr;

// Set the outerHTML of the HTML tag (represented by
// the documentElement object) to the new contents,
// and then set the selection back to the locked region
// surrounding the SSI comment.
entireDocObj.documentElement.outerHTML = docSrc;
entireDocObj.setSelection(curSelection[0], curSelection[0]+1);

Finding bugs in your translator
If the translateMarkup() function contains certain types of errors, the translator loads properly, 
but it fails silently when invoked. Although failing silently prevents Dreamweaver from becoming 
unstable, it can hinder development, especially when you need to find one small syntax error in 
multiple lines of code. 

If your translator fails, one effective debugging method is to turn the translator into a command, 
as described in the following steps:

1 Copy the entire contents of the translator file to a new document, and save it in the 
Configuration/Commands folder inside the Dreamweaver application folder. 

2 At the top of the document, between the SCRIPT tags, add the following function:

function commandButtons(){
return new Array( "OK","translateMarkup(dreamweaver.¬
getDocumentPath('document'), dreamweaver.getSiteRoot(), ¬
dreamweaver.getDocumentDOM().documentElement.outerHTML); ¬
window.close()", "Cancel", "window.close()");

}

Data Translators 241



3 At the end of the translateMarkup() function, comment out the return 
whateverTheReturnValueIs line, and replace it with 
dreamweaver.getDocumentDOM().documentElement.outerHTML = 
whateverTheReturnValueIs:

// return theCode;
dreamweaver.getDocumentDOM().documentElement.outerHTML = ¬
theCode;

} 
/* end of translateMarkup() */

4 In the BODY of the document, add a form with no text boxes:

<body>
<form>
Hello.
</form>
</body>

5 Restart Dreamweaver and select your translator command from the Commands menu. When 
you click OK, the translateMarkup() function is called, simulating translation.

If no error message appears and translation still fails, you probably have a logic error in your code. 

6 Add alert() statements in strategic spots throughout the translateMarkup() function so 
you can make sure you’re getting the proper branches and so you can check the values of 
variables and properties at different points:

for (var i=0; i< foo.length; i++){
alert("we're at the top of foo.length array, and the value ¬
of i is " + i);
/* rest of loop */

}

7 After adding in the alert() statements, choose your command from the Commands menu, 
click Cancel, and choose it again. This reloads the command file and incorporates your changes.
Chapter 19242



CHAPTER 20
JavaScript Debugger Modules

A JavaScript Debugger module is an extensibility module that inserts special code into a 
document so the code can interface with the JavaScript Debugger. The modules are located with 
the Dreamweaver Program Files in the Configuration/Debugger subfolder. These modules insert 
specific JavaScript and HTML into a working document to create a “debug version” of the 
document the next time that the JavaScript Debugger runs. The debug version is simply a set of 
temporary replicated files for the HTML document and each external JavaScript file, created by 
Macromedia Dreamweaver MX and saved in the current working folder. The debug version of 
the HTML file appears in the browser. The JavaScript that is inserted into the temporary files, 
called instrumentation, communicates with the Dreamweaver JavaScript Debugger as the 
JavaScript executes in the browser.

For information about JavaScript Debugger API Commands, see “JavaScript debugger functions” 
on page 498.

How the JavaScript Debugger module works
Dreamweaver comes with two JavaScript Debugger modules, one for each supported browser, 
Netscape Navigator and Microsoft Internet Explorer. To provide support for a different browser, 
you must create a new module and use dom.instrumentDocument and 
dreamweaver.startDebugger to debug the document in that browser.

When you call dom.instrumentDocument, the specified module receives callbacks as 
Dreamweaver parses the JavaScript in the document. So, for example, you could create a 
JavaScript Debugger module that inserts comments or records information about the JavaScript 
code, instead of inserting debugging enhancements.

When dom.instrumentDocument is called with a specific module, the following steps occur:

1 Dreamweaver calls getIncludeFiles() in the module. This function returns the list of files 
that will be referenced from the HTML instrumentation code that is returned from 
getHeadInstrument() and getBodyInstrument(), which are called in steps 13 and 14. The 
include files can be any type of file, such as an external JavaScript file, JavaApplet, or ActiveX 
control. All the files must be in the Configuration/Debugger subfolder with the module. 
Dreamweaver will copy the include files to the directory that contains the file being debugged, 
and then will delete the include files from that directory when Dreamweaver exits.

2 Next, the HTML document is scanned for script tags and event handlers. The code inside the 
script tag, in an external JavaScript file or in an event handler, is called a block. 

Note: An external JavaScript file is a file that is specified as the src attribute of a SCRIPT tag. 

3 Dreamweaver parses script tags in the HEAD section first.
243



4 When Dreamweaver finds a script tag or event handler, it calls the startBlock() function of 
the module and passes in the name of the file and the line and character offsets from the 
beginning of the file.

5 Dreamweaver begins parsing the JavaScript code in the block.

6 When Dreamweaver finds a JavaScript statement, such as a variable declaration, it calls 
getStepInstrument(), passing the line and character offsets and other information. The 
module returns a string of JavaScript code that is inserted before the statement. You must take 
care to insert valid JavaScript code. For each call to getStepInstrument(), Dreamweaver 
records the line number as a valid breakpoint line regardless of the instrumentation that 
returns. So, when the debugger is started with dw.startDebugger(), the breakpoints that are 
already set by the user will be moved to one of these valid lines.

7 When Dreamweaver finds a function declaration, it calls getFunctionStartInstrument() to 
receive the instrumentation to be inserted at the beginning of the function. 

Note: This is not considered a valid breakpoint line.

8 Dreamweaver continues parsing the function, calling getStepInstrument() for each 
statement in the function.

9 When Dreamweaver comes to a return statement, or the end of the function, it calls 
getFunctionEndInstument() to receive the instrumentation to be inserted before the 
function returns. 

Note: This is not considered a valid breakpoint line.

10 If Dreamweaver encounters a syntax error or warning in the JavaScript block, it calls 
reportError() or reportWarning(), respectively. After an error is encountered, 
Dreamweaver stops parsing the block. Other blocks continue to be parsed.

11 After Dreamweaver has parsed all the script blocks in the HEAD section, it calls 
getHeadInstrument() to get the HTML instrumentation to insert in the HEAD section. 

Note: This function should return HTML, not JavaScript. If the module needs to insert JavaScript code in the 
HEAD, it must enclose it in a SCRIPT tag.

12 Dreamweaver begins processing the JavaScript blocks (SCRIPT tags and event handlers) in the 
BODY section of the document.

13 After the last block in the BODY section is processed, Dreamweaver calls 
getBodyInstrument() to get the HTML instrumentation to insert in the BODY section. 

Note: This function should return HTML, not JavaScript.

14 After Dreamweaver calls getBodyInstrument(), there is one final call to startBlock() and 
getStepInstrument() for an auto-breakpoint. The instrumentation does not correspond to 
any user-defined SCRIPT tag, but instead, it is inserted in a new SCRIPT tag after the BODY 
instrumentation. Unlike other calls to getStepInstrument(), this line is not considered a 
valid line on which the user can set a breakpoint, but instead, it is treated as a special 
breakpoint where the debugger always stops.

15 Finally, Dreamweaver calls getOnUnloadInstrument() to get JavaScript instrumentation to 
be inserted in the onUnload handler of the BODY tag. If the document already has an onUnload 
handler, this instrumentation is inserted after the user-defined onUnload code.
Chapter 20244



The JavaScript Debugger module API 
The JavaScript Debugger module API lets you customize the way you create the debug version of 
a document. You need to create a debugger module if you want to make the Dreamweaver 
JavaScript Debugger work with a browser other than Netscape Navigator and Internet Explorer, 
which Dreamweaver supports. You can create a module for a specialized purpose, such as 
counting the number of JavaScript statements that are used in a particular document. 

Note: Currently only SCRIPT tags and event handlers are parsed for instrumentation. There are some other ways to 
use JavaScript in HTML documents, such as JavaScript URLs, JavaScript entities, and conditional comments, but 
these methods are not currently supported. 

The JavaScript Debugger module API functions are significant only in the context of module 
files. Specifically, Dreamweaver automatically calls the getStepInstrument() function if it is 
defined in the module file. For any other extension file, a function named 
getStepInstrument() acts as a user-defined function; you must call it explicitly.

Unlike working with functions in the main JavaScript API, you are responsible for writing the 
body of each function and returning a value, if required, for the modules. For the functions in the 
main API, you call and pass arguments, and Dreamweaver generates return values, if any. For the 
JavaScript Debugger modules, Dreamweaver calls the functions and passes arguments to them, 
and you generate return values, if any.

All the JavaScript Debugger module functions are optional. If a function is not defined, nothing 
happens when Dreamweaver calls it.

getFunctionEndInstrument()

Availability

Dreamweaver 4

Description

Called after the last statement in a function declaration. If any return statements exist, this 
module is called to insert instrumentation after the return value is evaluated and before the 
function can return strings.

Arguments

None.

Returns

Dreamweaver expects a string that contains the JavaScript to insert at the end of the function.
JavaScript Debugger Modules 245



getFunctionStartInstrument()

Availability

Dreamweaver 4

Description

Called before the first statement in a function declaration. The getStepInstrument() function 
is also called for the statement.

Arguments

None.

Returns

Dreamweaver expects a string that contains the JavaScript to insert at the beginning of the 
function.

getBodyInstrument()m

Availability

Dreamweaver 4

Description

This function is called exactly once after all the blocks in the HEAD section are processed by the 
instrumentation JavaScript.

Arguments

None.

Returns

Dreamweaver expects a string that contains HTML to insert at the top of the <BODY> section.

getHeadInstrument()

Availability

Dreamweaver 4

Description

This function is called exactly once after all blocks in the HEAD section are processed by the 
instrumentation JavaScript, but before the BODY section blocks are instrumented.

Arguments

None.

Returns

Dreamweaver expects a string that contains HTML to insert at the top of the <HEAD> section.
Chapter 20246



getIncludedFileList()

Availability

Dreamweaver 4

Description

Called to get a list of files that are referenced by the code that is inserted in the head or body from 
the getHeadInstrument() and getBodyInstrument() functions. These files must be located in 
the Configuration/Debugger directory of the Dreamweaver program files with the 
instrumentation debugger module. 

Arguments

None.

Returns

Dreamweaver expects an array of filenames that should be copied to the directory with the file 
that is processed by the instrumentation JavaScript.

getOnUnloadInstrument()

Availability

Dreamweaver 4

Description

This function is called exactly once after getHeadInstrument() is called.

Arguments

None.

Returns

Dreamweaver expects a string that contains JavaScript to insert at the end of the onUnload event 
handler of the BODY tag.
JavaScript Debugger Modules 247



getStepInstrument()

Availability

Dreamweaver 4

Description

Called for each statement that is parsed inside a block. A call is always made to StartBlock() 
before this function is called. Dreamweaver records each line for which it calls this function as a 
valid breakpoint line. When the debugger starts, all breakpoints are moved to valid breakpoint 
lines.

Arguments

lineNumber, offset, bisInFuncton

• lineNumber is the line number of the next statement that is relative to the start of the block 
(1-based index).

• offset is the offset of the first character of the next statement that is relative to the start of the 
block (0-based index).

• bisInFunction is a Boolean value that indicates if the step is in a function definition (true) 
or in the global scope (false).

Returns

Dreamweaver expects a string that contains the JavaScript code to insert before the statement.

reportError()

Availability

Dreamweaver 4

Description

Called when a syntax error is detected. The errors and warnings are not necessarily reported in 
order.

Arguments

FileURL, fileName, errorNumber, strDesc, lineNumber, offset

• fileURL is the full path name of the report file, expressed as a file://URL, of the file containing 
the error.

• fileName is the name of the file.

• errorNumber is the numeric identifier of the error that occurred.

• strDesc is the description of the error.

• lineNumber is the line number in which the error occurred, relative to the start of the block.

• offset is the offset of the character at which the error occurred, relative to the start of the 
block.

Returns

Nothing.
Chapter 20248



reportWarning()

Availability

Dreamweaver 4

Description

Called when a warning is detected in the file.

Arguments

fileURL, fileName, errorNumber, strDesc, lineNumber, offset

• fileURL is the full path name of the report file, expressed as a file://URL, of the file containing 
the error.

• fileName is the name of the file.

• errorNumber is the numeric identifier of the warning that occurred.

• strDesc is the description of the warning.

• lineNumber is the line number in which the warning occurred, relative to the start of the 
block.

• offset is the offset of the character at which the warning occurred, relative to the start of the 
block.

Returns

Dreamweaver expects nothing.

startBlock()

Availability

Dreamweaver 4

Description

Indicates the beginning of a new block of JavaScript code. The block can be a script tag, event 
handler, or external .js file. 

Arguments

fileName, lineNumber, offset

• fileName is the name of the HTML document or .js file that contains the block. The location 
is specified by a relative path to the source HTML document.

• lineNumber is the line number in the HTML document or .js file in which the block begins 
(1-based index).

• offset is the offset of the first character of JavaScript code from the beginning of the file 
(0-based index).

Returns

Dreamweaver expects nothing.
JavaScript Debugger Modules 249



Chapter 20250



CHAPTER 21
C-Level Extensibility

The C-level extensibility mechanism lets you implement Macromedia Dreamweaver MX 
extensibility files using a combination of JavaScript and your own C code. You define functions 
using C, bundle them in a DLL or shared library, save the library in the Configuration/
JSExtensions folder within the Dreamweaver application folder, and then call the functions from 
JavaScript using the JavaScript interpreter that is built into Dreamweaver. 

For example, you might want to define a Dreamweaver object that inserts the contents of a user-
specified file into the current document. Because client-side JavaScript does not provide support 
for file I/O, you must write a function in C to provide this functionality.

You can use the following HTML and JavaScript to create a simple Insert Text from File object. 
Notice that the objectTag() function calls a C function named readContentsOfFile(), which 
is stored in a library named myLibrary.

<HTML>
<HEAD>
<SCRIPT>
function objectTag() {

fileName = document.forms[0].myFile.value;
return myLibrary.readContentsOfFile(fileName);

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter the name of the file to be inserted:
<INPUT TYPE="file" NAME="myFile">
</FORM>
</BODY>
</HTML>
251



The readContentsOfFile() function accepts a list of arguments from the user, unpacks the 
argument that contains the filename, reads the contents of the file, and packages the contents of 
the file as the return value. For more information about the JavaScript data structures and 
functions that appear in readContentsOfFile(), see “C-level extensibility and the JavaScript 
interpreter” on page 253.

JSBool
readContentsOfFile(JSContext *cx, JSObject *obj, unsigned int ¬
argc, jsval *argv, jsval *rval)
{

char *fileName, *fileContents;
JSBool success;
unsigned int length;

/* Make sure caller passed in exactly one argument. If not,
 * then tell the interpreter to abort script execution.  */
if (argc != 1){

JS_ReportError(cx, "Wrong number of arguments", 0);
return JS_FALSE;
}

/* Convert the argument to a string */
fileName = JS_ValueToString(cx, argv[0], &length); 
if (fileName == NULL){

JS_ReportError(cx, "The argument must be a string", 0);
return JS_FALSE; 

}

/* Use the string (the file name) to open and read a file */
fileContents = exerciseLeftToTheReader(fileName);

/* Store file contents in rval, which is the return value ¬
   passed
* back to the caller */
success = JS_StringToValue(cx, fileContents, 0, *rval);
free(fileContents);

/* Return true to continue or false to abort the script */
return success;

}

To ensure that the readContentsOfFile() function executes as designed rather than causing a 
JavaScript error, you must register the function with the JavaScript interpreter by including a 
function called MM_Init() in your library. When Dreamweaver loads the library at startup, it 
calls the MM_Init() function to get the following three pieces of information:

• The JavaScript name of the function

• A pointer to the function

• The number of arguments that the function expects

The following example shows how MM_Init() function for myLibrary might look:

void
MM_Init()
{

JS_DefineFunction("readContentsOfFile", readContentsOfFile, 1);
}

Chapter 21252



Your library must include exactly one instance of the following macro:

/* MM_STATE is a macro that expands to some definitions that are
 * needed to interact with Dreamweaver. This macro must
 * be defined exactly once in your library. */
MM_STATE

Note: The library can be implemented in either C or C++, but the file that contains MM_Init() and MM_STATE 
must be implemented in C. The C++ compiler garbles function names, which makes it impossible for Dreamweaver 
to find the MM_Init() function.

C-level extensibility and the JavaScript interpreter
The C code in your library must interact with the Dreamweaver JavaScript interpreter at three 
different times:

• At startup, to register the library’s functions

• When the function is called, to unpack the arguments that are being passed from JavaScript to C

• Before the function returns, to package the return value

To accomplish these tasks, the interpreter defines several data types and exposes an API. 
Definitions for the data types and functions that are listed in this section appear in the 
mm_jsapi.h file. For your library to work properly, you must include mm_jsapi.h at the top of 
each file in your library with the following line:

#include "mm_jsapi.h"

Including the mm_jsapi.h file includes, in turn, mm_jsapi_environment.h, which defines the 
MM_Environment structure.

Data Types
The JavaScript interpreter defines the following data types.

typedef struct JSContext JSContext

Description

A pointer to this opaque data type passes to the C-level function. Some functions in the API 
accept this pointer as one of their arguments.

typedef struct JSObject JSObject

Description

A pointer to this opaque data type passes to the C-level function. This data type represents an 
object, which may be an array object or some other object type. 

typedef struct jsval jsval

Description

An opaque data structure that can contain an integer, or a pointer to a float, string, or object. 
Some functions in the API can be used to read the values of function arguments by reading the 
contents of a jsval, and some can be used to write the function’s return value by writing a 
jsval.
C-Level Extensibility 253



typedef enum { JS_FALSE = 0, JS_TRUE = 1 } JSBool

Description

A simple data type that stores a Boolean value.

The C-level API
The C-level extensibility API consists of the following functions.

typedef JSBool (*JSNative)(JSContext *cx, JSObject *obj, unsigned int 
argc, jsval *argv, jsval *rval)

Description

This function signature describes C-level implementations of JavaScript functions in the 
following situations: 

• cx is a pointer to an opaque JSContext structure, which must be passed to some of the 
functions in the JavaScript API. This variable holds the interpreter’s execution context.

• obj is a pointer to the object in whose context the script executes. While the script is running, 
the this keyword is equal to this object.

• argc is the number of arguments being passed to the function.

• argv is a pointer to an array of jsvals. The array is argc elements in length.

• rval is a pointer to a single jsval. The function’s return value should be written to *rval.

The function returns JS_TRUE upon success or JS_FALSE upon failure. If the function returns 
JS_FALSE, the current script stops executing and an error message appears.

JSBool JS_DefineFunction()

Description

Registers a C-level function with the JavaScript interpreter in Dreamweaver. After 
JS_DefineFunction() registers the C-level function that you specify in the call argument, you 
can invoke it in a JavaScript script by referring to it with the name that you specify in the name 
argument. The name is case-sensitive. 

Typically, this function is called from MM_Init(), which Dreamweaver calls during startup.

Arguments

char *name, JSNative call, unsigned int nargs

• name is the name of the function as it is exposed to JavaScript.

• call is a pointer to a C-level function. The function must accept the same arguments as 
readContentsOfFile, and it must return a JSBool, which indicates success or failure.

• nargs is the number of arguments that the function expects to receive.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).
Chapter 21254



char *JS_ValueToString()

Description

Extracts a function argument from a jsval, converts it to a string, if possible, and passes the 
converted value back to the caller.

Note: Do not modify the returned buffer pointer or you might corrupt the data structures of the JavaScript interpreter. 
To change the string, you must copy the characters into another buffer and create a new JavaScript string.

Arguments

JSContext *cx, jsval v, unsigned int *pLength

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• v is the jsval from which the string is to be extracted.

• pLength is a pointer to an unsigned integer. This function sets *plength equal to the length 
of the string in bytes.

Returns

A pointer to a null-terminated string on success or to NULL on failure. The calling routine must 
not free this string when it is finished with it.

JSBool JS_ValueToInteger()

Description

Extracts a function argument from a jsval, converts it to an integer (if possible), and passes the 
converted value back to the caller.

Arguments

JSContext *cx, jsval v, long *lp

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• v is the jsval from which the integer is to be extracted.

• lp is a pointer to a 4-byte integer. This function stores the converted value in *lp.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSBool JS_ValueToDouble()

Description

Extracts a function argument from a jsval, converts it to a double (if possible), and passes the 
converted value back to the caller.

Arguments

JSContext *cx, jsval v, double *dp

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• v is the jsval from which the double is to be extracted.

• dp is a pointer to an 8-byte double. This function stores the converted value in *dp.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).
C-Level Extensibility 255



JSBool JS_ValueToBoolean()

Description

Extracts a function argument from a jsval, converts it to a Boolean value (if possible), and passes 
the converted value back to the caller.

Arguments

JSContext *cx, jsval v, JSBool *bp

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• v is the jsval from which the boolean is to be extracted.

• bp is a pointer to a JSBool. This function stores the converted value in *bp.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSBool JS_ValueToObject()

Description

Extracts a function argument from a jsval, converts it to an object (if possible), and passes the 
converted value back to the caller. If the object is an array, use JS_GetArrayLength() and 
JS_GetElement() to read its contents.

Arguments

JSContext *cx, jsval v, JSObject **op

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• v is the jsval from which the object is to be extracted.

• op is a pointer to a (JSObject *). This function stores the converted value in *op.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSBool JS_StringToValue()

Description

Stores a string return value in a jsval. It allocates a new JavaScript string object.

Arguments

JSContext *cx, char *bytes, size_t sz, jsval *vp

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• bytes is the string to be stored in the jsval. The string data is copied, so the caller should free 
the string when it is no longer needed. If the string size is not specified (see the sz argument), 
the string must be null-terminated. 

• sz is the size of the string, in bytes. If sz is 0, the length of the null-terminated string is 
computed automatically. 

• vp is a pointer to the jsval into which the contents of the string should be copied.
Chapter 21256



Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSBool JS_DoubleToValue()

Description

Stores a floating-point number return value in a jsval.

Arguments

JSContext *cx, double dv, jsval *vp

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• dv is an 8-byte floating-point number.

• vp is a pointer to the jsval into which the contents of the double should be copied.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSVal JS_BooleanToValue()

Description

Stores a Boolean return value in a jsval structure.

Arguments

JSBool bv

Returns

A JSVal structure that contains the Boolean value that you passed to the function as an argument.

JSVal JS_IntegerToValue()

Description

Stores an integer return value in a jsval.

Arguments

long lv

Returns

A JSVal structure that contains the integer that you passed to the function as an argument. 

JSVal JS_ObjectToValue()

Description

Stores an object return value in a jsval. Use JS_ NewArrayObject() to create an array object; 
use JS_SetElement() to define its contents.

Arguments

JSObject *obj

Returns

A JSVal structure that contains the object that you passed to the function as an argument.
C-Level Extensibility 257



char *JS_ObjectType()

Description

Given an object reference, JS_ObjectType() returns the class name of the object. For example, if 
the object is a DOM object, the function would return "Document". If the object is a node in the 
document, the function would return "Element". For an array object, the function would 
return "Array".

Note: Do not modify the returned buffer pointer or you might corrupt the data structures of the JavaScript 
interpreter.

Arguments

JSObject *obj

Typically, this argument is passed in and converted using JS_ValueToObject().

Returns

A pointer to a null-terminated string. The caller should not free this string when it finishes.

JSObject *JS_NewArrayObject()

Description

Creates a new object that contains an array of jsvals.

Arguments

JSContext *cx, unsigned int length, jsval *v

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• length is the number of elements that the array can hold.

• v is an optional pointer to the jsvals to be stored in the array. If the return value is not null, 
v is an array containing length elements. If the return value is null, the initial content of the 
array object is undefined (and can be set using JS_SetElement()).

Returns

A pointer to a new array object, or null upon failure.

long JS_GetArrayLength()

Description

Given a pointer to an array object, gets the number of elements in the array.

Arguments

JSContext *cx, JSObject *obj

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• obj is a pointer to an array object.

Returns

The number of elements in the array or -1 upon failure.
Chapter 21258



JSBool JS_GetElement()

Description

Reads a single element of an array object.

Arguments

JSContext *cx, JSObject *obj, unsigned int index, jsval *v

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• obj is a pointer to an array object.

• index is an integer index into the array. The first element is index 0, and the last element is 
index (length - 1).

• v is a pointer to a jsval where the contents of the jsval in the array should be copied.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSBool JS_SetElement()

Description

Writes a single element of an array object.

Arguments

JSContext *cx, JSObject *obj, unsigned int index, jsval *v 

• cx is the opaque JSContext pointer that was passed to the JavaScript function.

• obj is a pointer to an array object.

• index is an integer index into the array. The first element is index 0, and the last element is 
index (length - 1).

• v is a pointer to a jsval whose contents should be copied to the jsval in the array.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSBool JS_ExecuteScript()

Description

Compiles and executes a JavaScript string. If the script generates a return value, it returns in 
*rval.

Arguments

JSContext *cx, JSObject *obj, char *script, unsigned int sz, jsval *rval

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• obj is a pointer to the object in whose context the script executes. While the script is running, 
the this keyword is equal to this object. Usually this is the JSObject pointer that passed to 
the JavaScript function.

• script is a string that contains JavaScript code. If the string size is not specified (see the sz 
argument), the string must be null-terminated. 
C-Level Extensibility 259



• sz is the size of the string, in bytes. If sz is 0, the length of the null-terminated string is 
computed automatically. 

• rval is a pointer to a single jsval. The function’s return value is stored in *rval.

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

JSBool JS_ReportError()

Description

Describes the reason for a script error. Call this function before returning JS_FALSE to give the 
user information about why the script failed (for example, “wrong number of arguments”). 

Arguments

JSContext *cx, char *error, size_t sz

• cx is the opaque JSContext pointer that passed to the JavaScript function.

• error is a string that contains the error message. The string is copied, so the caller should free 
the string when it is no longer needed. If the string size is not specified (see the sz argument, 
below), the string must be null-terminated. 

• sz is the size of the string, in bytes. If sz is 0, the length of the null-terminated string is 
computed automatically. 

Returns

A Boolean value that indicates success (JS_TRUE) or failure (JS_FALSE).

File Access and Multiuser Configuration API
Macromedia recommends that you always use the File Access and Multiuser Configuration API 
to access the file system through C-level extensions. For files other than configuration files, the 
functions access the specified file or folder.

Dreamweaver MX supports multiple-user configurations for the multiple-user operating systems 
of Windows XP, Windows 2000, Windows NT, and Mac OS X. 

Typically, you install Dreamweaver MX in a restricted folder such as C:\Program Folders in 
Windows. As a result, only users with Administrator privileges can make changes in the 
Dreamweaver MX configuration folder. To enable users on multiple-user operating systems to 
create and maintain individual configurations, Dreamweaver MX creates a separate configuration 
folder for each user. Any time Dreamweaver MX or a JavaScript extension writes to the 
configuration folder, Dreamweaver MX automatically writes to the user configuration folder 
instead. In this way, Dreamweaver MX lets each user customize the Dreamweaver MX 
configuration settings without disturbing the customized configurations of other users.
Chapter 21260



Dreamweaver MX creates the user configuration folder in a location where the user has full read 
and write access. The following table shows the specific location of the user configuration folder 
for each of the supported platforms:

There are many cases where JavaScript extensions open files and write to the configuration folder. 
JavaScript extensions can access the file system by using DWFile, MMNotes, or passing a URL to 
dw.getDocumentDOM(). When an extension accesses the file system in a configuration folder, it 
generally uses dw.getConfigurationPath() and adds the filename, or it gets the path by 
accessing the dom.URL of an open document and adding the filename. An extension can also get 
the path by accessing the dom.URL and stripping the filename. The 
dw.getConfigurationPath() function and the dom.URL always return a URL in the 
Dreamweaver MX configuration folder, even if the document is located in the user configuration 
folder. 

Any time a JavaScript extension opens a file in the Dreamweaver MX configuration folder 
Dreamweaver MX traps the access and checks the user configuration folder first. If a JavaScript 
extension saves data to disk in the Dreamweaver MX configuration folder through DWFile or 
MMNotes, Dreamweaver MX intercepts the call and redirects it to the user configuration folder.

For example, in Windows 2000 or Windows XP, if the user asks for "file:///C|/Program 
Files/Macromedia/Dreamweaver MX/Configuration/Objects/Common/Table.htm", 
Dreamweaver MX first looks to see if there is a file called file:///C|/Documents and Settings/
username/Macromedia/Dreamweaver MX/Configuration/Objects/Common/Table.htm and, if it 
exists, uses it instead.

C-level extensions, or shared libraries, must use the File Access and Multiuser Configuration API 
to read and write to the configuration folder. Using the File Access and Multiuser Configuration 
API lets Dreamweaver read and write to the user configuration folder and ensures that the file 
operations do not fail due to insufficient access privileges. If your C-level extension accesses files 
in the configuration folder that were created through JavaScript with DWFile, MMNotes, or 
DOM manipulations, it is essential that you use the File Access and Multiuser Configuration API 
because these files might be located in the user configuration folder.

Note: Most JavaScript extensions will not need to be changed to write to the user Configuration folder. Only C 
shared libraries that write to the Configuration folder need to be updated to use the File Access and Multiuser 
Configuration API functions.

When you delete a file from Dreamweaver Configuration folder, Dreamweaver MX adds an entry 
to a mask file to indicate which files in the Configuration folder should not appear in the user 
interface. A masked file or folder will appear not to exist to Dreamweaver although it might 
physically exist in the folder.

Platform User Configuration Folder

Macintosh OS X MacHD:Users:username:Library:Application Support:Macromedia: ¬
Dreamweaver MX:Configuration

Windows 2000, 
Windows XP

C:\Documents and Settings\username\Application Data\Macromedia\ ¬
Dreamweaver MX\Configuration

Windows NT C:\WinNT\profiles\username\Application Data\Macromedia\ ¬
Dreamweaver MX\Configuration
C-Level Extensibility 261



For example, if you used the trash can in the Snippets panel to delete a Snippets folder called 
javascript and a file called onepixelborder.csn, Dreamweaver MX writes a file in the user 
configuration folder called mm_deleted_files.xml, which looks like the following example:

<?xml version = "1.0" encoding="utf-8" ?>
<deleteditems>
<item name="snippets/javascript/" />
<item name="snippets/html/onepixelborder.csn" />
</deleteditems>

As Dreamweaver MX populates the Snippets panel, it reads all the files in the user’s 
Configuration/Snippets folder and all the files in the Dreamweaver MX Configuration/Snippets 
folder, except the Configuration/Snippets/javascript folder and the Configuration/Snippets/html/
onepixelborder.csn file, and adds the resulting list of files to the Snippets panel list. 

If a C-level extension calls the MM_ConfigFileExists() function for the URL "file:///
c|Program Files/macromedia/Dreamweaver MX/Configuration/Snippets/javascript/
onepixelborder.csn", it returns false. Likewise, if a JavaScript extension tries to call 
dw.getDocumentDom("file:///c|Program Files/Macromedia/Dreamweaver MX/
Configuration/Snippets/javascript/onepixelborder.csn"), it returns Null. 

You can modify the mm_deleted_files.xml file to prevent Dreamweaver from showing files in the 
user interface, such as objects, canned content in the new dialog, and so on. You can call 
MM_DeleteConfigfile() to add file pathnames to mm_deleted_files.xml. 

JS_Object MM_GetConfigFolderList()

Availability

Dreamweaver MX

Description

Gets a list of files, folders, or both for the specified folder. If you specify a configuration folder, the 
function gets a list of the folders that exists in both the user Configuration folder and the 
Dreamweaver Configuration folder, subject to filtering by mm_deleted_files.xml. 

Arguments

char *fileURL, char *constraints

• char *fileUrl is a pointer to a string that names the folder for which you want a list of the 
contents. The string must have the format of a file URL (file://). The function accepts valid 
wildcard characters of asterisks (*) and question marks (?) in the file URL string. Use asterisks 
(*) to represent one or more unspecified characters, and question marks (?) to represent a single 
unspecified character.

• char *contstraints can be files or directories or NULL. If you specify NULL, 
MM_GetConfigFolderList() returns both files and directories.

Returns

JSObject is an array that contains the list of files or folders in either the user Configuration folder 
or the Dreamweaver Configuration folder, subject to filtering by the mm_deleted_files.xml file.

Examples

JSObject *jsobj_array;
jsobj_array = MM_GetConfigFolderList("file:///¬

c|/Program Files/Macromedia/Dreamweaver MX/Configuration", "directories" );
Chapter 21262



JSBool MM_ConfigFileExists()

Availability

Dreamweaver MX

Description

Checks whether the specified file exists. If it is a file in a configuration folder, this function checks 
to see if the file exists in the user Configuration folder or the Dreamweaver MX Configuration 
folder. The function also checks to see if the filename is listed in the mm_deleted_files.xml file. If 
the name is listed in this file, the function returns false.

Arguments

char *fileUrl is a pointer to a string that names the file for which you are checking, which is 
provided in the format of a file URL (file://). 

Returns

JSBool

Example

char *dwConfig = “file:///c|/Program Files/Macromedia/Dreamweaver  MX/
Configuration/Extensions.txt”;

int fileno = 0;
if(MM_ConfigFileExists(dwConfig))
{

fileno = MM_OpenConfigFile(dwConfig, “read”);
}

int MM_OpenConfigFile()

Availability

Dreamweaver MX

Description

Opens the file and returns an operating system file handle. You can use the operating system file 
handle in calls to system file functions. You must close the file handle with a call to _close.

If the file is a configuration file, it finds the file in either the user Configuration folder or the 
Dreamweaver MX Configuration folder. If you open the configuration file for writing, the 
function creates the file in the user Configuration folder, even if it exists in the Dreamweaver MX 
Configuration folder.

Note: If you want to read the file before writing to it, open the file in "read" mode. When you want to write to the file, 
close the read handle and open the file again in "write" or "append" mode.

Arguments

char *fileURL, char *mode

char *fileURL is a pointer to a string that names the file that you are opening, which is 
provided as a file URL (file://). If it specifies a path in the Dreamweaver MX Configuration 
folder, MM_OpenConfigFile() will resolve the path before opening the file.

char *mode is a string that specifies how you want to open the file. You can specify NULL, 
"read", "write", or "append" mode. If you specify "write" and the file does not exist, 
MM_OpenconfigFile() creates it. If you specify "write", MM_OpenConfigFile() opens the file 
with an exclusive share. If you specify "read", MM_OpenConfigFile() opens the file with a 
nonexclusive share.
C-Level Extensibility 263



If you open the file in "write" mode, any existing data in the file is truncated prior to writing 
new data. If you open the file in "append" mode, any data you write is appended to the end 
of the file.

Returns

An integer that is the operating system file handle for this file. Returns -1 if the file cannot be 
found or it does not exist.

Example

char *dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver MX/
Configuration/Extensions.txt";

int = fileno;
if(MM_ConfigFileExists(dwConfig))
{

fileno = MM_OpenConfigFile(dwConfig, "read");
}

JSBool MM_GetConfigFileAttributes()

Availability

Dreamweaver MX

Description

Finds the file and returns the attributes of the file. You can set any of the arguments except 
fileURL to NULL if you do not need the value. 

Arguments

char *fileURL, unsigned long *attrs, unsigned long *filesize, 
unsigned long *modtime, unsigned long *createtime

char *fileURL is a pointer to a string that names the file for which you want the attributes, 
which is provided as a file URL (file://). If fileURL specifies a path in the Dreamweaver MX 
Configuration folder, MM_GetConfigFileAttributes() resolves the path before opening the file.

unsigned long *attrs is the address of an integer that contains the returned attribute bits (see 
“JSBool MM_SetConfigFileAttributes()” on page 265 for available attributes).

unsigned long *filesize is the address of an integer that, on return, contains the file size 
in bytes.

unsigned long *modtime is the address of an integer that, on return, contains the time that the 
file was last modified. The time is given as the operating-system time value (same as 
DWFile::getModificationDate).

unsigned long *createtime is the address of an integer that, on return, contains the time that 
the file was created. The time is given as the operating-system time value (same as 
DWFile::getCreationDate).

Returns

JSBool 

Returns JS_FALSE if the file does not exist or an error occurs in getting the attributes.
Chapter 21264



Example

char dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver MX/
Configuration/Extensions.txt";

unsigned long attrs;
unsigned long filesize;
unsigned long modtime;
unsigned long createtime;
MM_GetConfigAttributes(dwConfig, &attrs, &filesize, &modtime, &createtime);

JSBool MM_SetConfigFileAttributes()

Availability

Dreamweaver MX

Description

Sets the attributes that you specify for the file, if they are different from the current attributes. 

If the specified file URL is in the Dreamweaver MX Configuration folder, this function first 
copies the file to the user Configuration folder before it sets the attributes. If the attributes are the 
same as the current file attributes, the file is not copied.

Arguments

char *fileURL, unsigned long attrs

char *fileURL is a pointer to a string that names the file for which you want to set the 
attributes, which is provided as a file URL (file://). 

unsigned long attrs specifies the attribute bits to set on the file. You can use a logical OR on 
the following constants to set the attributes:

MM_FILEATTR_NORMAL
MM_FILEATTR_RDONLY
MM_FILEATTR_HIDDEN
MM_FILEATTR_SYSTEM
MM_FILEATTR_SUBDIR

Returns

JSBool 

Returns JS_TRUE if there is no error. If the file does not exist or is masked for deletion, the 
function returns JS_FALSE.

Example

char *dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver  MX/
Configuration/Extensions.txt";

unsigned long attrs;
attrs = (MM_FILEATTR_NORMAL | MM_FILEATTR_RDONLY);
int fileno = 0;
if(MM_SetConfigFileAttrs(dwConfig, attrs))
{

fileno = MM_OpenConfigFile(dwConfig);
}

C-Level Extensibility 265



JSBool MM_CreateConfigFolder()

Availability

Dreamweaver MX

Description

Creates a folder in the specified location.

If fileURL specifies a folder below the Dreamweaver MX Configuration folder, the function 
creates the folder in the user Configuration folder. If fileURL does not specify a folder below the 
Dreamweaver MX Configuration folder, the function creates the specified folder, including all 
higher-level folders in the path if they do not already exist.

Arguments

char *fileURL is a pointer to a file URL string (file://) that names the configuration folder that 
you want to create. 

Returns

JSBool

Example

char *dwConfig = "file:///c|/Program Files\Macromedia\Dreamweaver  
MX\Configuration\Extensions.txt";

MM_CreateConfigFolder(dwConfig);

JSBool MM_RemoveConfigFolder()

Availability

Dreamweaver MX

Description

Removes the folder and its files and subfolders. If the folder is in the Dreamweaver MX 
Configuration folder, it masks the folder for deletion in mm_deleted_files.xml.

Arguments

char *fileURL is a pointer to a string that names the folder to remove, which is provided as a file 
URL (file://). 

Returns

JSBool

Example

char *dwConfig = "file:///c|/Program Files\Macromedia\Dreamweaver  
MX\Configuration\Objects";

MM_RemoveConfigFolder(dwConfig);

JSBool MM_DeleteConfigFile()

Availability

Dreamweaver MX

Description

Deletes the file, if it exists. If the file exists in the Dreamweaver MX Configuration folder, the 
function masks the file for deletion in mm_deleted_files.xml.
Chapter 21266



If fileURL is not in the Dreamweaver MX Configuration folder, the function deletes the 
specified file.

Arguments

char *fileURL is a pointer to a string that names the configuration folder to remove, which is 
provided as a file URL (file://).

Returns

JSBool
Example

char dwConfig = "file:///c:|Program Files\Macromedia\Dreamweaver 
MX\Configuration\Objects\insertbar.xml";

MM_DeleteConfigFile(dwConfig);

Calling a C function from JavaScript
After you understand how C-level extensibility works in Dreamweaver and its dependency on 
certain data types and functions, it’s useful to know how to build a library and call a function.

This example requires four files, which are included in the Extending/c_files folder inside the 
Dreamweaver application folder:

• mm_jsapi.h is a header file that includes definitions for the data types and functions that are 
described in “C-level extensibility and the JavaScript interpreter” on page 253.

• mm_jsapi_environment.h, which defines the MM_Environment.h structure.

• Sample.c is an example file that defines the computeSum() function.

• Sample.mak is a makefile that you can use to build Sample.c into a DLL with Microsoft Visual 
C++; Sample.proj is the equivalent file for building a CFM Library with Metrowerks 
CodeWarrior. If you use another tool, you can create the makefile.

To build the DLL in Windows:

1 In Microsoft Visual C++, choose File > Open Workspace and select Sample.mak.

2 Choose Build > Rebuild All.

When the build operation finishes, a file called Sample.dll appears in the folder that contains 
Sample.mak (or one of its subfolders).

To build the shared library on the Macintosh:

1 Open Sample.proj in Metrowerks CodeWarrior.

2 Build the project to generate a CFM Library.

When the build operation finishes, a file called Sample appears in the folder that contains 
Sample.proj (or in one of its subfolders).

To call the computeSum() function from the Insert Horizontal Rule object:

1 Create a folder called JSExtensions in the Configuration folder within the Dreamweaver 
application folder.

2 Copy Sample.dll (Windows) or Sample (Macintosh) to the JSExtensions folder.

3 In a text editor, open the file called horizontal_rule.htm in the Configuration/Objects/
Common folder.
C-Level Extensibility 267



4 Add the line alert(Sample.computeSum(2,2)); to the objectTag() function so that it 
appears as shown in the following example:

function objectTag() {
// Return the html tag that should be inserted
alert(Sample.computeSum(2,2));
return "<HR>";

}

5 Save the file and restart Dreamweaver.

To execute the computeSum() function:

Choose Insert > Horizontal Rule. 

A dialog box that contains the number 4 (the result of computing the sum of 2 plus 2) appears.
Chapter 21268



P
art III
Part III
Utility APIs

Understand the Dreamweaver utility functions that you can 
use to acccess local and web-based files, work with 
Fireworks and Flash objects, manage database connections, 
create new database connection types, access JavaBeans 
components, and integrate Dreamweaver with various 
source control systems.

• Chapter 22, “The File I/O API”

• Chapter 23, “The HTTP API”

• Chapter 24, “The Design Notes API”

• Chapter 25, “The Fireworks Integration API”

• Chapter 26, “The Flash Objects API”

• Chapter 27, “The Database API”

• Chapter 28, “The Database Connectivity API”

• Chapter 29, “The JavaBeans API”

• Chapter 30, “The Source Control Integration API”





CHAPTER 22
The File I/O API

Macromedia Dreamweaver MX includes a C shared library called DWfile that gives authors 
ofobjects, commands, behaviors, data translators, floating panels, and Property inspectors the 
ability to read and write files on the local file system. This chapter describes the File I/O API and 
how to use it.

For general information on how C libraries interact with the JavaScript interpreter in 
Dreamweaver, see “C-Level Extensibility” on page 251.

Accessing configuration folders
On Microsoft Windows NT, Windows 2000, and Windows XP, and on Mac OS X platforms, 
users have their own copies of configuration files. Whenever Dreamweaver MX writes to a 
configuration file, Dreamweaver writes it to the user’s Configuration folder. Similarly, when 
Dreamweaver reads a configuration file, Dreamweaver looks for it first in the user’s Configuration 
folder, then in the application’s Configuration folder. DWFile functions use the same 
mechanism. In other words, if your extension reads or writes a file in the Configuration folder, 
your extension accesses the user's Configuration folder too. For more information about 
Configuration folders on multiuser platforms, see “Extension folders” on page 18.

The File I/O API
All functions in the File I/O API are methods of the DWfile object. Optional arguments are 
enclosed in braces ({ }). Functions with an availability of 2 were included in the version of DWfile 
that was supplied as a download for Dreamweaver 2 from the Macromedia website. This version 
of DWfile might have been installed with third-party objects.

DWfile.copy()

Availability

Dreamweaver 3

Description

Copies the specified file to a new location.

Arguments

originalURL, copyURL

• The first argument is the file you want to copy, which is expressed as a file:// URL.

• The second argument is the location where you want to save the copied file, which is expressed 
as a file:// URL.
271



Returns

true if the copy succeeds; false otherwise.

Example

The following code copies a file called myconfig.cfg to myconfig_backup.cfg.

var fileURL = "file:///c|/Config/myconfig.cfg";
var newURL ="file:///c|/Config/myconfig_backup.cfg"; 
DWfile.copy(fileURL, newURL);

DWfile.createFolder()

Availability

Dreamweaver 2

Description

Creates a folder (directory) at the specified location.

Arguments

folderURL

The argument is the location of the folder you want to create, which is expressed as a file:// URL.

Returns

true if the folder is successfully created; false otherwise.

Example

The following code tries to create a folder called tempFolder at the top level of the C drive and 
displays an alert box that indicates whether the operation is successful.

var folderURL = "file:///c|/tempFolder";
if (DWfile.createFolder(folderURL)){

alert("Created " + folderURL);
}else{

alert("Unable to create " + folderURL);
}

DWfile.exists()

Availability

Dreamweaver 2

Description

Tests for the existence of the specified file.

Arguments

fileURL

The argument is the requested file, which is expressed as a file:// URL.

Returns

true if the file exists; false otherwise.
Chapter 22272



Example

The following code checks for a file called mydata.txt and displays an alert box that tells the user 
whether the file exists.

var fileURL = "file:///c|/temp/mydata.txt";
if (DWfile.exists(fileURL)){

alert( fileURL + " exists!");
}else{

alert( fileURL + " does not exist.");
}

DWfile.getAttributes()

Availability

Dreamweaver 2

Description

Gets the attributes of the specified file or folder.

Arguments

fileURL

The argument is the file or folder for which you want to get attributes, which is expressed as a 
file:// URL.

Returns

A string that represents the attributes of the specified file or folder. If the file or folder does not 
exist, this function returns a null value. The following characters in the string represent the 
attributes:

• R is read only.

• D is folder (directory).

• H is hidden.

• S is system file or folder.

Example

The following code gets the attributes of the mydata.txt file and displays an alert box if the file is 
read only.

var fileURL = "file:///c|/temp/mydata.txt";
var str = DWfile.getAttributes(fileURL);
if (str && (str.indexOf("R") != -1)){

alert(fileURL + " is read only!");
}

The File I/O API 273



DWfile.getModificationDate()

Availability

Dreamweaver 2

Description

Gets the time when the file was last modified.

Arguments

fileURL

The argument, which is expressed as a file:// URL, is the file for which you are checking the last 
modified time.

Returns

A string that contains a hexadecimal number that represents the number of time units that have 
elapsed since some base time. The exact meaning of time units and base time is 
platform-dependent; in Windows, for example, a time unit is 100ns, and the base time is 
January 1st, 1600.

Example

It’s useful to call the function twice and compare the return values because the value that this 
function returns is platform-dependent and is not a recognizable date and time. For example, the 
following code gets the modification dates of file1.txt and file2.txt and displays an alert box that 
indicates which file is newer.

var file1 = "file:///c|/temp/file1.txt";
var file2 = "file:///c|/temp/file2.txt";
var time1 = DWfile.getModificationDate(file1);
var time2 = DWfile.getModificationDate(file2);
if (time1 == time2){

alert("file1 and file2 were saved at the same time");
}else if (time1 < time2){

alert("file1 older that file2");
}else{

alert("file1 is newer than file2");
}

DWfile.getCreationDate()

Availability

Dreamweaver 4

Description

Gets the time that the file was created.

Arguments

fileURL

The argument, which is expressed as a file:// URL, is the file for which you are checking the 
creation time.
Chapter 22274



Returns

A string that contains a hexadecimal number that represents the number of time units that 
have elapsed since some base time. The exact meaning of time units and base time is platform- 
dependent; in Windows, for example, a time unit is 100ns, and the base time is 
January 1st, 1600.

Example

You can call this function and the DWfile.getModificationDate() function on a file to 
compare the modification date to the creation date.

var file1 = "file:///c|/temp/file1.txt";
var time1 = DWfile.getCreationDate(file1);
var time2 = DWfile.getModificationDate(file1);
if (time1 == time2){

alert("file1 has not been modified since it was created");
}else if (time1 < time2){

alert("file1 was last modified on " + time2);
}

DWfile.getCreationDateObj()

Availability

Dreamweaver MX

Description

Gets the JavaScript object that represents the time when the file was created.

Arguments

fileURL

The argument, which is expressed as a file:// URL, is the file for which you are checking the 
creation time.

Returns

A JavaScript Date object that represents the date and time when the specified file was created.

DWfile.getModificationDateObj()

Availability

Dreamweaver MX

Description

Gets the JavaScript object that represents the time when the file was last modified.

Arguments

fileURL

The argument, which is expressed as a file:// URL, is the file for which you are checking the time 
of the most recent modification.

Returns

A JavaScript Date object that represents the date and time when the specified file was last modified.
The File I/O API 275



DWfile.getSize()

Availability

Dreamweaver MX

Description

Gets the size of a specified file.

Arguments

fileURL

The argument, which is expressed as a file:// URL, is the file for which you are checking the size.

Returns

An integer that represents the actual size, in bytes, of the specified file.

DWfile.listFolder()

Availability

Dreamweaver 2

Description

Gets a list of the contents of the specified folder.

Arguments

folderURL {,constraint}

• The first argument is the folder for which you want a contents list, which is expressed as a 
file:// URL, plus an optional wildcard file mask. Valid wildcards are asterisks (*), which match 
1 or more characters and question marks (?), which match a single character.

• The second argument, if supplied, must be either "files" (return only files) or 
"directories" (return only directories). If it is omitted, the function returns files and 
directories.

Returns

An array of strings that represents the contents of the folder.

Example

The following code gets a list of all the text (.txt) files in the temp folder and displays the list in an 
alert box.

var folderURL = "file:///c|/temp";
var fileMask = "*.txt";
var list = DWfile.listFolder(folderURL + "/" + fileMask, "files");
if (list){

alert(folderURL + " contains: " + list.join("\n"));
}

Chapter 22276



DWfile.read()

Availability

Dreamweaver 2

Description

Reads the contents of the specified file into a string.

Arguments

fileURL

The argument, which is expressed as a file:// URL, is the file you want to read.

Returns

A string that contains the contents of the file, or null if the read fails.

Example

The following code reads the file mydata.txt and, if successful, displays an alert box with the 
contents of the file.

var fileURL = "file:///c|/temp/mydata.txt";
var str = DWfile.read( fileURL);
if (str){

alert( fileURL + " contains: " + str);
}

DWfile.remove()

Availability

Dreamweaver 3

Description

Moves the specified file to the Recycling Bin or Trash.

Arguments

fileURL

The argument, which is expressed as a file:// URL, is the file you want to remove.

Returns

true if the operation succeeds; false otherwise.

Example

The following example uses DWfile.getAttributes() to determine whether the file is read-only 
and confirm() to display a Yes/No dialog box to the user.

function deleteFile(){
var delAnyway = false;
var selIndex = document.theForm.menu.selectedIndex;

var selFile = document.theForm.menu.options[selIndex].value;
if (DWfile.getAttributes(selFile).indexOf(’R’) != -1){

delAnyway = confirm(’This file is read-only. Delete anyway?’);
if (delAnyway){

DWfile.remove(selFile);
}

}
}

The File I/O API 277



DWfile.setAttributes()

Availability

Dreamweaver MX

Description

Sets the system-level attributes of a particular file.

Arguments

fileURL, strAttrs

• fileURL identifies the file, which is expressed as a file:// URL, for which you are setting the 
attributes.

• strAttrs specifies the system-level attributes for the file that is identified by fileURL. The 
following table describes valid attribute values and their meaning.

Acceptable values for the strAttrs string are R, W, H, V, RH, RV, WH, or WV.

You should not use R and W together because they are mutually exclusive. If you combine 
them, R becomes meaningless, and the file is set as writable (W). You should not use H and V 
together because they are also mutually exclusive. If you combine them, H becomes 
meaningless, and the file is set as visible (V). 

If you specify H or V without specifying an R or W read/write attribute, the existing read/write 
attribute for the file is not changed. Likewise, if you specify R or W, without specifying an H or V 
visibility attribute, the existing visibility attribute for the file is not changed.

Returns

Nothing.

DWfile.write()

Availability

Dreamweaver 2

Description

Writes the specified string to the specified file. If the specified file does not yet exist, it is created.

Arguments

fileURL, text {, mode}

• The first argument, which is expressed as a file:// URL, is the file to which you are writing.

• The second argument is the string to be written.

• The third argument, if supplied, must be "append". If this argument is omitted, the contents 
of the file are overwritten by the string.

Attribute Value Description

R Read only

W Writable (overrides R)

H Hidden

V Visible (overrides H)
Chapter 22278



Returns

true if the string is successfully written to the file, false otherwise.

Example

The following code attempts to write the string "xxx" to the mydata.txt file and displays an alert 
if the write succeeds. It then tries to append the string "aaa" to the file and displays a second alert 
if the write succeeds. After executing this script, the mydata.txt file contains the text xxxaaa and 
nothing else.

var fileURL = "file:///c|/temp/mydata.txt";
if (DWfile.write(fileURL, "xxx")){

alert("Wrote xxx to " + fileURL);
}
if (DWfile.write(fileURL, "aaa", "append")){ 

alert("Appended aaa to " + fileURL);
}

The File I/O API 279



Chapter 22280



CHAPTER 23
The HTTP API

Extensions are not limited to working within the local file system. Macromedia Dreamweaver MX 
provides a mechanism to get information from and send information to a web server through use 
of hypertext transfer protocol (HTTP). This chapter describes the HTTP API and how to use it.

The HTTP API
All functions in the HTTP API are methods of the MMHttp object. Most of these functions take a 
URL as an argument, and most return an object. The default port for URL arguments is 80. To 
specify a port other than 80, append a colon and the port number to the URL, as shown in the 
following example:

MMHttp.getText("http://www.myserver.com:8025");

For functions that return an object, the object has two properties: statusCode and data. 

statusCode indicates the status of the operation; possible values include, but are not limited to, 
the following values:

• 200: Status OK

• 400: Unintelligible request

• 404: Requested URL not found

• 405: Server does not support requested method

• 500: Unknown server error

• 503: Server capacity reached

For a comprehensive list of status codes for your server, check with your Internet service provider 
or system administrator.

The value of the data property varies according to the function; possible values are specified in 
the individual function listings.

Functions that return an object also have a callback version. Callback functions let other 
functions execute while the web server processes an HTTP request. This is useful if you are 
making multiple HTTP requests from Dreamweaver. The callback version of a function passes its 
ID and return value directly to the function that is specified as its first argument.

Optional arguments are enclosed in braces ({ }).
281



MMHttp.clearTemp()

Description

Deletes all the files in the Configuration/Temp folder, which is located inside the Dreamweaver 
application folder.

Arguments

None.

Returns

Nothing.

Example

The following code, when saved in a file inside the Configuration/Shutdown folder, removes all 
the files from the Configuration/Temp folder when the user quits Dreamweaver:

<html>
<head>
<title>Clean Up Temp Files on Shutdown</title>
</head>
<body onLoad="MMHttp.clearTemp()">
</body>
</html>

MMHttp.getFile()

Description

Gets the file at the specified URL and saves it in the Configuration/Temp folder, which is 
located inside the Dreamweaver application folder. Dreamweaver automatically creates 
subfolders that mimic the folder structure of the server; for example, if the specified file is at 
http://www.dreamcentral.com/people/index.html, Dreamweaver stores the index.html file in the 
People folder inside the www.dreamcentral.com folder.

Arguments

URL {,prompt} {,saveURL} {,titleBarLabel}

• URL is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver MX 
assumes HTTP protocol. 

• prompt is a Boolean value that specifies whether to prompt the user to save the file. If 
saveURL is outside the Configuration/Temp folder, a prompt value of false is ignored 
for security reasons.

• saveURL is the location on the user’s hard disk where the file should be saved, which is 
expressed as a file:// URL. If prompt is true or saveURL is outside the Configuration/Temp 
folder, the user can override saveURL in the Save dialog box.

• titleBarLabel is the label that should appear in the title bar of the Save dialog box.
Chapter 23282



Returns

An object that represents the reply from the server. The data property of this object is a string 
that contains the location where the file is saved, which is expressed as a file:// URL. Normally the 
statusCode property of the object contains the status code that is received from the server. 
However, if a disk error occurs while Dreamweaver is saving the file on the local drive, the 
statusCode property contains an integer that represents one of the following error codes if the 
operation is not successful:

• 1: Unspecified error

• 2: File not found

• 3: Invalid path

• 4: Number of open files limit reached

• 5: Access denied

• 6: Invalid file handle

• 7: Cannot remove current working directory

• 8: No more directory entries

• 9: Error setting file pointer

• 10: Hardware error

• 11: Sharing violation

• 12: Lock violation

• 13: Disk full

• 14: End of file reached

Example

The following code gets an HTML file, saves all the files in the Configuration/Temp folder, and 
then opens the local copy of the HTML file in a browser:

var httpReply = MMHttp.getFile("http://www.dreamcentral.com/¬
people/profiles/scott.html",
false);
if (httpReply.statusCode == 200){

var saveLoc = httpReply.data;
dw.browseDocument(saveLoc);

}

The HTTP API 283



MMHttp.getFileCallback()

Description

Gets the file at the specified URL, saves it in the Configuration/Temp folder inside the 
Dreamweaver application folder, and then calls the specified function with the request 
ID and reply result. When saving the file locally, Dreamweaver automatically creates 
subfolders that mimic the directory structure of the server; for example, if the specified file is at 
http://www.dreamcentral.com/people/index.html, Dreamweaver stores the index.html file in the 
People folder inside the www.dreamcentral.com folder.

Arguments

callbackFunction, URL {,prompt} {,saveURL} {,titleBarLabel}

• callbackFunction is the name of the JavaScript function to call when the HTTP request is 
complete.

• URL is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver MX 
assumes HTTP protocol. 

• prompt is a Boolean value that specifies whether to prompt the user to save the file. If saveURL 
is outside the Configuration/Temp folder, a prompt value of false is ignored for security 
reasons.

• saveURL is the location on the user’s hard disk where the file should be saved, which is 
expressed as a file:// URL. If prompt is true or saveURL is outside the Configuration/Temp 
folder, the user can override saveURL in the Save dialog box.

• titleBarLabel is the label that should appear in the title bar of the Save dialog box.

Returns

An object that represents the reply from the server. The data property of this object is a string 
that contains the location where the file was saved, which is expressed as a file:// URL. Normally 
the statusCode property of the object contains the status code that is received from the server. 
However, if a disk error occurs while Dreamweaver is saving the file on the local drive, the 
statusCode property contains an integer that represents an error code. See “MMHttp.getFile()” 
on page 282 for a list of possible error codes.

MMHttp.getText()

Description

Retrieves the contents of the document at the specified URL.

Arguments

URL

URL is an absolute URL on a web server. If http:// is omitted from the URL, Dreamweaver MX 
assumes HTTP protocol. 

Returns

An object that represents the reply from the server. The data property of this object is a string 
that contains the contents of the document.
Chapter 23284



Example

The following code gets the contents of a file on a web server and puts it in a new, untitled 
Dreamweaver document:

var httpReply = MMHttp.getText("http://www.dreamcentral.com/¬
people/profiles/lori.html");
if (httpReply.statusCode == 200){

var newDoc =  dw.createDocument();
newDoc.documentElement.outerHTML = httpReply.data;

}

MMHttp.getTextCallback()

Description

Retrieves the contents of the document at the specified URL and passes it to the specified 
function.

Arguments

callbackFunc, URL

• callbackFunc is the name of the JavaScript function to call when the HTTP request is 
complete.

• URL is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver MX 
assumes HTTP protocol. 

Returns

An object that represents the reply from the server. The data property of this object is a string 
that contains the contents of the document.

Example

The following code populates a form field with the text that the MMHttp.GetTextCallback() 
function returns, or it shows an error message if the function returns an error:

var requestID = MMHttp.getTextCallback("httpCallback", ¬
"www.dreamcentral.com/index.html")

function httpCallback(requestID,reply) {
if (reply.statusCode == 200) {

document.theForm.docContents.value = reply.data;
}else{

alert("Request #: " + requestID + "returned the following ¬
error: " + reply.statusCode);

}
}

The HTTP API 285



MMHttp.postText()

Description

Uses an HTTP post request to pass the specified data to the specified URL. Typically the data 
that is associated with a post operation is form-encoded text, but it can be any type of data that 
the server expects to receive.

Arguments

URL, dataToPost {,contentType}

• URL is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver MX 
assumes HTTP protocol. 

• dataToPost is the data to be posted. If the third argument is "application/x-www-form-
urlencoded" or is omitted, dataToPost must be form-encoded, according to section 8.2.1 of 
the RFC 1866 specification (available at http://www.faqs.org/rfcs/rfc1866.html). 

• contentType is the content type of the data to be posted. If omitted, this argument defaults to 
"application/x-www-form-urlencoded".

Returns

An object that represents the reply from the server. The data property of this object is a string 
that contains the data that results from the post operation.

MMHttp.postTextCallback()

Description

Performs an HTTP post of the text to the specified URL and passes the reply from the server to 
the specified function. Typically the data associated with a post operation is form-encoded text, 
but it can be any type of data that the server expects to receive.

Arguments

callbackFunc, URL, dataToPost {,contentType}

• callbackFunc is the name of the JavaScript function to call when the HTTP request is 
complete.

• URL is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver MX 
assumes HTTP protocol. 

• dataToPost is the data to be posted. If the third argument is "application/x-www-form-
urlencoded" or is omitted, data must be form-encoded, according to section 8.2.1 of the 
RFC 1866 specification (available at http://www.faqs.org/rfcs/rfc1866.html).

• contentType is the content type of the data to be posted. If omitted, this argument defaults to 
"application/x-www-form-urlencoded".

Returns

An object that represents the reply from the server. The data property of this object is a string 
that contains the data that results from the post operation.
Chapter 23286



CHAPTER 24
The Design Notes API

Macromedia Dreamweaver, Fireworks, and Flash MX give web designers and developers a way to 
store and retrieve extra information about documents—information such as review comments, 
change notes, or the source file for a GIF or JPEG—in files that are called Design Notes.

MMNotes is a C shared library that lets extensions authors read and write Design Notes files. As 
with the DWfile shared library, MMNotes has a JavaScript API that makes it possible to call the 
functions that are contained in the library from objects, commands, behaviors, floating panels, 
Property inspectors, and data translators.

MMNotes also has a C API that lets other applications read and write Design Notes files. The 
MMNotes shared library can be used independently, even if Dreamweaver is not installed. 

For more information about using the Design Notes feature from within Dreamweaver, see 
Using Dreamweaver.

How Design Notes work
Each Design Notes file stores information for a single document. If one or more documents in a 
folder has a Design Notes file associated with it, Dreamweaver creates a _notes subfolder where 
Design Notes files can be stored. The _notes folder and the Design Notes files that it contains are 
not visible in the Site panel, but they appear in the Finder (Macintosh) or Windows Explorer. A 
Design Notes filename comprises the main filename plus the extension .mno. For example, the 
Design Notes file that is associated with avocado8.gif is avocado8.gif.mno.

Design Notes files are XML files that store information in a series of key/value pairs. The key 
describes the type of information that is being stored, and the value represents the information 
itself. Keys are limited to 64 characters.

The following example shows the Design Notes file for foghorn.gif:

<?xml version="1.0" encoding="iso-8859-1" ?>
<info>

<infoitem key="FW_source" value="file:///C|sites/¬
dreamcentral/images/sourceFiles/foghorn.png" />
<infoitem key="Author" value="Heidi B." />
<infoitem key="Status" value="Final draft, approved ¬
by Jay L." />

</info>
287



The Design Notes JavaScript API
All functions in the Design Notes JavaScript API are methods of the MMNotes object. Optional 
arguments are enclosed in braces ({ }).

MMNotes.close()

Description

Closes the specified Design Notes file and saves any changes. If all the key/value pairs are 
removed, Dreamweaver deletes the Design Notes file. If it is the last Design Notes file in the 
_notes folder, Dreamweaver also deletes the folder.

Note: Always call MMNotes.close() when you finish with Design Notes to cause Dreamweaver to write to the file.

Arguments

fileHandle

The argument is the file handle that MMNotes.open() returns.

Returns

Nothing.

Example

See “MMNotes.set()” on page 292.

MMNotes.filePathToLocalURL()

Description

Converts the specified local drive path to a file:// URL.

Arguments

drivePath

The argument is a string that contains the full drive path.

Returns

A string that contains the file:// URL for the specified file.

Example

A call to MMNotes.filePathToLocalURL(’C:\sites\webdev\index.htm’) returns "file:///
c|/sites/webdev/index.htm".

MMNotes.get()

Description

Gets the value of the specified key in the specified Design Notes file.

Arguments

fileHandle, keyName

• The first argument is the file handle that MMNotes.open() returns.

• The second argument is a string that contains the name of the key.
Chapter 24288



Returns

A string that contains the value of the key.

Example

See “MMNotes.getKeys()” on page 289.

MMNotes.getKeyCount()

Description

Gets the number of key/value pairs in the specified Design Notes file.

Arguments

fileHandle

The argument is the file handle that MMNotes.open() returns.

Returns

An integer that represents the number of key/value pairs in the Design Notes file.

MMNotes.getKeys()

Description

Gets a list of all the keys in a Design Notes file.

Arguments

fileHandle

The argument is the file handle that MMNotes.open() returns.

Returns

An array of strings where each string contains the name of a key.

Example

The following code might be used in a custom floating panel to display the Design Notes 
information for the active document:

var noteHandle = MMNotes.open(dw.getDocumentDOM().URL);
var theKeys = MMNotes.getKeys(noteHandle);
var noteString = "";
var theValue = "";
for (var i=0; i < theKeys.length; i++){

theValue = MMNotes.get(noteHandle,theKeys[i]);
noteString +=  theKeys[i] + " = " theValue + "\n";

}
document.theForm.bigTextField.value = noteString;
// always close noteHandle
MMNotes.close(noteHandle); 
The Design Notes API 289



MMNotes.getSiteRootForFile()

Description

Determines the site root for the specified Design Notes file.

Arguments

fileURL

The argument is the path to a local file, which is expressed as a file:// URL.

Returns

A string that contains the path of the Local Root folder for the site, which is expressed as a file:// 
URL, or an empty string if Dreamweaver is not installed or the Design Notes file is outside any 
site that is defined with Dreamweaver. This function searches for all the sites that are defined in 
Dreamweaver versions 3, 4, and MX as well as UltraDev versions 1 and 4.

MMNotes.getVersionName()

Description

Gets the version name of the MMNotes shared library, which indicates the application that 
implemented it.

Arguments

None.

Returns

A string that contains the name of the application that implemented the MMNotes shared 
library.

Example

Calling MMNotes.getVersionName() from a Dreamweaver command, object, behavior, Property 
inspector, floating panel, or data translator returns "Dreamweaver". Calling 
MMNotes.getVersionName() from Fireworks also returns "Dreamweaver" because Fireworks 
uses the same version of the library, which was created by the Dreamweaver engineering team.

MMNotes.getVersionNum()

Description

Gets the version number of the MMNotes shared library.

Arguments

None.

Returns

A string that contains the version number.

MMNotes.localURLToFilePath()

Description

Converts the specified file:// URL to a local drive path.

Arguments

fileURL
Chapter 24290



The argument is the path to a local file, which is expressed as a file:// URL.

Returns

A string that contains the local drive path for the specified file.

Example

A call to MMNotes.localURLToFilePath(’file:///MacintoshHD/images/moon.gif’) 
returns "MacintoshHD:images:moon.gif".

MMNotes.open()

Description

Opens the Design Notes file that is associated with the specified file or creates one if none exists.

Arguments

filePath, {bForceCreate}

• The first argument is the path to the main file with which the Design Notes file is associated, 
which is expressed as a file:// URL.

• The second argument is a Boolean value that indicates whether to create the Note even if 
Design Notes is turned off for the site or if filePath is not associated with any site.

Returns

The file handle for the Design Notes file or zero if the file was not opened or created.

Example

See “MMNotes.set()” on page 292.

MMNotes.remove()

Description

Removes the specified key (and its value) from the specified Design Notes file.

Arguments

fileHandle, keyName

• The first argument is the file handle that MMNotes.open() returns.

• The second argument is a string that contains the name of the key to be removed.

Returns

A Boolean value that indicates whether the operation is successful.
The Design Notes API 291



MMNotes.set()

Description

Creates or updates one key/value pair in a Design Notes file.

Arguments

fileHandle, keyName, valueString

• The first argument is the file handle that MMNotes.open() returns.

• The second argument is a string that contains the name of the key.

• The third argument is a string that contains the value.

Returns

A Boolean value that indicates whether the operation is successful.

Example

The following code opens the Design Notes file that is associated with a file in the dreamcentral 
site called peakhike99/index.html, adds a new key/value pair, changes the value of an existing key, 
and then closes the Note file.

var noteHandle = MMNotes.open(’file:///c|/sites/dreamcentral/
peakhike99/index.html’,true);
if(noteHandle > 0){

MMNotes.set(noteHandle,"Author","M. G. Miller");
MMNotes.set(noteHandle,"Last Changed","August 28, 1999");
MMNotes.close(noteHandle);

}

The Design Notes C API
In addition to the JavaScript API, the MMNotes shared library also exposes a C API that lets 
other applications create Design Notes files. It is not necessary to call these C functions directly if 
you use the MMNotes shared library in Dreamweaver because the JavaScript versions of the 
functions call them.

This section contains descriptions of the functions, their arguments, and their return values. You 
can find definitions for the functions and data types in the MMInfo.h file in the Extending/
c_files folder inside the Dreamweaver application folder.

Optional arguments are enclosed in braces ({ }).

void CloseNotesFile()

Description

Closes the specified Design Notes file and saves any changes. If all key/value pairs are removed 
from the Note file, Dreamweaver deletes it. Deletes the _notes folder when the last Design Notes 
file is deleted.

Arguments

FileHandle noteHandle

The argument is the file handle that OpenNotesFile() returns.

Returns

Nothing.
Chapter 24292



BOOL FilePathToLocalURL()

Description

Converts the specified local drive path to a file:// URL.

Arguments

const char* drivePath, char* localURLBuf, int localURLMaxLen

• The first argument is a string that contains the full drive path.

• The second argument is the buffer where the file:// URL should be stored.

• The third argument is the maximum size of localURLBuf.

Returns

A Boolean value that indicates whether the operation is successful; stores the file:// URL in 
localURLBuf.

BOOL GetNote()

Description

Gets the value of the specified key in the specified Design Notes file.

Arguments

FileHandle noteHandle, const char keyName[64], char* valueBuf, int valueBufLength

• The first argument is the file handle that OpenNotesFile() returns.

• The second argument is a string that contains the name of the key.

• The third argument is the buffer where the value should be stored.

• The fourth argument is the integer that GetNoteLength(noteHandle, keyName) returns, 
which indicates the maximum length of the value buffer.

Returns

A Boolean value that indicates whether the operation is successful; stores the value of the key in 
valueBuf.

Example

The following code gets the value of the comments key in the Design Notes file that is associated 
with welcome.html:

FileHandle noteHandle = OpenNotesFile("file:///c|/sites/avocado8/¬
iwjs/welcome.html");
if(noteHandle > 0){

int valueLength = GetNoteLength( noteHandle, "comments");
char* valueBuffer = new char[valueLength + 1]; 
GetNote(noteHandle, "comments", valueBuffer, valueLength + 1);
printf("Comments: %s",valueBuffer);
CloseNotesFile(noteHandle);

}

The Design Notes API 293



int GetNoteLength()

Description

Gets the length of the value associated with the specified key.

Arguments

FileHandle noteHandle, const char keyName[64]

• The first argument is the file handle that OpenNotesFile() returns.

• The second argument is a string that contains the name of the key.

Returns

An integer that represents the length of the value.

Example

See “BOOL GetNote()” on page 293.

int GetNotesKeyCount()

Description

Gets the number of key/value pairs in the specified Design Notes file.

Arguments

FileHandle noteHandle

The argument is the file handle that OpenNotesFile() returns.

Returns

An integer that represents the number of key/value pairs in the Design Notes file.

BOOL GetNotesKeys()

Description

Gets a list of all the keys in a Design Notes file.

Arguments

FileHandle noteHandle, char* keyBufArray[64], int keyArrayMaxLen

• The first argument is the file handle that OpenNotesFile() returns.

• The second argument is the buffer array where the keys should be stored.

• The third argument is the integer that GetNotesKeyCount(noteHandle) returns, indicating 
the maximum number of items in the key buffer array.

Returns

A Boolean value that indicates whether the operation is successful; stores the key names in 
keyBufArray.
Chapter 24294



Example

The following code prints the key names and values of all the keys in the Design Notes file that 
are associated with welcome.html:

typedef char[64] InfoKey;
FileHandle noteHandle = OpenNotesFile("file:///c|/sites/avocado8/¬
iwjs/welcome.html");
if (noteHandle > 0){

int keyCount = GetNotesKeyCount(noteHandle);
if (keyCount <= 0)

return;
InfoKey* keys = new InfoKey[keyCount];
BOOL succeeded = GetNotesKeys(noteHandle, keys, keyCount);

if (succeeded){
for (int i=0; i < keyCount; i++){

printf("Key is: %s\n", keys[i]);
printf("Value is: %s\n\n", GetNote(noteHandle, keys[i]);

}
}
delete []keys;

}
CloseNotesFile(noteHandle);

BOOL GetSiteRootForFile()

Description

Determines the site root for the specified Design Notes file.

Arguments

const char* filePath, char* siteRootBuf, int siteRootBufMaxLen, {InfoPrefs* 
infoPrefs}

• The first argument is the file URL of the file for which you want the site root.

• The second argument is the buffer where the site root should be stored.

• The third argument is the maximum size of siteRootBuf.

• The optional fourth argument is a reference to a struct in which the preferences for the site 
should be stored.

Returns

A Boolean value that indicates whether the operation is successful; stores the site root in 
siteRootBuf. If infoPrefs is specified, the function also returns the Design Notes preferences 
for the site. The InfoPrefs struct has two variables: bUseDesignNotes and 
bUploadDesignNotes, both of type BOOL.
The Design Notes API 295



BOOL GetVersionName()

Description

Gets the version name of the MMNotes shared library, which indicates the application that 
implemented it.

Arguments

char* versionNameBuf, int versionNameBufMaxLen

• The first argument is the buffer where the version name should be stored.

• The second argument is the maximum size of versionNameBuf.

Returns

A Boolean value that indicates whether the operation is successful; stores “Dreamweaver” in 
versionNameBuf.

BOOL GetVersionNum()

Description

Gets the version number of the MMNotes shared library, which allows you to determine whether 
certain functions are available.

Arguments

char* versionNumBuf, int versionNumBufMaxLen

• The first argument is the buffer where the version number should be stored.

• The second argument is the maximum size of versionNumBuf.

Returns

A Boolean value that indicates whether the operation is successful; stores the version number in 
versionNumBuf.

BOOL LocalURLToFilePath()

Description

Converts the specified file:// URL to a local drive path.

Arguments

const char* localURL, char* drivePathBuf, int drivePathMaxLen

• The first argument is the path to a local file, which is expressed as a file:// URL.

• The second argument is the buffer where the local drive path should be stored.

• The third argument is the maximum size of drivePathBuf.

Returns

A Boolean value that indicates whether the operation is successful; stores the local drive path in 
drivePathBuf.
Chapter 24296



FileHandle OpenNotesFile()

Description

Opens the Design Notes file that is associated with the specified file or creates one if none exists.

Arguments

const char* localFileURL, {BOOL bForceCreate}

• The first argument is a string that contains the path to the main file with which the Design 
Notes file is associated, which is expressed as a file:// URL.

• The second argument is a Boolean value that indicates whether to create the Design Notes file 
even if Design Notes is turned off for the site or if localFileURL is not associated with any 
site.

FileHandle OpenNotesFilewithOpenFlags()

Description

Opens the Design Notes file that is associated with the specified file or creates one if none exists. 
You can open the file in read-only mode.

Arguments

const char* localFileURL, {BOOL bForceCreate}, {BOOL bReadOnly}

• The first argument is a string that contains the path to the main file with which the Design 
Notes file is associated, which is expressed as a file:// URL.

• The second argument is a Boolean value that indicates whether to create the Design Notes file 
even if Design Notes are turned off for the site or filePath is not associated with any site. The 
default value is false. This argument is optional, but you need to specify it if you specify the 
third argument.

• The third argument is a Boolean value that indicates whether to open the file in read-only 
mode. The default value is false. Optional. Available starting in version 2 of MMNotes.dll.

BOOL RemoveNote()

Description

Removes the specified key (and its value) from the specified Design Notes file.

Arguments

FileHandle noteHandle, const char keyName[64]

• The first argument is the file handle that OpenNotesFile() returns.

• The second argument is a string that contains the name of the key to remove.

Returns

A Boolean value that indicates whether the operation is successful.
The Design Notes API 297



BOOL SetNote()

Description

Creates or updates one key/value pair in a Design Notes file.

Arguments

FileHandle noteHandle, const char keyName[64], const char* value

• The first argument is the file handle that OpenNotesFile() returns.

• The second argument is a string that contains the name of the key.

• The third argument is a string that contains the value.

Returns

A Boolean value that indicates whether the operation is successful.
Chapter 24298



CHAPTER 25
The Fireworks Integration API

FWLaunch is a C shared library that gives authors of objects, commands, behaviors, and 
Property inspectors the ability to communicate with Macromedia Fireworks. This chapter 
describes the Fireworks Integration API and how to use it; for general information on how C 
libraries interact with the JavaScript interpreter in Macromedia Dreamweaver MX, see “C-Level 
Extensibility” on page 251.

All functions in the Fireworks Integration API are methods of the FWLaunch object. Optional 
arguments are enclosed in braces ({ }).

FWLaunch.bringDWToFront()

Availability

Dreamweaver 3, Fireworks 3

Description

Brings Dreamweaver to the front.

Arguments

None.

Returns

Nothing.

FWLaunch.bringFWToFront()

Availability

Dreamweaver 3, Fireworks 3

Description

Brings Fireworks to the front if it is running.

Arguments

None.

Returns

Nothing.
299



FWLaunch.execJsInFireworks()

Availability

Dreamweaver 3, Fireworks 3

Description

Passes the specified string of JavaScript to Fireworks for execution.

Arguments

javascriptOrFileURL

The argument is either a string of literal JavaScript or the path to a .js or .jsf file, which is 
expressed as a file:// URL.

Returns

A cookie object if the JavaScript passes successfully or a nonzero error code that indicates one of 
the following errors occurred:

• Invalid usage; javascriptOrFileURL is specified as null or an empty string, or the path to 
the .js or .jsf file is invalid.

• File I/O error; Fireworks cannot create a Response file because the disk is full.

• Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver (3 or 
later).

• Error launching Fireworks process; the function does not launch a valid version of Fireworks 
(3 or later).

• User cancelled the operation.

FWLaunch.getJsResponse()

Availability

Dreamweaver 3, Fireworks 3

Description

Determines whether Fireworks is still executing the JavaScript passed to it by 
FWLaunch.execJsInFireworks(), whether the script completed successfully, or whether an 
error occurred.

Arguments

progressTrackerCookie

The argument is the cookie object that FWLaunch.execJsInFireworks() returns.

Returns

A string that contains the result of the script passed to FWLaunch.execJsInFireworks() if the 
operation completed successfully, null if Fireworks is still executing the JavaScript, or a nonzero 
error code that indicates one of the following errors occurred:

• Invalid usage; a JavaScript error occurred as Fireworks executed the script.

• File I/O error; Fireworks cannot create a Response file because the disk is full.

• Error notifying Dreamweaver; the user is not running a valid version of Dreamweaver (3 or later).
Chapter 25300



• Error launching Fireworks process; the function does not launch a valid version of Fireworks 
(3 or later).

• User cancelled the operation.

Returns

The following code passes the string "prompt(’Please enter your name:’)" to 
FWLaunch.execJsInFireworks() and checks for the result:

var progressCookie = FWLaunch.execJsInFireworks("prompt(’Please enter your 
name:’)");

var doneFlag = false;
while (!doneFlag){

// check for completion every 1/2 second
setTimeout(’checkForCompletion()’,500);

}

function checkForCompletion(){
if (progressCookie != null) {

var response = FWLaunch.getJsResponse(progressCookie);
if (response != null) {

if (typeof(response) == "number") {
// error or user-cancel, time to close the window 
// and let the user know we got an error
window.close();
alert("An error occurred.");

}else{
// got a valid response!
alert("Nice to meet you, " + response);
window.close();

}
doneFlag = true;

}
}

}

FWLaunch.mayLaunchFireworks()

Availability

Dreamweaver 2, Fireworks 2

Description

Determines whether it is possible to launch a Fireworks optimization session.

Arguments

None.

Returns

A Boolean value that indicates whether the platform is Windows or Macintosh; if Macintosh, 
indicates whether another Fireworks optimization session is already running.
The Fireworks Integration API 301



FWLaunch.optimizeInFireworks()

Availability

Dreamweaver 2, Fireworks 2

Description

Launches a Fireworks optimization session for the specified image.

Arguments

docURL, imageURL, {targetWidth}, {targetHeight}

• The first argument is the path to the active document, which is expressed as a file:// URL.

• The second argument is the path to the selected image. If the path is relative, it is relative to 
docURL.

• The third argument, if supplied, is the width to which the image should be resized.

• The fourth argument, if supplied, is the height to which the image should be resized.

Returns

Zero, if a Fireworks optimization session successfully launches for the specified image; otherwise, 
a nonzero error code that indicates one of the following errors occurred:

• Invalid usage; docURL, imageURL, or both are specified as null or an empty string.

• File I/O error; Fireworks cannot create a response file because the disk is full.

• Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver 
(2 or later).

• Error launching Fireworks process; the function does not launch a valid version of Fireworks 
(2 or later).

• User cancelled the operation.

FWLaunch.validateFireworks()

Availability

Dreamweaver 2, Fireworks 2

Description

Looks for the specified version of Fireworks on the user’s hard disk.

Arguments

{versionNumber}

The argument is a floating-point number that is greater than or equal to 2; it represents the 
required version of Fireworks. If this argument is omitted, the default is 2.

Returns

A Boolean value that indicates whether the specified version of Fireworks was found.
Chapter 25302



Example

The following code checks whether Fireworks 3 is installed:

if (FWLaunch.validateFireworks(3.0)){
alert( "Fireworks 3.0 is installed.");

}else{
alert( "Fireworks 3.0 is not installed.");

}

The Fireworks Integration API 303



A simple Fireworks integration example

The following command asks Fireworks to prompt the user for his or her name and returns the 
name to Dreamweaver:

<html>
<head>
<title>Prompt in Fireworks</title>
<meta http-equiv="Content-Type" content="text/html; ¬
charset=iso-8859-1">
<script>

function commandButtons(){
return new Array("Prompt", "promptInFireworks()", "Cancel", ¬
"readyToCancel()", "Close","window.close()");

}

var gCancelClicked = false;
var gProgressTrackerCookie = null;

function readyToCancel() {
gCancelClicked = true;

}

function promptInFireworks() {
var isFireworks3 = FWLaunch.validateFireworks(3.0);
if (!isFireworks3) {

alert("You must have Fireworks 3.0 or later to use this ¬
command");

return;
}

// Tell Fireworks to execute the prompt() method.
gProgressTrackerCookie = FWLaunch.execJsInFireworks¬
("prompt('Please enter your name:')");

// null means it wasn't launched, a number means an error code
if (gProgressTrackerCookie == null || ¬
typeof(gProgressTrackerCookie) == "number") {

window.close();
alert("an error occurred");
gProgressTrackerCookie = null;

} else {
// bring Fireworks to the front
FWLaunch.bringFWToFront();
// start the checking to see if Fireworks is done yet
checkOneMoreTime();

}
}

function checkOneMoreTime() {
// Call checkJsResponse() every 1/2 second to see if Fireworks

   // is done yet
window.setTimeout("checkJsResponse();", 500);

}

function checkJsResponse() {
var response = null;

// The user clicked the cancel button, close the window
if (gCancelClicked) {

window.close();
Chapter 25304



alert("cancel clicked");
} else {

// We’re still going, ask Fireworks how it’s doing
if (gProgressTrackerCookie != null)

response = ¬
FWLaunch.getJsResponse(gProgressTrackerCookie);

if (response == null) {
// still waiting for a response, call us again in 1/2 a 
// second
checkOneMoreTime();

} else if (typeof(response) == "number") {
// if the response was a number, it means an error 
// occurred 
// the user cancelled in Fireworks
window.close();
alert("an error occurred.");

} else {
// got a valid response!  This return value might not 
// always be a useful one, since not all functions in 
// Fireworks return a string, but we know this one does, 
// so we can show the user what we got.
window.close();
FWLaunch.bringDWToFront();  // bring Dreamweaver to the ¬
front
alert("Nice to meet you, " + response + "!");

}
}

}

</script>
</head>
<body>
<form>
<table width="313" nowrap>
<tr>
<td>This command asks Fireworks to execute the prompt() ¬
function. When you click Prompt, Fireworks comes forward and ¬
asks you to enter a value into a dialog box. That value is then ¬
returned to Dreamweaver and displayed in an alert.</td>
</tr>
</table>
</form>
</body>
</html>
The Fireworks Integration API 305



Chapter 25306



CHAPTER 26
The Flash Objects API

The Flash Objects API lets extension developers build objects that create simple Macromedia 
Flash content. This API provides a way to set parameters in a Flash Generator template (.swt file) 
and output a Flash Movie or Image file. The API lets you create new Flash objects as well as 
read and manipulate existing Flash objects. The Flash button and Flash text features are built 
using this API.

The .swt file is a Flash Generator Template file, which contains all the necessary information 
required to construct a Flash Object file (.swf ). These API functions let you create a new .swf file 
(or Image file) from a .swt file by replacing the parameters of the .swt file with real values. For 
more information on Flash, see the Flash manual.

SWFFile.createFile() 

Description

Generates a new Flash Object file with the specified template and array of parameters. 
Also creates a GIF, PNG, JPEG, and MOV version of the title if filenames for those formats 
are specified.

If you want to specify an optional parameter that follows optional parameters you do not want to 
include, you need to specify empty strings for the extraneous parameters. For example, if you 
want to specify a .png file, but not a .gif file, you need to specify an empty string before specifying 
the.png filename.

Arguments

templateFile, templateParams, swfFileName, {gifFileName}, {pngFileName}, 
{jpgFileName}, {movFileName}, {generatorParams}

• templateFile is a path to a Template file, which is expressed as a file:// URL. This file can be 
a .swt file.

• templateParams is an array of name/value pairs where the names are the parameters in the 
.swt file and the values are what you want to specify for those parameters. For an .swf file to be 
recognized by Macromedia Dreamweaver MX as a Flash object, the first parameter must be 
"dwType". Its value should be a string that represents the name of the object type, such as 
"Flash Text".

• swfFileName is the output filename of an .swf file, which is expressed as a file:// URL, or an 
empty string to ignore. 

• {gifFileName} is the output filename of a .gif filename, which is expressed as a file://URL Optional.
307



• {pngFileName} is the output filename of a .png filename, which is expressed as a file:// 
URL. Optional.

• {jpgFileName} is the output filename of a .jpeg filename, which is expressed as a file:// 
URL. Optional.

• {movFileName} is the output filename of a QuickTime movie filename, which is expressed as 
a file:// URL. Optional.

• {generatorParams} is an array of strings that represents optional Generator command line 
flags. Optional. Each flag must be followed in the array by its data items. Some commonly 
used flags are listed in the following table. 

Returns

A string that contains one of the following values:

• "noError" means the call completed successfully.

• "invalidTemplateFile" means the specified Template file is invalid or not found.

• "invalidOutputFile" means at least one of the specified output filenames is invalid. 

• "invalidData" means that one or more of the templateParams is invalid.

• "initGeneratorFailed" means Generator cannot be initialized.

• "outOfMemory" means there is insufficient memory to complete the operation.

• "unknownError" means an unknown error occurred.

Example

The following JavaScript creates a Flash Object file of type "myType", which replaces any 
occurrence of "text" inside the Template file with "Hello World". It creates a .gif file as well as 
an .swf file. 

var params = new Array;
params[0] = "dwType";
params[1] = "myType";
params[2] = "text";
params[3] = "Hello World";
errorString = SWFFile.createFile( "file:///MyMac/test.swt", ¬
params, "file:///MyMac/test.swf", "file:///MyMac/test.gif");

Option Flag Data Description Example

-defaultsize Width, height Sets the output image size to the 
specified width and height

"-defaultsize", 
"640", "480"

-exactFit None Stretches the contents in the output 
image to fit exactly into the specified 
output size

"-exactFit"
Chapter 26308



SWFFile.getNaturalSize() 

Description

Returns the natural size of any Flash movie.

Arguments

fileName

fileName is a path to the Flash movie, which is expressed as a file:// URL. 

Returns

An array that contains two elements that represent the width and the height of the movie or null 
if the file is not a Flash file. 

SWFFile.getObjectType() 

Description

Returns the Flash object type; the value that passed in the dwType parameter when the file was 
created by the SWFFile.createFile() function.

Arguments

fileName 

fileName is a path to a Flash Object file, which is expressed as a file:// URL. This file is usually 
an .swf file.

Returns

A string that represents the object type, or null if the file is not a Flash Object file or if the file 
cannot be found.

Example

The following code checks to see if the file, test.swf, is a Flash object of type myType:

if ( SWFFile.getObjectType("file:///MyMac/test.swf") == ¬
"myType" ){

alert ("This is a myType object.");
}else{

alert ("This is not a myType object.");
}

SWFFile.readFile() 

Description

Reads a Flash Object file.

Arguments

fileName

fileName is a path to a Flash Object file, which is expressed as a file:// URL. 

Returns

An array of strings where the first array element is the full path to the template .swt file. The 
following strings represent the parameters (name/value pairs) for the object. Each name is 
followed in the array by its value. The first name/value pair is "dwType" followed by its value; 
null is returned if the file cannot be found or if it is not a Flash Object file.
The Flash Objects API 309



Example

Calling var params = SWFFile.readFile("file:///MyMac/test.swf") returns the 
following values in the parameters array:

"file:///MyMac/test.swt"  // template file used to create this .swf file
"dwType"                  // first parameter
"myType"                  // first parameter value
"text"                    // second parameter
"Hello World"             // second parameter value
Chapter 26310



CHAPTER 27
The Database API

Functions in the Database API let you manage database connections and access information that 
is stored in databases. 

In managing database connections, you can get the user name and password that are needed to 
make a connection to a database, open up a database connection dialog box, and so on.

In accessing database information, you can, for example, fetch metadata that describes the schema 
or structure of a database. This metadata includes information such as the names of tables, 
columns, stored procedures, and views. You can also show the results of executing a database 
query or stored procedure. When accessing a database through this API, you use structured query 
language (SQL) statements.

Database API functions are used at design time when users are building web applications, as 
opposed to runtime, when the web application is deployed.

You can use these functions in any extension. In fact, the Macromedia Dreamweaver MX 
Server Behavior, Data Format, and Data Sources API functions all use these database functions.

The following example shows how the server behavior function, getDynamicBindings(), is 
defined for Recordset. (For all Dreamweaver versions other than MX, the file Recordset.js is 
located in the Configuration/ServerBehaviors folder; for Dreamweaver MX, this JavaScript file is 
located in the Configuration/ServerBehaviors/Shared folder.) 
311



Note: This example uses the MMDB.getColumnList() function.

function getDynamicBindings(elementNode)
{

var ss = findSSrec(elementNode, LABEL_Type)

var connString = ss.activeconnection
var connName =  ss.connectionName
var statement = ss.source
var rsName = ss.rsName

var pa = new Array()

if (String(ss.ParamArray) != "undefined")
{

for (var i = 0; i < ss.ParamArray.length; i++)
{

pa[i] = new Array()
pa[i][0] = ss.ParamArray[i].name
pa[i][1] = ss.ParamArray[i].value

}
}

var statement = ReplaceParamsWithVals(statement, pa)
return MMDB.getColumnList(connName, statement)

}

Database connection functions
Database connection functions let you make and manage any connection, including the 
Dreamweaver MX-provided ADO, ColdFusion, and JDBC connections. These functions 
interface with the Connection Manager only; they do not access a database. For functions that 
access a database, see “Database access functions” on page 324.

MMDB.deleteConnection()

Availability

Dreamweaver MX

Description

Deletes the named database connection.

Arguments

connName

connName is the name of the database connection as it is specified in the Connection Manager. 
This argument identifies, by name, the database connection to delete.

Returns

Nothing.
Chapter 27312



Example

//deletes a connection
function clickedDelete()
{

var selectedObj = dw.serverComponents.getSelectedNode();
if (selectedObj && selectedObj.objectType=="Connection")
{

var connRec = MMDB.getConnection(selectedObj.name);
if (connRec)
{

MMDB.deleteConnection(selectedObj.name);
dw.serverComponents.refresh();

}
}

}

MMDB.getColdFusionDsnList()

Availability

Dreamweaver UltraDev 4

Description

Gets the ColdFusion data source names (DSNs) from the site server, using the 
getRdsUserName() and getRdsPassword() functions.

Arguments

None.

Returns

An array that contains the ColdFusion DSNs that are defined on the server for the current site.

MMDB.getConnection()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX

Description

Gets a named connection object. Connection objects contain the following properties:

Property Description 

name Connection name

type Indicates, if useHTTP is false, which DLL to use for connecting to a database at runtime 

string Runtime ADO connection string or JDBC URL

dsn ColdFusion DSN

driver Runtime JDBC Driver

username Runtime user name

password Runtime password

useHTTP String that contains either true or false, specifying whether to use a remote driver (HTTP 
connection) at design time; otherwise, use a local driver (DLL)

includePattern Regular expression used to find the file include statement on the page during Live Data and 
Preview In Browser
The Database API 313



Note: These properties are the standard ones implemented by Dreamweaver MX. Developers can define their own 
connection types and add new properties to this standard set or provide a different set of properties.

Parameters

name 

name is a string variable that specifies the name of the connection that you want to reference.

Returns

A reference to a named connection object.

MMDB.getConnectionList()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of all the connection strings that are defined in the Connection Manager.

Arguments

None.

Returns

An array of strings where each string is the name of a connection as it appears in the Connection 
Manager.

Example

A call to MMDB.getConnectionList() could return the strings ["EmpDB", "Test", TestEmp"].

variables Array of page variable names and their corresponding values used during Live Data and Preview 
In Browser

catalog Used to restrict the metadata that appears (for more information, see “MMDB.getProcedures()” 
on page 328)

schema Used to restrict the metadata that appears (for more information, see “MMDB.getProcedures()” 
on page 328)

filename Filename of dialog box that was used to create the connection

Property Description 
Chapter 27314



MMDB.getConnectionName()

Availability

Dreamweaver UltraDev 1

Description

Gets the connection name that corresponds to the specified connection string. This function is 
useful when you need to reselect a connection name in the user interface from data on the page. 

If you have a connection string that references two drivers, you can specify both the connection 
string and the driver that corresponds to the connection name that you want returned. For 
example, you could have two connections:

Connection 1 has the following properties:

ConnectionString="jdbc:inetdae:velcro-qa-5:1433?database=pubs"
DriverName="com.inet.tds.TdsDriver"

Connection 2 has the following properties:

ConnectionString="jdbc:inetdae:velcro-qa-5:1433?database=pubs"
DriverName="com.inet.tds.TdsDriver2"

The connection strings for Connection 1 and Connection 2 are the same. Connection 2 connects 
to a more recent version of TdsDriver. You should pass the driver name to this function to fully 
qualify the connection name you want returned. 

Arguments

connString {,driverName}

• connString is the connection string that gets the connection name.

• driverName is an optional argument that further qualifies connString.

Returns

A connection name string that corresponds to the connection string.

Example

The following code returns the string "EmpDB":

var connectionName = MMDB.getConnectionName ¬
("dsn=EmpDB;uid=;pwd=");

MMDB.getConnectionString()

Availability

Dreamweaver UltraDev 1

Description

Gets the connection string that is associated with the named connection.

Arguments

connName

connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source.
The Database API 315



Returns

A connection string that corresponds to the named connection.

Example

The code var connectionString = MMDB.getConnectionString ("EmpDB") returns different 
strings for an ADO or JDBC connection.

For an ADO connection, the following string could be returned:

"dsn=EmpDB;uid=;pwd=";

For a JDBC connection, the following string could be returned:

"jdbc:inetdae:192.168.64.49:1433?database=pubs&user=JoeUser&¬
password=joesSecret"

MMDB.getDriverName()

Availability

Dreamweaver UltraDev 1

Description

Gets the driver name that is associated with the specified connection. Only a JDBC connection 
has a driver name.

Arguments

connName

connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source.

Returns

A string that contains the driver name.

Example

The statement MMDB.getDriverName ("EmpDB"); might return the following string:

"jdbc/oracle/driver/JdbcOracle"

MMDB.getDriverUrlTemplateList()

Availability

Dreamweaver UltraDev 4, deprecated in Dreamweaver MX. 

Note: For Dreamweaver UltraDev 4, the list of JDBC drivers are stored in the connections.xml file located in the 
Configuration/Connections folder. Each driver has an associated URL template. This funtion returns the list of 
JDBC drivers.

For Dreamweaver MX, these drivers and URL templates are hard-coded in the JDBC dialog 
boxes. In addition, this function is an empty function definition to eliminate undefined-function 
errors. The following example shows how a JDBC driver and URL template are hard-coded:

var DEFAULT_DRIVER = "COM.ibm.db2.jdbc.app.DB2Driver";

var DEFAULT_TEMPLATE = "jdbc:db2:[database name]"; 

For Dreamweaver MX, there is a dialog box for each driver/URL template pair. 
Chapter 27316



In summary, Dreamweaver UltraDev 4 developers need to add a new entry to the XML, and 
Dreamweaver MX developers need to implement a new dialog box.

Description

Gets JDBC Drivers and respective URL templates. 

Arguments

None.

Returns

An array that contains JDBC drivers that have been detected on the user’s system and their 
respective URL templates, if they are specified. The array has an even number of elements that 
contain: Driver1, UrlTemplate1, Driver2, UrlTemplate2, and so on.

MMDB.getLocalDsnList()

Availability

Dreamweaver UltraDev 4

Description

Gets ODBC DSNs that are defined on the user system.

Arguments

None.

Returns

An array that contains the ODBC DSNs that are defined on the user’s system.

MMDB.getPassword()

Availability

Dreamweaver UltraDev 1

Description

Gets the password that is used for the specified connection.

Arguments

connName

connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns

A password string that is associated with the connection name.

Example

The statement MMDB.getPassword ("EmpDB"); might return "joessecret".
The Database API 317



MMDB.getRdsPassword()

Availability

Dreamweaver UltraDev 4

Description

Gets the Remote Development Services (RDS) password.

Arguments

None.

Returns

A string that contains the RDS password.

MMDB.getRdsUserName()

Availability

Dreamweaver UltraDev 4

Description

Gets the RDS user name.

Arguments

None.

Returns

A string that contains the name of the RDS user.

MMDB.getRemoteDsnList()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX

Description

Gets the ODBC DSNs from the site server. The getRdsUserName() and getRdsPassword() 
functions are used when the server model of the current site is ColdFusion. This function 
provides an option for a developer to specify a URL parameter string to be appended to the 
Remote Connectivity URL that MMDB.getRemoteDsnList() generates. If the developer provides 
a parameter string, this function passes it to the HTTP connectivity scripts. 

Arguments

{urlParams}

urlParams is a string that contains a list of name=value expressions, which are separated by 
ampersand (&) characters. You must not enclose values with quotes. Some characters, such as the 
space in the value “Hello World,” need to be encoded. For example, here is a valid sample 
argument that you can pass to MMDB.getRemoteDsnList():

a=1&b=Hello%20World

Returns

Returns an array that contains the ODBC DSNs that are defined on the server for the current site
Chapter 27318



MMDB.getRuntimeConnectionType()

Availability

Dreamweaver UltraDev 1

Description

Returns the runtime connection type of the specified connection name. This function can return 
one of the following values: "ADO", "ADODSN", "JDBC", or "CFDSN". 

Arguments

connName

connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source.

Returns

A string that corresponds to the connection type.

Example

The following code returns the string "ADO" for an ADO connection:

var connectionType = MMDB.getRuntimeConnectionType ("EmpDB") 

MMDB.getUserName()

Availability

Dreamweaver UltraDev 1

Description

Returns a user name for the specified connection.

Arguments

connName

connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source.

Returns

A user name string that is associated with the connection name.

Example

The statement MMDB.getUserName ("EmpDB"); might return "amit".
The Database API 319



MMDB.hasConnectionWithName()

Availability

Dreamweaver UltraDev 4

Description

Determines whether a connection of a given name exists.

Arguments

name

name is the connection name.

Returns

Returns a Boolean value that indicates whether a connection with the specified name exists.

MMDB.needToPromptForRdsInfo()

Availability

Dreamweaver MX

Description

Determines whether Dreamweaver should open the RDS Login Information dialog box.

Arguments

force

force, which holds a Boolean value, indicates whether the fact that the user has previously 
cancelled out of the RDS login dialog box should be ignored when trying to determine whether 
the user still needs to be prompted for RDS login information.

Returns

A Boolean value that indicates whether the user needs to be prompted for RDS login 
information.

MMDB.needToRefreshColdFusionDsnList()

Availability

Dreamweaver MX

Description

Tells the Connection Manager to empty the cache and get the ColdFusion data source list from 
the application server the next time a user requests the list.

Arguments

None.

Returns

Nothing.
Chapter 27320



MMDB.popupConnection()

Availability

Dreamweaver MX

Description

Invokes a connection dialog box. This function has the following three signatures:

• If the argument list consists only of dialogFileName (a string), popupConnection( ) causes 
Dreamweaver to launch the connection dialog box so you can define a new connection. 

• If the argument list consists only of connRec (a connection reference), popupConnection( ) 
causes Dreamweaver to launch the connection dialog box in edit mode for the named 
connection for editing. In this mode, the name text box is dimmed.

• If the argument list consists of connRec and bDuplicate (a Boolean value), 
popupConnection( ) causes Dreamweaver to launch the connection dialog box in duplicate 
mode. In this mode, the name text box is blanked out and the remaining properties are copied 
to define a duplicate connection.

Arguments

dialogFileName
or
connRec
or
connRec, bDuplicate

• dialogFileName is a string that contains the name of an HTML file that resides in the 
Configuration/Connections/server-model folder. This HTML file defines the dialog box that is 
used to create a connection. This file must implement three JavaScript API functions: 
findConnection(), inspectConnection(), and applyConnection(). Typically, you create 
a .js file that implements these functions and then include the .js file in the HTML file. (For 
more information on creating a connection, see “The Database Connectivity API” on page 
337.)

• connRec is a reference to an existing Connection object.

• bDuplicate is a Boolean value.

Returns

Nothing. The defined connection dialog box appears.

MMDB.setRdsPassword()

Availability

Dreamweaver UltraDev 4

Description

Sets the RDS password.

Arguments

password is a string that contains the RDS password.

Returns

Nothing.
The Database API 321



MMDB.setRdsUserName()

Availability

Dreamweaver UltraDev 4

Description

Sets the RDS user name.

Arguments

username is the name of a valid RDS user.

Returns

Nothing.

MMDB.showColdFusionAdmin()

Availability

Dreamweaver MX

Description

Displays the ColdFusion Administrator dialog box.

Arguments

None.

Returns

Nothing. The ColdFusion Administrator dialog box appears.

MMDB.showConnectionMgrDialog()

Availability

Dreamweaver UltraDev 1

Description

Displays the Connection Manager dialog box.

Arguments

Nothing.

Returns

Nothing. The Connection Manager dialog box appears.
Chapter 27322



MMDB.showOdbcDialog()

Availability

Dreamweaver UltraDev 4 (Windows only)

Description

Displays the System ODBC Administration dialog box or the ODBC Data Source Administrator 
dialog box.

Arguments

None.

Returns

Nothing. The System ODBC Administration dialog box or the ODBC Data Source 
Administrator dialog box appears.

MMDB.showRdsUserDialog()

Availability

Dreamweaver UltraDev 4

Description

Displays RDS user name and password dialog box.

Arguments

username, password

• username is the initial user name.

• password is the initial password.

Returns

An object that contains the new values in the username and password properties. Either property 
that is not being defined indicates that the user cancelled from the dialog box.

MMDB.showRestrictDialog()

Availability

Dreamweaver UltraDev 4

Description

Displays the Restrict dialog box.

Arguments

catalog, schema

• catalog is the initial catalog value. 

• schema is the initial schema value.

Returns

An object that contains the new values in the catalog and schema properties. Either property 
that is not being defined indicates that the user cancelled from the dialog box.
The Database API 323



MMDB.testConnection()

Availability

Dreamweaver UltraDev 4

Description

Tests connection settings. Displays a modal dialog box that describes the results. 

Arguments

This function expects a single argument—an Array object that contains values from the following 
list, which are appropriate for the current server model. For properties that do not apply to the 
connection being tested, set them to empty (““).

• type indicates, when useHTTP is false, which DLL to use for connecting to a database at 
design time. Used to test connection settings.

• string is the ADO connection string or JDBC URL.

• dsn is the Data Source Name.

• driver is the JDBC driver.

• username is the user name.

• password is the password.

• useHTTP is a Boolean value. A value of true specifies that Dreamweaver should use an HTTP 
connection at design time; otherwise, Dreamweaver uses a DLL.

Returns

A Boolean value. If the connection test is successful, testConnection() returns true; 
false otherwise.

Database access functions
Database access functions let you query a database. For the collection of functions that manage a 
database connection, see “Database connection functions” on page 312.

The following list describes some of the arguments that are common to the functions that are 
available:

• Most database access functions use a connection name as an argument. You can see a list of 
valid connection names in the Connection Manager, or you can use 
MMDB.getConnectionList() to get a list of all the connection names programmatically.

• Stored procedures often require parameters. There are two ways of specifying parameter values 
for database access functions. First, you can provide an array of parameter values 
(paramValuesArray). If you specify only parameter values, the values need to be in the 
sequence in which the stored procedure requires the parameters. Second, you specify 
parameter values to provide an array of parameter names (paramNameArray). (You can use the 
MMDB.getSPParamsAsString() function to get the parameters of the stored procedure.) If 
you provide parameter names, the values that are specified in paramValuesArray need to be in 
the sequence in which the parameter names are specified in paramNameArray. 
Chapter 27324



MMDB.getColumnAndTypeList()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of columns and their types from an executed SQL SELECT statement.

Arguments

connName, statement

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source.

• statement is the SQL SELECT statement to execute.

Returns

An array of strings that represents a list of columns (and their types) that match the SELECT 
statement, or an error if the SQL statement is invalid or the connection cannot be made.

Example

The code var columnArray = MMDB.getColumnAndTypeList("EmpDB","Select * from 
Employees") returns the following array of strings: 

columnArray[0] = "EmpName"
columnArray[1] = "varchar"
columnArray[2] = "EmpFirstName"
columnArray[3] = "varchar"
columnArray[4] = "Age"
columnArray[5] = "integer"

MMDB.getColumnList()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of columns from an executed SQL SELECT statement.

Arguments

connName, statement

• connName is a connection name that is specified in the Connection Manager. It identifies 
the connection string that Dreamweaver should use to make a database connection to a live 
data source. 

• statement is the SQL SELECT statement to execute.

Returns

An array of strings that represents a list of columns that match the SELECT statement, or an error 
if the SQL statement is invalid or the connection cannot be made.
The Database API 325



Example

The code var columnArray = MMDB.getColumnList("EmpDB","Select * from 
Employees") returns the following array of strings: 

columnArray[0] = "EmpName"
columnArray[1] = "EmpFirstName"
columnArray[2] = "Age"

MMDB.getColumns()

Availability

Dreamweaver MX

Description

Executes the specified SQL statement and, regardless of whether any rows are returned, returns an 
array of objects that describe the columns that are specified in the SQL statement. When 
MMDB.getColumns( ) executes a SELECT statement, the returned rows are parsed to build the 
JavaScript data object list.

Arguments

connName, sqlStatement

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

• sqlStatement is the SQL statement that MMDB.getColumns( ) executes.

Returns

An array of column objects, one object for each column. Each object defines the following three 
properties for the column with which it is associated.

Example

var connName  = componentRec.parent.parent.parent.name;
var sqlstatement = "select * from " + tableName + " where 1=0";
var columnNameObjs = MMDB.getColumns(connName,sqlstatement);
var columnName = columnNameObjs[i];
var tooltiptext = columnName.datatype;
tooltiptext+=" ";
tooltiptext+=columnName.definedsize;

property name description 

name Name of the column (for example, price) 

datatype Data type of the column (for example, small money) 

definedsize Defined size of the column (for example, 8) 
Chapter 27326



MMDB.getColumnsOfTable()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of all the columns in the specified table.

Arguments

connName, tableName

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

• tableName is the name of a table in the database that is specified by connName.

Returns

An array of strings where each string is the name of a column in the table.

Example

The statement MMDB.getColumnsOfTable ("EmpDB","Employees"); returns the 
following strings:

["EmpID", "FirstName", "LastName"]

MMDB.getPrimaryKeys()

Availability

Dreamweaver MX

Description

Returns the column names that combine to form the primary key of the named table. A primary 
key serves as the unique identifier for a database row and consists of at least one column.

Arguments

connName, tableName

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

• tableName is the name of the table for which you want to retrieve the set of columns that 
comprises the primary key of that table.

Returns

An array of strings. The array contains one string for each column that comprises the primary 
key.

Example

var connName = componentRec.parent.parent.parent.name;
var tableName = componentRec.name;
var primaryKeys = MMDB.getPrimaryKeys(connName,tableName);
The Database API 327



MMDB.getProcedures()

Availability

Dreamweaver MX

Description

Returns an array of procedure objects that are associated with a named connection.

Arguments

connName

connName is a connection name as specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

Returns

An array of procedure objects where each procedure object has the following set of three 
properties:

Example

//get a list of procedures.
var procObjects   = MMDB.getProcedures(connectionName);
for (i = 0; i < procObjects.length; i++)
{
  var thisProcedure = procObjects[i]
  thisSchema =  Trim(thisProcedure.schema)
  if (thisSchema.length == 0)
  {

thisSchema = Trim(thisProcedure.catalog)
  }
  if (thisSchema.length > 0)
  {

thisSchema += "."
  }

  var procName = String(thisSchema + thisProcedure.procedure);
 }

Property Name Description 

schema*

* Dreamweaver MX connects to and gets all the tables in the database whenever you modify a recordset. If the 
database has many tables, Dreamweaver might take a long time to retrieve them on certain systems. If your 
database contains a schema or catalog, you can use the schema or catalog to restrict the number of database 
items Dreamweaver gets at design time. You must first create a schema or catalog in your database application 
before you can apply it in Dreamweaver. Consult your database documentation or your system administrator.

Name of the schema associated with the object.
This property identifies the user that is associated with the stored 
procedure in the SQL database that getProcedures() accesses. The 
database that this function accesses depends on the type of connection.
For ODBC connections, the ODBC data source defines the database. The 
DSN is specified by the dsn property in the connection object (connName) 
that you pass to getProcedures().
For OLE DB connections, the connection string names the database.

catalog Name of the catalog associated with the object (owner qualifier).
The value of the catalog property is defined by an attribute of the OLE 
DB driver. This driver attribute defines a default user.database to use 
when the OLE DB connection string does not specify a database.

procedure Name of the procedure.
Chapter 27328



MMDB.getSPColumnList()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of result set columns that are generated by a call to the specified stored procedure.

Arguments

connName, statement, paramValuesArray

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

• statement is the name of the stored procedure that returns the result set when it executes.

• paramValuesArray is an array that contains a list of design-time parameter test values. Specify 
the parameter values in the order in which the stored procedure expects them. You can use the 
MMDB.getSPParamsAsString() function to get the parameters of the stored procedure.

Returns

An array of strings that represents the list of columns. This function returns an error if the SQL 
statement or the connection string is invalid.

Example

The following code could return a list of result set columns that are generated from the executed 
stored procedure, getNewEmployeesMakingAtLeast:

var paramValueArray = new Array("2/1/2000", "50000")
var columnArray = MMDB.getSPColumnList("EmpDB", ¬
"getNewEmployeesMakingAtLeast", paramValueArray)

The following values are returned:

columnArray[0] = "EmpID", columnArray[1] = "LastName", ¬
columnArray[2] ="startDate", columnArray[3] = "salary"

MMDB.getSPColumnListNamedParams()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of result set columns that are generated by a call to the specified stored procedure.

Arguments

connName, statement, paramNameArray, paramValuesArray

• connName is a connection name that is specified in the Connection Manager. It identifies 
the connection string that Dreamweaver should use to make a database connection to a 
live data source. 

• statement is the name of the stored procedure that returns the result set when it executes.
The Database API 329



• paramNameArray is an array that contains a list of parameter names. You can use the 
MMDB.getSPParamsAsString() function to get the parameters of the stored procedure. 

• paramValuesArray is an array that contains a list of design-time parameter test values. You 
can specify if the procedure requires parameters when it executes. If you have provided 
parameter names in paramNameArray, specify the parameter values in the same order as their 
corresponding parameter names appear in paramNameArray. If you did not provide 
paramNameArray, specify the values in the order in which the stored procedure expects them.

Returns

An array of strings that represents the list of columns. This function returns an error if the SQL 
statement or the connection string is invalid.

Example

The following code could return a list of result set columns that are generated from the executed 
stored procedure, getNewEmployeesMakingAtLeast:

var paramNameArray = new Array("startDate", "salary")
var paramValueArray = new Array("2/1/2000", "50000")
var columnArray = MMDB.getSPColumnListNamedParams("EmpDB", ¬
"getNewEmployeesMakingAtLeast", paramNameArray, paramValueArray)

The following values are returned:

columnArray[0] = "EmpID", columnArray[1] = "LastName",¬
columnArray[2] ="startDate", columnArray[3] = "salary"

MMDB.getSPParameters()

Availability

Dreamweaver MX

Description

Returns an array of parameter objects for a named procedure.

Arguments

connName, procName

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

• procName is the name of the procedure.
Chapter 27330



Returns

An array of parameter objects, each specifying the following set of properties:

Example

var paramNameObjs = MMDB.getSPParameters(connName,procName);
for (i = 0; i < paramNameObjs.length; i++)
{

var paramObj = paramNameObjs[i];
var tooltiptext = paramObj.datatype;
tooltiptext+=" ";
tooltiptext+=GetDirString(paramObj.directiontype);

}

MMDB.getSPParamsAsString()

Availability

Dreamweaver UltraDev 1

Description

Gets a comma-delimited string that contains the list of parameters that the stored procedure 
takes.

Arguments

connName, procName

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

• procName is the name of the stored procedure.

Returns

A comma-delimited string that contains the list of parameters that the stored procedure requires. 
The parameters’ names, direction, and data type are included, separated by semicolons (;). 

Example

The code MMDB.getSPParamsAsString ("EmpDB","getNewEmployeesMakingAtLeast") could 
return a string of form name startDate;direction:in;datatype:date, 
salary;direction:in;datatype:integer

In this example, the stored procedure, getNewEmployeesMakingAtLeast, has two parameters: 
startDate and Salary. For startDate, the direction is in and the data type is date. For 
salary, the direction is in and the data type is date.

Property Name Description 

name Name of the parameter (for example, @@lolimit) 

datatype Datatype of the parameter (for example, smallmoney)

direction Direction of the parameter:
1– The parameter is used for input only.
2– The parameter is used for output only. In this case, you pass the 
parameter by reference and the method places a value in it. You can use 
the value after the method returns.
3– The parameter is used for both input and output.
4– The parameter holds a return value.
The Database API 331



MMDB.getTables()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of all the tables that are defined for the specified database. Each table object has three 
properties: table, schema, and catalog. Table is the name of the table, schema is the name of 
the schema that contains the table, and catalog is the catalog that contains the table.

Arguments

connName

connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

Returns

An array of objects where each object has three properties: table, schema, and catalog.

Example

The statement MMDB.getTables ("EmpDB"); might produce an array of two objects. The first 
object’s properties might be similar to the following example:

object1[table:"Employees", schema:"personnel", catalog:"syscat"]

The second object’s properties might be similar to the following example:

object2[table:"Departments", schema:"demo", catalog:"syscat2"]

MMDB.getViews()

Availability

Dreamweaver UltraDev 4

Description

Gets a list of all the views that are defined for the specified database. Each view object has 
catalog, schema, and view properties. Catalog or schema is used for restricting or filtering the 
number of views that pertain to an individual schema name or catalog name that is defined as part 
of the connection information.

Arguments

connName

connName is a connection name that is specified in the Connection Manager. It identifies 
the connection string that Dreamweaver should use to make a database connection to a live 
data source. 

Returns

An array of view objects where each object has three properties: catalog, schema, and view.
Chapter 27332



Example

The following example returns the views for a given connection value, CONN_LIST.getValue():

var viewObjects = MMDB.getViews(CONN_LIST.getValue())
for (i = 0; i < viewObjects.length; i++)
{

thisView = viewObjects[i]
thisSchema = Trim(thisView.schema)
if (thisSchema.length == 0)
{

thisSchema = Trim(thisView.catalog)
}
if (thisSchema.length > 0)
{

thisSchema += "."
}
views.push(String(thisSchema + thisView.view))

}

MMDB.showResultset()

Availability

Dreamweaver UltraDev 1

Description

Displays a dialog box that has the results of executing the specified SQL statement. The dialog 
box displays a tabular grid where the header shows the column information and data of the result 
set that is generated by the executed stored procedure. If the connection string or the SQL 
statement is invalid, an error appears. You can use this function to verify the validity of the 
SQL statement.

Arguments

connName, SQLstatement

• connName is a connection name that is specified in the Connection Manager. It identifies 
the connection string that Dreamweaver should use to make a database connection to a 
live data source. 

• SQLstatement is the SQL SELECT statement.

Returns

Nothing. This function returns an error if the SQL statement or the connection string is invalid.

Example

The following code displays the results of the executed SQL statement:

MMDB.showResultset("EmpDB","Select EmpName,EmpFirstName,Age ¬
from Employees")
The Database API 333



MMDB.showSPResultset()

Availability

Dreamweaver UltraDev 1

Description

Displays a dialog box that has the results of executing the specified stored procedure. The dialog 
box displays a tabular grid where the header shows the column information and data of the result 
set that is generated by the executed stored procedure. If the connection string or the stored 
procedure is invalid, an error appears. You can use this function to verify the validity of the stored 
procedure.

Arguments

connName, procName, paramValuesArray

• connName is a connection name that is specified in the Connection Manager. It identifies the 
connection string that Dreamweaver should use to make a database connection to a live data 
source. 

• procName is the name of the stored procedure to execute.

• paramValuesArray is an array that contains a list of design-time parameter test values. Specify 
the parameter values in the order in which the stored procedure expects them. You can use the 
MMDB.getSPParamsAsString() function to get the parameters of the stored procedure.

Returns

Nothing. This function returns an error if the SQL statement or the connection string is invalid.

Example

The following code displays the results of the executed stored procedure:

var paramValueArray = new Array("2/1/2000", "50000")
MMDB.showSPResultset("EmpDB", "getNewEmployeesMakingAtLeast", ¬
paramValueArray)

MMDB.showSPResultsetNamedParams()

Availability

Dreamweaver UltraDev 1

Description

Displays a dialog box that has the results of executing the specified stored procedure. The dialog 
box displays a tabular grid where the header shows the column information and data of the result 
set that is generated by the executed stored procedure. If the connection string or the stored 
procedure is invalid, an error appears. You can use this function to verify the validity of the stored 
procedure. This function differs from MMDB.showSPResultset() because you can specify the 
parameter values by name instead of the order in which the stored procedure expects them.

Arguments

connName, procName, paramNameArray, paramValuesArray

• connName is a connection name that is specified in the Connection Manager. It identifies 
the connection string that Dreamweaver should use to make a database connection to a 
live data source. 

• procName is the name of the stored procedure that returns the result set when it executes.
Chapter 27334



• paramNameArray is an array that contains a list of parameter names. You can use the 
MMDB.getSPParamsAsString() function to get the parameters of the stored procedure. 

• paramValuesArray is an array that contains a list of design-time parameter test values. 

Returns

Nothing. This function returns an error if the SQL statement or the connection string is invalid.

Example

The following code displays the results of the executed stored procedure:

var paramNameArray = new Array("startDate", "salary")
var paramValueArray = new Array("2/1/2000", "50000")
MMDB.showSPResultsetNamedParams("EmpDB","getNewEmployees¬
MakingAtLeast", paramNameArray, paramValueArray)
The Database API 335



Chapter 27336



CHAPTER 28
The Database Connectivity API

As a developer, you can create a new connection types and corresponding dialog boxes for new or 
existing server models. However, when a user sets up a site to start building pages, he or she 
creates a new connection object after selecting a particular type of connection that you created.

The user can select your new connection type in several ways:

• On the Application Building panel, the user can click the plus (+) button and select Recordset. 
In the Recordset dialog box, the user can expand the Connection list box.

• On the Database tab of the Databases panel, the user can click plus (+) button and select Data 
Source Name.

To develop a new connection type:

1 Create the layout for the connection dialog box.

Create an HTML file that lays out the user interface (UI) for your connection dialog box. 
Name this file using the name of the connection (for example myConnection.htm). For 
information on how to create a dialog box, see “Adding Custom Server Behaviors” in Book 8, 
Making Pages Dynamic, in Getting Started with Dreamweaver MX. 

Make sure this HTML file includes the JavaScript implementation file that you define in 
Step “Create a JavaScript file that implements at least the following elements:” on page 338, as 
shown in the following example:

<head>
<script SRC="../myConnectionImpl.js"></script>

</head>

Store this HTML file, which defines your connection dialog box, in the Configuration/
Connections/server-model/platform folder.

For example, the default ADO connection dialog box for an ASP JavaScript 
document on a Windows platform is stored in the ASP_Js/Win folder and is named 
Connection_ado_conn_string.htm.

server-model is the folder that is associated with the document type (such as asp_js) of the currently 
open page.

platform is either Win or Mac.
337



Note: At runtime, Dreamweaver MX dynamically builds the list of connection types that are available to the user 
from the collection of dialog boxes that are in the ASP_Js/Win folder.

In the Configuration/ServerModels folder, there are .htm files that define each server model. 
Inside each of these HTML files is a function named getServerModelFolderName(), which 
returns the name of the folder that is associated with the server model. The following example 
shows the function for the ASP JavaScript document type:

function getServerModelFolderName()
{

return "ASP_JS";
}

You can also look at the MMDocumentTypes.xml file, which is located in the Configuration/
DocumentTypes folder, to determine the mapping between server models and document types.

2 Create a JavaScript file that implements at least the following elements:  

You can choose any name for this implementation file but it must have a .js extension (for 
example, myConnectionImpl.js). You can store this implementation file on either your local or 
a remote computer. You might want to store your implementation file in the appropriate 
subfolder within the Configuration/Connections folder.

Note: The HTML file that you defined in Step “Create the layout for the connection dialog box.” on page 337 
must include this connection type implementation file.

Unless you need to define connection parameters other than the ones provided in the standard 
connection_includefile.edml file, these two steps are the minimum to create a new connection 
dialog box.

Note: The title of the dialog box that the user sees is in the <title> tag, which is specified in the HTML document.

The functions listed in the next section let you create a connection dialog box. Along with 
implementing the calls for generating include files for the user, you might need to register your 
connectivity type within the server model section of the connection XML file.

For information about the Database Connectivity API that is associated with creating a new 
connection, see ““Database connection functions” on page 312”.

The Connection API
To create a new type of connection, including the dialog box with which users interact, you must 
implement the following three functions: findConnection(), inspectConnection(), and 
applyConnection(). You write these three functions and include them in the .js implementation 
file that is associated with your new connection type (see Step “Create a JavaScript file that 
implements at least the following elements:” on page 338 above).

Element Description Examples

A set of variables Each defines a specific connection 
property

Type of connection, data source 
name, and so on

A set of buttons Each button appears in the connection 
dialog box

Test, Help, and so on (OK and 
Cancel are automatically 
included)

Connectivity functions Together, these functions define the 
Connectivity API

findConnection()
applyConnection()
inspectConnection()
Chapter 28338



The applyConnection() function returns an HTML source within an include file. You can see 
examples of the HTML source in the “The generated include file” on page 341. The 
findConnection() function takes the HTML source and extracts its properties. You can 
implement findConnection() to use the search patterns in XML files to extract the information 
that returns from applyConnection(). For an example of such an implementation, see the 
following two JavaScript files:

When the user opens a site, Dreamweaver goes through each file in the Connections folder, opens 
it, and passes the contents to findConnection(). If the contents of a file match the criteria for a 
valid connection, findConnection() returns a connection object. Dreamweaver then lists all the 
connection objects in the Database Explorer panel.

When the user opens a connection dialog box and chooses to create a new connection or 
duplicate or edit an existing connection, Dreamweaver calls inspectConnection() and passes 
back the same connection object that findConnection() created. In this way, Dreamweaver can 
populate the dialog box with the connection information.

When the user clicks OK in a connection dialog box, Dreamweaver calls applyConnection() to 
build the HTML, which is placed in the connection include file that is located in the 
Configuration/Connections folder. The applyConnection() function returns an empty string 
that indicates there is an error in one of the fields and the dialog box should not be closed. The 
include file has the default file extension type for the current server model.

When the user adds to the page a server behavior that uses the connection, such as a record set or 
a stored procedure, Dreamweaver adds a statement to the page that includes the connection 
include file.

findConnection()

Availability

Dreamweaver UltraDev 4

Description

Dreamweaver calls this function to detect a connection in the specified HTML source and to 
parse the connection parameters. If the contents of this source file match the criteria for a valid 
connection, findConnection() returns a connection object; otherwise, this function returns a 
null value.

Argument

htmlSource

htmlSource is the HTML source for a connection.

connection_ado_conn_string.js Located in Configuration/Connections/ASP_Js 
folder

connection_common.js Located in Configuration/Connections/Shared 
folder
The Database Connectivity API 339



Returns

A connection object that provides values for a particular combination of the properties that are 
listed in the following table. The properties for which this function returns a value depends on 
the document type.

If a connection is not found in htmlSource, a null value returns. 

Note: Developers can add custom properties (for example, metadata) to the HTML source, which 
applyConnection() returns along with the standard properties.

Property Description

name Name of the connection

type If useHTTP is false, indicates which DLL to use for connecting to database 
at runtime

string Runtime connection string. For ADO, it is a string of connection parameters; for 
JDBC, it is a connection URL

dsn Data source name used for ODBC or Cold Fusion runtime connections

driver Name of a JDBC driver used at runtime

username Name of the user used for the runtime connection

password Password used for the runtime connection

designtimeString Design-time connection string (see string)

designtimeDsn Design-time data source name (see dsn)

designtimeDriver Name of a JDBC driver used at design time

designtimeUsername Name of the user used for the design-time connection

designtimePassword Password used for the design-time connection

designtimeType Design time connection type

usesDesigntimeInfo When false, Dreamweaver uses runtime properties at design time; otherwise, 
Dreamweaver uses design-time properties

useHTTP String containing either true or false; which specifies whether to use HTTP 
connection at design time or use DLL

includePattern Regular expression used to find the file include statement on the page during Live 
Data and Preview In Browser

variables Object with a property for each page variable which is set to its corresponding 
value. This object is used during Live Data and Preview In Browser

catalog String containing a database identifier that restricts the amount of metadata 
that appears

schema String containing a database identifier that restricts the amount of metadata 
that appears

filename Name of the dialog box used to create the connection
Chapter 28340



inspectConnection()

Availability

Dreamweaver UltraDev 4

Description

Dreamweaver calls this function, when the user edits an existing connection, to initialize the 
dialog box data for defining a connection. In this way, Dreamweaver can populate the dialog box 
with the appropriate connection information.

Argument

parameters

parameters is the same object that findConnection() returns.

Returns

Nothing.

applyConnection()

Availability

Dreamweaver UltraDev 4

Description

Dreamweaver calls this function when the user clicks OK in the connection dialog box. The 
applyConnection() function generates the HTML source for a connection. Dreamweaver 
writes the HTML to the Configuration/Connections/connection-name.ext include file, where 
connection-name is the name of your connection (see Step “Create the layout for the connection 
dialog box.” on page 337), and ext is the default extension that is associated with the server model.

Arguments

None.

Returns

The HTML source for a connection. Dreamweaver also closes the connection dialog box. If a 
field validation error occurs, applyConnection() displays an error message and returns an empty 
string to indicate that the dialog box should remain open.

The generated include file
The include file that applyConnection() generates declares all the properties of a connection. 
The filename for the include file is the connection name that has the file extension defined for the 
server model that is associated with the current site.

Note: Connections are shared, so set the allowMultiple value to false. This ensures that the connection file is 
included in the document only once and that the server script remains in the page if any other server behaviors use it.

The following sections illustrate some sample include files that applyConnection() generates for 
various default server models.

Note: To create a new connection include file format, you need to define a new .edml mapping file, which should be 
similar to connection_includefile.edml, as shown in “The definition file for your connection type” on page 343.
The Database Connectivity API 341



ASP JavaScript

The ASP and JavaScript include file should be named MyConnection1.asp, where 
MyConnection1 is the name of the connection. The following sample is an include file for an 
ADO connection string:

<%
// Filename="Connection_ado_conn_string.htm"
// Type="ADO"
// HTTP="true"
// Catalog=""
// Schema=""
var MM_MyConnection1_STRING = "dsn=pubs";

%>

The server behavior file includes this connection by using the relative file include statement, as 
shown in the following example:

  <!--#include file="../Connections/MyConnection1.asp"-->

ColdFusion

When you use UltraDev 4 ColdFusion, Dreamweaver MX relies on a ColdFusion include file to 
get a list of data sources. 

Note: For regular Dreamweaver MX ColdFusion, Dreamweaver MX ignores any include files and, instead, makes 
use of RDS to retrieve the list of data sources from ColdFusion.

The UltraDev 4 ColdFusion include file should be named MyConnection1.cfm, where 
MyConnection1 is the name of your connection. The following example shows the include file 
for a ColdFusion connection to a product table.

<!-- FileName="Connection_cf_dsn.htm" "dsn=products" -->
<!-- Type="ADO" -->
<!-- Catalog="" -->
<!-- Schema="" -->
<!-- HTTP="false" -->
<CFSET MM_MyConnection1_DSN = "products">
<CFSET MM_MyConnection1_USERNAME = "">
<CFSET MM_Product_USERNAME = "">
<CFSET MM_MyConnection1_PASSWORD = "">

The server behavior file includes this connection by using the cfinclude statement, as shown in 
the following example:

<cfinclude template="Connections/MyConnection1.cfm">

JSP

The JSP include file should be named MyConnection1.jsp, where MyConnection1 is the name 
of your connection. The following sample is the include file for a JDBC connection to a database:

<%
// Filename="Connection_jdbc_conn1.htm"
// Type="JDBC"
// HTTP="false"
// Catalog=""
// Schema=""
String MM_MyConnection1_DRIVER = "com.inet.tds.TdsDriver";
String MM_MyConnection1_USERNAME = "testadmin";
String MM_MyConnection1_PASSWORD = "velcro";
String MM_MyConnection1_URL = "jdbc:server:test-3:1433?database=pubs";

%>
Chapter 28342



The server behavior file includes this connection by using the relative file include statement, as 
shown in the following example:

<%@ include file="Connections/MyConnection1.jsp" %>

The definition file for your connection type 
For each server model, there is a connection_includefile.edml file that defines the connection type 
and maps the properties that are defined in the include file to elements in the Dreamweaver MX 
interface. 

Dreamweaver provides, by default, seven definition files, one for each of the predefined server 
models, as listed in the following table. 

Dreamweaver uses the quickSearch and searchPattern parameters to recognize connection 
blocks and the insertText parameter to create connection blocks. For more information on XML 
and regular expression search patterns, see “Server Behaviors” on page 145.

Server Model Subfolder within the Configuration/Connections folder

ASP JavaScript ASP_Js

ASP.NET CSharp ASP.NET_Csharp

ASP.NET VBScript ASP.NET_VB

ASP VBScript ASP_Vbs

ColdFusion ColdFusion

JavaServer Page JSP

PHP MySql PHP_MySql
The Database Connectivity API 343



Note: If you change the format of your include file or define an include file for a new server model, you need to map 
the connection parameters with the Dreamweaver UI, Live Data, and Preview In Browser. The following sample 
XML file, which is associated with the default ASP JS server model, maps all connection page variables with their 
respective live values before sending the page to the server. For more information on XML and regular expression 
search patterns, see “Server Behaviors” on page 145.

<participant name="connection_includefile" version="5.0">
<quickSearch>

<![CDATA[// HTTP=]]></quickSearch>
<insertText location="">

<![CDATA[<%
// FileName="@@filename@@"
// Type="@@type@@" @@designtimeString@@
// DesigntimeType="@@designtimeType@@"
// HTTP="@@http@@"
// Catalog="@@catalog@@"
// Schema="@@schema@@"
var MM_@@cname@@_STRING = @@string@@
%>
]]>

</insertText>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="filename">
<![CDATA[/\/\/\s*FileName="([^"]*)"/]]></searchPattern>

<searchPattern paramNames="type,designtimeString">
<![CDATA[/\/\/\s+Type="(\w*)"([^\r\n]*)/]]></searchPattern>

<searchPattern paramNames="designtimeType" isOptional="true">
<![CDATA[/\/\/\s*DesigntimeType="(\w*)"/]]></searchPattern>

<searchPattern paramNames="http">
<![CDATA[/\/\/\s*HTTP="(\w+)"/]]></searchPattern>

<searchPattern paramNames="catalog">
<![CDATA[/\/\/\s*Catalog="(\w*)"/]]></searchPattern>

<searchPattern paramNames="schema">
<![CDATA[/\/\/\s*Schema="(\w*)"/]]></searchPattern>

<searchPattern paramNames="cname,string">
<![CDATA[/var\s+MM_(\w*)_STRING\s*=\s*([^\r\n]+)/]]></searchPattern>

</searchPatterns>
</participant>

Tokens in an .edml file—such as @@filename@@ in this example—map values in the include file 
to properties of a connection object. You set the properties of connection objects in the .js 
implementation file.

All the default connection dialog boxes that come with Dreamweaver MX use the 
connection_includefile.edml mapping file. To let Dreamweaver MX find this file, its name is set 
in the .js implementation file as shown in the following example:

var PARTICIPANT_FILE = "connection_includefile";

When you create a custom connection type, you can use any mapping file in your custom dialog 
boxes. If you create a mapping file, you can use a name other than connection_includefile for 
your .edml file. If you use a different name, you need to use this name in your .js implementation 
file when you specify the value that is assigned to the PARTICIPANT_FILE variable, as shown in 
the following example:

var PARTICIPANT_FILE = "myConnection_mappingfile";
Chapter 28344



CHAPTER 29
The JavaBeans API

This chapter explains the APIs for JavaBeans, the MMJB*() functions are JavaScript hooks that 
invoke Java introspection calls for JavaBeans support. These functions get class names, methods, 
properties, and events from the JavaBeans, which can appear in your Dreamweaver MX user 
interface. To use these JavaScript functions and let Dreamweaver access your JavaBeans, the 
JavaBeans must reside in the Configuration/Classes folder.

Note:  packageName.className is a single string input.

MMJB.getProperties()

Availability

Dreamweaver UltraDev 4

Description

Introspects the JavaBeans class and returns its properties.

Arguments

packageName.className

packageName.className is the name of the class, which is part of the class path. It must be a 
.jar or .zip Java archive that resides in your system class path or a .class file that is installed in 
the Configuration/Classes folder.

Returns

A string array of the JavaBeans properties; an error returns an empty array.

MMJB.getMethods()

Availability

Dreamweaver UltraDev 4

Description

Introspects the JavaBeans class and returns its methods. 

Arguments

packageName.className

packageName.className is the package name of the class, which is part of the class path. It must 
be a Java .jar or .zip Java archive.

Returns

A string array of the JavaBeans methods; an error returns an empty array.
345



MMJB.getEvents()

Availability

Dreamweaver UltraDev 4

Description

Introspects the JavaBeans class and returns its events. 

Arguments

packageName.className

packageName.className is the package name of the class, which is part of the class path. It must 
be a Java .jar or .zip Java archive.

Returns

A string array of the JavaBeans events; an error returns an empty array.

MMJB.getIndexedProperties()

Availability

Dreamweaver UltraDev 4

Description

Introspects the JavaBeans class and returns its indexed properties, which are design patterns that 
behave the same way as collections.

Arguments

packageName.className

packageName.className is the package name of the class, which is part of the class path. It must 
be a Java .jar or .zip Java archive.

Returns

A string array of the JavaBeans’ indexed properties; an error returns an empty array.

MMJB.getClasses()

Availability

Dreamweaver UltraDev 4

Description

Reads all the JavaBeans class names from the Configuration/Classes folder.

Arguments

None.

Returns

A string array of class names that are located in Configuration/Classes folder; an error returns an 
empty array.
Chapter 29346



MMJB.getClassesFromPackage()

Availability

Dreamweaver UltraDev 4

Description

Reads all the JavaBeans classes from the package.

Arguments

packageName.pathName

packageName.pathName is the path to the package. It must be a Java .jar or .zip Java archive. 
For example, C:/jdbcdrivers/Una2000_Enterprise.zip.

Returns

A string array of class names inside the particular .jar or .zip Java file; an error returns an empty 
array.

MMJB.getErrorMessage()

Availability

Dreamweaver UltraDev 4

Description

Gets the last error message from Dreamweaver that occurred while using the MMJB interface.

Arguments

None.

Returns

A string of the Dreamweaver message from the last error.
The JavaBeans API 347



Chapter 29348



CHAPTER 30
The Source Control Integration API

The Source Control Integration API lets you write shared libraries to extend the Macromedia 
Dreamweaver MX Check in/Check out feature using source control systems (such as Sourcesafe, 
CVS, or Sitespring). 

You must support a minimum set of API functions that you must support for Dreamweaver to 
integrate with a source control system. 

Your library resides in the Configuration\SourceControl folder. 

When Dreamweaver starts, it loads each library. Dreamweaver determines which features the 
library supports by calling GetProcAddress() for each API function. If an address does not exist, 
Dreamweaver assumes the library does not support the API. If the address exists, Dreamweaver 
uses the library’s version of the function to support the functionality. When a Dreamweaver user 
defines or edits a site and then chooses the Web Server SCS tab, the choices that correspond to 
the DLLs that loaded from the Configuration/SourceControl folder appear (in addition to the 
standard items) on the tab.

To add custom items to the Site > Source Control menu, add the following code in the Site menu 
in the menus.xml file:

<menu name="Source Control" id="DWMenu_MainSite_Site_Source¬
Control"><menuitem dynamic name="None"file="Menus/MM/¬
File_SCSItems.htm" id="DWMenu_MainSite_Site_NewFeatures_¬
Default" />
</menu>

Integration with Dreamweaver 
When a Dreamweaver user chooses server connection, file transfer, or Design Notes features, 
Dreamweaver calls the DLL’s version of the corresponding API function (Connect(), 
Disconnect(), Get(), Put(), Checkin(), Checkout(), Undocheckout(), and 
Synchronize()). The DLL is responsible for handling the request, including displaying dialog 
boxes that gather information or let the user interact with the DLL. The DLL is also responsible 
for displaying information or error messages. 

The source control system can optionally support Design Notes and Check In/Check Out. The 
Dreamweaver user enables Design Notes in source control systems by choosing the Design Notes 
tab in the Edit Sites dialog box and checking the box that enables the feature; this is the same way 
to enable Design Notes with FTP and LAN. If the source control system does not support Design 
Notes and the user wants to use this feature, Dreamweaver transports Design Note (.mno) files to 
maintain the Design Notes (as it does with FTP and LAN). 
349



Check In/Check Out is treated differently than the Design Notes feature; if the source control 
system supports it, the user cannot override its use from the Design Notes dialog box. If the user 
tries to override the source control system, an error message appears. 

Adding source control system functionality
You can add source control system functionality to Dreamweaver by writing a GetNewFeatures 
handler that returns a set of menu items and corresponding C functions. For example, if you 
write a Sourcesafe library and want to let Dreamweaver users see the history of a file, you can 
write a GetNewFeatures handler that returns the History menu item and the C function name of 
history. Then, in Windows, when the user right-clicks a file, the History menu item is one of 
the items on the menu. If a user chooses the History menu item, Dreamweaver calls the 
corresponding function, passing the selected file(s) to the DLL. The DLL displays the History 
dialog box so the user can interact with it in the same way as Sourcesafe. 

The Source Control Integration API required functions
The Source Control Integration API has required and optional functions. The functions listed in 
this section are required.

bool SCS_GetAgentInfo()

Description

Asks the DLL to return its name and description, which appear in the Edit Sites dialog box. The 
name appears in the Server Access pop-up menu (for example, sourcesafe, webdav, perforce) and 
description just below the pop-up menu.

Arguments

char name[32], char version[32], char description[256], const char *dwAppVersion

• name is the name of the source control system. The name appears in the combo box for 
selecting a source control system in the Source Control tab of the Edit Sites dialog box. The 
name can be a maximum of 32 characters. 

• version is a string that indicates the version of the DLL. Version appears in the Source 
Control tab of the Edit Sites dialog box. The version can be a maximum of 32 characters.

• description is a string that indicates the description of the source control system. 
Description appears in the Source Control tab of the Edit Sites dialog box. The description can 
be a maximum of 256 characters.

• dwAppVersion is a string that indicates the version of Dreamweaver that is calling the DLL. 
The DLL can use this string to determine the version and language of Dreamweaver.

Returns

true if successful; false otherwise.

bool SCS_Connect()

Description

Connects the user to the source control system. If the DLL does not have login information, the 
DLL is responsible for displaying a dialog box to prompt the user for the information and for 
storing the data for later use.
Chapter 30350



Arguments

void **connectionData, const char siteName[64]

• connectionData is a handle to the data that the agent wants Dreamweaver to pass to it when 
calling other API functions.

• siteName is a string that points to the name of the site. The site name can be a maximum of 
64 characters.

Returns

true if successful; false otherwise.

bool SCS_Disconnect()

Description

Disconnects the user from the source control system.

Arguments

void *connectionData

connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

Returns

true if successful; false otherwise.

bool SCS_IsConnected()

Description

Determines the state of the connection.

Arguments

void *connectionData

connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

Returns

true if connected; false otherwise.

int SCS_GetRootFolderLength()

Description

Returns the length of the name of the root folder.

Arguments

void *connectionData

• connectionData is a pointer to the agent’s data that was passed into Dreamweaver during the 
Connect() call.

Returns

An integer that indicates the length of the name of the root folder. If the function returns < 0, 
Dreamweaver considers it an error and tries to retrieve the error message from the DLL, if 
supported. 
The Source Control Integration API 351



bool SCS_GetRootFolder()

Description

Returns the name of the root folder.

Arguments

void *connectionData, char remotePath[], const int folderLen

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is a buffer where the full remote path of the root folder is stored.

• folderLen is an integer that indicates the length of remotePath. This is the value that 
GetRootFolderLength returns. 

Returns

true if successful; false otherwise.

int SCS_GetFolderListLength()

Description

Returns the number of items in the passed-in folder.

Arguments

void *connectionData, const char *remotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the full path and name of the remote folder that the DLL checks for the 
number of items.

Returns

An integer that indicates the number of items in the current folder. If the function returns < 0, 
Dreamweaver considers it an error and tries to retrieve the error message from the DLL, if 
supported. 

bool SCS_GetFolderList()

Description

Returns a list of files and folders in the passed-in folder, including pertinent information such as 
modified date, size, and whether the item is a folder or file.

Arguments

void *connectionData, const char *remotePath, itemInfo itemList[ ], const int 
numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the path name of the remote folder that the DLL checks for the number of items.
Chapter 30352



• itemList is a preallocated list of itemInfo structures: 

• numItems is the number of items that are allocated for the itemList (returned from 
GetFolderListLength). 

Returns

true if successful; false otherwise.

bool SCS_Get()

Description

Gets a list of files or folders and stores them locally.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], 
const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of the remote files or folders to retrieve, which is specified as 
complete paths and names. 

• localPathList is a mirrored list of local file or folder path names.

• numItems is the number of items in each list.

Returns

true if successful; false otherwise.

bool SCS_Put()

Description

Puts a list of local files or folders into the source control system.

Arguments

void *connectionData, const char *localPathList[], const char *remotePathList[], 
const int numItems

name  char[256]  name of file or folder

isFolder  bool  true if folder, false if file

month  int  month component of mod date 1-12

day  int  day component of mod date 1-31

year  int  year component of mod date 1900+

hour  int  hour component of mod date 0-23

minutes  int  minute component of mod date 0-59

seconds  int  second component of mod date 0-59

type  char[256]  type of file (if not set by DLL, DW will use file extension to 
determine type, as it does now)

size  int  in bytes
The Source Control Integration API 353



• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• localPathList is the list of local file or folder path names to put into the source 
control system. 

• remotePathList is a mirrored list of remote file or folder path names.

• numItems is the number of items in each list.

Returns

true if successful; false otherwise.

bool SCS_NewFolder()

Description

Creates a new folder.

Arguments

void *connectionData, const char *remotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the full path name of the remote folder the DLL creates.

Returns

true if successful; false otherwise.

bool SCS_Delete()

Description

Deletes a list of files or folders from the source control system.

Arguments

void *connectionData, const char *remotePathList[], const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names to delete.

• numItems is the number of items in remotePathList.

Returns

true if successful; false otherwise.

bool SCS_Rename()

Description

Renames or moves a file or folder, depending on the values that are specified for oldRemotePath 
and newRemotePath. For example, if oldRemotePath equals "$/folder1/file1" and 
newRemotePath equals "$/folder1/renamefile1", file1 is renamed renamefile1 and is located 
in folder1. 

If oldRemotePath equals "$/folder1/file1" and newRemotePath equals "$/folder1/
subfolder1/file1", file1 is moved to the subfolder1 directory.
Chapter 30354



To find out if an invocation of this function is a move or a rename, check the parent paths of the 
two input values; if they are the same, the operation is a rename.

Arguments

void *connectionData, const char *oldRemotePath, const char *newRemotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• oldRemotePath is a remote file or folder path name to rename.

• newRemotePath is the remote path name of the new name for the file or folder.

Returns

true if successful; false otherwise.

bool SCS_ItemExists()

Description

Determines whether a file or folder exists on the server.

Arguments

void *connectionData, const char *remotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is a remote file or folder path name.

Returns

true if exists, false otherwise.

The Source Control Integration API optional functions
The Source Control Integration API has required and optional functions. The functions in this 
section are optional.

bool SCS_GetConnectionInfo()

Description

Displays a dialog box to let the user change or set the connection information for this site. Does 
not make the connection. This function is called when the user clicks the Settings button in the 
Remote Info section of the Edit Sites dialog box. 

Arguments

void **connectionData, const char siteName[64]

• connectionData is a handle to data that the agent wants Dreamweaver to pass it when calling 
other API functions.

• siteName is a string that points to the name of the site. The name cannot exceed 64 characters.

Returns

true if successful; false otherwise.
The Source Control Integration API 355



bool SCS_SiteDeleted()

Description

Notifies the DLL that the site has been deleted or that the site is no longer tied to this source 
control system. It indicates that the source control system can delete its persistent information 
for this site.

Arguments

const char siteName[64]

siteName is a string that points to the name of the site. The name cannot exceed 64 characters.

Returns

true if successful; false otherwise.

bool SCS_SiteRenamed()

Description

Notifies the DLL when the user has renamed the site so that it can update its persistent 
information about the site.

Arguments

const char oldSiteName[64], const char newSiteName[64]

• oldSiteName is a string that points to the original name of the site before it was renamed. The 
name cannot exceed 64 characters.

• newSiteName is a string that points to the new name of the site after it was renamed. The 
name cannot exceed 64 characters.

Returns

true if successful; false otherwise.

int SCS_GetNumNewFeatures()

Description

Returns the number of new features to add to Dreamweaver (for example, File History, 
Differences, and so on).

Arguments

None.

Returns

An integer that indicates the number of new features to add to Dreamweaver. If the function 
returns < 0, Dreamweaver considers it an error and tries to retrieve the error message from the 
DLL, if supported.

bool SCS_GetNewFeatures()

Description

Returns a list of menu items to add to the Dreamweaver main and context menus. For example, 
the Sourcesafe DLL can add History and File Differences to the main menu.
Chapter 30356



Arguments

char menuItemList[][32], scFunction functionList[], scFunction enablerList[], 
const int numNewFeatures

• menuItemList is a string list that is populated by the DLL; it specifies the menu items to add 
to the main and context menus. Each string can contain a maximum of 32 characters.

• functionList is populated by the DLL; it specifies the routines in the DLL to call when the 
user chooses the corresponding menu item.

• enablerList is populated by the DLL; it specifies the routines in the DLL to call when 
Dreamweaver needs to determine whether the corresponding menu item is enabled.

• numNewFeatures is the number of items being added by the DLL; this value is retrieved from 
the GetNumNewFeatures() call. 

The following function signature defines the functions and enablers that passed to the 
SCS_GetNewFeatures() call in the functionlist and enablerList arguments.

bool (*scFunction)(void *connectionData, const char *remotePathList[], 
const char *localPathList[], const int numItems)

Returns

true if successful; false otherwise.

bool SCS_GetCheckoutName()

Description

Returns the check-out name of the current user. If it is unsupported by the source control system 
and this feature is enabled by the user, this function uses the Dreamweaver internal Check in/
Check out functionality, which transports .lck files to and from the source control system. 

Arguments

void *connectionData, char checkOutName[64], char emailAddress[64]

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• checkOutName is the check-out name of the current user.

• emailAddress is the e-mail address of the current user.

Returns

true if successful; false otherwise.

bool SCS_Checkin()

Description

Checks a list of local files or folders into the source control system. The DLL is responsible for 
making the file read-only. If it is unsupported by the source control system and this feature is 
enabled by the user, this function uses the Dreamweaver internal Check in/Check out 
functionality, which transports .lck files to and from the source control system.
The Source Control Integration API 357



Arguments

void *connectionData, const char *localPathList[], const char *remotePathList[], 
bool successList[], const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• localPathList is a list of local file or folder path names to check in.

• remotePathList is a mirrored list of remote file or folder path names.

• successList is a list of Boolean values that are populated by the DLL to let Dreamweaver 
know which of the corresponding files are successfully checked in. 

• numItems is the number of items in each list.

Returns

true if successful; false otherwise.

bool SCS_Checkout()

Description

Checks out a list of local files or folders from the source control system. The DLL is responsible 
for granting the privileges that let the file be writable. If it is unsupported by the source control 
system and this feature is enabled by the user, this function uses the Dreamweaver internal Check 
in/Check out functionality, which transports .lck files to and from the source control system.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], 
bool successList[], const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names to check out.

• localPathList is a mirrored list of local file or folder path names.

• successList is a list of Boolean values that are populated by the DLL to let Dreamweaver 
know which of the corresponding files are successfully checked out. 

• numItems is the number of items in each list.

Returns

true if successful; false otherwise.

bool SCS_UndoCheckout()

Description

Undoes the check-out status of a list of files or folders. The DLL is responsible for making the file 
read-only. If it is unsupported by the source control system and this feature is enabled by the user, 
this function uses the Dreamweaver internal Check in/Check out functionality, which transports 
.lck files to/from the source control system.
Chapter 30358



Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], 
bool successList[], const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names on which to undo the check out.

• localPathList is a mirrored list of local file or folder path names.

• successList is a list of Boolean values that are populated by the DLL to let Dreamweaver 
know which corresponding files’ check outs are successfully undone. 

• numItems is the number of items in each list.

Returns

true if successful; false otherwise.

int SCS_GetNumCheckedOut()

Description

Returns the number of people who have a file checked out.

Arguments

void *connectionData, const char *remotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the remote file or folder path name to check to see how many users have it 
checked out.

Returns

An integer that indicates the number of people who have the file checked out. If the function 
returns < 0, Dreamweaver considers it an error and tries to retrieve the error message from the 
DLL, if supported.

bool SCS_GetFileCheckoutList()

Description

Returns a list of people who have a file checked out. If the list is empty, no one has the file 
checked out.

Arguments

void *connectionData, const char *remotePath, char checkOutList[][64], char 
emailAddressList[][64], const int numCheckedOut

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the remote file or folder path name to check how many users have it checked 
out.

• checkOutList is a list of strings that corresponds to the users who have the file checked out. 
Each user string cannot exceed a maximum length of 64 characters.
The Source Control Integration API 359



• emailAddressList is a list of strings that corresponds to the users’ e-mail addresses. Each e-
mail address string cannot exceed a maximum length of 64 characters.

• numCheckedOut is the number of people who have the file checked out. This is returned from 
GetNumCheckedOut().

Returns

true if successful; false otherwise.

int SCS_GetErrorMessageLength()

Description

Returns the length of the DLL’s current internal error message. This allocates the buffer that 
passes into the GetErrorMessage() function. This function should be called only if an API 
function returns false or <0, which indicates a failure of that API function.

Arguments

void *connectionData

connectionData is a pointer to the agent’s data that was passed into Dreamweaver during the 
Connect() call.

Returns

An integer that represents the length of the error message.

bool SCS_GetErrorMessage()

Description

Returns the last error message. If you implement getErrorMessage(), Dreamweaver calls it each 
time one of your API functions returns false.

If a routine returns -1 or false, it indicates an error message should be available.

Arguments

void *connectionData, char errorMsg[], const int *msgLength

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• errorMsg is a preallocated string for the DLL to fill in with the error message.

• msgLength is the length of the errorMsg buffer passed in. 

Returns

true if successful; false otherwise.

int SCS_GetNoteCount()

Description

Returns the number of Design Note keys for the specified remote file or folder path. If 
unsupported by the source control system, Dreamweaver gets this information from the 
companion Design Note (.mno) file.

Arguments

void *connectionData, const char *remotePath
Chapter 30360



• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the remote file or folder path name that the DLL checks for the number of 
attached Design Notes.

Returns

An integer that indicates the number of Design Notes that are associated with this file. If the 
function returns < 0, Dreamweaver considers it an error and tries to retrieve the error message 
from the DLL, if supported.

int SCS_GetMaxNoteLength()

Description

Returns the length of the largest Design Note for the specified file or folder. If it is unsupported 
by the source control system, Dreamweaver gets this information from the companion Design 
Note (.mno) file.

Arguments

void *connectionData, const char *remotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the remote file or folder path name that the DLL checks for the maximum 
Design Note length.

Returns

An integer that indicates the size of the longest Design Note that is associated with this file. If the 
function returns < 0, Dreamweaver considers it an error and tries to retrieve the error message 
from the DLL, if supported.

bool SCS_GetDesignNotes()

Description

Retrieves key-value pairs from the meta information for the specified file or folder. If it is 
unsupported by the source control system, Dreamweaver retrieves the information from the 
corresponding Design Note (.mno) file.

Arguments

void *connectionData, const char *remotePath, char keyList[][64], 
char *valueList[], bool showColumnList[], const int noteCount, 
const int noteLength

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the remote file or folder path name that the DLL checks for the number of 
items.

• keyList is a list of Design Note keys, such as "Status".

• valueList is a list of Design Note values that correspond to the Design Note keys, such as 
"Awaiting Signoff".
The Source Control Integration API 361



• showColumnList is a list of Boolean values that correspond to the Design Note keys, which 
indicate whether Dreamweaver can display the key as a column in the Site panel.

• noteCount is the number of Design Notes that are attached to a file or folder; the 
GetNoteCount() call returns this value.

• noteLength is the maximum length of a Design Note; this is the value that the 
GetMaxNoteLength() call returns.

Returns

true if successful; false otherwise.

bool SCS_SetDesignNotes()

Description

Stores the key-value pairs in the meta information for the specified file or folder. This replaces the 
set of meta information for the file. If it is unsupported by the source control system, 
Dreamweaver stores Design Notes in .mno files.

Arguments

void *connectionData, const char *remotePath, const char keyList[][64], 
const char *valueList[], bool showColumnList[], const int noteCount, 
const int noteLength

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the remote file or folder path name that the DLL checks for the number of items.

• keyList is a list of Design Note keys, such as "Status".

• valueList is a list of Design Note values that corresponds to the Design Note keys, such as 
"Awaiting Signoff".

• showColumnList is a list of Boolean values that correspond to the Design Note keys, which 
indicate whether Dreamweaver can display the key as a column in the Site panel.

• noteCount is the number of Design Notes that are attached to a file or folder; this number lets 
the DLL know the size of the specified lists. If noteCount is 0, all the Design Notes are 
removed from the file. 

• noteLength is the length of the largest Design note for the specified file or folder.

Returns

true if successful; false otherwise.

bool SCS_IsRemoteNewer()

Description

Checks each specified remote path to see if the remote copy is newer. If it is unsupported by the 
source control system, Dreamweaver uses its internal isRemoteNewer algorithm.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], 
int remoteIsNewerList[], const int numItems
Chapter 30362



• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names to compare for newer status.

• localPathList is a mirrored list of local file or folder path names.

• remoteIsNewerList is a list of integers that are populated by the DLL to let Dreamweaver 
know which of the corresponding files is newer on the remote side. The following values are 
valid: 1 indicates the remote version is newer, -1 indicates the local version is newer, 0 indicates 
the versions are the same.

• numItems is the number of items in each list.

Returns

true if successful; false otherwise.

Enablers
If the optional enablers are not supported by the source control system or the application is not 
connected to the server, Dreamweaver determines when the menu items are enabled, based on the 
information it has about the remote files. 

bool SCS_canConnect()

Description

Returns whether the Connect menu item should be enabled.

Arguments

None.

Returns

true if enabled, false otherwise.

bool SCS_canGet()

Description

Returns whether the Get menu item should be enabled.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], 
const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names to get.

• localPathList is a mirrored list of local file or folder path names.

• numItems is the number of items in each list.

Returns

true if enabled, false otherwise.
The Source Control Integration API 363



bool SCS_canCheckout()

Description

Returns whether the Checkout menu item should be enabled.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], 
const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names to check out.

• localPathList is a mirrored list of local file or folder path names.

• numItems is the number of items in each list.

Returns

true if enabled, false otherwise.

bool SCS_canPut()

Description

Returns whether the Put menu item should be enabled.

Arguments

void *connectionData, const char *localPathList[], const char *remotePathList[], 
const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• localPathList is a list of local file or folder path names to put into the source control system. 

• remotePathList is a mirrored list of remote file or folder path names to put into the source 
control system.

• numItems is the number of items in each list.

Returns

true if enabled, false otherwise.

bool SCS_canCheckin()

Description

Returns whether the Checkin menu item should be enabled.

Arguments

void *connectionData, const char *localPathList[], const char *remotePathList[], 
const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• localPathList is a list of local file or folder path names to check in.
Chapter 30364



• remotePathList is a mirrored list of remote file or folder path names.

• numItems is the number of items in each list.

Returns

true if enabled, false otherwise.

bool SCS_CanUndoCheckout()

Description

Returns whether the Undo Checkout menu item should be enabled.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], 
const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names to check out.

• localPathList is a list of the local file or folder path names to put to the source control 
system. 

• numItems is the number of items in each list.

Returns

true if enabled, false otherwise.

bool SCS_canNewFolder()

Description

Returns whether the New Folder menu item should be enabled.

Arguments

void *connectionData, const char *remotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is a remote file or folder path names that the user selected to indicate where the 
new folder will be created.

Returns

true if enabled, false otherwise.
The Source Control Integration API 365



bool SCS_canDelete()

Description

Returns whether the Delete menu item should be enabled.

Arguments

void *connectionData, const char *remotePathList[], const int numItems

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePathList is a list of remote file or folder path names to delete.

• numItems is the number of items in each list.

Returns

true if enabled, false otherwise.

bool SCS_canRename()

Description

Returns whether the Rename menu item should be enabled.

Arguments

void *connectionData, const char *remotePath

• connectionData is a pointer to the agent’s data that passed into Dreamweaver during the 
Connect() call.

• remotePath is the remote file or folder path names that can be renamed.

Returns

true if enabled, false otherwise.

bool SCS_BeforeGet()

Description

Dreamweaver calls this function before getting or checking out one or more files. This function 
lets your DLL perform one operation, such as adding a check-out comment, to a group of files.

Arguments

*connectionData

*connectionData is a pointer to the connection data.

Returns

A Boolean true if successful; false otherwise.
Chapter 30366



Example

To get a group of files, Dreamweaver makes calls to the DLL in the following order:

SCS_BeforeGet(connectionData);
SCS_Get(connectionData,remotePathList1,localPathList1,¬
successList1);
SCS_Get(connectionData,remotePathList2,localPathList2,¬
successList2);
SCS_Get(connectionData,remotePathList3,localPathList3,¬
successList3);
SCS_AfterGet(connectionData);

bool SCS_BeforePut()

Description

Dreamweaver calls this function before putting or checking in one or more files. This function 
lets your DLL perform one operation, such as adding a check-in comment, to a group of files. 

Arguments

*connectionData

*connectionData is a pointer to the connection data.

Returns

A Boolean true if successful; false otherwise.

Example

To get a group of files, Dreamweaver makes calls to the DLL in the following order:

SCS_BeforePut(connectionData);
SCS_Put(connectionData,localPathList1,remotePathList1,¬
successList1);
SCS_Put(connectionData,localPathList2,remotePathList2,¬
successList2);
SCS_Put(connectionData,localPathList3,remotePathList3,¬
successList3);
SCS_AfterPut(connectionData);

bool SCS_AfterGet()

Description

Dreamweaver calls this function after getting or checking out one or more files. This function lets 
your DLL perform any operation after a batch get or check out, such as creating a summary 
dialog box. 

Arguments

*connectionData

*connectionData is a pointer to the connection data.

Returns

A Boolean true if successful; false otherwise.

Example

See example in “bool SCS_BeforeGet()” on page 366.
The Source Control Integration API 367



bool SCS_AfterPut()

Description

Dreamweaver calls this function after putting or checking in one or more files. This function lets 
the DLL perform any operation after a batch put or check in, such as creating a summary dialog 
box.

Arguments

*connectionData

*connectionData is a pointer to the connection data.

Returns

true if successful; false otherwise.

Example

See example in “bool SCS_BeforePut()” on page 367.
Chapter 30368



P
art IV
Part IV
JavaScript API

Use any of the more than 600 core JavaScript functions 
available in Dreamweaver, which encapsulate the kinds of 
tasks users perform when creating or editing a document. 
You can use these functions to perform any task that the 
user can accomplish using menus, floating panels, property 
inspectors, the Site panel, or the Document window.

• Chapter 31, “The Dreamweaver JavaScript API”





CHAPTER 31
The Dreamweaver JavaScript API

The Macromedia Dreamweaver MX JavaScript API provides an extensive set of tools that are 
useful to extension developers. In addition to the standards-based Document Object Model 
(DOM) methods that are described in “The Dreamweaver Document Object Model” on page 
41, Dreamweaver provides extension developers with more than 600 JavaScript functions that 
encapsulate the kinds of tasks that users perform when creating or editing a document in 
Dreamweaver. Almost any task that the user can accomplish with the menus, floating panels, 
Property inspectors, Site panel, or Document window can also be done using JavaScript.

Many of the JavaScript API functions require that you specify which document you are working 
on by getting the appropriate dom. The most commonly used function for getting a document 
object is dreamweaver.getDocumentDOM(), because it gets the dom of the current user 
document. Other Dreamweaver functions can also return the document dom. For descriptions of 
dreamweaver.getDocumentDOM(), dreamweaver.newDocumentDOM() and other functions that 
return a document dom, see “File manipulation functions” on page 447. 

Note: In Dreamweaver 4 and later, dw can be used interchageably with dreamweaver when you write code, so all 
dreamweaver methods can be referred to either as dreamweaver.functionName() or dw.functionName(). 

Understanding the objects in the API
Each time you call a JavaScript API method, it returns information from one of the following 
three objects:

• An object that represents the current document, another open document, or a document on 
disk

• The site object

• The dreamweaver object

Functions that work with the current document, another open document, or a document on disk 
are methods of the DOM object. Methods that work directly with DOM objects are listed as 
dom.functionName(). To work with DOM methods, you must first get the DOM of a 
document (see “dreamweaver.getDocumentDOM()” on page 453) and call the functions as 
methods of that DOM. Dreamweaver DOM objects have all the properties and methods of a 
document object, as described in “The Dreamweaver Document Object Model” on page 41. 

Functions that refer to the Site panel or a selection in the Site panel are methods of the site 
object. For example, site.put(remoteSite) puts the currently selected files from the Site panel 
into the remote site.
371



Functions that refer to Dreamweaver are methods of the dreamweaver object. For example, 
dreamweaver.closeDocument() is a function of the dreamweaver object and causes 
Dreamweaver to close the current document. The dreamweaver object can be abbreviated as dw.

How this chapter is organized
The methods in the Dreamweaver JavaScript API are grouped functionally, then alphabetically 
by object, and then by method name. Each section describes methods of the dom object, the site 
object, or the dreamweaver object. For example, methods that deal with creating, applying, and 
deleting cascading style sheet (CSS) styles are grouped under CSS Styles functions; CSS dom 
methods are listed first, and then they are followed by CSS dreamweaver methods. Enablers are 
listed in the Enablers section. Deprecated functions are listed in a section at the end of the 
chapter. Optional arguments are enclosed in braces ({ }).

About enablers
The functions in the JavaScript API can perform any task that the user can perform using the 
Dreamweaver user interface. However, certain functions do not work under specific conditions. 
Calling a function through JavaScript when those conditions exist generates one or more 
JavaScript errors. Enablers check the current context to see whether conditions exist that would 
generate a JavaScript error if the associated function is called. For example, site.canGet() 
checks whether Dreamweaver can perform a Get operation on the site object (site.get()).

When a function in the Dreamweaver JavaScript API has an enabler, the enabler is listed with the 
function and documented in “Enablers” on page 409. Many functions do not require enablers, 
because the menu item that is associated with the function is always enabled, because the function 
is unrelated to menus, or because an enabler would duplicate the function of an existing API 
function. For example, functions that require the use of a current document often do not require 
an enabler because you can use dw.getDocumentDOM()!=null to test the current context.

Assets panel functions
Assets panel functions, which are programmed into the API as an asset panel, let you manage and 
use the elements in the Assets panel (templates, libraries, images, Macromedia Shockwave and 
Flash movies, URLs, colors, movies, and scripts). 

dreamweaver.assetPalette.addToFavoritesFromDocument()

Availability

Dreamweaver 4

Description

Adds the element that is selected in the Document window to the Favorites list. This function 
handles only images, movies, Shockwave files, Flash files, text font colors, and URLs.

Arguments

None.

Returns

Nothing.
Chapter 31372



dreamweaver.assetPalette.addToFavoritesFromSiteAssets()

Availability

Dreamweaver 4

Description

Adds elements that are selected in the Site list to the Favorites list and gives each item a nickname 
in the Favorites list. This function does not remove the element from the Site list.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.addToFavoritesFromSiteWindow()

Availability

Dreamweaver 4

Description

Adds the elements that are selected in the Site Panel or Site Map to the Favorites list. This 
function handles only images, movies, scripts, Shockwave files, Flash files, and URLs (in the case 
of the Site Map). If other folders or files are selected, they are ignored.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.copyToSite()

Availability

Dreamweaver 4

Description

Copies selected elements to another Site  and puts them in that Site’s Favorites list. If the 
elements are files (other than colors or URLs), the actual file is copied into that Site.

Arguments

targetSite

targetSite is the name of the target Site, as returned from the site.getSites() call.

Returns

Nothing.
The Dreamweaver JavaScript API 373



dreamweaver.assetPalette.edit()

Availability

Dreamweaver 4

Description

Edits selected elements with primary external editor or Custom Edit control. For colors, the color 
picker appears. For URLs, a dialog box appears and prompts the user for a URL and a nickname. 
Not available for the Site list of colors and URLs.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.assetPalette.canEdit()” on page 418

dreamweaver.assetPalette.getSelectedCategory()

Availability

Dreamweaver 4

Description

Returns the currently selected category, which can be one of the following categories: 
"templates", "library", "images", "movies", "shockwave", "flash", "scripts", 
"colors", or "urls".

Arguments

None.

Returns

The currently selected category.

dreamweaver.assetPalette.getSelectedItems()

Availability

Dreamweaver 4

Description

Returns an array of the selected items in the Assets panel, either in the Site list or Favorites list.

Arguments

None.

Returns

An array of the following three strings for each selected item: 

• name is the name/filename or nickname, as seen in the panel.

• value is the full file path, full URL, or color value, depending on the selected item.

• type is either "folder" or one of the following categories: "templates", "library", 
"images", "movies", "shockwave", "flash", "scripts", "colors", or "urls".
Chapter 31374



Note: If nothing is selected in the Assets panel, this function returns an array of one empty string.

Example

If URLs is the category, and a folder MyFolderName and a URL MyFavoriteURL are both 
selected in the Favorites list, the function returns the following list:

items[0] = "MyFolderName"
items[1] = "//path/FolderName"
items[2] = "folder"
items[3] = "MyFavoriteURL"
items[4] = "http://www.MyFavoriteURL.com"
items[5] = "urls"

dreamweaver.assetPalette.getSelectedView()

Availability

Dreamweaver 4

Description

Indicates which list is currently shown in the Assets panel.

Arguments

None.

Returns

Returns either "site" or "favorites".

dreamweaver.assetPalette.insertOrApply()

Availability

Dreamweaver 4

Description

Inserts selected elements or applies the element to the current selection. Applies templates, colors 
to selection, and URLs to selection; it also inserts URLs and other elements at the insertion point. 
If a document isn’t open, the function is not available.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.assetPalette.canInsertOrApply()” on page 418
The Dreamweaver JavaScript API 375



dreamweaver.assetPalette.locateInSite()

Availability

Dreamweaver 4

Description

Selects files that are associated with the selected elements in the local side of the Site panel. This 
function does not work for colors or URLs. It is available in the Site list and the Favorites list. If a 
folder is selected in the Favorites list, it is ignored.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.newAsset()

Availability

Dreamweaver 4

Description

Creates a new element for the current category in the Favorites list. For library and templates, this 
is a new blank library or template file that the user can name immediately. For colors, the color 
picker appears. For URLs, a dialog box appears and prompts the user for a URL and a nickname. 
It is not available for images, movies, Shockwave files, Flash files, or scripts.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.newFolder()

Availability

Dreamweaver 4

Description

Creates a new folder in the current category with the default name (untitled) and puts an text box 
around the default name. It is available only in the Favorites list.

Arguments

None.

Returns

Nothing.
Chapter 31376



dreamweaver.assetPalette.recreateLibraryFromDocument()

Availability

Dreamweaver 4

Description

Replaces the deprecated libraryPalette function, recreateLibraryFromDocument(). Creates 
an LBI file for the selected instance of a library item in the current document. This function is 
equivalent to clicking Recreate in the Property inspector.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.refreshSiteAssets()

Availability

Dreamweaver 4

Description

Scans Site, switches to the Site list, and populates the list

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.removeFromFavorites()

Availability

Dreamweaver 4

Description

Removes the selected elements from the Favorites list. This function does not delete the actual file 
on disk, except in the case of a library or template where the user is prompted before the file is 
deleted. It works only in the Favorites list or if the category is Library or Templates. 

Arguments

None.

Returns

Nothing.
The Dreamweaver JavaScript API 377



dreamweaver.assetPalette.renameNickname()

Availability

Dreamweaver 4

Description

Edits the folder name or the file’s nickname by displaying an text box around the existing 
nickname. It is available only in the Favorites list or in the Library or Template category. 

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.setSelectedCategory()

Availability

Dreamweaver 4

Description

Switches to show a different category.

Arguments

categoryType

categoryType can be one of the following categories: "templates", "library", "images", 
"movies", "shockwave", "flash", "scripts", "colors", or "urls".

Returns

Nothing.

dreamweaver.assetPalette.setSelectedView()

Availability

Dreamweaver 4

Description

Switches the display to show either the Site list or Favorites list.

Arguments

viewType

viewType can be site or favorites.

Returns

Nothing.
Chapter 31378



dreamweaver.referencePalette.getFontSize() 

Availability 

Dreamweaver 4 

Description 

Returns the current font size of the Reference panel display region.

Arguments 

None.

Returns 

The relative font size as small, medium, or large. 

dreamweaver.referencePalette.setFontSize() 

Availability 

Dreamweaver 4 

Description 

Changes the font size that appears in the Reference panel.

Arguments 

fontSize

fontSize is one of the following relative sizes: small, medium, or large. 

Returns 

Nothing.
The Dreamweaver JavaScript API 379



Behavior functions 
Behavior functions let you add behaviors to and remove them from an object, find out which 
behaviors are attached to an object, get information about the object to which a behavior is 
attached, and so on. Methods of the dreamweaver.behaviorInspector object either control or 
act on the selection in the Behaviors panel, not in the current document.

dom.addBehavior()

Availability

Dreamweaver 3

Description

Adds a new event/action pair to the selected element. This function is valid only for the active 
document.

Arguments

event, action, {eventBasedIndex}

• event is the JavaScript event handler that should attach the behavior to the element; for 
example, onClick, onMouseOver, or onLoad.

• action is the function call that applyBehavior() returns if the action is added using the 
Behaviors panel; for example, "MM_popupMsg(’Hello World’)".

• eventBasedIndex is the position at which this action should be added. eventBasedIndex is a 
zero-based index; if two actions already are associated with the specified event, and you specify 
eventBasedIndex as 1, this action executes between the other two. If you omit this argument, 
the action is added after all existing actions for the specified event.

Returns

Nothing.

dom.getBehavior()

Availability

Dreamweaver 3

Description

Gets the action at the specified position within the specified event. This function acts on the 
current selection and is valid only for the active document.

Arguments

event, {eventBasedIndex}

• event is the JavaScript event handler through which the action is attached to the element; for 
example, onClick, onMouseOver, or onLoad. 

• eventBasedIndex is the position of the action to get. For example, if two actions are 
associated with the specified event, 0 is first and 1 is second. If you omit this argument, all the 
actions for the specified event return.
Chapter 31380



Returns

A string that represents the function call (for example, 
"MM_swapImage(’document.Image1’,’document.Image1’,’foo.gif’,’#933292969950’)") 
or an array of strings if eventBasedIndex is omitted.

dom.reapplyBehaviors()

Availability

Dreamweaver 3

Description

Checks to make sure that the functions that are associated with any behavior calls on the specified 
node are in the HEAD of the document and inserts them if they are missing.

Arguments

{elementNode}

elementNode is an element node within the current document. If you omit the argument, 
Dreamweaver checks all element nodes in the document for orphaned behavior calls.

Returns

Nothing.

dom.removeBehavior()

Availability

Dreamweaver 3

Description

Removes the action at the specified position within the specified event. This function acts on the 
current selection and is valid only for the active document.

Arguments

event, {eventBasedIndex}

• event is the event handler through which the action is attached to the element; for example, 
onClick, onMouseOver, or onLoad. If you omit this argument, all actions are removed from 
the element.

• eventBasedIndex is the position of the action to be removed. For example, if two actions are 
associated with the specified event, 0 is first and 1 is second. If you omit this argument, all the 
actions for the specified event are removed.

Returns

Nothing.

dreamweaver.getBehaviorElement()

Availability

Dreamweaver 2

Description

Gets the DOM object that corresponds to the tag to which the behavior is being applied. This 
function is applicable only in Behavior action files.
The Dreamweaver JavaScript API 381



Arguments

None.

Returns

A DOM object or null. This function returns null under the following circumstances:

• When the current script is not executing within the context of the Behaviors panel

• When the Behaviors panel is being used to edit a behavior in a timeline

• When the currently executing script is invoked by dreamweaver.popupAction()

• When the Behaviors panel is attaching an event to a link wrapper and the link wrapper does 
not yet exist

• When this function appears outside of an action file

Example

dreamweaver.getBehaviorElement() can be used in the same way as 
“dreamweaver.getBehaviorTag()” on page 382 to determine whether the selected action is 
appropriate for the selected HTML tag, except that it gives you access to more information about 
the tag and its attributes. For example, if you write an action that can be applied only to a 
hypertext link (A HREF) that does not target another frame or window, you can use 
getBehaviorElement() as part of the function that initializes the user interface for the 
Parameters dialog box.

function initializeUI(){
var theTag = dreamweaver.getBehaviorElement();
var CANBEAPPLIED = (theTag.tagName == "A" && ¬
theTag.getAttribute("HREF") != null && ¬
theTag.getAttribute("TARGET") == null);
if (CANBEAPPLIED) {

// display the action UI
} else{

// display a helpful message that tells the user 
// that this action can only be applied to a
// hyperlink without an explicit target]

}
}

dreamweaver.getBehaviorTag()

Availability

Dreamweaver 1.2

Description

Gets the source of the tag to which the behavior is being applied. This function is applicable only 
in action files.

Arguments

None.

Returns

A string that represents the source of the tag. This is the same string that passes as an argument 
(HTMLelement) to the canAcceptBehavior() function. If this function appears outside an action 
file, the return value is an empty string.
Chapter 31382



Example

If you write an action that can be applied only to a hypertext link (A HREF), you can use 
getBehaviorTag() as part of the function that initializes the user interface for the Parameters 
dialog box.

function initializeUI(){
var theTag = dreamweaver.getBehaviorTag().toUpperCase();
var CANBEAPPLIED = (theTag.indexOf(’HREF’) != -1));
if (CANBEAPPLIED) {

// display the action UI
} else{

// display a helpful message that tells the user 
// that this action can only be applied to a
// hyperlink

}
}

dreamweaver.popupAction()

Availability

Dreamweaver 2

Description

Presents the user with a Parameters dialog box for the specified behavior action. To the user, the 
effect is the same as selecting the action from the Actions pop-up menu in the Behaviors panel. 
This function lets extension files other than actions attach behaviors to objects in the user’s 
document. It blocks other edits until the user dismisses the dialog box.

Note: This function can be called only within objectTag() or in any script in a command or the Property 
inspector file. 

Arguments

actionName, {funcCall}

• actionName is the name of a file in the Configuration/Behaviors/Actions folder that contains a 
JavaScript behavior action; for example, "Timeline/Play Timeline.htm".

• funcCall is a string that contains a function call for the action specified in actionName; for 
example, "MM_playTimeline(...)". This argument, if specified, is supplied by the 
applyBehavior() function in the action file.

Returns

The function call for the behavior action. When the user clicks OK in the Parameters dialog box, 
the behavior is added to the current document (the appropriate functions are added to the HEAD 
of the document, HTML might be added to the top of the BODY, and other edits might be made 
to the document). The function call (for example, "MM_playTimeline(...)") is not added to 
document but becomes the return value of this function.
The Dreamweaver JavaScript API 383



dreamweaver.behaviorInspector.getBehaviorAt()

Availability

Dreamweaver 3

Description

Gets the event/action pair at the specified position in the Behaviors panel.

Arguments

positionIndex 

Returns

An array of two items:

• An event handler

• A function call or JavaScript statement

Example

Because positionIndex is a zero-based index, if the Behaviors panel displays the list, a call to 
dreamweaver.behaviorInspector.getBehaviorAt(2) returns an array that contains two 
strings: "onMouseOver" and 
"MM_changeProp(’document.moon’,’document.moon’,’src’,’sun.gif’,
’MG’)".

dreamweaver.behaviorInspector.getBehaviorCount()

Availability

Dreamweaver 3

Description

Counts the number of actions that are attached to the currently selected element through event 
handlers.

Arguments

None.

Returns

An integer that represents the number of actions that are attached to the element. This number is 
equivalent to the number of actions that are visible in the Behaviors panel and includes 
Dreamweaver behavior actions and custom JavaScript.

Example

A call to dreamweaver.behaviorInspector.getBehaviorCount() for the selected link <A 
HREF="javascript:setCookie()" onClick="MM_popupMsg(’A cookie has been 
set.’);parent.rightframe.location.href=’aftercookie.html’"> returns 2.

dreamweaver.behaviorInspector.getSelectedBehavior()

Availability

Dreamweaver 3

Description

Gets the position of the selected action in the Behaviors panel. 
Chapter 31384



Arguments

None.

Returns

An integer that represents the position of the selected action in the Behaviors panel, or –1 if no 
action is selected.

Example

If the first action in the Behaviors panel is selected, as shown in the following example, a call to 
dreamweaver.behaviorInspector.getSelectedBehavior() returns 0.

dreamweaver.behaviorInspector.moveBehaviorDown()

Availability

Dreamweaver 3

Description

Moves a behavior action lower in sequence by changing its execution order within the scope of an 
event.

Arguments

positionIndex

positionIndex is the position of the action in the Behaviors panel. The first action in the list is 
at position 0.

Returns

Nothing.
The Dreamweaver JavaScript API 385



Example

Assuming the Behaviors panel setup shown in the following example, calling 
dreamweaver.behaviorInspector.moveBehaviorDown(2) swaps the positions of the 
Preload Images and the Change Property actions on the onMouseDown event. Calling 
dreamweaver.behaviorInspector.moveBehaviorDown() for any other position has no effect 
because the onClick and onFocus events each have only one associated behavior, and the 
behavior at position 3 is already at the bottom of the onMouseDown event group. 

dreamweaver.behaviorInspector.moveBehaviorUp()

Availability

Dreamweaver 3

Description

Moves a behavior higher in sequence by changing its execution order within the scope of an 
event.

Arguments

positionIndex

positionIndex is the position of the action in the Behaviors panel. The first action in the list is 
at position 0.

Returns

Nothing.

Example

Assuming the Behaviors panel setup that is shown in the following example, calling 
dreamweaver.behaviorInspector.moveBehaviorUp(3) swaps the positions of the 
Preload Images and the Change Property actions on the onMouseOver event. Calling 
dreamweaver.behaviorInspector.moveBehaviorUp() for any other position has no effect 
because the onClick and onFocus events each have only one associated behavior, and the 
behavior at position 2 is already at the top of the onMouseDown event group. 
Chapter 31386



dreamweaver.behaviorInspector.setSelectedBehavior()

Availability

Dreamweaver 3

Description

Selects the action at the specified position in the Behaviors panel.

Arguments

positionIndex

positionIndex is the position of the action in the Behaviors panel. The first action in the list is 
at position 0. To deselect all actions, specify a positionIndex of –1. Specifying a position for 
which no action exists is equivalent to specifying –1. 

Returns

Nothing.

None.

Example

Assuming the Behaviors panel setup shown in the following example, calling 
dreamweaver.behaviorInspector.setSelection(2) selects the Change Property action that 
is associated with the onMouseDown event. 
The Dreamweaver JavaScript API 387



Clipboard functions
Clipboard functions are related to cutting, copying, and pasting. On the Macintosh, some 
Clipboard functions can also apply to text boxes in dialog boxes and floating panels. Functions 
that can operate in text boxes are implemented as methods of the dreamweaver object and as 
methods of the dom object. The dreamweaver version of the function operates on the selection in 
the active window: the current Document window, the Code inspector, or the Site panel. On the 
Macintosh, the function can also operate on the selection in a text box if it is the current field. 
The dom version of the function always operates on the selection in the specified document.

dom.clipCopy()

Availability

Dreamweaver 3

Description

Copies the selection, including any HTML markup that defines the selection, to the Clipboard.

Arguments

None.

Returns

Nothing.

dom.clipCopyText()

Availability

Dreamweaver 3

Description

Copies the selected text to the Clipboard, ignoring any HTML markup.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canClipCopyText()” on page 410

dom.clipCut()

Availability

Dreamweaver 3

Description

Removes the selection, including any HTML markup that defines the selection, to the Clipboard.

Arguments

None.
Chapter 31388



Returns

Nothing.

dom.clipPaste()

Availability

Dreamweaver 3

Description

Pastes the contents of the Clipboard into the current document at the current insertion point or 
in place of the current selection. If the Clipboard contains HTML, it is interpreted as such.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canClipPaste()” on page 410

Example

If the Clipboard contains <code>return true;</code>, a call to 
dw.getDocumentDOM().clipPaste() results in the following illustration:

dom.clipPasteText()

Availability

Dreamweaver 3

Description

Pastes the contents of the Clipboard into the current document at the insertion point or in place 
of the current selection. It replaces any linefeeds in the Clipboard content with BR tags. If the 
Clipboard contains HTML, it is not interpreted; angle brackets are pasted as &lt; and &gt;.
The Dreamweaver JavaScript API 389



Arguments

None.

Returns

Nothing.

Enabler

“dom.canClipPasteText()” on page 410

Example

If the Clipboard contains <code>return true;</code>, a call to 
dw.getDocumentDOM().clipPasteText() results in the following illustration:

dreamweaver.clipCopy()

Availability

Dreamweaver 3

Description

Copies the current selection from the active Document window, dialog box, floating panel, or 
Site panel to the Clipboard.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canClipCopy()” on page 418
Chapter 31390



dreamweaver.clipCut()

Availability

Dreamweaver 3

Description

Removes the selection from the active Document window, dialog box, floating panel, or Site 
panel to the Clipboard.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canClipCut()” on page 419

dreamweaver.clipPaste()

Availability

Dreamweaver 3

Description

Pastes the contents of the Clipboard into the current document, dialog box, floating panel, or Site 
panel. 

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canClipPaste()” on page 419

dreamweaver.getClipboardText()

Availability

Dreamweaver 3

Description

Gets all the text that is stored on the Clipboard.

Arguments

{bAsText}

{bAsText} is a Boolean value that specifies whether the Clipboard content is retrieved as text. If 
bAsText is true, the Clipboard content is retrieved as text. If bAsText is false, the behavior is 
the same as in Dreamweaver 3. This argument defaults to false.
The Dreamweaver JavaScript API 391



Returns

A string that contains the contents of the Clipboard, if the Clipboard contains text (which can be 
HTML); otherwise, nothing.

Example

If dreamweaver.getClipboardText() returns "text <b>bold</b> text", then 
dreamweaver.getClipboardText(true) returns "text bold text".

Code hints functions
Code Hints are menus that Macromedia Dreamweaver MX pops up when you type certain 
character patterns in the Code view. Code Hints offer a typing shortcut by providing a list of 
strings that potentially complete the string you are typing. If the string you are typing appears in 
the menu, you can scroll to it and press Enter or Return to complete your entry. For example, 
when you type <, a pop-up menu shows a list of tag names. Instead of typing the rest of the tag 
name, you can select the tag from the menu to include it in your text.

Dreamweaver loads Code Hints menus from the CodeHints.xml file in the Configuration folder. 
You can add Code Hints menus to Dreamweaver MX by defining them in the CodeHints.xml 
file. After Dreamweaver MX loads the contents of CodeHints.xml, you can also add new Code 
Hints menus dynamically through JavaScript. For example, JavaScript code populates the list of 
session variables in the Bindings panel. You can use the same code to add a Code Hints menu, so 
when a user types “Session.” in Code view, Dreamweaver MX displays a menu of session 
variables. For information on using JavaScript to add or modify a Code Hints menu, see “Code 
hints functions” on page 397.

Dreamweaver cannot express some types of Code Hints menus through the XML file or the 
JavaScript API. Both the CodeHints.xml file and the JavaScript API expose a useful subset of the 
Code Hints engine, but some Dreamweaver functionality is not accessible. For example, there is 
no JavaScript hook to pop up a color picker, so Dreamweaver cannot express the Attribute Values 
menu using JavaScript. You can only pop up a menu of text items from which you can insert text. 
Also, when you insert text, the insertion pointer is placed after the inserted string.

The CodeHints.xml file 

The CodeHints.xml file contains the following entities: 

• A list of all the menu groups 

Dreamweaver displays the list of menu groups when you select the Code Hints category from 
the Preferences dialog box. You can activate the Preferences dialog box by selecting Preferences 
from the Edit menu. Dreamweaver MX provides the following menu groups or types of Code 
Hints menus: Tag Names, Attribute Names, Attribute Values, Function Arguments, Object 
Methods and Variables, and HTML Entities.

• The description for each menu group 

The description appears in the Preferences dialog box for the Code Hints category when you 
select the menu group in the list. The description for the selected entry appears below the 
menu group list.

• Code Hints menus

A menu consists of a pattern that triggers the Code Hints menu, and a list of menu items. For 
example, a pattern such as "&" could trigger a menu such as "&amp;", "&gt;", "&lt;". 
Chapter 31392



The following example shows the format of the CodeHints.xml file.

<codehints>
<menugroup name="HTML Entities" enabled="true" id="CodeHints_HTML_Entities">

<description>
<![CDATA[ When you type a ’&’, a drop-down menu shows

a list of HTML entities. The list of HTML entities
is stored in Configuration/CodeHints.xml. ]]>

</description>

<menu pattern="&amp;">
  <menuitem value="&amp;amp;" texticon="&amp;"/>
  <menuitem value="&amp;lt;" icon="lessThan.gif"/>

</menu>
</menugroup>

<menugroup name="Tag Names" enabled="true" id="CodeHints_Tag_Names">
<description>

  <![CDATA[ When you type ’<’, a drop-down menu shows
  all possible tag names.  You can edit the list of tag
  names using the
  <a href="javascript:dw.popupTagLibraryEditor()"> Tag Library Editor 

</a>]]>
</description>

</menugroup>

<menugroup name="Function Arguments" enabled="true" 
id="CodeHints_Function_Arguments">

<description>
...

</description>
<function pattern="ArraySort(array, sort_type, sort_order)"

doctypes="CFML"/>
<function pattern="Response.addCookie(Cookie cookie)"

doctypes="JSP"/>
</menugroup>
<codehints>

Code Hints tags

The CodeHints.xml file contains the following tags, which define Code Hints menus. You can 
use these tags to define additional Code Hints menus.

<codehints>

Description

The codehints tag is the root of the CodeHints.xml file. 

Attributes

None.

Contents

One or more menugroup tags.

Container

None.

Example

<codehints>
The Dreamweaver JavaScript API 393



<menugroup>

Description

Each menugroup tag corresponds to a type of menu. You can see the menu types that 
Dreamweaver MX defines by selecting the Code Hints category from the Preferences dialog box. 
Select Preferences from the Edit menu to display the Preferences dialog box.

You can create a new menu group or add to an existing group. Menu groups are logical 
collections of menus that the user might want to enable or disable, using the Preferences dialog 
box.

Attributes

name, enabled, id

name is the localized name that appears in the list of menu groups in the Code Hints category of 
the Preferences dialog box.

enabled indicates whether the menu group is currently checked or enabled. A menu group that is 
enabled appears with a check mark next to it in the Code Hints category of the Preferences dialog 
box. Assign a value of true to enable the menu group. Assign the value false to disable a menu 
group. 

id is a nonlocalized identifier that refers to the menu group.

Contents

description, menu, and function tags.

Container

codehints tag.

Example

<menugroup name="Session Variables" enabled="true" id="Session_Code_Hints">

<description>

Description

The description tag contains text that Dreamweaver displays when you select the menu group 
from the Preferences dialog box. The description text displays below the list of menu groups. The 
description text might optionally contain a single <a> tag where the href attribute must be a 
JavaScript URL that Dreamweaver executes if the user clicks the link. Use the XML CDATA 
construct to enclose any special or illegal characters in the string so that Dreamweaver will treat 
them as text.

Attributes

None.

Contents

Description text.

Container

menugroup tag.
Chapter 31394



Example

<description>
<![CDATA[ To add or remove tags and attributes, use the <a 

href="javascript:dw.tagLibrary.showTagLibraryEditor()">Tag Library Editor</
a>.

  ]]>
</description>

<menu>

Description

Describes a single pop-up menu. Dreamweaver pops up the menu whenever the user types the last 
character of the string in the pattern attribute. For example, the menu that shows the contents of 
a Session variable might have a pattern attribute that is equal to "Session.". 

Attributes

pattern doctypes casesensitive

pattern specifies the pattern of typed characters that cause Dreamweaver to pop up the Code 
Hints menu. If the first character of the pattern is a letter, number, or underscore, Dreamweaver 
displays the menu only if the character that precedes the pattern in the document is not a letter, 
number, or underscore. For example, if the pattern is "Session.", Dreamweaver does not pop up 
the menu if the user types "my_Session.".

doctypes specifies that the menu is active only for the specified document types. This attribute 
lets you specify different lists of function names for ASP-JavaScript (ASP-JS), Java Server Pages 
(JSP), ColdFusion, and so on. You can specify doctypes as a comma-separated list of document 
type IDs. See the Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file for 
a list of Dreamweaver document types.

casesensitive specifies whether the pattern is case-sensitive. The possible values for 
casesensitive are true, false, or a subset of the comma-separated list that you specify for the 
doctypes attribute. The list of document types lets you specify that the pattern is case-sensitive 
for some document types but not for others. The value defaults to false if you omit this 
attribute. If casesensitive is true, the Code Hints menu will pop up only if the text that the 
user types exactly matches the pattern specified by the pattern attribute. If casesensitive is 
false, the menu pops up even if the pattern is lowercase and the text is uppercase. 

Contents

menuitem tag.

Container

menugroup tag.

Example

<menu pattern="CGI." doctypes="ColdFusion">

<menuitem>

Description

Specifies the text for an item in a Code Hints pop-up menu. The menuitem also specifies the 
value to insert into the text when you select the item.
The Dreamweaver JavaScript API 395



Attributes

label value {icon} {texticon}

label is the string that Dreamweaver displays in the pop-up menu. 

value is the string that Dreamweaver inserts in the document when you select the menu item. 
When the user selects the item from the menu and presses Enter or Return, Dreamweaver replaces 
all the text that the user typed since the menu popped up. The user typed the pattern-matching 
characters before the menu popped up, so Dreamweaver does not insert them again. For example, 
if you want to insert &amp, which is the HTML entity for &, you could define the following menu 
and menuitem tags:

<menu pattern="&amp;">
<menuitem label="&amp;amp;" value="amp;" texticon="&amp;"/>

The value attribute does not include the ampersand (&) character because the user typed it before 
the menu popped up.

icon is an optional attribute that specifies the path to an image file that Dreamweaver displays as 
an icon to the left of the menu text. The location is expressed as a URL, relative to the 
Configuration folder. 

texticon is an optional attribute that specifies a text string to appear in the icon area instead of 
an image file. This attribute is used for the HTML Entities menu.

Contents

None.

Container

menu tag.

Example

<menuitem label="CONTENT_TYPE" value="&quot;CONTENT_TYPE&quot;)" icon="shared/
mm/images/hintMisc.gif" />

<function>

Description

Replaces the menu tag for specifying function arguments and object methods for a Code Hints 
pop-up menu. When you type a function or method name in Code view, Dreamweaver pops up a 
menu of function arguments. Each time you type a comma, Dreamweaver updates the menu to 
display only the remaining arguments. 

For object methods, when you type the object name Dreamweaver pops up a menu of the 
methods that are defined for that object.

The set of recognized functions is stored in the Dreamweaver Configuration/CodeHints.xml file.

Attributes

pattern doctypes
Chapter 31396



pattern specifies the name of the function and its argument list. For methods, the pattern 
attribute describes the name of the object, the name of the method, and the method’s arguments. 
For a function name, the Code Hints menu pops up when the user types functionname(. The 
menu shows the list of arguments for the function. For an object method, the Code Hints menu 
pops up when the user types objectname. (including the period). This menu shows the methods 
that have been specified for the object. After that, the Code Hints menu pops up a list of the 
arguments for the method in the same way it does for a function. 

doctypes specifies that the menu is active only for the specified document types. This attribute 
lets you specify different lists of function names for ASP-JavaScript (ASP-JS), Java Server Pages 
(JSP), ColdFusion, and so on. You can specify doctypes as a comma-separated list of document 
type IDs. See the Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file for 
a list of Dreamweaver document types.

casesensitive specifies whether the pattern is case-sensitive. The possible values for 
casesensitive are true, false or a subset of the comma-separated list that you specify for the 
doctypes attribute. The list of document types lets you specify that the pattern is case-sensitive 
for some document types but not for others. The value defaults to false if you omit this 
attribute. If casesensitive is true, the Code Hints menu pops up only if the text that the user 
types exactly matches the pattern specified by the pattern attribute. If casesensitive is false, 
the menu pops up even if the pattern is lowercase and the text is uppercase.

Contents

None.

Container

menugroup tag.

Example

// function example
<function pattern="CreateDate(year, month, day)" DOCTYPES="ColdFusion" />
// object method example
<function pattern="application.getAttribute(String name)" DOCTYPES="JSP" />

Code hints functions

The JavaScript Code hints API consists of four functions.

dw.codeHints.addMenu()

Availability

Dreamweaver MX

Description

This function dynamically defines a new menu tag in the CodeHints.xml file. If there is an 
existing menu tag that has the same pattern and document type, this function adds items to the 
existing menu.

Arguments

menuGroupId, pattern, labelArray, {valueArray}, {iconArray}, {doctypes}, 
{casesensitive}

menuGroupId is the ID attribute for one of the <menugroup> tags. 

pattern is the pattern attribute for the new <menu> tag. 
The Dreamweaver JavaScript API 397



labelArray is an array of strings. Each string is the text for a single menu item in the pop-up menu. 

valueArray is an array of strings, which should be the same length as labelArray. When a user 
chooses an item from the pop-up menu, the string in this array is inserted in the user’s document. 
If the string to be inserted is always the same as the menu label, this argument may be null.

iconArray is either a string or an array of strings. If it is a string, it specifies the URL for a single 
image file that Dreamweaver uses for all items in the menu. If it is an array of strings, it must be 
the same length as labelArray. Each string is a URL, relative to the Dreamweaver Configuration 
folder, for an image file that Dreamweaver uses as an icon for the corresponding menu item. If 
this argument is null, Dreamweaver displays the menu without icons. 

doctypes is an optional argument that specifies that this menu is active for only certain 
document types. You can specify doctypes as a comma-separated list of document type IDs. See 
the Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file for a list of 
Dreamweaver document types.

casesensitive specifies whether the pattern is case-sensitive. The possible values for 
casesensitive are the Boolean values true or false. The value defaults to false if you omit 
this argument. If casesensitive is true, the Code Hints menu pops up only if the text that the 
user types exactly matches the pattern specified by the pattern attribute. If casesensitive is 
false, the menu pops up even if the pattern is lowercase and the text is uppercase. 

Returns

Nothing.

Example

If the user creates a record set called "myRs", the following code would create a menu for myRS:

dw.codeHints.addMenu(
  "CodeHints_object_methods",  // menu is enabled if object methods are enabled
  "myRS.",                       // pop up menu if user types "myRS."
  new Array("firstName", "lastName"),  // items in drop-down menu for myRS

new Array("firstName", "lastName"),  // text to actually insert in document
null,  // no icons for this menu
"ASP_VB, ASP_JS"); // specific to the ASP doc types

dw.codeHints.addFunction()

Availability

Dreamweaver MX

Description

Dynamically defines a new function tag. If there is an existing function tag with the same 
pattern and document type, this function replaces the existing function tag.

Arguments

menuGroupId, pattern, {doctypes}, {casesensitive}

menuGroupId is the ID string attribute of a menugroup tag. 

pattern is a string that specifies the pattern attribute for the new function tag. 

doctypes is an optional argument that specifies that this function is active for only certain 
document types. You can specify doctypes as a comma-separated list of document type IDs. See 
the Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file for a list of 
Dreamweaver document types.
Chapter 31398



casesensitive specifies whether the pattern is case-sensitive. The possible values for 
casesensitive are the Boolean values true or false. The value defaults to false if you omit 
this argument. If casesensitive is true, the Code Hints menu pops up only if the text that the 
user types exactly matches the pattern specified by the pattern attribute. If casesensitive is 
false, the menu pops up even if the pattern is lowercase and the text is uppercase. 

Returns

Nothing.

Example

dw.codeHints.addFunction(
"CodeHints_Object_Methods", 
"out.newLine()",
"JSP")

dw.codeHints.resetMenu()

Availability

Dreamweaver MX

Description

This function resets the specified menu tag or function tag to its state immediately after 
CodeHints.xml is read. In other words, a call to this function erases the effect of previous calls to 
addMenu() and addFunction().

Arguments

menuGroupId, pattern, {doctypes}

menuGroupId is the ID string attribute of a menugroup tag. 

pattern is a string that specifies the pattern attribute for the new menu or function tag to be 
reset. 

doctypes is an optional argument that specifies that this menu is active for only certain 
document types. You can specify doctypes as a comma-separated list of document type IDs. See 
the Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file for a list of 
Dreamweaver document types.

Returns

Nothing.

Example

Your JavaScript code might build a Code Hints menu that contains user-defined session 
variables. Each time the list of session variables is changed, that code needs to update the menu. 
Before the code can load the new list of session variables into the menu, it needs to remove the old 
list. Calling this function removes the old session variables.
The Dreamweaver JavaScript API 399



dw.codeHints.showCodeHints()

Availability

Dreamweaver MX

Description

Dreamweaver calls this function when the user invokes the Edit > Show Code Hints menu item. 
The function pops up the Code Hints menu at the current selection location in Code view. 

Arguments

None.

Returns

Nothing.

Example

dw.codeHints.showCodeHints()

Command functions
Command functions help you make the most of the files in the Configuration/Commands folder. 
They manage the Command menu and call commands from other types of extension files.

dreamweaver.editCommandList()

Availability

Dreamweaver 3

Description

Opens the Edit Command List dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.runCommand()

Availability

Dreamweaver 3

Description

Executes the specified command; it works the same as choosing the command from a menu. If a 
dialog box is associated with the command, it appears and the command script blocks other edits 
until the user dismisses the dialog box. This function provides the ability to call a command from 
another extension file.

Note: This function can be called only within the objectTag() function in objects; it can be called from or in any 
script in a command, Property inspector file, or menu command.
Chapter 31400



Arguments

commandFile, {commandArg1}, {commandArg2},...{commandArgN}

• commandFile is a filename in the Configuration/Commands folder.

• The second and remaining arguments pass to the receiveArguments function in 
commandFile.

Returns

Nothing.

Example

You can write a custom Property inspector for tables that let users get to the Format Table 
command from a button on the inspector by calling the following function from the button’s 
onClick event handler:

function callFormatTable(){
dreamweaver.runCommand(’Format Table.htm’);

}

Components functions
Server Components functions let you access the currently selected node of the Server 
Components tree control that appears in the Components panel. Using these functions, you can 
also refresh the view of the component tree. 

dreamweaver.serverComponents.getSelectedNode()

Availability

Dreamweaver MX

Description

Returns the currently selected ComponentRec property in the Server Components tree control.

Arguments

None.

Returns

ComponentRec property. 

dreamweaver.serverComponents.refresh()

Availability

Dreamweaver MX

Description

Refreshes the view of the component tree.

Arguments

None.

Returns

Nothing.
The Dreamweaver JavaScript API 401



Conversion functions
Conversion functions convert tables to layers, layers to tables, and Cascading Style Sheets (CSS) 
styles to HTML markup. Each function exactly duplicates the behavior of one of the conversion 
commands in the File or Modify menu.

dom.convertLayersToTable()

Availability

Dreamweaver 3

Description

Opens the Convert Layers to Table dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canConvertLayersToTable()” on page 411

dom.convertTablesToLayers()

Availability

Dreamweaver 3

Description

Opens the Convert Tables to Layers dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canConvertTablesToLayers()” on page 411

dom.convertTo30()

Availability

Dreamweaver 3

Description

Opens the “Convert to 3.0 Browser Compatible” dialog box.

Arguments

None.

Returns

Nothing.
Chapter 31402



CSS Styles functions
CSS styles functions handle the application, removal, creation, and deletion of CSS styles. 
Methods of the dreamweaver.cssStylePalette object either control or act on the selection in 
the CSS Styles panel, not in the current document.

dom.applyCSSStyle()

Availability

Dreamweaver 4

Description

Applies the specified style to the specified element. This function is valid only for the active 
document.

Arguments

elementNode, styleName, [classOrID], [bForceNesting]

• elementNode is an element node in the DOM. If elementNode is NULL or an empty string 
(’’), the function acts on the current selection.

• styleName is the name of a CSS style.

• [classOrID] is the attribute with which the style should be applied (either "class" or "id"). 
If elementNode is NULL or an empty string and no tag exactly surrounds the selection, the style 
is applied using SPAN tags. If the selection is an insertion point, Dreamweaver uses heuristics to 
determine to which tag the style should be applied.

• [bForceNesting] is a Boolean value, which indicates whether nesting is allowed. If the 
bForceNesting flag is specified, Dreamweaver inserts a new SPAN tag instead of trying to 
modify the existing tags in the document. This argument defaults to false if it is not 
specified.

Returns

Nothing.

Example

The following code applies the red style to the selection, either by surrounding the selection with 
SPAN tags or by applying a CLASS attribute to the tag that surrounds the selection:

var theDOM = dreamweaver.getDocumentDOM(’document’);
theDOM.applyCSSStyle(’’,’red’);

dom.removeCSSStyle()

Availability

Dreamweaver 3

Description

Removes the CLASS or ID attribute from the specified element, or removes the SPAN tag that 
completely surrounds the specified element. This function is valid only for the active document.
The Dreamweaver JavaScript API 403



Arguments

elementNode, {classOrID}

• elementNode is an element node in the DOM. If elementNode is specified as an empty string 
(" "), the function acts on the current selection.

• classOrID is the attribute that should be removed (either "class" or "id"). If classOrID is 
not specified, it defaults to "class". If no CLASS attribute is defined for elementNode, then 
the SPAN tag surrounding elementNode is removed.

Returns

Nothing.

dreamweaver.cssStylePalette.applySelectedStyle()

Availability

Dreamweaver MX

Description

Applies the selected style to the current active document or to its attached style sheet, depending 
on the selection in the CSS Styles panel.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.cssStylePalette.canApplySelectedStyle()” on page 424

dreamweaver.cssStylePalette.attachStyleSheet()

Availability

Dreamweaver 4

Description

Displays a dialog box that lets users attach a style sheet to the current active document or to one 
of its attached style sheets, depending on the selection in the CSS Styles panel.

Arguments

None.

Returns

Nothing.
Chapter 31404



dreamweaver.cssStylePalette.deleteSelectedStyle()

Availability

Dreamweaver 3

Description

Deletes the style that is currently selected in the CSS Styles panel from the document.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.cssStylePalette.canDeleteSelectedStyle()” on page 425

dreamweaver.cssStylePalette.duplicateSelectedStyle()

Availability

Dreamweaver 3

Description

Duplicates the style that is currently selected in the CSS Styles panel and displays the Duplicate 
Style dialog box to let the user assign a name or selector to the new style.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.cssStylePalette.canDuplicateSelectedStyle()” on page 425

dreamweaver.cssStylePalette.editSelectedStyle()

Availability

Dreamweaver 3

Description

Opens the Style Definition dialog box for the style that is currently selected in the CSS Styles 
panel.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.cssStyle.canEditSelectedStyle()” on page 425
The Dreamweaver JavaScript API 405



dreamweaver.cssStylePalette.editStyleSheet()

Availability

Dreamweaver 3

Description

Opens the Edit Style Sheet dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.cssStylePallette.canEditStyleSheet()” on page 425

dreamweaver.cssStylePalette.getSelectedStyle()

Availability

Dreamweaver 3; fullSelector available in Dreamweaver MX

Description

Gets the name of the style that is currently selected in the CSS Styles panel.

Arguments

fullSelector

fullSelector is a Boolean value that indicates whether the full selector or only the class should 
be returned. If nothing is specified, only the class name returns. For instance, p.class1 is a 
selector that means the style is applied to any p tag of class1, but it does not apply for instance to 
a div tag of class1. Without fullSelector, getSelectedStyle returns only the class name, 
class1, for the selector. fullSelector tells the function to return p.class1 instead of class1.

Returns

When fullSelector is true, returns either the full selector, or an empty string when the 
stylesheet node is selected.

When fullSelector is false or omitted, a string that represents the class name of the selected 
style. If the selected style does not have a class or a stylesheet node is selected, an empty string 
returns.

Example

If the style red is selected, a call to dw.cssStylePalette.getSelectedStyle() returns "red".

dreamweaver.cssStylePalette.getSelectedTarget()

Availability

Dreamweaver 3

Description

Gets the selected element in the Apply To pop-up menu at the top of the CSS Styles panel. 
Chapter 31406



Arguments

None.

Returns

The object to which the style should be applied, or NULL if the target is the current selection.

Example

Before applying a style, use dreamweaver.cssStylePalette.getSelectedTarget() to ensure 
that if the user has changed the target, you have the one that is currently selected. 

For example:

var currDOM = dreamweaver.getDocumentDOM();
currDOM.applyCSSStyle(dreamweaver.cssStylePalette.getSelectedTarget(), ¬
"codeRed");

dreamweaver.cssStylePalette.getStyles()

Availability

Dreamweaver 3

Description

Gets a list of all the class styles in the active document.

Arguments

None.

Returns

An array of strings that represent the names of all the class styles in the document.

Example

Assuming the CSS Styles panel setup that is shown in the following example, a call to 
dreamweaver.cssStylePalette.getStyles() returns an array that contains these strings: 
"BreadcrumbEnd", "change", "doctitle", "heading", and "highlight".
The Dreamweaver JavaScript API 407



dreamweaver.cssStylePalette.newStyle()

Availability

Dreamweaver 3

Description

Opens the New Style dialog box.

Arguments

None.

Returns

Nothing.

Data source functions
Data source files are stored in the Configuration/DataSources folder. Each server model has its 
own folder: ASP.Net/C#, ASP.Net/VisualBasic, ASP/JavaScript, ASP/VBScript, ColdFusion, JSP, 
and PHP/MySQL. Within each server model subfolder are HTML and EDML files that are 
associated with the data sources for that server model.

For more information about using data sources in Dreamweaver, see “Data Sources” on page 191.

dreamweaver.dbi.getDataSources

Availability

Dreamweaver UltraDev 4

Description

Calls the findDynamicSources() function for each file in the Configuration/DataSources folder. 
You can use this function to generate a list of all the data sources in the user’s document. This 
function iterates through all the files in the Configuration/DataSources folder, calls the 
findDynamicSources() function in each file, concatenates all the returned arrays, and returns 
the concatenated array of data sources.

Arguments

None.

Returns

The array that this function returns contains a concatenated list of all the data sources in the user’s 
document. Each element in the array is an object, and each object has the following properties:

• The title property is the label string that appears to the right of the icon for each parent 
node. The title property is always defined. 

• The imageFile property is the path of a file that contains the icon (a GIF image) that 
represents the parent node in the Bindings panel or Dynamic Data dialog box or Dynamic 
Text dialog box. The imageFile property is always defined.

• The allowDelete property is an optional property. If this property is set to false, when the 
user clicks on this node in the Bindings panel, the minus (-) button is disabled. If it is set to 
true, the minus (-) button is enabled. If the property is not defined, the minus (-) button is 
enabled when the user clicks on the item (as if the property is set to true). 
Chapter 31408



• The dataSource property is the simple name of the file in which the findDynamicSources() 
function is defined. For example, the findDynamicSources() function in Configuration/
DataSources/ASP_Js/Session.htm would set the dataSource property to session.htm. This 
is always defined.

• The name property is the name of the server behavior associated with the data source, 
dataSource, if one exists. The name property is always defined, but can be an empty string 
("") if no server behavior is associated with the data source (such as a session variable).

Enablers
Enabler functions determine whether to enable menu items based on whether Dreamweaver can 
perform specific operations in the current context. The function specifications describe the 
general circumstances under which each function returns a value of true. However, the 
descriptions are not intended to be comprehensive and might exclude some cases in which the 
function would return a value of false.

dom.canAlign()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Align Left, Align Right, Align Top, or Align 
Bottom operation.

Arguments

None.

Returns

A Boolean value that indicates whether two or more layers or hotspots are selected.

dom.canApplyTemplate()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Apply To Page operation. This function is valid 
only for the active document.

Arguments

None.

Returns

A Boolean value that indicates whether the document is not a library item or a template, and that 
the selection is not within the NOFRAMES tag.
The Dreamweaver JavaScript API 409



dom.canArrange()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Bring to Front or Move to Back operation.

Arguments

None.

Returns

A Boolean value that indicates whether a hotspot is selected.

dom.canClipCopyText()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Copy as Text operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is a range (that is, not an insertion point).

dom.canClipPaste()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Paste operation.

Arguments

None.

Returns

A Boolean value that indicates whether the Clipboard contains any content that can be pasted 
into Dreamweaver.

dom.canClipPasteText()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Paste as Text operation.

Arguments

None.
Chapter 31410



Returns

A Boolean value that indicates whether the clipboard contains any content that can be pasted into 
Dreamweaver as text.

dom.canConvertLayersToTable()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Convert Layers to Table operation.

Arguments

None.

Returns

A Boolean value that indicates whether all content in the BODY of the document is contained 
within layers.

dom.canConvertTablesToLayers()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Convert Tables to Layers operation.

Arguments

None.

Returns

A Boolean value that indicates whether all the content in the BODY of the document is contained 
within tables, and the document is not based on a template.

dom.canDecreaseColspan()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Decrease Colspan operation.

Arguments

None.

Returns

A Boolean value that indicates whether the current cell has a COLSPAN attribute, and whether that 
attribute’s value is greater than or equal to 2.
The Dreamweaver JavaScript API 411



dom.canDecreaseRowspan()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Decrease Rowspan operation.

Arguments

None.

Returns

A Boolean value that indicates whether the current cell has a ROWSPAN attribute, and whether that 
attribute’s value is greater than or equal to 2.

dom.canDeleteTableColumn()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Delete Column operation.

Arguments

None.

Returns

A Boolean value that indicates whether the insertion point is inside a cell, or if a cell or column is 
selected.

dom.canDeleteTableRow()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Delete Row operation.

Arguments

None.

Returns

A Boolean value that indicates whether the insertion point is inside a cell, or if a cell or row is 
selected.

dom.canEditNoFramesContent()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Edit No Frames Content operation.
Chapter 31412



Arguments

None.

Returns

A Boolean value that indicates whether the current document is a frameset or within a frameset.

dom.canIncreaseColspan()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Increase Colspan operation.

Arguments

None.

Returns

A Boolean value that indicates whether there are any cells to the right of the current cell.

dom.canIncreaseRowspan()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Increase Rowspan operation.

Arguments

None.

Returns

A Boolean value that indicates whether there are any cells below the current cell.

dom.canInsertTableColumns()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Insert Column(s) operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is inside a table. This function returns false 
if the selection is an entire table.
The Dreamweaver JavaScript API 413



dom.canInsertTableRows()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Insert Row(s) operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is inside a table. This function returns false 
if the selection is an entire table.

dom.canMakeNewEditableRegion()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a New Editable Region operation.

Arguments

None.

Returns

A Boolean value that indicates whether the current document is a template (.dwt) file.

dom.canMarkSelectionAsEditable()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Mark Selection as Editable operation.

Arguments

None.

Returns

A Boolean value that indicates whether there is a selection, and whether the current document is a 
template (.dwt) file.

dom.canMergeTableCells()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Merge Cells operation.
Chapter 31414



Arguments

None.

Returns

A Boolean value that indicates whether the selection is an adjacent grouping of table cells. 

dom.canPlayPlugin()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Play operation. This function is valid only for the 
active document.

Arguments

None.

Returns

A Boolean value that indicates whether the selection can be played with a plug-in.

dom.canRedo()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Redo operation.

Arguments

None.

Returns

A Boolean value that indicates whether any steps remain to redo.

dom.canRemoveEditableRegion()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Unmark Editable Region operation.

Arguments

None.

Returns

A Boolean value that indicates whether the current document is a template.
The Dreamweaver JavaScript API 415



dom.canSelectTable()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Select Table operation.

Arguments

None.

Returns

A Boolean value that indicates whether the insertion point or selection is within a table.

dom.canSetLinkHref()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can change the link around the current selection or create one if 
necessary.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is an image, text, or an insertion point inside 
a link. A text selection is defined as a selection for which the text Property inspector would appear. 

dom.canShowListPropertiesDialog()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can show the List Properties dialog box.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is within an LI tag.

dom.canSplitFrame()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Split Frame [Left | Right | Up | Down] operation.
Chapter 31416



Arguments

None.

Returns

A Boolean value that indicates whether the selection is within a frame.

dom.canSplitTableCell()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Split Cell operation.

Arguments

None.

Returns

A Boolean value that indicates whether the insertion point is inside a table cell or the selection is a 
table cell.

dom.canStopPlugin()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Stop operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is currently being played with a plug-in.

dom.canUndo()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Undo operation.

Arguments

None.

Returns

A Boolean value that indicates whether any steps remain to undo.
The Dreamweaver JavaScript API 417



dom.hasTracingImage()

Availability

Dreamweaver 3

Description

Checks whether the document has a tracing image.

Arguments

None.

Returns

A Boolean value that indicates whether the document has a tracing image.

dreamweaver.assetPalette.canEdit()

Availability

Dreamweaver 4

Description

Enables menu items in the Assets panel for editing.

Arguments

None.

Returns

Returns true if the asset can be edited; false otherwise. Returns false for colors and URLs in 
the Site list, and returns false for a multiple selection of colors and URLs in the Favorites list.

dreamweaver.assetPalette.canInsertOrApply()

Availability

Dreamweaver 4

Description

Checks if the selected elements can be inserted or applied. Returns true or false so the menu 
items can be enabled or disabled for insertion or application.

Arguments

None.

Returns

Returns false if the current page is a template, and the current category is Templates. Returns 
false if no document is open. Returns false if a library item is selected in the document and the 
current category is Library. Otherwise returns true. 

dreamweaver.canClipCopy()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Copy operation.
Chapter 31418



Arguments

None.

Returns

A Boolean value that indicates whether there is any content selected that can be copied to the 
Clipboard.

dreamweaver.canClipCut()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Cut operation.

Arguments

None.

Returns

A Boolean value that indicates whether there is any content selected that can be cut to the 
Clipboard.

dreamweaver.canClipPaste()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Paste operation.

Arguments

None.

Returns

A Boolean value that indicates whether the Clipboard contains any content that can be pasted 
into the current document or the active pane in the Site panel; or, on the Macintosh, an text field 
in a floating panel or dialog box.

dreamweaver.canDeleteSelection()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can delete the current selection. Depending on the window that 
has focus, the deletion may occur in the Document window or the Site panel; or, on the 
Macintosh, in an text field in a dialog box or floating panel.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is a range (that is, not an insertion point).
The Dreamweaver JavaScript API 419



dreamweaver.canExportCSS()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Export CSS Styles operation.

Arguments

None.

Returns

A Boolean value that indicates whether the document contains any class styles that are defined in 
the HEAD.

dreamweaver.canExportTemplateDataAsXML()

Availability

Dreamweaver MX

Description

Checks whether Dreamweaver can export the current document as XML.

Arguments

None.

Returns

true if you can perform an export on the current document; false otherwise.

Example

if(dreamweaver.canExportTemplateDataAsXML())
{

dreamweaver.exportTemplateDataAsXML("file:///c|/dw_temps/mytemplate.txt")
}

dreamweaver.canFindNext()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Find Next operation.

Arguments

None.

Returns

A Boolean value that indicates whether a search pattern has already been established.

dreamweaver.canOpenInFrame()

Availability

Dreamweaver 3
Chapter 31420



Description

Checks whether Dreamweaver can perform an Open in Frame operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection or insertion point is within a frame.

dreamweaver.canPlayRecordedCommand()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Play Recorded Command operation.

Arguments

None.

Returns

A Boolean value that indicates whether there is an active document and a previously recorded 
command that can be played.

dreamweaver.canPopupEditTagDialog()

Availability

Dreamweaver MX

Description

Checks whether the current selection is a tag and whether the Edit Tag menu item is active.

Arguments

None.

Returns

The name of the currently selected tag, or null if no tag is selected.

dreamweaver.canRedo()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Redo operation in the current context.

Arguments

None.

Returns

A Boolean value that indicates whether any operations can be undone. 
The Dreamweaver JavaScript API 421



dreamweaver.canRevertDocument()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Revert (to the last-saved version) operation.

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree (the value that 
dreamweaver.getDocumentDOM() returns).

Returns

A Boolean value that indicates whether the document is in an unsaved state and a saved version of 
the document exists on a local drive.

dreamweaver.canSaveAll()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Save All operation.

Arguments

None.

Returns

A Boolean value that indicates whether one or more unsaved documents are open.

dreamweaver.canSaveDocument()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Save operation on the specified document.

Arguments

documentObject

documentObject is the root of a document’s DOM (the same value that 
dreamweaver.getDocumentDOM() returns).

Returns

A Boolean value that indicates whether the document has any unsaved changes.
Chapter 31422



dreamweaver.canSaveDocumentAsTemplate()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Save As Template operation on the specified 
document.

Arguments

documentObject

documentObject is the root of a document’s DOM (the same value that 
dreamweaver.getDocumentDOM() returns).

Returns

A Boolean value that indicates whether the document can be saved as a template.

dreamweaver.canSaveFrameset()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Save Frameset operation on the specified document.

Arguments

documentObject

documentObject is the root of a document’s DOM (the same value that 
dreamweaver.getDocumentDOM() returns).

Returns

A Boolean value that indicates whether the document is a frameset with unsaved changes.

dreamweaver.canSaveFramesetAs()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Save Frameset As operation on the specified 
document.

Arguments

documentObject

documentObject is the root of a document’s DOM (the same value that 
dreamweaver.getDocumentDOM() returns).

Returns

A Boolean value that indicates whether the document is a frameset.
The Dreamweaver JavaScript API 423



dreamweaver.canSelectAll()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Select All operation.

Arguments

None.

Returns

A Boolean value that indicates whether a Select All operation can be performed.

dreamweaver.canShowFindDialog()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Find operation.

Arguments

None.

Returns

A Boolean value that indicates whether a Site panel or a Document window is open. This 
function returns false when the selection is in the HEAD.

dreamweaver.canUndo()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Undo operation in the current context.

Arguments

None.

Returns

A Boolean value that indicates whether any operations can be undone.

dreamweaver.cssStylePalette.canApplySelectedStyle()

Availability

Dreamweaver MX

Description

Checks the current active document to see whether the selected style can be applied.

Arguments

None.
Chapter 31424



Returns

A Boolean value: true if the selected style has a class selector; false otherwise.

dreamweaver.cssStylePalette.canDeleteSelectedStyle()

Availability

Dreamweaver MX

Description

Checks the current selection to determine whether the selected style can be deleted.

Arguments

None.

Returns

A Boolean value: true if the selection can be deleted; false otherwise.

dreamweaver.cssStylePalette.canDuplicateSelectedStyle()

Availability

Dreamweaver MX

Description

Checks the current active document to see whether the selected style can be duplicated.

Arguments

None.

Returns

A Boolean value: true if the selected style can be duplicated; false otherwise.

dreamweaver.cssStyle.canEditSelectedStyle()

Availability

Dreamweaver MX

Description

Checks the current active document to see whether the selected style can be edited.

Arguments

None.

Returns

A Boolean value: true if the selected style is editable; false otherwise.

dreamweaver.cssStylePallette.canEditStyleSheet()

Availability

Dreamweaver MX

Description

Checks the current selection to see whether it contains style sheet elements that can be edited.
The Dreamweaver JavaScript API 425



Arguments

None.

Returns

A Boolean value: true if the selection is a stylesheet node or a style definition within a stylesheet 
node and the stylesheet is neither “hidden” nor “This Document”.

A Boolean value false if the selection is “hidden” or in “This Document”. 

dreamweaver.isRecording()

Availability

Dreamweaver 3

Description

Reports whether Dreamweaver is currently recording a command.

Arguments

None.

Returns

A Boolean value that indicates whether Dreamweaver is recording a command.

dreamweaver.htmlStylePalette.canEditSelection()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can edit, delete, or duplicate the selection in the HTML Styles 
panel.

Arguments

None.

Returns

A Boolean value: false if no style is selected or if one of the “clear” styles is selected.

dreamweaver.resultsPalette.canClearItems()

Availability

Dreamweaver MX

Description

Checks whether you can clear the contents of the Results panel currently in focus.

Arguments

None

Return Value

A Boolean value: true if the contents can be cleared; false otherwise.
Chapter 31426



dreamweaver.resultsPalette.canClipCopy()

Availability

Dreamweaver MX

Description

Checks whether the current Results window can display a copied message in its contents.

Arguments

None.

Return Value

A Boolean value: true if the contents can be displayed; false otherwise.

dreamweaver.resultsPalette.canClipCut()

Availability

Dreamweaver MX

Description

Checks whether the current Results window can display a cut message in its contents.

Arguments

None.

Return Value

A Boolean value: true if the contents can be displayed; false otherwise.

dreamweaver.resultsPalette.canClipPaste()

Availability

Dreamweaver MX

Description

Checks whether the current Results window can display a paste message in its contents.

Arguments

None.

Return Value

A Boolean value: true if the contents can be displayed; false otherwise.

dreamweaver.resultsPalette.canOpenInBrowser()

Availability

Dreamweaver MX

Description

Checks whether the current report can be displayed in a browser.

Arguments

None.
The Dreamweaver JavaScript API 427



Return Value

A Boolean value: true if the contents can be displayed; false otherwise.

dreamweaver.resultsPalette.canOpenInEditor()

Availability

Dreamweaver MX

Description

Checks whether the current report can be displayed in an editor.

Arguments

None.

Return Value

A Boolean value: true if the contents can display; false otherwise.

dreamweaver.resultsPalette.canSave()

Availability

Dreamweaver MX

Description

Checks whether the Save dialog box can launch for the current panel. Currently, the Site Reports, 
Target Browser Check, Validation, and Link Checker panels support the Save dialog box. 

Arguments

None.

Return Value

A Boolean value: true if the Save dialog box can appear; false otherwise.

dreamweaver.resultsPalette.canSelectAll()

Availability

Dreamweaver MX

Description

Checks whether a Select All message can be sent to the current window in focus.

Arguments

None.

Return Value

A Boolean value: true if the Select All message can be sent; false otherwise. 

dreamweaver.snippetpalette.canEditSnippet()

Availability

Dreamweaver MX
Chapter 31428



Description

Checks whether you can edit the currently selected item and returns true or false so that you 
can enable or disable menu items for editing.

Arguments

None.

Return Value

A Boolean value.

dw.snippetpalette.canInsert()

Availability

Dreamweaver MX

Description

Checks whether you can insert or apply the selected element and returns true or false so you 
can enable or disable menu items for inserting or applying

Arguments

None.

Return Values

A Boolean value.

dreamweaver.tagInspector.tagBeforeEnabled()

Availability

Dreamweaver MX

Description

Checks whether the dreamweaver.treeViewPalette.tagBefore() function can be called.

Arguments

None.

Returns

true if exactly one tag is selected.

dreamweaver.tagInspector.tagInsideEnabled()

Availability

Dreamweaver MX

Description

Checks whether the dreamweaver.treeViewPalette.tagInside() function can be called.

Arguments

None.

Returns

true if exactly one tag is selected.
The Dreamweaver JavaScript API 429



dreamweaver.tagInspector.tagAfterEnabled()

Availability

Dreamweaver MX

Description

Checks whether the dreamweaver.treeViewPalette.tagAfter() function can be called.

Arguments

None.

Returns

true if exactly one tag is selected.

dreamweaver.tagInspector.deleteTagsEnabled()

Availability

Dreamweaver MX

Description

Checks whether the dreamweaver.TreeViewPalette.deleteTags() function can be called.

Arguments

None.

Returns

true if one or more tags are selected.

dreamweaver.tagInspector.editTagNameEnabled()

Availability

Dreamweaver MX

Description

Checks whether the dreamweaver.treeViewPalette.editTagName() function can be called.

Arguments

None.

Returns

true if exactly one tag is selected.

dreamweaver.timelineInspector.canAddFrame()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Add Frame operation.

Arguments

None.
Chapter 31430



Returns

A Boolean value that indicates whether the Timelines panel has any animation bars or behaviors.

dreamweaver.timelineInspector.canAddKeyFrame()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Add Keyframe operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection in the Timelines panel is part of an 
animation bar.

dreamweaver.timelineInspector.canChangeObject()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Change Object operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection in the Timelines panel is part of an 
animation bar.

dreamweaver.timelineInspector.canRemoveBehavior()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Remove Behavior operation.

Arguments

None.

Returns

A Boolean value that indicates whether the selection in the Timelines panel is a behavior.
The Dreamweaver JavaScript API 431



dreamweaver.timelineInspector.canRemoveFrame()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Remove Frame operation.

Arguments

None.

Returns

A Boolean value that indicates whether the Timelines panel has any animation bars or behaviors.

dreamweaver.timelineInspector.canRemoveKeyFrame()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Remove Keyframe operation.

Arguments

None.

Returns

A Boolean value that indicates whether the current frame in the Timelines panel is a keyframe.

dreamweaver.timelineInspector.canRemoveObject()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Remove Object operation.

Arguments

None.

Returns

A Boolean value that indicates whether the Timelines panel has any animation bars.

site.browseDocument()

Availability

Dreamweaver 4

Description

Opens all selected documents in a browser window; same as using the Preview in Browser 
command.
Chapter 31432



Arguments

browserName

browserName is the name of a browser as defined in the Preview in Browser preferences. If 
omitted, this argument defaults to the user’s primary browser.

Returns

Nothing.

site.canAddLink()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform an Add Link to [Existing File | New File] operation.

Arguments

None.

Returns

A Boolean value that indicates that the selected document in the site map is an HTML file.

site.canChangeLink()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Change Link operation.

Arguments

None.

Returns

A Boolean value that indicates that an HTML or Flash file links to the selected file in the site 
map.

site.canCheckIn()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Check In operation.

Arguments

siteOrURL

siteOrURL must be the site keyword, which indicates that the function should act on the 
selection in the Site panel or the URL for a single file.
The Dreamweaver JavaScript API 433



Returns

A Boolean value that indicates whether all the following conditions are true:

• A remote site has been defined.

• If a Document window has focus, the file has been saved in a local site; or, if the Site panel has 
focus, one or more files or folders are selected.

• Check In/Check Out is turned on. 

site.canCheckOut()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Check Out operation on the specified file or 
files.

Arguments

siteOrURL

siteOrURL must be the site keyword, which indicates that the function should act on the 
selection in the Site panel or the URL for a single file.

Returns

A Boolean value that indicates whether all the following conditions are true:

• A remote site has been defined.

• If a Document window has focus, the file is part of a local site and is not already checked out; 
or, if the Site panel has focus, one or more files or folders are selected and at least one of the 
selected files is not already checked out.

• Check In/Check Out is turned on. 

site.canCloak()

Availability

Dreamweaver MX

Description

Determines whether Dreamweaver can perform a cloaking operation. 

Arguments

siteOrURL

siteOrURL must be the site keyword, which indicates that canCloak() should act on the 
selection in the Site panel or the URL of a particular folder, which indicates that canCloak() 
should act on the specified folder and all its contents.

Returns

true if Dreamweaver can perform the cloaking operation on the current site or the specified 
folder.
Chapter 31434



site.canConnect()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can connect to the remote site.

Arguments

None.

Returns

A Boolean value that indicates whether the current remote site is an FTP site.

site.canFindLinkSource()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Find Link Source operation.

Arguments

None.

Returns

A Boolean value that indicates that the selected link in the site map is not the home page.

site.canGet()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Get operation.

Arguments

siteOrURL

siteOrURL must be the site keyword, which indicates that the function should act on the 
selection in the Site panel or the URL for a single file.

Returns

If the argument is site, a Boolean value that indicates whether one or more files or folders is 
selected in the Site panel and a remote site has been defined. If the argument is a URL, a Boolean 
value that indicates whether the document belongs to a site for which a remote site has been 
defined.
The Dreamweaver JavaScript API 435



site.canLocateInSite()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Locate in Local Site or Locate in Remote Site 
operation (depending on the argument).

Arguments

localOrRemote, siteOrURL

• localOrRemote must be either local or remote. 

• siteOrURL must be the site keyword, which indicates that the function should act on the 
selection in the Site panel or the URL for a single file.

Returns

One of the following values:

• If the first argument is local and the second argument is a URL, a Boolean value that 
indicates whether the document belongs to a site.

• If the first argument is remote and the second argument is a URL, a Boolean value that 
indicates whether the document belongs to a site for which a remote site has been defined, and, 
if the server type is Local/Network, whether the drive is mounted.

• If the second argument is site, a Boolean value that indicates whether both panes contain site 
files (not the site map) and whether the selection is in the opposite pane from the argument. 

site.canMakeEditable()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Turn Off Read Only operation.

Arguments

None.

Returns

A Boolean value that indicates whether one or more of the selected files is locked.

site.canMakeNewFileOrFolder()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a New File or New Folder operation in the Site panel.

Arguments

None.
Chapter 31436



Returns

A Boolean value that indicates whether any files are visible in the selected pane of the Site panel.

site.canOpen()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can open the files or folders that are currently selected in the Site 
panel.

Arguments

None.

Returns

A Boolean value that indicates whether any files or folders are selected in the Site panel.

site.canPut()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Put operation. 

Arguments

siteOrURL

siteOrURL must be the site keyword, which indicates that the function should act on the 
selection in the Site panel, or the URL for a single file.

Returns

If the argument is site, a Boolean value that indicates whether any files or folders are selected in 
the Site panel and a remote site has been defined. If the argument is a URL, a Boolean value that 
indicates whether the document belongs to a site for which a remote site has been defined. 

site.canRecreateCache()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Recreate Site Cache operation.

Arguments

None.

Returns

A Boolean value that indicates whether the Use Cache To Speed Link Updates option is enabled 
for the current site.
The Dreamweaver JavaScript API 437



site.canRefresh()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Refresh [Local | Remote] operation.

Arguments

localOrRemote

localOrRemote must be either local or remote.

Returns

A value of true if localOrRemote is local; otherwise, returns a Boolean value that indicates 
whether a remote site has been defined.

site.canRemoveLink()

Availability

Dreamweaver 3

Description

Checks whether Dreamweaver can perform a Remove Link operation.

Arguments

None.

Returns

A Boolean value that indicates that an HTML or Flash file links to the selected file in the site 
map.

site.canSetLayout()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Layout operation.

Arguments

None.

Returns

A Boolean value that indicates whether the site map is visible.

site.canSelectAllCheckedOutFiles()

Availability

Dreamweaver 4

Description

Determines whether the current working site has Check In/Check Out enabled.
Chapter 31438



Arguments

None.

Returns

A Boolean value: true if the site allows Check In/Check Out; false otherwise.

site.canSelectNewer()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Select Newer [Remote | Local] operation.

Arguments

localOrRemote

localOrRemote must be either local or remote.

Returns

A Boolean value that indicates whether the document belongs to a site for which a remote site has 
been defined. 

site.canShowPageTitles()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Show Page Titles operation.

Arguments

None.

Returns

A Boolean value that indicates whether the site map is visible.

site.canSynchronize()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a Synchronize operation.

Arguments

None.

Returns

A Boolean value that indicates whether a remote site has been defined. 
The Dreamweaver JavaScript API 439



site.canUncloak()

Availability

Dreamweaver MX

Description

Determines whether Dreamweaver can perform an uncloaking operation. 

Arguments

siteOrURL

siteOrURL must be the keyword site, which indicates that canUncloak() should act on the 
selection in the Site panel or the URL of a particular folder, which indicates that canUncloak() 
should act on the specified folder and all its contents.

Returns

A value of true if Dreamweaver can perform the uncloaking operation on the current site or the 
specified folder.

site.canUndoCheckOut()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform an Undo Check Out operation.

Arguments

siteOrURL

siteOrURL must be the site keyword, which indicates that the function should act on the 
selection in the Site panel or the URL for a single file.

Returns

A Boolean value that indicates whether the specified file or at least one of the selected files is 
checked out.

site.canViewAsRoot()

Availability

Dreamweaver 3

Description

Determines whether Dreamweaver can perform a View as Root operation.

Arguments

None.

Returns

A Boolean value that indicates whether the specified file is an HTML or Flash file.
Chapter 31440



External application functions
External application functions handle operations that are related to the Macromedia Flash MX 
application and to the browsers and external editors that are defined in the Preview in Browser 
and External Editors preferences. These functions let you get information about these external 
applications and open files with them.

dreamweaver.browseDocument()

Availability

Dreamweaver 2; enhanced in 3 and 4.

Description

Opens the specified URL in the specified browser.

Arguments

fileName {,browser}

• fileName is the name of the file to open, which is expressed as an absolute URL.

• browser, added in Dreamweaver 3, specifies a browser. This argument can be the name of a 
browser, as defined in the Preview in Browser preferences or either ’primary’ or 
’secondary’. If omitted, the URL opens in the user’s primary browser.

Returns

Nothing.

Example

The following function uses dreamweaver.browseDocument() to open the Hotwired home page 
in a browser:

function goToHotwired(){
dreamweaver.browseDocument(’http://www.hotwired.com/’);

}

In Dreamweaver 4, you can expand this operation to open the document in Microsoft 
Internet Explorer using the following code:

function goToHotwired(){
var prevBrowsers = dw.getBrowserList();
var theBrowser = "";
for (var i=1; i < prevBrowsers.length; i+2){

if (prevBrowsers[i].indexOf(’Iexplore.exe’) != -1){
theBrowser = prevBrowsers[i];
break;

}
}
dw.browseDocument(’http://www.hotwired.com/’,theBrowser);

}

For more information on dw.getBrowserList(), see “dreamweaver.getBrowserList()” on page 442.
441



dreamweaver.getBrowserList()

Availability

Dreamweaver 3

Description

Gets a list of all the browsers in the Preview in Browser submenu

Arguments

None.

Returns

An array that contains a pair of strings for each browser in the list. The first string in each pair is 
the name of the browser, and the second string is its location on the user’s computer, which is 
expressed as a file:// URL. If no browsers appear in the submenu, the function returns nothing.

dreamweaver.getExtensionEditorList()

Availability

Dreamweaver 3

Description

Gets a list of editors for the specified file from the External Editors preferences

Arguments

fileURL

fileURL can be a complete file:// URL, a filename, or a file extension (including the period).

Returns

An array that contains a pair of strings for each editor in the list. The first string in each pair is the 
name of the editor, and the second string is its location on the user’s computer, which is expressed 
as a file:// URL. If no editors appear in the preferences, the function returns an array of one 
empty string.

Example

A call to dreamweaver.getExtensionEditorList(".gif") might return an array that contains 
the following strings:

• "Fireworks 3"
• "file:///C|/Program Files/Macromedia/Fireworks 3/Fireworks 3.exe"

dreamweaver.getExternalTextEditor()

Availability

Dreamweaver 4

Description

Gets the name of the currently configured external text editor.

Arguments

None.
442



Returns

A string that contains the name of the text editor that is suitable for presentation in the UI, not 
the full path.

dreamweaver.getFlashPath()

Availability

Dreamweaver MX

Description

Gets the full path to the Flash MX application in the form of a file URL.

Arguments

None.

Returns

An array that contains two elements. Element [0] is a string that contains the name of the 
Flash MX editor. Element [1] is a string that contains the path to the Flash application on the 
local computer, which is expressed as a file:// URL. If Flash is not installed, it returns nothing.

Example

var myDoc = dreamweaver.getDocumentDOM();

if ( dreamweaver.validateFlash() ) {
var flashArray = dreamweaver.getFlashPath();
dreamweaver.openWithApp( myDoc.myForm.swfFilePath, flashArray[1] );

}

dreamweaver.getPrimaryBrowser()

Availability

Dreamweaver 3

Description

Gets the path to the primary browser.

Arguments

None.

Returns

A string that contains the path on the user’s hard drive to the primary browser, which is expressed 
as a file:// URL. If no primary browser is defined, it returns nothing.

dreamweaver.getPrimaryExtensionEditor()

Availability

Dreamweaver 3

Description

Gets the primary editor for the specified file.

Arguments

fileURL
443



Returns

An array that contains a pair of strings. The first string in the pair is the name of the editor, and 
the second string is its location on the user’s computer, which is expressed as a file:// URL. If no 
primary editor is defined, the function returns an array of one empty string.

dreamweaver.getSecondaryBrowser()

Availability

Dreamweaver 3

Description

Gets the path to the secondary browser.

Arguments

None.

Returns

A string that contains the path on the user’s hard disk to the secondary browser, which is 
expressed as a file:// URL. If no secondary browser is defined, it returns nothing.

dreamweaver.openHelpURL()

Availability

Dreamweaver MX

Description

Opens the specified Help file in the operating system Help viewer.

Dreamweaver MX displays help content in the standard operating system help viewer instead of a 
browser. Help content is in HTML, but it is packaged for Windows HTML Help or Help Viewer 
for Mac OS 9 and OS X. 

The following four types of files comprise the full help content. See your operating system 
documentation for more information on help files.

• Help book

A help book consists of the HTML help files, images, and indexes. In Windows, the help book 
is a file that has a name with a .chm extension. On the Macintosh, the help book is a folder. 

The Help book files reside in the Dreamweaver MX Help folder.
444



• help.xml 

The help.xml file maps book IDs to Help book names. For example, the following XML code 
maps the book ID for Dreamweaver MX Help to the filename that contains that help.

<?xml version = "1.0" ?>
<help-books>
<book-id id="DW_Using" win-mapping="UsingDreamweaver.chm" mac-
mapping="Dreamweaver Help"/>
</help-books> 

Each book-id entry has the following attributes:

id is the book id that is used in the help.map and HelpDoc.js files

win-mapping is the Windows book name, which is "UsingDreamweaver.chm" in this 
example.

mac-mapping is the Macintosh book name, which is "Dreamweaver Help" in this example.

• help.map

The help.map file maps a Help content ID to a specific help book. Dreamweaver MX uses the 
help.map file to locate specific Help content when it calls Help internally.

• helpDoc.js 

The helpDoc.js file lets you map variable names that you can use in place of the actual book ID 
and page string. The helpDoc.js file maps a help content ID to an HTML page in a specific help 
book. Dreamweaver MX uses the helpDoc.js file when it calls help from JavaScript.

Arguments

bookID Required. Specifies the name of the file from which Dreamweaver displays help, which is 
expressed as a book ID in the help.xml file, followed by a colon, followed by the page in the book.

Returns

true if successful; false if Dreamweaver cannot open the specified file in the help viewer.

Example

openHelpURL("DW_Using:index.htm");

dreamweaver.openWithApp()

Availability

Dreamweaver 3

Description

Opens the specified file with the specified application.

Arguments

fileURL, appURL

• fileURL is the path to the file to open, which is expressed as a file:// URL.

• appURL is the path to the application that is to open the file, which is expressed as a file:// 
URL. 

Returns

Nothing.
445



dreamweaver.openWithBrowseDialog()

Availability

Dreamweaver 3

Description

Opens the Select External Editor dialog box to let the user choose the application with which to 
open the specified file.

Arguments

fileURL

Returns

Nothing.

dreamweaver.openWithExternalTextEditor()

Availability

Dreamweaver 3

Description

Opens the current document in the external text editor that is specified in the External Editors 
preferences.

Arguments

None.

Returns

Nothing.

dreamweaver.openWithImageEditor()

Availability

Dreamweaver 3

Description

Opens the named file with the specified image editor. 

Note: This function invokes a special Fireworks integration mechanism that returns information to the active 
document if Fireworks is specified as the image editor. To prevent errors if no document is active, this function 
should never be called from the Site panel.

Arguments

fileURL, appURL

• fileURL is the path to the file to open, which is expressed as a file:// URL.

• appURL is the path to the application with which to open the file, which is expressed as a file:// 
URL.

Returns

Nothing.
446



dreamweaver.validateFlash()

Availability

Dreamweaver MX

Description

Determines whether Flash MX (or a later version) is installed on the local computer. 

Arguments

None.

Returns

A Boolean value. This function returns true if Flash MX (or a later version) is installed on the 
local computer; otherwise, it returns false.

File manipulation functions 
File manipulation functions handle creating, opening, and saving documents (including XML 
and XHTML), converting existing HTML documents into XHTML, and exporting cascading 
style sheets (CSS) to external files. These functions accomplish such tasks as browsing for files or 
folders, creating files based on templates, closing documents, and getting information about 
recently opened files.

dom.cleanupXHTML()

Availability

Dreamweaver MX

Description

Similar to convertToXHTML() but cleans up an existing XHTML document. This function can 
run on a selection within the document. You can run the cleanupXHTML() method to clean up 
the syntax in an entire XHTML document or in the current selection of a document.

Arguments

bWholeDoc

bWholeDoc holds a Boolean value. If the value is true, cleanupXHTML() cleans up the entire 
document; otherwise, this function cleans up only the selection.

Returns

An array of six integers that quantify the number of the following elements: 

• XHTML errors that Dreamweaver fixed

• map elements that do not have an id attribute and could not be fixed

• script elements that do not have a type attribute and could not be fixed

• style elements that do not have a type attribute and could not be fixed

• img elements that do not have an alt attribute and could not be fixed

• area elements that do not have an alt attribute and could not be fixed
447



dom.convertToXHTML()

Availability

Dreamweaver MX

Description

Parses the HTML into a DOM tree, inserts missing items that are required for XHTML, cleans 
up the tree, and then writes the tree as clean XHTML. The missing directives, declarations, 
elements and attributes that convertToXHTML() adds to the DOM tree, as necessary, include the 
following items:

• An XML directive

• A doctype declaration

• The xmlns attribute in the html element

• A head section

• A title element

• A body section

During the conversion, dom.convertToXHTML() converts pure HTML tags and attributes to 
lowercase, writes HTML tags and attributes with correct XHTML syntax, and adds missing 
HTML attributes where it can. This function treats third-party tags and attributes according to 
the settings in the Preferences dialog box.

If the document is a template, dom.convertToXHTML() alerts the user but does not perform the 
conversion.

Arguments

None.

Returns

An array of six integers that quantify the following items: 

• XHTML errors that Dreamweaver fixed

• map elements that do not have an id attribute and cannot be fixed

• script elements that do not have a type attribute and cannot be fixed

• style elements that do not have a type attribute and cannot be fixed

• img elements that do not have an alt attribute and cannot be fixed

• area elements that do not have an alt attribute and cannot be fixed

Example

In normal use, an extension first calls dreamweaver.openDocument() or 
dreamweaver.getDocumentDOM() to get a reference to the document. The extension then calls 
dom.getIsXHTMLDocument() to determine whether the document is already in XHTML form. 
If it is not, the extension calls dom.convertToXHTML() to convert the document into XHTML. 
Then the extension calls dreamweaver.saveDocument() to save the converted file with a 
new filename.
448



dom.getIsXHTMLDocument() 

Availability

Dreamweaver MX

Description

Checks a document (specifically, the <!DOCTYPE> declaration) to see whether it is XHTML.

Arguments

None.

Returns

true if the document is XHTML; false, otherwise

dreamweaver.browseForFileURL()

Availability

Dreamweaver 1, enhanced in 2, 3, and 4

Description

Opens the specified type of dialog box with the specified label in the title bar.

Arguments

openSelectOrSave {, titleBarLabel} {, bShowPreviewPane} ¬
{, bSupressSiteRootWarnings} {, arrayOfExtensions}

• openSelectOrSave indicates the type of dialog box: open, select, or save.

• titleBarLabel (added in Dreamweaver 2) is the label that should appear in the title bar of 
the dialog box. If this argument is omitted, Dreamweaver uses the default label that the 
operating system supplies.

• bShowPreviewPane (added in Dreamweaver 2) is a Boolean value that indicates whether to 
display the Image Preview Pane in the dialog box. If this argument is true, the dialog box 
filters for image files; if omitted, it defaults to false.

• bSupressSiteRootWarnings (added in Dreamweaver 3) is a Boolean value that indicates 
whether to suppress warnings about the selected file being outside the site root. If this 
argument is omitted, it defaults to false.

• arrayOfExtensions (added in Dreamweaver 4) is an array of strings for specifying the Files of 
type list menu default appearance at the bottom of the dialog box. The proper syntax is 
menuEntryText|.xxx[;.yyy;.zzz]|CCCC|, where menuEntryText is the name of the file 
type to appear. The extensions can be specified as .xxx[;.yyy;.zzz] or CCCC, where .xxx 
specifies the file extension for the file type (optionally, .yyy and .zzz specify multiple file 
extensions) and CCCC is the four-character file type constant for the Macintosh.

Returns

A string that contains the name of the file, which is expressed as a file:// URL.

dreamweaver.browseForFolderURL()

Availability

Dreamweaver 3
449



Description

Opens the Choose Folder dialog box with the specified label in the title bar.

Arguments

{titleBarLabel} {, directoryToStartIn}

• titleBarLabel is the label that should appear in the title bar of the dialog box. If it is omitted, 
titleBarLabel defaults to Choose Folder.

• directoryToStartIn is the path where the directory should start, which is expressed as a 
file:// URL.

Returns

A string that contains the name of the folder, which is expressed as a file:// URL.

Example

The following code returns the URL of a folder:

return dreamweaver.browseForFolderURL('Select a Folder', ¬
dreamweaver.getSiteRoot());

dreamweaver.closeDocument()

Availability

Dreamweaver 3

Description

Closes the specified document.

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree (the value that 
dreamweaver.getDocumentDOM() returns). If documentObject refers to the active document, 
the Document window might not close until the script that calls this function finishes executing.

Returns

Nothing.

dreamweaver.createDocument()

Availability

Dreamweaver 2

Description

Depending on the argument that you pass to this function, it opens a new document either in the 
same window or in a new window. The new document becomes the active document.

Note: This function can be called only from menus.xml, a command, or the Property inspector file. If a behavior 
action or object tries to call this function, Dreamweaver displays an error message.

Arguments

{bOpenInSameWindow}

bOpenInSameWindow is a Boolean value that indicates whether to open the new document in the 
current window. If bOpenInSameWindow is false or omitted, or the function is called on the 
Macintosh, the new document opens in a separate window.
450



Returns

The document object for the newly created document. This is the same value that 
dreamweaver.getDocumentDOM()returns.

dreamweaver.createXHTMLDocument() 

Availability

Dreamweaver MX

Description

Depending on the argument that you pass to this function, it opens a new XHTML document 
either in the same window or in a new window. The new document becomes the active 
document. It is similar to dreamweaver.createDocument(). 

When Dreamweaver creates a new XHTML document, Dreamweaver reads a file named 
default.xhtml, which is located in the Configurations/Templates folder, and, using the content 
of that file, creates an output file that contains the following skeleton declarations:

<?xml version="1.0">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=" />
</head>

<body bgcolor="#FFFFFF" text="#000000">

</body>
</html>

The default DTD declaration is XHTML 1.0 Transitional, rather than Strict. If the user adds 
a frameset to the document, Dreamweaver switches the DTD to XHTML 1.0 Frameset. 
Content-Type is text/html, and charset is intentionally left out of the default.xhtml file but is 
filled in before the user views the new document. The <?xml> directive is not required if the 
document uses UTF-8 or UTF-16 character encoding; if it is present, it might be rendered by 
some older browsers. However, because this directive should be in an XHTML document, by 
default, Dreamweaver uses it (for both new and converted documents). Users can manually delete 
the directive. The <?xml> directive includes the encoding attribute, which matches the charset 
in the Content-Type attribute.

Arguments

{bOpenInSameWindow}

bOpenInSameWindow is a Boolean value that indicates whether to open the new document in the 
current window. If this value is false or omitted, or the function is called on the Macintosh, the 
new document opens in a separate window.

Returns

The document object for the newly created document, which is the same value that 
dreamweaver.getDocumentDOM() returns. 
451



dreamweaver.createXMLDocument()

Availability

Dreamweaver MX

Description

Creates and opens a new XML file, which is empty except for the XML directive.

Arguments

None.

Returns

The DOM of the new XML file.

Example

The following example creates a new document, which is empty except for the XML directive:

var theDOM = dreamweaver.createXMLDocument("document");

dreamweaver.exportCSS()

Availability

Dreamweaver 3

Description

Opens the Export Styles as a CSS File dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canExportCSS()” on page 420

dreamweaver.exportTemplateDataAsXML()

Availability

Dreamweaver MX

Description

Exports the current document to the specified file as XML. This function operates on the 
document that has focus, which must be a template. If you do not specify a filename argument, 
Dreamweaver MX opens a dialog box to request the export file string. 

Arguments

{filePath}

filePath Optional. A string that specifies the filename to which Dreamweaver exports the 
template. Express filepath as a URL file string, such as, "file:///c|/temp/mydata.txt".

Returns

Nothing.
452



Enabler

“dreamweaver.canExportTemplateDataAsXML()” on page 420

Example

if(dreamweaver.canExportTemplateDataAsXML())
{

dreamweaver.exportTemplateDataAsXML("file:///c|/dw_temps/mytemplate.txt")
}

dreamweaver.getDocumentDOM()

Availability

Dreamweaver 2

Description

Provides access to the tree of objects for the specified document. After the tree of objects returns 
to the caller, the caller can edit the tree to change the contents of the document.

Arguments

sourceDoc

sourceDoc must be "document", "parent", "parent.frames[number]", 
"parent.frames['frameName']", or a URL. The sourceDoc value defaults to "document" if 
you do not supply a value. 

• document specifies the document that has focus and contains the current selection. 

• parent specifies the parent frameset (if the currently selected document is in a frame). 

• parent.frames[number] and parent.frames[’frameName’] specify a document that is in a 
particular frame within the frameset that contains the current document. 

If the argument is a relative URL, it is relative to the extension file. In Dreamweaver 4, 
sourceDoc defaults to document if omitted.

Note: If the argument is "document", the caller must be applyBehavior(), deleteBehavior(), 
objectTag(), or any function in a command or Property inspector file in order to perform edits to the document.

Returns

The JavaScript document object at the root of the tree.

Examples

The following example uses dreamweaver.getDocumentDOM() to access the current document:

var theDOM = dreamweaver.getDocumentDOM("document");
In the following example, the current document DOM identifies a selection and pastes it at the 
end of another document:

var currentDOM = dreamweaver.getDocumentDOM(’document’);
currentDOM.setSelection(100,200);
currentDOM.clipCopy();
var otherDOM = dreamweaver.openDocument(dreamweaver.¬
getSiteRoot() + "html/foo.htm");
otherDOM.endOfDocument();
otherDOM.clipPaste();

Note: openDocument() is used because dom methods normally operate only on open documents. Running a 
function on a document that isn’t open causes a Dreamweaver error. dom methods that can operate only on the 
active document or on closed documents indicate this fact in their descriptions.
453



dreamweaver.newDocumentDOM()

Availability

Dreamweaver MX

Description

Provides access to the editable tree for a new, empty document. This works in the same way as 
getDocumetDOM(), except that it points to a new rather than an existing document and does not 
open the document.

Arguments

None.

Returns

Pointer to new, empty document.

Example

The following code generates a new, empty document:

var theDOM = dreamweaver.newDocumentDOM("document");

dreamweaver.getRecentFileList()

Availability

Dreamweaver 3

Description

Gets a list of all the files in the recent files list at the bottom of the File menu.

Arguments

None.

Returns

An array of strings that represent the paths of the most recently accessed files. Each path is 
expressed as a file:// URL. If there are no recent files, the function returns nothing.

dreamweaver.importXMLIntoTemplate()

Availability

Dreamweaver 3

Description

Imports a file of XML text into the current template document. This function operates on the 
document that has focus, which must be a template. If you do not specify a filename argument, 
Dreamweaver opens a dialog box to request the import file string.

Arguments

{filePath}

filePath Optional. A string that specifies the filename to which Dreamweaver exports the 
template. Express filepath as a URL file string, such as "file:///c|/temp/mydata.txt".

Returns

Nothing.
454



dreamweaver.newFromTemplate()

Availability

Dreamweaver 3

Description

Creates a new document from the specified template. If no argument is supplied, the Select 
Template dialog box appears.

Arguments

{templateURL,} bmaintain

• templateURL is the path to a template in the current site, which is expressed as a file: // URL.

• bmaintain is a Boolean value, true or false, that indicates whether to maintain the link to 
the original template.

Returns

Nothing.

dreamweaver.openDocument()

Availability

Dreamweaver 2

Description

Opens a document for editing in a new Dreamweaver window and gives it the focus. For a user, 
the effect is the same as choosing File > Open and selecting a file. If the specified file is already 
open, the window that contains the document comes to the front. The window that contains the 
specified file becomes the currently selected document. In Dreamweaver 2, if check in/check out 
is enabled, the file is checked out before it opens. In Dreamweaver 4, you must use 
“dreamweaver.openDocumentFromSite()” on page 455 to get this behavior.

Note: This function cannot be called from Behavior action or object files because it causes an error.

Arguments

fileName

fileName is the name of the file to be opened, which is expressed as a URL. If the URL is relative, 
it is relative to the file that contains the script that called this function.

Returns

The document object for the specified file, which is the same value that 
dreamweaver.getDocumentDOM() returns.

dreamweaver.openDocumentFromSite()

Availability

Dreamweaver 3

Description

Opens a document for editing in a new Dreamweaver window and gives it the focus. For a user, 
the effect is the same as double-clicking a file in the Site panel. If the specified file is already open, 
the window that contains the document comes to the front. The window that contains the 
specified file becomes the currently selected document.
455



Note: This function cannot be called from Behavior action or object files because it causes an error.

Arguments

fileName

fileName is the filename to open, which is expressed as a URL. If the URL is relative, it is relative 
to the file that contains the script that called this function.

Returns

The document object for the specified file, which is the same value that 
dreamweaver.getDocumentDOM() returns.

dreamweaver.openInFrame()

Availability

Dreamweaver 3

Description

Opens the Open In Frame dialog box. When the user selects a document, it opens into the active 
frame.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canOpenInFrame()” on page 420

dreamweaver.releaseDocument()

Availability

Dreamweaver 2

Description

Explicitly releases a previously referenced document from memory.

Documents that are referenced by dreamweaver.getObjectTags(), 
dreamweaver.getObjectRefs(), dreamweaver.getDocumentPath(), or 
dreamweaver.getDocumentDOM() are automatically released when the script that contains the 
call finishes executing. If the script opens many documents, you must use this function to 
explicitly release documents before finishing the script to avoid running out of memory.

Note: This function is relevant only for documents that were referenced by a URL, that are not currently open in a 
frame or document window, and that are not extension files. Extension files are loaded into memory at startup and 
are not released until you quit Dreamweaver. 

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree, which is the value that 
dreamweaver.getDocumentDOM()) returns.

Returns

Nothing.
456



dreamweaver.revertDocument()

Availability

Dreamweaver 3

Description

Reverts the specified document to the previously saved version.

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree, which is the value that 
dreamweaver.getDocumentDOM()) returns.

Returns

Nothing.

Enabler

“dreamweaver.canRevertDocument()” on page 422

dreamweaver.saveAll()

Availability

Dreamweaver 3

Description

Saves all open documents, opening the Save As dialog box for any documents that have not 
previously been saved.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canSaveAll()” on page 422

dreamweaver.saveDocument()

Availability

Dreamweaver 2

Description

Saves the specified file on a local drive.

Note: In Dreamweaver 2, if the file is read-only, Dreamweaver tries to check it out. If the document is still read-only 
after this attempt, or if it cannot be created, an error message appears.
457



Arguments

documentObject {, fileURL}

• documentObject is the object at the root of a document’s DOM tree, which is the value that 
dreamweaver.getDocumentDOM()) returns.

• fileURL is a URL that represents a location on a local drive. If the URL is relative, it is relative 
to the extension file. In Dreamweaver 2, this argument is required. If fileURL is omitted in 
Dreamweaver 4, the file is saved to its current location if it has been previously saved; 
otherwise, a Save dialog box appears.

Returns

A Boolean value that indicates success (true) or failure (false).

Enabler

“dreamweaver.canSaveDocument()” on page 422

dreamweaver.saveDocumentAs()

Availability

Dreamweaver 3

Description

Opens the Save As dialog box.

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree, which is the value that 
dreamweaver.getDocumentDOM()) returns.

Returns

Nothing.

dreamweaver.saveDocumentAsTemplate()

Availability

Dreamweaver 3

Description

Opens the Save As Template dialog box.

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree, which is the value that 
dreamweaver.getDocumentDOM()) returns.

Returns

Nothing.

Enabler

“dreamweaver.canSaveDocumentAsTemplate()” on page 423
458



dreamweaver.saveFrameset()

Availability

Dreamweaver 3

Description

Saves the specified frameset, or opens the Save As dialog box if the frameset has not previously 
been saved.

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree, which is the value that 
dreamweaver.getDocumentDOM()) returns.

Returns

Nothing.

Enabler

“dreamweaver.canSaveFrameset()” on page 423

dreamweaver.saveFramesetAs()

Availability

Dreamweaver 3

Description

Opens the Save As dialog box for the frameset file that includes the specified DOM.

Arguments

documentObject

documentObject is the object at the root of a document’s DOM tree, which is the value that 
dreamweaver.getDocumentDOM()) returns.

Returns

Nothing.

Enabler

“dreamweaver.canSaveFramesetAs()” on page 423
459



Find/replace functions 
Find/replace functions handle find and replace operations. They cover basic functionality, such as 
finding the next instance of a search pattern, and complex replacement operations that require no 
user interaction.

dreamweaver.findNext()

Availability

Dreamweaver 3

Description

Finds the next instance of the search string that was specified previously by 
“dreamweaver.setUpFind()” on page 462 by “dreamweaver.setUpComplexFind()” on 
page 461, or by the user in the Find dialog box, and selects the instance in the document.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canFindNext()” on page 420

dreamweaver.replace()

Availability

Dreamweaver 3

Description

Verifies that the current selection matches the search criteria that was specified previously by 
“dreamweaver.setUpFindReplace()” on page 463, by 
“dreamweaver.setUpComplexFindReplace()” on page 461, or by the user in the Replace 
dialog box; and then replaces it with the content that is specified in that query.

Arguments

None.

Returns

Nothing.

dreamweaver.replaceAll()

Availability

Dreamweaver 3

Description

Replaces each section of the current document that matches the search criteria that was specified 
previously by “dreamweaver.setUpFindReplace()” on page 463, by 
“dreamweaver.setUpComplexFindReplace()” on page 461, or by the user in the Replace 
dialog box, with the content that is specified in that query.
460



Arguments

None.

Returns

Nothing.

dreamweaver.setUpComplexFind()

Availability

Dreamweaver 3

Description

Prepares for an advanced text or tag search by loading the specified XML query.

Arguments

xmlQueryString

xmlQueryString is a string of XML code that begins with <dwquery> and ends with </
dwquery>. (To get a string of the proper format, set up the query in the Find dialog box, click the 
Save Query button, open the query file in a text editor, and copy everything from the beginning 
of the <dwquery> tag to the end of the </dwquery> tag.)

Returns

Nothing.

Example

The first line of the following example sets up a tag search and specifies that the scope of the 
search should be the current document. The second line performs the search operation.

dreamweaver.setUpComplexFind('<dwquery><queryparams matchcase="false" ¬
ignorewhitespace="true" useregexp="false"/><find>¬
<qtag qname="a"><qattribute qname="href" qcompare="="
qvalue="#">¬

</qattribute><qattribute qname="onMouseOut" qcompare="=" qvalue="" ¬
qnegate="true"></qattribute></qtag></find></dwquery>');
dw.findNext();

dreamweaver.setUpComplexFindReplace()

Availability

Dreamweaver 3

Description

Prepares for an advanced text or tag search by loading the specified XML query.

Arguments

xmlQueryString

xmlQueryString is a string of XML code that begins with <dwquery> and ends with </
dwquery>. (To get a string of the proper format, set up the query in the Find dialog box, click the 
Save Query button, open the query file in a text editor, and copy everything from the beginning 
of the <dwquery> tag to the end of the </dwquery> tag.)

Returns

Nothing.
461



Example

The first statement in the following example sets up a tag search and specifies that the scope of the 
search should be four files. The second statement performs the search and replace operation.

dreamweaver.setUpComplexFindReplace('<dwquery><queryparams ¬
matchcase="false" ignorewhitespace="true" useregexp="false"/>¬
<find><qtag qname="a"><qattribute qname="href" qcompare="=" ¬

qvalue="#"></qattribute><qattribute qname="onMouseOut" ¬
qcompare="=" qvalue="" qnegate="true"></qattribute></qtag>¬
</find><replace action="setAttribute" param1="onMouseOut" ¬
param2="this.style.color='#000000';this.style.¬

fontWeight='normal'"/></dwquery>');
dw.replaceAll();

dreamweaver.setUpFind()

Availability

Dreamweaver 3

Description

Prepares for a text or HTML source search by defining the search parameters for a subsequent 
dw.findNext() operation.

Arguments

searchObject

searchObject is an object for which the following properties can be defined:

• searchString is the text for which to search.

• searchSource is a Boolean value that indicates whether to search the HTML source.

• {matchCase} is a Boolean value that indicates whether the search is case-sensitive. If this 
property is not explicitly set, it defaults to false.

• {ignoreWhitespace} is a Boolean value that indicates whether white space differences should 
be ignored. ignoreWhitespace defaults to false if useRegularExpressions is true and 
true if useRegularExpressions is false.

• {useRegularExpressions} is a Boolean value that indicates whether the searchString uses 
regular expressions. If this property is not explicitly set, it defaults to false.

Returns

Nothing.

Example

The following code demonstrates three ways to create a searchObject object:

var searchParams;
searchParams.searchString = ’bgcolor="#FFCCFF"’;
searchParams.searchSource = true;
dreamweaver.setUpFind(searchParams);

var searchParams = {searchString: ’bgcolor="#FFCCFF"’, searchSource: true};
dreamweaver.setUpFind(searchParams);

dreamweaver.setUpFind({searchString: 'bgcolor="#FFCCFF"', searchSource: ¬
true});
462



dreamweaver.setUpFindReplace()

Availability

Dreamweaver 3

Description

Prepares for a text or HTML source search by defining the search parameters and the scope for a 
subsequent dreamweaver.replace() or dw.replaceAll() operation.

Arguments

searchObject

searchObject is an object for which the following properties can be defined:

• searchString is the text for which to search.

• replaceString is the text with which to replace the selection.

• searchSource is a Boolean value that indicates whether to search the HTML source.

• {matchCase} is a Boolean value that indicates whether the search is case-sensitive. If this 
property is not explicitly set, it defaults to false.

• {ignoreWhitespace} is a Boolean value that indicates whether white space differences should 
be ignored. ignoreWhitespace defaults to false if useRegularExpressions is true and 
true if useRegularExpressions is false.

• {useRegularExpressions} is a Boolean value that indicates whether the searchString uses 
regular expressions. If this property is not explicitly set, it defaults to false.

Returns

Nothing.

Example

The following code demonstrates three ways to create a searchObject object:

var searchParams;
searchParams.searchString = ’bgcolor="#FFCCFF"’;
searchParams.replaceString = ’bgcolor="#CCFFCC"’;
searchParams.searchSource = true;
dreamweaver.setUpFindReplace(searchParams);

var searchParams = {searchString: ’bgcolor="#FFCCFF"’, replaceString: 
’bgcolor="#CCFFCC"’, searchSource: true};

dreamweaver.setUpFindReplace(searchParams);

dreamweaver.setUpFindReplace({searchString: 'bgcolor="#FFCCFF"', ¬
replaceString: 'bgcolor="#CCFFCC"', searchSource: true});

dreamweaver.showFindDialog()

Availability

Dreamweaver 3

Description

Opens the Find dialog box.

Arguments

None.
463



Returns

Nothing.

Enabler

“dreamweaver.canShowFindDialog()” on page 424

dreamweaver.showFindReplaceDialog()

Availability

Dreamweaver 3

Description

Opens the Replace dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canShowFindDialog()” on page 424

Frame and frameset functions 
Frame and frameset functions cover two tasks: getting the names of the frames in a frameset and 
splitting a frame in two.

dom.getFrameNames()

Availability

Dreamweaver 3

Description

Gets a list of all the named frames in the frameset.

Arguments

None.

Returns

An array of strings where each string is the name of a frame in the current frameset. Any unnamed 
frames are skipped. If none of the frames in the frameset is named, an empty array returns.

Example

For a document that contains four frames (two of which are named), a call to 
dreamweaver.getDocumentDOM().getFrameNames() might return an array that contains the 
following strings:

• "navframe"
• "main_content"
464



dom.isDocumentInFrame()

Availability

Dreamweaver 4

Description

Identifies whether the current document is being viewed inside a frameset.

Arguments

None.

Returns

Returns true if the document is in a frameset; false, otherwise.

dom.saveAllFrames()

Availability

Dreamweaver 4

Description

If a document is a frameset or is inside a frameset, dom.saveAllFrames() saves all the frames and 
framesets from the Document window. If the given document is not in a frameset, 
dom.saveAllFrames() saves the document. Opens the Save As dialog box for any documents 
that have not been previously saved.

Arguments

None

Returns

Nothing.

dom.splitFrame()

Availability

Dreamweaver 3

Description

Splits the selected frame vertically or horizontally.

Arguments

splitDirection

splitDirection must be one of the following directions: "up", "down", "left", or "right".

Returns

Nothing.

Enabler

“dom.canSplitFrame()” on page 416
465



General editing functions
You handle general editing functions in the Document window. These functions insert text, 
HTML, and objects; apply, change, and remove font and character markup; modify tags and 
attributes; and more.

dom.applyCharacterMarkup()

Availability

Dreamweaver 3

Description

Applies the specified type of character markup to the selection. If the selection is an insertion 
point, it applies the specified character markup to any subsequently typed text.

Arguments

tagName

tagName is the tag name that is associated with the character markup. It must be one of the 
following strings: "b", "cite", "code", "dfn", "em", "i", "kbd", "samp", "s", "strong", "tt", 
"u", or "var".

Returns

Nothing.

dom.applyFontMarkup()

Availability

Dreamweaver 3

Description

Applies the FONT tag and the specified attribute and value to the current selection.

Arguments

attribute, value

• attribute must be "face", "size", or "color".

• value is the value that is to be assigned to the attribute; for example, "Arial, Helvetica, 
sans-serif", "5", or "#FF0000".

Returns

Nothing.

dom.deleteSelection()

Availability

Dreamweaver 3

Description

Deletes the selection in the document.

Arguments

None.
466



Returns

Nothing.

dom.editAttribute()

Availability

Dreamweaver 3

Description

Displays the appropriate interface for editing the specified attribute. In most cases, this is a dialog 
box. This function is valid only for the active document.

Arguments

attribute

Returns

Nothing.

dom.exitBlock()

Availability

Dreamweaver 3

Description

Exits the current paragraph or heading block, leaving the cursor outside of all block elements.

Arguments

None.

Returns

Nothing.

dom.getCharSet()

Availability

Dreamweaver 4

Description

Returns the charset attribute in the meta tag of the document.

Arguments

None.

Returns

The encoding identity of the document. For example, in Latin1 document, the function returns 
iso-8859-1.
467



dom.getFontMarkup()

Availability

Dreamweaver 3

Description

Gets the value of the specified attribute of the FONT tag for the current selection.

Arguments

attribute

attribute must be "face", "size", or "color".

Returns

A string that contains the value of the specified attribute or an empty string if the attribute is not 
set.

dom.getLinkHref()

Availability

Dreamweaver 3

Description

Gets the link that surrounds the current selection. This function is equivalent to looping through 
the parents and grandparents of the current node until a link is found and then calling 
getAttribute(’HREF’) on the link.

Arguments

None.

Returns

A string that contains the name of the linked file, which is expressed as a file:// URL.

dom.getLinkTarget()

Availability

Dreamweaver 3

Description

Gets the target of the link that surrounds the current selection. This function is equivalent to 
looping through the parents and grandparents of the current node until a link is found, and then 
calling getAttribute(’TARGET’) on the link.

Arguments

None.

Returns

A string that contains the value of the TARGET attribute for the link or an empty string if no target 
is specified.

dom.getListTag()

Availability

Dreamweaver 3
468



Description

Gets the style of the selected list.

Arguments

None.

Returns

A string that contains the tag that is associated with the list ("ul", "ol", or "dl") or an empty 
string if no tag is associated with the list. This value always returns in lowercase letters.

dom.getTextAlignment()

Availability

Dreamweaver 3

Description

Gets the alignment of the block that contains the selection.

Arguments

None.

Returns

A string that contains the value of the ALIGN attribute for the tag that is associated with the block 
or an empty string if the ALIGN attribute is not set for the tag. This value always returns in 
lowercase letters.

dom.getTextFormat()

Availability

Dreamweaver 3

Description

Gets the block format of the selected text.

Arguments

None.

Returns

A string that contains the block tag that is associated with the text (for example, "p", "h1", 
"pre", and so on) or an empty string if no block tag is associated with the selection. This value 
always returns in lowercase letters.

dom.hasCharacterMarkup()

Availability

Dreamweaver 3

Description

Checks whether the selection already has the specified character markup.

Arguments

markupTagName
469



markupTagName is the name of the tag that you’re checking. It must be one of the following 
strings: "b", "cite", "code", "dfn", "em", "i", "kbd", "samp", "s", "strong", "tt", "u", or 
"var".

Returns

A Boolean value that indicates whether the entire selection has the specified character markup. 
The function returns false if only part of the selection has the specified markup.

dom.indent()

Availability

Dreamweaver 3

Description

Indents the selection using BLOCKQUOTE tags. If the selection is a list item, this function indents 
the selection by converting the selected item into a nested list. This nested list is of the same type 
as the outer list and contains one item, the original selection.

Arguments

None.

Returns

Nothing.

dom.insertHTML()

Availability

Dreamweaver 3

Description

Inserts HTML content into the document at the current insertion point.

Arguments

contentToInsert, {bReplaceCurrentSelection}

• contentToInsert is the content you want to insert.

• bReplaceCurrentSelection is a Boolean value that indicates whether the content should 
replace the current selection. If bReplaceCurrentSelection is false, the content is inserted 
after the current selection.

Returns

Nothing.

Example

The following code inserts <b>130</b> into the current document:

var theDOM = dw.getDocumentDOM();
theDOM.insertHTML(’<b>130</b>’);
470



The result appears in the Document window, as shown in the following figure:

dom.insertObject()

Availability

Dreamweaver 3

Description

Inserts the specified object, prompting the user for parameters if necessary.

Arguments

objectName

objectName is the name of an object in the Configuration/Objects folder.

Returns

Nothing.

Example

A call to dreamweaver.getDocumentDOM().insertObject(’Button’) inserts a form button 
into the active document after the current selection. If nothing is selected, this function inserts 
the button at the current insertion point.

Note: Although object files can be stored in separate folders, it’s important that their filenames be unique.  If a file 
called Button.htm exists in the Forms folder and also in the MyObjects folder, Dreamweaver cannot distinguish 
between them.

dom.insertText()

Availability

Dreamweaver 3

Description

Inserts text content into the document at the current insertion point.

Arguments

contentToInsert, {bReplaceCurrentSelection}

• contentToInsert is the content that you want to insert.

• bReplaceCurrentSelection is a Boolean value that indicates whether the content should 
replace the current selection. If bReplaceCurrentSelection is false, the content is inserted 
after the current selection.

Returns

Nothing.
471



Example

The following code inserts &lt;b&gt;130&lt;/b&gt; into the current document:

var theDOM = dreamweaver.getDocumentDOM();
theDOM.insertText(’<b>130</b>’);

The results appear in the Document window, as shown in the following figure:

dom.newBlock()

Availability

Dreamweaver 3

Description

Creates a new block with the same tag and attributes as the block that contains the current 
selection or creates a new paragraph if the cursor is outside of all blocks

Arguments

None.

Returns

Nothing.

Example

If the current selection is inside a center-aligned paragraph, a call to 
dreamweaver.getDocumentDOM().newBlock() inserts <p align="center"> after the current 
paragraph.

dom.notifyFlashObjectChanged() 

Availability

Dreamweaver 4

Description

Informs Dreamweaver that the current Flash object file has changed. Dreamweaver updates the 
Preview display, resizing it as necessary, and preserving the width-height ratio from the original 
size. For example, Flash Text uses this feature to update the text in the Layout view as the user 
changes its properties in the Command dialog box.

Arguments

None.

Returns

Nothing.
472



dom.outdent()

Availability

Dreamweaver 3

Description

Outdents the selection.

Arguments

None.

Returns

Nothing.

dom.removeCharacterMarkup()

Availability

Dreamweaver 3

Description

Removes the specified type of character markup from the selection.

Arguments

tagName

tagName is the tag name that is associated with the character markup. It must be one of the 
following strings: "b", "cite", "code", "dfn", "em", "i", "kbd", "samp", "s", "strong", "tt", 
"u", or "var".

Returns

Nothing.

dom.removeFontMarkup()

Availability

Dreamweaver 3

Description

Removes the specified attribute and its value from a FONT tag. If removing the attribute leaves 
only <FONT>, the FONT tag is also removed.

Arguments

attribute

attribute must be "face", "size", or "color".

Returns

Nothing.
473



dom.removeLink()

Availability

Dreamweaver 3

Description

Removes the hypertext link from the selection.

Arguments

None.

Returns

Nothing.

dom.resizeSelection()

Availability

Dreamweaver 3

Description

Resizes the selected object to the specified dimensions. 

Arguments

newWidth, newHeight

Returns

Nothing.

dom.setAttributeWithErrorChecking()

Availability

Dreamweaver 3

Description

Sets the specified attribute to the specified value for the current selection, prompting the user if 
the value is the wrong type or if it is out of range. This function is valid only for the active 
document.

Arguments

attribute, value

Returns

Nothing.

dom.setLinkHref()

Availability

Dreamweaver 3

Description

Makes the selection a hypertext link or changes the URL value of the HREF tag that encloses the 
current selection.
474



Arguments

linkHREF

linkHREF is the URL (document-relative path, root-relative path, or absolute URL) comprising 
the link. If this argument is omitted, the Select HTML File dialog box appears.

Returns

Nothing.

Enabler

“dom.canSetLinkHref()” on page 416

dom.setLinkTarget()

Availability

Dreamweaver 3

Description

Sets the target of the link that surrounds the current selection. This function is equivalent to 
looping through the parents and grandparents of the current node until a link is found and then 
calling setAttribute('TARGET') on the link.

Arguments

{linkTarget}

linkTarget is a string that represents a frame name, window name, or one of the reserved targets 
("_self", "_parent", "_top", or "_blank"). If the argument is omitted, the Set Target dialog 
box appears.

Returns

Nothing.

dom.setListBoxKind()

Availability

Dreamweaver 3

Description

Changes the kind of the selected SELECT menu.

Arguments

kind

kind must be either "menu" or "list box".

Returns

Nothing.

dom.showListPropertiesDialog()

Availability

Dreamweaver 3

Description

Opens the List Properties dialog box.
475



Arguments

None.

Returns

Nothing.

Enabler

“dom.canShowListPropertiesDialog()” on page 416

dom.setListTag()

Availability

Dreamweaver 3

Description

Sets the style of the selected list.

Arguments

listTag

listTag is the tag that is associated with the list. It must be "ol", "ul", "dl", or an empty string.

Returns

Nothing.

dom.setTextAlignment()

Availability

Dreamweaver 3

Description

Sets the ALIGN attribute of the block that contains the selection to the specified value.

Arguments

alignValue

alignValue must be "left", "center", or "right".

Returns

Nothing.

dom.setTextFieldKind()

Availability

Dreamweaver 3

Description

Sets the format of the selected text field.

Arguments

fieldType

fieldType must be "input", "textarea", or "password".

Returns

Nothing.
476



dom.setTextFormat()

Availability

Dreamweaver 4

Description

Sets the block format of the selected text.

Arguments

blockFormat 

blockFormat is a string that specifies one of the following formats: "" (for no format), "p", "h1", 
"h2", "h3", "h4", "h5", "h6", "pre".

Returns

Nothing.

dom.showFontColorDialog()

Availability

Dreamweaver 3

Description

Opens the Color Picker dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.deleteSelection()

Availability

Dreamweaver 3

Description

Deletes the selection in the active document or the Site panel; on the Macintosh, the text box that 
has focus in a dialog box or floating panel

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canDeleteSelection()” on page 419
477



dreamweaver.editFontList()

Availability

Dreamweaver 3

Description

Opens the Edit Font List dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.getFontList()

Availability

Dreamweaver 3

Description

Gets a list of all the font groups that appear in the text Property inspector and in the Style 
Definition dialog box.

Arguments

None.

Returns

An array of strings that represent each item in the font list.

Example

For the default installation of Dreamweaver, a call to dreamweaver.getFontList() returns an 
array that contains the following items:

• "Arial, Helvetica, sans-serif"
• "Times New Roman, Times, serif"
• "Courier New, Courier, mono"
• "Georgia, Times New Roman, Times, serif"
• "Verdana, Arial, Helvetica, sans-serif"

dreamweaver.getFontStyles()

Availability

Dreamweaver 4

Description

Returns the styles that a specified TrueType font supports.

Arguments

fontName

fontName is a string that contains the name of the font.
478



Returns

An array of three Boolean values that indicates what the font supports. The first value indicates 
whether the font supports Bold, the second indicates whether the font supports Italic, and the 
third indicates whether the font supports both Bold and Italic.

dreamweaver.getKeyState()

Availability

Dreamweaver 3

Description

Determines whether the specified modifier key is depressed.

Arguments

key

key must be one of the following values: "Cmd", "Ctrl", "Alt", or "Shift". In Windows, "Cmd" 
and "Ctrl" refer to the Control key; on the Macintosh, "Alt" refers to the Option key.

Returns

A Boolean value that indicates whether the key is depressed.

Example

The following code checks that both the Shift and Control keys (Windows) or Shift and 
Command keys (Macintosh) are down before performing an operation:

if (dw.getKeyState("Shift") && dw.getKeyState("Cmd")){
// execute code

}

dreamweaver.getNaturalSize()

Availability

Dreamweaver 4

Description

Returns the width and height of a graphical object.

Arguments

url

url points to a graphical object for which the dimensions are wanted. Dreamweaver must 
support this object (GIF, JPEG, PNG, Flash, and Shockwave). The URL that is provided as the 
argument to getNaturalSize() must be an absolute URL that points to a local file; it cannot be 
a relative URL. 

Returns

An array of two integers where the first integer defines the width of the object and the second 
defines the height.
479



dreamweaver.getSystemFontList()

Availability

Dreamweaver 4

Description

Returns a list of fonts for the system. This function can get either all fonts or TrueType fonts only. 
These fonts are needed for the Flash Text object.

Arguments

fontTypes

fontTypes is a string that contains either "all" or "TrueType".

Returns

An array of strings that contain all the font names; returns null if no fonts are found.

Global application functions
Global application functions act on the entire application. They handle tasks such as quitting and 
accessing preferences.

dreamweaver.beep()

Availability

Dreamweaver MX

Description

Creates a system beep.

Arguments

None.

Returns

Nothing.

Example

beep(){
if(confirm(“Is your order complete?”)
{

dreamweaver.beep();
alert(“Click OK to submit your order”);

}
}

dreamweaver.getShowDialogsOnInsert()

Availability

Dreamweaver 3

Description

Checks whether the Show Dialog When Inserting Objects option is turned on in the General 
preferences.
480



Arguments

None.

Returns

A Boolean value that indicates whether the option is on

dreamweaver.quitApplication()

Availability

Dreamweaver 3

Description

Quits Dreamweaver after the script that calls this function finishes executing.

Arguments

None.

Returns

Nothing.

dreamweaver.showAboutBox()

Availability

Dreamweaver 3

Description

Opens the About dialog box. 

Arguments

None.

Returns

Nothing.

dreamweaver.showDynamicDataDialog()

Availability

Dreamweaver UltraDev 1

Description

Displays the Dynamic Data or Dynamic Text dialog box, and waits for the user to dismiss the 
dialog box. If the user clicks OK, the showDynamicDataDialog() function returns a string to be 
inserted into the user’s document. (This string returned from the Data Sources API function, 
generateDynamicDataRef(), and passed to the Data Format API function, 
formatDynamicDataRef(); the return value from formatDynamicDataRef() is the one returned 
from showDynamicDataDialog().)
481



Arguments

source, title

• source is a string that contains source code, which represents the dynamic data object. It is the 
same string that returned from a previous call to this function. The function uses the contents 
of source to initialize all the dialog box controls, so they appear exactly as when the user 
clicked OK to create this string.

Dreamweaver passes this string to inspectDynamicDataRef() to determine if the string 
matches any of the nodes in the tree. If the string matches a node, that node is selected when 
the dialog box appears. You can also pass an empty string, which does not initialize the dialog 
box. For example, a dialog box is not initialized when used to create a new item.

• title is a string that contains the text to display in the title bar of the dialog box. This 
argument is optional. If it is not supplied, Dreamweaver displays Dynamic Data in the title 
bar. 

Returns

A string that represents the dynamic data object, if the user clicks OK.

dreamweaver.showPreferencesDialog()

Availability

Dreamweaver 3

Description

Opens the Preferences dialog box.

Arguments

{whichTab}

The agument must be one of the following strings: "general", "external editors", 
"floaters", "fonts", "highlighting", "html colors", "html format", "html 
rewriting", "invisible elements", "layers", "browsers", "quick tag editor", "site 
ftp", "status bar", "css styles", and "translation". If Dreamweaver does not recognize 
the argument as a valid pane name, or if the argument is omitted, the dialog box opens to the last 
active pane.

Returns

Nothing.

dreamweaver.showTagChooser()

Availability

Dreamweaver MX

Description

Toggles the visibility of the Tag Chooser dialog box for users to insert tags into the Code view. 
The function shows the Tag Chooser dialog box on top of all other Dreamweaver windows. If the 
dialog box is not visible, the function opens the Tag Chooser, bring it to the front, and set focus 
to it. If the Tag Chooser is visible, the function hides the dialog box.

Arguments

None.
482



Returns

Nothing.

Global document functions
Global document functions act on an entire document. They check spelling, check target 
browsers, set page properties, and determine correct object references for elements in the 
document.

dom.checkSpelling()

Availability

Dreamweaver 3

Description

Checks the spelling in the document, opening the Check Spelling dialog box if necessary, and 
notifies the user when the check is complete.

Arguments

None.

Returns

Nothing.

dom.checkTargetBrowsers()

Availability

Dreamweaver 3

Description

Runs a target browser check on the document. To run a target browser check on a folder or group 
of files, see “site.checkTargetBrowsers()” on page 561.

Arguments

None.

Returns

Nothing.

dom.runValidation

Availability

Dreamweaver MX

Description

Runs the Validator on a single, specified document (similar to “site.runValidation()” on page 
575).

Arguments

None.
483



Returns

Nothing.

Enabler

“canAcceptCommand()” on page 62.

dom.showPagePropertiesDialog()

Availability

Dreamweaver 3

Description

Opens the Page Properties dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.doURLDecoding()

Availability

Dreamweaver MX

Description

Uses the internal Dreamweaver URL decoding mechanism to decode special characters and 
symbols in URL strings. For example, this function decodes %20 to a space character and the 
name &quot to ".

Arguments

inStr

inStr is the string to decode.

Returns

A string that contains the decoded URL.

Example

outStr = dreamweaver.doURLDecoding(“http://maps.yahoo.com/py/
ddResults.py?Pyt=Tmap&tarname=&tardesc=&newname=&newdesc=&newHash=&newTHash
=&newSts=&newTSts=&tlt=&tln=&slt=&sln=&newFL=Use+Address+Below&newaddr=2000
+Shamrock+Rd&newcsz=Metroo+Park%2C+CA&newcountry=us&newTFL=Use+Address+Belo
w&newtaddr=500+El+Camino&newtcsz=Santa+Clara%2C+CA&newtcountry=us&Submit=Ge
t+Directions”)

dreamweaver.getElementRef()

Availability

Dreamweaver 2

Description

Gets the Netscape Navigator or Internet Explorer object reference for a specific tag object in the 
DOM tree.
484



Arguments

NSorIE, tagObject

• NSorIE must be either "NS 4.0" or "IE 4.0". The DOM and rules for nested references 
differ in Netscape Navigator 4.0 and Internet Explorer 4.0. This argument specifies for which 
browser to return a valid reference.

• tagObject is a tag object in the DOM tree.

Returns

A string that represents a valid JavaScript reference to the object, such as 
document.layers[’myLayer’].

• Dreamweaver returns correct references for Internet Explorer for A, AREA, APPLET, EMBED, DIV, 
SPAN, INPUT, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags. 

• Dreamweaver returns correct references for Netscape Navigator for A, AREA, APPLET, EMBED, 
LAYER, ILAYER, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags, and for absolutely 
positioned DIV and SPAN tags. For DIV and SPAN tags that are not absolutely positioned, 
Dreamweaver returns "cannot reference <tag>".

• Dreamweaver does not return references for unnamed objects. If an object does not contain 
either a NAME or an ID attribute, Dreamweaver returns "unnamed <tag>". If the browser does 
not support a reference by name, Dreamweaver references the object by index (for example, 
document.myform.applets[3]).

• Dreamweaver returns references for named objects that are contained in unnamed forms and 
layers (for example, document.forms[2].myCheckbox).

dreamweaver.getPreferenceInt()

Availability

Dreamweaver MX

Description

Lets you retrieve an integer preference setting for an extension. 

Arguments

section key default_value

• section a string that specifies the preferences section that contains the entry. 

• key a string that specifies the entry of the value to be retrieved.

• default_value the default value that Dreamweaver returns if it cannot find the entry. Must 
be an unsigned integer in the range 0 through 65,535 or a signed value in the range -32,768 
through 32,767.

Returns

Integer value of the specified entry in the specified section, or the default value if the function 
does not find the entry. Returns 0 if the value of the specified entry is not an integer.

Example

var snapDist = 5; //default value if entry not found
dreamweaver.setPreferenceInt("My Extension", "Snap Distance", snapDist);
485



dreamweaver.getPreferenceString()

Availability

Dreamweaver MX

Description

Lets you retrieve a string preference setting that you stored for an extension.

Arguments

section key default_value

• section a string that specifies the preferences section that contains the entry. 

• key a string that specifies the value to be retrieved.

• default_value the default string value that Dreamweaver returns if it cannot find the entry.

Returns

The requested preference string, or if the string cannot be found, the default value. 

Example

var txtEditor = getExternalTextEditor(); //set default text Editor value
txtEditor = dreamweaver.getPreferenceString("My Extension", "Text Editor", 

txtEditor);

dreamweaver.setPreferenceInt()

Availability

Dreamweaver MX

Description

Lets you set an integer preference setting for an extension, to be stored with Dreamweaver 
preferences when Dreamweaver is not running.

Arguments

section, key, new_value

• section a string that specifies the preferences section that contains the entry. If the section 
does not exist, Dreamweaver creates it.

• key a string that specifies the entry into which the value is to be written. If the entry does not 
exist, Dreamweaver creates it.

• new_value an integer that contains the integer preference value that is to be saved.

Returns

true if successful; false otherwise.

Example

var snapDist = getSnapDistance();
if(snapDist > 0)
{

dreamweaver.setPreferenceInt("My Extension", "Snap Distance", snapDist);
}

486



dreamweaver.setPreferenceString()

Availability

Dreamweaver MX

Description

Allows you to write a string preference setting for an extension, to be stored with Dreamweaver 
preferences when Dreamweaver is not running.

Arguments

section, key, new_value

• section a string that specifies the preferences section that contains the entry. If the section 
does not exist, Dreamweaver creates it.

• key a string that specifies the entry into which the value is to be written. If the entry does not 
exist, Dreamweaver creates it.

• new_value a string that contains the preference value that is to be saved.

Returns

true if successful; false otherwise.

Example

var txtEditor = getExternalTextEditor();
dreamweaver.setPreferenceString("My Extension", "Text Editor", txtEditor);

History functions
History functions handle undoing, redoing, recording, and playing steps that appear in the 
History panel. A step is any repeatable change to the document or to a selection in the document. 
Methods of the dreamweaver.historyPalette object either control or act on the selection in 
the History panel, not in the current document.

dom.redo()

Availability

Dreamweaver 3

Description

Redoes the step that was most recently undone in the document.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canRedo()” on page 415
487



dom.undo()

Availability

Dreamweaver 3

Description

Undoes the previous step in the document.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canUndo()” on page 417

dreamweaver.getRedoText()

Availability

Dreamweaver 3

Description

Gets the text associated with the editing operation that will be redone if the user selects Edit > 
Redo or presses Control+Y (Windows) or Command+Y (Macintosh).

Arguments

None.

Returns

A string that contains the text associated with the editing operation that will be redone.

Example

If the user’s last action was to make the selection bold, a call to dw.getRedoText() returns 
"Repeat Apply Bold".

dreamweaver.getUndoText()

Availability

Dreamweaver 3

Description

Gets the text associated with the editing operation that will be undone if the user selects Edit > 
Undo or presses Control+Z (Windows) or Command+Z (Macintosh).

Arguments

None.

Returns

A string that contains the text associated with the editing operation that will be undone.

Example

If the user’s last action was to apply a CSS style to a selected range of text, a call to 
dw.getUndoText() returns "Undo Apply <span>".
488



dreamweaver.playRecordedCommand()

Availability

Dreamweaver 3

Description

Plays the recorded command in the active document.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canPlayRecordedCommand()” on page 421

dreamweaver.redo()

Availability

Dreamweaver 3

Description

Redoes the step that was most recently undone in the active Document window, dialog box, 
floating panel, or Site panel. 

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canRedo()” on page 421

dreamweaver.startRecording()

Availability

Dreamweaver 3

Description

Starts recording steps in the active document; the previously recorded command is immediately 
discarded.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.isRecording()” on page 426 (must return false)
489



dreamweaver.stopRecording()

Availability

Dreamweaver 3

Description

Stops recording without prompting the user.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.isRecording()” on page 426 (must return true)

dreamweaver.undo()

Availability

Dreamweaver 3

Description

Undoes the previous step in the active Document window, dialog box, floating panel, or Site 
panel that has focus. 

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canUndo()” on page 424

dreamweaver.historyPalette.clearSteps()

Availability

Dreamweaver 3

Description

Clears all steps from the History panel and disables the Undo and Redo menu items.

Arguments

None.

Returns

Nothing.

dreamweaver.historyPalette.copySteps()

Availability

Dreamweaver 3
490



Description

Copies the specified history steps to the Clipboard. Dreamweaver warns the user of possible 
unintended consequences if the specified steps include an unrepeatable action.

Arguments

arrayOfIndices

arrayOfIndices is an array of position indices in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.

Example

The following code copies the first four steps in the History panel:

dreamweaver.historyPalette.copySteps([0,1,2,3]);

dreamweaver.historyPalette.getSelectedSteps()

Availability

Dreamweaver 3

Description

Determines which portion of the History panel is selected.

Arguments

None.

Returns

An array that contains the position indices of all the selected steps. The first position is position 0 
(zero).

Example

If the second, third, and fourth steps are selected in the History panel, as shown in the following 
illustration, a call to dw.historyPalette.getSelectedSteps() returns [1,2,3].
491



dreamweaver.historyPalette.getStepCount()

Availability

Dreamweaver 3

Description

Gets the number of steps in the History panel.

Arguments

None.

Returns

An integer that represents the number of steps that are currently listed in the History panel.

dreamweaver.historyPalette.getStepsAsJavaScript()

Availability

Dreamweaver 3

Description

Gets the JavaScript equivalent of the specified history steps.

Arguments

arrayOfIndices

arrayOfIndices is an array of position indices in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.

Example

If the three steps shown in the following example are selected in the History panel, a call to 
dreamweaver.historyPalette.getStepsAsJavaScript(dw.historyPalette.getSelectedS
teps()) returns "dw.getDocumentDOM().insertText(’Hey diddle diddle, a cat and a 
fiddle, the cow jumped over the moon.’);\ndw.getDocumentDOM().newBlock();\n 
dw.getDocumentDOM().insertHTML(’<img src=\"../wdw99/50browsers/images/
sun.gif\">’, true);\n":
492



dreamweaver.historyPalette.getUndoState()

Availability

Dreamweaver 3

Description

Gets the current undo state.

Arguments

None.

Returns

The position of the Undo marker in the History panel.

dreamweaver.historyPalette.replaySteps()

Availability

Dreamweaver 3

Description

Replays the specified history steps in the active document. Dreamweaver warns the user of 
possible unintended consequences if the specified steps include an unrepeatable action.

Arguments

arrayOfIndices

arrayOfIndices is an array of position indices in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.

Example

A call to dreamweaver.historyPalette.replaySteps([0,2,3]) plays the first, third, and 
fourth steps in the History panel.

dreamweaver.historyPalette.saveAsCommand()

Availability

Dreamweaver 3

Description

Opens the Save As Command dialog box, which lets the user save the specified steps as a 
command. Dreamweaver warns the user of possible unintended consequences if the steps include 
an unrepeatable action.

Arguments

arrayOfIndices

arrayOfIndices is an array of position indexes in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.
493



Example

The following code saves the fourth, sixth, and eighth steps in the History panel as a command:

dreamweaver.historyPalette.saveAsCommand([3,5,7]);

dreamweaver.historyPalette.setSelectedSteps()

Availability

Dreamweaver 3

Description

Selects the specified steps in the History panel.

Arguments

arrayOfIndices

arrayOfIndices is an array of position indices in the History panel. If no argument is supplied, 
all the steps are deselected.

Returns

None.

Example

The following code selects the first, second, and third steps in the History panel:

dreamweaver.historyPalette.setSelectedSteps([0,1,2]);

dreamweaver.historyPalette.setUndoState()

Availability

Dreamweaver 3

Description

Performs the correct number of undo or redo operations to arrive at the specified undo state.

Arguments

undoState

undoState is the object returned by dreamweaver.historyPalette.getUndoState().

Returns

Nothing.
494



HTML style functions
HTML style functions handle applying, creating, and deleting HTML styles. Methods of the 
dreamweaver.htmlStylePalette object either control or act on the selection in the HTML 
Styles panel, not in the current document.

dom.applyHTMLStyle()

Availability

Dreamweaver 3

Description

Applies the specified HTML style to the current selection. This function is valid only for the 
active document.

Arguments

htmlStyleName

Returns

Nothing.

dreamweaver.htmlStylePalette.deleteSelectedStyle()

Availability

Dreamweaver 3

Description

Removes the selected style from the HTML Styles panel.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.htmlStylePalette.canEditSelection()” on page 426

dreamweaver.htmlStylePalette.duplicateSelectedStyle()

Availability

Dreamweaver 3

Description

Duplicates the selected style and opens the Define HTML Style dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.htmlStylePalette.canEditSelection()” on page 426
495



dreamweaver.htmlStylePalette.editSelectedStyle()

Availability

Dreamweaver 3

Description

Opens the Define HTML Style dialog box for the selected style.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.htmlStylePalette.canEditSelection()” on page 426

dreamweaver.htmlStylePalette.getSelectedStyle()

Availability

Dreamweaver 3

Description

Gets the name of the selected style in the HTML Styles panel.

Arguments

None.

Returns

A string that contains the name of the selected style.

dreamweaver.htmlStylePalette.getStyles()

Availability

Dreamweaver 3

Description

Gets a list of all the names of the defined HTML styles.

Arguments

None.

Returns

An array of strings where each string represents the name of an HTML style. If no HTML styles 
are defined, an empty array returns.

dreamweaver.htmlStylePalette.newStyle()

Availability

Dreamweaver 3

Description

Opens the Define HTML Style dialog box for a new, untitled style.
496



Arguments

None.

Returns

Nothing.

dreamweaver.htmlStylePalette.setSelectedStyle()

Availability

Dreamweaver 3

Description

Selects the specified style in the HTML Style panel.

Arguments

htmlStyleName

Returns

Nothing.
497



JavaScript debugger functions
These commands customize the behavior of the Dreamweaver JavaScript Debugger. For more 
information about the Dreamweaver JavaScript Debugger, see “JavaScript Debugger Modules” on 
page 243.

dom.getBreakpoint()

Availability

Dreamweaver MX

Description

Queries to see if a breakpoint (the place in the JavaScript code at which the JavaScript Debugger 
stops executing the program) is set on a particular line in the document.

Arguments

lineNumber

lineNumber is an integer that represents the line number in the document to examine.

Returns

A Boolean value that indicates whether a breakpoint is set (true) or not (false).

dom.getLineFromOffset()

Availability

Dreamweaver MX

Description

Finds the line number of a specific character offset in the text (the HTML or JavaScript code) of 
the file.

Arguments

offset

offset is an integer that represents the character location from the beginning of the file.

Returns

An integer that represents the line number in the document.

dom.instrumentDocument ()

Availability

Dreamweaver 4

Description

Creates the debug version of the document and any external .js files that it references. This 
function parses the JavaScript in the document and calls the debuggerModule for code snippets 
to insert at various points in the JavaScript file. The debuggerModule is also notified of syntax 
errors and warnings. This function fails under any of the following conditions: syntax errors, a file 
error, or the document cannot be debugged for some reason. Temporary files are never deleted 
immediately, even if the function fails.
498



Arguments

debuggerModule, outputFileName

• debuggerModule is the name of a special Dreamweaver module file that implements the 
instrumentation API. The module is located in the Configuration/Debugger folder of the 
Dreamweaver Program Files directory. 

• outputFileName is optional; it is the name to use for the debug version of the .htm file. If it is 
omitted, a temporary file is created. The temporary file is deleted when Dreamweaver exits. If 
the specified outputFileName exists, the existing file is replaced. The file is always written in 
the same directory as the source document, so it cannot have the same name as the source 
document. If a path is specified, it is ignored. The debug version of externally referenced .js 
files is named by adding outputFileName to the beginning of the original filename of the .js 
file. 

Returns

An array of file URL pairs. Each pair consists of the URL of the original source file, followed by 
the URL of the debug version that this function created. The first pair is always the .htm file and 
any subsequent entries are .js files that are referenced by the .htm file. If the function fails, null is 
returned. A pair of URLs is actually two entries in the array. So, if returnValue = 
dom.instrumentDocument(test.htm), then returnValue[0] is the URL of test.htm and 
returnValue[1] is the URL of the debug version of test.htm.

dom.setBreakpoint()

Availability

Dreamweaver MX

Description

Sets or removes a breakpoint (the place in the JavaScript code at which the JavaScript Debugger 
stops executing the program) on a line in the document.

Arguments

lineNumber, bTurnOn

lineNumber is an integer that represents the line number in the document on which to set or 
remove the breakpoint.

bTurnOn is a Boolean value that indicates whether the breakpoint should be set on (true) or off 
(false).

Returns

Nothing.
499



dreamweaver.debugDocument()

Availability

Dreamweaver 4

Description

Creates the debug version of the current document and opens it in the browser. This function can 
be used with only one of the browsers for which Dreamweaver supports debugging (see 
“dreamweaver.getDebugBrowserList()” on page 500). This function does not prompt the user if it 
cannot determine the browser type. If syntax errors or warnings occur, a Results window opens 
and displays the messages. If no errors occur, the debug version of the HTML document appears 
in the specified browser. If warnings occur, but no errors, the Results window appears and 
debugging begins.

The creation of the debug version is implemented with a call to dom.instrumentDocument() 
using one of the default instrumentation modules. The debug version of the document is 
temporary and is deleted the next time the JavaScript Debugger starts or when Dreamweaver 
exits. 

Arguments

fileName, {browserName}

• fileName is the name of the file to be opened. It is expressed as an absolute URL.

• browserName is optional; it specifies the name of the target browser as defined in the Preview 
settings in Browser Preferences. It can also be primary or secondary. If omitted, the primary 
browser is used by default.

Returns

Nothing.

dreamweaver.getDebugBrowserList()

Availability

Dreamweaver 4

Description

Returns the defined browsers for which Dreamweaver supports JavaScript debugging. For 
Windows, Dreamweaver supports debugging only in Internet Explorer 5.0  and later and 
Netscape Navigator 4.5 and later. For the Macintosh, Dreamweaver supports debugging only in 
Netscape Navigator 4.5 and later.

Arguments

None.

Returns

An array of browser names in the same format as the ones getBrowserList() returns. 
500



dreamweaver.getIsAnyBreakpoints()

Availability

Dreamweaver 4

Description

Finds any breakpoints that are set in any files.

Arguments

None.

Returns

A Boolean value that returns true if any breakpoints are set in any file.

dreamweaver.removeAllBreakpoints()

Availability

Dreamweaver 4

Description

Removes all breakpoints in all files.

Arguments

None.

Returns

Nothing.

dreamweaver.startDebugger()

Availability

Dreamweaver 4

Description

Opens the JavaScript Debugger window with the original source .htm file and the .js files that are 
listed in sourceFileList(). Then it launches the browser with the debug version file specified 
by debugFileName(). This function does not prompt the user if it cannot determine the browser 
type. 

A call to the dom.instrumentDocument() function creates the “debugged” version.

Arguments

sourceFileList, isTempFiles, {browserName}

• sourceFileList is an array of URL pairs comprising the source file and the instrumented file. 
Within each pair, the first item is the .htm file and subsequent items are the external .js files. 
Each .htm file is a URL expressed as an absolute file URL.

• isTempFiles is a Boolean value that indicates whether the instrumented files should be 
tracked and deleted the next time the JavaScript Debugger launches or when Dreamweaver 
exits.

• browserName is optional; it specifies the name of the target browser as defined in the Preview 
settings in Browser Preferences. It can also be primary or secondary. If omitted, the primary 
browser is used by default.
501



Returns

Nothing.

Keyboard functions
Keyboard functions mimic document navigation tasks that are accomplished by pressing the 
arrow, Backspace, Delete, Page Up, and Page Down keys. In addition to such general arrow and 
key methods as arrowLeft() and backspaceKey(), Dreamweaver also provides methods for 
moving to the next or previous word or paragraph as well as moving to the start of the line or 
document, or the end of the line or document. 

dom.arrowDown()

Availability

Dreamweaver 3

Description

Moves the insertion point down the specified number of times.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of times that the insertion point is to move down. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.arrowLeft()

Availability

Dreamweaver 3

Description

Moves the insertion point left the specified number of times.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of times that the insertion point is to move left. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.
502



dom.arrowRight()

Availability

Dreamweaver 3

Description

Moves the insertion point right the specified number of times.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of times that the insertion point is to move right. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.arrowUp()

Availability

Dreamweaver 3

Description

Moves the insertion point up the specified number of times.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of times that the insertion point is to move up. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.backspaceKey()

Availability

Dreamweaver 3

Description

Equivalent to pressing the Backspace key a specified number of times.  The exact behavior 
depends on whether there is a current selection or only an insertion point.

Arguments

{nTimes}

nTimes is the number of times that a Backspace operation is to occur. If the argument is omitted, 
the default is 1.
503



Returns

Nothing.

dom.deleteKey()

Availability

Dreamweaver 3

Description

Equivalent to pressing the Delete key the specified number of times. The exact behavior depends 
on whether there is a current selection or only an insertion point.

Arguments

{nTimes}

nTimes is the number of times that a Delete operation is to occur. If the argument is omitted, the 
default is 1.

Returns

Nothing.

dom.endOfDocument()

Availability

Dreamweaver 3

Description

Moves the insertion point to the end of the document (that is, after the last visible content in the 
Document window, or after the closing HTML tag in the Code inspector, depending on which 
window has focus). 

Arguments

{bShiftIsDown}

bShiftIsDown is a Boolean value that indicates whether to extend the selection. If the argument 
is omitted, the default is false.

Returns

Nothing.

dom.endOfLine()

Availability

Dreamweaver 3

Description

Moves the insertion point to the end of the line.

Arguments

{bShiftIsDown}

bShiftIsDown is a Boolean value that indicates whether to extend the selection. If the argument 
is omitted, the default is false.
504



Returns

Nothing.

dom.nextParagraph()

Availability

Dreamweaver 3

Description

Moves the insertion point to the beginning of the next paragraph or skips multiple paragraphs if 
nTimes is greater than 1.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of paragraphs that the insertion point is to move ahead. If this argument 
is omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.nextWord()

Availability

Dreamweaver 3

Description

Moves the insertion point to the beginning of the next word or skips multiple words if nTimes is 
greater than 1.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of words that the insertion point is to move ahead. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.pageDown()

Availability

Dreamweaver 3

Description

Moves the insertion point down one page (equivalent to pressing Page Down).
505



Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of pages that the insertion point is to move down. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.pageUp()

Availability

Dreamweaver 3

Description

Moves the insertion point up one page (equivalent to pressing Page Up).

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of pages that the insertion point is to move up. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.previousParagraph()

Availability

Dreamweaver 3

Description

Moves the insertion point to the beginning of the previous paragraph or skips multiple 
paragraphs if nTimes is greater than 1.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of paragraphs that the insertion point is to move back. If this argument 
is omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.
506



dom.previousWord()

Availability

Dreamweaver 3

Description

Moves the insertion point to the beginning of the previous word or skips multiple words if 
nTimes is greater than 1.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of words that the insertion point is to move back. If this argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether to extend the selection. If this 
argument is omitted, the default is false.

Returns

Nothing.

dom.startOfDocument()

Availability

Dreamweaver 3

Description

Moves the insertion point to the beginning of the document (that is, before the first visible 
content in the Document window, or before the opening HTML tag in the Code inspector, 
depending on which window has focus).

Arguments

{bShiftIsDown}

bShiftIsDown is a Boolean value that indicates whether to extend the selection. If the argument 
is omitted, the default is false.

Returns

Nothing.

dom.startOfLine()

Availability

Dreamweaver 3

Description

Moves the insertion point to the beginning of the line.

Arguments

{bShiftIsDown}

bShiftIsDown is a Boolean value that indicates whether to extend the selection. If the argument 
is omitted, the default is false.
507



Returns

Nothing.

dreamweaver.mapKeyCodeToChar()

Availability

Dreamweaver 4

Description

Takes a key code as retrieved from the event object’s keyCode field and translates it to a character. 
You should check whether the key code is a special key, such as HOME, PGUP, and so on. If the 
key code is not a special key, this method can be used to translate it to a character code that is 
suitable for display to the user.

Arguments

keyCode

keyCode is the key code to translate to a character.

Returns

Nothing.

Layer and image map functions 
Layer and image map functions handle aligning, resizing, and moving layers and image map 
hotspots. The function description indicates if it applies to layers or to hotspots.

dom.align()

Availability

Dreamweaver 3

Description

Aligns the selected layers or hotspots left, right, top, or bottom.

Arguments

alignDirection

alignDirection is the edge to align with the layers or hotspots—"left", "right", "top", or 
"bottom".

Returns

Nothing.

Enabler

“dom.canAlign()” on page 409

dom.arrange()

Availability

Dreamweaver 3

Description

Moves the selected hotspots in the specified direction.
508



Arguments

toBackOrFront

toBackOrFront is the direction in which the hotspots are to move—that is front or back. 

Returns

Nothing.

Enabler

“dom.canArrange()” on page 410

dom.makeSizesEqual()

Availability

Dreamweaver 3

Description

Makes the selected layers or hotspots equal in height, width, or both. The last layer or hotspot 
selected is the guide.

Arguments

bHoriz, bVert

• bHoriz is a Boolean value that indicates whether to resize the layers or hotspots horizontally.

• bVert is a Boolean value that indicates whether to resize the layers or hotspots vertically.

Returns

Nothing.

dom.moveSelectionBy()

Availability

Dreamweaver 3

Description

Moves the selected layers or hotspots by the specified number of pixels horizontally and vertically.

Arguments

x, y

• x is the number of pixels that the selection is to move horizontally.

• y is the number of pixels that the selection is to move vertically.

Returns

Nothing.

dom.resizeSelectionBy()

Availability

Dreamweaver 3

Description

Resizes the currently selected layer or hotspot.
509



Arguments

left, top, bottom, right

• left is the new position of the left boundary of the layer or hotspot.

• top is the new position of the top boundary of the layer or hotspot.

• bottom is the new position of the bottom boundary of the layer or hotspot.

• right is the new position of the right boundary of the layer or hotspot.

Returns

Nothing.

Example

If the selected layer has the Left, Top, Width, and Height properties shown, calling 
dw.getDocumentDOM().resizeSelectionBy(–10,–30,30,10) is equivalent to resetting Left to 
40, Top to 20, Width to 240, and Height to 240.

dom.setLayerTag()

Availability

Dreamweaver 3

Description

Specifies the HTML tag that defines the selected layer or layers.

Arguments

tagName

tagName must be "layer", "ilayer", "div", or "span".

Returns

Nothing.
510



Layout environment functions
Layout environment functions handle operations that are related to the settings for working on a 
document. They affect the source, position, and opacity of the tracing image; get and set the ruler 
origin and units; turn the grid on and off and change its settings; and start or stop playing plug-
ins.

dom.getRulerOrigin()

Availability

Dreamweaver 3

Description

Gets the origin of the ruler.

Arguments

None.

Returns

An array of two integers. The first array item is the x coordinate of the origin, and the second 
array item is the y coordinate of the origin. Both values are in pixels.

dom.getRulerUnits()

Availability

Dreamweaver 3

Description

Gets the current ruler units.

Arguments

None.

Returns

A string that contains one of the following values:

• "in"

• "cm"

• "px"

dom.getTracingImageOpacity()

Availability

Dreamweaver 3

Description

Gets the opacity setting for the document’s tracing image.

Arguments

None.

Returns

A value between 0 and 100, or nothing if no opacity is set.
511



Enabler 

“dom.hasTracingImage()” on page 418

dom.loadTracingImage()

Availability

Dreamweaver 3

Description

Opens the Select Image Source dialog box. If the user selects an image and clicks OK, the Page 
Properties dialog box opens with the Tracing Image field filled in.

Arguments

None.

Returns

Nothing.

dom.playAllPlugins()

Availability

Dreamweaver 3

Description

Plays all plug-in content in the document.

Arguments

None.

Returns

Nothing.

dom.playPlugin()

Availability

Dreamweaver 3

Description

Plays the selected plug-in item.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canPlayPlugin()” on page 415

dom.setRulerOrigin()

Availability

Dreamweaver 3
512



Description

Sets the origin of the ruler.

Arguments

xCoordinate, yCoordinate

• xCoordinate is a value, expressed in pixels, on the horizontal axis.

• yCoordinate is a value, expressed in pixels, on the vertical axis.

Returns

Nothing.

dom.setRulerUnits()

Availability

Dreamweaver 3

Description

Sets the current ruler units.

Arguments

units

units must be "px", "in", or "cm".

Returns

Nothing.

dom.setTracingImagePosition()

Availability

Dreamweaver 3

Description

Moves the top left corner of the tracing image to the specified coordinates. If the arguments are 
omitted, the Adjust Tracing Image Position dialog box appears.

Arguments

x, y

Returns

Nothing.

Enabler

“dom.hasTracingImage()” on page 418

dom.setTracingImageOpacity()

Availability

Dreamweaver 3

Description

Sets the opacity of the tracing image.
513



Arguments

opacityPercentage

opacityPercentage must be a number between 0 and 100.

Returns

Nothing.

Enabler

“dom.hasTracingImage()” on page 418

Example

The following code sets the opacity of the tracing image to 30%:

dw.getDocumentDOM().setTracingOpacity('30');

dom.snapTracingImageToSelection()

Availability

Dreamweaver 3

Description

Aligns the top left corner of the tracing image with the top left corner of the current selection.

Arguments

None.

Returns

Nothing.

Enabler

“dom.hasTracingImage()” on page 418

dom.stopAllPlugins()

Availability

Dreamweaver 3

Description

Stops all plug-in content that is currently playing in the document.

Arguments

None.

Returns

Nothing.

dom.stopPlugin()

Availability

Dreamweaver 3

Description

Stops the selected plug-in item.
514



Arguments

None.

Returns

A Boolean value that indicates whether the selection is currently being played with a plug-in.

Enabler

“dom.canStopPlugin()” on page 417

dreamweaver.arrangeFloatingPalettes()

Availability

Dreamweaver 3

Description

Moves the visible floating panels to their default positions.

Arguments

None.

Returns

Nothing.

dreamweaver.showGridSettingsDialog()

Availability

Dreamweaver 3

Description

Opens the Grid Settings dialog box.

Arguments

None.

Returns

Nothing.
515



Layout view functions
Layout view functions handle operations that change the layout elements within a document. 
They affect table, column, and cell settings, including position, properties, and appearance.

dom.addSpacerToColumn()

Availability

Dreamweaver 4

Description

Creates a 1-pixel-high transparent spacer image at the bottom of a specified column in the 
currently selected table. This function fails if the current selection is not a table or if the operation 
is not successful.

Arguments

colNum

colNum is the column at the bottom of which the spacer image is created.

Returns

Nothing.

dom.createLayoutCell()

Availability

Dreamweaver 4

Description

Creates a layout cell in the current document at the specified position and dimensions, either 
within an existing layout table or in the area below the existing content on the page. If the cell is 
created in an existing layout table, it must not overlap or contain any other layout cells or nested 
layout tables. If the rectangle is not inside an existing layout table, Dreamweaver tries to create a 
layout table to house the new cell. This function does not force the document into Layout view. 
This function fails if the cell cannot be created.

Arguments

left, top, width, height

• left is the x position of the left border of the cell.

• top is the y position of the top border of the cell.

• width is the width of the cell in pixels.

• height is the height of the cell in pixels.

Returns

Nothing.

dom.createLayoutTable()

Availability

Dreamweaver 4
516



Description

Creates a layout table in the current document at the specified position and dimensions, either 
within an existing table or in the area below the existing content on the page. If the table is 
created in an existing layout table, it cannot overlap other layout cells or nested layout tables, but 
it can contain other layout cells or nested layout tables. This function does not force the 
document into Layout view. This function fails if the table cannot be created.

Arguments

left, top, width, height

• left is the x position of the left border of the table.

• top is the y position of the top border of the table.

• width is the width of the table in pixels.

• height is the height of the table in pixels.

Returns

Nothing.

dom.doesColumnHaveSpacer()

Availability

Dreamweaver 4

Description

Determines whether a column contains a spacer image that Dreamweaver generated. This 
function fails if the current selection is not a table.

Arguments

colNum

colNum is the column to check for a spacer image.

Returns

Returns true if the specified column in the currently selected table contains a spacer image that 
Dreamweaver generated; false otherwise.

dom.doesGroupHaveSpacers()

Availability

Dreamweaver 4

Description

Determines whether the currently selected table contains a row of spacer images that 
Dreamweaver generated. This function fails if the current selection is not a table. 

Arguments

None.

Returns

Returns true if the table contains a row of spacer images; false otherwise.
517



dom.getClickedHeaderColumn()

Availability

Dreamweaver 4

Description

If the user clicked a menu button in the header of a table in Layout view, causing the table header 
menu to appear, this function returns the index of the column that the user clicked. The result is 
undefined if the table header menu is not visible.

Arguments

None.

Returns

An integer that represents the index of the column.

dom.getShowLayoutTableTabs()

Availability

Dreamweaver 4

Description

Determines whether the current document shows tabs for layout tables while in Layout view.

Arguments

None.

Returns

Returns true if the current document displays tabs for layout tables while in Layout view; false 
otherwise.

dom.getShowLayoutView()

Availability

Dreamweaver 4

Description

Determines the view for the current document, either Layout view or Standard view. 

Arguments

None.

Returns

Returns true if the current document is in Layout view; false if the document is in Standard 
view.

dom.isColumnAutostretch()

Availability

Dreamweaver 4
518



Description

Determines whether a column is set to expand and contract automatically, depending on the 
document size. This function fails if the current selection is not a table.

Arguments

colNum

colNum is the column to be automatically sized or fixed width.

Returns

Returns true if the column at the given index in the currently selected table is set to autostretch; 
false otherwise

dom.makeCellWidthsConsistent()

Availability

Dreamweaver 4

Description

In the currently selected table, sets the width of each column in the HTML to match the 
currently rendered width of the column. This function fails if the current selection is not a table 
or if the operation is not successful.

Arguments

None.

Returns

Nothing.

dom.removeAllSpacers()

Availability

Dreamweaver 4

Description

Removes all spacer images generated by Dreamweaver from the currently selected table. This 
function fails if the current selection is not a table or if the operation is not successful.

Arguments

None.

Returns

Nothing.

dom.removeSpacerFromColumn()

Availability

Dreamweaver 4

Description

Removes the spacer image from a specified column and deletes the spacer row if there are no more 
spacer images that Dreamweaver generated. This function fails if the current selection is not a 
table or if the operation is not successful.
519



Arguments

colNum

colNum is the column from which to remove the spacer image.

Returns

Nothing.

dom.setColumnAutostretch()

Availability

Dreamweaver 4

Description

Switches a column between automatically sized or fixed width. If bAutostretch is true, the 
column at the given index in the currently selected table is set to autostretch; otherwise it’s set to a 
fixed width at its current rendered width. This function fails if the current selection isn’t a table or 
if the operation is not successful.

Arguments

colNum, bAutostretch

• colNum is the column to be automatically sized or set to a fixed width.

• bAutostretch specifies whether to set the column to autostretch (true) or to a fixed width 
(false).

Returns

Nothing.

dom.setShowLayoutTableTabs()

Availability

Dreamweaver 4

Description

Sets the current document to display tabs for layout tables whenever it’s in Layout view. This 
function does not force the document into Layout view.

Arguments

bShow

bShow indicates whether to display tabs for layout tables when the current document is in Layout 
view. If bShow is true, shows tabs; false otherwise.

Returns

Nothing.

dom.setShowLayoutView()

Availability

Dreamweaver 4
520



Description

Places the current document in Layout view if bShow is true.

Arguments

bShow

bShow is a Boolean value that toggles the current document between Layout view and Standard 
view. If bShow is true, the current document switches to Layout view. If bShow is false, the 
current document switches to Standard view.

Returns

Nothing.

Library and template functions
Library and template functions handle operations that are related to library items and templates, 
such as creating, updating, and breaking links between a document and a template or library 
item. Methods of the dreamweaver.libraryPalette object either control or act on the selection 
in the Library panel, not in the current document. Likewise, methods of the 
dreamweaver.templatePalette object control or act on the selection in the Templates panel.

dom.applyTemplate()

Availability

Dreamweaver 3

Description

Applies a template to the current document. If no argument is supplied, the Select Template 
dialog box appears. This function is valid only for the document that has focus. 

Arguments

{templateURL}, bMaintainLink

• templateURL is the path to a template in the current site, which is expressed as a file:// URL.

• bMaintainLink is a Boolean value that indicates whether to maintain the link to the original 
template (true) or not (false).

Returns

Nothing.

Enabler 

“dom.canApplyTemplate()” on page 409

dom.detachFromLibrary()

Availability

Dreamweaver 3

Description

Detaches the selected library item instance from its associated LBI file by removing the locking 
tags from around the selection. This function is equivalent to clicking Detach from Original in 
the Property inspector.
521



Arguments

None.

Returns

Nothing.

dom.detachFromTemplate()

Availability

Dreamweaver 3

Description

Detaches the current document from its associated template.

Arguments

None.

Returns

Nothing.

dom.getAttachedTemplate()

Availability

Dreamweaver 3

Description

Gets the path of the template that is associated with the document.

Arguments

None.

Returns

A string that contains the path of the template, which is expressed as a file:// URL.

dom.getEditableRegionList()

Availability

Dreamweaver 3

Description

Gets a list of all the editable regions in the body of the document.

Arguments

None.

Returns

An array of element nodes.

Example

See “dom.getSelectedEditableRegion()” on page 523
522



dom.getIsLibraryDocument()

Availability

Dreamweaver 3

Description

Determines whether the document is a library item

Arguments

None.

Returns

A Boolean value that indicates whether the document is an LBI file.

dom.getIsTemplateDocument()

Availability

Dreamweaver 3

Description

Determines whether the document is a template.

Arguments

None.

Returns

A Boolean value that indicates whether the document is a DWT file.

dom.getSelectedEditableRegion()

Availability

Dreamweaver 3

Description

If the selection or insertion point is inside an editable region, gets the position of the editable 
region among all others in the body of the document.

Arguments

None.

Returns

An index into the array that “dom.getEditableRegionList()” on page 522 returns. 

Example

The following code shows a dialog box with the contents of the selected editable region:

var theDOM = dw.getDocumentDOM();
var edRegs = theDOM.getEditableRegionList();
var selReg = theDOM.getSelectedEditableRegion();
alert(edRegs[selReg].innerHTML);
523



dom.insertLibraryItem()

Availability

Dreamweaver 3

Description

Inserts an instance of a library item into the document.

Arguments

libraryItemURL

libraryItemURL is the path to an LBI file, which is expressed as a file:// URL.

Returns

Nothing.

dom.markSelectionAsEditable()

Availability

Dreamweaver 3

Description

Displays the New Editable Region dialog box. When the user clicks New Region, Dreamweaver 
marks the selection as editable and doesn’t change any text.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canMarkSelectionAsEditable()” on page 414

dom.newEditableRegion()

Availability

Dreamweaver 3

Description

Displays the New Editable Region dialog box. When the user clicks New Region, Dreamweaver 
inserts the name of the region, surrounded by braces ({ }), into the document at the insertion 
point location.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canMakeNewEditableRegion()” on page 414
524



dom.removeEditableRegion()

Availability

Dreamweaver 3

Description

Removes an editable region from the document. If the editable region contains any content, the 
content is preserved; only the editable region markers are removed.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canRemoveEditableRegion()” on page 415

dom.updateCurrentPage()

Availability

Dreamweaver 3

Description

Updates the document’s library items, templates, or both. This function is valid only for the 
active document.

Arguments

{typeOfUpdate}

typeOfUpdate, if supplied, must be "library", "template", or "both". If omitted, the default 
is "both".

Returns

Nothing.

dreamweaver.exportTemplateDataAsXML()

Availability

Dreamweaver MX

Description

Exports the current document to the specified file as XML. This function operates on the front 
document, which must be a template. If you do not specify a filename argument, Dreamweaver 
opens a dialog box to request the export file string.

Arguments

{filePath}

filePath Optional. A string that specifies the name of the file to which Dreamweaver exports the 
template. Express filepath as a URL file string such as, "file:///c|/temp/mydata.txt".

Returns

Nothing.
525



Enabler

“dreamweaver.canExportTemplateDataAsXML()” on page 420

Example

if(dreamweaver.canExportTemplateDataAsXML())
{

dreamweaver.exportTemplateDataAsXML("file:///c|/dw_temps/mytemplate.txt")
}

dreamweaver.updatePages()

Availability

Dreamweaver 3

Description

Opens the Update Pages dialog box and selects the specified options.

Arguments

{typeOfUpdate}

typeOfUpdate must be "library", "template", or "both". If the argument is omitted, it 
defaults to "both".

Returns

Nothing.

Live data functions
You can use the following live-data functions to mimic menu functionality:

• showLiveDataDialog() is used for the View > Live Data Settings menu item.

• setLiveDataMode() is used for the View > Live Data and View > Refresh Live Data menu 
items.

• getLiveDataMode() is also used for View > Live Data menu item.

You can use the remaining live-data functions when you implement the translator API 
liveDataTranslateMarkup() function. 

dreamweaver.getLiveDataInitTags()

Availability

Dreamweaver UltraDev 1

Description

Returns the initialization tags for the currently active document. The initialization tags are the 
HTML tags that the user supplies in the Live Data Settings dialog box. This function is typically 
called from a translator’s liveDataTranslateMarkup() function, so that the translator can pass 
the tags to the liveDataTranslate() function.

Arguments

None.

Returns

A string that contains the initialization tags.
526



dreamweaver.getLiveDataMode()

Availability

Dreamweaver UltraDev 1

Description

Determines whether the Live Data window is currently visible.

Arguments

None.

Returns

A Boolean value that indicates whether the Live Data window is visible.

dreamweaver.getLiveDataParameters ()

Availability

Dreamweaver MX

Description

Obtains the URL parameters that are specified as Live Data settings.

Live Data mode lets you view web page in the design stage (as if it has been translated by the 
application server and returned). Generating dynamic content to display in Design view lets you 
view your page layout with live data and adjust it, if necessary.

Before you view live data, you must enter Live Data settings for any URL parameters that you 
reference in your document. This prevents the web server from returning errors for parameters 
that are otherwise undefined in the simulation. 

You enter the URL parameters in name-value pairs. For example, if you reference the URL 
variables ID and Name in server scripts in your document, you must set these URL parameters 
before you view live data.

You can enter Live Data settings through Dreamweaver MX in the following two ways:

• Through the Live Data Settings dialog box, which you can activate from the View menu

• In the URL text field that appears at the top of the document when you click the Live Data 
View button on the toolbar

For the ID and Name parameters, you can enter the following pairs:

ID 22
Name Samuel

In the URL, these parameters would appear as shown in the following example:

http://someURL?ID=22&Name=Samuel

This function lets you obtain these live-data settings through JavaScript.

Arguments

None.
527



Returns

An array that contains the URL parameters for the current document. The array contains an even 
number of parameter strings. Each two elements form a URL parameter name-value pair. The 
even element is the parameter name and the odd element is the value. For example, 
getLiveDataParameters() returns the following array for the ID and Name parameters in the 
preceding example: [’ID,’22’,’Name’,’Samuel’]. 

Example

var paramsArray = dreamweaver.getLiveDataParameters();

dreamweaver.liveDataTranslate()

Availability

Dreamweaver UltraDev 1

Description

Sends an entire HTML document to an application server, asks the server to execute the scripts in 
the document, and returns the resulting HTML document. This function can be called only from 
a translator’s liveDataTranslateMarkup() function; if you try to call it at another time, an error 
occurs. The dreamweaver.liveDataTranslate() function performs the following operations:

• Makes the animated image (that appears near the right edge of the Live Data window) play.

• Listens for user input. If the Stop icon is clicked, the function returns immediately.

• Accepts a single string argument from the caller. (This string is typically the entire source code 
of the user’s document. It is the same string that is used in the next operation.)

• Saves the HTML string from the user’s document as a temporary file on the live-data server.

• Sends an HTTP request to the live-data server, using the parameters specified in the Live Data 
Settings dialog box.

• Receives the HTML response from the live-data server.

• Removes the temporary file from the live-data server.

• Makes the animated image stop playing.

• Returns the HTML response to the caller.

Arguments

A single string, which typically is the entire source code of the user’s current document.

Returns

An httpReply object. This object is the same as the value that the MMHttp.getText() function 
returns. If the user clicks the Stop icon, the return value’s httpReply.statusCode is equal to 200 
(Status OK) and its httpReply.data is equal to the empty string. See “The HTTP API” on page 
281 for more information on the httpReply object.

dreamweaver.setLiveDataError()

Availability

Dreamweaver UltraDev 1
528



Description

Specifies the error message to display if an error occurs while the liveDataTranslateMarkup() 
function executes in a translator. If the document that Dreamweaver passed to 
liveDataTranslate() contains errors, the server passes back an error message that is formatted 
using HTML. If the translator (the code that called liveDataTranslate()) determines that the 
server returned an error message, it calls setLiveDataError() to display the error message in 
Dreamweaver. This message is shown after the liveDataTranslateMarkup() function finishes 
executing; Dreamweaver displays the description in an error dialog box. The 
setLiveDataError() function should be called only from the liveDataTranslateMarkup() 
function. 

Arguments

source

source is a string that contains source code, which is parsed and rendered in the error dialog box.

Returns

Nothing.

dreamweaver.setLiveDataMode()

Availability

Dreamweaver UltraDev 1

Description

Toggles the visibility of the Live Data window.

Arguments

bIsVisible

bIsVisible is a Boolean value that indicates whether the Live Data window should be visible. If 
you pass true to this function and Dreamweaver currently displays the Live Data window, the 
effect is the same as if you clicked Refresh.

Returns

Nothing.

dreamweaver.setLiveDataParameters ()

Availability

Dreamweaver MX

Description

Sets the URL parameters that you reference in your document for use in Live Data mode.

Live Data mode lets you view web page in the design stage (as if it has been translated by the 
application server and returned). Generating dynamic content to display in Design view lets you 
view your page layout with live data and adjust it, if necessary.

Before you view Live Data, though, you must enter Live Data settings for any URL parameters 
that you reference in your document. This prevents the web server from returning errors for 
parameters that are otherwise undefined in the simulation. 
529



You enter the URL parameters in name-value pairs. For example, if you reference the URL 
variables ID and Name in server scripts in your document, you must set these URL parameters 
before you view live data. 

This function lets you set Live Data values through JavaScript.

Arguments

A string that contains the URL parameters that you want to set, in name-value pairs.

Returns

Nothing.

Example

dreamweaver.setLiveDataParameters(“ID=22&Name=Samuel”)

dreamweaver.showLiveDataDialog()

Availability

Dreamweaver UltraDev 1

Description

Displays the Live Data Settings dialog box.

Arguments

None.

Returns

Nothing.

Menu functions
Menu functions handle optimizing and reloading the menus in Macromedia Dreamweaver MX. 
The “dreamweaver.getMenuNeedsUpdating()” on page 530 and 
“dreamweaver.notifyMenuUpdated()” on page 531 functions are designed specifically to 
prevent unnecessary update routines from running on the dynamic menus that are built into 
Dreamweaver.

dreamweaver.getMenuNeedsUpdating()

Availability

Dreamweaver 3

Description

Checks whether the specified menu needs to be updated.

Arguments

menuId

menuId is a string that contains the value of the id attribute for the menu item, as specified in the 
menus.xml file.
530



Returns

A Boolean value that indicates whether the menu needs to be updated. This function returns 
false only if “dreamweaver.notifyMenuUpdated()” on page 531 has been called with this 
menuId, and the return value of menuListFunction has not changed since then. For more 
information, see “dreamweaver.notifyMenuUpdated()” on page 531.

dreamweaver.notifyMenuUpdated()

Availability

Dreamweaver 3

Description

Notifies Dreamweaver when the specified menu needs to be updated.

Arguments

menuId, menuListFunction

• menuId is a string that contains the value of the id attribute for the menu item, as specified in 
the menus.xml file.

• menuListFunction must be one of the following strings: 
"dw.cssStylePalette.getStyles()", "dw.getDocumentDOM().getFrameNames()", 
"dw.getDocumentDOM().getEditableRegionList", "dw.getBrowserList()", 
"dw.getRecentFileList()", "dw.getTranslatorList()", "dw.getFontList()", 
"dw.getDocumentList()", "dw.htmlStylePalette.getStyles()", or 
"site.getSites()". 

Returns

Nothing.

dreamweaver.reloadMenus()

Availability

Dreamweaver 3

Description

Reloads the entire menu structure from the menus.xml file in the Configuration folder.

Arguments

None.

Returns

Nothing.
531



Path functions
Path functions get and manipulate the paths to various files and folders on a user’s hard disk. 
These functions determine the path to the root of the site in which the current document resides, 
convert relative paths to absolute URLs, and more.

dreamweaver.getConfigurationPath()

Availability

Dreamweaver 2

Description

Gets the path to the Dreamweaver Configuration folder, which is expressed as a file:// URL.

See “File Access and Multiuser Configuration API” on page 260 for information on how 
Dreamweaver accesses Configuration folders on a multiuser platform.

Arguments

None.

Returns

Returns the path to the application configurations.

Example

This function is useful when referencing other extension files, which are stored in the 
Configuration folder inside the Dreamweaver application folder. 

var sortCmd = dreamweaver.getConfigurationPath() + ¬
"/Commands/Sort Table.htm"
var sortDOM = dreamweaver.getDocumentDOM(sortCmd);

dreamweaver.getDocumentPath()

Availability

Dreamweaver1.2

Description

Gets the path of the specified document, which is expressed as a file:// URL. This function is 
equivalent to calling dreamweaver.getDocumentDOM() and reading the URL property of the 
return value.

Arguments

sourceDoc

sourceDoc must be "document", "parent", "parent.frames[number]", or 
"parent.frames['frameName']". document specifies the document that has the focus and 
contains the current selection. "parent" specifies the parent frameset (if the currently selected 
document is in a frame), and "parent.frames[number]" and 
"parent.frames['frameName']" specify a document that is in a particular frame within the 
frameset that contains the current document.

Returns

Either a string that contains the URL of the specified document if the file was saved or an empty 
string if the file was not saved
532



dreamweaver.getSiteRoot()

Availability

Dreamweaver 1.2

Description

Gets the local root folder (as specified in the Site Definition dialog box) for the site that is 
associated with the currently selected document, which is expressed as a file:// URL.

Arguments

None.

Returns

Either a string that contains the URL of the local root folder of the site within which the file was 
saved or an empty string if the file is not associated with a site.

dreamweaver.relativeToAbsoluteURL()

Availability

Dreamweaver 2

Description

Given a relative URL and a point of reference (either the path to the current document or the site 
root), this function converts the relative URL to an absolute (file://) URL.

Arguments

docPath, siteRoot, relURL

• docPath is the path to a document on the user’s disk (for example, the current document), 
which is expressed as a file:// URL or an empty string if relURL is a root-relative URL.

• siteRoot is the path to the site root, which is expressed as a file:// URL or an empty string if 
relURL is a document-relative URL.

• relURL is the URL to be converted. 

Returns

An absolute URL string. The return value is generated as described in the following list:

• If relURL is an absolute URL, no conversion takes place, and the return value is the same as 
relURL. 

• If relURL is a document-relative URL, the return value is the combination of 
docPath + relURL.

• If relURL is a root-relative URL, the return value is the combination of siteRoot + relURL.
533



Print function
The print function lets the user print code from Code view.

dreamweaver.PrintCode()

Availability

Dreamweaver MX

Description

In Windows, prints all or selected portions of code from the Code view. On the Macintosh, prints 
all code or a page range of code.

Arguments

showPrintDialog, document

• showPrintDialog is true or false. If this argument is set to true, in Windows 
dreamweaver.PrintCode() displays the print dialog box to ask if the user wants to print all 
text or selected text. On the Macintosh, the dreamweaver.PrintCode() function displays the 
print dialog box to ask if the user wants to print all text or a page range. If the argument is set 
to false, dreamweaver.PrintCode() uses the user’s previous selection. The default value is 
true.

• document is the document DOM of the document to print. For information on how to obtain 
the DOM for a document, see “dreamweaver.getDocumentDOM()” on page 453.

Returns

true if able to print the code.

false if unable to print the code.

Example

var theDOM = dreamweaver.getDocumentDOM(“document”);
if(!dreamweaver.PrintCode(true, theDOM))
{

alert(“Unable to execute your print request!”);
}

Quick Tag Editor Functions
Quick tag editor functions navigate through the tags within and surrounding the current 
selection. They remove any tag in the hierarchy, wrap the selection inside a new tag, and show the 
Quick tag editor to let the user edit specific attributes for the tag.

dom.selectChild()

Availability

Dreamweaver 3

Description

Selects a child of the current selection. Calling this function is equivalent to selecting the next tag 
to the right in the tag selector at the bottom of the Document window.
534



Arguments

None.

Returns

Nothing.

dom.selectParent()

Availability

Dreamweaver 3

Description

Selects the parent of the current selection. Calling this function is equivalent to selecting the next 
tag to the left in the tag selector at the bottom of the Document window.

Arguments

None.

Returns

Nothing.

dom.stripTag()

Availability

Dreamweaver 3

Description

Removes the tag from around the current selection, leaving the contents, if any. If the selection 
contains no tags or more than one tag, Dreamweaver reports an error.

Arguments

None.

Returns

Nothing.

dom.wrapTag()

Availability

Dreamweaver 3

Description

Wraps the specified tag around the current selection. If the selection is unbalanced, Dreamweaver 
reports an error.

Arguments

startTag

startTag is the source that is associated with the opening tag.

Returns

Nothing.
535



Example

The following code wraps a link around the current selection:

var theDOM = dw.getDocumentDOM();
var theSel = theDOM.getSelectedNode();
if (theSel.nodeType == Node.TEXT_NODE){

theDOM.wrapTag(’<a href="foo.html">’);
}

dreamweaver.showQuickTagEditor()

Availability

Dreamweaver 3

Description

Displays the Quick tag editor for the current selection.

Arguments

{nearWhat}, {mode}

• nearWhat, if specified, must be either "selection" or "tag selector". The default value, if 
this argument is omitted, is "selection".

• mode, if specified, must be "default", "wrap", "insert", or "edit". If mode is "default" or 
omitted, Dreamweaver uses heuristics to determine the mode to use for the current selection. 
mode is ignored if nearWhat is "tag selector".

Returns

Nothing.

Report Functions 
Report functions provide access to the Dreamweaver reporting features so you can initiate, 
monitor and customize the reporting process. For more information, see “Reports” on page 103.

dreamweaver.isReporting()

Availability

Dreamweaver 4

Description

Checks to see if a reporting process is currently running.

Arguments

None.

Returns

A Boolean value that indicates whether a process is running (true) or not (false).

dreamweaver.showReportsDialog()

Availability

Dreamweaver 4
536



Description

Opens the Reports dialog box.

Arguments

None.

Returns

Nothing.

Results window functions
Results window functions let you create a stand-alone window that displays columns of formatted 
data, or you can interact with the built-in windows of the Results panel group.

Creating a Stand-alone Results window

These functions create custom windows that are similar to the output from the JavaScript 
Debugger window.

dreamweaver.createResultsWindow()

Availability

Dreamweaver 4

Description

Creates a new Results window and returns a JavaScript object reference to the window.

Arguments

strName, arrColumns

• strName is the string to use for the window’s title.

• arrColumns is an array of column names to use in the list control.

Returns

An object reference to the created window.

resWin.addItem()

Availability

Dreamweaver 4

Description

Adds a new item to the Results window.

Arguments

strIcon, strDesc, iStartSel, iEndSel, colNdata
537



• strIcon is the path to the icon to use. To display a built-in icon, use a value 1 through 10 
instead of the fully qualified path name of the icon (use 0 for no icon). The following table 
details which icon will appear, given the corresponding value:

• strDesc is a detailed description of a code font item. Specify code font if there is no 
description.

• iStartSel is the start of selection offset in the file; specify null if not used.

• iEndSel is the end of selection offset in the file; specify code font if not used.

• colNdata is a string to use for each column.

Returns

A Boolean value; true if the item was added successfully, false otherwise.

resWin.addResultItem()

Availability

Dreamweaver 4

Description

Adds a new results entry to the current Results window based on the information in the file 
processed by the processfile() function. The current Results window corresponds to the 
Results window that is active during the reporting process. If a report is not being generated, then 
this function has no effect.

This function adds new results until all files pertaining to the user’s selection have been processed, 
or the user clicks the Stop button at the bottom of the window. Dreamweaver displays the name 
of each file being processed and the number of remaining files to be processed. Dreamweaver 
automatically releases each file’s DOM when finished.

Arguments

strFilePath, strIcon, strDisplay, strDesc, iLineNo, iStartSel, iEndSel

• strFilePath is a fully qualified URL file path name of the file to process.

• strIcon is the path to the icon to use. To display a built-in icon, use a value 1 through 10 
instead of the fully qualified path name of the icon (use 0 for no icon). The following table 
details which icon will appear, given the corresponding value:

• strDisplay is the string to display to the user in first column of the results window (usually, 
the filename).
538



• strDesc is the description to go along with the entry.

• iLineNo is the number of lines in file (optional).

• iStartSel is the start of offset into file (optional, but if used, the iEndSel argument must 
also be used.).

• iEndSel is the end of offset into file (required if iStartSel is used).

Returns

Nothing

resWin.setCallbackCommands()

Availability

Dreamweaver 4

Description

Tells the Results window on which commands to call the processFile() method. If this 
function is not called, the command that created the Results window is called.

Arguments

arrCmdNames

arrCmdNames is an array of command names on which to call the processFile() method.

Returns

Nothing.

resWin.setColumnWidths()

Availability

Dreamweaver 4

Description

Sets the width of each column.

Arguments

arrWidth

arrWidth is an array of integers that represents the widths to use for each column in the control.

Returns

Nothing.

resWin.setFileList()

Availability

Dreamweaver 4

Description

Gives the Results window a list of files, directories, or both to call a set of commands to process.

Arguments

arrFilePaths, bRecursive
539



• arrFilePaths is an array of file or folder paths to iterate through.

• bRecursive is a Boolean value that indicates whether the iteration should be recursive (true) 
or not (false).

Returns

Nothing.

resWin.setTitle()

Availability

Dreamweaver 4

Description

Sets the title of the window.

Arguments

strTitle

strTitle is the new name of the floating panel.

Returns

Nothing.

resWin.startProcessing()

Availability

Dreamweaver 4

Description

Starts processing the file.

Arguments

None.

Returns

Nothing.

resWin.stopProcessing()

Availability

Dreamweaver 4

Description

Stops processing the file.

Arguments

None.

Returns

Nothing.
540



Working with the built-in Results panel group

These functions produce output in the Results panel group. The Results panel group displays 
tabbed reports on searches, source validation, sitewide reports, browser targets, console reports, 
FTP logging, and link-checking.

Working with specific child panels

The following child panels are build-in Results windows that always exist in the Dreamweaver 
interface, and can be accessed directly. Since these windows are Results windows, you can use the 
same methods defined for stand-alone Results windows. For more information about using the 
resWin methods, see “Creating a Stand-alone Results window” on page 537. 

• dreamweaver.resultsPalette.siteReports
• dreamweaver.resultsPalette.validator

• dreamweaver.resultsPalette.btc (Target Browser Check panel)

Working with the active child panel

The following general API functions apply to whichever child panel is active. Some child panels 
may ignore some of these methods. If the active child panel does not support the method, then 
calling the method has no effect.

dreamweaver.resultsPalette.clearItems()

Availability

Dreamweaver MX

Description

Clears the contents of the panel in focus.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canClearItems()” on page 426

dreamweaver.resultsPalette.clipCopy()

Availability

Dreamweaver MX

Description

Sends a copied message to the current window in focus (often used for the FTP logging window).

Arguments

None.
541



Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canClipCopy()” on page 427

dreamweaver.resultsPalette.clipCut()

Availability

Dreamweaver MX

Description

Sends a cut message to the window in focus (often used for the FTP logging window).

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canClipCut()” on page 427

dreamweaver.resultsPalette.clipPaste()

Availability

Dreamweaver MX

Description

Sends a pasted message to the window in focus (often used for the FTP logging window).

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canClipPaste()” on page 427

dreamweaver.resultsPalette.openInBrowser

Availability

Dreamweaver MX

Description

Sends a report (Site Reports, Browser Target Check, Validation, and Link Checker) to the default 
browser.

Arguments

None.
542



Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canOpenInBrowser()” on page 427

dreamweaver.resultsPalette.openInEditor()

Availability

Dreamweaver MX

Description

Jumps to the selected line for specific reports (Site Reports, Browser Target Check, Validation, 
and Link Checker) and opens the document in the editor.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canOpenInEditor()” on page 428

dreamweaver.resultsPalette.save()

Availability

Dreamweaver MX

Description

Launches the Save dialog box for a window that supports the Save function (Site Reports, Browser 
Target Check, Validation, and Link Checker).

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canSave()” on page 428

dreamweaver.resultsPalette.selectAll()

Availability

Dreamweaver MX

Description

Sends a Select All command to the window in focus.

Arguments

None.
543



Returns

Nothing.

Enabler

“dreamweaver.resultsPalette.canSelectAll()” on page 428

Server debugging

Dreamweaver can request files from ColdFusion and display the response in its embedded 
browser. When the response returns from the server, Dreamweaver searches the response for a 
packet of XML that has a known signature. If Dreamweaver finds XML with that signature, it 
processes the XML and displays the contained information in a tree control. This tree displays 
information about the following items: 

• All templates, custom tags, and include files that are used to generate the rendered .cfm page

• Exceptions

• SQL queries

• Object queries

• Variables

• Trace trail 

Additionally, the Server Debug panel can display debug data from other server models. To set up 
Dreamweaver to debug other server models, use the 
dreamweaver.resultsPalette.debugWindow.addDebugContextData() method.

dreamweaver.resultsPalette.debugWindow.addDebugContextData()

Availability

Dreamweaver MX

Description

Interprets a customized .xml file that returns from the server that is specified in the Site 
Definition dialog box. The contents of the .xml file display as tree data in the Server Debug panel, 
so you can use the Server Debug panel to evaluate server-generated content from various server 
models. 

Arguments

treedata

treedata is the XML string that the server returns. The XML string should use the following 
formatting: 

server debug node Root node for the debug xml data

debugnode Corresponds to every node

context Name of item that appears in the context list

icon Icon to use for tree node 

name Name to display 

value Value to display 

timestamp Only applicable to context node
544



For example:

<serverdebuginfo>
<context>

<template><![CDATA[/ooo/master.cfm]]></template>
<path><![CDATA[C:\server\wwwroot\ooo\master.cfm]]></path>
<timestamp><![CDATA[0:0:0.0]]></timestamp>

</context>
<debugnode>

<name><![CDATA[CGI]]></name>
<icon><![CDATA[ServerDebugOutput/ColdFusion/CGIVariables.gif]]></icon>
<debugnode>

<name><![CDATA[Pubs.name.sourceURL]]></name>
<icon><![CDATA[ServerDebugOutput/ColdFusion/Variable.gif]]></icon>
<value><![CDATA[jdbc:macromedia:sqlserver://

name.macromedia.com:1111;databaseName=Pubs]]></value>
</debugnode>

</debugnode>
<debugnode>

<name><![CDATA[Element Snippet is undefined in class 
coldfusion.compiler.TagInfoNotFoundException]]></name>

<icon><![CDATA[ServerDebugOutput/ColdFusion/Exception.gif]]></icon>
<jumptoline linenumber="3" startposition="2" endposition="20">

<template><![CDATA[/ooo/master.cfm]]></template>
<path><![CDATA[C:\Neo\wwwroot\ooo\master.cfm]]></path>

</jumptoline>
</debugnode>

</serverdebuginfo> 

Returns

Nothing.

The following are optional:

jumptoline Link to a specific line number

template Name of the template file part of the URL

path Path of the file from server point of view 

line number Line number within the file

start position Starting character offset within the line 

end position Ending character offset within the line
545



Selection functions 
Selection functions get and set the selection in open documents. For information on getting or 
setting the selection in the Site panel, see “Site functions” on page 558. 

dom.getSelectedNode()

Availability

Dreamweaver 3

Description

Gets the selected node. Using this function is equivalent to calling dom.getSelection() and 
passing the return value to dom.offsetsToNode().

Arguments

None.

Returns

The tag, text, or comment object that completely contains the specified range of characters.

dom.getSelection()

Availability

Dreamweaver 3

Description

Gets the selection, which is expressed as character offsets into the document’s source code.

Arguments

bAllowMultiple

• bAllowMultiple is a Boolean value that indicates whether the function should return multiple 
offsets if more than one table cell, image map hotspot, or layer is selected.

If this argument is omitted, it defaults to false.

Returns

For simple selections, this function returns an array that contains two integers. The first integer is 
the character offset of the beginning of the selection. The second integer is the character offset of 
the end of the selection. If the two numbers are the same, the current selection is an insertion 
point.

For complex selections (multiple table cells, multiple layers, or multiple image map hotspots), an 
array that contains 2n integers, where n is the number of selected items. The first integer in each 
pair is the character offset of the beginning of the selection (including the opening TD, DIV, SPAN, 
LAYER, ILAYER, or MAP tag); the second integer in each pair is the character offset of the end of the 
selection (including the closing TD, DIV, SPAN, LAYER, ILAYER, or MAP tag). If multiple table rows 
are selected, the offsets of each cell in each row are returned. The selection never includes the TR 
tags.

dom.nodeToOffsets()

Availability

Dreamweaver 3
546



Description

Gets the position of a specific node in the DOM tree, which is expressed as character offsets into 
the document’s source code. It is valid for any document on a local drive.

Arguments

node

node must be a tag, comment, or range of text that is a node in the tree that 
dreamweaver.getDocumentDOM() returns.

Returns

An array that contains two integers. The first integer is the character offset of the beginning of the 
tag, text, or comment. The second integer is the character offset of the end of the node, from the 
beginning of the HTML document.

Enabler

None.

Example

The following code selects the first image object in the current document:

var theDOM = dw.getDocumentDOM();
var theImg = theDOM.images[0];
var offsets = theDom.nodeToOffsets(theImg);
theDom.setSelection(offsets[0], offsets[1]);

dom.offsetsToNode()

Availability

Dreamweaver 3

Description

Gets the object in the DOM tree that completely contains the range of characters between the 
specified beginning and end points. It is valid for any document on a local drive.

Arguments

offsetBegin, offsetEnd

The arguments are the beginning and end points, respectively, of a range of characters, expressed 
as character offsets from the beginning of the document’s source code.

Returns

The tag, text, or comment object that completely contains the specified range of characters.

Example

The following code displays an alert if the selection is an image:

var offsets = dom.getSelection();
var theSelection = dreamweaver.offsetsToNode(offsets[0], ¬
offsets[1]);
if (theSelection.nodeType == Node.ELEMENT_NODE && ¬
theSelection.tagName == 'IMG'){

alert('The current selection is an image.');
}

547



dom.selectAll()

Availability

Dreamweaver 3

Description

Performs a Select All operation.

Note: In most cases this function selects all the content in the active document. In some cases (for example, when 
the insertion point is inside a table), it selects only part of the active document. To set the selection to the entire 
document, use dom.setSelection().

Arguments

None.

Returns

Nothing.

dom.selectTable()

Availability

Dreamweaver 3

Description

Selects an entire table.

Arguments

None.

Returns

Nothing.

Enabler 

“dom.canSelectTable()” on page 416

dom.setSelectedNode()

Availability

Dreamweaver 3

Description

Sets the selected node. This function is equivalent to calling dom.nodeToOffsets() and passing 
the return value to dom.setSelection().

Arguments

node, {bSelectInside}, {bJumpToNode}

• node is a text, comment, or element node in the document.

• bSelectInside is a Boolean value that indicates whether to select the innterHTML of the 
node. This argument is relevant only if node is an element node, and it defaults to false if it is 
omitted.

• bJumpToNode is a Boolean value that indicates whether to scroll the Document window, if 
necessary, to make the selection visible. If it is omitted, this argument defaults to false.
548



Returns

Nothing.

dom.setSelection()

Availability

Dreamweaver 3

Description

Sets the selection in the document.

Arguments

offsetBegin, offsetEnd

The arguments are the beginning and end points, respectively, for the new selection, which is 
expressed as character offsets into the document’s source code. If the two numbers are the same, 
the new selection is an insertion point. If the new selection is not a valid HTML selection, it is 
expanded to include the characters in the first valid HTML selection. For example, if 
offsetBegin and offsetEnd define the range SRC="myImage.gif" within <IMG 
SRC="myImage.gif">, the selection expands to include the entire IMG tag.

Returns

Nothing.

dreamweaver.nodeExists()

Available

Dreamweaver 3

Description

Determines whether the reference to the specified node is still good. Often when writing 
extensions, you reference a node and then perform an operation that deletes it (such as setting the 
innerHTML or outerHTML properties of its parent). This function lets you confirm that the node 
hasn’t been deleted before you attempt to reference any of its properties or methods. The 
referenced node does not need to be in the current document.

Arguments

node is the node that you want to check.

Returns

A Boolean value that indicates whether the node exists.
549



Example

function applyFormatToSelectedTable(){

// get current selection
var selObj = dw.getDocumentDOM().getSelectedNode();

alternateRows(dwscripts.findDOMObject("presetNames").selectedIndex, 
findTable());

// restore original selection, if it still exists; if not, just select the
// table.

var selArr;

if (dw.nodeExists(selObj))
selArr = dom.nodeToOffsets(selObj);

else
selArr = dom.nodeToOffsets(findTable());

dom.setSelection(selArr[0],selArr[1]);
}
}

dreamweaver.selectAll()

Availability

Dreamweaver 3

Description

Performs a Select All operation in the active Document window or the Site panel; or, on the 
Macintosh, the edit field that has focus in a dialog box or floating panel.

Note: If the operation takes place in the active document, it usually selects all the content in the active document. In 
some cases (for example, when the insertion point is inside a table), however, it selects only part of the active 
document. To set the selection to the entire document, use dom.setSelection().

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.canSelectAll()” on page 424
550



Server behavior functions 
Server behavior functions let you manipulate the Server Behaviors panel, which you can display 
by selecting Window > Server Behaviors. Using these functions, you can find all the server 
behaviors on a page and programmatically apply a new behavior to the document or modify an 
existing behavior.

Note: You can abbreviate dw.serverBehaviorInspector to dw.sbi.

dreamweaver.serverBehaviorInspector.getServerBehaviors()

Availability

Dreamweaver UltraDev 1

Description

Gets a list of all the behaviors on the page. When Dreamweaver determines that the internal list 
of server behaviors might be out of date, it calls findServerBehaviors() for each currently 
installed behavior. Each function returns an array.  Dreamweaver merges all the arrays into a 
single array and sorts it, based on the order that each behavior’s selectedNode object appears in 
the document. Dreamweaver stores the merged array internally.  The getServerBehaviors() 
function returns a pointer to that merged array.

Arguments

None.

Returns

An array of JavaScript objects. The objects in the array are returned by the 
findServerBehaviors() call. The objects are sorted in the order that they appear in the Server 
Behaviors panel.

dreamweaver.popupServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Applies a new server behavior to the document or modifies an existing behavior. If the user must 
specify parameters for the behavior, a dialog box appears.

Arguments

{behaviorName or behaviorObject}

• behaviorName is a string that represents the behavior’s name, the title tag of a file, or a 
filename.

• behaviorObject is a behavior object.

If you omit the argument, Dreamweaver runs the currently selected server behavior. If the 
argument is the name of a server behavior, Dreamweaver adds the behavior to the page. If the 
argument is one of the objects in the array that is returned by getServerBehaviors(), a dialog 
box appears, so the user can modify the parameters for the behavior.

Returns

Nothing.
551



Server model functions
In Macromedia Dreamweaver MX, each document has an associated document type. For 
dynamic document types, Dreamweaver also associates a server model (such as ASP-JS, 
ColdFusion, or PHP-MySQL).

Server models are used to group functionality that is specific to a given server technology. 
Different server behaviors, data sources, and so forth, appear based on the server model that is 
associated with the document.

Using the server model functions, you can determine the set of server models that are currently 
defined; the name, language, and version of the current server model; and whether the current 
server model supports a named character set (such as UTF-8).

Note: Dreamweaver MX reads all the information in the server model HTML file and stores this information when it 
first loads the server model. So, when an extension calls functions such as dom.serverModel.getServerName(), 
dom.serverModel.getServerLanguage(), and dom.serverModel.getServerVersion(), these functions 
return the stored values.

dreamweaver.getServerModels()

Availability

Dreamweaver MX

Description

Gets the names for all the currently defined server models. The set of names is the same as the 
ones that appear in the Server Model field in the Site Definition dialog box in the user interface.

Arguments

None.

Returns

An array of strings. Each string element holds the name of a currently defined server model.

dom.serverModel.getAppURLPrefix()

Availability

Dreamweaver MX

Description

Returns the URL for the site’s root folder on the testing server. This URL is the same as that 
specified for the Testing Server under the Advanced tab in the Site Definition dialog box. 

When Dreamweaver communicates with your testing server, it uses HTTP (the same way as a 
browser). When doing so, it uses this URL to access your site’s root folder.

Arguments

None.

Returns

A string, which holds the URL to the application server that is used for live data and debugging 
purposes. 
552



Example

If the user creates a site and specifies that the testing server is on the local computer and that the 
root folder is named "employeeapp", a call to dom.serverModel.getAppURLPrefix() returns 
this string:

http://localhost/employeeapp/

dom.serverModel.getDelimiters()

Availability

Dreamweaver MX

Description

Lets JavaScript code get the script delimiters for each server model, so managing the server model 
code can be separated from managing the user-scripted code.

Arguments

None.

Returns

An array of objects where each object contains the following three properties: 

• startPattern is a regular expression that matches the opening script delimiter.

• endPattern is a regular expression that matches the closing script delimiter.

• participateInMerge is a Boolean value that specifies whether the content that is enclosed in 
the listed delimiters should (true) or should not (false) participate in block merging.

dom.serverModel.getDisplayName()

Availability

Dreamweaver MX

Description

Gets the name of the server model that appears in the user interface.

Arguments

None.

Returns

A string, the value of which is the name of the server model.

dom.serverModel.getFolderName()

Availability

Dreamweaver MX

Description

Gets the name of the folder that is used for this server model within the Configuration folder 
(such as in the ServerModels subfolder).

Arguments

None.
553



Returns

A string, the value of which is the name of the folder.

dom.serverModel.getServerExtension()

Availability

Dreamweaver UltraDev 4, deprecated in Dreamweaver MX

Description

Returns the default file extension of files that use the current server model. (The default file 
extension is the first in the list.) If no user document is currently selected, the serverModel 
object is set to the server model of the currently selected site.

Arguments

None.

Returns

A string that represents the supported file extensions. 

dom.serverModel.getServerIncludeUrlPatterns()

Availability

Dreamweaver MX

Description

Returns the following list of properties, which let you access translator URL patterns:

• Translator URL patterns

• File references

• Type

Arguments

None.

Returns

A list of objects, one for each searchPattern. Each object has the following three properties:

Property Description

pattern A JavaScript regular expression that is specified in the searchPattern field 
of a .edml file that matches criteria. (A regular expression is delimited by a pair 
of forward slashes (//).)

fileRef The 1-based index of the regular expression submatch that corresponds to the 
included file reference.

type The portion of the paramName value that remains after removing the 
_includeUrl suffix. This type is assigned to the type attribute of the 
<MM:BeginLock> tag. For an example, see Server Model SSI.htm in the 
Configuration/Translators folder.
554



Example

The following snippet from a participant file illustrates a translator searchPatterns tag:

<searchPatterns whereToSearch="comment">
<searchPattern paramNames=",ssi_comment_includeUrl">

<![CDATA[/<!--\s*#include\s+(file|virtual)\s*=\s*"([^"]*)"\s*-->/i]]>
</searchPattern>

</searchPatterns>

The search pattern contains a JavaScript regular expression that specifies two submatches (both of 
which are contained within parentheses). The first submatch is for the text string file or 
virtual. The second submatch is a file reference. 

To access the translator URL pattern, your code should look like the following example:

var serverModel = dw.getDocumentDOM().serverModel;
var includeArray = new Array();
includeArray = serverModel.getServerIncludeUrlPatterns();

The call to serverModel.getServerIncludeUrlPatterns() returns the following three 
properties:

dom.serverModel.getServerInfo()

Availability

Dreamweaver MX

Description

Returns information that is specific to the current server model. This information is 
defined in the HTML definition file for the server model, which is located in the 
Configuration/ServerModels folder. 

You can modify the information in the HTML definition file or place additional variable values 
or functions in the file. For example, you can modify the serverName, serverLanguage, and 
serverVersion properties. The dom.serverModel.getServerInfo() function returns the 
information that the server model author adds to the definition file.

Note: The other values that are defined in the default server model files are for internal use only.

The serverName, serverLanguage, and serverVersion properties are special because the 
developer can access them directly by using the following corresponding functions:

• dom.serverModel.getServerName()
• dom.serverModel.getServerLanguage()
• dom.serverModel.getServerVersion()

Arguments

None.

Property Return value

pattern /<!--\s*#include\s+(file|virtual)\s*=\s*"([^"]*)"\s*-->/i

fileRef 2

type ssi_comment
555



Returns

A JavaScript object that contains a variety of information that is specific to the current server 
model.

dom.serverModel.getServerLanguage()

Availability

Dreamweaver 1, deprecated in Dreamweaver MX

Description

Determines the server model that is associated with the document and returns that value. The 
server language for a site is the value that comes from the Default Scripting Language setting in 
the App Server Info tab of the Site Definition dialog box. To get the return value, this function 
calls the getServerLanguage() function in the Server Models API.

Note: The Default Scripting Language list exists only in Dreamweaver 4 and earlier versions. For Dreamweaver MX, 
the Site Definition dialog box does not list supported scripting languages. Also, for Dreamweaver MX, the 
dom.serverModel.getServerLanguage() function reads the serverLanguage property of the object that is 
returned by a call to the getServerInfo() function in the Server Models API.

Arguments

None.

Returns

A string that contains the supported scripting languages. 

dom.serverModel.getServerName()

Availability

Dreamweaver 1, enhanced in Dreamweaver MX

Description

Determines the server model that is associated with the document and returns that value. Possible 
values include ASP.NET C#, ASP.NET VB, ASP VBScript, ASP JavaScript, ColdFusion, JSP, 
PHP MySQL, and any additional files that are contained in the Configuration/ServerModels 
folder.

Note: For Dreamweaver MX, dom.serverModel.getServerName() reads the serverName property of the object 
that is returned by a call to the getServerInfo() function in the Server Models API.

Arguments

None.

Returns

A string that contains the server name. 

dom.serverModel.getServerSupportsCharset()

Availability

Dreamweaver MX

Description

Determines whether the server model that is associated with the document supports the named 
character set. 
556



Note: In addition to letting you call this function from the JavaScript layer, Dreamweaver MX calls this function when 
the user changes the encoding in the page Properties dialog box. If the server model does not support the new 
character encoding, this function returns false and Dreamweaver pops up a warning dialog box that asks if the user 
wants to do the conversion. An example of this situation is when a user attempts to convert a ColdFusion 4.5 
document to UTF-8 because ColdFusion does not support UTF-8 encoding.

Arguments

metaCharSetString

metaCharSetString is a string value that names a particular character set. This value is the same 
as that of the "charset=" attribute of a <meta> tag that is associated with a document. Supported 
values for a given server model are defined in the HTML definition file for the server model, 
which is located in the Configuration/ServerModels folder.

Returns

A Boolean value. The getServerSupportsCharset() function returns true if the server model 
supports the named character set; false otherwise.

dom.serverModel.getServerVersion()

Availability

Dreamweaver 1, enhanced in Dreamweaver MX

Description

Determines the server model that is associated with the document and returns that value. Each 
server model has a getVersionArray() function, as defined in the Server Models API, which 
returns a table of name-version pairs. 

Note: For Dreamweaver MX, dom.serverModel.getServerVersion() first reads the serverVersion property 
of the object that is returned by a call to getServerInfo() in the Server Models API. If that property does not exist, 
dom.serverModel.getServerVersion() reads it from the getVersionArray() function.

Arguments

name

name is a string that represents the name of a server model.

Returns

A string that contains the version of the named server model. 

dom.serverModel.testAppServer()

Availability

Dreamweaver MX

Description

Tests whether a connection to the application server can be made.

Arguments

None.

Returns

A Boolean value that indicates whether the request to connect to the application server was 
successful.
557



Site functions
Site functions handle operations that are related to files in the site files or site map. These 
functions let you perform the following tasks:

• Create links between files

• Get, put, check in, and check out files

• Select and deselect files

• Create and remove files

• Get information about the sites that the user has defined

• Import and export site information

dreamweaver.loadSitesFromPrefs() 

Availability

Dreamweaver 4

Description

Loads the site information for all the sites from the system registry (Windows) or the 
Dreamweaver Preferences file (Macintosh) into Dreamweaver. If a site is connected to a remote 
server when this function is called, the site is automatically disconnected.

Arguments

None.

Returns

Nothing.

dreamweaver.saveSitesToPrefs()

Availability

Dreamweaver 4

Description

Saves all information for each site that the user has defined to the system registry (Windows) or 
the Dreamweaver Preferences file (Macintosh). 

Arguments

None.

Returns

Nothing.

site.addLinkToExistingFile()

Availability

Dreamweaver 3

Description

Opens the Select HTML File dialog box to let the user select a file and creates a link from the 
selected document to that file
558



Arguments

None.

Returns

Nothing.

Enabler

“site.canAddLink()” on page 433

site.addLinkToNewFile()

Availability

Dreamweaver 3

Description

Opens the Link to New File dialog box to let the user specify details for the new file and creates a 
link from the selected document to that file

Arguments

None.

Returns

Nothing.

Enabler

“site.canAddLink()” on page 433

site.canEditColumns()

Description

Determines whether a site exists.

Arguments

None.

Returns

true if a site exists; otherwise false.

site.changeLinkSitewide()

Availability

Dreamweaver 3

Description

Opens the Change Link Sitewide dialog box.

Arguments

None.

Returns

Nothing.
559



site.changeLink()

Availability

Dreamweaver 3

Description

Opens the Select HTML File dialog box to let the user select a new file for the link.

Arguments

None.

Returns

Nothing.

Enabler

“site.canChangeLink()” on page 433

site.checkIn()

Availability

Dreamweaver 3

Description

Checks in the selected files and handles dependent files in one of the following ways:

• If the user selects Prompt on Put/Check In in the Site FTP preferences, the Dependent Files 
dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked Yes, dependent files are uploaded and no dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked No, dependent files are not uploaded and no dialog box appears.

Arguments

siteOrURL

siteOrURL must be the keyword "site", which indicates that the function should act on the 
selection in the Site panel or on the URL for a single file.

Returns

Nothing.

Enabler

“site.canCheckIn()” on page 433

site.checkLinks()

Availability

Dreamweaver 3

Description

Opens the Link Checker dialog box and checks links in the specified files.
560



Arguments

scopeOfCheck

scopeOfCheck specifies where links will be checked. It must be "document", "selection", or 
"site".

Returns

Nothing.

site.checkOut()

Availability

Dreamweaver 3

Description

Checks out the selected files and handles dependent files in one of the following ways:

• If the user selects Prompt on Get/Check Out in the Site FTP preferences, the Dependent Files 
dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked Yes, dependent files are downloaded and no dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked No, dependent files are not downloaded and no dialog box appears.

Arguments

siteOrURL

siteOrURL must be the keyword "site", which indicates that the function should act on the 
selection in the Site panel or on the URL for a single file.

Returns

Nothing.

Enabler

“site.canCheckOut()” on page 434

site.checkTargetBrowsers()

Availability

Dreamweaver 3

Description

Runs a target browser check on the selected files.

Arguments

None.

Returns

Nothing.
561



site.cloak()

Availability

Dreamweaver MX

Description

Cloaks the current selection in the Site panel or the specified folder.

Arguments

siteOrURL

siteOrURL must contain one of the following two values:

• The keyword "site", which indicates that cloak() should act on the selection in the Site 
panel

• The URL of a particular folder, which indicates that cloak() should act on the specified folder 
and all its contents

Returns

Nothing.

Enabler

“site.canCloak()” on page 434

site.defineSites()

Availability

Dreamweaver 3

Description

In Dreamweaver MX, opens the Edit Sites dialog box; in Dreamweaver 4 and earlier versions, 
opens the Edit Sites dialog box.

Arguments

None.

Returns

Nothing.

site.deleteSelection()

Availability

Dreamweaver 3

Description

Deletes the selected files.

Arguments

None.

Returns

Nothing.
562



site.editColumns()

Description

In Dreamweaver MX, displays the Edit Sites dialog box; in Dreamweaver 4 and earlier versions, 
displays the Edit Sites dialog box. Both dialog boxes show the File View Columns section.

Arguments

None.

Returns

Nothing.

site.exportSite()

Availability

Dreamweaver MX

Description

Exports a Dreamweaver site to an XML file, which can be imported into another Dreamweaver 
instance to duplicate the former site.

All the information that is contained in the Site Definition dialog box is saved in an XML file that 
includes the list of cloaked folders and information about the default document type. The 
exception is that the user can omit the user login and password when FTP access is set. The 
following example shows a sample XML file that Dreamweaver creates when you export a site.

<?xml version="1.0" ?> 
<site>

<localinfo 
sitename="DW00" 
localroot="C:\Documents and Settings\jlondon\Desktop\DWServer\"
imagefolder="C:\Documents and Settings\jlondon\Desktop\DWServer\Images\"
spacerfilepath="" 
refreshlocal="TRUE" 
cache="FALSE" 
httpaddress="http://" curserver="webserver" /> 

<remoteinfo 
accesstype="ftp" 
host="dreamweaver"
remoteroot="kojak/" 
user="dream" 
checkoutname="Jay" 
emailaddress="jay@macromedia.com"
usefirewall="FALSE" 
usepasv="TRUE" 
enablecheckin="TRUE"
checkoutwhenopen="TRUE" /> 

<designnotes 
usedesignnotes="TRUE" 
sharedesignnotes="TRUE" /> 

<sitemap 
563



homepage="C:\Documents and Settings\jlondon\Desktop\DWServer\Untitled-2.htm" 
pagesperrow="200" columnwidth="125" showdependentfiles="TRUE"
showpagetitles="FALSE" showhiddenfiles="TRUE" /> 

<fileviewcolumns sharecolumns="TRUE">
<column name="Local Folder" 

align="left" show="TRUE" share="FALSE" builtin="TRUE" 
localwidth="180" remotewidth="180" /> 

<column name="Notes" 
align="center" show="TRUE" share="FALSE" builtin="TRUE" 
localwidth="36" remotewidth="36" /> 

<column name="Size" 
align="right" show="TRUE" share="FALSE" builtin="TRUE" 
localwidth="-2" remotewidth="-2" /> 

<column name="Type" 
align="left" show="TRUE" share="FALSE" builtin="TRUE" 
localwidth="60" remotewidth="60" /> 

<column name="Modified" 
align="left" show="TRUE" share="FALSE" builtin="TRUE" 
localwidth="102" remotewidth="102" /> 

<column name="Checked Out By" 
align="left" show="TRUE" share="FALSE" builtin="TRUE" 
localwidth="50" remotewidth="50" /> 

<column name="Status" note="status" 
align="left" show="TRUE" share="FALSE" builtin="FALSE" 
localwidth="50" remotewidth="50" /> 

</fileviewcolumns>
<appserverinfo 

servermodel="ColdFusion" 
urlprefix="http://dreamweaver/kojak/" 
serverscripting="CFML" 
serverpageext="" 
connectionsmigrated="TRUE" 
useUD4andUD5pages="TRUE" 
defaultdoctype="" 
accesstype="ftp" 
host="dreamweaver" 
remoteroot="kojak/" 
user="dream" 
usefirewall="FALSE" 
usepasv="TRUE" /> 

<cloaking enabled="TRUE" patterns="TRUE">
<cloakedfolder folder="databases/" /> 
<cloakedpattern pattern=".png" /> 
<cloakedpattern pattern=".jpg" /> 
<cloakedpattern pattern=".jpeg" /> 

</cloaking>
</site>

Arguments

siteName

siteName identifies the site to export. If siteName is an empty string, Dreamweaver exports the 
current site.

Returns

A Boolean value. exportSite() returns true if the named site exists and if the XML file is 
successfully exported; false otherwise.
564



site.findLinkSource()

Availability

Dreamweaver 3

Description

Opens the file that contains the selected link or dependent file, and highlights the text of the link 
or the reference to the dependent in that file. This function operates only on files in the Site Map 
view.

Arguments

None.

Returns

Nothing.

Enabler

“site.canFindLinkSource()” on page 435

site.get()

Availability

Dreamweaver 3

Description

Gets the specified files and handles dependent files in one of the following ways:

• If the user selects Prompt on Get/Check Out in the Site FTP preferences, the Dependent Files 
dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked Yes, dependent files are downloaded and no dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked No, dependent files are not downloaded and no dialog box appears.

Arguments

siteOrURL

siteOrURL must be the keyword "site", which indicates that the function should act on the 
selection in the Site panel or on the URL for a single file.

Returns

Nothing.

Enabler

“site.canGet()” on page 435

site.getAppServerAccessType()

Availability

Dreamweaver MX
565



Description

Returns the access method that is used for all files on the current site’s application server. The 
current site is the site that is associated with the document that currently has focus. If no 
document has focus, the site that you opened in Dreamweaver MX is used.

Note: ColdFusion Component Explorer makes use of this function, see “site.getAppServerPathToFiles()” on page 
566, and “site.getLocalPathToFiles()” on page 569.

Arguments

None.

Returns

One of the following strings: 

• none
• local/network
• ftp

• source_control

site.getAppServerPathToFiles()

Availability

Dreamweaver MX

Description

Determines the disk path to the remote files on the application server that is defined for the 
current site. The current site is the site that is associated with the document that currently has 
focus. If no document has focus, the site opened in Dreamweaver MX is used. 

Note: ColdFusion Component Explorer makes use of this function, see “site.getAppServerAccessType()” on page 
565, and “site.getLocalPathToFiles()” on page 569.

Arguments

None.

Returns

If the access type to the application server file is local/network, this function returns a path; 
otherwise, this function returns an empty string. 

site.getCheckOutUser()

Availability

Dreamweaver 3

Description

Gets the login and check-out name that is associated with the current site.

Arguments

None.

Returns

A string that contains a login and check-out name, if defined, or an empty string if check-in/
check-out is disabled
566



Example

A call to site.getCheckOutUser() might return "denise (deniseLaptop)". If no check-out 
name is specified, only the login is returned (for example, "denise").

site.getCheckOutUserForFile()

Availability

Dreamweaver 3

Description

Gets the login and check-out name of the user who has the specified file checked out.

Arguments

fileName

fileName is the path to the file being queried, which is expressed as a file:// URL.

Returns

A string that contains the login and check-out name of the user who has the file checked out or an 
empty string if the file is not checked out.

Example

A call to site.getCheckOutUserForFile("file://C:/sites/avocado8/index.html") 
might return "denise (deniseLaptop)". If no check-out name is specified, only the login 
returns (for example, "denise").

site.getCloakingEnabled()

Availability

Dreamweaver MX

Description

Determines whether cloaking is enabled for the current site.

Arguments

None.

Returns

A Boolean value. The getCloakingEnabled() function returns true if cloaking is enabled for 
the current site; false otherwise.

site.getConnectionState()

Availability

Dreamweaver 3

Description

Gets the current connection state.

Arguments

None.
567



Returns

A Boolean value that indicates whether the remote site is connected.

Enabler

“site.canConnect()” on page 435

site.getCurrentSite()

Availability

Dreamweaver 3

Description

Gets the current site.

Arguments

None.

Returns

A string that contains the name of the current site.

Example

If you defined several sites, a call to site.getCurrentSite() returns the one that is currently 
showing in the Current Sites List in the Site panel.

site.getFocus()

Availability

Dreamweaver 3

Description

Determines which pane of the Site panel has the focus.

Arguments

None.

Returns

One of the following strings: "local", "remote", or "site map".

site.getLinkVisibility()

Availability

Dreamweaver 3

Description

Checks whether all the selected links in the site map are visible (that is, not marked hidden).

Arguments

None.

Returns

A Boolean value that indicates whether all the selected links are visible.
568



site.getLocalPathToFiles()

Availability

Dreamweaver MX

Description

Determines the disk path to the local files that are defined for the current site. The current site is 
the site that is associated with the document that currently has focus. If no document has focus, 
the site that you opened in Dreamweaver MX is used. 

Note: ColdFusion Component Explorer makes use of this function, “site.getAppServerAccessType()” on page 565, 
and “site.getAppServerPathToFiles()” on page 566.

Arguments

None.

Returns

Path to the files residing on the local machine for the current site.

site.getSelection()

Availability

Dreamweaver 3

Description

Determines which files are currently selected in the Site panel.

Arguments

None.

Returns

An array of strings that represents the paths of the selected files and folders, which is expressed as 
a file:// URLs; or an empty array if no files or folders are selected. 

site.getSiteForURL()

Availability

Dreamweaver MX

Description

Gets the name of the site, if any, that is associated with a specific file.

Arguments

fileURL

fileURL is the fully qualified URL (including the string file://) for a named file.

Returns

A string that contains the name of the site, if any, in which the specified file exists. The string is 
empty when the specified file does not exist in any defined site.
569



site.getSites()

Availability

Dreamweaver 3

Description

Gets a list of the defined sites.

Arguments

None.

Returns

An array of strings that represents the names of the defined sites, or an empty array if no sites are 
defined.

site.importSite()

Availability

Dreamweaver MX

Description

Creates a Dreamweaver site from an XML file. During import, if the folder that is specified by the 
localroot attribute of the <localinfo> element does not exist on the local computer, 
Dreamweaver prompts for a different local root folder. Dreamweaver behaves the same way when 
it tries to locate the default images folder that is specified by the imagefolder attribute of the 
<localinfo> element.

Arguments

fileURL

fileURL is a string that contains the URL for the XML file. Dreamweaver uses this XML file to 
create a new site. If fileURL is an empty string, Dreamweaver prompts the user to select an XML 
file to import.

Returns

A Boolean value. The importSite() function returns true if the named XML file exists and if 
the site is successfully created; false otherwise.

site.invertSelection()

Availability

Dreamweaver 3

Description

Inverts the selection in the site map.

Arguments

None.

Returns

Nothing.
570



site.isCloaked()

Availability

Dreamweaver MX

Description

Determines whether the current selection in the Site panel or the specified folder is cloaked.

Arguments

siteOrURL

• The keyword "site", which indicates that isCloaked() should test the selection in the Site 
panel

• The URL of a particular folder, which indicates that isCloaked() should test the specified 
folder

Returns

A Boolean value. The isCloaked() function returns true if the specified object is cloaked; 
false otherwise.

site.locateInSite()

Availability

Dreamweaver 3

Description

Locates the specified file (or files) in the specified pane of the Site panel and selects the found files.

Arguments

localOrRemote, siteOrURL

• localOrRemote must be either "local" or "remote".

• siteOrURL must be the keyword "site", which indicates that the function should act on the 
selection in the Site panel or on the URL for a single file.

Returns

Nothing.

Enabler

“site.canLocateInSite()” on page 436

site.makeEditable()

Availability

Dreamweaver 3

Description

Turns off the read-only flag on the selected files.

Arguments

None.

Returns

Nothing.
571



Enabler

“site.canMakeEditable()” on page 436

site.makeNewDreamweaverFile()

Availability

Dreamweaver 3

Description

Creates a new Dreamweaver file in the Site panel in the same directory as the first selected file or 
folder.

Arguments

None.

Returns

Nothing.

Enabler

“site.canMakeNewFileOrFolder()” on page 436

site.makeNewFolder()

Availability

Dreamweaver 3

Description

Creates a new folder in the Site panel in the same directory as the first selected file or folder.

Arguments

None.

Returns

Nothing.

Enabler

“site.canMakeNewFileOrFolder()” on page 436

site.newHomePage()

Availability

Dreamweaver 3

Description

Opens the New Home Page dialog box to let the user create a new home page.

Note: This function operates only on files in the Site Map view.

Arguments

None.

Returns

Nothing.
572



site.newSite()

Availability

Dreamweaver 3

Description

Opens the Site Definition dialog box for a new, unnamed site.

Arguments

None.

Returns

Nothing.

site.open()

Availability

Dreamweaver 3

Description

Opens the files that are currently selected in the Site panel. If any folders are selected, they are 
expanded in the Site Files view.

Arguments

None.

Returns

Nothing.

Enabler

“site.canOpen()” on page 437

site.put()

Availability

Dreamweaver 3

Description

Puts the selected files and handles dependent files in one of the following ways:

• If the user selects Prompt on Put/Check In in the Site FTP preferences, the Dependent Files 
dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked Yes, dependent files are uploaded and no dialog box appears.

• If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog 
box and clicked No, dependent files are not uploaded and no dialog box appears.

Arguments

siteOrURL

siteOrURL must be the keyword "site", which indicates that the function should act on the 
selection in the Site panel or on the URL for a single file.
573



Returns

Nothing.

Enabler

“site.canPut()” on page 437

site.recreateCache()

Availability

Dreamweaver 3

Description

Recreates the cache for the current site.

Arguments

None.

Returns

Nothing.

Enabler

“site.canRecreateCache()” on page 437

site.refresh()

Availability

Dreamweaver 3

Description

Refreshes the file listing on the specified side of the Site panel.

Arguments

whichSide

whichSide must be "local", or "remote". If the site map has focus and whichSide is "local", 
the site map refreshes.

Returns

Nothing.

Enabler

“site.canRefresh()” on page 438

site.remoteIsValid()

Availability

Dreamweaver 3

Description

Determines whether the remote site is valid.

Arguments

None.
574



Returns

A Boolean value that indicates whether a remote site has been defined and, if the server type is 
Local/Network, whether the drive is mounted.

site.removeLink()

Availability

Dreamweaver 3

Description

Removes the selected link from the document above it in the site map.

Arguments

None.

Returns

Nothing.

Enabler

“site.canRemoveLink()” on page 438

site.renameSelection()

Availability

Dreamweaver 3

Description

Turns the name of the selected file into an text field, so the user can rename the file. If more than 
one file is selected, this function acts on the last selected file.

Arguments

None.

Returns

Nothing.

site.runValidation()

Availability

Dreamweaver MX

Description

Runs the Validator on the entire site or only highlighted items.

Arguments

selection

selection is the parameter that specifies that the Validator should check only the highlighted 
items; otherwise, the Validator checks the entire current site.

Returns

Nothing.
575



Enabler

“canAcceptCommand()” on page 62

site.saveAsImage()

Availability

Dreamweaver 3

Description

Opens the Save As dialog box to let the user save the site map as an image.

Arguments

fileType

fileType is the type of image that should be saved. Valid values for Windows are "bmp" and 
"png"; valid values for Macintosh are "pict" and "jpeg". If the argument is omitted, or if the 
value is not valid on the current platform, the default is "bmp" in Windows and "pict" on the 
Macintosh.

Returns

Nothing.

site.selectAll()

Availability

Dreamweaver 3

Description

Selects all files in the active view (either the site map or the site files). 

Arguments

None.

Returns

Nothing.

site.selectHomePage()

Availability

Dreamweaver 3

Description

Opens the Open File dialog box to let the user choose a new home page.

Note: This function operates only on files in the Site Map view.

Arguments

None.

Returns

Nothing.
576



site.selectNewer()

Availability

Dreamweaver 3

Description

Selects all files that are newer on the specified side of the Site panel.

Arguments

whichSide

whichSide must be either "local" or "remote".

Returns

Nothing.

Enabler

“site.canSelectNewer()” on page 439

site.setAsHomePage()

Availability

Dreamweaver 3

Description

Designates the file that is selected in the Site Files view as the home page for the site.

Arguments

None.

Returns

Nothing.

site.setCloakingEnabled()

Availability

Dreamweaver MX

Description

Determines whether cloaking should be enabled for the current site.

Arguments

enable

enable is a Boolean value that indicates whether cloaking should be enabled. A value of true 
enables cloaking for the current site; a value of false disables cloaking for the current site.

Returns

None.
577



site.setConnectionState()

Availability

Dreamweaver 3

Description

Sets the connection state of the current site.

Arguments

bConnected

bConnected is a Boolean value that indicates if there is a connection (true) or not (false) to the 
current site.

Returns

Nothing.

site.setCurrentSite()

Availability

Dreamweaver 3

Description

Opens the specified site in the local pane of the Site panel.

Arguments

whichSite

whichSite is the name of a defined site (as it appears in the Current Sites list in the Site panel or 
the Edit Sites dialog box). 

Returns

Nothing.

Example

If three sites are defined (for example, avocado8, dreamcentral, and testsite), a call to 
site.setCurrentSite("dreamcentral"); makes dreamcentral the current site.

site.setFocus()

Availability

Dreamweaver 3

Description

Gives focus to a specified pane in the Site panel. If the specified pane is not showing, this function 
displays the pane and gives it focus.

Arguments

whichPane

whichPane must be one of the following strings: "local", "remote", or "site map". 

Returns

Nothing.
578



site.setLayout()

Availability

Dreamweaver 3

Description

Opens the Site Map Layout pane of the Site Definition dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“site.canSetLayout()” on page 438

site.setLinkVisibility()

Availability

Dreamweaver 3

Description

Shows or hides the current link.

Arguments

bShow

bShow is a Boolean value that indicates whether to remove the Hidden designation from the 
current link.

Returns

Nothing.

site.setSelection()

Availability

Dreamweaver 3

Description

Selects files or folders in the active pane in the Site panel.

Arguments

arrayOfURLs

arrayOfURLs is an array of strings where each string is a path to a file or folder in the current site, 
which is expressed as a file:// URL.

Note: Omit the trailing slash (/) when specifying folder paths.

Returns

Nothing.
579



site.synchronize()

Availability

Dreamweaver 3

Description

Opens the Synchronize Files dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“site.canSynchronize()” on page 439

site.uncloak()

Availability

Dreamweaver MX

Description

Uncloaks the current selection in the Site panel or the specified folder. 

Arguments

siteOrURL

siteOrURL must contain one of the following two values:

• The keyword "site", which indicates that unCloak() should act on the selection in the Site 
panel

• The URL of a particular folder, which indicates that unCloak() should act on the specified 
folder and all its contents

Returns

Nothing.

Enabler

“site.canUncloak()” on page 440

site.uncloakAll()

Availability

Dreamweaver MX

Description

Uncloaks all folders in the current Site and unchecks the Cloak Files Ending With: checkbox in 
the Cloaking Settings.

Arguments

Nothing.
580



Returns

Nothing.

Enabler

“site.canUncloak()” on page 440

site.undoCheckOut()

Availability

Dreamweaver 3

Description

Removes the lock files that are associated with the specified files from the local and remote sites, 
and replaces the local copy of the specified files with the remote copy.

Arguments

siteOrURL

siteOrURL must be the keyword "site", which indicates that the function should act on the 
selection in the Site panel or on the URL for a single file.

Returns

Nothing.

Enabler

“site.canUndoCheckOut()” on page 440

site.viewAsRoot()

Availability

Dreamweaver 3

Description

Temporarily moves the selected file to the top position in the site map.

Arguments

None.

Returns

Nothing.

Enabler

“site.canViewAsRoot()” on page 440
581



Snippets panel functions
Using Macromedia Dreamweaver MX, web developers can edit and save reusable blocks of code 
in the Snippets panel and retrieve them as needed. 

The Snippets panel stores each code snippet in a .csn file within the Configuration/Snippets 
folder. Snippets that ship with Dreamweaver MX are stored in the following folders:

• Accessible

• Comments

• Content_tables

• Filelist.txt 

• Footers

• Form_elements

• Headers

• Javascript

• Meta

• Navigation

• Text

Snippet files are XML documents, so you can specify the encoding in the XML directive as in the 
following example:

<?XML version="1.0" encoding="utf-8">

The following sample shows a snippet file:

<snippet name="Detect Flash" description="VBscript to check for Flash 
ActiveX control" preview="code" factory="true" type="wrap" >

     <insertText location="beforeSelection">
          <![CDATA[ ------- code --------- ]]>
     </insertText> 
     <insertText location="afterSelection">
          <![CDATA[ ------- code --------- ]]>
     </insertText> 
</snippet> 

Snippet tags in .csn files have the following attributes:

You can use the following methods to add Snippets panel functions to your extensions.

Attribute Description

name name of snippet

description snippet description

preview Type of preview: "code" to display the snippet in preview area or "design" to display the 
snippet rendered in HTML in the Preview area.

type If the snippet is used to wrap a user selection, "wrap"; if the snippet should be inserted before 
the selection, "block".
582



dreamweaver.snippetPalette.newFolder()

Availability

Dreamweaver MX

Description

Creates a new folder with the default name untitled and puts an text box around the default 
name.

Arguments

None.

Returns

Nothing.

dreamweaver.snippetPalette.newSnippet()

Availability

Dreamweaver MX

Description

Opens the Add Snippet dialog box and brings it to the front.

Arguments

None.

Returns

Nothing.

dreamweaver.snippetPalette.editSnippet()

Availability

Dreamweaver MX

Description

Opens the Edit Snippet dialog box and brings it to the front, enabling editing for the selected 
element.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.snippetpalette.canEditSnippet()” on page 428

dreamweaver.snippetPalette.insert()

Availability

Dreamweaver MX
583



Description

Applies selected snippet from Panel to the current selection.

Arguments

None.

Returns

Nothing.

Enabler

“dw.snippetpalette.canInsert()” on page 429

dreamweaver.snippetPalette.insertSnippet()

Availability

Dreamweaver MX

Description

Inserts indicated snippet to current selection.

Arguments

Snippet path relative to snippet folder.

Returns

A Boolean value.

Enabler

“dw.snippetpalette.canInsert()” on page 429

dreamweaver.snippetPalette.rename()

Availability

Dreamweaver MX

Description

Activates text box around selected folder name or file nickname and lets you edit the selected 
element. 

Arguments

None.

dreamweaver.snippetPalette.remove()

Availability

Dreamweaver MX

Description

Deletes selected element or folder from Snippets Panel and deletes file from disk.

Return Value

None.
584



String manipulation functions
String manipulation functions help you get information about a string as well as convert a string 
from Latin 1 encoding to platform-native encoding and back.

dreamweaver.doURLEncoding()

Availability

Dreamweaver 1

Description

This function takes a string and returns a URL-encoded string by replacing all spaces and special 
characters with specified entities.

Arguments

stringToConvert

Returns

A URL-encoded string.

Example

The following example shows the URL.value for "My URL-encoded string":

var URL = dw.doURLEncoding(theURL.value);
returns "My%20URL-encoded%20string"

dreamweaver.getTokens()

Availability

Dreamweaver 1

Description

Accepts a string and splits it into tokens.

Arguments

searchString, separatorCharacters

• searchString is the string to be separated into tokens.

• separatorCharacters is the character or characters that signifies the end of a token. 
Separator characters in quoted strings are ignored. If separatorCharacters contains a space, 
all white-space characters (such as tabs) are treated as separator characters, as if they are 
explicitly specified. Two or more consecutive white space characters are treated as a single 
separator.

Returns

An array of token strings.

Example

dreamweaver.getTokens(’foo("my arg1", 34)’, ’(),’) returns the tokens:

• foo

• "my arg 1"

• 34
585



dreamweaver.latin1ToNative()

Availability

Dreamweaver 2

Description

Converts a string in Latin 1 encoding to the native encoding on the user’s computer. This 
function is intended for displaying the user interface of an extension file in another language.

Note: This function has no effect in Windows because Windows encodings are already based on Latin 1.

Arguments

stringToConvert

stringToConvert is the string to convert from Latin 1 encoding to native encoding.

Returns

The converted string.

dreamweaver.nativeToLatin1()

Availability

Dreamweaver 2

Description

Converts a string in native encoding to Latin 1 encoding.

Note: This function has no effect in Windows because Windows encodings are already based on Latin 1.

Arguments

stringToConvert

stringToConvert is the string to convert from native encoding to Latin 1 encoding.

Returns

The converted string.

Enabler

None.

dreamweaver.scanSourceString()

Availability

Dreamweaver UltraDev 1

Description

Scans a string of HTML and finds the tags, attributes, directives, and text. For each tag, attribute, 
directive, and text span that it finds, scanSourceString() invokes a callback function that you 
must supply. Dreamweaver supports the following callback functions: openTagBegin(), 
openTagEnd(), closeTagBegin(), closeTagEnd(), directive(), attribute(), and text(). 
586



Dreamweaver calls the seven callback functions on the following occasions:

1 Dreamweaver calls openTagBegin() for each opening tag (for example, <font>, as opposed to 
</font>) and each empty tag (for example, <img> or <hr>). The openTagBegin() function 
accepts two arguments: the name of the tag (for example, "font" or "img") and the document 
offset, which is the number of bytes in the document before the beginning of the tag. The 
function returns true if scanning should continue or false if it should stop.

2 After openTagBegin() executes, Dreamweaver calls attribute() for each HTML attribute. 
The attribute() function accepts two arguments, a string that contains the attribute name 
(for example, "color" or "src") and a string that contains the attribute value (for example, 
"#000000" or "foo.gif"). The attribute() function returns a Boolean value that indicates 
whether scanning should continue. 

3 After all the attributes in the tag have been scanned, Dreamweaver calls openTagEnd(). The 
openTagEnd() function accepts one argument, the document offset, which is the number of 
bytes in the document before the end of the opening tag. It returns a Boolean value that 
indicates whether scanning should continue.

4 Dreamweaver calls closeTagBegin() for each closing tag (for example, </font>). The 
function accepts two arguments, the name of the tag to close (for example, "font") and the 
document offset, which is the number of bytes in the document before the beginning of the 
close tag. The function returns a Boolean value that indicates whether scanning should 
continue.

5 After closeTagBegin() returns, Dreamweaver calls the closeTagEnd() function. The 
closeTagEnd() function accepts one argument, the document offset, which is the number of 
bytes in the document before the end of the closing tag. It returns a Boolean value that 
indicates whether scanning should continue.

6 Dreamweaver calls the directive() function for each HTML comment, ASP script, JSP 
script, or PHP script. The directive() function accepts two arguments, a string that contains 
the directive and the document offset, which is the number of bytes in the document before 
the end of the closing tag. The function returns a Boolean value that indicates whether 
scanning should continue.

7 Dreamweaver calls the text() function for each span of text in the document; that is, 
everything that is not a tag or a directive. Text spans include text that is not visible to the user, 
such as the text inside a <title> or <option> tag. The text() function accepts two 
arguments, a string that contains the text and the document offset, which is the number of 
bytes in the document before the end of the closing tag. The text() function returns a 
Boolean value that indicates whether scanning should continue.

Arguments

HTMLstr, parserCallbackObj

• HTMLstr is a string that contains code.

• parserCallbackObj is a JavaScript object that has one or more of the following methods: 
openTagBegin(), openTagEnd(), closeTagBegin(), closeTagEnd(), directive(), 
attribute(), and text(). For best performance, parserCallbackObj should be a shared 
library that is defined using the C-Level Extensibility interface. Performance is also improved if 
parserCallbackObj defines only the callback functions that it needs.

Returns

A Boolean value that indicates whether the operation completed successfully. 
587



Example

The following sequence of steps provide an example of how to use the 
dreamweaver.scanSourceString() function.

Steps

1 You create an implementation for one or more of the seven callback functions.

2 You write a script that calls the dreamweaver.scanSourceString() function.

3 The dreamweaver.scanSourceString() function passes a string that contains HTML and 
pointers to the callback functions that you wrote. For example, suppose the string of HTML is 
"<font size=2>hello</font>".

4 Dreamweaver analyzes the string and determines that the string contains a font tag. 
Dreamweaver calls the callback functions in the following sequence:

• The openTagBegin() function 

• The attribute() function (for the size attribute) 

• The openTagEnd() function 

• The text() function (for the "hello" string)

• The closeTagBegin() and closeTagEnd() functions

Source view functions 
Source view functions include operations that are related to editing document source code (and 
that have subsequent impact on the Design view). The functions in this section let you add 
navigational controls to Code views within a split document view, the Code inspector, and the 
JavaScript Debugger window.

dom.formatRange()

Availability

Dreamweaver MX

Description

Applies Dreamweaver automatic syntax formatting to a specified range of characters in the source 
view according to the settings in the Preferences > Code Format dialog box. 

Arguments

startOffset, endOffset

• startOffset is an integer that represents the beginning of the specified range as the offset 
from the beginning of the document.

• endOffset is an integer representing the end of the specified range as the offset from the 
beginning of the document.

Returns

Nothing.
588



dom.formatSelection()

Availability

Dreamweaver MX

Description

Applies Dreamweaver automatic syntax formatting to the selected content (the same as choosing 
the Commands > Apply Source Formatting to Selection option) according to the settings in the 
Preferences > Code Format dialog box.

Arguments

None.

Returns

Nothing.

dom.getShowNoscript()

Availability

Dreamweaver MX

Description

Gets the current state of the noscript content option (from the view > Noscript Content menu 
option). On by default, the noscript tag identifies page script content that can be rendered, or 
not (by choice), in the browser. 

Arguments

None.

Returns

A Boolean value that indicates whether the noscript tag content is currently rendered. If 
bIsVisible is true, the content appears; false otherwise.

dom.isDesignviewUpdated()

Availability

Dreamweaver 4

Description

Determines whether the Design view and Text view content is synchronized for those 
Dreamweaver operations that require a valid document state.

Arguments

None.

Returns

true if the Design view (WYSIWYG) is synchronized with the text in the Text view; false 
otherwise.
589



dom.isSelectionValid()

Availability

Dreamweaver 4

Description

Determines whether a selection is valid, meaning it is currently synchronized with the Design 
view, or if it needs to be moved before an operation occurs. 

Arguments

None.

Returns

true if the current selection is in a valid piece of code. If the document has not been 
synchronized, returns false (because the selection is not updated).

dom.setShowNoscript

Availability

Dreamweaver MX

Description

Sets the noscript content option on or off (the same as choosing the View > Noscript Content 
option). On by default, the noscript tag identifies page script content that can be rendered, or 
not (by choice), in the browser.

Arguments

{bShowNoscript}

• bShowNoscript is a Boolean value that indicates whether the noscript tag content should be 
rendered. If bShowNoScript is true, the content appears.

Returns

Nothing.

dom.source.arrowDown()

Availability

Dreamweaver 4

Description

Moves the insertion point down the source view document, line by line. If content is already 
selected, this function extends the selection line by line.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of lines that the insertion point is to move. If nTimes is omitted, the 
default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.
590



Returns

Nothing.

dom.source.arrowLeft()

Availability

Dreamweaver 4

Description

Moves the insertion point to the left in the current line of the Source view. If content is already 
selected, this function extends the selection to the left.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of characters that the insertion point is to move. If nTimes is omitted, 
the default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.arrowRight()

Availability

Dreamweaver 4

Description

Moves the insertion point to the right in the current line of the Source view. If content is already 
selected, this function extends the selection to the right.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of characters that the insertion point is to move. If the nTimes 
argument is omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.arrowUp()

Availability

Dreamweaver 4

Description

Moves the insertion point up the source view document, line by line. If content is already 
selected, this function extends the selection line by line.
591



Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of lines that the insertion point is to move. If the nTimes argument is 
omitted, the default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.balanceBracesTextview()

Availability

Dreamweaver 4

Description

Source view extension that enables parentheses balancing. You can call 
dom.source.balanceBracesTextview() to extend a currently highlighted selection or insertion 
point from the start of the surrounding parenthetical statement to the end of the statement to 
balance the following characters: [], {} and (). Subsequent calls expand the selection through 
further levels of punctuation nesting.

Arguments

None.

Returns

Nothing.

dom.source.endOfDocument()

Availability

Dreamweaver 4

Description

Places the insertion point at the end of the current source view document. If content is already 
selected, this function extends the selection to the end of the document.

Arguments

bShiftIsDown

A Boolean value that indicates whether content is being selected. If bShiftIsDown is true, the 
content is selected.

Returns

Nothing.

dom.source.endOfLine()

Availability

Dreamweaver 4
592



Description

Places the insertion point at the end of the current line. If content is already selected, this 
function extends the selection to the end of the current line.

Arguments

bShiftIsDown

A Boolean value that indicates whether content is being selected. If bShiftIsDown is true, the 
content is selected.

Returns

Nothing.

dom.source.endPage()

Availability

Dreamweaver 4

Description

Moves the insertion point to the end of the current page or to the end of the next page if the 
insertion point is already at the end of a page. If content is already selected, this function extends 
the selection page by page.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of pages that the insertion point is to move. If nTimes is omitted, the 
default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.getCurrentLines()

Availability

Dreamweaver 4

Description

Returns the line numbers for the specified offset locations from the beginning of the document.

Arguments

None.

Returns

The line numbers for the current selection.

dom.source.getSelection()

Description

Gets the selection in the current document, which is expressed as character offsets into the 
document’s Code view.
593



Arguments

None.

Returns

A pair of integers that represent offsets from the beginning of the source document. The first 
integer is the beginning of the selection; the second is the end of the selection. If the two numbers 
are equal, the selection is an insertion point. If there is no selection in the source, both numbers 
are -1.

dom.source.getLineFromOffset()

Availability

Dreamweaver MX

Description

Takes an offset into the source document.

Arguments

None.

Returns

The associated line number, or -1 if the offset is negative or past the end of the file.

dom.source.getText()

Availability

Dreamweaver 4

Description

Returns the text string in the source between the designated offsets.

Arguments

startOffset, endOffset

• start is an integer that represents the offset from the beginning of the document.

• end is an integer that represents the end of the document.

Returns

A string that represents the text in the source code between the offsets start and end. 

dom.source.indentTextview()

Availability

Dreamweaver 4

Description

Moves selected source view text one tab stop to the right.

Arguments

None.

Returns

Nothing.
594



dom.source.insert()

Description

Inserts the specified string into the source code at the specified offset from the beginning of the 
source file. If the offset is not greater than, or equal to, zero, the insertion fails and the function 
returns false.

Arguments

offset, string

• offset is the offset from the beginning of the file where the string is to be inserted.

• string is the string to insert.

Returns

true if successful; false otherwise.

dom.source.nextWord()

Availability

Dreamweaver 4

Description

Moves the insertion point to the beginning of the next word (or words, if specified) in the Source 
view. If content is already selected, this function extends the selection to the right.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of words that the insertion point is to move. If nTimes is omitted, the 
default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.outdentTextview()

Availability

Dreamweaver 4

Description

Moves selected source view text one tab stop to the left.

Arguments

None.

Returns

Nothing.
595



dom.source.pageDown()

Availability

Dreamweaver 4

Description

Moves the insertion point down the source view document, page by page. If content is already 
selected, this function extends the selection page by page.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of pages that the insertion point is to move. If nTimes is omitted, the 
default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.pageUp()

Availability

Dreamweaver 4

Description

Moves the insertion point up the source view document, page by page. If content is already 
selected, this function extends the selection page by page.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of pages that the insertion point is to move. If nTimes is omitted, the 
default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.previousWord()

Availability

Dreamweaver 4

Description

Moves the insertion point to the beginning of the previous word (or words, if specified) in the 
source view. If content is already selected, this function extends the selection to the left.
596



Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of words that the insertion point is to move. If nTimes is omitted, the 
default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.replaceRange()

Availability

Dreamweaver 4

Description

Replaces the range of source text between startOffset and endOffset with string. If 
startOffset is greater than endOffset or if either offset is not a positive integer, it does nothing 
and returns false. If endOffset is greater than the number of characters in the file, it replaces 
the range between startOffset and the end of the file. If both startOffset and endOffset are 
greater than the number of characters in the file, it inserts the text at the end of the file.

Arguments

startOffset, endOffset, string

• startOffset is the offset that indicates the beginning of the block to replace.

• endOffset is the offset that indicates the end of the block to replace.

• string is the string to insert.

Returns

true if successful; false otherwise.

dom.source.scrollEndFile()

Availability

Dreamweaver 4

Description

Scrolls the Source view to the bottom of the document file without moving the insertion point.

Arguments

None.

Returns

Nothing.

dom.source.scrollLineDown()

Availability

Dreamweaver 4
597



Description

Scrolls the Source view down line by line without moving the insertion point.

Arguments

nTimes

nTimes is the number of lines to scroll. If nTimes is omitted, the default is 1.

Returns

Nothing.

dom.source.scrollLineUp()

Availability

Dreamweaver 4

Description

Scrolls the Source view up line by line without moving the insertion point.

Arguments

nTimes

nTimes is the number of lines to scroll. If nTimes is omitted, the default is 1.

Returns

Nothing.

dom.source.scrollPageDown()

Availability

Dreamweaver 4

Description

Scrolls the Source view down page by page without moving the insertion point.

Arguments

nTimes

nTimes is the number of pages to scroll. If nTimes is omitted, the default is 1.

Returns

Nothing.

dom.source.scrollPageUp()

Availability

Dreamweaver 4

Description

Scrolls the Source view up page by page without moving the insertion point.

Arguments

nTimes

nTimes is the number of pages to scroll. If nTimes is omitted, the default is 1.
598



Returns

Nothing.

dom.source.scrollTopFile()

Availability

Dreamweaver 4

Description

Scrolls the Source view to the top of the document file without moving the insertion point.

Arguments

None.

Returns

Nothing.

dom.source.selectParentTag()

Availability

Dreamweaver 4

Description

Source view extension that enables tag balancing. You can call dom.source.selectParentTag() 
to extend a currently highlighted selection or insertion point from the surrounding open tag to 
the closing tag. Subsequent calls extend the selection to additional surrounding tags until there 
are no more enclosing tags. 

Arguments

None.

Returns

Nothing.

dom.source.setCurrentLine()

Availability

Dreamweaver 4

Description

Puts the insertion point at the beginning of the specified line. If the lineNumber argument is not 
a positive integer, the function does nothing and returns false. Puts the insertion point at the 
beginning of the last line if lineNumber is larger than the number of lines in the source. 

Arguments

lineNumber

lineNumber is the line at the beginning of which the insertion point is placed.

Returns

true if successful, false if not
599



dom.source.startOfDocument()

Availability

Dreamweaver 4

Description

Places the insertion point at the beginning of the source view document. If content is already 
selected, this function extends the selection to the beginning of the document.

Arguments

bShiftIsDown

A Boolean value that indicates whether content is being selected. If bShiftIsDown is true, the 
content is selected.

Returns

Nothing.

dom.source.startOfLine()

Availability

Dreamweaver 4

Description

Places the insertion point at the beginning of the current line. If content is already selected, this 
function extends the selection to the beginning of the current line.

Arguments

bShiftIsDown

A Boolean value that indicates whether content is being selected. If bShiftIsDown is true, the 
content is selected.

Returns

Nothing.

dom.source.topPage()

Availability

Dreamweaver 4

Description

Moves the insertion point to the top of the current page or to the top of the previous page if the 
insertion point is already at the top of a page. If content is already selected, this function extends 
the selection page by page.

Arguments

{nTimes}, {bShiftIsDown}

• nTimes is the number of pages that the insertion point is to move. If nTimes is omitted, the 
default is 1.

• bShiftIsDown is a Boolean value that indicates whether content is being selected. If 
bShiftIsDown is true, the content is selected.
600



Returns

Nothing.

dom.source.wrapSelection()

Availability

Dreamweaver 4

Description

Inserts the text of startTag before the current selection and the text of endTag after the current 
selection. The function then selects the entire range between, and including, the inserted tags. If 
the current selection was an insertion point, then the function places the insertion point between 
the startTag and endTag. (startTag and endTag don’t have to be tags; they can be any arbitrary 
text.)

Arguments

startTag, endTag

• startTag is the text to insert at the beginning of the selection.

• endTag is the text to insert at the end of the selection.

Returns

Nothing.

dom.synchronizeDocument()

Availability

Dreamweaver 4

Description

Synchronizes the Design and Source views.

Arguments

None.

Returns

Nothing.
601



Table editing functions
Table functions add and remove table rows and columns, change column widths and row heights, 
convert measurements from pixels to percents and back, and perform other standard table-editing 
tasks.

dom.convertWidthsToPercent()

Availability

Dreamweaver 3

Description

Converts all WIDTH attributes in the current table from pixels to percentages.

Arguments

None.

Returns

Nothing.

dom.convertWidthsToPixels()

Availability

Dreamweaver 4

Description

Converts all WIDTH attributes in the current table from percentages to pixels.

Arguments

None.

Returns

Nothing.

dom.decreaseColspan()

Availability

Dreamweaver 3

Description

Decreases the column span by one.

Arguments

None.

Returns

Nothing.

Enabler 

“dom.canDecreaseColspan()” on page 411
602



dom.decreaseRowspan()

Availability

Dreamweaver 3

Description

Decreases the row span by one

Arguments

None.

Returns

Nothing.

Enabler

“dom.canDecreaseRowspan()” on page 412

dom.deleteTableColumn()

Availability

Dreamweaver 3

Description

Removes the selected table column or columns.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canDeleteTableColumn()” on page 412

dom.deleteTableRow()

Availability

Dreamweaver 3

Description

Removes the selected table row or rows.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canDeleteTableRow()” on page 412
603



dom.doDeferredTableUpdate()

Availability

Dreamweaver 3

Description

If the Faster Table Editing option is selected in the General preferences, it forces the table layout 
to reflect recent changes without moving the selection outside the table. This function has no 
effect if the Faster Table Editing option is not selected.

Arguments

None.

Returns

Nothing.

dom.getTableExtent()

Availability

Dreamweaver 3

Description

Gets the number of columns and rows in the selected table.

Arguments

None.

Returns

An array that contains two whole numbers. The first array item is the number of columns, and 
the second array item is the number of rows. If no table is selected, nothing returns.

dom.increaseColspan()

Availability

Dreamweaver 3

Description

Increases the column span by one.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canIncreaseColspan()” on page 413

dom.increaseRowspan()

Availability

Dreamweaver 3
604



Description

Increases the row span by one.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canDecreaseRowspan()” on page 412

dom.insertTableColumns()

Availability

Dreamweaver 3

Description

Inserts the specified number of table columns into the current table.

Arguments

numberOfCols, bBeforeSelection

• numberOfCols is the number of columns to insert.

• bBeforeSelection is a Boolean value that indicates whether the columns should be inserted 
before the column that contains the selection.

Returns

Nothing.

Enabler

“dom.canInsertTableColumns()” on page 413

dom.insertTableRows()

Availability

Dreamweaver 3

Description

Inserts the specified number of table rows into the current table.

Arguments

numberOfRows, bBeforeSelection

• numberOfRows is the number of rows to insert.

• bBeforeSelection is a Boolean value that indicates whether the rows should be inserted 
above the row that contains the selection.

Returns

Nothing.

Enabler

“dom.canInsertTableRows()” on page 414
605



dom.mergeTableCells()

Availability

Dreamweaver 3

Description

Merges the selected table cells.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canMergeTableCells()” on page 414

dom.removeAllTableHeights()

Availability

Dreamweaver 3

Description

Removes all HEIGHT attributes from the selected table.

Arguments

None.

Returns

Nothing.

dom.removeAllTableWidths()

Availability

Dreamweaver 3

Description

Removes all WIDTH attributes from the selected table.

Arguments

None.

Returns

Nothing.

dom.setTableCellTag()

Availability

Dreamweaver 3

Description

Specifies the tag for the selected cell.
606



Arguments

tdOrTh

tdOrTh must be either "td" or "th".

Returns

Nothing.

dom.setTableColumns()

Availability

Dreamweaver 3

Description

Sets the number of columns in the selected table.

Arguments

numberOfCols

Returns

Nothing.

dom.setTableRows()

Availability

Dreamweaver 3

Description

Sets the number of rows in the selected table.

Arguments

numberOfRows

Returns

Nothing.

dom.showInsertTableRowsOrColumnsDialog()

Availability

Dreamweaver 3

Description

Opens the Insert Rows or Columns dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dom.canInsertTableColumns()” on page 413 or “dom.canInsertTableRows()” on 
page 414
607



dom.splitTableCell()

Availability

Dreamweaver 3

Description

Splits the current table cell into the specified number of rows or columns. If one or both of the 
arguments is omitted, the Split Cells dialog box appears.

Arguments

{colsOrRows}, {numberToSplitInto}

• colsOrRows, if supplied, must be either "columns" or "rows".

• numberToSplitInto, if supplied, is the number of rows or columns into which the cell will be 
split.

Returns

Nothing.

Enabler

“dom.canSplitTableCell()” on page 417

Tag editor and tag library functions
You can use tag editors to insert new tags, edit existing tags, access reference information about 
tags. The Tag Chooser lets users organize their tags so that they can easily select tags that they use 
frequently. The Tag Libraries that come with Dreamweaver store information about tags that are 
used in standards-based markup languages and most widely used, tag-based scripting languages. 
You can use the JavaScript tag editor, Tag Chooser, and Tag Library functions when you need to 
access and work with tag editors and Tag Libraries in your extensions.

dom.getTagSelectorTag()

Availability

Dreamweaver MX

Description

Gets the DOM node for the tag that is currently selected in the tag selector bar at the bottom of 
the document window.

Arguments

None.

Returns

The DOM node for the currently selected tag, null if no tag is selected.

dreamweaver.popupInsertTagDialog()

Availability

Dreamweaver MX
608



Description

Checks the .vtm files to see if a tag editor has been defined for the tag. If so, the editor for that tag 
pops up and accepts the start tag. If not, the start tag is inserted unmodified into the user’s 
document.

Arguments

A start tag string that includes one of the following types of initial values:

• A tag, an in <input>

• A tag with attributes, as in <input type=’text’>

• A directive, as in <%= %>

Returns

A Boolean value: true if anything is inserted into the document; false otherwise.

dreamweaver.popupEditTagDialog()

Availability

Dreamweaver MX

Description

If a tag is selected, the tag editor for that tag opens, so you can edit the tag. 

Arguments

None.

Returns

Nothing.

Enabler

dw.canPopupEditTagDialog()

dreamweaver.showTagChooser()

Availability

Dreamweaver MX

Description

Displays the Tag Chooser dialog box, brings it to the front, and sets focus.

Arguments

None.

Returns

Nothing.

dreamweaver.showTagLibraryEditor()

Availability

Dreamweaver MX

Description

Opens the Tag Library editor.
609



Arguments

None.

Returns

None.

dreamweaver.tagLibrary.getTagLibraryDOM()

Availability

Dreamweaver MX

Description

Given the URL of a filename.vtm file, this function returns the DOM for that file, so that its 
contents can be edited. This function should only be called when the Tag Library editor is active.

Arguments

The URL of a filename.vtm file, relative to the Configuration/Tag Libraries folder, as in the 
following example:

"HTML/img.vtm"

Returns

DOM pointer to a new or previously existing file within the Tag Library folder.

dreamweaver.tagLibrary.getSelectedLibrary()

Availability

Dreamweaver MX

Description

If a library node is selected in the Tag Library editor, this function gets the library name. 

Arguments

None.

Returns

A string, the name of the library that is currently selected in the Tag Library editor; returns an 
empty string if no library is selected.

dreamweaver.tagLibrary.getSelectedTag()

Availability

Dreamweaver MX

Description

If an attribute node is currently selected, gets the name of the tag that contains the attribute.

Arguments

None.

Returns

A string, name of the tag that is currently selected in the Tag Library editor; returns an empty 
string if no tag is selected.
610



dreamweaver.tagLibrary.importDTDOrSchema()

Availability

Dreamweaver MX

Description

Imports a DTD or schema file from a remote server into the Tag Library.

Arguments

File URL: Path to DTD or schema file, in local URL format.

Prefix: The prefix string that should be added to all tags in this tag library.

Returns

Name of the imported tag library.

dreamweaver.tagLibrary.getImportedTagList()

Availability

Dreamweaver MX

Description

Generates a list of TagInfo objects from an imported tag library.

Arguments

Name of imported tag library.

Returns

Array of tagInfo objects.

A taginfo object contains information about a single tag that is included in the tag library. The 
following properties are defined in a tagInfo object:

• tagName: a string

• attributes: an array of strings. Each string is the name of an attribute that is defined for this 
tag.

Example:

// "fileURL" and "prefix" have been entered by the user.
// tell the Tag Library to Import the DTD/Schema
var libName = dw.tagLibrary.importDTDOrSchema(fileURL, prefix);

// get the array of tags for this library
// this is the TagInfo object
var tagArray = dw.tagLibrary.getImportedTagList(libName);

// now I have an array of tagInfo objects. 
// I can get info out of them. This gets info out of the first one. 
// note: this assumes there is at least one TagInfo in the array.
var firstTagName = tagArray[0].name;
var firstTagAttributes = tagArray[0].attributes;
// note that firstTagAttributes is an array of attributes.
611



Tag inspector functions
These JavaScript functions manipulate the generic Tag inspector panel, specifically the context 
menus in the Tag inspector panel. They are useful when creating extensions that incorporate new 
context menus for the Tag inspector.

dreamweaver.tagInspector.tagBefore()

Availability

Dreamweaver MX

Description

Inserts a new tag before the currently selected tag. The new tag is either be empty, non-empty or 
it accepts a tag name that is passed in as an argument.

Arguments

string: MM:non-empty, MM:empty or {tagname}

Returns

Nothing.

Enabler

“dreamweaver.tagInspector.tagBeforeEnabled()” on page 429

dreamweaver.tagInspector.tagInside()

Availability

Dreamweaver MX

Description

Inserts a new tag inside the currently selected tag as its first child. The tag will either be empty, 
non-empty, or the tag name that is passed in as an argument.

Arguments

String: MM:non-empty, MM:empty or {tagname}

Returns

Nothing.

Enabler

“dreamweaver.tagInspector.tagInsideEnabled()” on page 429

dreamweaver.tagInspector.tagAfter()

Availability

Dreamweaver MX

Description

Inserts a new tag after the selected tag. The tag will either be empty, non-empty, or the tag name 
that is passed in as an argument.

Arguments

string: MM:non-empty, MM:empty or {tagname}
612



Returns

Nothing.

Enabler

“dreamweaver.tagInspector.tagAfterEnabled()” on page 430

dreamweaver.tagInspector.deleteTags()

Availability

Dreamweaver MX

Description

Deletes the currently selected tags. 

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.tagInspector.deleteTagsEnabled()” on page 430

dreamweaver.tagInspector.editTagName()

Availability

Dreamweaver MX

Description

Puts an text box around the selected tag so that the user can enter a new tag name. The function 
performs no validation—Dreamweaver simply replaces the selected tag with the new name.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.tagInspector.editTagNameEnabled()” on page 430
613



Timeline functions 
Timeline functions act on timelines. They add, remove, and change objects in a timeline; 
add behaviors, frames, and keyframes to a timeline; specify whether the timeline should play 
and loop automatically; and more. All the functions in this section are methods of the 
dreamweaver.timelineInspector object because they affect the contents of the 
Timelines panel.

dreamweaver.timelineInspector.addBehavior()

Availability

Dreamweaver 3

Description

Opens the Behaviors panel and automatically supplies the correct onFrameN event (where N is the 
frame that is marked by the playback head) when the user chooses an action and clicks OK. 

Arguments

None.

Returns

Nothing.

dreamweaver.timelineInspector.addFrame()

Availability

Dreamweaver 3

Description

Adds a frame to the current timeline at the frame that contains the playback head.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.timelineInspector.canAddFrame()” on page 430

dreamweaver.timelineInspector.addKeyframe()

Availability

Dreamweaver 3

Description

Adds a keyframe to the selected animation bar at the frame that contains the playback head.

Arguments

None.

Returns

Nothing.
614



Enabler

“dreamweaver.timelineInspector.canAddKeyFrame()” on page 431

dreamweaver.timelineInspector.addObject()

Availability

Dreamweaver 3

Description

Adds the currently selected object to the timeline.

Arguments

None.

Returns

Nothing.

dreamweaver.timelineInspector.addTimeline()

Availability

Dreamweaver 3

Description

Adds a new timeline to the current document.

Arguments

None.

Returns

Nothing.

dreamweaver.timelineInspector.changeObject()

Availability

Dreamweaver 3

Description

Opens the Change Object dialog box.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.timelineInspector.canChangeObject()” on page 431

dreamweaver.timelineInspector.getAutoplay()

Availability

Dreamweaver 3
615



Description

Gets the state of the Autoplay option for the current timeline.

Arguments

None.

Returns

A Boolean value that indicates whether the Autoplay option is selected.

dreamweaver.timelineInspector.getCurrentFrame()

Availability

Dreamweaver 3

Description

Gets the current frame of the current timeline.

Arguments

None.

Returns

A frame number.

dreamweaver.timelineInspector.getLoop()

Availability

Dreamweaver 3

Description

Gets the state of the Loop option for the current timeline.

Arguments

None.

Returns

A Boolean value that indicates whether the Loop option is selected.

dreamweaver.timelineInspector.recordPathOfLayer()

Availability

Dreamweaver 3

Description

Records the path of a layer as the user drags it.

Arguments

None.

Returns

Nothing.
616



dreamweaver.timelineInspector.removeBehavior()

Availability

Dreamweaver 3

Description

Removes the selected behavior from the timeline.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.timelineInspector.canRemoveBehavior()” on page 431

dreamweaver.timelineInspector.removeFrame()

Availability

Dreamweaver 3

Description

Removes the selected frame from the timeline.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.timelineInspector.canRemoveFrame()” on page 432

dreamweaver.timelineInspector.removeKeyframe()

Availability

Dreamweaver 3

Description

Removes the selected keyframe from an animation bar.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.timelineInspector.canRemoveKeyFrame()” on page 432
617



dreamweaver.timelineInspector.removeObject()

Availability

Dreamweaver 3

Description

Removes the currently selected object from the timeline.

Arguments

None.

Returns

Nothing.

Enabler

“dreamweaver.timelineInspector.canRemoveObject()” on page 432

dreamweaver.timelineInspector.removeTimeline()

Availability

Dreamweaver 3

Description

Removes the current timeline from the document.

Arguments

None.

Returns

Nothing.

dreamweaver.timelineInspector.renameTimeline()

Availability

Dreamweaver 3

Description

Opens the Rename Timeline dialog box for the current timeline.

Arguments

None.

Returns

Nothing.

dreamweaver.timelineInspector.setAutoplay()

Availability

Dreamweaver 3

Description

Sets the Autoplay option for the current timeline.
618



Arguments

bAutoplay

bAutoplay is a Boolean value that indicates whether to turn on the Autoplay option.

Returns

Nothing.

dreamweaver.timelineInspector.setCurrentFrame()

Availability

Dreamweaver 3

Description

Moves the playback head to the specified frame.

Arguments

frameNumber

Returns

Nothing.

dreamweaver.timelineInspector.setLoop()

Availability

Dreamweaver 3

Description

Sets the Loop option for the current timeline.

Arguments

bLoop

bLoop is a Boolean value that indicates whether to turn on the Loop option.

Returns

Nothing.
619



Toggle functions
Toggle functions get and set various options either on or off.

dom.getEditNoFramesContent()

Availability

Dreamweaver 3

Description

Gets the current state of the Modify > Frameset > Edit NoFrames Content option.

Arguments

None.

Returns

A Boolean value that indicates whether the NOFRAMES content is the active view (true) or not 
(false).

dom.getHideAllVisualAids()

Availability

Dreamweaver 4

Description

Determines whether visual aids are set as hidden.

Arguments

None.

Returns

A Boolean value that is true if Hide All Visual Aids is set; false otherwise.

dom.getPreventLayerOverlaps()

Availability

Dreamweaver 3

Description

Gets the current state of the Prevent Layer Overlaps option.

Arguments

None.

Returns

A Boolean value that indicates whether the option is on (true) or off (false).

dom.getShowAutoIndent()

Availability

Dreamweaver 4
620



Description

Determines whether auto-indenting is on in the Code view of the Document window.

Arguments

None.

Returns

Returns true if auto-indenting is on. 

dom.getShowFrameBorders()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Frame Borders option.

Arguments

None.

Returns

A Boolean value that indicates whether frame borders are visible (true) or not (false).

dom.getShowGrid()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Grid > Show option.

Arguments

None.

Returns

A Boolean value that indicates whether the grid is visible (true) or not (false).

dom.getShowHeadView()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Head Content option.

Arguments

None.

Returns

A Boolean value that indicates whether head content is visible (true) or not (false).
621



dom.getShowInvalidHTML()

Availability

Dreamweaver 4

Description

Determines whether invalid HTML code is currently highlighted in the Code view of the 
Document window.

Arguments

None.

Returns

Returns true if invalid HTML code is being highlighted.

dom.getShowImageMaps()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Image Maps option.

Arguments

None.

Returns

A Boolean value that indicates whether image maps are visible (true) or not (false).

dom.getShowInvisibleElements()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Invisible Elements option.

Arguments

None.

Returns

A Boolean value that indicates whether invisible element markers are visible (true) or not 
(false).

dom.getShowLayerBorders()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Layer Borders option.
622



Arguments

None.

Returns

A Boolean value that indicates whether layer borders are visible (true) or not (false).

dom.getShowLineNumbers()

Availability

Dreamweaver 4

Description

Determines whether line numbers are shown in the Code view.

Arguments

None.

Returns

Returns a Boolean value that indicates whether line numbers are shown (true) or not (false).

dom.getShowRulers()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Rulers > Show option.

Arguments

None.

Returns

A Boolean value that indicates whether the rulers are visible (true) or not (false).

dom.getShowSyntaxColoring()

Availability

Dreamweaver 4

Description

Determines whether syntax coloring is on in the Code view of the Document window.

Arguments

None.

Returns

Returns true if syntax coloring is on.

dom.getShowTableBorders()

Availability

Dreamweaver 3
623



Description

Gets the current state of the View > Table Borders option.

Arguments

None.

Returns

A Boolean value that indicates whether table borders are visible (true) or not (false).

dom.getShowToolbar()

Availability

Dreamweaver 4

Description

Determines whether the toolbar is displayed.

Arguments

None.

Returns

Returns true if the toolbar is displayed; false otherwise.

dom.getShowTracingImage()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Tracing Image > Show option.

Arguments

None.

Returns

A Boolean value that indicates whether the option is on (true) or off (false).

dom.getShowWordWrap()

Availability

Dreamweaver 4

Description

Determines whether word wrap is on in the Code view of the Document window.

Arguments

None.

Returns

Returns true if word wrap is on.
624



dom.getSnapToGrid()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Grid > Snap To option.

Arguments

None.

Returns

A Boolean value that indicates whether grid snapping is on (true) or off (false).

dom.setEditNoFramesContent()

Availability

Dreamweaver 3

Description

Turns the Modify > Frameset > Edit NoFrames Content option on (true) or off (false).

Arguments

bEditNoFrames

Returns

Nothing.

Enabler

“dom.canEditNoFramesContent()” on page 412

dom.setHideAllVisualAids()

Availability

Dreamweaver 4

Description

Turns off the display of all borders, image maps, and invisible elements, regardless of their 
individual settings in the View menu.

Arguments

bSet

bSet is a Boolean value; when set to false, the previous settings are restored.

Returns

Nothing.

dom.setPreventLayerOverlaps()

Availability

Dreamweaver 3
625



Description

Turns the Prevent Layer Overlaps option on (true) or off (false).

Arguments

bPreventLayerOverlaps

Returns

Nothing.

dom.setShowFrameBorders()

Availability

Dreamweaver 3

Description

Turns the View > Frame Borders option on (true) or off (false).

Arguments

bShowFrameBorders

Returns

Nothing.

dom.setShowGrid()

Availability

Dreamweaver 3

Description

Turns the View > Grid > Show option on (true) or off (false).

Arguments

bShowGrid

Returns

Nothing.

dom.setShowHeadView()

Availability

Dreamweaver 3

Description

Turns the View > Head Content option on (true) or off (false).

Arguments

bShowHead

Returns

Nothing.
626



dom.setShowInvalidHTML()

Availability

Dreamweaver 4

Description

Turns highlighting of invalid HTML code on or off in the Code view of the Document window.

Arguments

bShow

bShow is a Boolean value that indicates whether the highlighting of invalid HTML code should 
be visible (true) or not (false).

Returns

Nothing.

dom.setShowImageMaps()

Availability

Dreamweaver 3

Description

Turns the View > Image Maps option on (true) or off (false).

Arguments

bShowImageMaps

Returns

Nothing.

dom.setShowInvisibleElements()

Availability

Dreamweaver 3

Description

Turns the View > Invisible Elements option on (true) or off (false).

Arguments

bViewInvisibleElements

Returns

Nothing.

dom.setShowLayerBorders()

Availability

Dreamweaver 3

Description

Turns the View > Layer Borders option on (true) or off (false).
627



Arguments

bShowLayerBorders

Returns

Nothing.

dom.setShowLineNumbers()

Availability

Dreamweaver 4

Description

Shows or hides the line numbers in the Code view of the Document window.

Arguments

bShow

bShow is a Boolean value that indicates whether the line numbers should be visible (true) or not 
(false).

Returns

Nothing.

dom.setShowRulers()

Availability

Dreamweaver 3

Description

Turns the View >Rulers > Show option on (true) or off (false).

Arguments

bShowRulers

Returns

Nothing.

dom.setShowSyntaxColoring()

Availability

Dreamweaver 4

Description

Turns syntax coloring on or off in the Code view of the Document window.

Arguments

bShow

bShow is a Boolean value that indicates whether the syntax coloring should be visible (true) or 
not (false).

Returns

Nothing.
628



dom.setShowTableBorders()

Availability

Dreamweaver 3

Description

Turns the View > Table Borders option on (true) or off (false).

Arguments

bShowTableBorders

Returns

Nothing.

dom.setShowToolbar()

Availability

Dreamweaver 4

Description

Shows or hides the Toolbar.

Arguments

bShow

bShow is a Boolean value that indicates whether the toolbar should be visible (true) or not 
(false).

Returns

Nothing.

dom.setShowTracingImage()

Availability

Dreamweaver 3

Description

Turns the View > Tracing Image > Show option on (true) or off (false).

Arguments

bShowTracingImage

Returns

Nothing.

dom.setShowWordWrap()

Availability

Dreamweaver 4

Description

Turns word wrap off or on in the Code view of the Document window.
629



Arguments

bShow

bShow is a Boolean value that indicates whether the line numbers should be visible (true) or not 
(false).

Returns

Nothing.

dom.setSnapToGrid()

Availability

Dreamweaver 3

Description

Turns the View > Grid > Snap To option on (true) or off (false).

Arguments

bSnapToGrid

Returns

Nothing.

dreamweaver.getHideAllFloaters()

Availability

Dreamweaver 3

Description

Gets the current state of the Hide Floating panels option.

Arguments

None. 

Returns

A Boolean value that indicates whether the Hide Floating panels option (true) or the Show 
Floating panels option (false) is available.

dreamweaver.getShowStatusBar()

Availability

Dreamweaver 3

Description

Gets the current state of the View > Status Bar option.

Arguments

None.

Returns

A Boolean value that indicates whether the status bar is visible (true) or not (false).
630



dreamweaver.htmlInspector.getShowAutoIndent()

Availability

Dreamweaver 4

Description

Determines whether auto-indenting is on in the Code view of the Code inspector.

Arguments

None.

Returns

Returns true if auto-indenting is on.

dreamweaver.htmlInspector.getShowInvalidHTML()

Availability

Dreamweaver 4

Description

Determines whether invalid HTML code is currently highlighted in the Code view of the Code 
inspector.

Arguments

None.

Returns

Returns true if invalid HTML code is currently highlighted.

dreamweaver.htmlInspector.getShowLineNumbers()

Availability

Dreamweaver 4

Description

Determines whether line numbers are being shown in the Code view of the Code inspector.

Arguments

None.

Returns

Returns true if line numbers are shown.

dreamweaver.htmlInspector.getShowSyntaxColoring()

Availability

Dreamweaver 4

Description

Determines whether syntax coloring is on in the Code view of the Code inspector.

Arguments

None.
631



Returns

Returns true if syntax coloring is on.

dreamweaver.htmlInspector.getShowWordWrap()

Availability

Dreamweaver 4

Description

Determines whether word wrap is on in the Code view of the Code inspector.

Arguments

None.

Returns

Returns true if word wrap is on.

dreamweaver.htmlInspector.setShowAutoIndent()

Availability

Dreamweaver 4

Description

Turns auto-indenting on or off in the Code view of the Code inspector.

Arguments

bShow

bShow is a Boolean value that indicates whether the auto-indenting should be on (true) or off 
(false).

Returns

Nothing.

dreamweaver.htmlInspector.setShowInvalidHTML()

Availability

Dreamweaver 4

Description

Turns highlighting of invalid HTML code on or off in the Code view of the Code inspector.

Arguments

bShow

bShow is a Boolean value that indicates whether the highlighting of invalid HTML code should 
be visible (true) or not (false).

Returns

Nothing.
632



dreamweaver.htmlInspector.setShowLineNumbers()

Availability

Dreamweaver 4

Description

Shows or hides the line numbers in the Code view of the Code inspector.

Arguments

bShow

bShow is a Boolean value that indicates whether the line numbers should be visible (true) or not 
(false).

Returns

Nothing.

dreamweaver.htmlInspector.setShowSyntaxColoring()

Availability

Dreamweaver 4

Description

Turns syntax coloring on or off in the Code view of the Code inspector.

Arguments

bShow

bShow is a Boolean value that indicates whether the syntax coloring should be visible (true) or 
not (false).

Returns

Nothing.

dreamweaver.htmlInspector.setShowWordWrap()

Availability

Dreamweaver 4

Description

Turns word wrap off or on in the Code view of the Code inspector.

Arguments

bShow

bShow is a Boolean value that indicates whether the word wrapping should be on (true) or off 
(false).

Returns

Nothing.
633



dreamweaver.setHideAllFloaters()

Availability

Dreamweaver 3

Description

Turns on either the Hide Floating panels option (true) or the Show Floating panels option 
(false).

Arguments

bShowFloatingPalettes

Returns

Nothing.

dreamweaver.setShowStatusBar()

Availability

Dreamweaver 3

Description

Turns the View > Status Bar option on (true) or off (false).

Arguments

bShowStatusBar

Returns

Nothing.

site.getShowDependents()

Availability

Dreamweaver 3

Description

Gets the current state of the Show Dependent Files option.

Arguments

None.

Returns

A Boolean value that indicates whether dependent files are visible in the site map (true) or not 
(false).

site.getShowHiddenFiles()

Availability

Dreamweaver 3

Description

Gets the current state of the Show Files Marked as Hidden option.
634



Arguments

None.

Returns

A Boolean value that indicates whether hidden files are visible in the site map (true) or not 
(false).

site.getShowPageTitles()

Availability

Dreamweaver 3

Description

Gets the current state of the Show Page Titles option.

Arguments

None.

Returns

A Boolean value that indicates whether page titles are visible in the site map (true) or not 
(false).

site.getShowToolTips()

Availability

Dreamweaver 3

Description

Gets the current state of the Tool Tips option.

Arguments

None.

Returns

A Boolean value that indicates whether tool tips are visible in the Site panel (true) or not 
(false).

site.setShowDependents()

Availability

Dreamweaver 3

Description

Turns the Show Dependent Files option in the site map on (true) or off (false).

Arguments

bShowDependentFiles

Returns

Nothing.
635



site.setShowHiddenFiles()

Availability

Dreamweaver 3

Description

Turns the Show Files Marked as Hidden option in the site map on (true) or off (false).

Arguments

bShowHiddenFiles

Returns

Nothing.

site.setShowPageTitles()

Availability

Dreamweaver 3

Description

Turns the Show Page Titles option in the site map on (true) or off (false).

Arguments

bShowPageTitles

Returns

Nothing.

Enabler

“site.canShowPageTitles()” on page 439

site.setShowToolTips()

Availability

Dreamweaver 3

Description

Turns the Tool Tips option on (true) or off (false).

Arguments

bShowToolTips

Returns

Nothing.
636



Toolbar functions
The following JavaScript functions let you get and set the visibility of toolbars and toolbar labels, 
obtain the labels of toolbar items in the current window, position toolbars, and obtain toolbar 
IDs. For more information on creating or modifying toolbars, see “Toolbars” on page 77.

dom.getToolbarVisibility()

Availability

Dreamweaver MX

Description

Returns a Boolean value that indicates whether the toolbar that is specified by toolbar_id is 
visible in the document window or the Dreamweaver MX workspace frame. If the toolbar is 
docked to the Dreamweaver MX workspace frame, this function affects that toolbar, regardless of 
the DOM on which it is called. If the toolbar is docked to individual document windows, the 
function affects the toolbar in the given document.

Arguments

toolbar_id is the ID string that is assigned to the toolbar.

Returns

true if the toolbar is visible in the front document window or the Dreamweaver MX workspace 
frame; false if the toolbar is not visible or does not exist.

Example

var retval = dom.getToolbarVisibility("myEditbar");
return retval;

dom.setToolbarVisibility()

Availability

Dreamweaver MX

Description

Shows or hides the specified toolbar. If the toolbar is docked to the Dreamweaver MX workspace 
frame because the container attribute is set to mainframe, this function affects that toolbar, 
regardless of the DOM on which it is called. If the toolbar is docked to individual document 
windows, the function affects the toolbar in the given document. 

Arguments

toolbar_id, bShow

• toolbar_id is the ID of the toolbar, the value of the ID attribute on the toolbar tag in the 
toolbars.xml file.

• bShow is a Boolean value that indicates whether to show or hide the toolbar. If bshow is true, 
dom.setToolbarVisibility() makes the toolbar visible. If bShow is false, 
dom.setToolbarVisibility() makes the toolbar invisible.

Returns

Nothing.
637



Example

var dom = dw.getDocumentDOM();
if(dom != null && dom.getToolbarVisibility("myEditbar") == false)
{

dom.setToolbarVisibility("myEditbar", true);
{

dom.setToolbarPosition()

Availability

Dreamweaver MX

Description

Moves the specified toolbar to the specified position.

Note: There is no way to determine the current position of a toolbar.

Arguments

toobar_id, position, relative_to

• toolbar_id is the ID of the toolbar, which is the value of the ID attribute on the toolbar tag 
in the toolbars.xml file.

• position specifies where Dreamweaver positions the toolbar, relative to other toolbars. The 
possible values for position are described in the following list:

top is the default position. The toolbar appears at the top of the document window. 

below causes the toolbar to appear at the beginning of the row immediately below the toolbar 
that relative_to specifies. Dreamweaver reports an error if the toolbar does not find the 
toolbar that relative_to specifies. 

floating causes the toolbar to float above the document. Dreamweaver automatically places 
the toolbar so it is offset from other floating toolbars. On the Macintosh, floating is treated 
the same way as top.

• relative_to="toolbar_id" This argument is required if position specifies below. 
Otherwise, it is ignored. Specifies the ID of the toolbar below which this toolbar should be 
positioned. 

Returns

Nothing.

Example

dom.setToolbarPosition("myEditbar", "below", "myPicturebar");

dom.getToolbarIdArray()

Availability

Dreamweaver MX

Description

Returns an array of the IDs of all the toolbars in the application. You can use 
dom.getToolbarIdArray() to turn off all toolbars so you can reposition them and make only a 
specific set visible.
638



Arguments

None.

Returns

An array of all toolbar IDs.

Example

var tb_ids = new Array();
tb_ids = dom.getToolbarIdArray();

dom.getToolbarLabel()

Availability

Dreamweaver MX

Description

Obtains the label of the specified toolbar. You can use dom.getToolbarLabel() for menus that 
show or hide toolbars.

Arguments

toolbar_id is the ID of the toolbar, which is the value of the ID attribute on the toolbar tag in 
the toolbars.xml file.

Returns

label which is a name string that is assigned as an attribute on the toolbar tag.

Example

var label = dom.getToolbarLabel("myEditbar");

dom.setShowToolbarIconLabels()

Availability

Dreamweaver MX

Description

Tells Dreamweaver to show the labels of buttons that have labels. In the Dreamweaver 4 
workspace, this function operates on the document that is specified by the DOM. In the 
Dreamweaver MX workspace, there is only one set of toolbars, so the function operates on that 
set.

Dreamweaver always shows labels for nonbutton controls, if the labels are defined.

Arguments

bShow is a Boolean value that indicates whether to show or hide labels for buttons. 

Returns

Nothing.

Example

dom.setShowToolbarIconLabels(true);
639



dom.getShowToolbarIconLabels()

Availability

Dreamweaver MX

Description

Determines whether labels for buttons are visible in the current document window. In the 
Dreamweaver 4 workspace, this function operates on the toolbars of the document that is 
specified by the DOM. In the Dreamweaver MX workspace, there is only one set of toolbars so 
the function operates on that set. 

Dreamweaver always shows labels for nonbutton controls, if the labels are defined.

Arguments

None.

Returns

true if labels for buttons are visible in the current document window; false if labels for buttons 
are not visible in the current document window.

Example

var dom = dw.getDocumentDom();
if (dom.getShowToolbarIconLabels())
{

dom.setShowToolbarIconLabels(true);
}

Translation functions
Translation functions deal either directly with translators or with the results of translation. These 
functions get information about or run a translator, edit content in a locked region, and specify 
that the translated source should be used when getting and setting selection offsets.

dom.runTranslator()

Availability

Dreamweaver 3

Description

Runs the specified translator on the document. This function is valid only for the active 
document.

Arguments

translatorName

translatorName is the name of a translator as it appears in the Translation preferences.

Returns

Nothing.

dreamweaver.editLockedRegions()

Availability

Dreamweaver 2
640



Description

Depending on the value of the argument, this function makes locked regions editable or 
noneditable. By default, locked regions are noneditable; if you try to edit a locked region before 
specifically making it editable with this function, Dreamweaver beeps and does not allow the 
change.

Note: Editing locked regions can have unintended consequences for library items and templates. You should not 
use this function outside the context of data translators.

Arguments

bAllowEdits

bAllowEdits is a Boolean value that indicates that edits are allowed (true) or not allowed 
(false). Dreamweaver automatically restores locked regions to their default (noneditable) state 
when the script that calls this function finishes executing.

Returns

Nothing.

dreamweaver.getTranslatorList()

Availability

Dreamweaver 3

Description

Gets a list of the installed translators.

Arguments

None.

Returns

An array of strings where each string represents the name of a translator as it appears in the 
Translation preferences.

dreamweaver.useTranslatedSource()

Availability

Dreamweaver 2

Description

Specifies that the values that dom.nodeToOffsets() and dom.getSelection() return. These are 
used by dom.offsetsToNode() and dom.setSelection() and should be offsets into the 
translated source (the HTML that is contained in the DOM after a translator runs), not the 
untranslated source. 

Note: This function is relevant only in Property inspector files.

Arguments

bUseTranslatedSource
641



The default value of the argument is false. Dreamweaver automatically uses the untranslated 
source for subsequent calls to dw.getSelection(), dw.setSelection(), 
dw.nodeToOffsets(), and dw.offsetsToNode() when the script that calls 
dw.useTranslatedSource() finishes executing, if dw.useTranslatedSource() is not explicitly 
called with an argument of false before then.

Returns

Nothing.

Window functions
Window functions handle operations that are related to the Document window and the floating 
panels. The window functions show and hide floating panels, determine which part of the 
Document window has focus, and set the active document. For operations that are related 
specifically to the Site panel, see“Site functions” on page 558.

Macromedia Dreamweaver MX introduces a new user interface, known as the multiple document 
interface (MDI). This interface, or type of workspace, is optional but it is also the default 
workspace. In the multiple document interface, Dreamweaver MX integrates all the documents 
into one parent container in which you can dock all objects and panels. If you prefer, you can 
choose to work in the Dreamweaver 4 workspace, in which you manage separate, floating 
windows. The Dreamweaver 4 workspace is also called the classic workspace. You can switch from 
one type of workspace to the other through Dreamweaver MX Preferences

Note: Some of the functions in this section operate only in MDI mode and only on the Windows operating system. 
The description of the function indicates whether this is the case.

dom.getFocus()

Availability

Dreamweaver 3

Description

Determines the part of the document that is currently in focus.

Arguments

None.

Returns

One of the following strings:

• "head" if the HEAD area is active

• "body" if the BODY or NOFRAMES area is active

• "frameset" if a frameset or any of its frames is selected

• "none" if the focus is not in the document (for example, if it’s in the Property inspector or 
another floating panel)

dom.getView()

Availability

Dreamweaver 4
642



Description

Determines which view is visible.

Arguments

None.

Returns

"design", "code", or "split", depending on the visible view.

dom.getWindowTitle()

Availability

Dreamweaver 3

Description

Gets the title of the window that contains the document.

Arguments

None.

Returns

A string that contains the text that appears between the TITLE tags in the document, or nothing, 
if the document is not in an open window.

dom.setView()

Availability

Dreamweaver 4

Description

Shows or hides the Design or Code view to produce a design-only, code-only, or split view.

Arguments

viewString

viewString is the view to produce; it must be one of the following values: design", "code", or 
"split".

Returns

Nothing.

dreamweaver.cascade()

Availability

Dreamweaver MX (Windows only)

Description

In MDI mode dw.cascade() cascades the document windows, starting in the upper left corner 
and positioning each window below and slightly offset from the previous one. This function 
works only if Dreamweaver is in MDI mode.

Arguments

None.
643



Returns

Nothing.

Example

if(dw.isMDI())
{

dw.cascade()
}

dreamweaver.getActiveWindow()

Availability

Dreamweaver 3

Description

Gets the document in the active window.

Arguments

None.

Returns

The document object that corresponds to the document in the active window; or, if the 
document is in a frame, the document object that corresponds to the frameset.

dreamweaver.getDocumentList()

Availability

Dreamweaver 3

Description

Gets a list of all the open documents.

Arguments

None.

Returns

An array of document objects, each corresponding to an open Document window. If a Document 
window contains a frameset, the document object refers to the frameset, not the contents of the 
frames.

dreamweaver.getFloaterVisibility()

Availability

Dreamweaver 3

Description

Checks whether the specified panel or inspector is visible.

Arguments

floaterName

floaterName is the name of a floating panel. If floaterName does not match one of the built-in 
panel names, Dreamweaver searches in the Configuration/Floaters folder for a file called 
floaterName.htm where floaterName is the name of a floating panel.
644



The floaterName values for built-in Dreamweaver panels are the strings to the right of the panel 
names in the following list: 

Assets = "assets"
Answers = "answers"
Behaviors = "behaviors"
Code inspector = "html"
Components = "server components"
CSS Styles = "css styles"
Databases = "databases"
Bindings = "data bindings"
Frames = "frames"
FTP Log = "ftplog"
History = "history"
HTML Styles = "html styles"
Insert bar = "objects"
Layers = "layers"
Link Checker Results = "linkchecker"
Properties = "properties"
Reference = "reference"
Report Results = "reports"
Search Results = "search"
Server Behaviors = "server behaviors"
Server Debug = "debug"
Site = "site files"
Sitespring = "sitespring"
Snippets = "snippets"
Tag inspector = "tag inspector"
Target Browser Check Results ="btc"
Timelines = "timelines"
Validation Results = "validation"

Returns

true if the floating panel is visible and in the front; false otherwise or if Dreamweaver cannot 
find a floating panel named floaterName.

dreamweaver.getFocus()

Availability

Dreamweaver 4

Description

Determines what part of the application is currently in focus.

Arguments

bAllowFloaters

Returns

One of the following strings:

• "document" if the Document window is in focus

• "site" if the Site panel is in focus
645



• "textView" if the Text view is in focus

• "html" if the Code inspector is in focus

• floaterName, if bAllowFloaters is true and a floating panel has focus, where floaterName 
is "objects", "properties", "launcher", "library", "css styles", "html styles", 
"behaviors", "timelines", "layers", "frames", "templates", or "history"

• (Macintosh) "none" if neither the Site panel nor any Document windows are open

dreamweaver.getPrimaryView()

Availability

Dreamweaver 4

Description

Determines which view is visible as the primary (on top) view.

Arguments

None.

Returns

"design" or "code", depending on which view is visible or on the top in a split view.

dreamweaver.getSnapDistance()

Availability

Dreamweaver 4

Description

Returns the snapping distance in pixels.

Arguments

None.

Returns

An integer that represents the snapping distance in pixels. The default is 10 pixels; 0 indicates that 
the Snap feature is off. 

dreamweaver.isMDI()

Availability

Dreamweaver MX (Windows only)

Description

Indicates whether Dreamweaver is in MDI mode. In MDI mode, Dreamweaver integrates all the 
document windows within a single parent container or frame. When Dreamweaver is not in MDI 
mode, it is in classic mode, the traditional look of the Dreamweaver interface in which the user 
manages separate, floating windows.

Arguments

None.
646



Returns

true if Dreamweaver is in MDI mode; false if Dreamweaver is in classic mode.

Example

if(dw.isMDI())
{

dw.cascade()
}

dreamweaver.minimizeRestoreAll()

Availability

Dreamweaver 4

Description

Minimizes (reduces the window to an icon) or restores all windows in Dreamweaver.

Arguments

bMinimize

bMinimize is a Boolean value. true indicates that windows should be minimized; false 
indicates that minimized windows should be restored. 

Returns

Nothing.

dreamweaver.setActiveWindow()

Availability

Dreamweaver 3

Description

Activates the window that contains the specified document.

Arguments

documentObject, {bActivateFrame}

• documentObject is the object at the root of a document’s DOM tree (the value that 
dreamweaver.getDocumentDOM() returns).

• bActivateFrame, applicable only if documentObject is inside a frameset, is a Boolean value 
that indicates whether to activate the frame that contains the document as well as the window 
that contains the frameset.

Returns

Nothing.

dreamweaver.setFloaterVisibility()

Availability

Dreamweaver 3

Description

Specifies whether to make a particular floating panel or inspector visible.
647



Arguments

floaterName, bIsVisible

• floaterName is the name of a floating panel. If floaterName does not match one of the built-
in panel names, Dreamweaver searches in the Configuration/Floaters folder for a file called 
floaterName.htm where floaterName is the name of a floating panel. If Dreamweaver cannot 
find a floating panel named floaterName, this function has no effect.

The floaterName values for built-in Dreamweaver panels are the strings to the right of the 
panel names in the following list: 

Assets ="assets"
Answers = "answers"
Behaviors = "behaviors"
Code inspector = "html"
Components = "server components"
CSS Styles = "css styles"
Databases = "databases"
Bindings = "data bindings"
Frames = "frames"
FTP Log = "ftplog"
History = "history"
HTML Styles = "html styles"
Insert bar = "objects"
Layers = "layers"
Link Checker Results = "linkchecker"
Properties = "properties"
Reference = "reference"
Report Results = "reports"
Search Results = "search"
Server Behaviors = "server behaviors"
Server Debug = "debug"
Site = "site files"
Sitespring = "sitespring"
Snippets = "snippets"
Tag inspector = "tag inspector"
Target Browser Check Results ="btc"
Timelines = "timelines"
Validation Results = "validation"

• bIsVisible is a Boolean value that indicates whether to make the floating panel visible.

Returns

Nothing.

dreamweaver.setPrimaryView()

Availability

Dreamweaver 4

Description

Displays the specified view at the top of the Document window.
648



Arguments

viewString

viewString is the view to bring to the top of the Document window; it can be one of the 
following values: "design" or "code".

Returns

Nothing.

dreamweaver.setSnapDistance()

Availability

Dreamweaver 4

Description

Sets the snapping distance in pixels (0 turns it off; default is 10 pixels).

Arguments

snapDistance

snapDistance is an integer that represents the snapping distance in pixels. The default is 10 
pixels. Specify 0 to turn off the Snap feature.

Returns

Nothing.

dreamweaver.showProperties()

Availability

Dreamweaver 3

Description

Makes the Property inspector visible and gives it focus.

Arguments

None.

Returns

Nothing.

dreamweaver.tileHorizontally()

Availability

Dreamweaver MX (Windows only)

Description

In MDI mode, dw.tileHorizontally() tiles the document windows horizontally, positioning 
each window next to another one without overlapping the documents. This process is similar to 
splitting the workspace vertically. If Dreamweaver is not in MDI mode, dw.tileHorizonatally 
has no effect.

Arguments

None.
649



Returns

Nothing.

Example

if(dw.isMDI())
{

dw.tileHorizontally()
}

dreamweaver.tileVertically()

Availability

Dreamweaver MX (Windows only)

Description

In MDI mode, dw.tileVertically() tiles the document window vertically, positioning one 
document window below the other without overlapping documents. This is similar to splitting 
the workspace horizontally. If Dreamweaver is not in MDI mode, dw.tileVertically has no 
effect.

Arguments

None.

Returns

Nothing.

Example

if(dw.isMDI())
{

dw.tileVertically()
}

dreamweaver.toggleFloater()

Availability

Dreamweaver 3

Description

Shows, hides, or brings to the front the specified panel or inspector. 

Note: This function is meaningful only in the menus.xml file. To show, bring forward, or hide a floating panel, use 
dw.setFloaterVisibility().

Arguments

floaterName

floaterName is the name of the window. If the floating panel name is reference, the visible/
invisible state of the Reference panel is updated by the user’s selection in Code view. All other 
panels track the selection all the time, but the Reference panel tracks the selection in Code view 
only when the user invokes tracking.

Returns

Nothing.
650



dreamweaver.updateReference()

Availability

Dreamweaver 4

Description

Updates the Reference floating panel. If the Reference floating panel is not visible, 
dreamweaver.updateReference() makes it visible and then updates it.

Arguments

None.

Returns

Nothing.
651



652



APPENDIX A

Deprecated JavaScript API functions
The functions in this appendix are deprecated JavaScript API functions. Deprecated functions 
work but have been superseded by new Dreamweaver functions or features. You should use the 
newer alternatives because support for the deprecated functions might be withdrawn in future 
Dreamweaver versions.

dreamweaver.cssStylePalette.getSelectedTarget()

Availability

Dreamweaver 3, deprecated in Dreamweaver MX because there is no longer an Apply To Menu in 
the CSS Styles panel. 

Description

Gets the selected element in the Apply To pop-up menu at the top of the CSS Styles panel.

Arguments

None.

Returns

Deprecated function; always returns a null value.

dreamweaver.exportEditableRegionsAsXML()

Availability

Dreamweaver 3, deprecated in MX.

Description

Opens the Export Editable Regions as XML dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.getBehaviorEvent()

Availability

Dreamweaver 1.2; deprecated in Dreamweaver 2 because actions are now selected before events.

Description

In a Behavior action file, gets the event that triggers this action.
653



Arguments

None.

Returns

A string that represents the event. This is the same string that is passed as an argument (event) to 
the canAcceptBehavior() function.

dreamweaver.getObjectRefs()

Availability

Dreamweaver 1, deprecated in 3

Description

Scans the specified document for instances of the specified tags or, if no tags are specified, for all 
tags in the document and formulates browser-specific references to those tags. This function is 
equivalent to calling getElementsByTagName() and then calling 
dreamweaver.getElementRef() for each tag in the nodelist.

Arguments

NSorIE, sourceDoc, {tag1}, {tag2},...{tagN}

• NSorIE must be either "NS 4.0" or "IE 4.0". The DOM and rules for nested references 
differ in Netscape Navigator 4.0 and Internet Explorer 4.0. This argument specifies for which 
browser to return a valid reference.

• sourceDoc must be "document", "parent", "parent.frames[number]", 
"parent.frames[’frameName’]", or a URL. document specifies the document that has the 
focus and contains the current selection. parent specifies the parent frameset (if the currently 
selected document is in a frame), and parent.frames[number] and 
parent.frames[’frameName’] specify a document that is in a particular frame within the 
frameset that contains the current document. If the argument is a relative URL, it is relative to 
the extension file.

• The third and subsequent arguments, if supplied, are the names of tags (for example, "IMG", 
"FORM", "HR").

Returns

An array of strings where each array is a valid JavaScript reference to a named instance of the 
requested tag type in the specified document (for example, 
"document.myLayer.document.myImage") for the specified browser.

• Dreamweaver returns correct references for Internet Explorer for A, AREA, APPLET, EMBED, DIV, 
SPAN, INPUT, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags. 

• Dreamweaver returns correct references for Netscape Navigator for A, AREA, APPLET, EMBED, 
LAYER, ILAYER, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags, and for absolutely 
positioned DIV and SPAN tags. For DIV and SPAN tags that are not absolutely positioned, 
Dreamweaver returns "cannot reference <tag>".
Appendix A654



• Dreamweaver does not return references for unnamed objects. If an object does not contain 
either a NAME or an ID attribute, Dreamweaver returns "unnamed <tag>". If the browser does 
not support a reference by name, Dreamweaver references the object by index (for example, 
document.myform.applets[3]).

• Dreamweaver does return references for named objects that are contained in unnamed forms 
and layers (for example, document.forms[2].myCheckbox).

When the same list of arguments passes to getObjectTags(), the two functions return arrays of 
the same length and with parallel content.

dreamweaver.getObjectTags()

Availability

Dreamweaver1, deprecated in 3

Description

Scans the specified document for instances of the specified tags or, if no tags are specified, for all 
tags in the document. This function is equivalent to calling getElementsByTagName() and then 
getting outerHTML for each element in the nodelist.

Arguments

sourceDoc, {tag1}, {tag2},...{tagN}

• sourceDoc must be "document", "parent", "parent.frames[number]", 
"parent.frames[’frameName’]", or a URL. document specifies the document that has the 
focus and contains the current selection. parent specifies the parent frameset (if the currently 
selected document is in a frame), and parent.frames[number] and 
parent.frames[’frameName’] specify a document that is in a particular frame within the 
frameset that contains the current document. If the argument is a relative URL, it is relative to 
the extension file.

• The second and subsequent arguments, if supplied, are the names of tags (for example, "IMG", 
"FORM", "HR"). 

Returns

An array of strings where each array is the source code for an instance of the requested tag type in 
the specified document.

• If one of the tag arguments is LAYER, the function returns all LAYER and ILAYER tags and all 
absolutely positioned DIV and SPAN tags. 

• If one of the tag arguments is INPUT, the function returns all form elements. To get a particular 
type of form element, specify INPUT/TYPE, where TYPE is button, text, radio, checkbox, 
password, textarea, select, hidden, reset, or submit.

When the same list of arguments passes to getObjectRefs(), the two functions return arrays of 
the same length.
655



Example

dreamweaver.getObjectTags("document", "IMG"), depending on the contents of the active 
document, might return an array with the following items:

• "<IMG SRC="/images/dot.gif" WIDTH="10" HEIGHT="10" NAME="bullet">"

• "<IMG SRC="header.gif" WIDTH="400" HEIGHT="32" NAME="header">"

• "<IMG SRC="971208_nj.jpg" WIDTH="119" HEIGHT="119" NAME="headshot">"

dreamweaver.getSelection()

Availability

Dreamweaver 2, deprecated in 3. See “dom.getSelection()” on page 546.

Description

Gets the selection in the current document, which is expressed as byte offsets into the document’s 
source code.

Arguments

None.

Returns

An array that contains two integers. The first integer is the byte offset for the beginning of the 
selection; the second integer is the byte offset for the end of the selection. If the two numbers are 
the same, the current selection is an insertion point.

dreamweaver.libraryPalette.deleteSelectedItem()

Availability

Dreamweaver 3, deprecated in Dreamweaver 4 in favor of using 
dreamweaver.assetPalette.setSelectedCategory(), then calling 
dreamweaver.assetPalette.removeFromFavorites().

Description

Removes the selected library item from the Library panel and deletes its associated Dreamweaver 
Library Item (LBI) file from the Library folder at the root of the current site. Instances of the 
deleted item might still exist in pages throughout the site.

Arguments

None.

Returns

Nothing.

dreamweaver.libraryPalette.getSelectedItem()

Availability

Dreamweaver 3, deprecated in 4 in favor of 
dreamweaver.assetPalette.getSelectedItems().

Description

Gets the path of the selected library item.
Appendix A656



Arguments

None.

Returns

A string that contains the path of the library item, which is expressed as a file:// URL.

dreamweaver.libraryPalette.newFromDocument()

Availability

Dreamweaver 3, deprecated in Dreamweaver 4 in favor of using 
dreamweaver.assetPalette.setSelectedCategory(), then calling 
dreamweaver.assetPalette.newAsset().

Description

Creates a new library item based on the selection in the current document.

Arguments

bReplaceCurrent

bReplaceCurrent is a Boolean value that indicates whether to replace the selection with an 
instance of the newly created library item.

Returns

Nothing.

dreamweaver.libraryPalette.recreateFromDocument()

Availability

Dreamweaver 3, deprecated in Dreamweaver 4 in favor of 
dreamweaver.assetPalette.recreateLibraryFromDocument().

Description

Creates an LBI file for the selected instance of a library item in the current document. This 
function is equivalent to clicking Recreate in the Property inspector. 

Arguments

None.

Returns

Nothing.

dreamweaver.libraryPalette.renameSelectedItem()

Availability

Dreamweaver 3, deprecated in Dreamweaver 4 in favor of using 
dreamweaver.assetPalette.setSelectedCategory() with the “library” argument, then 
calling dreamweaver.assetPalette.renameNickname().

Description

Turns the name of the selected library item into an text field, so the user can rename the selection.

Arguments

None.
657



Returns

Nothing.

dreamweaver.nodeToOffsets()

Availability

Dreamweaver 2, deprecated in 3 in favor of dom.nodeToOffsets().

Description

Gets the position of a specific node in the DOM tree, which is expressed as byte offsets into the 
document’s source code.

Arguments

node

node must be a tag, comment, or range of text that is a node in the tree that 
dreamweaver.getDocumentDOM() returns.

Returns

An array that contains two integers. The first integer is the byte offset for the beginning of the tag, 
text, or comment; the second integer is the byte offset for the end of the node.

dreamweaver.templatePalette.getSelectedTemplate()

Availability

Dreamweaver 3, deprecated in 4 in favor of 
dreamweaver.assetPalette.getSelectedItems().

Description

Gets the path of the selected template.

Arguments

None.

Returns

A string that contains the path of the template, which is expressed as a file:// URL.

dreamweaver.offsetsToNode()

Availability

Dreamweaver 2, deprecated in 3 in favor of dom.offsetsToNode().

Description

Gets the object in the DOM tree that completely contains the range of characters between the 
specified beginning and end points.

Arguments

offsetBegin, offsetEnd

The arguments are the beginning and end points, respectively, of a range of characters, which is 
expressed as byte offsets into the document’s source code.

Returns

The tag, text, or comment object that completely contains the specified range of characters.
Appendix A658



dreamweaver.popupCommand()

Availability

Dreamweaver 2, deprecated in 3 in favor of dreamweaver.runCommand().

Description

Executes the specified command. To the user, the effect is the same as choosing the command 
from a menu; if a dialog box is associated with the command, it appears. This function provides 
the ability to call a command from another extension file. It blocks other edits until the user 
dismisses the dialog box. 

Note: This function can be called only within objectTag() or in any script in a command or Property inspector file.

Arguments

commandFile

commandFile is the name of a command file within the Configuration/Commands folder (for 
example, "Format Table.htm"). 

Returns

Nothing.

dreamweaver.setSelection()

Availability

Dreamweaver 2, deprecated in 3 in favor of dom.setSelection().

Description

Sets the selection in the current document. This function can move the selection only within the 
current document; it cannot change the focus to a different document.

Arguments

offsetBegin, offsetEnd

The arguments are the beginning and end points, respectively, for the new selection, which is 
expressed as byte offsets into the document’s source code. If the two numbers are the same, the 
new selection is an insertion point. If the new selection is not a valid HTML selection, it is 
expanded to include the characters in the first valid HTML selection. For example, if 
offsetBegin and offsetEnd define the range SRC="myImage.gif" within <IMG 
SRC="myImage.gif">, the selection expands to include the entire IMG tag.

Returns

Nothing.

dreamweaver.templatePalette.deleteSelectedTemplate()

Availability

Dreamweaver 3, deprecated in Dreamweaver 4 in favor of using 
dreamweaver.assetPalette.setSelectedCategory() with the “templates” argument, then 
calling dreamweaver.assetPalette.removeFromFavorites().

Description

Deletes the selected template from the templates folder.
659



Arguments

None.

Returns

Nothing.

dreamweaver.templatePalette.renameSelectedTemplate()

Availability

Dreamweaver 3, deprecated in Dreamweaver 4 in favor of using 
dreamweaver.assetPalette.setSelectedCategory() with the “templates” argument, then calling 
dreamweaver.assetPalette.renameNickname().

Description

Turns the name of the selected template into an text field, so the user can rename the selection.

Arguments

None.

Returns

Nothing.
Appendix A660



INDEX
A

action files  135
addBehavior()  380,  614
addDebugContextData()  544
addDynamicSource()  193
addFrame()  614
addItem()  537
addKeyframe()  614
addLinkToExistingFile()  558
addLinkToNewFile()  559
addObject()  615
addResultItem()  538
addSpacerToColumn()  516
addTimeline()  615
alert()  42
align()  508
APIs, types of  17

behavior  136
C language  257
command  62
Component panel  208
data formatting  199
data source  193
data translator  225
database  311
database connection dialog box  338
design note  288
file I/O  271
Fireworks integration  299
Flash object  307
floating panel  127
HTTP  281
JavaBeans  345
JavaScript (core)  371
JavaScript debugger module  245
menu command  68
object  57
Property inspector  121

report  104
server behavior  151
server model  217
Source Control Integration  350
Tag editor  117
toolbar  93

applyBehavior()  136
applyCharacterMarkup()  466
applyConnection()  341
applyCSSStyle()  403
applyFontMarkup()  466
applyFormat()  202
applyFormatDefinition()  202
applyHTMLStyle()  495
applySB()  157
applySelectedStyle()  404
applyTag()  118
applyTemplate()  521
appName property  47
appVersion property  47
arguments

optional  372
passed from menuitem  67
receiveArguments()  70

arguments attribute  93
arrange()  508
arrangeFloatingPalettes()  515
array object  42
arrowDown()  502,  590
arrowLeft()  502,  591
arrowRight()  503,  591
arrowUp()  503,  591
assetPalette.addToFavoritesFromDocument()  372
assetPalette.addToFavoritesFromSiteAssets()  373
assetPalette.addToFavoritesFromSiteWindow()  373
assetPalette.canEdit()  418
assetPalette.canInsertOrApply()  418
assetPalette.copyToSite()  373
661



assetPalette.edit()  374
assetPalette.getSelectedCategory()  374
assetPalette.getSelectedItems()  374
assetPalette.getSelectedView()  375
assetPalette.insertOrApply()  375
assetPalette.locateInSite()  376
assetPalette.newAsset()  376
assetPalette.newFolder()  376
assetPalette.recreateLibraryFromDocument()  377
assetPalette.refreshSiteAssets()  377
assetPalette.removeFromFavorites()  377
assetPalette.renameNickname()  378
assetPalette.setSelectedCategory()  378
assetPalette.setSelectedView()  378
assets panel functions  372
attachExternalStylesheet()  404
attribute translators  229

creating  229
debugging  241
sample code  230

attributes
arguments  93
checked  91
colorRect  90
command  92
disabledImage  89
domRequired  90
enabled  90
id  88
image  88
Insertbar tag  54
label  89
menu_ID  90
overImage  89
showif  88
snippets

tag attributes  582
toolbars item tag  88
tooltip  89
update  91
value  91
width  89

attributes property  45
attributes tag  180
attributes, file  90

B

backspaceKey()  503
balanceBracesTextView()  592
beep()  480
beginReporting()  105

behavior API
applyBehavior()  136
behaviorFunction()  137
canAcceptBehavior()  138
deleteBehavior()  139
displayHelp()  139
identifyBehaviorArguments()  140
inspectBehavior()  141
windowDimensions()  142

behavior extensions
definition  20

behaviorFunction()  137
behaviors

API  136
helper functions  136
inserting multiple functions with  136
required functions  136
sample code  143
user experience  135

Binding inspector  191
block/tag translators  229

debugging  241
sample code  235

blur()  42
body property  44
boolean object  42
bringDWToFront()  299
bringFWToFront()  299
browseDocument()  432,  441
browseForFileURL()  449
browseForFolderURL()  449
browser targets  541
button

object  42
tag  83

button tag  53

C

C extensibility API
JS_BooleanToValue()  257
JS_DoubleToValue()  257
JS_ExecuteScript()  259
JS_GetArrayLength()  258
JS_GetElement()  259
JS_IntegerToValue()  257
JS_NewArrayObject()  258
JS_ObjectToValue()  257
JS_ObjectType()  258
JS_ReportError()  260
JS_SetElement()  259
JS_StringToValue()  256
Index662



JS_ValueToBoolean()  256
JS_ValueToDouble()  255
JS_ValueToInteger()  255
JS_ValueToObject()  256
JS_ValueToString()  255
MM_ConfigFileExists()  263
MM_GetConfigFileAttributes()  264
MM_GetConfigFolderList()  262
MM_OpenConfigFile()  263

C functions
calling from JavaScript  267
in the mm_jsapi.h file  253

canAcceptBehavior()  138
canAcceptCommand()

in menu commands  68
using  93

canAddFrame()  430
canAddKeyFrame()  431
canAddLinkToFile()  433
canAlign()  409
canApplyTemplate()  409
canArrange()  410
canChangeLink()  433
canChangeObject()  431
canCheckIn()  433
canCheckOut()  434
canClear()  426
canClipCopy()  418,  427
canClipCopyText()  410
canClipCut()  419,  427
canClipPaste()  410,  419,  427
canClipPasteText()  410
canCloak()  434
canConnect()  435
canConvertLayersToTable()  411
canConvertTablesToLayers()  411
canDecreaseColspan()  411
canDecreaseRowspan()  412
canDeleteTableColumn()  412
canDeleteTableRow()  412
canEditColumns()  559
canEditNoFramesContent()  412
canEditSelection()  426
canExportCSS()  420
canExportTemplateDataAsXML()  420
canFindLinkSource()  435
canFindNext()  420
canGet()  435
canIncreaseColspan()  413
canIncreaseRowspan()  413

canInsertObject()  51,  57
canInsertTableColumns()  413
canInsertTableRows()  414
canLocateInSite()  436
canMakeEditable()  436
canMakeNewEditableRegion()  414
canMakeNewFileOrFolder()  436
canMarkSelectionAsEditable()  414
canMergeTableCells()  414
canOpen()  437
canOpenInBrowser()  427
canOpenInEditor()  428
canOpenInFrame()  420
canPlayPlugin()  415
canPlayRecordedCommand()  421
canPopupEditTagDialog()  421
canPut()  437
canRecognizeDocument()  217
canRecreateCache()  437
canRedo()  415,  421
canRefresh()  438
canRemoveEditableRegion()  415
canRemoveFrame()  432
canRemoveKeyFrame()  432
canRemoveLink()  438
canRemoveObject()  432
canRevertDocument()  422
canSave()  428
canSaveAll()  422
canSaveDocument()  422
canSaveDocumentAsTemplate()  423
canSaveFrameset()  423
canSaveFramesetAs()  423
canSelectAll()  424,  428
canSelectAllCheckedOutFiles()  438
canSelectNewer()  439
canSelectTable()  416
canSetLayout()  438
canSetLinkHref()  416
canShowFindDialog()  424
canShowListPropertiesDialog()  416
canSplitFrame()  416
canSplitTableCell()  417
canStopPlugin()  417
canSynchronize()  439
canUncloak()  440
canUndo()  417,  424
canUndoCheckOut()  440
canViewAsRoot()  440
Cascading Style Sheets to HTML markup  402
Index 663



category tag  53
changeLink()  560
changeLinkSitewide()  559
changeObject()  615
checkbox object  42
checkbutton tag  53,  84
checked attribute  91
checkIn()  560
checkLinks()  560
checkOut()  561
checkSpelling()  483
checkTargetBrowsers()  483,  561
childNodes property

of comment objects  46
of document objects  44
of tag objects  45
of text objects  46

cleanupXHTML()  447
clearInterval()  42
clearItems()  541
clearSteps()  490
clearTemp()  282
clearTimeout()  42
C-level extensibility, in translators  225
clipCopy()  388,  390,  541
clipCopyText()  388
clipCut()  388,  391,  542
clipPaste()  389,  391,  542
clipPasteText()  389
cloak()  562
close()  42
closeDocument()  450
CloseNotesFile()  292
closeTag tag  181
code editing, enhanced  14
Code Hint extensions, definition  20
Code Snippet extensions, definition  20
Code view  588
CodeHints

codehints tag  393
description tag  394
function tag  396
menu tag  395
menugroup tag  394
menuitem tag  395

codeHints.addFunction()  398
codeHints.addMenu()  397
codeHints.resetMenu()  399
codeHints.showCodeHints()  400
CodeHints.xml file  392

ColdFusion Component Explorer  566,  569
color button control  40
colorpicker tag  87
colorRect attribute  90
columns

getting from statements  325
getting from stored procedures  329

combobox tag  86
command API

canAcceptCommand()  62
commandButtons()  62
isDomRequired()  63
receiveArguments()  63
windowDimensions()  64

command attribute  92
Command extensions

definition  20
Command menu functions  400
commandButtons()  105

in menu commands  69
commands

adding to menus  66
sample code  65
toolbars  79
user experience  61

comment object  46
Component panel

files  205
tree control  207

Component panel API functions
displayHelp()  208
displayInstructions()  207
getCodeViewDropCode()  212
getComponentChildren()  208
getContextMenuId()  210
getSetupSteps()  212
handleDoubleClick()  213
setupStepsCompleted()  213
toolbarControls()  214

components  205
configurations, multiple  14
configureSettings()  106
confirm()  42
connection handling, database  15,  312
connection objects, properties  340
connection types, creating  337
connection_includefile.edml connection definition file  

343
connections  315

getting list of  314
Index664



names  324
connectivity functions overview  337
conventions, in book  12
conversion functions  402
convertLayersToTable()  402
convertTablesToLayers()  402
convertTo30()  402
convertToXHTML()  448
convertWidthsToPercent()  602
convertWidthsToPixels()  602
copy()  271
copySteps()  490
createDocument()  450
createFolder()  272
createLayoutCell()  516
createLayoutTable()  516
createResultsWindow()  537
createXHTMLDocument()  451
createXMLDocument()  452
CSS style functions  403
cssStyle.canEditSelectedStyle()  425
cssStylePalette.canApplySelectedStyle()  424
cssStylePalette.canDeleteSelectedStyle()  425
cssStylePallette.canEditStyleSheet()  425
custom JavaScript controls  33
customizing or extending Dreamweaver  11

D

data formatting  199
Data Manager  181
data property

of comment objects  46
of httpReply objects  281
of text objects  46

data source API  193
addDynamicSource()  193
deleteDynamicSource()  193
displayHelp()  194
editDynamicSource()  194
findDynamicSources()  194
generateDynamicDataRef()  195
generateDynamicSourceBindings()  196
inspectDynamicDataRef()  197

data source extensions
definition  21

data source functions  588
data sources  191
data translator API

getTranslatorInfo()  226
liveDataTranslateMarkup function()  228
translateMarkup()  228

data translator extensions
definition  21

data translators
debugging  241
for attributes  229
for tags or blocks of code  234
kinds of  229
user experience  225

database access functions  324
database API  311

access functions  324
connection functions  312
MMDB.deleteConnection()  312
MMDB.getColdFusionDsnList()  313
MMDB.getColumnAndTypeList()  325
MMDB.getColumnList()  325
MMDB.getColumns()  326
MMDB.getColumnsOfTable()  327
MMDB.getConnection()  313
MMDB.getConnectionList()  314
MMDB.getConnectionName()  315
MMDB.getConnectionString()  315
MMDB.getDriverName()  316
MMDB.getDriverUrlTemplateList()  316
MMDB.getLocalDsnList()  317
MMDB.getPassword()  317
MMDB.getPrimaryKeys()  327
MMDB.getProcedures()  328
MMDB.getRdsPassword()  318
MMDB.getRdsUserName()  318
MMDB.getRemoteDsnList()  318
MMDB.getRuntimeConnectionType()  319
MMDB.getSPColumnList()  329
MMDB.getSPColumnListNamedParams()  329
MMDB.getSPParameters()  330
MMDB.getSPParamsAsString()  331
MMDB.getTables()  332
MMDB.getUserName()  319
MMDB.getViews()  332
MMDB.hasConnectionWithName()  320
MMDB.needToPromptForRdsInfo()  320
MMDB.needToRefreshColdFusionDsnList()  320
MMDB.popupConnection()  321
MMDB.setRdsPassword()  321
MMDB.setRdsUserName()  322
MMDB.showColdFusionAdmin()  322
MMDB.showConnectionMgrDialog()  322
MMDB.showOdbcDialog()  323
MMDB.showRdsUserDialog()  323
MMDB.showRestrictDialog()  323
Index 665



MMDB.showResultset()  333
MMDB.showSPResultset()  334
MMDB.showSPResultsetNamedParams()  334
MMDB.testConnection()  324

database connection dialog box API  338
applyConnection()  341
definition files  343
findConnection()  339
include files

generated  341
inspectConnection()  341

database connection functions  312
database connection type definition files  343
database controls  36
database tree controls  36
databases

access functions  324
API  311
connection dialog box API  338
connection functions  312
connection handling  15
connection type definition files  343

dataSource attribute  161
date object  42
debugDocument()  500
decreaseColspan()  602
decreaseRowspan()  603
defineSites()  562
delete tag  175
deleteBehavior()  139
deleteConnection()  312
deleteDynamicSource()  193
deleteFormat()  203
deleteKey()  504
deleteSB()  157
deleteSelectedItem()  656
deleteSelectedStyle()  405,  495
deleteSelectedTemplate()  659
deleteSelection()  466,  477,  562
deleteTableColumn()  603
deleteTableRow()  603
deleteType attribute  176
deprecated functions  653
description attribute  582
description tag  394
design notes

C API  292
file structure  287
JavaScript API  288
user experience  287

design notes API
MMNotes.close()  288
MMNotes.filePathToLocalURL()  288
MMNotes.get()  288
MMNotes.getKeyCount()  289
MMNotes.getKeys()  289
MMNotes.getSiteRootForFile()  290
MMNotes.getVersionName()  290
MMNotes.getVersionNum()  290
MMNotes.localURLToFilePath()  290

detachFromLibrary()  521
detachFromTemplate()  522
disabledImage attribute  89
display tag  181
displayHelp()

in behavior API  139
in Component panel API  208
in data source API  194
in floating panel API  127
in floating panels  127
in object API  57
in object files  57
in Property inspector API  121
in server behavior API  154

displayInstructions()  207
docking toolbars  78
DOCTYPE  32
document extensions  28
document node  44
document object

DOM Level 1 properties and methods of  44
Netscape DOM properties and methods of  42

Document Object Model  41
DOM Level 1 specification  42
DOM object  371
Dreamweaver  42

document type extensions
definition  21

document types  22
definition file  23,  24
definition file, rules  29
dynamic templates  27
extensions  28
localizing  24,  28
new  15
opening, procedure for  30
tags in definition file  25

documentEdited()  127
documentElement property  44
doDeferredTableUpdate()  604
Index666



doesColumnHaveSpacer()  517
doesGroupHaveSpacers()  517
DOM. See Document Object Model.
dom.addBehavior()  380
dom.addSpacerToColumn()  516
dom.align()  508
dom.applyCharacterMarkup()  466
dom.applyCSSStyle()  403
dom.applyFontMarkup()  466
dom.applyHTMLStyle()  495
dom.applyTemplate()  521
dom.arrange()  508
dom.arrowDown()  502
dom.arrowLeft()  502
dom.arrowRight()  503
dom.arrowUp()  503
dom.backspaceKey()  503
dom.canAlign()  409
dom.canApplyTemplate()  409
dom.canArrange()  410
dom.canClipCopyText()  410
dom.canClipPaste()  410
dom.canClipPasteText()  410
dom.canConvertLayersToTable()  411
dom.canConvertTablesToLayers()  411
dom.canDecreaseColspan()  411
dom.canDecreaseRowspan()  412
dom.canDeleteTableColumn()  412
dom.canDeleteTableRow()  412
dom.canEditNoFramesContent()  412
dom.canIncreaseColspan()  413
dom.canIncreaseRowspan()  413
dom.canInsertTableColumns()  413
dom.canInsertTableRows()  414
dom.canMakeNewEditableRegion()  414
dom.canMarkSelectionAsEditable()  414
dom.canMergeTableCells()  414
dom.canPlayPlugin()  415
dom.canRedo()  415
dom.canRemoveEditableRegion()  415
dom.canSelectTable()  416
dom.canSetLinkHref()  416
dom.canShowListPropertiesDialog()  416
dom.canSplitFrame()  416
dom.canSplitTableCell()  417
dom.canStopPlugin()  417
dom.canUndo()  417
dom.checkSpelling()  483
dom.checkTargetBrowsers()  483
dom.cleanupXHTML()  447

dom.clipCopy  388
dom.clipCopyText()  388
dom.clipCut()  388
dom.clipPaste  389
dom.clipPasteText()  389
dom.convertLayersToTable()  402
dom.convertTablesToLayers()  402
dom.convertTo30()  402
dom.convertToXHTML()  448
dom.convertWidthsToPercent()  602
dom.convertWidthsToPixels()  602
dom.createLayoutCell()  516
dom.createLayoutTable()  516
dom.decreaseColspan()  602
dom.decreaseRowspan()  603
dom.deleteKey()  504
dom.deleteSelection()  466
dom.deleteTableColumn()  603
dom.deleteTableRow()  603
dom.detachFromLibrary()  521
dom.detachFromTemplate()  522
dom.doDeferredTableUpdate()  604
dom.doesColumnHaveSpacer()  517
dom.doesGroupHaveSpacers()  517
dom.editAttribute()  467
dom.endOfDocument()  504
dom.endOfLine()  504
dom.exitBlock()  467
dom.formatRange()  588
dom.formatSelection()  589
dom.getAttachedTemplate()  522
dom.getBehavior()  380
dom.getBreakpoint()  498
dom.getCharSet()  467
dom.getClickedHeaderColumn()  518
dom.getEditableRegionList()  522
dom.getEditableRetionList()  523
dom.getEditNoFramesContent()  620
dom.getFocus()  642
dom.getFontMarkup()  468
dom.getFrameNames()  464
dom.getHideAllVisualAids()  620
dom.getIsLibraryDocument()  523
dom.getIsTemplateDocument()  523
dom.getIsXHTMLDocument()  449
dom.getLineFromOffset()  498
dom.getLinkHref()  468
dom.getLinkTarget()  468
dom.getListTag()  468
dom.getPreventLayerOverlaps()  620
Index 667



dom.getRulerOrigin()  511
dom.getRulerUnits()  511
dom.getSelectedEditableRegion()  523
dom.getSelectedNode()  546
dom.getSelection()  546
dom.getShowAutoIndent()  620
dom.getShowFrameBorders()  621
dom.getShowGrid()  621
dom.getShowHeadView()  621
dom.getShowImageMaps()  622
dom.getShowInvalidHTML()  622
dom.getShowInvisibleElements()  622
dom.getShowLayerBorders()  622,  628
dom.getShowLayoutTableTabs()  518
dom.getShowLayoutView()  518
dom.getShowLineNumbers()  623
dom.getShowNoscript  589
dom.getShowRulers()  623
dom.getShowSyntaxColoring()  623
dom.getShowTableBorders()  623
dom.getShowToolbar()  624
dom.getShowToolbarIconLabels()  640
dom.getShowTracingImage()  624
dom.getShowWordWrap()  624
dom.getSnapToGrid()  625
dom.getTableExtent()  604
dom.getTagSelectorTag()  608
dom.getTextAlignment()  469
dom.getTextFormat()  469
dom.getToolbarIdArray()  638
dom.getToolbarLabel()  639
dom.getToolbarVisibility()  637
dom.getTracingImageOpacity()  511
dom.getView()  642
dom.getWindowTitle()  643
dom.hasCharacterMarkup()  469
dom.hasTracingImage()  418
dom.increaseColspan()  604
dom.increaseRowspan()  604
dom.indent()  470
dom.insertHTML()  470
dom.insertLibraryItem()  524
dom.insertObject()  471
dom.insertTableColumns()  605
dom.insertTableRows()  605
dom.insertText()  471
dom.instrumentDocument()  498
dom.isColumnAutostretch()  518
dom.isDesignViewUpdated()  589
dom.isDocumentInFrame()  465

dom.isSelectionValid()  590
dom.loadTracingImage()  512
dom.makeCellWidthsConsistent()  519
dom.makeSizesEqual()  509
dom.markSelectionAsEditable()  524
dom.mergeTableCells()  606
dom.moveSelectionBy()  509
dom.newBlock()  472
dom.newEditableRegion()  524
dom.nextParagraph()  505
dom.nextWord()  505
dom.nodeToOffsets()  546
dom.notifyFlashObjectChanged()  472
dom.offsetsToNode()  547
dom.outdent()  473
dom.pageDown()  505
dom.pageUp()  506
dom.playAllPlugins()  512
dom.playPlugin()  512
dom.previousParagraph()  506
dom.previousWord()  507
dom.reapplyBehaviors()  381
dom.redo()  487
dom.removeAllSpacers()  519
dom.removeAllTableHeights()  606
dom.removeAllTableWidths()  606
dom.removeBehavior()  381
dom.removeCharacterMarkup()  473
dom.removeCSSStyle()  403
dom.removeEditableRegion()  525
dom.removeFontMarkup()  473
dom.removeLink()  474
dom.removeSpacerFromColumn()  519
domRequired attribute  90
dom.resizeSelection()  474
dom.resizeSelectionBy()  509
dom.runTranslator()  640
dom.runValidation()  483
dom.saveAllFrames()  465
dom.selectAll()  548
dom.selectChild()  534
dom.selectParent()  535
dom.selectTable()  548
dom.serverModel.getDelimiters()  553
dom.serverModel.getServerExtension()  554
dom.serverModel.getServerLanguage()  556
dom.serverModel.getServerName()  556
dom.serverModel.getServerVersion()  557
dom.setAttributeWithErrorChecking()  474
dom.setBreakpoint()  499
Index668



dom.setColumnAutostretch()  520
dom.setEditNoFramesContent()  625
dom.setHideAllVisualAids()  625
dom.setLayerTag()  510
dom.setLinkHref()  474
dom.setLinkTarget()  475
dom.setListBoxKind()  475
dom.setListTag()  476
dom.setPreventLayerOverlaps()  625
dom.setRulerOrigin()  512
dom.setRulerUnits()  513
dom.setSelectedNode()  548
dom.setSelection()  549
dom.setShowFrameBorders()  626
dom.setShowGrid()  626
dom.setShowHeadView()  626
dom.setShowImageMaps()  627
dom.setShowInvalidHTML()  627
dom.setShowInvisibleElements()  627
dom.setShowLayerBorders()  627
dom.setShowLayoutTableTabs()  520
dom.setShowLayoutView()  520
dom.setShowLineNumbers()  628
dom.setShowNoscript  590
dom.setShowRulers()  628
dom.setShowSyntaxColoring()  628
dom.setShowTableBorders()  629
dom.setShowToolbar()  629
dom.setShowToolbarIconLabels()  639
dom.setShowTracingImage()  629
dom.setShowWordWrap()  629
dom.setSnapToGrid()  630
dom.setTableCellTag()  606
dom.setTableColumns()  607
dom.setTableRows()  607
dom.setTextAlignment()  476
dom.setTextFieldKind()  476
dom.setTextFormat()  477
dom.setToolbarPosition()  638
dom.setToolbarVisibility()  637
dom.setTracingImageOpacity()  513
dom.setTracingImagePosition()  513
dom.setView()  643
dom.showFontColorDialog()  477
dom.showInsertTableRowsOrColumnsDialog()  607
dom.showListPropertiesDialog()  475
dom.showPagePropertiesDialog()  484
dom.snapTracingImageToSelection()  514
dom.source.arrowDown()  590
dom.source.arrowLeft()  591

dom.source.arrowRight()  591
dom.source.arrowUp()  591
dom.source.balanceBracesTextView()  592
dom.source.endOfDocument()  592
dom.source.endOfLine()  592
dom.source.endPage()  593
dom.source.getCurrentLines()  593
dom.source.getLineFromOffset()  594
dom.source.getSelection()  593
dom.source.getText()  594
dom.source.indentTextView()  594
dom.source.insert()  595
dom.source.nextWord()  595
dom.source.outdentTextView()  595
dom.source.pageDown()  596
dom.source.pageUp()  596
dom.source.previousWord()  596
dom.source.replaceRange()  597
dom.source.scrollEndFile()  597
dom.source.scrollLineDown()  597
dom.source.scrollLineUp()  598
dom.source.scrollPageDown()  598
dom.source.scrollPageUp()  598
dom.source.scrollTopFile()  599
dom.source.selectParentTag()  599
dom.source.setCurrentLine()  599
dom.source.startOfDocument()  600
dom.source.startOfLine()  600
dom.source.topPage()  600
dom.source.wrapSelection()  601
dom.splitFrame()  465
dom.splitTableCell()  608
dom.startOfDocument()  507
dom.startOfLine()  507
dom.stopAllPlugins()  514
dom.stopPlugin()  514
dom.stripTag()  535
dom.synchronizeDocument()  601
dom.undo()  488
dom.updateCurrentPage()  525
dom.wrapTag()  535
doURLDecoding()  484
doURLEncoding()  585
Dreamweaver DOM  42
dreamweaver object  47

methods of  371
properties of  47

dreamweaver.arrangeFloatingPalettes()  515
dreamweaver.assetPalette.addToFavoritesFromDocume

nt()  372
Index 669



dreamweaver.assetPalette.addToFavoritesFromSiteAsset
s()  373

dreamweaver.assetPalette.addToFavoritesFromSiteWin
dow()  373

dreamweaver.assetPalette.canEdit()  418
dreamweaver.assetPalette.canInsertOrApply()  418
dreamweaver.assetPalette.copyToSite()  373
dreamweaver.assetPalette.edit()  374
dreamweaver.assetPalette.getSelectedCategory()  374
dreamweaver.assetPalette.getSelectedItems()  374
dreamweaver.assetPalette.getSelectedView()  375
dreamweaver.assetPalette.insertOrApply()  375
dreamweaver.assetPalette.locateInSite()  376
dreamweaver.assetPalette.newAsset()  376
dreamweaver.assetPalette.newFolder()  376
dreamweaver.assetPalette.recreateLibraryFromDocume

nt()  377
dreamweaver.assetPalette.refreshSiteAssets()  377
dreamweaver.assetPalette.removeFromFavorites()  377
dreamweaver.assetPalette.renameNickname()  378
dreamweaver.assetPalette.setSelectedCategory()  378
dreamweaver.assetPalette.setSelectedView()  378
dreamweaver.beep()  480
dreamweaver.behaviorInspector object  380
dreamweaver.behaviorInspector.getBehaviorAt()  384
dreamweaver.behaviorInspector.getBehaviorCount()  

384
dreamweaver.behaviorInspector.getSelectedBehavior()  

384
dreamweaver.behaviorInspector.moveBehaviorDown()  

385
dreamweaver.behaviorInspector.moveBehaviorUp()  

386
dreamweaver.behaviorInspector.setSelectedBehavior()  

387
dreamweaver.browseDocument()  441
dreamweaver.browseForFileURL()  449
dreamweaver.browseForFolderURL()  449
dreamweaver.canClipCopy()  418
dreamweaver.canClipCut()  419
dreamweaver.canClipPaste()  419
dreamweaver.canExportCSS()  420
dreamweaver.canExportTemplateDataAsXML()  420
dreamweaver.canFindNext()  420
dreamweaver.canOpenInFrame()  420
dreamweaver.canPlayRecordedCommand()  421
dreamweaver.canPopupEditTagDialog()  421
dreamweaver.canRedo()  421
dreamweaver.canRevertDocument()  422
dreamweaver.canSaveAll()  422

dreamweaver.canSaveDocument()  422
dreamweaver.canSaveDocumentAsTemplate()  423
dreamweaver.canSaveFrameset()  423
dreamweaver.canSaveFramesetAs()  423
dreamweaver.canSelectAll()  424
dreamweaver.canShowFindDialog()  424
dreamweaver.canUndo()  424
dreamweaver.clipCopy()  390
dreamweaver.clipCut()  391
dreamweaver.clipPaste()  391
dreamweaver.closeDocument()  450
dreamweaver.codeHints.addFunction()  398
dreamweaver.codeHints.addMenu()  397
dreamweaver.codeHints.resetMenu()  399
dreamweaver.codeHints.showCodeHints()  400
dreamweaver.createDocument()  450
dreamweaver.createResultsWindow()  537
dreamweaver.createXHTMLDocument()  451
dreamweaver.createXMLDocument()  452
dreamweaver.cssStyle.canEditSelectedStyle()  425
dreamweaver.cssStylePalette object  403
dreamweaver.cssStylePalette.applySelectedStyle()  404
dreamweaver.cssStylePalette.canApplySelectedStyle()  

424
dreamweaver.cssStylePalette.canDeleteSelectedStyle()  

425
dreamweaver.cssStylePalette.canDuplicateSelectedStyle(

)  425
dreamweaver.cssStylePalette.deleteSelectedStyle()  405
dreamweaver.cssStylePalette.duplicateSelectedStyle()  

405
dreamweaver.cssStylePalette.editSelectedStyle()  405
dreamweaver.cssStylePalette.editStyleSheet()  406
dreamweaver.cssStylePalette.getSelectedStyle()  406
dreamweaver.cssStylePalette.getSelectedTarget()  406,  

653
dreamweaver.cssStylePalette.getStyles()  407
dreamweaver.cssStylePalette.newStyle()  408
dreamweaver.cssStylePallette.canEditStyleSheet()  425
dreamweaver.dbi.getDataSources()  408
dreamweaver.debugDocument()  500
dreamweaver.deleteSelection()  477
dreamweaver.doURLDecoding()  484
dreamweaver.doURLEncoding()  585
dreamweaver.editCommandList()  400
dreamweaver.editFontList()  478
dreamweaver.editLockedRegions()  640
dreamweaver.exportCSS()  452
dreamweaver.exportEditableRegionsAsXML()  653
dreamweaver.exportTemplateDataAsXML()  452,  525
Index670



dreamweaver.findNext()  460
dreamweaver.getActiveWindow()  644
dreamweaver.getBehaviorElement()  381
dreamweaver.getBehaviorEvent()  653
dreamweaver.getBehaviorTag()  382
dreamweaver.getBrowserList()  442
dreamweaver.getClipboardText()  391
dreamweaver.getConfigurationPath()  532
dreamweaver.getDebugBrowserList()  500
dreamweaver.getDocumentDOM()  453
dreamweaver.getDocumentList()  644
dreamweaver.getDocumentPath()  532
dreamweaver.getElementRef()  484
dreamweaver.getExtDataArray()  182
dreamweaver.getExtDataValue()  182
dreamweaver.getExtensionEditorList()  442
dreamweaver.getExternalTextEditor()  442
dreamweaver.getExtGroups()  183
dreamweaver.getExtParticipants()  182
dreamweaver.getFlashPath()  443
dreamweaver.getFloaterVisibility()  644
dreamweaver.getFocus()  645
dreamweaver.getFontList()  478
dreamweaver.getFontStyles()  478
dreamweaver.getHideAllFloaters()  630
dreamweaver.getIsAnyBreakpoints()  501
dreamweaver.getKeyState()  479
dreamweaver.getLiveDataInitTags()  526
dreamweaver.getLiveDataMode()  527
dreamweaver.getLiveDataParameters ()  527
dreamweaver.getMenuNeedsUpdating()  530
dreamweaver.getObjectRefs()  654
dreamweaver.getObjectTags()  655
dreamweaver.getParticipants()  155
dreamweaver.getPreferenceInt()  485
dreamweaver.getPreferenceString()  486
dreamweaver.getPrimaryBrowser()  443
dreamweaver.getPrimaryExtensionEditor()  443
dreamweaver.getPrimaryView()  646
dreamweaver.getRecentFileList()  454
dreamweaver.getRedoText()  488
dreamweaver.getSecondaryBrowser()  444
dreamweaver.getShowDialogsOnInsert()  480
dreamweaver.getShowStatusBar()  630
dreamweaver.getSiteRoot()  533
dreamweaver.getSnapDistance()  646
dreamweaver.getSystemFontList()  480
dreamweaver.getTokens()  585
dreamweaver.getTranslatorList()  641
dreamweaver.getUndoText()  488

dreamweaver.historyPalette object  487,  498
dreamweaver.historyPalette.clearSteps()  490
dreamweaver.historyPalette.copySteps()  490
dreamweaver.historyPalette.getSelectedSteps()  491
dreamweaver.historyPalette.getStepCount()  492
dreamweaver.historyPalette.getStepsAsJavaScript()  492
dreamweaver.historyPalette.getUndoState()  493
dreamweaver.historyPalette.replaySteps()  493
dreamweaver.historyPalette.saveAsCommand()  493
dreamweaver.historyPalette.setSelectedSteps()  494
dreamweaver.historyPalette.setUndoState()  494
dreamweaver.htmlInspector.getShowAutoIndent()  631
dreamweaver.htmlInspector.getShowHighlightInvalidH

TML()  631
dreamweaver.htmlInspector.getShowLineNumbers()  

631
dreamweaver.htmlInspector.getShowSyntaxColoring()  

631
dreamweaver.htmlInspector.getShowWordWrap()  632
dreamweaver.htmlInspector.setShowAutoIndent()  632
dreamweaver.htmlInspector.setShowHighightInvalidH

TML()  632
dreamweaver.htmlInspector.setShowLineNumbers()  

633
dreamweaver.htmlInspector.setShowSyntaxColoring()  

633
dreamweaver.htmlInspector.setShowWordWrap()  633
dreamweaver.htmlStylePalette object  495
dreamweaver.htmlStylePalette.canEditSelection()  426
dreamweaver.htmlStylePalette.deleteSelectedStyle()  

495
dreamweaver.htmlStylePalette.duplicateSelectedStyle()  

495
dreamweaver.htmlStylePalette.editSelectedStyle()  496
dreamweaver.htmlStylePalette.getSelectedStyle()  496
dreamweaver.htmlStylePalette.getStyles()  496
dreamweaver.htmlStylePalette.newStyle()  496
dreamweaver.htmlStylePalette.setSelectedStyle()  497
dreamweaver.importXMLIntoTemplate()  454
dreamweaver.isRecording()  426
dreamweaver.isReporting()  536
dreamweaver.latin1ToNative()  586
dreamweaver.libraryPalette object  521
dreamweaver.libraryPalette.deleteSelectedItem()  656
dreamweaver.libraryPalette.getSelectedItem()  656
dreamweaver.libraryPalette.newFromDocument()  657
dreamweaver.libraryPalette.recreateFromDocument()  

657
dreamweaver.libraryPalette.renameSelectedItem()  657
dreamweaver.liveDataTranslate()  528
Index 671



dreamweaver.loadSitesFromPrefs()  558
dreamweaver.minimizeRestoreAll()  647
dreamweaver.nativeToLatin1()  586
dreamweaver.newDocumentDOM()  454
dreamweaver.newFromTemplate()  455
dreamweaver.nodeExists()  549
dreamweaver.nodeToOffsets()  658
dreamweaver.notifyMenuUpdated()  531
dreamweaver.offsetsToNode()  658
dreamweaver.openDocument()  455
dreamweaver.openDocumentFromSite()  455
dreamweaver.openInFrame()  456
dreamweaver.openWithApp()  445
dreamweaver.openWithBrowseDialog()  446
dreamweaver.openWithExternalTextEditor()  446
dreamweaver.openWithImageEditor()  446
dreamweaver.outputResultsPanel.clearItems()  541
dreamweaver.outputResultsPanel.clipCopy()  541
dreamweaver.outputResultsPanel.clipCut()  542
dreamweaver.outputResultsPanel.clipPaste()  542
dreamweaver.outputResultsPanel.debugWindow.addDe

bugContextData()  544
dreamweaver.outputResultsPanel.openInBrowser()  542
dreamweaver.outputResultsPanel.openInEditor()  543
dreamweaver.outputResultsPanel.save()  543
dreamweaver.outputResultsPanel.selectAll()  543
dreamweaver.playRecordedCommand()  489
dreamweaver.popupAction()  383
dreamweaver.popupCommand()  659
dreamweaver.popupEditTagDialog()  609
dreamweaver.popupInsertTagDialog()  608
dreamweaver.popupServerBehavior()  551
dreamweaver.PrintCode()  534
dreamweaver.quitApplication()  481
dreamweaver.redo()  489
dreamweaver.referencePalette.getFontSize()  379
dreamweaver.referencePalette.setFontSize()  379
dreamweaver.refreshExtData()  183
dreamweaver.relativeToAbsoluteURL()  533
dreamweaver.releaseDocument()  456
dreamweaver.reloadMenus()  531
dreamweaver.removeAllBreakpoints()  501
dreamweaver.replace()  460
dreamweaver.replaceAll()  460
dreamweaver.resultsPalette.canClear()  426
dreamweaver.resultsPalette.canClipCopy()  427
dreamweaver.resultsPalette.canClipCut()  427
dreamweaver.resultsPalette.canClipPaste()  427
dreamweaver.resultsPalette.canOpenInBrowser()  427
dreamweaver.resultsPalette.canOpenInEditor()  428

dreamweaver.resultsPalette.canSave()  428
dreamweaver.resultsPalette.canSelectAll()  428
dreamweaver.revertDocument()  457
dreamweaver.runCommand()  400
dreamweaver.saveAll()  457
dreamweaver.saveDocument()  457
dreamweaver.saveDocumentAs()  458
dreamweaver.saveDocumentAsTemplate()  458
dreamweaver.saveFrameset()  459
dreamweaver.saveFramesetAs()  459
dreamweaver.saveSitesToPrefs()  558
dreamweaver.scanSourceString()  586
dreamweaver.selectAll()  550
dreamweaver.serverBehaviorInspector.getServerBehavio

rs()  551
dreamweaver.serverComponents.getSelectedNode()  

401
dreamweaver.serverComponents.refresh()  401
dreamweaver.setActiveWindow()  647
dreamweaver.setFloaterVisibility()  647
dreamweaver.setHideAllFloaters()  634
dreamweaver.setLiveDataError()  528
dreamweaver.setLiveDataMode()  529
dreamweaver.setLiveDataParameters ()  529
dreamweaver.setPreferenceInt()  486
dreamweaver.setPreferenceString()  487
dreamweaver.setPrimaryView()  648
dreamweaver.setSelection()  659
dreamweaver.setShowStatusBar()  634
dreamweaver.setSnapDistance()  649
dreamweaver.setUpComplexFind()  461
dreamweaver.setUpComplexFindReplace()  461
dreamweaver.setUpFind()  462
dreamweaver.setUpFindReplace()  463
dreamweaver.showAboutBox()  481
dreamweaver.showDynamicData()  481
dreamweaver.showFindDialog()  463
dreamweaver.showFindReplaceDialog()  464
dreamweaver.showGridSettingsDialog()  515
dreamweaver.showLiveDataDialog()  530
dreamweaver.showPreferencesDialog()  482
dreamweaver.showProperties()  649
dreamweaver.showQuickTagEditor()  536
dreamweaver.showReportsDialog()  536
dreamweaver.showTagChooser()  482,  609
dreamweaver.showTagLibraryEditor()  609
dreamweaver.snippetPalette.editSnippet()  583
dreamweaver.snippetPalette.insert()  583
dreamweaver.snippetPalette.insertSnippet()  584
dreamweaver.snippetPalette.newFolder()  583
Index672



dreamweaver.snippetPalette.remove()  584
dreamweaver.snippetPalette.rename()  584
dreamweaver.startDebugger()  501
dreamweaver.startRecording()  489
dreamweaver.stopRecording()  490
dreamweaver.stylePalette.attachExternalStylesheet()  

404
dreamweaver.tagInspector.deleteTags()  613
dreamweaver.tagInspector.editTagName()  613
dreamweaver.tagInspector.tagAfter()  612
dreamweaver.tagInspector.tagBefore()  612
dreamweaver.tagInspector.tagInside()  612
dreamweaver.tagLibrary.getImportedTagList()  611
dreamweaver.tagLibrary.getSelectedLibrary()  610
dreamweaver.tagLibrary.getSelectedTag()  610
dreamweaver.tagLibrary.getTagLibraryDOM()  610
dreamweaver.tagLibrary.importDTDOrSchema()  611
dreamweaver.templatePalette object  521
dreamweaver.templatePalette.deleteSelectedTemplate()  

659
dreamweaver.templatePalette.getSelectedTemplate()  

658
dreamweaver.templatePalette.renameSelectedTemplate(

)  660
dreamweaver.timelineInspector object  614
dreamweaver.timelineInspector.addBehavior()  614
dreamweaver.timelineInspector.addFrame()  614
dreamweaver.timelineInspector.addKeyframe()  614
dreamweaver.timelineInspector.addObject()  615
dreamweaver.timelineInspector.addTimeline()  615
dreamweaver.timelineInspector.canAddFrame()  430
dreamweaver.timelineInspector.canAddKeyFrame()  

431
dreamweaver.timelineInspector.canChangeObject()  

431
dreamweaver.timelineInspector.canRemoveFrame()  

432
dreamweaver.timelineInspector.canRemoveKeyFrame()  

432
dreamweaver.timelineInspector.canRemoveObject()  

432
dreamweaver.timelineInspector.changeObject()  615
dreamweaver.timelineInspector.getAutoplay()  615
dreamweaver.timelineInspector.getCurrentFrame()  616
dreamweaver.timelineInspector.getLoop()  616
dreamweaver.timelineInspector.recordPathOfLayer()  

616
dreamweaver.timelineInspector.removeBehavior()  617
dreamweaver.timelineInspector.removeFrame()  617
dreamweaver.timelineInspector.removeKeyframe()  617

dreamweaver.timelineInspector.removeObject()  618
dreamweaver.timelineInspector.removeTimeline()  618
dreamweaver.timelineInspector.renameTimeline()  618
dreamweaver.timelineInspector.setAutoplay()  618
dreamweaver.timelineInspector.setCurrentFrame()  619
dreamweaver.timelineInspector.setLoop()  619
dreamweaver.toggleFloater()  650
dreamweaver.undo()  490
dreamweaver.updatePages()  526
dreamweaver.updateReference()  651
dreamweaver.useTranslatedSource()  641
dreamweaver.validateFlash()  447
dropdown tag  86
duplicateSelectedStyle()  405,  495
dw object  371
dw.arrangeFloatingPalettes()  515
dw.assetPalette.addToFavoritesFromDocument()  372
dw.assetPalette.addToFavoritesFromSiteAssets()  373
dw.assetPalette.addToFavoritesFromSiteWindow()  373
dw.assetPalette.canEdit()  418
dw.assetPalette.canInsertOrApply()  418
dw.assetPalette.copyToSite()  373
dw.assetPalette.edit()  374
dw.assetPalette.getSelectedCategory()  374
dw.assetPalette.getSelectedItems()  374
dw.assetPalette.getSelectedView()  375
dw.assetPalette.insertOrApply()  375
dw.assetPalette.locateInSite()  376
dw.assetPalette.newAsset()  376
dw.assetPalette.newFolder()  376
dw.assetPaletterecreateLibraryFromDocument()  377
dw.assetPalette.refreshSiteAssets()  377
dw.assetPalette.removeFromFavorites()  377
dw.assetPalette.renameNickname()  378
dw.assetPalette.setSelectedCategory()  378
dw.assetPalette.setSelectedView()  378
dw.beep()  480
dw.behaviorInspector.getBehaviorAt()  384
dw.behaviorInspector.getBehaviorCount()  384
dw.behaviorInspector.getSelectedBehavior()  384
dw.behaviorInspector.moveBehaviorDown()  385
dw.behaviorInspector.moveBehaviorUp()  386
dw.behaviorInspector.setSelectedBehavior()  387
dw.browseDocument()  441
dw.browseForFileURL()  449
dw.browseForFolderURL()  449
dw.canClipCopy()  418
dw.canClipCut()  419
dw.canClipPaste()  419
dw.canExportCSS()  420
Index 673



dw.canExportTemplateDataAsXML()  420
dw.canFindNext()  420
dw.canOpenInFrame()  420
dw.canPlayRecordedCommand()  421
dw.canPopupEditTagDialog()  421
dw.canRedo()  421
dw.canRevertDocument()  422
dw.canSaveAll()  422
dw.canSaveDocument()  422
dw.canSaveDocumentAsTemplate()  423
dw.canSaveFrameset()  423
dw.canSaveFramesetAs()  423
dw.canSelectAll()  424
dw.canShowFindDialog()  424
dw.canUndo()  424
dw.clipCopy()  390
dw.clipCut()  391
dw.clipPaste()  391
dw.closeDocument()  450
dw.codeHints.addFunction()  398
dw.codeHints.addMenu()  397
dw.codeHints.resetMenu()  399
dw.codeHints.showCodeHints()  400
dw.createDocument()  450
dw.createResultsWindow()  537
dw.createXHTMLDocument()  451
dw.createXMLDocument()  452
dw.cssStyle.canEditSelectedStyle()  425
dw.cssStylePalette.applySelectedStyle()  404
dw.cssStylePalette.canApplySelectedStyle()  424
dw.cssStylePalette.canDeleteSelectedStyle()  425
dw.cssStylePalette.canDuplicateSelectedStyle()  425
dw.cssStylePalette.deleteSelectedStyle()  405
dw.cssStylePalette.duplicateSelectedStyle()  405
dw.cssStylePalette.editSelectedStyle()  405
dw.cssStylePalette.editStyleSheet()  406
dw.cssStylePalette.getSelectedStyle()  406
dw.cssStylePalette.getSelectedTarget()  406,  653
dw.cssStylePalette.getStyles()  407
dw.cssStylePalette.newStyle()  408
dw.cssStylePallette.canEditStyleSheet()  425
dw.dbi.getDataSources()  408
dw.debugDocument()  500
dw.deleteSelection()  477
dw.doURLDecoding()  484
dw.doURLEncoding()  585
dw.editCommandList()  400
dw.editFontList()  478
dw.editLockedRegions()  640
dw.exportCSS()  452

dw.exportEditableRegionsAsXML()  653
dw.exportTemplateDataAsXML()  452,  525
DWfile.copy()  271
DWfile.createFolder()  272
DWfile.exists()  272
DWfile.getAttributes()  273
DWfile.getCreationDate()  274
DWfile.getCreationDateObj()  275
DWfile.getModificationDate()  274
DWfile.getModificationDateObj()  275
DWfile.getSize()  276
DWfile.listFolder()  276
DWfile.read()  277
DWfile.remove()  277
DWfile.setAttributes()  278
DWfile.write()  278
dw.findNext()  460
dw.getActiveWindow()  644
dw.getBehaviorElement()  381
dw.getBehaviorTag()  382
dw.getBrowserList()  442
dw.getConfigurationPath()  532
dw.getDebugBrowserList()  500
dw.getDocumentDOM()  453
dw.getDocumentList()  644
dw.getDocumentPath()  532
dw.getElementRef()  484
dw.getExtDataArray  182
dw.getExtDataValue()  182
dw.getExtensionEditorList()  442
dw.getExternalTextEditor()  442
dw.getExtGroups()  183
dw.getExtParticipants()  182
dw.getFlashPath()  443
dw.getFloaterVisibility()  644
dw.getFocus()  645
dw.getFontList()  478
dw.getFontStyles()  478
dw.getHideAllFloaters()  630
dw.getIsAnyBreakpoints()  501
dw.getKeyState()  479
dw.getLiveDataInitTags()  526
dw.getLiveDataMode()  527
dw.getLiveDataParameters ()  527
dw.getMenuNeedsUpdating()  530
dw.getParticipants()  155
dw.getPreferenceInt()  485
dw.getPreferenceString()  486
dw.getPrimaryBrowser()  443
dw.getPrimaryExtensionEditor()  443
Index674



dw.getPrimaryView()  646
dw.getRecentFileList()  454
dw.getRedoText()  488
dw.getSecondaryBrowser()  444
dw.getShowDialogsOnInsert()  480
dw.getShowStatusBar()  630
dw.getSiteRoot()  533
dw.getSnapDistance()  646
dw.getSystemFontList()  480
dw.getTokens()  585
dw.getTranslatorList()  641
dw.getUndoText()  488
dw.historyPalette.clearSteps()  490
dw.historyPalette.copySteps()  490
dw.historyPalette.getSelectedSteps()  491
dw.historyPalette.getStepCount()  492
dw.historyPalette.getStepsAsJavaScript()  492
dw.historyPalette.getUndoState()  493
dw.historyPalette.replaySteps()  493
dw.historyPalette.saveAsCommand()  493
dw.historyPalette.setSelectedSteps()  494
dw.historyPalette.setUndoState()  494
dw.htmlInspector.getShowAutoIndent()  631
dw.htmlInspector.getShowHighlightInvalidHTML()  

631
dw.htmlInspector.getShowLineNumbers()  631
dw.htmlInspector.getShowSyntaxColoring()  631
dw.htmlInspector.getShowWordWrap()  632
dw.htmlInspector.setShowAutoIndent()  632
dw.htmlInspector.setShowHighlightInvalidHTML()  

632
dw.htmlInspector.setShowLineNumbers()  633
dw.htmlInspector.setShowSyntaxColoring()  633
dw.htmlInspector.setShowWordWrap()  633
dw.htmlStylePalette.canEditSelection()  426
dw.htmlStylePalette.deleteSelectedStyle()  495
dw.htmlStylePalette.duplicateSelectedStyle()  495
dw.htmlStylePalette.editSelectedStyle()  496
dw.htmlStylePalette.getSelectedStyle()  496
dw.htmlStylePalette.getStyles()  496
dw.htmlStylePalette.newStyle()  496
dw.htmlStylePalette.setSelectedStyle()  497
dw.importXMLIntoTemplate()  454
dw.isRecording()  426
dw.isReporting()  536
dw.latin1ToNative()  586
dw.libraryPalette.deleteSelectedItem()  656
dw.libraryPalette.getSelectedItem()  656
dw.libraryPalette.newFromDocument()  657
dw.libraryPalette.recreateFromDocument()  657

dw.libraryPalette.renameSelectedItem()  657
dw.liveDataTranslate()  528
dw.loadSitesFromPrefs()  558
dw.minimizeRestoreAll()  647
dw.nativeToLatin1()  586
dw.newDocumentDOM()  454
dw.newFromTemplate()  455
dw.nodeExists()  549
dw.notifyMenuUpdated()  531
dw.openDocument()  455
dw.openDocumentFromSite()  455
dw.openInFrame()  456
dw.openWithApp()  445
dw.openWithBrowseDialog()  446
dw.openWithExternalTextEditor()  446
dw.openWithImageEditor()  446
dw.outputResultsPanel.clearItems()  541
dw.outputResultsPanel.clipCopy()  541
dw.outputResultsPanel.clipCut()  542
dw.outputResultsPanel.clipPaste()  542
dw.outputResultsPanel.debugWindow.addDebugConte

xtData()  544
dw.outputResultsPanel.openInBrowser()  542
dw.outputResultsPanel.openInEditor()  543
dw.outputResultsPanel.save()  543
dw.outputResultsPanel.selectAll()  543
dw.playRecordedCommand()  489
dw.popupAction()  383
dw.popupEditTagDialog()  609
dw.popupInsertTagDialog()  608
dw.popupServerBehavior()  551
dw.PrintCode()  534
dw.quitApplication()  481
dw.redo()  489
dw.referencePalette.getFontSize()  379
dw.referencePalette.setFontSize()  379
dw.refreshExtData()  183
dw.relativeToAbsoluteURL()  533
dw.releaseDocument()  456
dw.reloadMenus()  531
dw.removeAllBreakpoints()  501
dw.replace()  460
dw.replaceAll()  460
dw.resultsPalette.canClear()  426
dw.resultsPalette.canClipCopy()  427
dw.resultsPalette.canClipCut()  427
dw.resultsPalette.canClipPaste()  427
dw.resultsPalette.canOpenInBrowser()  427
dw.resultsPalette.canOpenInEditor()  428
dw.resultsPalette.canSave()  428
Index 675



dw.resultsPalette.canSelectAll()  428
dw.revertDocument()  457
dw.runCommand()  400
dw.saveAll()  457
dw.saveDocument()  457
dw.saveDocumentAs()  458
dw.saveDocumentAsTemplate()  458
dw.saveFrameset()  459
dw.saveFramesetAs()  459
dw.saveSitesToPrefs()  558
dw.scanSourceString()  586
dwscripts functions

applySB()  157
deleteSB()  157
findSBs()  156

dw.selectAll()  550
dw.serverBehaviorInspector.getServerBehaviors()  551
dw.serverComponents.getSelectedNode()  401
dw.serverComponents.refresh()  401
dw.setActiveWindow()  647
dw.setFloaterVisibility()  647
dw.setHideAllFloaters()  634
dw.setLiveDataError()  528
dw.setLiveDataMode()  529
dw.setLiveDataParameters ()  529
dw.setPreferenceInt()  486
dw.setPreferenceString()  487
dw.setPrimaryView()  648
dw.setShowStatusBar()  634
dw.setSnapDistance()  649
dw.setUpComplexFind()  461
dw.setUpComplexFindReplace()  461
dw.setUpFind()  462
dw.setUpFindReplace()  463
dw.showAboutBox()  481
dw.showDynamicData()  481
dw.showFindDialog()  463
dw.showFindReplaceDialog()  464
dw.showGridSettingsDialog()  515
dw.showLiveDataDialog()  530
dw.showPreferencesDialog()  482
dw.showProperties()  649
dw.showQuickTagEditor()  536
dw.showReportsDialog()  536
dw.showTagChooser()  482,  609
dw.showTagLibraryEditor()  609
dw.snippetPalette.editSnippet()  583
dw.snippetPalette.insert()  583
dw.snippetPalette.insertSnippet()  584
dw.snippetPalette.newFolder()  583

dw.snippetPalette.remove()  584
dw.snippetPalette.rename()  584
dw.startDebugger()  501
dw.startRecording()  489
dw.stopRecording()  490
dw.stylePalette.attachExternalStylesheet()  404
dw.tagInspector.deleteTags()  613
dw.tagInspector.editTagName()  613
dw.tagInspector.tagAfter()  612
dw.tagInspector.tagBefore()  612
dw.tagInspector.tagInside()  612
dw.tagLibrary.getImportedTagList()  611
dw.tagLibrary.getSelectedLibrary()  610
dw.tagLibrary.getSelectedTag()  610
dw.tagLibrary.getTagLibraryDOM()  610
dw.tagLibrary.importDTDOrSchema()  611
dw.templatePalette.deleteSelectedTemplate()  659
dw.templatePalette.getSelectedTemplate()  658
dw.templatePalette.renameSelectedTemplate()  660
dw.timelineInspector.addBehavior()  614
dw.timelineInspector.addFrame()  614
dw.timelineInspector.addKeyframe()  614
dw.timelineInspector.addObject()  615
dw.timelineInspector.addTimeline()  615
dw.timelineInspector.canAddFrame()  430
dw.timelineInspector.canAddKeyFrame()  431
dw.timelineInspector.canChangeObject()  431
dw.timelineInspector.canRemoveFrame()  432
dw.timelineInspector.canRemoveKeyFrame()  432
dw.timelineInspector.canRemoveObject()  432
dw.timelineInspector.changeObject()  615
dw.timelineInspector.getAutoplay()  615
dw.timelineInspector.getCurrentFrame()  616
dw.timelineInspector.getLoop()  616
dw.timelineInspector.recordPathOfLayer()  616
dw.timelineInspector.removeBehavior()  617
dw.timelineInspector.removeFrame()  617
dw.timelineInspector.removeKeyframe()  617
dw.timelineInspector.removeObject()  618
dw.timelineInspector.removeTimeline()  618
dw.timelineInspector.renameTimeline()  618
dw.timelineInspector.setAutoplay()  618
dw.timelineInspector.setCurrentFrame()  619
dw.timelineInspector.setLoop()  619
dw.toggleFloater()  650
dw.undo()  490
dw.updatePages()  526
dw.updateReference()  651
dw.useTranslatedSource()  641
dw.validateFlash()  447
Index676



Dynamic Data dialog box  191
dynamic menus

sample code  75
user experience  67

dynamic templates  27
Dynamic Text dialog box  191

E

Edit Format List Plus (+) pop-up menu  201
editAttribute()  467
editColumns()  563
editCommandList()  400
editcontrol tag  87
editDynamicSource()  194
editFontList()  478
editLockedRegions()  640
editSelectedStyle()  405,  496
editStyleSheet()  406
EDML

definition  145
EDML file tags

attributes  180
closeTag  181
dataSource attribute  161
delete  175
deleteType attribute  176
display  181
group  160
groupParticipant tag  163
groupParticipants  162
insertText  166
isOptional attribute  172
limitSearch attribute  172,  178
location attribute  166
name attribute  163
nodeParamName attribute  168
openTag  179
paramName attribute  175
paramNames attribute  171
participant  165
partType attribute  164
quickSearch  165
searchPatterns  169,  177
selectParticipant attribute  163
serverBehavior attribute  160
subType attribute  161
title  162
translation  177
translations  177
translationType attribute  178
translator  176

updatePattern  174
updatePatterns  173
version attribute  160,  165
whereToSearch attribute  169,  178

EDML files  146
editing  158
EDML structure  159
group file tags  160
using regular expressions  158

element node  45
enabled attribute  90
enablers

return value  409
using  372

endOfDocument()  504,  592
endOfLine()  504,  592
endPage()  593
endReporting()  105
errata  12
escape()  42
event handlers

in behavior dialog boxes  135
in extension files  21
returning a value from  142

events
in extension files  42
role in behaviors  135

execJsInFireworks()  300
exists()  272
exitBlock()  467
exportCSS()  452
exportEditableRegionsAsXML()  653
exportSite()  563
exportTemplateDataAsXML()  452,  525
extensible document types  22
extension

user interface  31
extension APIs, types of  20
Extension Data Manager  181
Extension Data Markup Language (EDML)  146
extension folders  18
Extension Manager

guidelines  31
working with  22

extensions, Dreamweaver  17
Extensions.txt file  28
external

application functions  441
JavaScript files  21
Index 677



F

file (field) object  42
file attribute  90
file I/O API  271

DWfile.copy()  271
DWfile.createFolder()  272
DWfile.exists()  272
DWfile.getAttributes()  273
DWfile.getCreationDate()  274
DWfile.getCreationDateObj()  275
DWfile.getModificationDate()  274
DWfile.getModificationDateObj()  275
DWfile.getSize()  276
DWfile.listFolder()  276
DWfile.read()  277
DWfile.remove()  277
DWfile.setAttributes()  278
DWfile.write()  278

file manipulation functions
in JavaScript API  447

FilePathToLocalURL()  293
files

CodeHints.xml  392
insertbar.xml  51
snippets  582
toolbars.xml  77
XML  42

files on disk
copying  271
creating (HTML files)  450
creating (non-HTML files)  278
creating (XHTML files)  451
creating (XML files)  452
reading  277
removing  277
writing to  278

findConnection()  339
findDynamicSources()  194
findLinkSource()  565
findNext()  460
findSBs()  156
Fireworks integration API  299

bringDWToFront()  299
bringFWToFront()  299
example  304
execJsInFireworks()  300
getJsResponse()  300
mayLaunchFireworks()  301
optimizeInFireworks()  302
validateFireworks()  302

Flash integration  16
Flash object API

SWFFile.createFile()  307
SWFFile.getNaturalSize()  309
SWFFile.getObjectType()  309
SWFFile.readFile()  309

Flash objects
creating  307

floating panel API
displayHelp()  127
documentEdited()  127
getDockingSide()  128
initialPosition()  128
initialTabs()  129
isATarget()  129
isAvailableInCodeView()  130
isResizable()  130

floating panels
API  126
performance issues  131
sample code  133
selectionChanged()  130
user experience  125

focus()  42
folders

objects  51
form object  42
formatDynamicDataRef()  203
format.Range()  588
formats  199
formatSelection()  589
FTP logging  541
function

object  42
function tag  396
FWLaunch.bringDWToFront()  299
FWLaunch.bringFWToFront()  299
FWLaunch.execJsInFireworks()  300
FWLaunch.getJsResponse()  300
FWLaunch.mayLaunchFireworks()  301
FWLaunch.optimizeInFireworks()  302
FWLaunch.validateFireworks()  302

G

generateDynamicDataRef()  195
generateDynamicSourceBindings()  196
get()  565
getActiveWindow()  644
getAppServerAccessType()  565
getAppServerPathToFiles()  566
getAttachedTemplate()  522
Index678



getAttribute()  45
getAttributes()  273
getAutoplay()  615
getBehavior()  380
getBehaviorAt()  384
getBehaviorCount()  384
getBehaviorElement()  381
getBehaviorEvent()  653
getBehaviorTag()  382
getBreakpoint()  498
getBrowserList()  442
getCharSet()  467
getCheckOutUser()  566
getCheckOutUserForFile()  567
getClasses()  346
getClassesFromPackage()  347
getClickedHeaderColumn()  518
getClipboardText()  391
getCloakingEnabled()  567
getCodeViewDropCode()  212
getColdFusionDsnList()  313
getColumnAndTypeList()  325
getColumnList()  325
getColumns()  326
getColumnsOfTable()  327
getComponentChildren()  208
getConfigurationPath()  532
getConnection()  313
getConnectionList()  314
getConnectionName()  315
getConnectionState()  567
getConnectionString()  315
getContextMenuId()  210
getCreationDate()  274
getCreationDateObj()  275
getCurrentFrame()  616
getCurrentLines()  593
getCurrentSite()  568
getCurrentValue()  94
getDataSources()  408
getDebugBrowserList()  500
getDelimiters()  553
getDockingSide()  128
getDocumentDOM()  453
getDocumentList()  644
getDocumentPath()  532
getDriverName()  316
getDriverUrlTemplateList()  316
getDynamicContent()  69,  94
getEditableRegionList()  522

getEditableRetionList()  523
getEditNoFramesContent()  620
getElementRef()  484
getElementsByTagName()

for document objects  44
for tag objects  45

getErrorMessage()  347
getEvents()  346
getExtDataArray()  182
getExtDataValue()  182
getExtensionEditorList()  442
getExternalTextEditor()  442
getExtGroups()  183
getExtParticipants()  182
getFile()  282
getFileCallback()  284
getFileExtensions()  218
getFlashPath()  443
getFloaterVisibility()  644
getFocus()  568,  642,  645
getFontList()  478
getFontMarkup()  468
getFontStyles()  478
getFrameNames()  464
getHideAllFloaters()  630
getHideAllVisualAids()  620
getImportedTagList()  611
getIndexedProperties()  346
getIsAnyBreakpoints()  501
getIsLibraryDocument()  523
getIsTemplateDocument()  523
getIsXHTMLDocument()  449
getJsResponse()  300
getKeyState()  479
getLanguageSignatures()  219
getLineFromOffset()  498,  594
getLinkHref()  468
getLinkTarget()  468
getLinkVisibility()  568
getListTag()  468
getLiveDataInitTags()  526
getLiveDataMode()  527
getLiveDataParameters ()  527
getLocalDsnList()  317
getLocalPathToFiles()  569
getLoop()  616
getMenuID()  95
getMenuNeedsUpdating()  530
getMethods()  345
getModificationDate()  274
Index 679



getModificationDateObj()  275
GetNote()  293
GetNoteLength()  294
GetNotesKeyCount()  294
GetNotesKeys()  294
getObjectRefs()  654
getObjectTags()  655
getParticipants()  155
getPassword()  317
getPreferenceInt()  485
getPreferenceString()  486
getPreventLayerOverlaps()  620
getPrimaryBrowser()  443
getPrimaryExtensionEditor()  443
getPrimaryKeys()  327
getPrimaryView()  646
getProcedures()  328
getProperties()  345
getRdsPassword()  318
getRdsUserName()  318
getRecentFileList()  454
getRedoText()  488
getRemoteDsnList()  318
getRulerOrigin()  511
getRulerUnits()  511
getRuntimeConnectionType()  319
getSecondaryBrowser()  444
getSelectedBehavior()  384
getSelectedEditableRegion()  523
getSelectedItem()  656
getSelectedLibrary()  610
getSelectedNode()  401,  546
getSelectedStyle()  406,  496
getSelectedTag()  610
getSelectedTarget()  406,  653
getSelectedTemplate()  658
getSelection()  546,  569,  593

dreamweaver.getSelection()  656
getServerBehaviors()  551
getServerExtension()  219,  554
getServerInfo()  220
getServerLanguage()  556
getServerLanguages()  220
getServerModelDelimiters()  221
getServerModelDisplayName()  222
getServerModelExtDataNameUD4()  221
getServerModelFolderName()  222
getServerName()  556
getServerSupportsCharset()  222
getServerVersion()  557

getSetupSteps()  212
getShowAutoIndent()  620
getShowDependents()  634
getShowDialogsOnInsert()  480
getShowFrameBorders()  621
getShowGrid()  621
getShowHeadView()  621
getShowHiddenFiles()  634
getShowImageMaps()  622
getShowInvalidHTML()  622
getShowInvisibleElements()  622
getShowLayerBorders()  622,  628
getShowLayoutTableTabs()  518
getShowLayoutView()  518
getShowLineNumbers()  623
getShowNoscript  589
getShowPageTitles()  635
getShowRulers()  623
getShowStatusBar()  630
getShowSyntaxColoring()  623
getShowTableBorders()  623
getShowToolbar()  624
getShowToolbarIconLabels()  640
getShowToolTips()  635
getShowTracingImage()  624
getShowWordWrap()  624
getSiteForURL()  569
getSiteRoot()  533
GetSiteRootForFile()  295
getSites()  570
getSize()  276
getSnapDistance()  646
getSnapToGrid()  625
getSPColumnList()  329
getSPColumnListNamedParams()  329
getSPParameters()  330
getSPParamsAsString()  331
getStepCount()  492
getStepsAsJavaScript()  492
getStyles()  407,  496
getSystemFontList()  480
getTableExtent()  604
getTables()  332
getTagLibraryDOM()  610
getTagSelectorTag()  608
getText()  284,  594
getTextAlignment()  469
getTextCallback()  285
getTextFormat()  469
getTokens()  585
Index680



getToolbarIdArray()  638
getToolbarLabel()  639
getToolbarVisibility()  637
getTracingImageOpacity()  511
getTranslatedAttribute()  45
getTranslatorInfo()  226
getTranslatorList()  641
getUndoState()  493
getUndoText()  488
getUpdateFrequency()  96
getUserName()  319
getVersionArray()  223
GetVersionName()  296
GetVersionNum()  296
getView()  642
getViews()  332
getWindowTitle()  643
global application functions  480
group file tags  160
group files  146
groupParticipant  163
groupParticipants tag  162

H

handleDoubleClick()  213
hasCharacterMarkup()  469
hasChildNodes()

for comment objects  46
for document objects  44
for tag objects  45
for text objects  46

hasConnectionWithName()  320
hasTracingImage()  418
hasTranslatedAttributes()  45
Help Book extensions

definition  20
helper functions, in behaviors  136
hidden (field) object  42
history functions  487
hline  119
hotspot functions  508
HTML

apply style  495
Cascading Style Sheets  402
converting to XHTML  448
creating new document  450
inner/outer properties  45
inserting  470
show invalid  622,  631
style palette object  495

htmlInspector.getShowAutoIndent()  631

htmlInspector.getShowHighlightInvalidHTML()  631
htmlInspector.getShowLineNumbers()  631
htmlInspector.getShowSyntaxColoring()  631
htmlInspector.getShowWordWrap()  632
htmlInspector.setShowAutoIndent()  632
htmlInspector.setShowHighlightInvalidHTML()  632
htmlInspector.setShowLineNumbers()  633
htmlInspector.setShowSyntaxColoring()  633
htmlInspector.setShowWordWrap()  633
HTTP API  281

MMHttp.clearTemp()  282
MMHttp.getFile()  282
MMHttp.getFileCallback()  284
MMHttp.getText()  284
MMHttp.getTextCallback()  285
MMHttp.postText()  286
MMHttp.postTextCallback()  286

I

id attribute  88
identifyBehaviorArguments()  140
image

attributes  88
map functions  508
object  42

image map functions  508
importDTDOrSchema()  611
importSite()  570
importXMLIntoTemplate()  454
include files

connection type definition  343
include files, generated  341
include/ tag  82
increaseColspan()  604
increaseRowspan()  604
indent()  470
indentTextView()  594
InfoPrefs  295
initialPosition()  128
initialTabs()  129
innerHTML property  45
Insert bar

adding objects  52
defining  52
insertbar xml tag  54

Insert menu
adding objects  56

insert()  595
insertbar.xml file  51
insertHTML()  470
insertLibraryItem()  524
Index 681



insertObject()  51,  58,  471
insertTableColumns()  605
insertTableRows()  605
insertText tag  166
insertText()  471
inspectBehavior()  141
inspectConnection()  341
inspectDynamicDataRef()  197
inspectFormatDefinition()  204
Inspector extensions, definition  20
inspectTag()  117
installing an extension  11
instrumentDocument()  243,  498
invertSelection()  570
isATarget()  129
isAvailableInCodeView()  130
isCloaked()  571
isColumnAutostretch()  518
isCommandChecked()  70,  97
isDesignViewUpdated()  589
isDocumentInFrame()  465
isDOMRequired()  98
isDomRequired()  58
isOptional attribute  172
isRecording()  426
isReporting()  536
isResizable()  130
isSelectionValid()  590
item tags, in toolbars  83
item()  42
itemInfo struct  357
itemref/ tag  82
itemtype/ tag  82

J

JavaBeans API  345
MMJB.getClasses()  346
MMJB.getClassesFromPackage()  347
MMJB.getErrorMessage()  347
MMJB.getEvents()  346
MMJB.getIndexedProperties()  346
MMJB.getMethods()  345
MMJB.getProperties()  345

JavaScript
controls  33
URLs  21

JavaScript (core) API  371
JavaScript debugger module API  245

getBodyInstrument()  246
getFunctionEndInstrument()  245
getFunctionStartInstrument()  246

getHeadInstrument()  246
getIncludedFileList()  247
getOnUnloadInstrument()  247
getStepInstrument()  248
reportError()  248
reportWarning()  249
startBlock()  249

JDBC drivers  316
JS_BooleanToValue()  257
JS_DefineFunction()  254
JS_DoubleToValue()  257
JS_ExecuteScript()  259
JS_GetArrayLength()  258
JS_GetElement()  259
JS_IntegerToValue()  257
JS_NewArrayObject()  258
JS_ObjectToValue()  257
JS_ObjectType()  258
JS_ReportError()  260
JS_SetElement()  259
JS_StringToValue()  256
JS_ValueToBoolean()  256
JS_ValueToDouble()  255
JS_ValueToInteger()  255
JS_ValueToObject()  256
JS_ValueToString()  255
JSBool  254
JSContext  253
JSNative  254
JSObject  253
jsval  253

L

label attribute  89
language information  47
latin1ToNative()  586
layer object  42
layers to tables  402
library and template functions  521
limitSearch attribute  172,  178
link-checking  541
listFolder()  276
live data functions  526
liveDataTranslate()  528
liveDataTranslateMarkup function()  228
loadSitesFromPrefs()  558
loadTracingImage()  512
localized strings  24
LocalURLToFilePath()  296
locateInSite()  571
location attribute  166
Index682



locked content, inspecting  239
*LOCKED* keyword  239

M

makeCellWidthsConsistent()  519
makeEditable()  571
makeNewDreamweaverFile()  572
makeNewFolder()  572
makeSizesEqual()  509
manipulating tree control content  39
markSelectionAsEditable()  524
math object  42
mayLaunchFireworks()  301
menu command

API  68
sample code  73
user experience  67

menu tag  395
menu_ID attribute  90
menubutton tag  85
menugroup tag  394
menuitem tag  395
MENU-LOCATION  150
mergeTableCells()  606
minimizeRestoreAll()  647
MM

TREECOLUMN  38
TREENODE  38

MM_ConfigFileExists()  263
MM_GetConfigFileAttributes()  264
MM_GetConfigFolderList()  262
mm_jsapi.h file

including  253
sample  267

MM_OpenConfigFile()  263
MM_returnValue  142
MMDB.deleteConnection()  312
MMDB.getColdFusionDsnList()  313
MMDB.getColumnAndTypeList()  325
MMDB.getColumnList()  325
MMDB.getColumns()  326
MMDB.getColumnsOfTable()  327
MMDB.getConnection()  313
MMDB.getConnectionList()  314
MMDB.getConnectionName()  315
MMDB.getConnectionString()  315
MMDB.getDriverName()  316
MMDB.getDriverUrlTemplateList()  316
MMDB.getLocalDsnList()  317
MMDB.getPassword()  317
MMDB.getPrimaryKeys()  327

MMDB.getProcedures()  328
MMDB.getRdsPassword()  318
MMDB.getRdsUserName()  318
MMDB.getRemoteDsnList()  318
MMDB.getRuntimeConnectionType()  319
MMDB.getSPColumnList()  329
MMDB.getSPColumnListNamedParams()  329
MMDB.getSPParameters()  330
MMDB.getSPParamsAsString()  331
MMDB.getTables()  332
MMDB.getUserName()  319
MMDB.getViews()  332
MMDB.hasConnectionWithName()  320
MMDB.needToPromptForRdsInfo()  320
MMDB.needToRefreshColdFusionDsnList()  320
MMDB.popupConnection()  321
MMDB.setRdsPassword()  321
MMDB.setRdsUserName()  322
MMDB.showColdFusionAdmin()  322
MMDB.showConnectionMgrDialog()  322
MMDB.showOdbcDialog()  323
MMDB.showRdsUserDialog()  323
MMDB.showRestrictDialog()  323
MMDB.showResultset()  333
MMDB.showSPResultset()  334
MMDB.showSPResultsetNamedParams()  334
MMDB.testConnection()  324
MMDocumentTypes.xml document type definition file  

23
MMHttp.clearTemp()  282
MMHttp.getFile()  282
MMHttp.getFileCallback()  284
MMHttp.getText()  284
MMHttp.getTextCallback()  285
MMHttp.postText()  286
MMHttp.postTextCallback()  286
MMJB*() functions  345
MMJB.getClasses()  346
MMJB.getClassesFromPackage()  347
MMJB.getErrorMessage()  347
MMJB.getEvents()  346
MMJB.getIndexedProperties()  346
MMJB.getMethods()  345
MMJB.getProperties()  345
MMNotes object  288
MMNotes.close()  288
MMNotes.filePathToLocalURL()  288
MMNotes.get()  288
MMNotes.getKeyCount()  289
MMNotes.getKeys()  289
Index 683



MMNotes.getSiteRootForFile()  290
MMNotes.getVersionName()  290
MMNotes.getVersionNum()  290
MMNotes.localURLToFilePath()  290
MMNotes.open()  291
MMNotes.remove()  291
MMNotes.set()  292
moveBehaviorDown()  385
moveBehaviorUp()  386
moveSelectionBy()  509
multiple configurations  14
multiuser platforms

Configuration folder  28

N

name attribute  163,  582
nativeToLatin1()  586
navigator object  42
needToPromptForRdsInfo()  320
needToRefreshColdFusionDsnList()  320
new features  13
newBlock()  472
newDocumentDOM()  454
newEditableRegion()  524
newFromDocument()  657
newFromTemplate()  455
newHomePage()  572
newSite()  573
newStyle()  408,  496
nextParagraph()  505
nextWord()  505,  595
node constants  42
Node.COMMENT_NODE  42
Node.DOCUMENT_NODE  42
Node.ELEMENT_NODE  42
nodeExists()  549
nodelist object  42
nodeParamName attribute  168
nodes  42
Node.TEXT_NODE  42
nodeToOffsets()  546

dreamweaver.nodeToOffsets()  658
nodeType property

of comment objects  46
of document objects  44
of tag objects  45
of text objects  46

_notes folder  287
notifyFlashObjectChanged()  472
notifyMenuUpdated()  531
number object  42

O

object extensions
definition  20

object object  42
objects

adding to Insert bar  52
adding to Insert menu  56
API  57
folder  51
how files work  51
user experience  51

objects API
canInsertObject()  57
displayHelp()  57
insertObject()  58
isDomRequired  58
windowDimensions()  60

objectTag()  51,  59
offsetsToNode()  547

dreamweaver.offsetsToNode()  658
onBlur  42
onChange  42
onClick  42
onFocus  42
onLoad  42
onMouseOver event  42
onResize  42
open()  291,  573
openDocument()  455
openDocumentFromSite()  455
openInBrowser()  542
openInEditor()  543
openInFrame()  456
OpenNotesFile()  297
OpenNotesFilewithOpenFlags()  297
openTag attribute  179
openWithApp()  445
openWithBrowseDialog()  446
openWithExternalTextEditor()  446
openWithImageEditor()  446
operating system, user’s  47
optimizeInFireworks()  302
option object  42
outdent()  473
outdentTextView()  595
outerHTML property  45
outputResultsPanel.clearItems()  541
outputResultsPanel.clipCopy()  541
outputResultsPanel.clipCut()  542
outputResultsPanel.clipPaste()  542
Index684



outputResultsPanel.debugWindow.addDebugContext
Data()  544

outputResultsPanel.openInBrowser()  542
outputResultsPanel.openInEditor()  543
outputResultsPanel.save()  543
outputResultsPanel.selectAll()  543
overImage attributes  89

P

pageDown()  505,  596
pageUp()  506,  596
Panel extensions

definition  20
paramName attribute  175
paramNames attribute  171
parentNode property

of comment objects  46
of document objects  44
of tag objects  45
of text objects  46

parentWindow property  44
participant files  146
participant tag  165
participants  145
partType attribute  164
password (field) object  42
passwords, database connection  317
playAllPlugins()  512
playPlugin()  512
playRecordedCommand()  489
popupAction()  383
popupCommand()  659
popupConnection()  321
popupEditTagDialog()  609
popupInsertTagDialog()  608
popupServerBehavior()  551
postText()  286
postTextCallback()  286
preview attribute  582
previousParagraph()  506
previousWord()  507,  596
PrintCode()  534
processFile()  104
Property inspector API  121

canInspectSelection()  121
displayHelp()  121
inspectSelection()  122

property inspectors
*LOCKED* keyword  239
comment at top of file  119
custom  119

file structure  119
for locked content  239
lightning bolt icon  233
overview  119
sample code  123
translated attributes in  233
user experience  120

put()  573

Q

quickSearch tag  165,  183
quitApplication()  481

R

radio object  42
radiobutton tag  85
read()  277
reapplyBehaviors()  381
receiveArguments()  99

in menu commands  70
recordPathOfLayer()  616
recreateCache()  574
recreateFromDocument()  657
redo()  487,  489
referencePalette.getFontSize()  379
referencePalette.setFontSize()  379
refresh()  401,  574
refreshExtData()  183
regexp object  42
regular expressions in EDML files  158
relativeToAbsoluteURL()  533
releaseDocument()  456
reloadMenus()  531
Remote Development Services (RDS)  318
remoteIsValid()  574
remove()  277,  291
removeAllBreakpoints()  501
removeAllSpacers()  519
removeAllTableHeights()  606
removeAllTableWidths()  606
removeAttribute()  45
removeBehavior()  381,  617
removeCharacterMarkup()  473
removeCSSStyle()  403
removeEditableRegion()  525
removeFontMarkup()  473
removeFrame()  617
removeKeyframe()  617
removeLink()  474,  575
RemoveNote()  297
removeObject()  618
Index 685



removeSpacerFromColumn()  519
removeTimeline()  618
renameSelectedItem()  657
renameSelectedTemplate()  660
renameSelection()  575
renameTimeline()  618
replace()  460
replaceAll()  460
replaceRange()  597
replaySteps()  493
report API

beginReporting()  105
commandButtons()  105
configureSettings()  106
endReporting()  105
processfile()  104
windowDimensions()  106

reports  541
site  103
stand-alone  104

reset object  42
resizeSelection()  474
resizeSelectionBy()  509
resizeTo()  42
Results window functions  537
resultsPalette.canClear()  426
resultsPalette.canClipCopy()  427
resultsPalette.canClipCut()  427
resultsPalette.canClipPaste()  427
resultsPalette.canOpenInBrowser()  427
resultsPalette.canOpenInEditor()  428
resultsPalette.canSave()  428
resultsPalette.canSelectAll()  428
resWin.addItem()  537
resWin.addResultItem()  538
resWin.setCallbackCommands()  539
resWin.setColumnWidths()  539
resWin.setFileList()  539
resWin.setTitle()  540
resWin.startProcessing()  540
resWin.stopProcessing()  540
revertDocument()  457
runCommand()  400
runTranslator()  640
runValidation()  483,  575

S

save()  543
saveAll()  457
saveAllFrames()  465
saveAsCommand()  493

saveAsImage()  576
saveDocument()  457
saveDocumentAs()  458
saveDocumentAsTemplate()  458
saveFrameset()  459
saveFramesetAs()  459
saveSitesToPrefs()  558
scanSourceString()  586
SCRIPTING-LANGUAGE statement  220
scrollEndFile()  597
scrollLineDown()  597
scrollLineUp()  598
scrollPageDown()  598
scrollPageUp()  598
scrollTopFile()  599
SCS  364
SCS_AfterPut()  367,  368
SCS_BeforeGet()  366
SCS_BeforePut()  367
SCS_canCheckin()  364
SCS_canCheckout()  364
SCS_canConnect()  363
SCS_canDelete()  366
SCS_canGet()  363
SCS_canNewFolder()  365
SCS_canPut()  364
SCS_canRename()  366
SCS_CanUndoCheckout()  365
SCS_Checkin()  357
SCS_Checkout()  358
SCS_Connect()  350
SCS_Delete()  354
SCS_Disconnect()  351
SCS_Get()  353
SCS_GetAgentInfo()  350
SCS_GetCheckoutName()  357
SCS_GetConnectionInfo()  355
SCS_GetDesignNotes()  361
SCS_GetErrorMessage()  360
SCS_GetErrorMessageLength()  360
SCS_GetFileCheckoutList()  359
SCS_GetFolderList()  352
SCS_GetFolderListLength()  352
SCS_GetMaxNoteLength()  361
SCS_GetNewFeatures()  356
SCS_GetNoteCount()  360
SCS_GetNumCheckedOut()  359
SCS_GetNumNewFeatures()  356
SCS_GetRootFolder()  352
SCS_GetRootFolderLength()  351
Index686



SCS_IsConnected()  351
SCS_IsRemoteNewer()  362
SCS_ItemExists()  355
SCS_NewFolder()  354
SCS_Put()  353
SCS_Rename()  354
SCS_SetDesignNotes()  362
SCS_SiteDeleted()  356
SCS_SiteRenamed()  356
SCS_UndoCheckout()  358
search pattern resolution  187
searches  541
searchPatterns tag  169,  177
select color control for Javascript extensions  40
select object  42
select()  42
selectAll()  543,  548,  550,  576
selectChild()  534
selectHomePage()  576
selection functions  546
selection, exact vs. within  119
selectionChanged()  130
selectNewer()  577
selectParent()  535
selectParentTag()  599
selectParticipant attribute  163
selectTable()  548
separator tag  54,  83
server

components functions  401
debugging  544

server behavior
deleting  189
dwscripts functions  156
example  147
extension  145
finding  183
group files  146
instance  145
overview  145
participant files  146
participants  145
runtime code  145
search pattern resolution  187
techniques  183
updating  188

server behavior API  151
analyzeServerBehavior()  151
applyServerBehavior()  152
canApplyServerBehavior()  152

copyServerBehavior()  153
deleteServerBehavior()  153
displayHelp()  154
findServerBehaviors()  154
inspectServerBehavior()  154
pasteServerBehavior()  155

Server Behavior extensions, definition  20
server model API  217

canRecognizeDocument()  217
getFileExtensions()  218
getLanguageSignatures()  219
getServerExtension()  219
getServerInfo()  220
getServerLanguages()  220
getServerModelDelimiters()  221
getServerModelDisplayName()  222
getServerModelExtDataNameUD4()  221
getServerModelFolderName()  222
getServerSupportsCharset()  222
getVersionArray()  223

server models
definition  217
extensibility  15

server models extensions
definition  21

serverBehavior attribute  160
serverdebuginfo  544
service component, adding  206
set()  292
setActiveWindow()  647
setAsHomePage()  577
setAttribute()  45
setAttributes()  278
setAttributeWithErrorChecking()  474
setAutoplay()  618
setBreakpoint()  499
setCallbackCommands()  539
setCloakingEnabled()  577
setColumnAutostretch()  520
setColumnWidths()  539
setConnectionState()  578
setCurrentFrame()  619
setCurrentLine()  599
setCurrentSite()  578
setEditNoFramesContent()  625
setFileList()  539
setFloaterVisibility()  647
setFocus()  578
setHideAllFloaters()  634
setHideAllVisualAidst()  625
Index 687



setInterval()  42
setLayerTag()  510
setLayout()  579
setLinkHref()  474
setLinkTarget()  475
setLinkVisibility()  579
setListBoxKind()  475
setListTag()  476
setLiveDataError()  528
setLiveDataMode()  529
setLiveDataParameters ()  529
setLoop()  619
setMenuText()  71
SetNote()  298
setPreferenceInt()  486
setPreferenceString()  487
setPreventLayerOverlaps()  625
setPrimaryView()  648
setRdsPassword()  321
setRdsUserName()  322
setRulerOrigin()  512
setRulerUnits()  513
setSelectedBehavior()  387
setSelectedNode()  548
setSelection()  549,  579

dreamweaver.setSelection()  659
setShowDependents()  635
setShowFrameBorders()  626
setShowGrid()  626
setShowHeadView()  626
setShowHiddenFiles()  636
setShowImageMaps()  627
setShowInvalidHTML()  627
setShowInvisibleElements()  627
setShowLayerBorders()  627
setShowLayoutTableTabs()  520
setShowLayoutView()  520
setShowLineNumbers()  628
setShowNoscript  590
setShowPageTitles()  636
setShowRulers()  628
setShowStatusBar()  634
setShowSyntaxColoring()  628
setShowTableBorders()  629
setShowToolbar()  629
setShowToolbarIconLabels()  639
setShowToolTips()  636
setShowTracingImage()  629
setShowWordWrap()  629
setSnapDistance()  649

setSnapToGrid()  630
setTableCellTag()  606
setTableColumns()  607
setTableRows()  607
setTextAlignment()  476
setTextFieldKind()  476
setTextFormat()  477
setTimeout()  42

in floating panels  131
using with FWLaunch)  304

setTitle()  540
setToolbarPosition()  638
setToolbarVisibility()  637
setTracingImageOpacity()  513
setTracingImagePosition()  513
setUndoState()  494
setUpComplexFind()  461
setUpComplexFindReplace()  461
setUpFind()  462
setUpFindReplace()  463
setupStepsCompleted()  213
setView()  643
share-in-memory  190
showAboutBox()  481
showColdFusionAdmin()  322
showConnectionMgrDialog()  322
showDynamicData()  481
showFindDialog()  463
showFindReplaceDialog()  464
showFontColorDialog()  477
showGridSettingsDialog()  515
showif attribute  88
showIf()  99
showInsertTableRowsOrColumnsDialog()  607
showListPropertiesDialog()  475
showLiveDataDialog()  530
showOdbcDialog()  323
showPagePropertiesDialog()  484
showPreferencesDialog()  482
showProperties()  649
showQuickTagEditor()  536
showRdsUserDialog()  323
showReportsDialog()  536
showRestrictDialog()  323
showResultset()  333
showSPResultset()  334
showSPResultsetNamedParams()  334
showTagChooser()  482,  609
showTagLibraryEditor()  609
shutdown commands  22
Index688



Shutdown folder  22
site object  48

methods of  371
properties of  47

site reports  103,  541
site.addLinkToExistingFile()  558
site.addLinkToNewFile()  559
site.browseDocument()  432
site.canAddLinkToFile()  433
site.canChangeLink()  433
site.canCheckIn()  433
site.canCheckOut()  434
site.canCloak()  434
site.canConnect()  435
site.canEditColumns()  559
site.canFindLinkSource()  435
site.canGet()  435
site.canLocateInSite()  436
site.canMakeEditable()  436
site.canMakeNewFileOrFolder()  436
site.canOpen()  437
site.canPut()  437
site.canRecreateCache()  437
site.canRefresh()  438
site.canRemoveLink()  438
site.canSelectAllCheckedOutFiles()  438
site.canSelectNewer()  439
site.canSetLayout()  438
site.canSynchronize()  439
site.canUncloak()  440
site.canUndoCheckOut()  440
site.canViewAsRoot()  440
site.changeLink()  560
site.changeLinkSitewide()  559
site.checkIn()  560
site.checkLinks()  560
site.checkOut()  561
site.checkTargetBrowsers()  561
site.cloak()  562
site.defineSites()  562
site.deleteSelection()  562
site.editColumns()  563
site.exportSite()  563
site.findLinkSource()  565
site.get()  565
site.getAppServerAccessType()  565
site.getAppServerPathToFiles()  566
site.getCheckOutUser()  566
site.getCheckOutUserForFile()  567
site.getCloakingEnabled()  567

site.getConnectionState()  567
site.getCurrentSite()  568
site.getFocus()  568
site.getLinkVisibility()  568
site.getLocalPathToFiles()  569
site.getSelection()  569
site.getShowDependents()  634
site.getShowHiddenFiles()  634
site.getShowPageTitles()  635
site.getShowToolTips()  635
site.getSiteForURL()  569
site.getSites()  570
site.importSite()  570
site.invertSelection()  570
site.isCloaked()  571
site.locateInSite()  571
site.makeEditable()  571
site.makeNewDreamweaverFile()  572
site.makeNewFolder()  572
site.newHomePage()  572
site.newSite()  573
site.open()  573
site.put()  573
site.recreateCache()  574
site.refresh()  574
site.remoteIsValid()  574
site.removeLink()  575
site.renameSelection()  575
site.runValidation()  575
site.saveAsImage()  576
site.selectAll()  576
site.selectHomePage()  576
site.selectNewer()  577
site.setAsHomePage()  577
site.setCloakingEnabled()  577
site.setConnectionState()  578
site.setCurrentSite()  578
site.setFocus()  578
site.setLayout()  579
site.setLinkVisibility()  579
site.setSelection()  579
site.setShowDependents()  635
site.setShowHiddenFiles()  636
site.setShowPageTitles()  636
site.setShowToolTips()  636
site.synchronize()  580
site.uncloak()  580
site.uncloakAll()  580
site.undoCheckOut()  581
site.viewAsRoot()  581
Index 689



snapTracingImageToSelection()  514
snippet tag, attributes  582
snippetPalette.editSnippet()  583
snippetPalette.insert()  583
snippetPalette.insertSnippet()  584
snippetPalette.newFolder()  583
snippetPalette.remove()  584
snippetPalette.rename()  584
snippets

description attribute  582
name attribute  582
preview attribute  582
type attribute  582

Source Control Integration API
SCS_AfterGet()  367
SCS_AfterPut()  368
SCS_BeforeGet()  366
SCS_BeforePut()  367
SCS_canCheckin()  364
SCS_canCheckout()  364
SCS_canConnect()  363
SCS_canDelete()  366
SCS_canGet()  363
SCS_canNewFolder()  365
SCS_canPut()  364
SCS_canRename()  366
SCS_CanUndoCheckout()  365
SCS_Checkin()  357
SCS_Checkout()  358
SCS_Connect()  350
SCS_Delete()  354
SCS_Disconnect()  351
SCS_Get()  353
SCS_GetAgentInfo()  350
SCS_GetCheckoutName()  357
SCS_GetConnectionInfo()  355
SCS_GetDesignNotes()  361
SCS_GetErrorMessage()  360
SCS_GetErrorMessageLength()  360
SCS_GetFileCheckoutList()  359
SCS_GetFolderList()  352
SCS_GetFolderListLength()  352
SCS_GetMaxNoteLength()  361
SCS_GetNewFeatures()  356
SCS_GetNoteCount()  360
SCS_GetNumCheckedOut()  359
SCS_GetNumNewFeatures()  356
SCS_GetRootFolder()  352
SCS_GetRootFolderLength()  351
SCS_IsConnected()  351

SCS_IsRemoteNewer()  362
SCS_ItemExists()  355
SCS_NewFolder()  354
SCS_Put()  353
SCS_Rename()  354
SCS_SetDesignNotes()  362
SCS_SiteDeleted()  356
SCS_SiteRenamed()  356
SCS_UndoCheckout()  358

source validation  541
source view functions  588
splitFrame()  465
splitTableCell()  608
SQL statements

getting columns from  325
showing results of  333

stand-alone reports  104
startDebugger()  501
startOfDocument()  507,  600
startOfLine()  507,  600
startProcessing()  540
startRecording()  489
startup commands  22
Startup folder  22
status codes  281
statusCode property  281
stopAllPlugins()  514
stopPlugin()  514
stopProcessing()  540
stopRecording()  490
stored procedures  324

getting columns from  329
getting parameters for  331
showing results of  334

string object  42
stripTag()  535
submit object  42
subType attribute  161
SWFFile.createFile()  307
SWFFile.getNaturalSize()  309
SWFFile.getObjectType()  309
SWFFile.readFile()  309
synchronize()  580
synchronizeDocument()  601
systemScript property  47

T

tables  332
getting columns of  327

tables to layers  402
tag attributes  54
Index690



Tag Chooser  111
Tag Dialog extensions

definition  20
Tag editor API

applyTag()  118
inspectTag()  117
validateTag()  117

Tag editor functions  608
Tag editor, creating  117
tag inspector functions  612
tag libraries  107
tag library functions  608
tag object  45
tagInspector.deleteTags()  613
tagInspector.editTagName()  613
tagInspector.tagAfter()  612
tagInspector.tagBefore()  612
tagInspector.tagInside()  612
tagName property  45
testConnection()  324
text (field) object  42
text node  46
text objects  46
textarea object  42
title tag  162
toggle functions  620
toggleFloater()  650
toolbar command API

canAcceptCommand()  93
getCurrentValue()  94
getDynamicContent()  94
getMenuID()  95
getUpdateFrequency()  96
isCommandChecked()  97
isDOMRequired()  98
receiveArguments()  99
showIf()  99

toolbar extensions
definition  20

toolbar tag  80
toolbarControls()  214
toolbars

button tag  83
checkbutton tag  84
colorpicker tag  87
combobox tag  86
command API  93
controls  77
creating  77
docking  78

dropdown tag  86
editcontrol tag  87
file definition  79
how commands work  79
how work  77
include/ tag  82
item tags  83
itemref/ tag  82
itemtype/ tag  82
menubutton tag  85
radiobutton tag  85
separator tag  83
simple command file  100
tag attributes  88
toolbar tag  80
toolbars.xml file  77

toolbars.xml file  77
definition  79

tooltip attribute  89
topPage()  600
translated attributes

finding in tags  45
individual  229
inspecting  233
multiple  230

translated tags, inspecting  239
translateMarkup()  228
translation functions  640
translation tag  177
translations tag  177
translationType attribute  178
translator tag  176
translators

attribute  229
block/tag  234
debugging  241

tree control content, manipulating  39
tree controls  36,  38
Tree View

XML  42
TREECOLUMN  38
TREENODE  38
type attribute  582

U

uncloak()  580
uncloakAll()  580
undo()  488,  490
undoCheckOut()  581
unescape()  42
update attribute  91
Index 691



updateCurrentPage()  525
updatePages()  526
updatePattern tag  174
updatePatterns tag  173
updateReference()  651
URL property  44
user configurations  14
user interface, enhancements  13
user names  319
useTranslatedSource()  641

V

validateFireworks()  302
validateFlash()  447
validateTag()  117
validator  541
value attribute  91
variable grid controls  37
VBScript  135
version attribute  160,  165
versioning  47
view tables  332
viewAsRoot()  581
vline  119

W

W3C  42
whereToSearch attribute  169,  178
width attribute  89
window object  42
window.close()  42
windowDimensions()  51,  60,  106

in behavior actions  142
in menu commands  72

workspace
Dreamweaver 4  13,  78
Dreamweaver MX  13,  78

wrapSelection()  601
wrapTag()  535
write()  278

X

XHTML
cleaning up  447
converting to  448
creating  451
testing document  449

XML
files  42
Tree View  42

XML files

CodeHints.xml  392
insertbar.xml file  51
snippets  582
toolbars.xml  77

XML structure  159
XML Tag

button  53
category  53
checkbutton  53
codehints  393
insertbar  52
separator  54
toolbar  80

XML Tree View  42
Index692


	Contents
	Part I Overview
	Introduction
	Customizing or extending?
	Installing an extension
	Additional resources available to extension writers
	Errata
	Conventions used in this guide
	What’s new in Extending Dreamweaver MX
	Enhanced user interface
	Individual configurations
	Enhanced code editing
	New document types
	Enhanced server model extensibility
	Improved database connection handling
	Enhanced external application integration


	Extending Dreamweaver MX
	What makes extending possible
	Application programming interfaces in Dreamweaver
	Extension APIs
	Utility APIs
	JavaScript API

	Extension folders
	Multiuser configuration folders

	Types of extension APIs in Dreamweaver
	How Dreamweaver processes JavaScript in extensions
	Running scripts at startup or shutdown

	Working with the Extension Manager
	Extensible document types in Dreamweaver
	Document type definition file
	Structure of document type definition files

	Dynamic templates
	Document extensions
	Localized strings
	Rules for document type definition files
	Opening a document in Dreamweaver


	User Interfaces for Extensions
	Designing an extension UI
	Dreamweaver HTML rendering control
	Using custom UI controls in extensions
	Editable select lists
	Database controls
	Adding a database tree control

	Adding a variable grid control
	Adding tree controls
	Creating a tree control
	Manipulating content within a tree control
	A color button control for extensions


	The Dreamweaver Document Object Model
	Which document DOM?
	The Dreamweaver DOM ��������
	Objects, properties, and methods of the Dreamweaver DOM
	Properties and methods of the document object ��
	Properties and methods of HTML tag objects ���
	Properties and methods of text objects �
	Properties and methods of comment objects
	The dreamweaver and site objects
	Properties of the dreamweaver object
	The site object




	Part II Extension APIs
	Objects
	How object files work
	Adding objects to the Insert bar

	Defining the Insert bar
	Insert bar definition tags
	<insertbar>
	<category>
	<button>
	<checkbutton>
	<separator>

	Insert bar tag attributes
	id="unique_id"
	folder="category_folder"
	image="image_path"
	showIf="DW_enabler"
	enabled="DW_enabler"
	checked="DW_enabler"
	command="script�"
	file="object_file_path"
	tag="tagStr"
	name="nameStr"
	codeOnly = "boolStr"

	Adding Objects to the Insert menu
	The Objects API
	canInsertObject()
	displayHelp()
	isDomRequired()
	insertObject()
	objectTag()
	windowDimensions()


	Commands
	How commands work
	The Command API
	canAcceptCommand()
	commandButtons()
	isDomRequired()
	receiveArguments()
	windowDimensions()
	A simple command example

	Adding commands to the Commands menu

	Menu Commands
	How menu commands work
	The Menu Commands API
	canAcceptCommand()
	commandButtons()
	getDynamicContent()
	isCommandChecked()
	receiveArguments()
	setMenuText()
	windowDimensions()
	A simple menu command
	A simple dynamic menu


	Toolbars
	How toolbars work
	How toolbars behave
	How toolbar commands work

	The toolbar definition file
	<toolbar>
	<include/>
	<itemtype/>
	<itemref/>
	<separator/>

	Toolbar item tags
	<button>
	<checkbutton>
	<radiobutton>
	<menubutton>
	<dropdown>
	<combobox>
	<editcontrol>
	<colorpicker>

	Item Tag Attributes
	id="unique_id"
	showIf="script"
	image="image_path"
	disabledImage="image_path"
	overImage="image_path"
	tooltip="tooltip string"
	label="label string"
	width="number"
	menuID="menu_id"
	colorRect="left top right bottom"
	file="command_file_path"
	domRequired="true" or "false"
	enabled="script"
	checked="script"
	value="script"
	update="update_frequency_list"
	command="script"
	arguments="argument_list"

	The Toolbar Command API
	canAcceptCommand()
	getCurrentValue()
	getDynamicContent()
	getMenuID()
	getUpdateFrequency()
	isCommandChecked()
	isDOMRequired()
	receiveArguments()
	showIf()
	A simple toolbar command file


	Reports
	How site reports work
	How stand-alone reports work
	The Reports API
	processFile()
	beginReporting()
	endReporting()
	commandButtons()
	configureSettings()
	windowDimensions()


	Tag Libraries and Editors
	Tag Library file format
	The Tag Chooser
	tagchooser.xml files

	Creating a new tag editor
	Registering the tag in the tag library
	Creating a tag definition (.vtm) file
	Creating a tag editor UI
	Adding a tag to Tag Chooser

	Tag editor APIs
	inspectTag()
	validateTag()
	applyTag()


	Property Inspectors
	How Property inspector files work
	The Property inspector API
	canInspectSelection()
	displayHelp()
	inspectSelection()
	A simple Property inspector example


	Floating Panels
	How floating panel files work
	The Floating panel API
	displayHelp()
	documentEdited()
	getDockingSide()
	initialPosition()
	initialTabs()
	isATarget()
	isAvailableInCodeView()
	isResizable()
	selectionChanged()
	About performance
	A simple floating panel example


	Behaviors
	How Behaviors work
	Inserting multiple functions in the user’s file

	The Behaviors API
	applyBehavior()
	behaviorFunction()
	canAcceptBehavior()
	displayHelp()
	deleteBehavior()
	identifyBehaviorArguments()
	inspectBehavior()
	windowDimensions()
	What to do when an action requires a return value
	A simple behavior example


	Server Behaviors
	Dreamweaver architecture
	Server behavior folders and files
	Extension Data Markup Language
	Group files
	Participant files
	The script file

	Hello World example

	How the Server Behavior API functions are called
	The Server Behavior API
	analyzeServerBehavior()
	applyServerBehavior()
	canApplyServerBehavior()
	copyServerBehavior()
	deleteServerBehavior()
	displayHelp()
	findServerBehaviors()
	inspectServerBehavior()
	pasteServerBehavior()
	dreamweaver.getParticipants()

	Server behavior implementation functions
	dwscripts.findSBs()
	dwscripts.applySB()
	dwscripts.deleteSB()

	Editing EDML files
	Regular expressions
	Notes about EDML structure

	Group EDML file tags
	EDML Tag: group
	Attribute: version
	Attribute: serverBehavior
	Attribute: dataSource
	Attribute: subType
	EDML Tag: title
	EDML Tag: groupParticipants
	Attribute: selectParticipant
	EDML Tag: groupParticipant
	Attribute: name
	Attribute: partType

	Participant EDML files
	EDML Tag: participant
	Attribute: version
	EDML Tag: quickSearch
	EDML Tag: insertText
	Attribute: location
	Attribute: nodeParamName
	EDML Tag: searchPatterns
	Attribute: whereToSearch
	EDML Tag: searchPattern
	Attribute: paramNames
	Attribute: limitSearch
	Attribute: isOptional
	EDML Tag: updatePatterns
	EDML Tag: updatePattern
	Attribute: paramName
	EDML Tag: delete
	Attribute: deleteType
	EDML Tag: translator
	EDML Tag: searchPatterns
	EDML Tag: translations
	EDML Tag: translation
	Attribute: whereToSearch
	Attribute: limitSearch
	Attribute: translationType
	EDML Tag: openTag
	EDML Tag: attributes
	EDML Tag: attribute
	EDML Tag: display
	EDML Tag: closeTag

	Using the Extension Data Manager
	dreamweaver.getExtDataValue()
	dreamweaver.getExtDataArray()
	dreamweaver.getExtParticipants()
	dreamweaver.getExtGroups()
	dreamweaver.refreshExtData()

	Server behavior techniques
	Finding server behaviors
	Search pattern resolution
	Updating server behaviors
	Deleting server behaviors
	Avoiding conflicts with share-in-memory JavaScript files


	Data Sources
	How data sources work
	The Data Sources API
	addDynamicSource()
	deleteDynamicSource()
	displayHelp()
	editDynamicSource()
	findDynamicSources()
	generateDynamicDataRef()
	generateDynamicSourceBindings()
	inspectDynamicDataRef()


	Server Formats
	How data formatting works
	More about the Formats.xml file
	The Edit Format List plus (+) menu

	When the data formatting functions are called
	The Data Formatting API
	applyFormat()
	applyFormatDefinition()
	deleteFormat()
	formatDynamicDataRef()
	inspectFormatDefinition()


	Components
	Component panel files
	Adding a service component
	Populating the tree control

	Component panel API functions
	displayInstructions()
	displayHelp()
	getComponentChildren()
	getContextMenuId()
	getCodeViewDropCode()
	getSetupSteps()
	setupStepsCompleted()
	handleDoubleClick()
	toolbarControls()


	Server Models
	The Server Model API
	canRecognizeDocument()
	getFileExtensions()
	getLanguageSignatures()
	getServerExtension()
	getServerInfo()
	getServerLanguages()
	getServerModelExtDataNameUD4()
	getServerModelDelimiters()
	getServerModelDisplayName()
	getServerModelFolderName()
	getServerSupportsCharset()
	getVersionArray()


	Data Translators
	How data translators work
	getTranslatorInfo()
	translateMarkup()
	liveDataTranslateMarkup function()

	Determining what kind of translator to use
	Adding a translated attribute to a tag
	Translating more than one attribute at a time
	A simple attribute translator example
	Inspecting translated attributes

	Locking translated tags or blocks of code
	A simple block/tag translator example
	Creating Property inspectors for locked content

	Finding bugs in your translator

	JavaScript Debugger Modules
	How the JavaScript Debugger module works
	The JavaScript Debugger module API
	getFunctionEndInstrument()
	getFunctionStartInstrument()
	getBodyInstrument()m
	getHeadInstrument()
	getIncludedFileList()
	getOnUnloadInstrument()
	getStepInstrument()
	reportError()
	reportWarning()
	startBlock()


	C-Level Extensibility
	C-level extensibility and the JavaScript interpreter
	Data Types
	typedef struct JSContext JSContext
	typedef struct JSObject JSObject
	typedef struct jsval jsval
	typedef enum { JS_FALSE = 0, JS_TRUE = 1 } JSBool

	The C-level API
	typedef JSBool (*JSNative)(JSContext *cx, JSObject *obj, unsigned int argc, jsval *argv, jsval *r...
	JSBool JS_DefineFunction()
	char *JS_ValueToString()
	JSBool JS_ValueToInteger()
	JSBool JS_ValueToDouble()
	JSBool JS_ValueToBoolean()
	JSBool JS_ValueToObject()
	JSBool JS_StringToValue()
	JSBool JS_DoubleToValue()
	JSVal JS_BooleanToValue()
	JSVal JS_IntegerToValue()
	JSVal JS_ObjectToValue()
	char *JS_ObjectType()
	JSObject *JS_NewArrayObject()
	long JS_GetArrayLength()
	JSBool JS_GetElement()
	JSBool JS_SetElement()
	JSBool JS_ExecuteScript()
	JSBool JS_ReportError()

	File Access and Multiuser Configuration API
	JS_Object MM_GetConfigFolderList()
	JSBool MM_ConfigFileExists()
	int MM_OpenConfigFile()
	JSBool MM_GetConfigFileAttributes()
	JSBool MM_SetConfigFileAttributes()
	JSBool MM_CreateConfigFolder()
	JSBool MM_RemoveConfigFolder()
	JSBool MM_DeleteConfigFile()

	Calling a C function from JavaScript


	Part III Utility APIs
	The File I/O API
	Accessing configuration folders
	The File I/O API
	DWfile.copy()
	DWfile.createFolder()
	DWfile.exists()
	DWfile.getAttributes()
	DWfile.getModificationDate()
	DWfile.getCreationDate()
	DWfile.getCreationDateObj()
	DWfile.getModificationDateObj()
	DWfile.getSize()
	DWfile.listFolder()
	DWfile.read()
	DWfile.remove()
	DWfile.setAttributes()
	DWfile.write()


	The HTTP API
	The HTTP API
	MMHttp.clearTemp()
	MMHttp.getFile()
	MMHttp.getFileCallback()
	MMHttp.getText()
	MMHttp.getTextCallback()
	MMHttp.postText()
	MMHttp.postTextCallback()


	The Design Notes API
	How Design Notes work
	The Design Notes JavaScript API
	MMNotes.close()
	MMNotes.filePathToLocalURL()
	MMNotes.get()
	MMNotes.getKeyCount()
	MMNotes.getKeys()
	MMNotes.getSiteRootForFile()
	MMNotes.getVersionName()
	MMNotes.getVersionNum()
	MMNotes.localURLToFilePath()
	MMNotes.open()
	MMNotes.remove()
	MMNotes.set()

	The Design Notes C API
	void CloseNotesFile()
	BOOL FilePathToLocalURL()
	BOOL GetNote()
	int GetNoteLength()
	int GetNotesKeyCount()
	BOOL GetNotesKeys()
	BOOL GetSiteRootForFile()
	BOOL GetVersionName()
	BOOL GetVersionNum()
	BOOL LocalURLToFilePath()
	FileHandle OpenNotesFile()
	FileHandle OpenNotesFilewithOpenFlags()
	BOOL RemoveNote()
	BOOL SetNote()


	The Fireworks Integration API
	FWLaunch.bringDWToFront()
	FWLaunch.bringFWToFront()
	FWLaunch.execJsInFireworks()
	FWLaunch.getJsResponse()
	FWLaunch.mayLaunchFireworks()
	FWLaunch.optimizeInFireworks()
	FWLaunch.validateFireworks()
	A simple Fireworks integration example

	The Flash Objects API
	SWFFile.createFile()
	SWFFile.getNaturalSize()
	SWFFile.getObjectType()
	SWFFile.readFile()

	The Database API
	Database connection functions
	MMDB.deleteConnection()
	MMDB.getColdFusionDsnList()
	MMDB.getConnection()
	MMDB.getConnectionList()
	MMDB.getConnectionName()
	MMDB.getConnectionString()
	MMDB.getDriverName()
	MMDB.getDriverUrlTemplateList()
	MMDB.getLocalDsnList()
	MMDB.getPassword()
	MMDB.getRdsPassword()
	MMDB.getRdsUserName()
	MMDB.getRemoteDsnList()
	MMDB.getRuntimeConnectionType()
	MMDB.getUserName()
	MMDB.hasConnectionWithName()
	MMDB.needToPromptForRdsInfo()
	MMDB.needToRefreshColdFusionDsnList()
	MMDB.popupConnection()
	MMDB.setRdsPassword()
	MMDB.setRdsUserName()
	MMDB.showColdFusionAdmin()
	MMDB.showConnectionMgrDialog()
	MMDB.showOdbcDialog()
	MMDB.showRdsUserDialog()
	MMDB.showRestrictDialog()
	MMDB.testConnection()

	Database access functions
	MMDB.getColumnAndTypeList()
	MMDB.getColumnList()
	MMDB.getColumns()
	MMDB.getColumnsOfTable()
	MMDB.getPrimaryKeys()
	MMDB.getProcedures()
	MMDB.getSPColumnList()
	MMDB.getSPColumnListNamedParams()
	MMDB.getSPParameters()
	MMDB.getSPParamsAsString()
	MMDB.getTables()
	MMDB.getViews()
	MMDB.showResultset()
	MMDB.showSPResultset()
	MMDB.showSPResultsetNamedParams()


	The Database Connectivity API
	The Connection API
	findConnection()
	inspectConnection()
	applyConnection()

	The generated include file
	The definition file for your connection type

	The JavaBeans API
	MMJB.getProperties()
	MMJB.getMethods()
	MMJB.getEvents()
	MMJB.getIndexedProperties()
	MMJB.getClasses()
	MMJB.getClassesFromPackage()
	MMJB.getErrorMessage()

	The Source Control Integration API
	Integration with Dreamweaver
	Adding source control system functionality
	The Source Control Integration API required�functions
	bool SCS_GetAgentInfo()
	bool SCS_Connect()
	bool SCS_Disconnect()
	bool SCS_IsConnected()
	int SCS_GetRootFolderLength()
	bool SCS_GetRootFolder()
	int SCS_GetFolderListLength()
	bool SCS_GetFolderList()
	bool SCS_Get()
	bool SCS_Put()
	bool SCS_NewFolder()
	bool SCS_Delete()
	bool SCS_Rename()
	bool SCS_ItemExists()

	The Source Control Integration API optional�functions
	bool SCS_GetConnectionInfo()
	bool SCS_SiteDeleted()
	bool SCS_SiteRenamed()
	int SCS_GetNumNewFeatures()
	bool SCS_GetNewFeatures()
	bool SCS_GetCheckoutName()
	bool SCS_Checkin()
	bool SCS_Checkout()
	bool SCS_UndoCheckout()
	int SCS_GetNumCheckedOut()
	bool SCS_GetFileCheckoutList()
	int SCS_GetErrorMessageLength()
	bool SCS_GetErrorMessage()
	int SCS_GetNoteCount()
	int SCS_GetMaxNoteLength()
	bool SCS_GetDesignNotes()
	bool SCS_SetDesignNotes()
	bool SCS_IsRemoteNewer()

	Enablers
	bool SCS_canConnect()
	bool SCS_canGet()
	bool SCS_canCheckout()
	bool SCS_canPut()
	bool SCS_canCheckin()
	bool SCS_CanUndoCheckout()
	bool SCS_canNewFolder()
	bool SCS_canDelete()
	bool SCS_canRename()
	bool SCS_BeforeGet()
	bool SCS_BeforePut()
	bool SCS_AfterGet()
	bool SCS_AfterPut()



	Part IV JavaScript API
	The Dreamweaver JavaScript API
	Understanding the objects in the API
	How this chapter is organized
	About enablers
	Assets panel functions
	dreamweaver.assetPalette.addToFavoritesFromDocument()
	dreamweaver.assetPalette.addToFavoritesFromSiteAssets()
	dreamweaver.assetPalette.addToFavoritesFromSiteWindow()
	dreamweaver.assetPalette.copyToSite()
	dreamweaver.assetPalette.edit()
	dreamweaver.assetPalette.getSelectedCategory()
	dreamweaver.assetPalette.getSelectedItems()
	dreamweaver.assetPalette.getSelectedView()
	dreamweaver.assetPalette.insertOrApply()
	dreamweaver.assetPalette.locateInSite()
	dreamweaver.assetPalette.newAsset()
	dreamweaver.assetPalette.newFolder()
	dreamweaver.assetPalette.recreateLibraryFromDocument()
	dreamweaver.assetPalette.refreshSiteAssets()
	dreamweaver.assetPalette.removeFromFavorites()
	dreamweaver.assetPalette.renameNickname()
	dreamweaver.assetPalette.setSelectedCategory()
	dreamweaver.assetPalette.setSelectedView()
	dreamweaver.referencePalette.getFontSize()
	dreamweaver.referencePalette.setFontSize()

	Behavior functions
	dom.addBehavior()
	dom.getBehavior()
	dom.reapplyBehaviors()
	dom.removeBehavior()
	dreamweaver.getBehaviorElement()
	dreamweaver.getBehaviorTag()
	dreamweaver.popupAction()
	dreamweaver.behaviorInspector.getBehaviorAt()
	dreamweaver.behaviorInspector.getBehaviorCount()
	dreamweaver.behaviorInspector.getSelectedBehavior()
	dreamweaver.behaviorInspector.moveBehaviorDown()
	dreamweaver.behaviorInspector.moveBehaviorUp()
	dreamweaver.behaviorInspector.setSelectedBehavior()

	Clipboard functions
	dom.clipCopy()
	dom.clipCopyText()
	dom.clipCut()
	dom.clipPaste()
	dom.clipPasteText()
	dreamweaver.clipCopy()
	dreamweaver.clipCut()
	dreamweaver.clipPaste()
	dreamweaver.getClipboardText()

	Code hints functions
	The CodeHints.xml file
	Code Hints tags
	<codehints>
	<menugroup>
	<description>
	<menu>
	<menuitem>
	<function>

	Code hints functions
	dw.codeHints.addMenu()
	dw.codeHints.addFunction()
	dw.codeHints.resetMenu()
	dw.codeHints.showCodeHints()

	Command functions
	dreamweaver.editCommandList()
	dreamweaver.runCommand()

	Components functions
	dreamweaver.serverComponents.getSelectedNode()
	dreamweaver.serverComponents.refresh()

	Conversion functions
	dom.convertLayersToTable()
	dom.convertTablesToLayers()
	dom.convertTo30()

	CSS Styles functions
	dom.applyCSSStyle()
	dom.removeCSSStyle()
	dreamweaver.cssStylePalette.applySelectedStyle()
	dreamweaver.cssStylePalette.attachStyleSheet()
	dreamweaver.cssStylePalette.deleteSelectedStyle()
	dreamweaver.cssStylePalette.duplicateSelectedStyle()
	dreamweaver.cssStylePalette.editSelectedStyle()
	dreamweaver.cssStylePalette.editStyleSheet()
	dreamweaver.cssStylePalette.getSelectedStyle()
	dreamweaver.cssStylePalette.getSelectedTarget()
	dreamweaver.cssStylePalette.getStyles()
	dreamweaver.cssStylePalette.newStyle()

	Data source functions
	dreamweaver.dbi.getDataSources

	Enablers
	dom.canAlign()
	dom.canApplyTemplate()
	dom.canArrange()
	dom.canClipCopyText()
	dom.canClipPaste()
	dom.canClipPasteText()
	dom.canConvertLayersToTable()
	dom.canConvertTablesToLayers()
	dom.canDecreaseColspan()
	dom.canDecreaseRowspan()
	dom.canDeleteTableColumn()
	dom.canDeleteTableRow()
	dom.canEditNoFramesContent()
	dom.canIncreaseColspan()
	dom.canIncreaseRowspan()
	dom.canInsertTableColumns()
	dom.canInsertTableRows()
	dom.canMakeNewEditableRegion()
	dom.canMarkSelectionAsEditable()
	dom.canMergeTableCells()
	dom.canPlayPlugin()
	dom.canRedo()
	dom.canRemoveEditableRegion()
	dom.canSelectTable()
	dom.canSetLinkHref()
	dom.canShowListPropertiesDialog()
	dom.canSplitFrame()
	dom.canSplitTableCell()
	dom.canStopPlugin()
	dom.canUndo()
	dom.hasTracingImage()
	dreamweaver.assetPalette.canEdit()
	dreamweaver.assetPalette.canInsertOrApply()
	dreamweaver.canClipCopy()
	dreamweaver.canClipCut()
	dreamweaver.canClipPaste()
	dreamweaver.canDeleteSelection()
	dreamweaver.canExportCSS()
	dreamweaver.canExportTemplateDataAsXML()
	dreamweaver.canFindNext()
	dreamweaver.canOpenInFrame()
	dreamweaver.canPlayRecordedCommand()
	dreamweaver.canPopupEditTagDialog()
	dreamweaver.canRedo()
	dreamweaver.canRevertDocument()
	dreamweaver.canSaveAll()
	dreamweaver.canSaveDocument()
	dreamweaver.canSaveDocumentAsTemplate()
	dreamweaver.canSaveFrameset()
	dreamweaver.canSaveFramesetAs()
	dreamweaver.canSelectAll()
	dreamweaver.canShowFindDialog()
	dreamweaver.canUndo()
	dreamweaver.cssStylePalette.canApplySelectedStyle()
	dreamweaver.cssStylePalette.canDeleteSelectedStyle()
	dreamweaver.cssStylePalette.canDuplicateSelectedStyle()
	dreamweaver.cssStyle.canEditSelectedStyle()
	dreamweaver.cssStylePallette.canEditStyleSheet()
	dreamweaver.isRecording()
	dreamweaver.htmlStylePalette.canEditSelection()
	dreamweaver.resultsPalette.canClearItems()
	dreamweaver.resultsPalette.canClipCopy()
	dreamweaver.resultsPalette.canClipCut()
	dreamweaver.resultsPalette.canClipPaste()
	dreamweaver.resultsPalette.canOpenInBrowser()
	dreamweaver.resultsPalette.canOpenInEditor()
	dreamweaver.resultsPalette.canSave()
	dreamweaver.resultsPalette.canSelectAll()
	dreamweaver.snippetpalette.canEditSnippet()
	dw.snippetpalette.canInsert()
	dreamweaver.tagInspector.tagBeforeEnabled()
	dreamweaver.tagInspector.tagInsideEnabled()
	dreamweaver.tagInspector.tagAfterEnabled()
	dreamweaver.tagInspector.deleteTagsEnabled()
	dreamweaver.tagInspector.editTagNameEnabled()
	dreamweaver.timelineInspector.canAddFrame()
	dreamweaver.timelineInspector.canAddKeyFrame()
	dreamweaver.timelineInspector.canChangeObject()
	dreamweaver.timelineInspector.canRemoveBehavior()
	dreamweaver.timelineInspector.canRemoveFrame()
	dreamweaver.timelineInspector.canRemoveKeyFrame()
	dreamweaver.timelineInspector.canRemoveObject()
	site.browseDocument()
	site.canAddLink()
	site.canChangeLink()
	site.canCheckIn()
	site.canCheckOut()
	site.canCloak()
	site.canConnect()
	site.canFindLinkSource()
	site.canGet()
	site.canLocateInSite()
	site.canMakeEditable()
	site.canMakeNewFileOrFolder()
	site.canOpen()
	site.canPut()
	site.canRecreateCache()
	site.canRefresh()
	site.canRemoveLink()
	site.canSetLayout()
	site.canSelectAllCheckedOutFiles()
	site.canSelectNewer()
	site.canShowPageTitles()
	site.canSynchronize()
	site.canUncloak()
	site.canUndoCheckOut()
	site.canViewAsRoot()

	External application functions
	dreamweaver.browseDocument()
	dreamweaver.getBrowserList()
	dreamweaver.getExtensionEditorList()
	dreamweaver.getExternalTextEditor()
	dreamweaver.getFlashPath()
	dreamweaver.getPrimaryBrowser()
	dreamweaver.getPrimaryExtensionEditor()
	dreamweaver.getSecondaryBrowser()
	dreamweaver.openHelpURL()
	dreamweaver.openWithApp()
	dreamweaver.openWithBrowseDialog()
	dreamweaver.openWithExternalTextEditor()
	dreamweaver.openWithImageEditor()
	dreamweaver.validateFlash()

	File manipulation functions
	dom.cleanupXHTML()
	dom.convertToXHTML()
	dom.getIsXHTMLDocument()
	dreamweaver.browseForFileURL()
	dreamweaver.browseForFolderURL()
	dreamweaver.closeDocument()
	dreamweaver.createDocument()
	dreamweaver.createXHTMLDocument()
	dreamweaver.createXMLDocument()
	dreamweaver.exportCSS()
	dreamweaver.exportTemplateDataAsXML()
	dreamweaver.getDocumentDOM()
	dreamweaver.newDocumentDOM()
	dreamweaver.getRecentFileList()
	dreamweaver.importXMLIntoTemplate()
	dreamweaver.newFromTemplate()
	dreamweaver.openDocument()
	dreamweaver.openDocumentFromSite()
	dreamweaver.openInFrame()
	dreamweaver.releaseDocument()
	dreamweaver.revertDocument()
	dreamweaver.saveAll()
	dreamweaver.saveDocument()
	dreamweaver.saveDocumentAs()
	dreamweaver.saveDocumentAsTemplate()
	dreamweaver.saveFrameset()
	dreamweaver.saveFramesetAs()

	Find/replace functions
	dreamweaver.findNext()
	dreamweaver.replace()
	dreamweaver.replaceAll()
	dreamweaver.setUpComplexFind()
	dreamweaver.setUpComplexFindReplace()
	dreamweaver.setUpFind()
	dreamweaver.setUpFindReplace()
	dreamweaver.showFindDialog()
	dreamweaver.showFindReplaceDialog()

	Frame and frameset functions
	dom.getFrameNames()
	dom.isDocumentInFrame()
	dom.saveAllFrames()
	dom.splitFrame()

	General editing functions
	dom.applyCharacterMarkup()
	dom.applyFontMarkup()
	dom.deleteSelection()
	dom.editAttribute()
	dom.exitBlock()
	dom.getCharSet()
	dom.getFontMarkup()
	dom.getLinkHref()
	dom.getLinkTarget()
	dom.getListTag()
	dom.getTextAlignment()
	dom.getTextFormat()
	dom.hasCharacterMarkup()
	dom.indent()
	dom.insertHTML()
	dom.insertObject()
	dom.insertText()
	dom.newBlock()
	dom.notifyFlashObjectChanged()
	dom.outdent()
	dom.removeCharacterMarkup()
	dom.removeFontMarkup()
	dom.removeLink()
	dom.resizeSelection()
	dom.setAttributeWithErrorChecking()
	dom.setLinkHref()
	dom.setLinkTarget()
	dom.setListBoxKind()
	dom.showListPropertiesDialog()
	dom.setListTag()
	dom.setTextAlignment()
	dom.setTextFieldKind()
	dom.setTextFormat()
	dom.showFontColorDialog()
	dreamweaver.deleteSelection()
	dreamweaver.editFontList()
	dreamweaver.getFontList()
	dreamweaver.getFontStyles()
	dreamweaver.getKeyState()
	dreamweaver.getNaturalSize()
	dreamweaver.getSystemFontList()

	Global application functions
	dreamweaver.beep()
	dreamweaver.getShowDialogsOnInsert()
	dreamweaver.quitApplication()
	dreamweaver.showAboutBox()
	dreamweaver.showDynamicDataDialog()
	dreamweaver.showPreferencesDialog()
	dreamweaver.showTagChooser()

	Global document functions
	dom.checkSpelling()
	dom.checkTargetBrowsers()
	dom.runValidation
	dom.showPagePropertiesDialog()
	dreamweaver.doURLDecoding()
	dreamweaver.getElementRef()
	dreamweaver.getPreferenceInt()
	dreamweaver.getPreferenceString()
	dreamweaver.setPreferenceInt()
	dreamweaver.setPreferenceString()

	History functions
	dom.redo()
	dom.undo()
	dreamweaver.getRedoText()
	dreamweaver.getUndoText()
	dreamweaver.playRecordedCommand()
	dreamweaver.redo()
	dreamweaver.startRecording()
	dreamweaver.stopRecording()
	dreamweaver.undo()
	dreamweaver.historyPalette.clearSteps()
	dreamweaver.historyPalette.copySteps()
	dreamweaver.historyPalette.getSelectedSteps()
	dreamweaver.historyPalette.getStepCount()
	dreamweaver.historyPalette.getStepsAsJavaScript()
	dreamweaver.historyPalette.getUndoState()
	dreamweaver.historyPalette.replaySteps()
	dreamweaver.historyPalette.saveAsCommand()
	dreamweaver.historyPalette.setSelectedSteps()
	dreamweaver.historyPalette.setUndoState()

	HTML style functions
	dom.applyHTMLStyle()
	dreamweaver.htmlStylePalette.deleteSelectedStyle()
	dreamweaver.htmlStylePalette.duplicateSelectedStyle()
	dreamweaver.htmlStylePalette.editSelectedStyle()
	dreamweaver.htmlStylePalette.getSelectedStyle()
	dreamweaver.htmlStylePalette.getStyles()
	dreamweaver.htmlStylePalette.newStyle()
	dreamweaver.htmlStylePalette.setSelectedStyle()

	JavaScript debugger functions
	dom.getBreakpoint()
	dom.getLineFromOffset()
	dom.instrumentDocument ()
	dom.setBreakpoint()
	dreamweaver.debugDocument()
	dreamweaver.getDebugBrowserList()
	dreamweaver.getIsAnyBreakpoints()
	dreamweaver.removeAllBreakpoints()
	dreamweaver.startDebugger()

	Keyboard functions
	dom.arrowDown()
	dom.arrowLeft()
	dom.arrowRight()
	dom.arrowUp()
	dom.backspaceKey()
	dom.deleteKey()
	dom.endOfDocument()
	dom.endOfLine()
	dom.nextParagraph()
	dom.nextWord()
	dom.pageDown()
	dom.pageUp()
	dom.previousParagraph()
	dom.previousWord()
	dom.startOfDocument()
	dom.startOfLine()
	dreamweaver.mapKeyCodeToChar()

	Layer and image map functions
	dom.align()
	dom.arrange()
	dom.makeSizesEqual()
	dom.moveSelectionBy()
	dom.resizeSelectionBy()
	dom.setLayerTag()

	Layout environment functions
	dom.getRulerOrigin()
	dom.getRulerUnits()
	dom.getTracingImageOpacity()
	dom.loadTracingImage()
	dom.playAllPlugins()
	dom.playPlugin()
	dom.setRulerOrigin()
	dom.setRulerUnits()
	dom.setTracingImagePosition()
	dom.setTracingImageOpacity()
	dom.snapTracingImageToSelection()
	dom.stopAllPlugins()
	dom.stopPlugin()
	dreamweaver.arrangeFloatingPalettes()
	dreamweaver.showGridSettingsDialog()

	Layout view functions
	dom.addSpacerToColumn()
	dom.createLayoutCell()
	dom.createLayoutTable()
	dom.doesColumnHaveSpacer()
	dom.doesGroupHaveSpacers()
	dom.getClickedHeaderColumn()
	dom.getShowLayoutTableTabs()
	dom.getShowLayoutView()
	dom.isColumnAutostretch()
	dom.makeCellWidthsConsistent()
	dom.removeAllSpacers()
	dom.removeSpacerFromColumn()
	dom.setColumnAutostretch()
	dom.setShowLayoutTableTabs()
	dom.setShowLayoutView()

	Library and template functions
	dom.applyTemplate()
	dom.detachFromLibrary()
	dom.detachFromTemplate()
	dom.getAttachedTemplate()
	dom.getEditableRegionList()
	dom.getIsLibraryDocument()
	dom.getIsTemplateDocument()
	dom.getSelectedEditableRegion()
	dom.insertLibraryItem()
	dom.markSelectionAsEditable()
	dom.newEditableRegion()
	dom.removeEditableRegion()
	dom.updateCurrentPage()
	dreamweaver.exportTemplateDataAsXML()
	dreamweaver.updatePages()

	Live data functions
	dreamweaver.getLiveDataInitTags()
	dreamweaver.getLiveDataMode()
	dreamweaver.getLiveDataParameters ()
	dreamweaver.liveDataTranslate()
	dreamweaver.setLiveDataError()
	dreamweaver.setLiveDataMode()
	dreamweaver.setLiveDataParameters ()
	dreamweaver.showLiveDataDialog()

	Menu functions
	dreamweaver.getMenuNeedsUpdating()
	dreamweaver.notifyMenuUpdated()
	dreamweaver.reloadMenus()

	Path functions
	dreamweaver.getConfigurationPath()
	dreamweaver.getDocumentPath()
	dreamweaver.getSiteRoot()
	dreamweaver.relativeToAbsoluteURL()

	Print function
	dreamweaver.PrintCode()

	Quick Tag Editor Functions
	dom.selectChild()
	dom.selectParent()
	dom.stripTag()
	dom.wrapTag()
	dreamweaver.showQuickTagEditor()

	Report Functions
	dreamweaver.isReporting()
	dreamweaver.showReportsDialog()

	Results window functions
	Creating a Stand-alone Results window
	dreamweaver.createResultsWindow()
	resWin.addItem()
	resWin.addResultItem()
	resWin.setCallbackCommands()
	resWin.setColumnWidths()
	resWin.setFileList()
	resWin.setTitle()
	resWin.startProcessing()
	resWin.stopProcessing()
	Working with the built-in Results panel group
	Working with specific child panels
	Working with the active child panel

	dreamweaver.resultsPalette.clearItems()
	dreamweaver.resultsPalette.clipCopy()
	dreamweaver.resultsPalette.clipCut()
	dreamweaver.resultsPalette.clipPaste()
	dreamweaver.resultsPalette.openInBrowser
	dreamweaver.resultsPalette.openInEditor()
	dreamweaver.resultsPalette.save()
	dreamweaver.resultsPalette.selectAll()
	Server debugging
	dreamweaver.resultsPalette.debugWindow.addDebugContextData()

	Selection functions
	dom.getSelectedNode()
	dom.getSelection()
	dom.nodeToOffsets()
	dom.offsetsToNode()
	dom.selectAll()
	dom.selectTable()
	dom.setSelectedNode()
	dom.setSelection()
	dreamweaver.nodeExists()
	dreamweaver.selectAll()

	Server behavior functions
	dreamweaver.serverBehaviorInspector.getServerBehaviors()
	dreamweaver.popupServerBehavior()

	Server model functions
	dreamweaver.getServerModels()
	dom.serverModel.getAppURLPrefix()
	dom.serverModel.getDelimiters()
	dom.serverModel.getDisplayName()
	dom.serverModel.getFolderName()
	dom.serverModel.getServerExtension()
	dom.serverModel.getServerIncludeUrlPatterns()
	dom.serverModel.getServerInfo()
	dom.serverModel.getServerLanguage()
	dom.serverModel.getServerName()
	dom.serverModel.getServerSupportsCharset()
	dom.serverModel.getServerVersion()
	dom.serverModel.testAppServer()

	Site functions
	dreamweaver.loadSitesFromPrefs()
	dreamweaver.saveSitesToPrefs()
	site.addLinkToExistingFile()
	site.addLinkToNewFile()
	site.canEditColumns()
	site.changeLinkSitewide()
	site.changeLink()
	site.checkIn()
	site.checkLinks()
	site.checkOut()
	site.checkTargetBrowsers()
	site.cloak()
	site.defineSites()
	site.deleteSelection()
	site.editColumns()
	site.exportSite()
	site.findLinkSource()
	site.get()
	site.getAppServerAccessType()
	site.getAppServerPathToFiles()
	site.getCheckOutUser()
	site.getCheckOutUserForFile()
	site.getCloakingEnabled()
	site.getConnectionState()
	site.getCurrentSite()
	site.getFocus()
	site.getLinkVisibility()
	site.getLocalPathToFiles()
	site.getSelection()
	site.getSiteForURL()
	site.getSites()
	site.importSite()
	site.invertSelection()
	site.isCloaked()
	site.locateInSite()
	site.makeEditable()
	site.makeNewDreamweaverFile()
	site.makeNewFolder()
	site.newHomePage()
	site.newSite()
	site.open()
	site.put()
	site.recreateCache()
	site.refresh()
	site.remoteIsValid()
	site.removeLink()
	site.renameSelection()
	site.runValidation()
	site.saveAsImage()
	site.selectAll()
	site.selectHomePage()
	site.selectNewer()
	site.setAsHomePage()
	site.setCloakingEnabled()
	site.setConnectionState()
	site.setCurrentSite()
	site.setFocus()
	site.setLayout()
	site.setLinkVisibility()
	site.setSelection()
	site.synchronize()
	site.uncloak()
	site.uncloakAll()
	site.undoCheckOut()
	site.viewAsRoot()

	Snippets panel functions
	dreamweaver.snippetPalette.newFolder()
	dreamweaver.snippetPalette.newSnippet()
	dreamweaver.snippetPalette.editSnippet()
	dreamweaver.snippetPalette.insert()
	dreamweaver.snippetPalette.insertSnippet()
	dreamweaver.snippetPalette.rename()
	dreamweaver.snippetPalette.remove()

	String manipulation functions
	dreamweaver.doURLEncoding()
	dreamweaver.getTokens()
	dreamweaver.latin1ToNative()
	dreamweaver.nativeToLatin1()
	dreamweaver.scanSourceString()

	Source view functions
	dom.formatRange()
	dom.formatSelection()
	dom.getShowNoscript()
	dom.isDesignviewUpdated()
	dom.isSelectionValid()
	dom.setShowNoscript
	dom.source.arrowDown()
	dom.source.arrowLeft()
	dom.source.arrowRight()
	dom.source.arrowUp()
	dom.source.balanceBracesTextview()
	dom.source.endOfDocument()
	dom.source.endOfLine()
	dom.source.endPage()
	dom.source.getCurrentLines()
	dom.source.getSelection()
	dom.source.getLineFromOffset()
	dom.source.getText()
	dom.source.indentTextview()
	dom.source.insert()
	dom.source.nextWord()
	dom.source.outdentTextview()
	dom.source.pageDown()
	dom.source.pageUp()
	dom.source.previousWord()
	dom.source.replaceRange()
	dom.source.scrollEndFile()
	dom.source.scrollLineDown()
	dom.source.scrollLineUp()
	dom.source.scrollPageDown()
	dom.source.scrollPageUp()
	dom.source.scrollTopFile()
	dom.source.selectParentTag()
	dom.source.setCurrentLine()
	dom.source.startOfDocument()
	dom.source.startOfLine()
	dom.source.topPage()
	dom.source.wrapSelection()
	dom.synchronizeDocument()

	Table editing functions
	dom.convertWidthsToPercent()
	dom.convertWidthsToPixels()
	dom.decreaseColspan()
	dom.decreaseRowspan()
	dom.deleteTableColumn()
	dom.deleteTableRow()
	dom.doDeferredTableUpdate()
	dom.getTableExtent()
	dom.increaseColspan()
	dom.increaseRowspan()
	dom.insertTableColumns()
	dom.insertTableRows()
	dom.mergeTableCells()
	dom.removeAllTableHeights()
	dom.removeAllTableWidths()
	dom.setTableCellTag()
	dom.setTableColumns()
	dom.setTableRows()
	dom.showInsertTableRowsOrColumnsDialog()
	dom.splitTableCell()

	Tag editor and tag library functions
	dom.getTagSelectorTag()
	dreamweaver.popupInsertTagDialog()
	dreamweaver.popupEditTagDialog()
	dreamweaver.showTagChooser()
	dreamweaver.showTagLibraryEditor()
	dreamweaver.tagLibrary.getTagLibraryDOM()
	dreamweaver.tagLibrary.getSelectedLibrary()
	dreamweaver.tagLibrary.getSelectedTag()
	dreamweaver.tagLibrary.importDTDOrSchema()
	dreamweaver.tagLibrary.getImportedTagList()

	Tag inspector functions
	dreamweaver.tagInspector.tagBefore()
	dreamweaver.tagInspector.tagInside()
	dreamweaver.tagInspector.tagAfter()
	dreamweaver.tagInspector.deleteTags()
	dreamweaver.tagInspector.editTagName()

	Timeline functions
	dreamweaver.timelineInspector.addBehavior()
	dreamweaver.timelineInspector.addFrame()
	dreamweaver.timelineInspector.addKeyframe()
	dreamweaver.timelineInspector.addObject()
	dreamweaver.timelineInspector.addTimeline()
	dreamweaver.timelineInspector.changeObject()
	dreamweaver.timelineInspector.getAutoplay()
	dreamweaver.timelineInspector.getCurrentFrame()
	dreamweaver.timelineInspector.getLoop()
	dreamweaver.timelineInspector.recordPathOfLayer()
	dreamweaver.timelineInspector.removeBehavior()
	dreamweaver.timelineInspector.removeFrame()
	dreamweaver.timelineInspector.removeKeyframe()
	dreamweaver.timelineInspector.removeObject()
	dreamweaver.timelineInspector.removeTimeline()
	dreamweaver.timelineInspector.renameTimeline()
	dreamweaver.timelineInspector.setAutoplay()
	dreamweaver.timelineInspector.setCurrentFrame()
	dreamweaver.timelineInspector.setLoop()

	Toggle functions
	dom.getEditNoFramesContent()
	dom.getHideAllVisualAids()
	dom.getPreventLayerOverlaps()
	dom.getShowAutoIndent()
	dom.getShowFrameBorders()
	dom.getShowGrid()
	dom.getShowHeadView()
	dom.getShowInvalidHTML()
	dom.getShowImageMaps()
	dom.getShowInvisibleElements()
	dom.getShowLayerBorders()
	dom.getShowLineNumbers()
	dom.getShowRulers()
	dom.getShowSyntaxColoring()
	dom.getShowTableBorders()
	dom.getShowToolbar()
	dom.getShowTracingImage()
	dom.getShowWordWrap()
	dom.getSnapToGrid()
	dom.setEditNoFramesContent()
	dom.setHideAllVisualAids()
	dom.setPreventLayerOverlaps()
	dom.setShowFrameBorders()
	dom.setShowGrid()
	dom.setShowHeadView()
	dom.setShowInvalidHTML()
	dom.setShowImageMaps()
	dom.setShowInvisibleElements()
	dom.setShowLayerBorders()
	dom.setShowLineNumbers()
	dom.setShowRulers()
	dom.setShowSyntaxColoring()
	dom.setShowTableBorders()
	dom.setShowToolbar()
	dom.setShowTracingImage()
	dom.setShowWordWrap()
	dom.setSnapToGrid()
	dreamweaver.getHideAllFloaters()
	dreamweaver.getShowStatusBar()
	dreamweaver.htmlInspector.getShowAutoIndent()
	dreamweaver.htmlInspector.getShowInvalidHTML()
	dreamweaver.htmlInspector.getShowLineNumbers()
	dreamweaver.htmlInspector.getShowSyntaxColoring()
	dreamweaver.htmlInspector.getShowWordWrap()
	dreamweaver.htmlInspector.setShowAutoIndent()
	dreamweaver.htmlInspector.setShowInvalidHTML()
	dreamweaver.htmlInspector.setShowLineNumbers()
	dreamweaver.htmlInspector.setShowSyntaxColoring()
	dreamweaver.htmlInspector.setShowWordWrap()
	dreamweaver.setHideAllFloaters()
	dreamweaver.setShowStatusBar()
	site.getShowDependents()
	site.getShowHiddenFiles()
	site.getShowPageTitles()
	site.getShowToolTips()
	site.setShowDependents()
	site.setShowHiddenFiles()
	site.setShowPageTitles()
	site.setShowToolTips()

	Toolbar functions
	dom.getToolbarVisibility()
	dom.setToolbarVisibility()
	dom.setToolbarPosition()
	dom.getToolbarIdArray()
	dom.getToolbarLabel()
	dom.setShowToolbarIconLabels()
	dom.getShowToolbarIconLabels()

	Translation functions
	dom.runTranslator()
	dreamweaver.editLockedRegions()
	dreamweaver.getTranslatorList()
	dreamweaver.useTranslatedSource()

	Window functions
	dom.getFocus()
	dom.getView()
	dom.getWindowTitle()
	dom.setView()
	dreamweaver.cascade()
	dreamweaver.getActiveWindow()
	dreamweaver.getDocumentList()
	dreamweaver.getFloaterVisibility()
	dreamweaver.getFocus()
	dreamweaver.getPrimaryView()
	dreamweaver.getSnapDistance()
	dreamweaver.isMDI()
	dreamweaver.minimizeRestoreAll()
	dreamweaver.setActiveWindow()
	dreamweaver.setFloaterVisibility()
	dreamweaver.setPrimaryView()
	dreamweaver.setSnapDistance()
	dreamweaver.showProperties()
	dreamweaver.tileHorizontally()
	dreamweaver.tileVertically()
	dreamweaver.toggleFloater()
	dreamweaver.updateReference()

	Deprecated JavaScript API functions
	dreamweaver.cssStylePalette.getSelectedTarget()
	dreamweaver.exportEditableRegionsAsXML()
	dreamweaver.getBehaviorEvent()
	dreamweaver.getObjectRefs()
	dreamweaver.getObjectTags()
	dreamweaver.getSelection()
	dreamweaver.libraryPalette.deleteSelectedItem()
	dreamweaver.libraryPalette.getSelectedItem()
	dreamweaver.libraryPalette.newFromDocument()
	dreamweaver.libraryPalette.recreateFromDocument()
	dreamweaver.libraryPalette.renameSelectedItem()
	dreamweaver.nodeToOffsets()
	dreamweaver.templatePalette.getSelectedTemplate()
	dreamweaver.offsetsToNode()
	dreamweaver.popupCommand()
	dreamweaver.setSelection()
	dreamweaver.templatePalette.deleteSelectedTemplate()
	dreamweaver.templatePalette.renameSelectedTemplate()



	Index

