

Apache Server Survival Guide
Table of Contents

About the Author●

Part I: Getting Started: Installation and Configuration●

1 Why the Apache Server?●

2 Installing and Configuring the Apache Serve r●

3 Organizing Your Web Site●

Part II: Beyond the Basics: Advanced HTTP Server Funct ionality●

4 Virtual Hosts●

5 CGI (Common Gateway Interface) Programming●

6 Server Side Includes (SSI)●

7 Third-Party Modules●

Part III: Complete Reference: Apache Configuration in Detail●

8 Apache Configuration Overview●

9 Apache Server Core Directives●

10 Apache Modules●

Part IV: Keeping Up: Web Server System Administration●

11 Basic System Administration●

12 Web Server Performance Tuning●

13 Web Accounting●

Part V: Security: Options & Procedures●

14 Secure Web Servers●

15 Access Control and User Authentication●

16 Web Server Security Issues●

Part VI: Other References

A Un-CGI Version 1.7 Documentation❍

B Managing Virtual Domains with sendmail V8❍

C FastCGI❍

D HTML Reference Guide❍

E DNS and BIND Pr imer❍

●

Apache Server Survival Guide asgfm.htm

About the Author

Manuel Alberto Ricart is one of the founders of accessLINK, inc., a high-technology firm that provides
Internet and Web consulting services worldwide.

Alberto, has been involved with computers since the late 70s when he was introduced to programming on
a then state-of-the-art IBM system 32, which had a whopping 32KB of RAM and a tiny hard disk. Since
then, Alberto has developed software products for Macintosh and NEXTSTEP, as well as provided
UNIX and PC system administration support to a wide range of clients since the mid-80s.

In 1992, he founded a software company, SmartSoft, Inc., that develops a wide range of commercial
shrink-wrap software for NEXTSTEP/OPENSTEP (UNIX) operating systems. Their products are sold
worldwide.

In 1995, he co-founded a second firm dedicated to building Internet solutions that allow companies to
harness the Internet for business. Their technologies range from simple static Web publishing to dynamic
content-driven Web systems that use database sources for their information infrastructure. AccessLINK
also provides a number of hosting products and services.

Alberto specializes in Internet and Web core technologies such as the Apache Web server and all other
technologies required to support it, such as UNIX network connectivity, administration, training, and
support. Other responsibilities include the invention and design of software products and tools.

Alberto can be reached at aricart@accessLINK.com"> aricart@accessLINK.com where he can usually
be found tinkering with computers and software all day long.

Apache Server Survival Guide asgpt1.htm

Part I: Getting Started: Installation and
Configuration

Why the Apache Server?●

Installing and Configuring an Apache Server●

Organizing Your Web Site●

Apache Server Survival Guide asg01.htm

What Is a Web Server?■

Commercial Versus Freeware■

Ease of Installation■

Ease of Configuration■

Ease of Extending or Customizing Some Aspect of the Server■

Features■

Size of the Installed Base■

Ongoing Development■

Performance and Resource Consumption■

Secure Transaction Support■

Source Code Availability■

Technical Support■

Third-Party Support■

Summary■

1

Why the Apache Server?

What Is a Web Server?

A Web server is the server software behind the World Wide Web. It listens for requests from a client,
such as a browser like Netscape or Microsoft's Internet Explorer. When it gets one, it processes that
request and returns some data. This data usually takes the form of a formatted page with text and
graphics. The browser then renders this data to the best of its ability and presents it to the user. Web
servers are in concept very simple programs. They await for requests and fulfill them when received.

Web servers communicate with browsers or other clients using the Hypertext Transfer Protocol (HTTP),
which is a simple protocol that standardizes the way requests are sent and processed. This allows a
variety of clients to communicate with any vendor's server without compatibility problems.

Most of the documents requested are formatted using Hypertext Markup Language (HTML). HTML is a
small subset of another markup language called Standard General Markup Language (SGML), which is
in wide use by many organizations and the U.S. Government.

HTML is the lifeblood of the Web. It is a simple markup language used for formatting text. Browsers
interpret the markup information and render its intent to the best of their abilities. More importantly,
HTML allows linking to different documents and resources; this is the hypertext portion of the Web.

Hypertext allows a user to refer to other documents stored in the same computer or in a computer located
in a different part of the world. It allows information to be almost tridimensional. Not only can you read
sequentially, but you can jump for more elsewhere.

The information retrieval process is completely transparent to the user; it's easy and free-form.
Navigation through this sea of information is in an ad hoc way. While the results and implications of this
new learning process are yet to be seen, it sure is powerful. It provides a seamless exploration experience
of documents and services. This is what the Web is all about. It allows you to gather information easily
and presents it in a way that it is easy to digest. It's graphic, and it can combine sound and moving
pictures.

You can learn more and find related issues that spark your interest; it's interactive. Instead of paging
through a book (still a good thing), you can use the computer to remove much of the legwork associated
with retrieving related information, and it allows you to explore the material that fits your needs or mood.
It's like TV, but you get to choose the programming.

The Web server is responsible for fetching you this information. While Web servers may have been
simple at some point, they are not anymore. All Web servers are not created equal.

If all the sudden you were asked to set up a Web site, you would be confronted with a variety of issues
that you would need to resolve before you code your first HTML page. The most important issue, and
probably the reason why you bought this book, is deciding which server software to use. Given the
myriad of Web servers available, the choice is undoubtedly difficult.

The following is a list of issues that you should use to evaluate any piece of software before you commit
work to it:

Commercial versus freeware

Ease of installation

Ease of configuration

Ease of extending or customizing some aspect of the server

Features

Size of the installed base

Ongoing development

Performance and resource consumption

Secure transaction support

Source code availability

Technical support

Platform support

Third-party support

Commercial Versus Freeware

Apache is freeware; therefore, you invariably have to confront the issue of free software. Is free software
really cheap? After all, who do you go to if you have problems? What are the odds of the product not
being supported? Free software usually has sparse documentation and no direct technical support.
However, there are a few software packages out there that are superbly documented, supported, and
maintained. In my view, Apache belongs to that list.

Ease of Installation

If you have a little understanding about UNIX, know how to use an UNIX editor such as vi, pico, or
emacs, and are not afraid of the shell, Apache is a great choice. It is easy to install and configure, even
for people that are not too savvy on the UNIX ways. The software is available in two types: precompiled
and in source form.

Precompiled binaries are available for

AUX 3.1●

BSDI 2.0●

FreeBSD 2.1●

HP-UX 9.07●

IRIX 5.3●

Linux●

NetBSD 1.1●

NEXTSTEP●

SolarisX86 2.5●

Solaris 2.4●

Solaris 2.5●

SunOS 4.1.3●

UnixWare 1.1.2●

There's also an OS/2 version. Rumor has it that a Windows NT version of Apache is also in the works.
Given the growing popularity of both Apache and Windows NT in corporate networks, such a port would
help to capture an even bigger segment of the Web server market.

If your OS/hardware is not available precompiled and you have an UNIX compiler such as GNU's GCC,
there are configuration directives for almost every UNIX variant imaginable. All you need to do is set up
a few options, type make, and your software will be built. The next chapter walks you through the
process of compiling and installing your Apache server.

Installing a Web server—be it through a graphical user interface (GUI)-based Netscape product or
Apache—is simple. The GUI tools may give more reassurance to people who are afraid of command line
interfaces, but in general, configuration and installation are fairly straight forward in either version. If
you are not sure what a configuration value is, more than likely you will be stumped in either
presentation. This is where documentation, such as this book, will help you. This book doesn't assume
that you know much about UNIX or anything else. However, it will give you enough background to get
going and will enlighten you about some of the possibilities. I hope your curiosity awakens.

Ease of Configuration

Configuring Apache is very easy to do. Apache utilizes three configuration files; all of which are already
preset to safe default behaviors. You just need to specify a few file locations, and name your server so
that Apache can find its configuration files and the location of the document tree it is serving. To do this,
all you need is a good UNIX text editor that you feel comfortable with. Chances are your version of
UNIX has some sort of graphical editor you already feel comfortable with. Chapter 2, "Installing and
Configuring an Apache Server," explains all the basic configuration steps you need to take to get your
Apache server running fast. It's easy to do.

Ease of Extending or Customizing Some Aspect of
the Server

If you are customizing some aspect of the server, you'll love Apache. Its source code is clearly written
but is a little thin on the documentation side. The Apache server is implemented as a set of software
modules. Creating a new module that modifies the behavior of the server in some way will require less to
learn on your part. There's a growing list of freely available third-party modules. More than likely you
can find a module that implements the functionality you need.

Features

The Apache server implements the same, if not more, features than the equivalent commercial Web
server, and basically every aspect of the Apache server's functionality is configurable. This makes it easy
to get the server to behave the way you want or need for your site.

Some of the most important features include the following:

It's a plug-and-play replacement for NCSA Web servers.●

Fixes bugs and security holes found on NCSA 1.3 and 1.4 servers.●

It's very fast, much faster than NCSA servers.●

Compiles better with the current HTTP specifications. By the time you read this, Apache should be
unconditionally compliant with HTTP/1.1 specifications.

●

Apache provides several forms of implementing multihomed and virtual servers. A multihomed●

server serves requests under various names, such as http://www.x.com and http://www.y.com.
Both of which are resident on the same computer and are served by the same process. One of these
is a non-IP intensive method that works in conjunction with popular browsers.

You can customize the error responses with the use of files or scripts. The server will intercept an
error and display the specified file or execute a CGI that could perform an on-the-fly diagnosis of
the problem. This allows your server to return more meaningful error messages to visitors or to
perform some special action in response to an error condition.

●

Apache servers can automatically negotiate content retrieval with a browser and can serve the most
appropriate out of various sets of equivalent documents. This allows the server to retrieve the
document having the best representation that the client is willing to accept. For example, when
serving documents in English and Spanish, depending on your browser settings, Apache will
automatically retrieve the version most appropriate for you.

●

Apache includes an automatic index file selection. You can instruct the server to return any of
several resources for directory requests (http://www.company.com/). The server will search for a
matching index file(s) and return the first one found to the client. Should none of the specified files
be found, the server can be configured to produce an automatically generated listing of all the
resources available in that directory.

●

Apache provides several user authentication—methods ranging from flat-file user databases, to
indexed files and relational database support. Third-party modules allow Apache to interface with
many popular network authentication systems.

●

Size of the Installed Base

At the time of this writing, Apache was the leader in Web server installed base. According to the August
1996 Netcraft survey (http://www.netcraft.co.uk/Survey/Reports/), Apache brand Web servers comprised
35.68 percent (37.16 percent if you add all the secure versions of the server) of the Web servers in their
survey. That doesn't seem like much until you realize that the competition is far behind, and the entire
Web server market is dominated by three products:

Server Brand Market Share

Apache 35.68%

NCSA 18.25%

Netscape Communications 7.25%

Netscape Commerce 6.83%

CERN 6.22%

Microsoft Internet Information Server 5.49%

WebSite 3.40%

WebSTAR 1.95%

BESTWWWD 1.68%

Apache SSL US 1.43%

Purveyor 1.38%

WebSitePro 1.07%

The other remaining 424 server brands didn't even get one percent of the market share! The Netcraft
survey currently includes 342,081 servers. Check the details of the survey for yourself on Netcraft's Web
site because this information changes monthly.

Ongoing Development

The Apache server was originally based on the NCSA code. Its development was started because of
some security problems associated with the NSCA server and concerns for having an UNIX Web server
that implemented some special features. Also driving the effort was a concern to somehow guarantee that
a free UNIX server would always be available to the UNIX community. The Apache group was then
formed, which developed a series of patches for the NCSA server—hence the name, Apache, from A
PAtCHy server.

The Apache server has undergone several releases since its initial inception. There have been 32 different
releases including five beta releases for version 1.1.0—the current version at the time of this writing is
1.1.1. However, by the time this book is printed, version 1.2 should be available. The Apache team
develops new revisions faster than I can document. Bug fixes are addressed almost immediately. More
importantly, advisories from Computer Emergency Response Team (CERT) Coordination Center and
other parties are corrected immediately to ensure that no security problems are present in the server.

In terms of total code lines, the server has more than doubled from approximately 10,000 lines in its
initial NCSA-fixed version, to over 25,000 in its current released incarnation (these counts include
comment lines). In its current form, it bears little resemblance to the NCSA server; it's a whole new
animal.

While all this performance is not an indication of anything but past performance, the development
patterns are there. The main reason for Apache is to ensure that a freely available UNIX Web server is
always available to the UNIX community. Apache was created so that there would be an HTTP server
that functioned the way some WWW providers thought it ought to work. After all, many of the Apache
programmers have real jobs involved with providing WWW services or Internet connectivity.

Performance and Resource Consumption

The Apache server offers superior performance than the NCSA server. It has a pre-forking model that
manages a configurable amount of child processes. A preforking model is one where server processes are
waiting to answer requests. Many servers start a process only when they receive a request. Once the
request is fulfilled, the server process dies, requiring this cycle to start all over with the next request.

Under UNIX, forking (launching) a process can be very expensive. It takes time that a busy server
doesn't have and creates an impact on the system that further aggravates performance. By preallocating a
number of servers to wait for requests, Apache can respond quickly and more efficiently. By reusing
already available servers to respond to new requests, Apache is able to gain additional performance
because it spends more time serving requests than setting up and cleaning after itself.

Using a conservative approach, the number of children processes changes dynamically. As server
demands change, the number of processes is adjusted accordingly. Children processes are reused for a
certain number of connections after which the parent server process kills them and recycles those
resources with a new process.

Apache also implements a new HTTP 1.1 draft feature: Keep-Alive persistent connections. (Apache 1.2
is fully HTTP/1.1 compliant.) Keep-alive allows a single TCP connection to serve several requests from
a client. The original model instigated a new connection for each request, requiring the overhead of
starting and closing a Transmission Control Protocol (TCP) connection with the server for each element
in a page. If an HTML page referenced five images, a total of six different requests would be generated.
Under the new persistent connection scheme, the six elements are transmitted through the same TCP
connection. This approach increases performance on pages that contain multiple images by as much as
50 percent. However, this feature only works with supporting browsers (currently Netscape Navigator,
Spyglass, and Microsoft's Internet Explorer) that provide browser support for this feature. Also,
Keep-Alive connections only work if the size of a file is known beforehand, meaning that output from a
CGI program doesn't benefit from the new connection model.

Secure Transaction Support

The standard Apache release does not provide secure transaction support. However, there are products
based on the Apache source code that do (Apache-SSL and Apache-SSL-US). Both of these servers are
fully compatible with Netscape's encryption mechanism, and rumor has it that these two products are the
reason why the Netscape product offerings were drastically reduced in price.

Source Code Availability

Following UNIX's tradition of source code availability, Apache's source code is distributed with every
copy at no extra charge, making it possible to compile your own customized version easily. This allows
you to compile a version of Apache for a nonpopular UNIX box. Source code availability invariably
plays an important role in UNIX software acceptance. On sites where stringent security is important,
system administrators have the ability to examine the source code line by line, thus ensuring no
undesirable effects or hidden security risks are present.

Technical Support

Great technical support for Apache is available from Usenet at comp.infosystems.www.servers.unix.
Many members of the Apache team answer questions there regularly.

To search for questions that may have been already asked, surf to http://www.dejanews.com. Dejanews is
a useful Usenet database. It archives all USENET newsgroups and has a fast search engine that allows
you find the information you need in seconds. If your question has been asked before, it will be there.

Commercial support for Apache is available through a number of third-party organizations. One of the
most popular is available from http://www.ukweb.com. However, it is expensive (around $1,500 per
year).

Third-Party Support

Because of Apache's modular design, many third-party developers have programmed modules to meet
their specific needs, such as custom authentication modules, embedded Perl interpreters, SSI scripting
extensions, and so on. Chapter 7, "Third-Party Modules," covers many of the more important ones.
Chances are good that something you need has already been developed by someone else. If the module
you need was not included with the Apache release, you can probably find what you need at

 http://www.zyzzyva.com/erver/module_registry/

Some of the extensions and modules you'll find there include support for the following:

Cookie-based authentication

news:comp.infosystems.www.servers.unix
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#1
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#2
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#3

Support for setting the UID and GID of executing CGI scripts

User authentication using UNIX system account databases

Enhanced Server Side Include (SSI) modules

Embedded Perl interpreter

Kerberos-based authentication

Character set translators

Postgres95 and mSQL database user authentication modules

Web page counters

Extended log formats

NIS authentication

URI/URL rewriting modules

Tcl scripting processor

CGI module alternatives

Summary

The most important reason to use Apache should be subjective. It should be based on how Apache fits
you. Software evaluation is like test-driving a car. You wouldn't buy a car just by looking at the brochure.
To feel how you like the server, you need to test-drive it.

Luckily, most of the Web servers out there have some sort of demo version available. Unless you are
going to customize some portion of the Apache server, such as writing a custom module, your
commitment is small. Should a better product for UNIX appear, your HTML documents would migrate
effortlessly. So your risk is minimal. To avoid a crap-shoot, test-drive the software and deploy on the
basis of your experiences with it. Experience is your best guide.

While it is impossible to determine in a few hours if a solution will be the right one for you, the Internet
is a close knit community of software junkies. Make use of the collective knowledge. Ask questions on
Usenet and read the frequently asked questions (FAQ).

Apache is the choice for a server at accessLINK, Inc. They were NCSA users in the beginning, but a few
features won them over and they have liked Apache ever since. To gain credibility, I don't have any
association with the Apache group, save that I use their software and like it very much. The reasons why
I use Apache are the subject of this book. Apache provides many features that make it a very powerful
Web server. Its continued development has put pressure on even the high-powered brands that are
currently available, which were complacent until recently.

Installing a Precompiled Server■

Installing from the Source

Editing the Configuration File■

Running the Configure Script■

Running make■

■

Runtime Server Configuration Settings

Editing httpd.conf■

Editing srm.conf■

Editing access.conf■

■

Configuring an inetd Server

Configuring inetd■

■

Running the Web Server for the First Time

Starting Up a Standalone Server■

Starting Up an inetd Server■

■

Starting and Stopping the Server

The start Script■

The stop Script■

The restart Script■

Auto-Starting the Web Server at Boot Time■

■

Testing the Newly Installed Server■

Configuration File Listings

src/Configuration File■

The Server Configuration File: conf/httpd.conf■

The Resource Configuration File: conf/srm.conf■

The Global Access Configuration File: conf/access.conf■

■

Summary■

2

Installing and Configuring the Apache Server

This chapter guides you through the installation and configuration of Apache using a basic setup. You will find the latest stable server
software, as well as the latest beta releases of the Apache source distribution, on the Apache group's Web server (

http://www.apache.org). A copy of the latest release available at the time this book was written (Apache 1.1.1) is included on the
CD-ROM that accompanies this book.

If you don't have access to a compiler, you can still install Apache provided that you can find a precompiled version of the server that
works with your hardware and operating system. I have included the precompiled servers I found at the Apache group's Web server,
including AUX 3.1, BSDI 1.1 and 2.0, FREEBSD 2.1, HPUX 9.07, IRIX 5.3, Linux, NETBSD 1.1, SOLARIS 2.4, SunOS 4.1.3, and
UNIXWARE 1.1.2., and others.

Fig. 2.1 The Apache home page. Notice this site is mirrored around the world.

The Apache site provides links to various mirror sites from which you can download the software. Choose the one that is geographically
closest to you from the various sites listed on the Apache home page.

To install Apache in its default location at /usr/local/etc/httpd, you may need to be the superuser. You'll need to know the root password
of the machine in which you are installing Apache. If you don't know how to become root, please contact your local system
administrator. Put the distribution archive in the /tmp directory. A sequence of commands to do the installation from /tmp might look
like this:

mkdirs /usr/local/etc (your system may use 'mkdir -p /usr/local/etc' instead)

cd /usr/local/etc

mv /tmp/apache_1.1.1.tar.gz /usr/local/etc

gzcat apache_1.1.1.tar.gz | tar -xf -

mv apache_1.1.1 httpd

If your system does not support gzcat, you may need to do a gunzip -c instead.

Note that depending on the version you are installing, you will be left with a directory called apache_x.x.x. Now you should have a tree
under httpd that contains the complete distribution of Apache. This directory tree contains configuration templates and other resources
that the server needs for its operation. Be sure not to move or rename any of the files and directories, unless you know what you are
doing.

Installing a Precompiled Server

Apache has been compiled for many platforms, and chances are that a prebuilt copy of the server exists for your setup. If you are
interested in compiling the source, you might want to skip to the section in this chapter titled, "Installing from the Source" because it
offers information on how to build the Apache HTTP server.

Installing a precompiled server is very similar to installing a source-only distribution. The only difference is that a compiled httpd binary
already exists in the server's src directory. The compiled binary of the Apache server is called httpd. On binary distributions, the binary
is usually labeled httpd-architecture, where architecture is the name of the OS you are installing. For Linux, the httpd binary is called
httpd-linux.

Although it is perfectly fine to keep the binary in the src directory, I like to install the binary at the top of the distribution tree. In this
example, that is /usr/local/etc/httpd/httpd. Sometimes, the binary distribution has not been stripped. Stripping removes extra symbol
information that the linker left from the compilation linking process. Removing this extra information using strip usually makes the
binary about 30 to 40 percent smaller. I also like to protect the executable from any user trying to alter it. An easy way to do this is by
changing the owner and group of the executable to root and the group to wheel. Then remove all write privileges to the binary from
everyone but the owner. To chown and chmod a file (change owner and change mode) to root, you need to do this as the superuser. The
following installation steps might look something like this:

1. cd /usr/local/etc/httpd1.

2. cp src/httpd-linux httpd2.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#27

3. strip httpd3.

4. chown root.wheel httpd4.

5. chmod 755 httpd5.

If you are installing a precompiled server, you can skip to the section titled, "Runtime Server Configuration Settings."

Installing from the Source

Installing from the source is a little more time-consuming, but it will force you to get familiar with the source distribution of the Apache
server. It will also give you the opportunity to customize the modules that are built into Apache. Many of these modules provide
functionality that will make your server more powerful. All the files you will need to edit to build the binary are in the src directory.
Building from the source is a three-step process:

1. Edit the one-time configuration file, src/Configuration.1.

2. Run the Configure script.2.

3. Run make.3.

Editing the Configuration File

Before you can compile the software, you need to edit the configuration file and set some compile-time options that address the
peculiarities of your operating system (and, in some cases, the hardware on which you are going to be running the server). Apache
supports the concept of modules that extend and enhance the functionality of the server. However, in order for some of these modules to
work, they have to be enabled in the configuration file. The configuration file can be found in /usr/local/etc/httpd/src. To make a copy of
the configuration file, type in the following:

cd /usr/local/etc/httpd/src

cp Configuration.tmpl Configuration

Using your favorite editor, read and edit the configuration file you just created. A listing of the default configuration files is included at
the end of this chapter for your reading enjoyment.

I kept all the default settings with the exception of changing the compiler and compilation options to match my hardware and operating
system. This is executed by removing the comments (the # signs) from the AUX_CFLAGS and AUX_LIBS defines found on the
configuration file. Remember to comment out (put in a #) in front of other settings that may not apply to your system configuration.

Running the Configure Script

After you edit the configuration file, you need to run the Configure script. The Configure script is a Bourne shell script that uses the
configuration file you edited (src/Configuration) to generate a new Makefile and modules.c to match the options you set in the
compilation configuration file. To do this, type the following into your terminal program:

cd /usr/local/etc/httpd/src

./Configure

Configure allows you to specify a configuration file on the command line by using the -file flag:
Configure -file NEXTSTEP.configuration
Using alternate config file NEXTSTEP.configuration
This feature is useful if you need to maintain various different configurations for several different machines.

Running make

If Configure proceeded normally, you should be able to build the server binary at this point. To build the binary, type this on your
terminal:

make

After a few minutes, depending on the speed of your hardware, you will have a compiled version of the Web server. It is called httpd and
is on the /usr/local/etc/apache/src directory. The current version of the Apache source code does not have an install target for make, so
you'll have to copy and strip the executable by hand:

cp httpd ../httpd

cd ..

strip httpd

chown root.wheel httpd

chmod 755 httpd

Runtime Server Configuration Settings

Apache reads its configuration settings from three files: access.conf, httpd.conf, and srm.conf. Primarily, this has been done to maintain
backward compatibility with the NCSA server, but the reasoning behind this organization makes good sense. The configuration files
reside in the conf subdirectory of the server distribution. Sample configuration files are included in the software distribution; they are
named access.conf-dist, httpd.conf-dist, and srm.conf-dist, respectively. You will need to create copies of these files without the -dist
portion:

cd /usr/local/etc/httpd/conf

cp httpd.conf-dist httpd.conf

cp access.conf-dist access.conf

cp srm.conf-dist srm.conf

After you've made your local copies, you are ready to configure a basic server.

Runtime configuration of your server is done by way of configuration directives. Directives are commands that set some option; use

them to tell the server about various options that you want to enable, such as the location of files important to the server configuration
and operation. Configuration directives follow this syntax:

Directive option option…

Directives are specified one per line. Some directives only set a value such as a filename; others let you specify various options. There
are special directives, called sections, that look like HTML tags. Section directives are surrounded by angle brackets, such as
<directive>. Sections usually enclose a group of directives that apply only to the directory specified in the section:

<Directory somedir/in/your/tree>

 Directive option option

 Directive option option

</Directive>

All sections are closed with a matching section tag that looks like </directive>. You will see some of these constructs in the
conf/access.conf and in your conf/httpd.conf files. Note that section tags, like any other directive, are specified one per line.

Editing httpd.conf

httpd.conf contains configuration directives that control how the server runs, where its logfiles are found, the user ID (UID) it runs
under, the port that it listens to, and so on. You will need to edit some of the default configuration values to settings that make sense in
your site. I kept most of the defaults found on my httpd.conf, with the exception of the following:

Figure 2.2. One of the error messages the server returns if there's an error. Note that the ServerAdmin was set to
alberto@accesslink.com.

ServerAdmim The ServerAdmin directive should be set to the address of the
webmaster managing the server. It should be a valid e-mail
address or alias, such as webmaster@your.domain. Setting this
to a valid address is important because this address will be
returned to a visitor when there's a problem.

User and Group The User and Group directives set the UID and group ID (GID)
that the server will use to process requests. I kept these to the
defaults: nobody and nogroup. Please verify that the names
nobody and nogroup exist in your /etc/passwd and /etc/group
files, respectively. If you want to use a different UID or GID, go
ahead; however, be aware that the server will run with the
permissions you define here. The permissions for the specified
UID and GID should be very low because, in case of a security
hole, whether on the server or (more likely) on your own CGI
programs, those programs will run with the assigned UID. If the
server runs as root or some other privileged user, someone may
exploit the security holes and do nasty things to your site.
Instead of specifying the User and Group directives using a
name, you can specify them by using the UID and GID
numbers. If you use numbers, be sure that the numbers you
specify correspond to the user and group you want, and that they
are preceded by the pound (#) symbol.

Here's how these directives would look if specified by name:

User nobody

Group nogroup

Here's the same specification, but by UID and GID:

User #-1

Group #-1

ServerName The ServerName directive sets the hostname the server will return.
Set it to a fully qualified domain name (fqdn). If not set, the server
will try figure it out by itself and set to its canonical name.
However, you may want the server to return a friendlier address
such as www.your.domain. Whatever you do, ServerName should
be a real Domain Name System (DNS) name for your network. If
you are administering your own DNS, remember to add a CNAME
alias for your host. If someone else manages the DNS for you, ask
her to do this for you. Your ServerName entry should look like this:
ServerName www.your.domain

If you would like to install a Web server for test purposes on a standalone machine, you can do so
by specifying a ServerName of localhost. You can then access the server as http://www.localhost
from within the standalone machine. This may be a useful thing to do for trying out new
configurations or Internet Web servers.

ServerRoot This directive sets the absolute path to your server directory (where
your httpd binary is located). This directive tells the server where to
find all the resources and configuration files. Many of these
resources are specified in the configuration files relative of the
ServerRoot directory. If you installed your server using my
examples, your ServerRoot directive will read: ServerRoot
/usr/local/etc/httpd

Editing srm.conf

The srm.conf file is the resource configuration file. It controls settings related to the location of your Web document tree,
the CGI program directories, and other resource configuration issues that affect your Web site. I kept most of the defaults
found on my srm.conf. The most important directives on this configuration file are

DocumentRoot Set this directive to the absolute path of your document tree.
Your document tree is the top directory from which Apache will
serve files. By default it is set to /usr/local/etc/httpd/htdocs.

You may also want to set the UserDir directive to disabled. The UserDir directive defines the directory relative of a local
user's home directory where they will put public HTML documents. It's relative because each user will have a
public_HTML directory. Although this may give users at your site the freedom to create and maintain their own home
pages, many users may not be aware of this fact, resulting in the possibility of their creating a public_html directory that
contains private files. Additionally, depending on the kind of users in your system and the server configuration, this may
create potential security problems. It would make it possible for a user to publish your entire filesystem by creating a
symbolic link to a directory outside of a Web document tree. By doing this, anyone would be able to read and navigate your
filesystem freely.

Chapter 16, "Web Server Security Issues," discusses alternatives for providing this functionality that I feel are better from a
security and maintenance standpoint.

A copy of the boilerplate conf/srm.conf file has been included at the end of this chapter.

Editing access.conf

I kept all the defaults found in my access.conf file. access.conf is the global access control file; it configures the type of
access users have to your site and the documents you make available, as well as security issues defining the extent to which
users may alter the security settings you may have defined. The default configuration provides unrestricted access to
documents in your DocumentRoot.

If you want to provide a more restrictive site, you may want to verify that all <Directory path> sections match the
directories they list in your installation. The Directory sections specify a set of options, usually involving security issues, on
a per-directory basis. In particular, you may want to remove the Indexes option that follows the Options directive on the
section that looks like this:

<Directory /usr/local/etc/httpd/cgi-bin>

Options Indexes FollowSymLinks

</Directory>

The Indexes option allows for server-generated directory listings. You probably don't want anyone peeking at the contents
of your cgi-bin directories.

Options that you implement on your global ACT can be overridden by the use of an .htaccess file. You can disable all
.htaccess overrides by setting the directive AllowOverride to None, which is by default set to allow all overrides:

AllowOverride None

I discuss access control and security in Chapter 15, "Access Control and User Authentication."

Configuring an inetd Server

Normally, Apache runs in standalone mode or daemon mode. How it is run by the system depends on how it is configured
by the ServerType directive in conf/httpd.conf.

A standalone server offers superior performance over inetd-run servers because usually there will be a server process ready
to serve a request. When run under inetd (the Internet daemon), a new server is started every time a request is received on
the HTTP port. There is a considerable amount of overhead in starting a new server process with each new request.

The default setting for ServerType is standalone; unless you have an extremely light traffic site, you should stick with this
setting. inetd servers are good for information you want available, but to which you don't want to dedicate a computer.

inetd servers are great for testing configuration settings because the server rereads all its settings
every time there's a request. On standalone servers, you need to manually restart the server before
it sees any changes you made to the configuration files.

To run a server from inetd, you'll need to modify conf/httpd.conf once more and change the ServerType directive from
standalone to inetd:

ServerType inetd

The Port directive has no effect on an inetd server. A standalone server uses this configuration information to learn which
port it should be listening to. Because inetd does the binding between the port and the software, this setting has no effect on
an inetd configuration.

Configuring inetd

inetd is the "Internet superserver." It gets started when the machines boots by /etc/rc. Once launched, inetd listens for
connections on Internet socket ports. When it finds a connection, it starts up the program responsible for managing that port.
When the request is served and the program exits, inetd continues to listen for additional requests on that port.

To make Apache work from inetd, you need to edit /etc/inetd.conf and /etc/services. Configuring an inetd server requires a
bit more system configuration than a standalone server.

First, you need to edit your /etc/services file. The /etc/services database contains information about all known services
available on the Internet. Each service is represented by single line listing the following information:

Official service name

Port number

Protocol name

Aliases by which the service is known

Each entry is separated by a tab or spaces. An entry describing httpd will look like this:

http portnumber/tcp httpd httpd

UNIX ports range from 0 to 65,535; however, the first 1,024 ports are reserved. A reserved port
means that only processes owned by the superuser will be able to bind to them; if you want to run
the server at port 80 (the default for httpd), httpd will need to be started by the superuser.

Set portnumber to the port number on which you want to run the server. Typically this will be port 80 for a standalone
server. inetd servers run better at port 8080, so your entry will look like this:

http 8080/tcp httpd httpd

If you are running NetInfo, you can type this line into a temporary file, such as /tmp/services, and then run

niload services . < /tmp/services

Next, you need to edit /etc/inetd.conf to configure inetd to listen for httpd requests. Each line in inetd.conf contains the
following information:

Service name

Socket type

Protocol

Wait/no wait

User the server program will run as

Server program

Server program arguments

My completed entry looks like this:

httpd stream tcp nowait nobody /usr/local/etc/httpd/httpd httpd -f /usr/
local/etc/httpd/conf/httpd.conf

The previous example will start the server as nobody. Typically, you will want a standalone server
to be started by the root user so that the server is able to bind to port 80, the standard HTTP port,
and be able to change the UID and GID of its children processes. When the standalone server
starts up, it forks children processes. These children processes run with a UID of nobody and a
GID of nogroup unless you specified a different setting with the User and Group directives. The
children processes are the ones that handle HTTP requests. The main process, owned by root, has
as its duty the creation and destruction of its children processes. This makes the standard,
standalone server secure.
If you specify the root UID in this example with the intention of running the inetd server on port
80, the process handling the request is owned by root. This may create security problems; unlike a
standalone server, the inetd server doesn't fork any children processes, so it handles requests with
the UID and GID of the process owner.

After adding the httpd entry to /etc/inetd.conf, you'll need to restart inetd. You can easily do this by finding out the inetd
process number with ps and sending it a HANGUP signal:

kill -HUP InetdProcessID

Replace the InetdProcessID with the process number listed by the ps command. If the PID listed was 86, you would type
kill -HUP 86.

inetd will restart, rereading its configuration file that will instruct it to listen for request for port 8080.

Running the Web Server for the First Time

Before you can run the server for the first time, you need to create an HTML document. The standard Apache distribution
includes such a file, but I have created another which is more useful and I am sure that you'll use time and again. Using your
favorite text editor, create a file called index.html inside the htdocs directory with this content:

<HTML>

<HEAD>

<TITLE>Apache Server Survival Guide</TITLE>

</HEAD>

<BODY BGCOLOR="#ffffff" LINK="#000080" VLINK="#000080">

<H1><CENTER>Apache Server Survival Guide </CENTER></H1>

<H2><CENTER>Congratulations! Your Apache server was successfully

installed.</CENTER></H2>

<H3>Here are some interesting sites that host information about

the Apache server: </H3>

The official homepage for the

Apache Group

The official homepage for

Community Connexion

developers of Stronghold: Apache-SSL-US (A Netscape compatible

SSL server based on Apache)

The official homepage for

Apache-SSL

(A Netscape compatible SSL server based on Apache - only available

to users outside of the United States).

Apache Module Registry, the place where you can find information

about 3rd party Apache modules and other development stuff.

The Apache Week Home,

here you will find an essential weekly guide dedicated to Apache server nformation.

UK Web's Apache Support Center

The FastCGI Website

<P>

Deja News a very handy USENET news search engine:

<FORM ACTION="http://search.dejanews.com/dnquery.xp" METHOD=POST>

<P>

<CENTER>

Quick Search For: <INPUT NAME="query" VALUE="Apache" SIZE="37">

<INPUT TYPE="submit" VALUE="Search!"><INPUT NAME="defaultOp" VALUE="AND"
TYPE="hidden">

<INPUT NAME="svcclass" VALUE="dncurrent" TYPE="hidden">

<INPUT NAME="maxhits" VALUE="20" TYPE="hidden">

</CENTER>

</FORM>

</BODY>

</HTML>

Put this file in your htdocs directory. At this point you are ready to test the server.

[ic:CD-ROM]The machine-readable text for the file you just created is included in server/setup/index.html, and it should
be placed in DocumentRoot/index.html.

Starting Up a Standalone Server

If you are running a standalone server, you'll need to start httpd manually. This is how you do it:

/usr/local/etc/httpd/httpd -f /usr/local/etc/httpd/conf/httpd.conf

Please note that I started the standalone server from the root account, indicated by the pound sign (#) at the beginning of the
line. Standalone servers need to be started by root so two important things happen:

If your standalone server uses the default HTTP port (port 80), only the superuser can bind to Internet ports that are
lower than 1025.

■

Only processes owned by root can change their UID and GID as specified by the User and Group directives. If you
start the server under another UID, it will run with the permissions of the user starting the process.

■

Starting Up an inetd Server

As you probably guessed, you don't need to start an inetd server. inetd will start httpd every time a request is received in the
port assigned to the server. inetd servers make good development platform because configuration settings are reread every
time you send a request.

Starting and Stopping the Server

The Apache server, httpd, has a few command-line options you can use to set some defaults specifying where httpd will
read its configuration directives. The Apache httpd executable understands the following options:

httpd [-d ServerRoot] [-f ConfigurationFile] [-x] [-v] [-?]

The -d option overrides the location of the ServerRoot directory. It sets the initial value of the ServerRoot variable (the
directory where the Apache server is installed) to whatever path you specify. This default is usually read from the

ServerRoot directive in httpd.conf:

The -f flag specifies the location of the main configuration file, conf/httpd.conf. Reads and executes the configuration
commands found on ConfigurationFile on startup. If the ConfigurationFile is not an absolute path (doesn't begin with a /),
its location is assumed to be relative of the path specified in the ServerRoot directive in httpd.conf. By default, this value is
set to ServerRoot/conf/httpd.conf.

The -x option is used by the developers of Apache as a debugging aid and should not be used under normal server
operation. It runs a single server process that does not create any children.

The -v option prints the development version of the Apache server and terminates the process.

The -? option prints the following usage information for the server:

Usage: httpd [-d directory] [-f file] [-v]

-d directory : specify an alternate initial ServerRoot

-f file : specify an alternate ServerConfigFile

The start Script

I have developed a small start script that launches the server with all the command-line settings I use. This script saves me a
little typing when I'm trying things that require me to start and stop the server.

You can create this script by just typing it into a file (one per script). When you are done entering it, to turn it into
executable, type:

cd WhereEverYouEnterThem

chmod 755 start stop restart

You may want to store the script in a place where it is convenient, such as /usr/local/bin. Here's the listing for the start
script:

#!/bin/sh

/usr/local/etc/httpd/httpd -f /usr/local/etc/httpd/conf/httpd.conf

The stop Script

The server is designed to stop gracefully when its sent a TERM (terminate) signal. Because when the server starts it spawns
several children processes, it becomes a little more difficult to terminate. Apache automatically kills any children processes
when the main process is killed. Luckily, the developers of Apache put the process ID of the main process in a file where
you can easily obtain the ID of the process. My stop script makes use of the PidFile (/usr/local/etc/httpd/logs/PidFile) file.

This is the listing to the stop script:

#!/bin/sh

#Stop Apache Script

kill 'cat /usr/local/etc/httpd/logs/httpd..pid'

The restart Script

The server is designed to restart if it receives a -HUP (hangup) signal. On receiving this type of signal, the server stops and
immediately restarts, rereading its configuration files.

Here's the listing for the restart script:

#!/bin/sh

#Restart Apache Script

kill -HUP 'cat /usr/local/etc/httpd/logs/httpd.pid'

This is a very convenient script that automates the process. Any time you modify any of the configuration files, you need to
restart the server to enable the changes. htrestart makes this easy to do.

Auto-Starting the Web Server at Boot Time

You may be interested in automating the startup process of the server whenever you boot your machine. Doing so is very
easy. On your /etc/rc.local file, add an entry like this:

#

Run httpd server automatically

#

echo 'starting httpd server'

if [-f /etc/rc.httpd]; then

 sh /etc/rc.httpd

fi

Create a new file, /etc/rc.httpd, with the following contents:

#!/bin/sh -u

#

cd /usr/local/etc/httpd/

./httpd -d /usr/local/etc/httpd/ -f conf/httpd.conf

Although you can put the commands in /etc/rc.httpd in your /etc/rc.local, I find it convenient to be able to disable the server
from loading by renaming the /etc/rc.httpd. When the computer boots, if /etc/rc finds a file named /etc/rc.httpd, it will
execute the commands it finds there.

Testing the Newly Installed Server

If your configuration files were edited properly, you should be able to point your Web browser to the machine running the
server and see the page you created earlier, confirming that your server is running. Figure 2.2 shows what your screen
should look like.

Figure 2.3. The startup page you created as rendered by Microsoft Internet Explorer version 3.0.

If you are running the server in a nonstandard port, such as 8080, you'll need to specify the port
number as part of the URL:
httpd://yourhost.yourdomain.com:port

If there was a problem with the server or a configuration, Apache is pretty good about giving you an indication about the
problem. If Apache could not find some of the configuration files, it should give you a message like this:

httpd: could not open document config file /usr/local/etc/httpd/conf/httpd.conf

fopen: No such file or directory

Check for typos or incorrect path information on your command line or in the configuration files. Typically this problem
appears if you have customized your installation to a different directory. Apache has compiled-in defaults that preset the
location of ServerRoot. If you specify a relative path, the server prefixes the compiled-in ServerRoot instead.

Other problems may have dump values such as

httpd: could not bind to port

bind: Address already in use

If you get this message, more than likely there's another process using the port number you have defined. Other port binding
problems can show up if you specify a reserved port number (one whose address is smaller than 1025). Only root processes
can bind to reserved ports. The solution is to start the server as root so that the server can bind properly to the specified port
(if you have followed our instructions, your server although started by root, runs as nobody).

If the server doesn't respond, check to see if it is running. Use the ps program to see what's going on:

ps -guax | grep httpd (on BSD-type systems)

ps -ef | grep httpd (on SVR4-type systems)

Don't get worried if you see several httpd processes running. Apache's server model runs several simultaneous processes
coordinated by the parent process (the one owned by root).

Sometimes Apache returns enough information that will help you track a problem to a bad configuration setting. Other
times, you'll have to hunt for the error. The first thing to check are the logs/error_log and logs/access_log files for more
information. While you're at it, you may want to check for any core files in the ServerRoot. If some problem is crashing
Apache (I've never had one that dumped core), it's likely that it left a trace there.

Configuration File Listings

For your convenience, here's a listing of the various configuration files I talked about in this chapter.

src/Configuration File

After you configure and build your server, you won't have to edit this file. At least not until you enable additional modules.
You will then have to add them here, and repeat the configuration and binary building process again.

Listing 2.2. The Configuration.tmpl File

Config file for the Apache httpd.

Configuration.tmpl is the template for Configuration. Configuration should

be edited to select system type. Configuration.tmpl should only be changed

when a new system or module is added, or an existing one modified.

There are three types of lines here:

'#' comments, distinguished by having a '#' as the first non-blank character

#

Lines which set a Make option --- these are simply copied into the Makefile

#

Module selection lines, distinguished by having 'Module' at the front.

These list the configured modules, in priority order (highest priority

first). They're down at the bottom.

First, ordinary compile-time configuration.

What to call the compiler: For normal machines with ANSI compilers

CC= cc

For Suns or other non-ANSI platforms. Please make sure your gcc is

2.0 or later, as 1.40 seems to create bad code for the Sun 4.

CC= gcc

CFLAGS, compile flags.

-DMINIMAL_DNS is now obsolete. Use httpd.conf settings of

HostnameLookups on

or

HostnameLookups off

#

If you want to have more secure hostname resolution at the cost of some

performance, use -DMAXIMUM_DNS.

If you want setting the xbit of a file to cause it to be treated as

server-included HTML (unless it is a CGI script), say -DXBITHACK. Note

that this is a run-time option, per-directory, either way (via the XBITHACK

command); this option only sets the default.

If you find that your OS can't cope with mmap (compiles OKAY but refuses

to run and moans "httpd: Could not mmap memory" .. or similar) try

disabling use of shared memory for process management (scoreboard with

-DNO_MMAP

Status Instrumentation

In order for the status module to obtain full statistics Apache must

be modified to keep track of various information. This is not

turned on by default. In order to enable full status details add -DSTATUS

to the end of the CFLAGS line below.

Using SOCKS

Apache can be compiled to work over a SOCKS firewall by

adding the following string to your CFLAGS define:

#

-Dconnect=Rconnect -Dselect=Rselect -Dgethostbyname=Rgethostbyname

#

and by adding the following to the EXTRA_LIBS define:

#

-L/usr/local/lib -lsocks

#

making sure that -L points to wherever you've put libsocks.a.

[Some other former Apache compile-time options are now treated differently;

the virtual host code is always present; DBM auth is an optional module, and

may be configured out by changing the module config below, though it still

defaults in. Note that this config file does not include DBM auth by

default --- configure it in below if you need it].

CFLAGS= -O2

Place here any flags you may need upon linking, such as a flag to

prevent dynamic linking (if desired)

LFLAGS=

Place here any extra libraries you may need to link to.

-lndbm is commonly required for DBM auth, if that is configured in.

EXTRA_LIBS=

AUX_CFLAGS are system-specific control flags.

NOTE: IF YOU DO NOT CHOOSE ONE OF THESE, EDIT httpd.h AND CHOOSE

SETTINGS FOR THE SYSTEM FLAGS. IF YOU DON'T, BAD THINGS WILL HAPPEN.

For SunOS 4

#AUX_CFLAGS= -DSUNOS4

For Solaris 2.

#AUX_CFLAGS= -DSOLARIS2

#AUX_LIBS= -lsocket -lnsl

For SGI IRIX. Use the AUX_LIBS line if you're using NIS and want

user-supported directories

#AUX_CFLAGS= -DIRIX

#AUX_LIBS= -lsun

For HP-UX n.b. if you use the paid-for HP CC compiler, use flag -Ae

#AUX_CFLAGS= -DHPUX

For AIX

#AUX_CFLAGS= -DAIX -U__STR__

For Ultrix

#AUX_CFLAGS= -DULTRIX

For DEC OSF/1

#AUX_CFLAGS= -DOSF1

For NeXT

#AUX_CFLAGS= -DNEXT

For Sequent

#AUX_CFLAGS= -DSEQUENT

For Linux -m486 ONLY IF YOU HAVE 486 BINARY SUPPORT IN KERNEL

#AUX_CFLAGS= -DLINUX

For A/UX

#AUX_CFLAGS= -DAUX -D_POSIX_SOURCE

#AUX_LIBS= -lposix -lbsd -s

For SCO ODT 3

libcrypt_i available from sosco.sco.com, files /SLS/lng225b.Z and

/SLS/lng225b.ltr.Z

the -Oe option causes cc to die compiling mod_imap (using 3.0.0a of the dev sys)

#CFLAGS= -Oacgiltz

#AUX_CFLAGS= -DSCO

#AUX_LIBS= -lPW -lsocket -lmalloc -lcrypt_i

For SCO OpenServer Release 5

-K noinline is needed to work around an optimiser bug which appears in

http_bprintf.c

#AUX_CFLAGS= -DSCO5

#AUX_LIBS=-lsocket -lmalloc -lprot

#BROKEN_BPRINTF_FLAGS=-K noinline

For SVR4

Some SVR4 implementations will require SO_LINGER option to be set in order

to guarantee buffer flushes. Dell, Esix, and UnixWare are a few of these.

Use -DNEED_LINGER in addition to other AUX_CFLAGS for these.

#AUX_CFLAGS= -DSVR4

#AUX_LIBS= -lsocket -lnsl -lc

For UnixWare 2.x, no longer just SVR4 (sigh) - use cc, not gcc

AUX_LIBS= -lsocket -lnsl -lcrypt

For Amdahl UTS 2.1

-Xa enables ANSI mode, -eft is expanded types

#AUX_CFLAGS= -Xa -eft -DUTS21

#AUX_LIBS= -lsocket -lbsd -la

For HP/Apollo Domain/OS

#AUX_CFLAGS= -DAPOLLO

For NetBSD/FreeBSD/BSDI 2.x

-m486 only if you are running on Intel 486/586

#AUX_CFLAGS= -m486

BSDI doesn't need -lcrypt

#AUX_LIBS= -lcrypt

For QNX

#AUX_CFLAGS= -DQNX

#AUX_LFLAGS= -N 0x20000

For LynxOS

#AUX_CFLAGS= -DLYNXOS

#EXTRA_LIBS=-lbsd -ldes -lc_p

For DG/UX 5.4

#AUX_CFLAGS= -DDGUX

#AUX_LIBS=

For EMX OS/2 port

#AUX_CFLAGS= -Zbsd-signals -Zbin-files

#-DNO_KILLPG -DNEED_STRCASECMP -DNO_SETSID

#-g

#AUX_LIBS= -lsocket -llibufc -lgdbm -lbsd

##

Module configuration

#

Modules are listed in reverse priority order --- the ones that come

later can override the behavior of those that come earlier. This

can have visible effects; for instance, if UserDir followed Alias,

you couldn't alias out a particular user's home directory.

The configuration below is what we consider a decent default

configuration. If you want the functionality provided by a particular

module, remove the "#" sign at the beginning of the line. But remember,

the more modules you compile into the server, the larger the executable

is and the more memory it will take, so if you are unlikely to use the

functionality of a particular module you might wish to leave it out.

Basic modules (i.e., generally useful stuff that works everyplace):

You should probably not comment out any of these unless you know what it

does and you know you won't need it.

Module mime_module mod_mime.o

Module access_module mod_access.o

Module auth_module mod_auth.o

Module negotiation_module mod_negotiation.o

Module includes_module mod_include.o

Module dir_module mod_dir.o

Module cgi_module mod_cgi.o

Module userdir_module mod_userdir.o

Module alias_module mod_alias.o

Module env_module mod_env.o

Module common_log_module mod_log_common.o

The asis module implemented ".asis" file types, which allow the embedding

of HTTP headers at the beginning of the document. mod_imap handles internal

imagemaps (no more cgi-bin/imagemap/!). mod_actions is used to specify

CGI scripts which act as "handlers" for particular files, for example to

automatically convert every GIF to another file type.

Module asis_module mod_asis.o

Module imap_module mod_imap.o

Module action_module mod_actions.o

Optional modules for NCSA user-agent/referer logging compatibility

We recommend, however, that you migrate to the configurable logging

module, below.

Module agent_log_module mod_log_agent.o

Module referer_log_module mod_log_referer.o

This is a *replacement* for mod_log_common which supports a

LogFormat directive which allows you to specify what goes into

the TransferLog (if you want Referer, etc.) source code for docs.

##

If you play with this, remember to drop the standard

mod_log_common --- a server with both will work, but you'll get

very confused trying to figure out what's going on...

Module config_log_module mod_log_config.o

cern_meta mimicks the behavior of the CERN web server with regards to

metainformation files.

Module cern_meta_module mod_cern_meta.o

The status module allows the server to display current details about

how well it is performing and what it is doing. Consider also enabling

-DSTATUS (see the CFLAGS section near the start of the file) to allow

full status information. Check conf/access.conf on how to enable this.

Module status_module mod_status.o

The Info module displays configuration information for the server and

all included modules. It's very useful for debugging.

Module info_module mod_info.o

Optional authentication modules.

##

The anon_auth module allows for anonymous-FTP-style username/

password authentication.

Module anon_auth_module mod_auth_anon.o

db_auth and dbm_auth work with Berkeley DB files - make sure there

is support for DBM files on your system. You may need to grab the GNU

"gdbm" package if not.

Module db_auth_module mod_auth_db.o

Module dbm_auth_module mod_auth_dbm.o

msql_auth checks against an MSQL database. You must have MSQL installed

and an "msql.h" available for this to even compile. Additionally,

you may need to add a couple entries to the CFLAGS line, like

##

-lmsql -L/usr/local/lib -L/usr/local/Minerva/lib

##

This depends on your installation of MSQL.

Module msql_auth_module mod_auth_msql.o

"digest" implements HTTP Digest Authentication rather than the less

secure Basic Auth used by the other modules.

Module digest_module mod_digest.o

Outright experiments --- mod_dld defines commands which

allows other modules to be loaded in at runtime, and mod_cookies

uses Netscape cookies to automatically construct and log accurate

click-trails from Netscape cookies, for Netscape-using clients who

aren't coming in via proxy.

Module dld_module mod_dld.o

Module cookies_module mod_cookies.o

Finally, the proxy module. It's not as complete as it could

be yet, so use at your own risk.

Module proxy_module mod_proxy.o

The Server Configuration File: conf/httpd.conf

This is the main server configuration file. See URL http://www.apache.org/

for instructions.

Do NOT simply read the instructions in here without understanding

what they do, if you are unsure consult the online docs. You have been

warned.

Originally by Rob McCool

ServerType is either inetd, or standalone.

ServerType standalone

If you are running from inetd, go to "ServerAdmin".

Port: The port the standalone listens to. For ports < 1023, you will

need httpd to be run as root initially.

Port 80

HostnameLookups: Log the names of clients or just their IP numbers

e.g. www.apache.org (on) or 204.62.129.132 (off)

HostnameLookups on

If you wish httpd to run as a different user or group, you must run

httpd as root initially and it will switch.

User/Group: The name (or #number) of the user/group to run httpd as.

On SCO (ODT 3) use User nouser and Group nogroup

User nobody

Group #-1

ServerAdmin: Your address, where problems with the server should be

e-mailed.

ServerAdmin you@your.address

ServerRoot: The directory the server's config, error, and log files

are kept in

ServerRoot /usr/local/etc/httpd

BindAddress: You can support virtual hosts with this option. This option

is used to tell the server which IP address to listen to. It can either

contain "*", an IP address, or a fully qualified Internet domain name.

See also the VirtualHost directive.

#BindAddress *

ErrorLog: The location of the error log file. If this does not start

with /, ServerRoot is prepended to it.

ErrorLog logs/error_log

TransferLog: The location of the transfer log file. If this does not

start with /, ServerRoot is prepended to it.

TransferLog logs/access_log

PidFile: The file the server should log its pid to

PidFile logs/httpd.pid

ScoreBoardFile: File used to store internal server process information

ScoreBoardFile logs/apache_status

ServerName allows you to set a host name which is sent back to clients for

your server if it's different than the one the program would get (i.e. use

"www" instead of the host's real name).

#

Note: You cannot just invent host names and hope they work. The name you

define here must be a valid DNS name for your host. If you don't understand

this, ask your network administrator.

#ServerName new.host.name

CacheNegotiatedDocs: By default, Apache sends Pragma: no-cache with each

document that was negotiated on the basis of content. This asks proxy

servers not to cache the document. Uncommenting the following line disables

this behavior, and proxies will be allowed to cache the documents.

#CacheNegotiatedDocs

Timeout: The number of seconds before receives and sends time out

n.b. the compiled default is 1200 (20 minutes !)

Timeout 400

KeepAlive: The number of Keep-Alive persistent requests to accept

per connection. Set to 0 to deactivate Keep-Alive support

KeepAlive 5

KeepAliveTimeout: Number of seconds to wait for the next request

KeepAliveTimeout 15

Server-pool size regulation. Rather than making you guess how many

server processes you need, Apache dynamically adapts to the load it

sees --- that is, it tries to maintain enough server processes to

handle the current load, plus a few spare servers to handle transient

load spikes (e.g., multiple simultaneous requests from a single

Netscape browser).

It does this by periodically checking how many servers are waiting

for a request. If there are fewer than MinSpareServers, it creates

a new spare. If there are more than MaxSpareServers, some of the

spares die off. These values are probably OK for most sites ---

MinSpareServers 5

MaxSpareServers 10

Number of servers to start --- should be a reasonable ballpark figure.

StartServers 5

Limit on total number of servers running, i.e., limit on the number

of clients who can simultaneously connect --- if this limit is ever

reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.

It is intended mainly as a brake to keep a runaway server from taking

Unix with it as it spirals down...

MaxClients 150

MaxRequestsPerChild: the number of requests each child process is

allowed to process before the child dies.

The child will exit so as to avoid problems after prolonged use when

Apache (and maybe the libraries it uses) leak. On most systems, this

isn't really needed, but a few (such as Solaris) do have notable leaks

in the libraries.

MaxRequestsPerChild 30

Proxy Server directives. Uncomment the following line to

enable the proxy server:

#ProxyRequests On

To enable the cache as well, edit and uncomment the following lines:

#CacheRoot /usr/local/etc/httpd/proxy

#CacheSize 5

#CacheGcInterval 4

#CacheMaxExpire 24

#CacheLastModifiedFactor 0.1

#CacheDefaultExpire 1

#NoCache adomain.com anotherdomain.edu joes.garage.com

Listen: Allows you to bind Apache to specific IP addresses and/or

ports, in addition to the default. See also the VirtualHost command

#Listen 3000

#Listen 12.34.56.78:80

VirtualHost: Allows the daemon to respond to requests for more than one

server address, if your server machine is configured to accept IP packets

for multiple addresses. This can be accomplished with the ifconfig

alias flag, or through kernel patches like VIF.

Any httpd.conf or srm.conf directive may go into a VirtualHost command.

See alto the BindAddress entry.

#<VirtualHost host.foo.com>

#ServerAdmin webmaster@host.foo.com

#DocumentRoot /www/docs/host.foo.com

#ServerName host.foo.com

#ErrorLog logs/host.foo.com-error_log

#TransferLog logs/host.foo.com-access_log

#</VirtualHost>

The Resource Configuration File: conf/srm.conf

With this document, you define the name space that users see of your http

server. This file also defines server settings which affect how requests are

serviced, and how results should be formatted.

See the tutorials at http://www.apache.org/ for

more information.

Originally by Rob McCool; Adapted for Apache

DocumentRoot: The directory out of which you will serve your

documents. By default, all requests are taken from this directory, but

symbolic links and aliases may be used to point to other locations.

DocumentRoot /usr/local/etc/httpd/htdocs

UserDir: The name of the directory which is appended onto a user's home

directory if a ~user request is recieved.

UserDir public_html

DirectoryIndex: Name of the file or files to use as a pre-written HTML

directory index. Separate multiple entries with spaces.

DirectoryIndex index.html

FancyIndexing is whether you want fancy directory indexing or standard

FancyIndexing on

AddIcon tells the server which icon to show for different files or filename

extensions

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*

AddIconByType (IMG,/icons/image2.gif) image/*

AddIconByType (SND,/icons/sound2.gif) audio/*

AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe

AddIcon /icons/binhex.gif .hqx

AddIcon /icons/tar.gif .tar

AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv

AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip

AddIcon /icons/a.gif .ps .ai .eps

AddIcon /icons/layout.gif .html .shtml .htm .pdf

AddIcon /icons/text.gif .txt

AddIcon /icons/c.gif .c

AddIcon /icons/p.gif .pl .py

AddIcon /icons/f.gif .for

AddIcon /icons/dvi.gif .dvi

AddIcon /icons/uuencoded.gif .uu

AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl

AddIcon /icons/tex.gif .tex

AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..

AddIcon /icons/hand.right.gif README

AddIcon /icons/folder.gif ^^DIRECTORY^^

AddIcon /icons/blank.gif ^^BLANKICON^^

DefaultIcon is which icon to show for files which do not have an icon

explicitly set.

DefaultIcon /icons/unknown.gif

AddDescription allows you to place a short description after a file in

server-generated indexes.

Format: AddDescription "description" filename

ReadmeName is the name of the README file the server will look for by

default. Format: ReadmeName name

#

The server will first look for name.html, include it if found, and it will

then look for name and include it as plaintext if found.

#

HeaderName is the name of a file which should be prepended to

directory indexes.

ReadmeName README

HeaderName HEADER

IndexIgnore is a set of filenames which directory indexing should ignore

Format: IndexIgnore name1 name2...

IndexIgnore */.??* *~ *# */HEADER* */README* */RCS

AccessFileName: The name of the file to look for in each directory

for access control information.

AccessFileName .htaccess

DefaultType is the default MIME type for documents which the server

cannot find the type of from filename extensions.

DefaultType text/plain

AddEncoding allows you to have certain browsers (Mosaic/X 2.1+) uncompress

information on the fly. Note: Not all browsers support this.

AddEncoding x-compress Z

AddEncoding x-gzip gz

AddLanguage allows you to specify the language of a document. You can

then use content negotiation to give a browser a file in a language

it can understand. Note that the suffix does not have to be the same

as the language keyword --- those with documents in Polish (whose

net-standard language code is pl) may wish to use "AddLanguage pl .po"

to avoid the ambiguity with the common suffix for perl scripts.

AddLanguage en .en

AddLanguage fr .fr

AddLanguage de .de

AddLanguage da .da

AddLanguage el .el

AddLanguage it .it

LanguagePriority allows you to give precedence to some languages

in case of a tie during content negotiation.

Just list the languages in decreasing order of preference.

LanguagePriority en fr de

Redirect allows you to tell clients about documents which used to exist in

your server's namespace, but do not anymore. This allows you to tell the

clients where to look for the relocated document.

Format: Redirect fakename url

Aliases: Add here as many aliases as you need (with no limit). The format is

Alias fakename realname

#Alias /icons/ /usr/local/etc/httpd/icons/

ScriptAlias: This controls which directories contain server scripts.

Format: ScriptAlias fakename realname

#ScriptAlias /cgi-bin/ /usr/local/etc/httpd/cgi-bin/

If you want to use server side includes, or CGI outside

ScriptAliased directories, uncomment the following lines.

AddType allows you to tweak mime.types without actually editing it, or to

make certain files to be certain types.

Format: AddType type/subtype ext1

AddHandler allows you to map certain file extensions to "handlers",

actions unrelated to filetype. These can be either built into the server

or added with the Action command (see below)

Format: AddHandler action-name ext1

To use CGI scripts:

#AddHandler cgi-script .cgi

To use server-parsed HTML files

#AddType text/html .shtml

#AddHandler server-parsed .shtml

Uncomment the following line to enable Apache's send-asis HTTP file

feature

#AddHandler send-as-is asis

If you wish to use server-parsed imagemap files, use

#AddHandler imap-file map

To enable type maps, you might want to use

#AddHandler type-map var

Action lets you define media types that will execute a script whenever

a matching file is called. This eliminates the need for repeated URL

pathnames for oft-used CGI file processors.

Format: Action media/type /cgi-script/location

Format: Action handler-name /cgi-script/location

For example to add a footer (footer.html in your document root) to

files with extension .foot (e.g. foo.html.foot), you could use:

#AddHandler foot-action foot

#Action foot-action /cgi-bin/footer

Or to do this for all HTML files, for example, use:

#Action text/html /cgi-bin/footer

MetaDir: specifies the name of the directory in which Apache can find

meta information files. These files contain additional HTTP headers

to include when sending the document

#MetaDir .web

MetaSuffix: specifies the file name suffix for the file containing the

meta information.

#MetaSuffix .meta

Customizable error response (Apache style)

these come in three flavors

#

1) plain text

#ErrorDocument 500 "The server made a boo boo.

n.b. the (") marks it as text, it does not get output

#

2) local redirects

#ErrorDocument 404 /missing.html

to redirect to local url /missing.html

#ErrorDocument 404 /cgi-bin/missing_handler.pl

n.b. can redirect to a script or a document using server-side-includes.

#

3) external redirects

#ErrorDocument 402 http://other.server.com/subscription_info.html

#

The Global Access Configuration File: conf/access.conf

access.conf: Global access configuration

Online docs at http://www.apache.org/

This file defines server settings which affect which types of services

are allowed, and in what circumstances.

Each directory to which Apache has access, can be configured with respect

to which services and features are allowed and/or disabled in that

directory (and its subdirectories).

Originally by Rob McCool

This should be changed to whatever you set DocumentRoot to.

<Directory /usr/local/etc/httpd/htdocs>

This may also be "None", "All", or any combination of "Indexes",

"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".

Note that "MultiViews" must be named *explicitly* --- "Options All"

doesn't give it to you (or at least, not yet).

Options Indexes FollowSymLinks

This controls which options the .htaccess files in directories can

override. Can also be "All", or any combination of "Options", "FileInfo",

"AuthConfig", and "Limit"

AllowOverride None

Controls who can get stuff from this server.

order allow,deny

allow from all

</Directory>

/usr/local/etc/httpd/cgi-bin should be changed to whatever your ScriptAliased

CGI directory exists, if you have that configured.

<Directory /usr/local/etc/httpd/cgi-bin>

AllowOverride None

Options None

</Directory>

Allow server status reports, with the URL of http://servername/status

Change the ".nowhere.com" to match your domain to enable.

#<Location /status>

#SetHandler server-status

#order deny,allow

#deny from all

#allow from .nowhere.com

#</Location>

You may place any other directories or locations you wish to have

access information for after this one.

Summary

Congratulations! If you have reached this point, you should have a properly configured Apache server running. You can
now continue to Chapter 3, "Organizing Your Web Site," where you will learn the tricks for putting together an effective
site.

Apache server is easy to build and configure. Although there are no GUI-based tools available for the configuration (not yet
anyway), configuration is not particularly difficult. A nice editor is all that is needed. Netscape servers, once they have a
basic configuration, prompt the Administrator to finish configuration details with a browser. See Chapter 8, "Apache
Configuration Overview," for additional information on basic configuration.

Security Concerns■

Structuring Your Web Site

Local Software■

File Packages: Organizing HTML and Resources■

Additional Benefits of the Wrapper Approach■

Filenaming Suggestions■

Web Site Documentation■

■

Personal HTML Directories■

CGI Location

User CGI directories■

■

Summary■

3

Organizing Your Web Site

Before you build your Web site, you may want to consider its organization. While more than likely you
have thought of many ways of organizing your Web site's structure, you have probably thought about it
from a navigational perspective. In addition to thinking about it from that angle, I would suggest that you
also think about your Web site's structure from a maintenance point of view. What can you do to make
your Web site easier to maintain? What conventions will simplify the structure of your pages?

The result of this early structuring process will help you set a standard to guide your efforts. Now that
you have your server up and running, it would be a good opportunity to consider a few of the issues
involved. By no means, is this the only approach that you can use. Any thought-out logical system should

serve you equally well. Many of the ideas presented here are used at accessLINK, inc., a small Web
presence provider where I spend many hours of my day. AccessLINK develops several small- to
medium-sized Web sites per week and maintains a few more on a daily basis. This chapter presents some
of the ideas that I use for organizing our work. I will also address some other services, such as automatic
support for personal Web pages, that your users will want you to implement.

Organizing your Web site is not about structuring a Web site so that visitors can find their way around.
It's something you do for yourself; it's your filing mechanism. If you follow a few basic guidelines, the
maintenance of your Web site will be much easier. Upgrading to new versions of the software will be a
snap, and other administrative chores such as backups will require less time and effort.

AccessLINK's servers are closely guarded because they all have close control what goes into the servers.
We don't have end users setting up their own sites or writing their own programs. Because of this,
accessLINK's needs are bound to be a little different from yours, but many of their structuring
methodologies will help you build a better site. They are a Web presence provider. Simply put, they'll put
your company on the Web. Their services range from designing and building a site, to hosting your site
on one of their servers, all while maintaining the same look and feel you would have if you had a Web
server running in your own network. They handle all the issues a company faces when it first gets on the
Net.

When you are building a site in-house, the responsibility for building and maintaining it will fall in the
hands of the System Administrator. System Administrators are usually overworked, and to add to their
responsibilities, the managing of a Web site of any size may be beyond some organization's means or
policy. When possible, it is fair to say, the better prepared you are to maintain the site, the less bumpy the
entire process will be. You should take it as a rule that unless you have a static Web site—one that won't
change very often—development accounts for less than a third of the effort. Maintenance and future
modifications comprise the real bulk of time.

Security Concerns

Addressing security concerns is a very time-consuming task (not to mention costly). I find that many
customers just want to get online and have someone else deal with the associated security problems.
Security is the number one concern, and it should be because there's a lot to worry about. Setting up a
Web site is like opening a window into your network. Many people will be very happy to window-shop.
Others will try to snoop to see what they can find, and still others will try to force the window open.
Scary.

Security concerns for a small to medium organization are not addressable in hours, and the costs
associated are not small. Privacy of information and peace of mind are important. Just think about all the
information that is stored on your systems. What sort of problems would you have if these records ended
up in the wrong hands? What would happen if a vandal destroyed or corrupted your data?

To think about the security implications, without combining it with the pressure to be published on the
Internet, is a good thing. Most organizations should not even consider going on the Internet unless they

have implemented some sort of network security, such as a firewall. If you have pressure, go find a Web
server provider to host your site while you resolve the security issues. An Internet Service Provider (ISP)
is already set up to address these problems. Once you have figured out the implications and you are
ready, they will be happy to help you migrate your Web site in-house.

Structuring Your Web Site

I believe that organization starts in UNIX. If your system is not well organized or you have not followed
a consistent method, you may want to consider why this is a good idea. Many new administrators take
simple organizational methodologies, such as the location of added software, for granted. A few months
later the result is that changes, such as upgrades, require additional time to install and troubleshoot. In the
end, you may save a considerable amount of time by doing three very simple things:

Put your local software in the /usr/local tree.●

Pick up a scheme for naming and storing your Web documents and programs.●

And most importantly, stick to your organizational scheme.●

These won't make any sense unless you commit to them for the long haul. Spending a lot of time setting
up an organizational scheme won't work unless you're able to do it. If you find that you cannot organize
when you have a deadline, simplify what you pick and make it a part of our life.

Local Software

What is local software? Local software is local. It's not part of your original system distribution. It's the
software that you've added. This is software that will need to survive future upgrades. Installation of your
Web server software is a good example. You should store it in a way that makes it easy for you to
upgrade both your operating system software and the software you have added.

Many software upgrades will replace, without impunity, programs that they find in the standard UNIX
directories, such as bin, etc, and usr. If your modifications are to survive operating system upgrades,
you'll need to find a place where these programs can happily coexist.

A good place is in the /usr/local tree. This directory can be the entry point for programs that you add. A
good model to follow is to mirror your UNIX software like this:

bin

etc

lib

man

named

ftp

etc

Minerva

Put all binaries that you add in /usr/local/bin. This makes it easy for users to find and easy for you to
maintain. If you upgrade a program to a new version, which is also included in your operating system
release, keep the original in its place. Set /usr/local/bin in your path, ahead of the other system
directories. You can do this by adding an entry to your PATH environment variable. Where this is done
depends on the shell you are using. Typically, this will be in the .profile or .cshrc files in your home
directory. Note that these files start with a period, so they normally will be hidden from view.

In the .profile file, the new path addition will look like this:

PATH=/usr/local/bin:/usr/ucb:/bin/...

Note that the paths to the directories that search for executables are separated by colons. Directories
listed first are searched first.

If you are using the csh (c shell), you will want to put an entry into your .cshrc file. This is the same as
your .profile entry, but the csh syntax for defining the environment variables is a little different:

set PATH=(/usr/local/bin /usr/ucb /bin ...)

Under the csh, multiple paths are separated by spaces and grouped together with parentheses.

Other directories, such as /usr/local/etc, contain the Web server tree. Storing it in its default place
removes one source of potential problems. By keeping the default installation location, future upgrades
will find the files in their standard locations. Moving default installation locations without having a really
good reason for the change is asking for trouble. Future upgrades won't work properly because they will
not be able to find supporting files, and you will be required to spend time hunting for the problem.

Having a written organizational policy will help cast in stone the structure of your site. If everyone
decides on their own where to place files, you'll end up with a mess. Software will be installed and
configured wherever someone felt that the files should go. Perhaps, they were installed on top of your
system's distribution—a practice that often spells disaster if later you find out there's a bug, and the
version that came with your operating system worked better!

An organizational scheme permits you to easily back up software you have added. If you need to install

an additional machine and want to upgrade some of your customizations, the process is simplified and
becomes really easy. All you need to do is copy the /usr/local tree, and everything is there. From that
point, you can either opt to remove software you won't need or just keep it. The UNIX rdist command
can be very helpful in maintaining multiple identically configured systems in sync.

Should you ever need a backup, a quick tar -cf /tmp/usrlocal.tar /usr/local will take care of the problem.
You don't need to differentiate or select from various places that may contain files you added. It's all kept
together.

File Packages: Organizing HTML and Resources

The concept of page wrapper was developed at accessLINK. A page wrapper is no more than a directory
that keeps all relevant resources (images or additional HTML files) grouped together in a bundle. The
concept is hierarchical, so ideally you would group a section of multiple page wrappers together into a
section.

Grouping HTML files into a page.htmld directory is a good way of keeping tabs on files (we group root
trees in a sitename.ws wrapper; ws stands for Web site).

My experience has been that if I create a directory that contains all the necessary resources for an HTML
document and group it all in a wrapper, it becomes easy for me to maintain that page. The system also
enhances the recycling of disk space. If you are working on a HTML file and you remove a reference to
an image that is stored in a different directory, it's likely to remain there. If it is near your HTML file,
more than likely the file will be discarded, freeing disk space for other things.

This organizational scheme works best when several people are responsible for keeping a site running.
When a document needs to be updated, the location of all the related resources are stored together and
nicely packaged. The alternative is chaos. In a normal scenario where forty HTML files are stored at the
same directory level along with associated resources (such as images or videos), it becomes impossible to
determine what needs to be done. To figure out referenced images in a file, you have to look at the
HTML code and search for the tags for the image filename. With the wrapper, much of the chaos is
removed and the structure is simplified. By simple inspection of the directory's contents, you can find
what you are looking for.

It's no miracle that this basic structure also happens to follow the physical structure of the site. The
directory structure mirrors the navigational structure, providing another level of reinforcing the way the
site is organized for people who update and manage this site. Just by navigating it, you have an
understanding of the physical layout of a site.

Figure 3.1. The Web site directory hierarchy. All references are localized. Global items are placed
at the top. Local items only used on a particular page remain close to their resources. The window
capture shows the directory tree from htdocs downward and describes the file organization
scheme.

Figure 3.1 is a visual representation of the system. The htdocs tree contains a series of wrappers with a

ws extension, which stands for Web site. Each of the sites listed lives in one of accessLINK's servers.
One of them is for SmartSoft, Inc., a software development company. All files related to the SmartSoft
site are stored inside the smartSoft.ws wrapper. Each page is represented by an htmld wrapper. Wrappers
nest according to the logical navigational structure of the site. On the end node you can appreciate the
contents of a simple page. The stayInTouch.htmld wrapper holds a main HTML file (index.html) and a
sibling file for feature information (featureList.html). Images and other supporting resources are found
next to the files that reference them.

Additional Benefits of the Wrapper Approach

This approach works in several levels. It allows you to name graphics and resources generically, such as
header.jpeg. However, the generic name works fine because more than likely there is only one header
file, not a hundred. If you were using one general graphics directory, each graphic would need a unique
name or some other cryptic-naming scheme. By localizing resources near their point of use, each name is
descriptive, clear, and readable. This also removes a lot of the creativity involved in inventing filenames.
The context of the file provides information about what it is, so you don't need to peek into the file to
figure out what it contains.

This approach also allows you to create HTML template files. If you were going to add a product, it
becomes a matter of duplicating one of the existing wrappers, updating new header.jpeg graphics and the
new text. The rest remains the same. This makes you more efficient when you have to add or build a
Web site because you can always leverage on previously done work.

From a maintenance point of view, the htmld approach helps to keep directories smaller and clutter free.
From a security standpoint, it also lets you clearly see suspicious files that you didn't put there. If you
know where and what your files are, you'll have a better chance of noticing if you've had a break-in or if
someone put something in the wrong spot. If you just throw it all in together and have 30 or 40 files per
directory, it becomes difficult to figure out what is going on, and it takes more careful reading. Later the
site will have many stale HTML files or graphics that are no being longer used. Cleaning up at this point
is time-consuming because you have to think about what each of the files contain. If you remove any
haphazardly, more than likely you'll break something.

Filenaming Suggestions

When you are creative with your filenames, it becomes more difficult to know what a file contains. What
is header2.gif? I don't know because there's no context, and I doubt that the person who created such a
file could remember either. If it's all packaged, then you know who's the client of that resource, and you
can create a visual and organizational association; you know what things are.

I title everything firstSecondThird.type. The first word is in lowercase letters. Any word after has its first
letter in uppercase. I don't use spaces, dashes, or any other character that is not a letter or a number.

Periods are used to separate file extensions. This makes it easy for me to read and type filenames, and it
removes the possibility of any nonalphanumeric characters from becoming part of a filename.

Web Site Documentation

While you are building your site, you may want to clearly document the standards used for creating a
site. For example, it is useful to document colors used on an image. Better yet, create template files that
can be used for creating new graphics. In Adobe Photoshop, this is really easy. Add a layer and enter the
size of the text and font face that you used for a graphic title. This will allow future titles to be consistent
and will save you a lot of time in generating artwork. Pass this information to those that create artwork
for your site. You'll be glad if you do.

Personal HTML Directories

Many of your users will be interested in creating their own personal home pages. Apache provides
support for this feature with their UserDir module. If you performed the installation instructions in
Chapter two, "Installing and Configuring an Apache Server," you'll recall that you disabled the UserDir
functionality from your server. Requests for your users' home pages take the form of: http://host/~user,
where user is the login name of the user.

On receiving a request for a user's home page, the default server configuration looks for the public_html
directory inside of the user's home directory. I don't like this feature for security and convenience
reasons.

If a user protects his directory, making it unreadable by the User ID (UID) of the server, then he doesn't
have an opportunity to publish a home page. Other security implications are possible too, depending on
the permissiveness of your configuration files and features such as automatic indexes. You can create a
situation where a user could provide Web access to not only his files but to other directories in your
system. This is something you really don't want to do!

Apache versions under 1.1 don't provide any configuration alternative, except for installing a third-party
module that implements different functionality. If you are using version 1.1 or higher, you'll be glad to
know that the version of the module allows you to specify a directory that contains all user's public
HTML directories. Users are able to create and maintain their own Web pages while administrators are
happy that their HTML directories are not located along with other potentially sensitive files.

An additional benefit of the improved module is that it allows you to create home page directories that
don't necessarily match your internal usernames. Because this mechanism doesn't rely on a user account,
it allows you to provide home pages even on a host that doesn't hold any user accounts, such as a bastion
host for a site that has a firewall. Bastion hosts are machines that provide Internet services to the Internet.

You will need to provide some sort of mechanism to help users upload their information and publish it to

the Web. In terms of security issues, you'll still have to deal with what they publish, but I'll leave that to
your internal Web police. Let's assume that your organization doesn't have any disgruntled employees
that would publish your most private secrets right off your Web site.

CGI Location

CGIs are programs that interact with your server via the Common Gateway Interface—a convention used
for exchanging data between the server and a program. CGIs are necessary on your Web if you want to
implement things such as forms or any type of advanced functionality. On the default configuration you
installed in Chapter 2, CGIs were disabled.

The problem with CGIs and other executable processes is that they are programs. Security problems are
usually introduced by bugs in programs. While your Web server is fairly secure, programs that you
implement may not take into account some of the treachery that some people will go through to break
into your site. With that said, realize that someone may be able to exploit a weakness on a CGI program
you create. (For detailed information on this subject, see Chapter 16, "Other Security Issues.")

My first suggestion is that until you understand the ramifications of permitting public CGIs, you should
restrain from offering this capability to your users. There are a few questions that you'll need to address
before you can really provide an evaluation:

What does the CGI do?●

How does CGI do it?●

Could CGI present a security risk if it was terminated abruptly?●

What if the CGI receives unexpected input or more input than it can handle?●

Do you allow nonalphanumeric characters in your input?●

Once you understand what you are installing and what you are protecting against, it becomes easier to
define a policy regarding the use and location of CGI programs on your site. The easiest approach is to
read the source code of each CGI before you install it. However, this obviously doesn't scale well on
large installations, especially where a lot of users may be creating programs. It becomes unfeasible to
look in close detail at what each CGI does and the security implications of the program.

To enable CGI, you will need to uncomment the ScriptAlias directive in your conf/srm.conf file and
restart the server. The ScriptAlias directive specifies a directory where the server can execute programs.
By default, this is set to /usr/local/etc/httpd/cgi-bin/. This provides a restrictive setup because the server
will only execute programs that are found in this directory.

Because the server restricts the execution of CGI to designated directories, the organizational structure

previously presented would require that all CGIs live in a central location. While this may be fine for a
small site, you may have to consider other alternatives and their security implications:

House your CGIs in the cgi-bin directory.●

House CGIs in a special cgi directory in the main tree for each site you host (inside your ws
wrapper).

●

Allow CGIs to live wherever they are needed.●

These options progressively lax on their security. I feel that the second option is a good compromise for
the following reasons:

It allows enough freedom for the site designer while at the same time keeps things orderly.

This mechanism fits into my belief system that a site should be portable—the .htmld approach. If the
entire site tree moves, all the resources are properly referenced locally within the tree itself.

The first option I find too restrictive for any site that supports virtual hosts (multiple domains) such as
accessLINK.

The third option is actually the one that I implement at accessLINK. I choose it because we have a tight
control on our CGI and what they do. If we had users on our system, this laissez-faire approach would
not even be considered.

To enable CGI in predetermined directories, all you need to do is set an option that enables the execution
of CGIs on a properly named directory. Use local-cgi for the name of local cgi directories. You can
accomplish this with a <Directory> section in your global access control file, conf/access.conf, like in
following example:

<Directory *.ws/local-cgi>

AllowOverride None

Options ExecCGI

</Directory>

This configuration will allow execution of CGIs only if they are stored in a subdirectory of a Web site
wrapper called local-cgi.

User CGI directories

If your users have more than little technical inclination, it won't be long until you receive requests for

setting up user-controlled CGI directories. This is often a source of headaches for you from a standpoint
of establishing a security policy. Freedom equals problems. So the question is what do you do? If you
need to give many people access and control over the CGIs they run, you've opened Pandora's box. My
personal view is that as long as you are giving freedom, might as well give total freedom. Just make sure
that freedom doesn't cause you other problems.

Another way of dealing with the problem, may be to provide several CGIs that can be accessed publicly
within your organization. CGIs provide functionality such as e-mail, generic form support, page
counters, search tools, and so on. This way you'll eliminate a great portion of the need for public CGIs.

If a user needs to implement a form, have her use your generic form wrapper. This CGI should e-mail the
form information. The user could then write a program that will process the e-mail information into
something useful to her.

Another alternative is to place a machine outside of your firewall that doesn't have anything but user
home pages. Then you could set restrictions like the following in your global access configuration file
(conf/access.conf):

<Directory /usr/local/etc/httpd/public/*/user-cgi>

AllowOverride None

Options ExecCGI

</Directory>

Assuming that/public is your UserPath directory (using the UserPath module), users will be able to do
what they want in their CGI directories. You can network mount the public directory so that it is easy for
users to update and change what they want. However, in terms of access from the outside, no sensitive
information would be available.

Summary

Organizing your site will help you become more efficient at managing your Web site(s). As things get
handed down from one person to another, a strong and workable framework will help maintain some sort
of order, which will allow for efficient maintenance and growth.

As the number of users increases, you'll face security issues that are tough to predict in terms of the
potential problems they may create. The purpose of the Internet is to disseminate information. Having a
overly restrictive or loose policy creates problems. A happy medium is perhaps found on an isolated
machine that has been sanitized for the function. Users can then create and maintain their own pages
without much concern for security implications that may affect sensitive areas of your network.

Part II: Beyond the Basics: Advanced
HTTP Server Functionality

Virtual Hosts●

CGI (Common Gateway Interface) Programming●

SSI—Server Side Includes●

Third-Party Modules●

Building a Virtual Site■

Configuring a Virtual Host■

The <VirtualHost> Directive Section

BindAddress■

Listen■

■

Multihoming: IP-Intensive Virtual Hosts

ifconfig alias

Solaris Virtual Interfaces■

■

The VIF Patch■

PPP

Configuring the PPP Interfaces■

■

■

Apache Non-IP Virtual Hosts

A Workaround for Clients That Don't Support Non-IP Virtual Hosts■

■

Summary■

4

Virtual Hosts

This chapter covers a powerful feature of the Apache server: virtual hosts. Virtual hosting allows a single
instance of the Apache Web server to run several Web sites, each accessible by its own domain name.
Apache was one of the first HTTP servers to provide support for building virtual sites. While servers
from NCSA and others also provide virtual-site support, Apache provides better performance and has

more features than the others.

At first glance, the main advantage of a virtual site seems mostly cosmetic: It allows many Web sites to
be addressed by their own domain name on a single shared machine. However, this cosmetic advantage
has several positive effects on the administration of your site and how others use it. Virtual hosts are
frequently created with the intent to do the following:

Make it easier for customers to access Web sites on leased servers. Since the lessee can use his
own domain name, addresses tend to be shorter. This helps to project a professional identity to the
world. Users are more likely to remember the shorter address since the domain name (hopefully)
has some relevance to the corporate name.

●

Reduce and maximize the computer and networking hardware. Several low-traffic sites can be
housed in a single machine, thus reducing the costs of hosting the site.

●

Reduce the human costs associated with system administration. Instead of managing and
configuring a dedicated server for each domain, the webmaster only needs to maintain a few
configuration files and a minimal number of boxes. This translates into a reduced number of
systems that need to be upgraded or maintained, thus simplifying network maintenance.

●

Because most Web sites don't generate enough traffic to exhaust the resources of a single machine, it is
desirable from an administrative point of view to allow a single server to masquerade and behave as
several different machines. Instead of dedicating hardware and monetary resources to each site hosted, a
few server configuration commands produce the same result: a virtual site. Because the expense required
to set up a Web server can be shared between several sites, the time required to configure and manage
Web sites is reduced dramatically.

Virtual hosts have the positive side effect of making Web pages portable. When a site is virtual, it’s easy
to move it to a different Web server in the same network or somewhere else. It becomes a matter of
transferring the site's HTML pages to a new machine and modifying the site's Domain Name System
(DNS) information to point to the new server. To accommodate DNS update lapses, simply create a
redirection on the old server. This allows traffic to continue flowing without a lapse, which is an
important issue with sites that thrive on traffic as a way of generating business.

Historically, when you wanted a site hosted using your domain, your only viable option was to purchase
(or lease) a computer and have it configured as a Web server. Incurred with these costs was the expense
of managing the server. These costs, easily thousands of dollars, motivated Internet Service Provider
(ISPs) to consider additional ways of supporting multiple Web sites in one host, which resulted in a few
early solutions, such as the "home page" approach.

The home page approach was one early way to support multiple sites on a single Web server. This
approach differentiates each site by adding extra address information, such as a user's home paqe.

The home page approach creates addresses that look like this:

http://www.isp.dom/~name

or, worse yet, uniform resource locators (URLs) that list some path to a directory on the server tree:

http://www.isp.dom/name

The home page approach is an appropriate way to serve local users' pages. But when it comes to serving
corporate information that is going to be accessed more frequently and by a large number of viewers, this
solution creates ugly addresses that are hard to remember, long to type, prone to user error, and not very
professional looking.

Building a Virtual Site

The terms virtual host, virtual site, and multihomed server are generally used interchangeably to describe
a server that supports multiple domain names. To make matters easier to understand, I find it best to limit
the scope of these terms to their appropriate meanings: To create a virtual site, you need to configure a
virtual host; for the virtual host to work, you may have to create a multihomed server; and obviously,
there's a difference in tone. How you build a multihomed server depends on which version of Apache
you are using and some other technical issues. "So what's the difference?" you ask. Semantics; but clarity
here will help in describing the process.

A multihomed computer is one that can answer to multiple IP addresses. A computer that is accessible by
multiple names (such as mailhost.foo.com and www.foo.com) that resolve to the same IP address is not a
multihomed computer.

Aliasing a capability provided by DNS in a CNAME (canonical name) resource record or by listing
multiple machine names on the /etc/hosts file after an IP address, is just a convenience for people
accessing a networked resource. In general, people have a hard time remembering names, and some
names such as www or ftp are typically standardized for machines that host services with the same name.
Users only need to remember the domain name when those resources use traditional names, such as
www.apple.com, mailhost.apple.com, or ftp.apple.com. A multihomed computer needs more than that. It
must answer to two or more different IP addresses such as 1.2.3.4. IP addresses are assigned by your
Internet network provider when you sign up with them.

A virtual site is a Web site that resides on a server with other Web sites. Each Web site is accessible by
its own name and shares all the hardware resources with other virtual sites. Although all requests are
answered by the same HTTP server process, different home pages are returned for each site depending
on the name or IP address used to access the information.

Another networking issue that you will have to address before you can multihome is the DNS; DNS
provides the machine name to the IP translation service. While computers like to address each other
using numbers, people prefer using names. DNS translates names into numbers and numbers into names.
Chances are that if you have a connection to the Internet, you are running a name server. If you are not,

someone else is running it for you. If you are not running your own DNS, you'll need to coordinate with
your network administrator to implement any addition or change to the DNS.

Configuring a Virtual Host

A virtual site is configured by the <VirtualHost> directive, which allows you to override several
configuration directives based on the site's name or IP address. This allows you to specify a different
DocumentRoot directory for each virtual site, so a single instance of the HTTP server can return different
Web sites for each of the virtual sites it hosts.

Right from the beginning, the Apache server provided the necessary infrastructure to allow server-side
support for virtual hosts. The only requirement was that the server needed to answer to different IP
addresses. This technique, which still works reliably, requires the creation of a multihomed server.
Multihomed servers have a few downsides, including a built-in limit: The number of virtual hosts that
can be supported depends on how many IP addresses you have available. Each virtual host requires its
own unique IP address. This requirement made it easy for an ISP to swallow up scarce IP addresses with
only a few customers.

In the current incarnation of the server, the Apache group introduced a non–IP-intensive solution. Using
a new extension to the HTTP protocol, which requires the browser to report the name of the server being
accessed (the http://www.apple.com portion of the URL) along with the resource to retrieve, the Web
server can determine who the request is for. Before, an URL such as http://www.apple.com/index.html
would have the www.apple.com portion removed from the request, making it impossible for the server to
determine the name of the host as known by the user. This new mechanism effectively added the
infrastructure from which Apache could provide virtual site support without the need to create a
multihomed computer. Non–IP-intensive virtual hosts make it possible to host an almost infinite number
of virtual hosts easily, without the need to create a multihomed server.

The <VirtualHost> Directive Section

The <VirtualHost> and </VirtualHost> section tags are used to group server configuration directives that
only apply to a particular virtual host. Any directive that is allowed in a virtual host context can be used.
When the server receives a request directed toward a virtual host, the configuration directives enclosed
between the <VirtualHost> and </VirtualHost> section tags override directives found elsewhere.
<VirtualHost> sections are found in the httpd.conf file.

You specify the host to which a <VirtualHost> section applies by specifying the IP of the virtual host or
a fully qualified domain name. A minimal virtual host only needs to override the DocumentRoot
directive:

<VirtualHost www.company.com>

DocumentRoot /www/docs/company

</VirtualHost>

The <VirtualHost> declaration> for non–IP-intensive virtual hosts, based on the HTTP/1.1 feature
previously described , is almost identical to the original IP-intensive version, except that you only supply
a machine name that resolves to the same IP address as the real host. The server decides what to serve
based on the machine name used to access the resource.

This approach only works with browsers that comply to the HTTP/1.1 specification, which is still a
draft.. Hopefully this will become part of the specification and will be more widely implemented.

For IP-intensive virtual hosts, each host IP identified by the <VirtualHost> directive must be unique and,
in order for it to work, the computer must be configured to accept multiple IP addresses. This
configuration, unlike that of the new non-IP virtual hosts, works regardless of the browser.

The <VirtualHost> section allows configuration of a virtual host as if it were a simple single-homed
server; it allows you to implement customized server configuration settings on a per-site basis. Each site
can tailor the server to its own needs.

A minimal virtual host configuration only needs to make use of the DocumentRoot directive. You can
further customize the virtual server with ServerName directives, which will set the name the server will
use when responding to requests. You are able to include many of the directives that can be specified in
the server configuration file (httpd.conf) or in the resource configuration file (srm.conf). This gives total
control over the configuration and behavior of the virtual server. You can even enable logging of the
transaction to different log files. The following configuration presents a more complete and typical
example:

Virtual machine configuration

#Bind Address (Address identifying this virtual host

BindAddress *

<VirtualHost>

#

#Server name returned to users connected to this host

ServerName www.company.com

#

#

#WebMaster for this host

#IF YOU USE A VIRTUAL DOMAIN FOR MAIL, REMEMBER TO

#CONFIGURE SENDMAIL TO ACCEPT THIS DOMAIN IN YOUR SENDMAIL.CF!!!

#

ServerAdmin webmaster@company.com

#

#The document root for this virtual host

DocumentRoot /usr/local/etc/htdocs/company.htmld

#

#The location of the error log for the virtual host

ErrorLog /usr/local/etc/apache/logs/company/error_log

#

#The location of the access log for the virtual host

TransferLog /usr/local/etc/apache/logs/company/access_log

...

</VirtualHost>

End Virtual Machine configuration

Configuration using> the <VirtualHost> directive is, as you can see, pretty straightforward. However,
there are some mechanics that must be resolved prior to getting a server to multihome (namely, how to
configure the server so that it answers to different IP numbers).

BindAddress

The BindAddress directive allows you to further refine where the server will listen for connections. The
default behavior for the server is to listen for requests on all the IP addresses supported on the machine
(BindAddress *) at the port specified by the Port directive. However, this may not be what you want.
You may want to limit which addresses the server will serve. The BindAddress directive allows you to
specify this. BindAddress allows you to specify the addresses to listen for (either the IP address or fully
qualified hostname). These are examples for the various possibilities:

BindAddress 1.2.3.4

Or this specifies the fully qualified name of the machine:

BindAddress www.foo.com

To have the server listen to all IP addresses accepted by the host, use BindAddress *.

BindAddress * is also the default value if BindAddress is not specified.

Note that the server will only bind to requests on the port specified by the Port directive, which defaults
to 80—the standard TCP port for HTTP servers .

Listen

The Listen directive is new for Apache 1.1. It has similar functionality to the BindAddress. This directive
allows you to specify additional ports that the server will listen in for requests. This feature is useful in
implementing internal servers that contain information you don’t want others to see by default when they
connect to your address. For example, you may want to have special information about your network
available through the Web. Instead of running a separate server process to serve this information, you can
have Apache listen in on multiple ports, such as port 8080.

This feature is used in the upcoming version of Stronghold—a commercial secure version of Apache that
implements both an SSL and standard server using one process. Instead of running two server processes
(one for the secure server and another for the nonsecure one), you can have one process respond
appropriately depending on the port used for the connection.

BindAddress and Listen don’t implement virtual hosts. They simply tell the
server where to listen for requests. BindAddress and Listen are used to build a
list of addresses and ports that the server will listen for. If Apache is not
configured to listen for a particular request, your virtual host won’t be
accessible.

Multihoming: IP-Intensive Virtual Hosts

This section does not apply if you are using Apache 1.1 non–IP-intensive virtual hosts . If you are using
Apache 1.1 or better, you may want to skip this section because Apache 1.1 has a much easier way of
developing a virtual host that doesn't require multihoming. (Refer to "Apache Non-IP Virtual Hosts" later
in this chapter.)

For a multihomed Web server to work, the host computer needs to be able to respond to multiple names
or IP addresses. Traditionally, multihomed hosts were the only computers on a network that did this.
Because they bridged two separate networks, they had the need to answer to two different addresses. To
do this, these computers were usually fitted with two networking cards that allowed the computer to have
two different network addresses. Each network knew the multihomed host by a different name. On the
Web, multihomed computers don't connect two networks, but they do need to answer to multiple names.

Most modern unices (plural for UNIX) provide the software tools needed to allow you to specify
multiple IP addresses to a single interface. If your system does not include a version of ifconfig that
supports the alias option, don't despair. Table 4.1 lists the major systems and the how you can achieve
multiple IP support.

Table 4.1. Operating systems and multihoming .

Operating System Multiple IP Support

AIX 4.1 Built-in: ifconfig alias

BSDI Built-in: ifconfig alias

Digital OSF/1 Built-in: ifconfig alias

Digital UNIX Built-in: ifconfig alias

FreeBSD Built-in: ifconfig alias

HPUX 10.x Needs ifconfig alias patch

HPUX 9.x Needs virtual interface (VIF) patch

IRIX 5.3 Needs SGI's ifconfig alias patch

Linux Needs ifconfig alias patch

NeXTSTEP 3.3 Use PPP Interfaces to provide virtual interfaces

Solaris 2.3 and better Built-in: ifconfig logical units

SunOS 4.x Needs VIF patch

SunOS 5.3 and better Built-in: ifconfig logical units

Ultrix Needs VIF patch

If your system is not listed in Table 4.1, you might want to try the PPP approach described later in this
chapter. Alternatively, you can opt for Apache's 1.1 non-IP-intensive virtual hosts, which remove the
need to create a multihomed server altogether.

You can specify multiple IP addresses to a single interface by using the following:

The ifconfig alias●

The VIF patch●

PPP●

ifconfig alias

The alias option of ifconfig is the easiest way to implement a virtual host. The ifconfig command is used
to set or display configuration values of a network interface. Not all vendors support the alias option.

You can make your Ethernet interface answer to an additional IP by issuing the following command:

ifconfig interface IP alias

Depending on your operating system, Interface can be en0 or le0, so you'll need to check your man pages
for ifconfig to determine the appropriate name for your Ethernet interface. Set the IP parameter to a valid
DNS address you assigned to the virtual host. That's it! The interface will now accept packets destined
for the virtual site.

Some operating systems in the preceding list don't offer the alias option by default, but patches are
available from the vendor or the Net. Each patch distribution includes information on how to apply it, as
well as any other specifics on its use. I have included some of these patches on the CD, but you may
want to check for updates on them at the following locations:

Each patch distribution will include information on how to apply it and any other specifics on its use. I
have included some of these patches on the CD, but you may want to check for updates on them at the
following locations:

The ifconfig alias patch for HPUX 10.X can be found at
http://www.limitless.co.uk/hp_ifalias.html. This patch has been included on the CD with the kind
permission of its author Julian Perry (jules@limitless.co.uk).

●

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#5
mailto:jules@limitless.co.uk

You can find the ifconfig patch for IRIX 5.3 at http://www.sgi.com.●

The Linux ifconfig alias patch can be found at ftp://ftp.mindspring.com/users/rsanders/ipalias.●

Solaris Virtual Interfaces

Solaris supports virtual interfaces in the form of logical units. You can have up to 255 logical units per
network interface. To add a new virtual host to the primary interface, just type the following:

ifconfig le0:logicalunit 204.95.222.200 up

Replace logicalunit with a number from 1 to 255. You can check currently used interfaces by issuing
netstat -ia.

The VIF Patch

The VIF patch was one of the first solutions available on the Internet to enable a single interface to
handle multiple IP addresses. The VIF patch was originally developed by John Ioannidis in 1991 as part
of a project related to his Ph.D. thesis at Columbia University. The patch was pared down in 1994 to
allow a single interface to handle multiple IP addresses under SunOS. The patch was further enhanced
for SunOS 4.1.x by Chuck Smoko and Bob Baggerman. Two separate Ultrix 4.3a ports have been
developed, one by John Hascall and the other by Phil Brandenberger .

The VIF patch creates a virtual interface that, to the networking software, looks like a hardware interface.
The VIF interface allows you to assign an address as well as to configure network interface parameters
with ifconfig.

After the virtual interface has been configured, you may have to add routing entries to the routing table
using the route command. However, some implementations do the right thing without this step. For more
information, refer to the instructions for your operating system. The VIF allows requests to any of the
host's addresses, real or virtual, to be answered by the real interface. Packets leaving the host use the real
or virtual IP assigned to match where they are coming from.

Detailed instructions on how to build the patch and incorporate it into the kernel, and how to use VIF for
each specific architecture, are included in the source. You can obtain the latest version of the VIF patch
from these repositories:

John Hascall's latest ULTRIX modifications can be found at
ftp://ftp.iastate.edu/pub/unix/ultrix/vif/.

●

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#6
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#7
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#8

PPP

If your UNIX vendor didn't provide you with the sources to the kernel, then PPP software (used for
establishing dial-up networking connections) may be your only viable alternative to create a multihomed
host. NEXTSTEP, the operating system I use at accessLINK, doesn't come with the source to its Mach
kernel, so I developed this workaround. The result is almost an equivalent to the VIF patch, and its
effects are easily removed from a system. This solution should be very portable across various UNIX
boxes.

PPP provides networking interfaces, which you can configure much in the same way as VIF interfaces,
with these advantages:

PPP's effects can be easily removed and isolated. If things are not working properly, you don't
have to worry about irreversible changes made to the kernel.

●

Some vendors' systems already ship with PPP software preinstalled, making it easy to implement.●

PPP is portable.●

The PPP in your distribution may already have one or two PPP interfaces
available named ppp0 or ppp1. You can check the number of interfaces your
vendor provides by executing the following command:
% netstat - ia
PPP interfaces will be listed as ppp0 though pppX. If you only need one or two
virtual machines, you may be able to use your preinstalled version of ppp.

If you need additional interfaces, you will have to obtain the source code to the basic PPP software plus
the system-specific changes for your operating system. You will also have to edit one of the header files
to add the additional interfaces.

You can find the latest release to the source code for the PPP software at ftp://dcssoft.anu.edu.au/pub/ppp
and ftp://ftp.merit.edu/pub/ppp.

After you configure the software for your particular machine, modify the number of interfaces to match
your needs. In the pppd.h file, found on the pppd distribution, find the line that contains the following
definition:

#define NUM_PPP 2

The number to the right of NUM_PPP (in this case, 2)defines how many PPP interfaces are to be

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#9
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#10

compiled into the software. Change this number to the number of interfaces you think you'll be needing
plus a few more. I changed mine to add 25 interfaces.

In the NeXTSTEP-specific distribution of the PPP software, which is based on ppp-2.2, the defined
NUM_PPP may be found on additional files. Do a grep to find them and change all instances to match
the number of interfaces you want.

You should be able to build a customized version of your kernel or a kernel loader that adds supports for
PPP. Read the installation instructions for your particular system. Once this is installed, you are ready to
configure the interfaces.

Configuring the PPP Interfaces

By default, PPP interfaces are named ppp0, ppp1, ppp2, and so on. It is a good idea to set up the
interfaces right after the machine boots. This way you can be confident that the Web server will be
accepting requests for all sites at boot time.

I suggest putting your configuration entries into your rc.local or, if you have many entries, creating your
own rc.ppp.

To assign an address to an interface, I use the following commands. Your version of UNIX may provide
additional or different options to these commands. Check the main page of your system prior to issuing
any of these commands:

ifconfig ppp0 204.95.222.200 up netmask 255.255.255.0

route add host 1.2.3.4 1.2.3.4 0

arp -s 1.2.3.4 00:00:00:00:00 pub

In the previous example, I added a virtual host at address 1.2.3.4. Simply replace 1.2.3.4 with the address
of your machine. Replace 255.255.255.0 with the netmask used in your network. Replace 00:00:00:00:00
with the Ethernet address of your networking card.

Make sure you update your DNS to include the virtual machine. Otherwise, a
client won’t be able to find the new virtual address!

The previous commands do the following:

[lb] The ifconfig command assigns the IP and netmask to the ppp0 interface.●

The route command adds a static routing entry the destination and gateway IP. Refer to the virtual
IP address you assigned to the PPP interface.

●

The arp command modifies the Internet-to-Ethernet address translation tables. The -s option was
given to create an arp entry for the hostname, here specified in IP notation. The pub option will
"publish" the arp for the host, even though the address is not its own (it's virtual!).

●

You can verify that the interfaces provided by PPP were incorporated into the kernel by issuing this:

/usr/etc/netstat -ia

You should be able to see a number of pppn interface names listed and be able to test whether the
interfaces and the DNS are working properly. You will need to test from a machine other than the Web
server. A limitation of PPP virtual hosts is that a virtual host is unreachable from the server that hosts it.
However, that is not really a problem because your server is dedicated, right? To test that the virtual host
is running, simply ping the virtual host. You should be get a response like the following:

hydrogen:4# /etc/ping 1.2.3.4

PING helium: 56 data bytes

64 bytes from 204.95.222.2: icmp_seq=0. time=4. ms

64 bytes from 204.95.222.2: icmp_seq=1. time=2. ms

64 bytes from 204.95.222.2: icmp_seq=2. time=2. ms

64 bytes from 204.95.222.2: icmp_seq=3. time=2. ms

64 bytes from 204.95.222.2: icmp_seq=4. time=2. ms

64 bytes from 204.95.222.2: icmp_seq=5. time=2. ms

Replace 1.2.3.4 with the virtual IP address that you assigned earlier.

Apache Non-IP Virtual Hosts

Starting with version 1.1, Apache added support for virtual hosts without the need for additional IP
addresses. This greatly simplifies the management process of the server since it removes the hardest
configuration problem from the list: how to get a machine to answer to multiple IP addresses.

Apache's implementation of non-IP virtual hosts depends on the client browser to provide information
about the server being accessed. At the time of this writing, many browsers, including Netscape 2.0 or
better and Microsoft's Internet Explorer 2.0 and better, support this feature.

The great advantage to non–IP-intensive virtual hosts is that now there are no limits to the number of
virtual sites you can host. Before, the number of virtual hosts you could support was dependent on how
many IP addresses you had available for hosts. Now, a single IP address can support an unlimited
number of sites without having to rely on software, such as PPP or kernel patches, to get the machine to
multihome.

The new modifications to the <VirtualHost> section look almost identical to the old version:

<VirtualHost www.company.com>

 ServerName www.company.com

 ServerAlias company.com *.company.com

 DocumentRoot /usr/local/htdocs/company

</VirtualHost>

Just add as many <VirtualHost> sections (one per virtual site as you need) to your httpd.conf
configuration file and restart the server.

Additional directives can still be placed in the section. All you need to do to get the virtual server to work
is add a DNS entry for www.company.com that points to your server's real address. Unlike IP-intensive
virtual hosts, the IP of the virtual sites is the same as that of the real host.

A new directive, ServerAlias, allows you to reference a virtual host section configuration by other names.
You must, of course, have DNS entries for each alias that point to the same IP address for this feature to
work.

A Workaround for Clients That Don't Support Non-IP Virtual Hosts

Client browsers that do not support the non-IP virtual hosts will get the server's real main page. A fully
qualified path link to your server will let the client access your materials. If your link points to the same
URL, you'll create an endless loop. With careful use of the new ServerPath directive, you can redirect
traffic to the right place.

The ServerPath directive should be placed in the VirtualHost section. The directive looks like this:

<VirtualHost www.company.com>

ServerName www.company.com

DocumentRoot /usr/local/htdocs/company

ServerPath /company

</VirtualHost>

The preceding ServerPath directive will redirect all requests beginning with the /company path to
/usr/local/htdocs/company, the correct place. Your HTML documents should contain only relative links;
this will make your files accessible from any browser.

Summary

With the ability to control most aspects of the server behavior on a per-virtual-host basis, multihoming is
very powerful indeed. The downside of multihoming is that the load processed by a single machine is
increased. One machine is going to handle all the requests for all the sites you host in it. If these requests
require several connections per second, performance may degrade below acceptable levels depending on
the supporting network and computer hardware. However, there are ways of eliminating these
bottlenecks and obtaining the administrative benefits of a multihomed Web server. In "Increasing
Performance," I discuss how to distribute user load between several mirrored Web servers.

The advantages of multihoming greatly outweigh any downsides. If your traffic load is heavy, you're
probably interested in distributing the load. An infrastructure of multihomed distributed servers may be
your best plan. By making all your servers clones of each other, you have in fact created a fault-tolerant
information service. Should one machine go down, access to the site is unaffected. Other servers will
handle requests for the non-operational server. This is good because it may reduce the urgency of a
disaster situation and because it will allow you to maintain a high-level performance site at a low cost.

Using a single server to host various Web sites reduces the cost of the hardware, maximizes the use of
computer and network hardware, and at the same time reduces the number of administrative chores. All
this occurs because there is only one machine to set up, one machine to troubleshoot, one machine to
upgrade, one machine to monitor, and one machine to back up.

One is a good number. The most valuable resource of a Web site is the time of the webmaster, so
reducing his workload is a good thing. If you are running more than one HTTP server hosting different
content, you may want to evaluate whether this feature can make your life easier as well.

What Is a CGI Program?■

What Programming Language Should You Use?

Perl■

C■

Shell (sh)■

Where to Learn More

Perl■

CGI■

World Wide Web■

C and Shell (sh)■

■

■

Hello World!■

Running a CGI Program■

Standard Environment Variables

AUTH_TYPE■

CONTENT_LENGTH■

CONTENT_TYPE■

GATEWAY_INTERFACE■

PATH_INFO■

PATH_TRANSLATED■

QUERY_STRING■

REMOTE_ADDR■

REMOTE_HOST■

REMOTE_IDENT■

REMOTE_USER■

REQUEST_METHOD■

SCRIPT_NAME■

SERVER_NAME■

SERVER_PORT■

SERVER_PROTOCOL■

SERVER_SOFTWARE■

■

Client Header Lines: HTTP_*

HTTP_ACCEPT■

HTTP_USER_AGENT■

■

HTTP_REFERER■

Reading the Environment■

Passing Data to a CGI Using the HTTP POST Method■

Returning Data from a CGI Program

Content-type■

Location■

Status■

■

Forms

Decoding QUERY_STRING■

■

A Generic Form Wrapper for E-mail■

Random Data

An Image Randomizer■

A URL Randomizer■

■

A Bulletin Board■

Summary■

5

CGI (Common Gateway Interface) Programming

Any Web site that does more than just display pages will use Common Gateway Interface (CGI) programs. CGI programs
provide support to many useful functions. Even basic things such as Hypertext Markup Language (HTML) forms require a
CGI program to process the information and do something useful with it. Many people refer to CGI programs as scripts. For
me, this term somehow diminishes the complexity that some CGI programs have. I prefer to call them CGI programs. CGI
programs can exist as interpreted scripts or compiled binaries—in either form, they are programs.

The most popular languages used for developing CGI programs are sh (Bourne shell), Perl (Practical Extraction Report
Language), and C. You can use any language from which you can access environment variables. Most, if not all, UNIX
programming or scripting languages can do this because this support is really inherited from the shells. This means that,
depending on the task at hand, you are free to choose a CGI development tool that matches your needs and program
complexity—a good thing.

What Is a CGI Program?

A CGI program is a program that conforms to certain conventions. Many people think that CGI is a protocol or a language or a
specification. CGI is none of the above; it is a standard. In simplest terms, CGI is just a set of commonly used variables with
the conventions used to access them. The variables provided by the CGI convention are used to exchange information between
the HTTP server and a client program. In addition, CGI provides a means to return output to the browser. All output sent to
stdout (the standard output stream) by a CGI program shows up on the Web browser, provided the right MIME-type header is
sent by the CGI program.

If you want to execute a CGI program, you need to run a Web server like Apache because CGI transactions cannot be
simulated by the browser. CGI calls happen only on the server side. On execution, most CGI programs will

Process data sent by a browser;●

Return some sort of data; or●

Redirect the client to another URL containing some information●

At its most basic level, a CGI program will usually collect information from an HTML form, process data in the form, and then
perform some action such as e-mailing data to a person. In its most complex form, there are virtually no limits to what can be
done with a CGI program. CGI programs can interact with databases by fetching and storing various pieces of information to
produce some sort of result.

Because of the stateless nature of the World Wide Web, there is no way to track a user from page to page using just
conventional document-serving techniques. CGI allows communication, through a standard set of environment variables,
between the HTTP server and a program running on the server computer—in this case, a CGI program. All sorts of things are
possible with CGI that were not feasible with just HTML.

This basic capability of sending some data to a program via an HTTP server is responsible for a whole new way of creating
client/server–type applications: the intranet. CGI programs permit the content of Web pages to be dynamic and relevant to
what the user wants to see. I believe that in the future, many custom applications developed for private use by an organization
(mission-critical applications) will be deployed as intranets—as Web-based applications. It makes sense. Instead of developing
various versions of a program to match the mixed environment of today's office—PC, Macintosh, UNIX—you can develop a
single version of your application that resides on a Web server. As long as there's a browser available for the machine you are
using, you can access the application. Obviously, there are limitations, and some things are better done on the client side
anyway. Java and other client-side programming tools will allow for more complex user-interface portions of the software to
reside on the client, while the data persistence and other functionality happens on the server side.

Some environments, such as WebObjects from NeXT Software, Inc., provide many of the tools needed to create complex,
real-world, Web-based applications today.

What Programming Language Should You Use?

CGI programs can be written in any language that has access to environment variables. However, you will find that most CGI
programs are written in Perl, C, sh, or Tcl. Perl is widely used because of its strengths in text processing; currently, most Web
applications are heavily weighted toward searching for and retrieving textual data. However, the language you choose will
depend on your programming abilities and the complexity of your CGI. This chapter is by no means intended to be a
programming reference. If you don't know how to program, there are many books that will help you get started. This chapter,
however, will cover the basics regarding what makes a CGI program different. I will discuss how to access data passed from a
browser in languages such as Perl, C, and sh. Many of the examples will be in Perl because it offers many facilities that make
some of the basic CGI development tasks easier.

Perl

Perl is an excellent choice for CGI programs. In its current version, 5.002 as of this writing, it provides object-oriented
modular programming, an excellent regular expression engine, and the best free support of any language I've seen. Perl allows
for very rapid development. It originally was developed as an improved sh-sed-awk hybrid, but it has evolved into a
feature-rich, structured, object-oriented language suitable for many programming tasks. Perl is great for text processing, and it
has the extremely useful associative array data type built right into the language—An associative array is basically a key/value

pair relationship. Unlike a list array, the key or index portion of the array is a string—a feature that makes it quite easy to work
with the CGI environment variables.

There aren't too many downsides to Perl. One, however, is that it generally runs slower than a compiled language such as C.
Perl is an interpreted language rather than a compiled language. This means that the Perl interpreter must parse, assemble, and
compile the code each time a Perl program is called. This adds overhead (albeit small) to running a Perl program. Another
downside is that Perl can't (yet) generate a standalone executable file. There is an effort underway to create a Perl compiler,
and an alpha version has actually been released, but it is not yet the "accepted" way to run Perl programs. Another downside of
interpreted versus compiled programs is that anyone with enough cleverness can view your Perl source code within the Web
tree.

Overall, though, Perl is an excellent language for CGI programming, and the one on which I will focus in this chapter.

C

C has long been the industry-standard workhorse language for both small and large projects. Development of CGI programs in
C usually takes a little longer, due to compiling time and the nature of C itself, but the resulting program runs orders of
magnitude faster than any interpreted code. There aren't as many shortcuts as there are in Perl, however. For example, memory
for dynamic arrays isn't automatically allocated or deallocated; you need to do all your housekeeping yourself. In contrast, Perl
will grow an array automatically, freeing your time to do other things. Overall, though, C is very robust and is well-suited to
CGI programming; and if your CGI program needs critical performance, it is a good candidate for the task.

Shell (sh)

Some CGI programs are written as shell scripts. Although this may be quick and easy in some cases, sh is generally not suited
for complicated programming. Use sh for the simplest of activities. Its advantages are that your system probably has a sh, or
any of its variants, in it and, because sh is the environment, accessing environment variables is trivial.

The main problem with sh CGI programs is that it requires a bit of effort to decode encoded information sent to the CGI
program via the QUERY_STRING environment variable or through the stdin or POST queries. There are a few tools on the
Net that alleviate either of these problems quite a bit. I will cover these later.

Where to Learn More

You will find tons of useful information about programming for the Web on the Internet. The following are a few of my
favorite sites and resources.

Perl

If you are interested in learning Perl , two great books written by the main developers of the language will provide about all the
reference you will ever need:

Learning Perl by Randal L. Schwartz, published by O'Reilly & Associates, Inc., ISBN 1-56592-042-2, is a great
introduction to Perl with numerous tutorials to get you going quickly.

●

Teach Yourself Perl 5 in 21 Days by David Till, published by Sams Publishing, ISBN 0-672-30894-0, is an ideal book●

for users who are interested in getting a basic understanding of Perl 4 and 5 with tutorials.

Perl 5 Unleashed by Kamran Husain, published by Sams Publishing, ISBN 0-672-30891-6, takes a comprehensive look
at Perl.

●

Programming Perl by Larry Wall and Randal L. Schwartz, published by O'Reilly & Associates, Inc., ISBN
0-937175-64-1, is the authoritative guide to the Perl language. By the time this book is published, the second edition of
Programming Perl, which covers Perl 5, should be out. Perl 5 is a complete overhaul of Perl 4, it provides a zillion new
features. If you are running Perl 4, download the new version. It's better .

●

On the Internet, Usenet carries many things. Some of the newsgroups to check are

 news:comp.lang.perl.announce

 news:comp.lang.perl.misc

 news:comp.lang.perl.modules

A special note about the newsgroups for Perl: Do NOT post CGI-related issues to the comp.lang.perl.* hierarchy. Rather,
divert any CGI-related questions to comp.infosystems.www.authoring.cgi. Only post to the Perl newsgroups as a last resort.
There are many common questions already answered in this frequently asked questions (FAQ) document:

 http://www.perl.com/perl/faq/perl-cgi-faq.html

In addition to answering many commonly asked questions about Perl, this FAQ contains pointers for everything else you could
possibly imagine about Perl.

The latest version of the Perl software is available from any of the Comprehensive Perl Archive Network (CPAN) sites listed.
Its aim is to be the only Perl archive you will ever need. The CPAN archive can be found at various locations. Table 5.1 gives
a list of all known sites, at the time of this writing, grouped by continent.

Table 5.1. Comprehensive Perl archive network sites.

Africa

South Africa ftp://ftp.is.co.za/programming/perl/CPAN/

Asia

Hong Kong ftp://ftp.hkstar.com/pub/CPAN/

Japan ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/

Taiwan ftp://dongpo.math.ncu.edu.tw/perl/CPAN/

Pacific

Australia ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
ftp://ftp.mame.mu.oz.au/pub/perl/CPAN/

New Zealand ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/

Europe

Austria ftp://ftp.tuwien.ac.at/pub/languages/perl/CPAN/

news:comp.lang.perl.announce
news:comp.lang.perl.misc
news:comp.lang.perl.modules
news:comp.infosystems.www.authoring.cgi
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#29
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#30
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#31
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#32
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#33
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#33
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#34
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#35
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#36

Belgium ftp://ftp.kulnet.kuleuven.ac.be/pub/mirror/CPAN/

Czech
Republic

ftp://sunsite.mff.cuni.cz/MIRRORS/ftp.funet.fi/pub/languages/perl/CPAN/

Denmark ftp://sunsite.auc.dk/pub/languages/perl/CPAN/

Finland ftp://ftp.funet.fi/pub/languages/perl/CPAN/

France ftp://ftp.ibp.fr/pub/perl/CPAN/
ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/

Germany ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/
ftp://ftp.rz.ruhr-uni-bochum.de/pub/CPAN/

Greece ftp://ftp.ntua.gr/pub/lang/perl/

Hungary ftp://ftp.kfki.hu/pub/packages/perl/CPAN/

Italy ftp://cis.utovrm.it/CPAN/

The
Netherlands

ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/

Poland ftp://ftp.pk.edu.pl/pub/lang/perl/CPAN/
ftp://sunsite.icm.edu.pl/pub/CPAN/

Portugal ftp://ftp.ci.uminho.pt/pub/lang/perl/
ftp://ftp.telepac.pt/pub/perl/CPAN/

Russia ftp://ftp.sai.msu.su/pub/lang/perl/CPAN/

Slovenia ftp://ftp.arnes.si/software/perl/CPAN/

Spain ftp://ftp.etse.urv.es/pub/mirror/perl/
ftp://ftp.rediris.es/mirror/CPAN/

Sweden ftp://ftp.sunet.se/pub/lang/perl/CPAN/

Switzerland ftp://ftp.switch.ch/mirror/CPAN/

UK ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/
ftp://sunsite.doc.ic.ac.uk/packages/CPAN/
ftp://unix.hensa.ac.uk/mirrors/perl-CPAN/

North
America

Canada ftp://enterprise.ic.gc.ca/pub/perl/CPAN/

California ftp://ftp.digital.com/pub/plan/perl/CPAN/
ftp://ftp.cdrom.com/pub/perl/CPAN/

Colorado ftp://ftp.cs.colorado.edu/pub/perl/CPAN/

Florida ftp://ftp.cis.ufl.edu/pub/perl/CPAN/

Illinois ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/

Massachusetts ftp://ftp.iguide.com/pub/mirrors/packages/perl/CPAN/

New York ftp://ftp.rge.com/pub/languages/perl/CPAN/

Oklahoma ftp://ftp.uoknor.edu/mirrors/CPAN/

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#37
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#38
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#39
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#40
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#41
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#42
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#43
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#44
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#45
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#46
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#47
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#48
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#49
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#50
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#51
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#52
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#53
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#54
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#55
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#56
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#57
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#58
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#59
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#60
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#61
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#62
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#63
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#64
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#65
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#66
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#67
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#68
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#69
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#70

Texas ftp://ftp.sedl.org/pub/mirrors/CPAN/
ftp://ftp.metronet.com/pub/perl/
ftp://ftp.sterling.com/CPAN/

South
America

Chile ftp://sunsite.dcc.uchile.cl/pub/Lang/perl/CPAN/

CGI

For CGI topics, you may want to check out The CGI Book by William E. Weinman, published by New Riders, ISBN
1-56205-571-2. Another good book is CGI Programming Unleashed by Dan Berlin, published by Sams Publishing, ISBN
1-57521-151-3. HTML and CGI Unleashed by John December and Mark Ginsburg, published by Sams.net Publishing, ISBN
0-672-30745-6, is a complete guide for the development of your Web content. Another good book, although already showing
some age, is Build a Web Site by Net.Genesis and Devra Hall, published by Prima Online Books, ISBN 0-7615-0064-2.

On the Internet , the following addresses are good resources to check:

news:comp.infosystems.www.authoring.cgi—This newsgroup contains a lot information about authoring CGI.●

http://www.ncsa.uiuc.edu/Indices/WebTech/Docs.html—This site has a lot of interesting information about CGI and
other web technologies.

●

World Wide Web

 http://www.boutell.com

Maintained by Thomas Boutell, this site has a lot of interesting Web information. It is also home to MapEdit, a PC and X
Window map-creation tool; Wusage, a Web server statistics package; and cgic, a library of routines for programming CGI in
C.

C and Shell (sh)

If you want to learn how to program in C, there are a few million books out there that will serve you equally well. The
authoritative one, The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, published by Prentice-Hall,
Inc., is a must.

Books are also available for sh programming; however, your system's online documentation may have enough to get you
started. For those interested in using the csh as their command processor, check out The UNIX C Shell Field Guide by Gail and
Paul Anderson, published by Prentice-Hall, ISBN 0-13-937468-X. This book is an excellent reference on csh and various
UNIX commands that you can use to create powerful scripts that get real work done. Another helpful book is UNIX
Unleashed, published by Sams Publishing, ISBN 0-672-30402-3. It covers UNIX commands, features, and utilities in depth .

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#71
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#72
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#73
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#74
news:comp.infosystems.www.authoring.cgi
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#75
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#76

Hello World!

The very first program most anyone writes in a new language is called Hello World!. The intention of Hello World! is to print
the words Hello World, be it on the terminal or on a Web browser. I will provide you with three examples that say hello in
Perl, C, and sh. Although I am not teaching you how to program, go get one of the books I've listed; These examples will show
you what makes a CGI program different from other programs you may have developed.

The programs in Listings 5.1, 5.2, and 5.3 could have been written more compactly, but I have opted for multiple print calls
and for placing of HTML tags one per line (unless the tag closes on the same line) for the sake of clarity. (If you are writing
CGI, I assume that you are familiar with HTML tags; otherwise you may be well over your head, and you should perhaps take
a look at Appendix D, "HTML Reference.")

Listing 5.1. Hello World! as a sh CGI .

#!/bin/sh

HelloInSh - A trivial example of a shell CGI

This program returns html content. The very first line of this

listing

Comments lines used for providing more information to the programmer

or documentation lines have the '#' character as the first character

in the line. The first # symbol is special, it's not a comment.

It informs the operating system to use the program /bin/sh

as the command interpreter for the script that follows.

The very first thing, we do on our CGI is tell the server

what type of data we are returning, in this case it is html:

#

echo Content-type: text/html

#

then we need to add a single line blank line, that separates the

'header' from the actual stuff in our output:

#

echo

#

At this point we need to provide 'body' that includes all the usual

tags and structure required by html.

because some of the characters such as the angle brackets

are interpreted by the sh as a redirection, we need to enclose them

with a single quote:

#

echo '<HTML>'

echo '<HEAD>'

echo '<TITLE> Hello World!</TITLE>'

echo '</HEAD>'

echo '<BODY>'

echo '<H1>Hello World!</H1>'

echo '</BODY>'

echo '</HTML>'

Listing 5.2. Hello World! as a Perl CGI program .

#!/usr/local/bin/perl

HelloInPerl, a trivial example of a CGI in Perl

#

Output appropriate header for server, we included two newlines, the '\n'.

#

print "Content-type: text/html\n\n";

#

Use a 'here' document format for easy readability and avoid need for many

many printf() statements. All the lines following the print line are 'printed'

verbatim, until the 'STOP' tag is found.

#

print <<STOP;

<HTML>

<HEAD>

<TITLE> Hello World!</TITLE>

</HEAD>

<BODY>

<H1>Hello World!</H1>

</BODY>

</HTML>

STOP

#

Now we tell the operating system that this run of the program proceeded without

any errors by 'exiting' with a zero status.

#

exit(0);

Listing 5.3. Hello World! as a C CGI program .

/* HelloInC - A trivial example of a CGI in C. */

#include <stdio.h>

int main (void)

{

 printf ("Content-type: text/html\n\n");

/* As our Perl or sh examples, the first thing to output is the Content-type */

 printf("<HTML>");

 printf("<HEAD>");

 printf("<TITLE>Hello World!</TITLE>");

 printf("</HEAD>");

 printf("<BODY>");

 printf("<H1>Hello World!</H1>");

 printf("</BODY>");

 printf("</HTML>");

 return;

}

The C version of the program is the one that looks the oddest of the three examples. For one thing, C is more structured, and its
syntax is more rigid. C is a compiled program, meaning that after you enter the code, you need to convert it into an executable
program before you can run it. C offers low-level access to the OS, making it a very powerful programming language.
Although CGIs in C are harder to implement that the equivalent Perl programs, C does have its own advantages. C programs
run fast—very fast. If your CGI is one that does many things and your server is under a heavy load, you may have no choice
but to create an efficient program that creates the least impact on your system. C is a great tool for this.

Perl and sh are interpreted languages. Interpreted programs are executed by an interpreter—such as the Perl, sh (Bourne shell),
or another shell type program. Both languages allow you to do several things that would take many lines of code in C with
very few commands. Both of these languages were designed with rapid development in mind.

In terms of debugging problems with your program, C may provide you with better tools that you can use to track problems in
your code. Both Perl and sh provide you with ways to catch syntax errors, but certain types of errors may be a little harder to
track.

Running a CGI Program

I have talked about what a CGI is, and you have seen what a simple CGI looks like. At this point, you might be asking yourself
how to run a CGI. If you have read this book in sequence, you will probably recall that execution of programs from the HTTP
server can be a source of potential security problems, so CGI execution is usually restricted. By default, CGI programs exist in
the /usr/local/etc/httpd/cgi-bin directory, or whatever other directory is defined by your ScriptAlias directive in your srm.conf
file. The ScriptAlias directive is commented out from the default configuration. If you have not done so, you may want to
remove the comment and restart the server. This will enable CGI execution for CGIs located in the cgi-bin directory.

Never, ever put a command interpreter such as Perl or any shell in your cgi-bin directory. Why?
Think about it! That would make the executable available to anyone who wants to send it data. Even
though the browser encodes data that is sent to the CGI, perverse minds will think of exploiting this
security problem in their favor. In short, this is a huge security risk that is best avoided. Put your
shells and command interpreters in a directory where the httpd daemon has no execution permission;
/usr/local/bin is a very good place.

To test these CGI programs , just put them in your cgi-bin directory. Make sure your scripts are executable by setting the file
mode to 755. You can do this easily from a command line by typing:

chmod 755 myscript

Replace myscript with the name of the file you want to make executable.

Also remember that the C version needs to be compiled before it is executed. Here's an easy way to compile it:

cc sourcefile.c -o binary

Replace sourcefile.c with the name of your C source file and binary with the name of the finished program. After a few
seconds you should be left with an executable that you can run. If your system returns cc: command not found, you may want
to try changing the command from cc to gcc.

If you named your CGIs as I suggested in the program comments in the listings, just move them to your cgi-bin directory and
test the following URLs on your favorite browser:

http://localhost/cgi-bin/HelloInSh

http://localhost/cgi-bin/HelloInPerl

http://localhost/cgi-bin/HelloInC

You should get a result similar to the screen shown in Figure 5.1.

Figure 5.1. The output for the any of the Hello World! programs.

If you are having problems with the programs, see if you can get them to run on a terminal. If it will output the header and
some HTML, and it doesn't give you an error, the problem may be with UNIX permissions. Recheck that your program is
executable. If the problem is with a script, check that the location of the interpreter program is where I list it (the first line of
the script). If it is not, change the first line to the absolute path of your command interpreter and try again (if the program is
found anywhere in any of the directories specified by your path, it will be listed by using the whereis command. For more
information on how to use the whereis program, please refer to your UNIX documentation). Note that the !# are required
symbols that tell the shell that the script should be run by the specified command processor .

Standard Environment Variables

CGI programs run in an environment that is different from most programs. For one thing, most of the time they do not get
input from stdin, the standard input stream. Because of this, input needs to be handled differently than in most programs. As I
mentioned before, CGI passes values as environment variables . Environment variables are used extensively under UNIX as a
way of communicating things like the location of your home directory and your mailbox, the capabilities of your terminal, and
so on. When you execute a program, UNIX makes all of these settings available in case a program is interested in them.

In a similar manner to the UNIX shell, the HTTP server uses the environment mechanism to pass values to a CGI program.
The HTTP server sets a number of environment variables prior to executing the CGI program. These variables provide
information about the user, his software, and the server.

These environment variables can be accessed by name, and if your CGI calls other programs, these variables are inherited by
the environment of the programs you call. The standard CGI 1.1 specification defines the variables discussed in the following
sections.

AUTH_TYPE

The AUTH_TYPE variable is set to the type of authentication used to validate a request.

CONTENT_LENGTH

The CONTENT_LENGTH environment variable is set to the size of the data that was submitted with the request. The size of

the data is specified in bytes. HTTP PUT and POST requests use this value to read that amount of bytes from stdin, the
standard input stream. You shouldn't attempt to read any more data bytes than specified by this variable.

CONTENT_TYPE

The CONTENT_TYPE variable is set to the Multipurpose Internet Mail Extensions (MIME) type or format submitted with the
request. The format is expressed with a type/subtype syntax. If the data was submitted using the HTTP POST method, the
value of this variable is set to application/x-www-form-urlencoded. The amount of data submitted is specified by the
CONTENT_LENGTH variable.

GATEWAY_INTERFACE

The GATEWAY_INTERFACE variable is set to the version of CGI that the server implements. The syntax of the version
follows a pattern CGI/version: CGI/1.1. As new variables are added to the CGI standard, the version number is increased.
Your program should be aware of this version number to ensure that the variables you use are available in the environment
setup by the server you are using. This variable is set for all requests.

PATH_INFO

The PATH_INFO variable is set to the Uniform Resource Identifier (URI). For practical purposes, a URI is just an URL that
follows the string identifying the CGI script, like the following example:

http://www.company.com/cgi-bin/mycgi/a/b/c will be set to /a/b/c.

Your program can use this information to do whatever it wants, perhaps to pass extra settings (switches) for the program to
behave differently depending the situation, such as specifying extra arguments used for CGI configuration. It's up to your CGI
program to use the values provided by this variable.

PATH_TRANSLATED

The PATH_TRANSLATED variable is set to the absolute path to the resource represented by the URL. In the case of
http://www.company.com/index.html, PATH_TRANSLATED may hold a value such as /usr/local/etc/httpd/htdocs/index.html.
This allows your CGI program to be able to read this file and do something with it if necessary.

QUERY_STRING

QUERY_STRING is one of the most important of all CGI environment variables. The QUERY_STRING variable is used for
passing form information to a CGI. On CGIs that use the GET HTTP method, this variable will contain the query portion of
the URL. Requests made to a CGI usually include a ? that is followed by the arguments to the query. In the URL
http://www.company.com/cgi-bin/test?yes, the value of QUERY_STRING will be set to yes.

It is important to be aware that because QUERY_STRING is an environment variable , there are space limitations imposed by
the operating system. Some systems limit the environment space anywhere from 250–8000 bytes. On my system, this limit is

much larger—about 40,000 bytes. If your CGI handles a form that could potentially receive a large amount of data, you may
want to consider using POST transactions to ensure portability and avoid overflows. POST transactions don't put values on
QUERY_STRING; instead, the data comes into the CGI via the standard input stream.

Data in the QUERY_STRING is formatted as key=value pairs. key is the name assigned to the form widget using the NAME
attribute in the HTML file. value is the value that the user assigned to the widget with a browser. Multiple key=value pairs are
separated by ampersand (&) characters. In addition to this formatting, the browser will encode any non-alphanumeric character
using a percent character plus the character's hexadecimal value. For example, %2C equals a , character. Spaces are encoded
with a plus (+) character. The following QUERY_STRING is the result of two form fields, one called Name, the other called
Address:

QUERY_STRING = Name=My+Name&Address=Some+Street+Rd.%0ACity%2C+State++12345&
name=Submit

The Name field contains the data

My+Name

The space between My and Name is encoded to a +.

The Address field contains

Some Street Rd.

City, State 12345

In the second field, spaces are also converted to + characters. In addition, the newline after Rd. is encoded to %0A. The %2C
corresponds to a comma (,).

REMOTE_ADDR

The REMOTE_ADDR variable contains the IP address of the host making the request. IP addresses currently are written in
dotted-decimal notation (four octets or 8-bit values represented in decimal, separated by dots). If you are concerned with
security (and who isn't?) it is a good idea to log this variable in a logfile created specially for this form by your CGI program.
You can also log REMOTE_HOST, REMOTE_IDENT, HTTP_USER_AGENT, and HTTP_REFERER. Although this takes
up disk space, it also allows you to identify people (somewhat) who submit nasty, threatening, or malicious form data. For
alternative logging suggestions, please see Chapter 13, "Web Accounting."

REMOTE_HOST

The REMOTE_HOST variable contains the hostname of the client making the request. It will be set only if reverse DNS
lookups are enabled for your server. Reverse DNS lookups create an extra load on your server and should not be enabled on
high-traffic servers. If your CGI needs to determine the hostname, you should be able to determine this information easily
enough when you need it with a call to /usr/bin/host (part of the BIND release), with the IP address of the host in question from
the REMOTE_ADDR variable.

REMOTE_IDENT

For clients running identd services, the REMOTE_IDENT variable will be set to the username of the user making the request.
Many clients don't run this service and, as should be expected, you should never trust this information.

REMOTE_USER

Requests that require user authentication will set the REMOTE_USER variable to the name the user entered during the
authentication session.

REQUEST_METHOD

The REQUEST_METHOD variable holds the name of the HTTP method used to make the request. Valid HTTP methods are
GET, POST, HEAD, PUT, DELETE, LINK, and UNLINK. The Apache server implements only the first four methods, which
specify where a CGI program will find its data. You can implement any of the other methods with CGI programs; however, be
aware that those methods implement potential security holes. As their names suggest, PUT, DELETE, LINK, and UNLINK
satisfy requests that put, delete, link, or unlink files. However, some of these methods may be very useful for implementing
applications that allow a user to add information, such as adding a picture to a database.

SCRIPT_NAME

The SCRIPT_NAME variable contains the portion of the URI that identifies the CGI running. If your URL is
http://www.company.com/cgi-bin/test, SCRIPT_NAME will be set to /cgi-bin/test.

SERVER_NAME

The SERVER_NAME variable holds the hostname, alias, or IP address of the server serving the request. You can use it to
build self-referencing URLs. In cases where the server is configured to support virtual hosts, this variable will be set correctly
to the name of the virtual host serving the request. This variable is set for all requests.

SERVER_PORT

The SERVER_PORT variable contains the TCP port where the server is running. You can use the SERVER_PORT value
along with the SERVER_NAME to build self-referencing URLs if your server is using a nonstandard port. The default port for
an HTTP server is 80.

SERVER_PROTOCOL

The SERVER_PROTOCOL variable contains the name and version of the HTTP protocol supported by the server. It has the
format HTTP/version: HTTP/1.0. This value should be checked by your program to ensure that the server is compatible with
your CGI program.

SERVER_SOFTWARE

The SERVER_SOFTWARE variable is the equivalent of your server's info box. This variable holds the name and version of
the HTTP server software serving your request. The format is name/version: APACHE/1.1. This variable is set for all requests.

Client Header Lines: HTTP_*

In addition to the standard variables, header lines received from a browser are put into the environment preceded by HTTP_.
Any dash characters (-) are changed to underscores (_).

These headers may be excluded by the server if already processed or if by including them the system's environment limit
would be exceeded. Some of the most popular ones are HTTP_ACCEPT, HTTP_USER_AGENT, and HTTP_REFERER.

HTTP_ACCEPT

The HTTP_ACCEPT variable is set to the MIME types that the client browser is able to accept. You can use this information
to have your CGI return richer data, such as graphics, that is acceptable by the client.

HTTP_USER_AGENT

The HTTP_USER_AGENT variable is set to the name and version of the client browser in the format name/version
library/version. This format string varies greatly from one browser to another. Because of the ranging capabilities of browsers,
some sites provide various versions of the materials and return the one that it deems most appropriate based on information
stored in this variable. This creates a situation in which some browsers do not get the "cool" version of a site. Some browser
developers resolved this problem by making their wares impersonate other brands by supplying the HTTP_USER_AGENT
string Mozilla (the Netscape Navigator user agent string).

Information regarding a proxy gateway is also contained here. A proxy gateway is a computer that sits between the client and
the server. This proxy gateway is sometimes able to cache pages you request, reducing the amount of traffic generated from
your site to that server.

HTTP_REFERER

The HTTP_REFERER variable holds the location the user visited that forwarded her to your site. Use of this variable may be
useful to see which sites are linked to yours .

Reading the Environment

Reading environment variables in a sh is really easy—it's just like reading any other sh variable. The reason for this is that sh
is the environment!

Environment variables are accessed by adding a $ before their name. To print the contents of the variable, use the echo
command :

echo SERVER_SOFTWARE = $SERVER_SOFTWARE

That line will print a line that looks like this:

SERVER_SOFTWARE = Apache/1.1.1

Listing 5.4 shows a simple sh CGI based on the test-cgi script included in Apache's cgi-bin directory that prints most of the
environment variables.

Listing 5.4. A simple sh CGI script .

#!/bin/sh

echo Content-type: text/plain

echo

echo SERVER_SOFTWARE = $SERVER_SOFTWARE

echo SERVER_NAME = $SERVER_NAME

echo GATEWAY_INTERFACE = $GATEWAY_INTERFACE

echo SERVER_PROTOCOL = $SERVER_PROTOCOL

echo SERVER_PORT = $SERVER_PORT

echo REQUEST_METHOD = $REQUEST_METHOD

echo HTTP_ACCEPT = $HTTP_ACCEPT

echo PATH_INFO = $PATH_INFO

echo PATH_TRANSLATED = $PATH_TRANSLATED

echo SCRIPT_NAME = $SCRIPT_NAME

echo QUERY_STRING = $QUERY_STRING

echo REMOTE_HOST = $REMOTE_HOST

echo REMOTE_ADDR = $REMOTE_ADDR

echo REMOTE_USER = $REMOTE_USER

echo AUTH_TYPE = $AUTH_TYPE

echo CONTENT_TYPE = $CONTENT_TYPE

echo CONTENT_LENGTH = $CONTENT_LENGTH

The same CGI can be written in Perl, as shown in Listing 5.5.

Listing 5.5. The simple CGI script in Perl .

#!/usr/local/bin/perl

print "Content-type: text/plain\n\n";

print <<STOP;

SERVER_SOFTWARE = $ENV{SERVER_SOFTWARE}

SERVER_NAME = $ENV{SERVER_NAME}

GATEWAY_INTERFACE = $ENV{GATEWAY_INTERFACE}

SERVER_PROTOCOL = $ENV{SERVER_PROTOCOL}

SERVER_PORT = $ENV{SERVER_PORT}

REQUEST_METHOD = $ENV{REQUEST_METHOD}

HTTP_ACCEPT = $ENV{HTTP_ACCEPT}

PATH_INFO = $ENV{PATH_INFO}

PATH_TRANSLATED = $ENV{PATH_TRANSLATED}

SCRIPT_NAME = $ENV{SCRIPT_NAME}

QUERY_STRING = $ENV{QUERY_STRING}

REMOTE_HOST = $ENV{REMOTE_HOST}

REMOTE_ADDR = $ENV{REMOTE_ADDR}

REMOTE_USER = $ENV{REMOTE_USER}

AUTH_TYPE = $ENV{AUTH_TYPE}

CONTENT_TYPE = $ENV{CONTENT_TYPE}

STOP

The Perl program is similar to the C program, shown in Listing 5.6. The only notable difference is that the

$ENV{variable_name} syntax is used to inform Perl that I am referring to an environment variable.

Listing 5.6. The simple CGI script in C .

#include <stdio.h>

#include <stdlib.h>

main (int argc, char *argv[])

{

 char *p;

 // Keep the server happy. Put in a Content-type header:

 printf("Content-type: text/plain\n\n");

 /* Most versions of printf will handle a NULL pointer as "(Null

 // Pointer)" otherwise printf may crash. The solution is a macro that

 // always returns something valid. The macro below tests to see if

 // getenv returned something. If it returns NULL, it returns a

 // "VARIABLE NOT SET" message, that should make old versions of printf

 /* happy.

 #define sgetenv(x) ((p = getenv(x)) ? p : "VARIABLE NOT SET")

 printf("SERVER_SOFTWARE = %s\n", sgetenv("SERVER_SOFTWARE"));

 printf("SERVER_NAME = %s\n", sgetenv("SERVER_NAME"));

 printf("GATEWAY_INTERFACE = %s\n", sgetenv("GATEWAY_INTERFACE"));

 printf("SERVER_PROTOCOL = %s\n", sgetenv("SERVER_PROTOCOL"));

 printf("SERVER_PORT = %s\n", sgetenv("SERVER_PORT"));

 printf("REQUEST_METHOD = %s\n", sgetenv("REQUEST_METHOD"));

 printf("HTTP_ACCEPT = %s\n", sgetenv("HTTP_ACCEPT"));

 printf("PATH_INFO = %s\n", sgetenv("PATH_INFO"));

 printf("PATH_TRANSLATED = %s\n", sgetenv("PATH_TRANSLATED"));

 printf("SCRIPT_NAME = %s\n", sgetenv("SCRIPT_NAME"));

 printf("QUERY_STRING = %s\n", sgetenv("QUERY_STRING"));

 printf("REMOTE_HOST = %s\n", sgetenv("REMOTE_HOST"));

 printf("REMOTE_ADDR = %s\n", sgetenv("REMOTE_ADDR"));

 printf("REMOTE_USER = %s\n", sgetenv("REMOTE_USER"));

 printf("AUTH_TYPE = %s\n", sgetenv("AUTH_TYPE"));

 printf("CONTENT_TYPE = %s\n", sgetenv("CONTENT_TYPE"));

 printf("CONTENT_LENGTH = %s\n", sgetenv("CONTENT_LENGTH"));

 exit(0);

}

The one notable thing occurring in this program is the use of the getenv(variable_name) function . This function returns the
string stored in the environment variable matching the name of the argument provided. The following is an example:

string_pointer = getenv("HOME");

This call would return a pointer to a string describing the location of the home directory of the user running the program. If you
look closely, you'll notice that I created a macro for the getenv function called sgetenv. This macro is a safeguard for users of
older versions of the printf() function. If getenv returns a NULL pointer, ancient versions of printf may crash the program. My
program safeguards against this condition by always returning a printable string. In this case, a NULL value will return the
string VARIABLE NOT SET.

If you want to write CGI programs in C, probably the best way to write them would be to use Thomas Boutell's cgic library.
This library is available from http://www.boutell.com. I have included a copy of the library on the CD-ROM for your
convenience. I have written a similar Hello World! application using cgic, shown in Listing 5.7.

Listing 5.7. Hello World! in cgic .

/**

 *

 * HelloWorld.cgi

 *

 * This program prints out all the environment variables using Thomas

 * Boutell's cgic library. Make sure cgic.h is in your current dir-

 * ectory, and that libcgic.a is installed in the usual place (most of

 * the time /usr/local/lib. Please follow the cgic installation

 * instructions.

 *

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#76

 ***/

#include <stdio.h>

#include "cgic.h"

#define FIELD_SIZE 51

#define DEBUG 0

int cgiMain() {

 #if DEBUG

 /* Load a saved CGI scenario if we're debugging */

 cgiReadEnvironment("/tmp/capcgi.dat");

 #endif

 cgiHeaderContentType("text/html");

 fprintf(cgiOut, "<HTML><HEAD>\n");

 fprintf(cgiOut, "<TITLE>Hello World!</TITLE></HEAD>\n");

 fprintf(cgiOut, "<BODY><H1>Hello World!</H1>\n");

 fprintf(cgiOut, "cgiServerSoftware=%s
\n", cgiServerSoftware);

 fprintf(cgiOut, "cgiServerName=%s
\n", cgiServerName);

 fprintf(cgiOut, "cgiGatewayInterface=%s
\n", cgiGatewayInterface);

 fprintf(cgiOut, "cgiServerProtocol=%s
\n", cgiServerProtocol);

 fprintf(cgiOut, "cgiServerPort=%s
\n", cgiServerPort);

 fprintf(cgiOut, "cgiRequestMethod=%s
\n", cgiRequestMethod);

 fprintf(cgiOut, "cgiPathInfo=%s
\n", cgiPathInfo);

 fprintf(cgiOut, "cgiPathTranslated=%s
\n", cgiPathTranslated);

 fprintf(cgiOut, "cgiScriptName=%s
\n", cgiScriptName);

 fprintf(cgiOut, "cgiQueryString=%s
\n", cgiQueryString);

 fprintf(cgiOut, "cgiRemoteHost=%s
\n", cgiRemoteHost);

 fprintf(cgiOut, "cgiRemoteAddr=%s
\n", cgiRemoteAddr);

 fprintf(cgiOut, "cgiAuthType=%s
\n", cgiAuthType);

 fprintf(cgiOut, "cgiRemoteUser=%s
\n", cgiRemoteUser);

 fprintf(cgiOut, "cgiRemoteIdent=%s
\n", cgiRemoteIdent);

 fprintf(cgiOut, "cgiContentType=%s
\n", cgiContentType);

 fprintf(cgiOut, "cgiAccept=%s
\n", cgiAccept);

 fprintf(cgiOut, "cgiUserAgent=%s
\n", cgiUserAgent);

 fprintf(cgiOut, "</BODY></HTML>\n");

 return 0;

}

This program does not show off the true power of cgic, but you can see what's going on that's interesting.

First of all, notice that there is no main() function. Instead, cgic applications all have a cgiMain() function. Another difference
is that instead of writing to stdout when you want some text to go to the browser, you write to a special file descriptor called
cgiOut, defined in the cgic.h file. Where does cgiOut point? In almost every case it points to stdout. So why use cgiOut? It is
mainly used to be compatible with future versions of cgic where stdout may not be where you want output to go.

You will also notice some debugging code in the program. This is a really nice feature of cgic that allows a developer to easily
preserve an environment and run the CGI program with that environment from the command line or a debugger. It saves you
the hassle of manually simulating the environment yourself. To use this feature you need to have the program capture compiled
and located in your cgi-bin directory. Then, whenever you want to debug a cranky CGI program, just point the FORM
ACTION tag to /cgi-bin/capture (make sure that capture is compiled with the default capture file set to something you
want—/tmp/capcgi.dat would be good). This captures the environment and stores it in a file that can be read by using
cgiReadEnvironment(). This is very useful and easier than manually running through and setting all the environment variables.

Finally, you'll notice that there are special variable names that refer to the environment variables. This is so that cgic's
debugging feature will correctly write the environment to the capture file, as specified in the capture.c source code.

But cgic is much more than what you have seen. It includes functions for grabbing GET or POST form data of all types. In
fact, if you're grabbing a numerical input from a form, cgic includes parameters for bounds checking. Included in the cgic
documentation is an excellent HTML document that shows you exactly how to use the cgic functions.

Passing Data to a CGI Using the HTTP POST Method

The POST method, originally named and designated to refer to posting a message to a Usenet-like resource, is a better way to
submit data from a form than GET. Unlike GET, the POST method has no restrictions on how much data can be submitted.
The data from a POST submission is encoded in exactly the same way as GET; the main difference is that the string is not
placed in QUERY_STRING. Instead, the string is read from stdin. How do you know when you reach the end of the string?
The length is placed in the CONTENT_LENGTH environment variable. Other than these two differences, POST functions in
exactly the same way as GET.

So why should you even bother with GET when POST is so much better? Well, you will use GET in the following situation:
Say you want to have a text hyperlink within your HTML document to a CGI program, and you also need to pass some
URL-encoded parameters to this program, such as color=red and size=large. The HTML code would be as follows:

Run this

The string after the ? is the URL-encoded string that is placed in QUERY_STRING as per the GET method. (You can also do
a link this way with POST, but as far as I know, there is no way to make a Submit button a text link. You can make it an image
by using the image tag, but for text, I don't know of a way to do it!)

Another instance where you might want to use GET over POST is when you are debugging a CGI program. You have
probably faced many 500 Server Error messages when writing CGI programs. The reason for this uninformative message is
security; however, that doesn't help your development efforts. The server swallows sterr and doesn't redirect it to anywhere
useful. If you run the CGI program from the prompt, you will see the error messages and explanations generated by the CGI
program that make debugging easier. (Thomas Boutell's cgic library provides a much nicer way of debugging CGI programs.
Read on to find out more!)

CGI is nothing more than a set of environment variables. You can manually simulate a GET request in the following way:

% setenv 'REQUEST_METHOD' 'GET'

% setenv 'QUERY_STRING' 'color=red&size=large'

% somecgi.cgi

[results]

These commands assume that you are using csh, of course. If you are using the Bourne shell (sh), declare environment
variables as follows:

% REQUEST_METHOD=GET

% QUERY_STRING="color=red&size=large"

% export REQUEST_METHOD

% export QUERY_STRING

% somecgi.cgi

[results]

Just set the environment variables yourself and run the CGI program from the prompt. Can you do the same thing with POST?
After all, POST is done virtually the same way except for stdin. Well, this is what you'd have to do:

% setenv 'REQUEST_METHOD' 'POST'

% setenv 'CONTENT_LENGTH' '20'

% somecgi.cgi

(waiting for input)

color=red&size=large

% [results]

Aha! There's the gotcha! CONTENT_LENGTH needs to be set to the number of characters to read from stdin. Can you
imagine what a pain it would be to have to count the number of characters each time you have a different form string? GET is

much easier for debugging purposes. Use it until you are sure everything works; then make your form submit data via POST.
(Or, if you are using C, use Boutell's cgic library debugging functions.)

As I've mentioned, most of the time CGI programs don't receive their information from the stdin stream. The POST method
should be used for anything that has more than a few small input fields to avoid any problems with running out of space on the
environment space.

However, requests of the type POST (or PUT) do put information after the header. Under these requests, some data will be sent
to your program through stdin, which you need to read. However, unlike traditional UNIX programs, the HTTP server is not
obligated to send an EOF (end of file) following CONTENT_LENGTH bytes of data. This means that you need to determine
the amount of data that you are able to read beforehand. Luckily, the server will set the CONTENT_LENGTH variable to the
amount of data you can safely read from stdin.

Data sent through stdin is encoded in the same way as values passed through QUERY_STRING .

Returning Data from a CGI Program

Output from your CGI program usually goes to stdout. This information can be raw HTML or some other MIME type that
your program creates, or instructions to the client to retrieve the output (a redirection). The previous sample programs have
been returning either text/plain or text/html MIME formats. When returning text/html, you need to make sure that the HTML
you return is the correct HTML.

In addition, any content you return must be preceded by one of the following headers and two new lines.

Content-type

If you are returning content generated from within your CGI, you'll need to set the content-type header to the MIME type of
the data you are returning, typically this will be HTML or plain text. For example, CGIs that return text should set the content
header like this:

Content-type: text\plain

CGIs that return HTML-formatted text should return a content header like the following:

Content-type: text\html

Location

Instead of returning data, you can use this header to specify that you are returning a reference or redirection instead of the
actual document. When this header is set to a URL, the client will issue the redirect; the client (browser) is then responsible to
fetch the document. If set to a virtual path, the server will intercept it and return the document listed:

Location: http://www.somewhere.com

When the server receives this header from a CGI, it will try to point the client browser to the http://www.somewhere.com URL.

Status

This is the result code returned to the client. It is composed of a three-digit code and a string describing the error or condition .

Forms

The most basic thing you will ever do is collect data from an user and then process that data in some way. This will involve the
use of HTML forms. Forms are a series of user-interface items that allow the user to set values: text fields, text boxes, radio
buttons, check boxes, pop-up menus, and so on. Your HTML code is responsible for drawing these items and assigning them a
name. A sample form looks like this in code:

<HTML>

<HEAD>

<TITLE>WhoAreYou</TITLE>

</HEAD>

<BODY BGCOLOR="#ffffff">

<FORM ACTION="/cgi-bin/printenv" ENCTYPE="x-www-form-encoded" METHOD="GET">

<HR>

Your name:

<INPUT NAME="Name" TYPE="text" SIZE="53">

Your Address:

<TEXTAREA NAME="Address" ROWS="6" COLS="50"></TEXTAREA>

<HR>

<P><CENTER><INPUT NAME="name" TYPE="submit" VALUE="Submit"></CENTER>

</FORM>

</BODY>

</HTML>

This code produces a form that looks like Figure 5.1, when viewed under Microsoft's Internet Explorer version 3.

Figure 5.2. A simple form viewed with Microsoft's Internet Explorer version 3.

You can create forms by just typing the specifications, but sometimes it's a lot easier to use a graphical tool . Graphical tools
allow you to lay out the form in an attractive and useful way. I like creating the basic form template in a program called Adobe
PageMill. PageMill is an easy-to-use program for the Macintosh that generates HTML pages.

When you submit this form, your browser will return something similar to the following:

SERVER_SOFTWARE = Apache/1.1.1

GATEWAY_INTERFACE = CGI/1.1

DOCUMENT_ROOT = /NextLibrary/WebServer/htdocs

REMOTE_ADDR = 204.95.222.3

SERVER_PROTOCOL = HTTP/1.0

REQUEST_METHOD = GET

REMOTE_HOST = lithium

HTTP_REFERER = http://hydrogen/book/WhoAreYou.htmld/

QUERY_STRING = Name=Alberto+Ricart&Address=N70+W6340+Bridge+Rd.
%0D%0ACedarburg%2C+WI++53012&name=Submit

HTTP_USER_AGENT = Mozilla/2.0 (compatible; MSIE 3.0B; Windows 95;640,480

HTTP_ACCEPT = */*

HTTP_ACCEPT_LANGUAGE = en

SCRIPT_NAME = /cgi-bin/printenv

SCRIPT_FILENAME = /NextLibrary/WebServer/apache/cgi-bin/printenv

HTTP_PRAGMA = no-cache

SERVER_NAME = localhost

SERVER_PORT = 80

HTTP_HOST = hydrogen

SERVER_ADMIN = webmaster@ACCESSLINK.COM

Decoding QUERY_STRING

As you can imagine, before you can do anything useful with the QUERY_STRING you'll need to decode it. After you have
decoded all encoded characters, you'll need to split them into key and value pairs.

The effort required to do this will depend on what you are using to develop a CGI. If you are using sh, you will run into some
difficulties. You'll probably have to use an awk and sed script to preprocess your data; too much work! However, don't despair.
Just because it's hard doesn't mean that someone didn't already go through these pains.

Steven Grimm has developed a package called Un-CGI that takes the hard work of decoding your program input. Un-CGI
decodes the form input and places the decoded information in the environment as environment variables, which are very easy
to access from a shell. I have reprinted Grimm's Un-CGI documentation in Appendix A, "Un-CGI Version 1.7
Documentation." Un-CGI makes it possible to write CGI using the sh or csh easily.

C will present you with similar challenges. You'll have to write a few decoding routines as well as a routine to split the data
into simple key/value pairs that you can access, or you'll have to use Thomas Boutell's uncgic library

Perl, by far, provides the easiest way of dealing with the decoding and conversion of the data into variables that you can access
easily .

A Generic Form Wrapper for E-mail

Perhaps the most frequently asked question on all of the HTML and CGI newsgroups is "How do I e-mail the contents of a
form to myself?" The answer is contained in the following program listings. The first listing is a group of useful functions I
wrote for developing CGI programs. It is a Perl package and must be imported into a program via the following statement:

require CGILIB;

Then, whenever you want to use a function in the library, first of all, make sure that CGILIB.pm is in the same directory or that
it is in your @INC path. One function in CGILIB.pm is responsible for decoding the input string. This is the function
parse_form(). It returns an associative array with all of the form keys and values. When you have this array, you can do
anything with it that you want. In this case, you want to simply mail the contents of the array back to yourself.

The second listing is the actual Perl mailing program. It takes the user input values from an HTML form and mails the results
to the address specified in the recipient field of the HTML form. It extracts some other various useful information for the
e-mail response as well, such as client browser information, the date submitted, and information about the location from which
the sender is submitting. This is all very relevant material, especially for simple security precautions.

To use this humble program, just install the programs in Listings 5.8 and 5.9 in your cgi-bin directory and create a form whose
ACTION target is cgi-bin/mail.cgi. Listing 5.10 is a sample form so you can see how it is done.

Listing 5.8. CGILIB.pm .

package CGILIB;

##

Print the content-type header.

#

&print_header;

sub print_header

{

 print "Content-type: text/html\n\n";

}

##

Print a canned header with title as argument.

#

#

sub canned_header

{

 my($title) = @_;

 print "<HTML>\n";

 print "<HEAD>\n";

 print "<TITLE>$title</TITLE>\n";

 print "</HEAD>\n";

}

##

Print the closing lines for an HTML document.

#

&print_closing;

sub print_closing

{

 print "</BODY></HTML>\n";

}

##

Parse the HTML header and form

information

#

%ASSOC_ARRAY = &parse_form;

sub parse_form

{

 my ($buffer,$name,$value,%FORM);

 my ($content_length,$query_string,$request_method);

 $content_length = $ENV{'CONTENT_LENGTH'};

 $query_string = $ENV{'QUERY_STRING'};

 $request_method = $ENV{'REQUEST_METHOD'};

If the REQUEST_METHOD was POST, read from stdin, else the string is in QUERY_STRING

 if ($request_method eq 'POST') {

 read(STDIN, $buffer, $content_length);

 }

 else {

 $buffer = $query_string;

 }

 # Split the name-value pairs

 @pairs = split(/&/, $buffer);

 foreach $pair (@pairs)

 {

 ($name, $value) = split(/=/, $pair);

 # Un-Webify plus signs and %-encoding

 $name =~ tr/+/ /;

 $value =~ tr/+/ /;

 $value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;

 $name =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;

 # Stop people from using subshells to execute commands

 # Not a big deal when using sendmail, but very important

 # when using UCB mail (aka mailx).

 $value =~ s/~!/ ~!/g;

 # Uncomment for debugging purposes

 # print "Setting $name to $value<P>\n";

 $FORM{$name} = $value;

 }

 %FORM; # Returns %FORM to caller source...

} #End Sub form_mail

###

#

sub dump_env_vars

#

Dumps the contents of %ENV in HTML

#

INPUTS: \%ENV

#

###

sub dump_env_vars

{

 my ($ENV) = @_;

 foreach (keys %$ENV)

 {

 print "$_=$$ENV{$_}
";

 }

}

For require files

1;

Listing 5.9. mail.cgi .

#!/usr/local/bin/perl -w

#

mail.cgi: This is an CGI program that sends the results of the fill-out

form to the recipient indicated in the form.

#

Note: This CGI program relies on hidden variables in the form associated

with this listing.

require CGILIB; #Use the lib included in book

use strict; #Make sure we declare all our variables

$| = 1; #Flush STDOUT

my(%FORM); #Declare all the variables

my($recipient, $sender, $thank_you);

my($mailprog);

%FORM = CGILIB::parse_form();

$mailprog = '/usr/lib/sendmail';

Location of thank_you page to be displayed after submitting form

$thank_you = $FORM{thank_you_location};

$recipient = $FORM{recipient};

$sender = $FORM{email};

#Grab some environment info

$FORM{Date} = `date`;

$FORM{ServerProtocol} = $ENV{'SERVER_PROTOCOL'};

$FORM{RemoteHost} = $ENV{'REMOTE_HOST'};

$FORM{RemoteAddress} = $ENV{'REMOTE_ADDR'};

$FORM{HTTPUserAgent} = $ENV{'HTTP_USER_AGENT'};

email_recipient();

say_thank_you();

exit(0);

##

#

email_recipient() : calls the mail program and sends a message.

#

sub email_recipient

{

 my($key);

 open (MAIL, "|$mailprog $recipient") || die "Cant open mail program: $!";

 print MAIL "To: $recipient\n";

 print MAIL "From: $sender ($FORM{name})\n";

 print MAIL "Reply-To: $sender ($FORM{name})\n";

 print MAIL "Subject: Email from Web Form :) \n\n"; #Need two \n's for

 foreach (keys %FORM)

 {

 print MAIL "$_ : $FORM{$_}\n";

 }

 print MAIL "\n\n End of email message.\n";

 close(MAIL);

}

##

#

say_thank_you() : redirects user to the thank-you page.

#

sub say_thank_you

{

 print "location: $thank_you\n\n";

}

Listing 5.10. form.html .

<HTML>

<HEAD>

<TITLE>My Cool Email Form</TITLE>

</HEAD>

<BODY>

<FORM METHOD="GET" ACTION="mail.cgi">

<INPUT NAME="recipient" TYPE="hidden" VALUE="youremail@yourdomain.com">

<INPUT NAME="thank_you_location" TYPE="hidden" VALUE="http://www.yourdomain.com/
thank_you.html">

<P>

Name:

<INPUT NAME="name" TYPE="text" SIZE=40>

</P>

<P>

Email:

<INPUT NAME="email" TYPE="text" SIZE=40>

</P>

<P>

Comments:</BR>

<TEXTAREA NAME="comments" COLS=40 ROWS=10></TEXTAREA>

</P>

<INPUT TYPE="submit">

</FORM>

</BODY>

</HTML>

As you can see, I have included an example form. You may be wondering about the thank_you.html URL in the variable
thank_you_location. Well, you have to create it. It is what your page visitors will see after they submit their form to the

mail.cgi program. The process used is called redirection. A location header followed by two newline characters is sent, which
redirects the user to the desired page.

The next program listing e-mails form results like the others, but uses Thomas Boutell's cgic library. Also, the form (shown in
Listing 5.11) used is slightly different.

Listing 5.11. The form in cgic .

/**

 *

 * email.cgi:

 *

 * This program reads the fields of the given form and emails

 * the contents to the destination, kept in the hidden field from within

 * the form. The program uses Thomas Boutell cgic library.

 *

 **/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include "cgic.h"

#define FIELD_SIZE 51

#define ADDRESS_SIZE 500

#define DEBUG1 0

#define TO "webmaster@foo.bar.com" /* Substitute your address */

#define FROM "Web Fill-Out Form"

void printEnvironmentVariables();

int cgiMain()

{

 char name[FIELD_SIZE];

 char address[ADDRESS_SIZE];

 FILE* mailer;

#if DEBUG1

/* Load a saved CGI scenario if we're debugging */

cgiReadEnvironment("/tmp/capcgi.dat");

#endif

 cgiFormStringNoNewlines("Name", name, FIELD_SIZE);

 cgiFormString("Address", address, ADDRESS_SIZE);

 /* Open a pipe to sendmail */

 mailer = popen("/usr/lib/sendmail -t", "w");

 if (mailer <= 0)

 {

 perror("Unable to open pipe to sendmail\n");

 exit(1);

 }

#if DEBUG

printf("popen: Done\n");

#endif

 /* Now fill in the sendmail headers */

 fprintf(mailer, "To: " TO "\n");

 fprintf(mailer, "From: " FROM "\n");

#if DEBUG

printf("From: Done\n");

#endif

 fprintf(mailer, "Subject: Results of fill-out form for %s\n\n", name);

 /* Now give the results of the form */

 fprintf(mailer, "Name: %s\n", name);

 fprintf(mailer, "Address: \n%s\n", address);

 fprintf(mailer, "\nEnd of form submission.\n");

 pclose(mailer);

 cgiHeaderContentType("text/html");

 fprintf(cgiOut, "<HTML><HEAD>\n");

 fprintf(cgiOut, "<TITLE>Form Mailed!</TITLE></HEAD>\n");

 fprintf(cgiOut, "<BODY><H1>Form Mailed!</H1>\n");

 fprintf(cgiOut, "Thank you, %s. Your email will be read ASAP!
\n",

 name);

 printEnvironmentVariables();

 fprintf(cgiOut, "</BODY></HTML>\n");

 return 0;

}

void printEnvironmentVariables()

{

 fprintf(cgiOut, "cgiServerSoftware=%s
\n", cgiServerSoftware);

 fprintf(cgiOut, "cgiServerName=%s
\n", cgiServerName);

 fprintf(cgiOut, "cgiGatewayInterface=%s
\n", cgiGatewayInterface);

 fprintf(cgiOut, "cgiServerProtocol=%s
\n", cgiServerProtocol);

 fprintf(cgiOut, "cgiServerPort=%s
\n", cgiServerPort);

 fprintf(cgiOut, "cgiRequestMethod=%s
\n", cgiRequestMethod);

 fprintf(cgiOut, "cgiPathInfo=%s
\n", cgiPathInfo);

 fprintf(cgiOut, "cgiPathTranslated=%s
\n", cgiPathTranslated);

 fprintf(cgiOut, "cgiScriptName=%s
\n", cgiScriptName);

 fprintf(cgiOut, "cgiQueryString=%s
\n", cgiQueryString);

 fprintf(cgiOut, "cgiRemoteHost=%s
\n", cgiRemoteHost);

 fprintf(cgiOut, "cgiRemoteAddr=%s
\n", cgiRemoteAddr);

 fprintf(cgiOut, "cgiAuthType=%s
\n", cgiAuthType);

 fprintf(cgiOut, "cgiRemoteUser=%s
\n", cgiRemoteUser);

 fprintf(cgiOut, "cgiRemoteIdent=%s
\n", cgiRemoteIdent);

 fprintf(cgiOut, "cgiContentType=%s
\n", cgiContentType);

 fprintf(cgiOut, "cgiAccept=%s
\n", cgiAccept);

 fprintf(cgiOut, "cgiUserAgent=%s
\n", cgiUserAgent);

}

The associated HTML code for the form is shown in Listing 5.12.

Listing 5.12. The new HTML code .

<HTML>

<HEAD>

<TITLE>WhoAreYou</TITLE>

</HEAD>

<BODY BGCOLOR="#ffffff">

<FORM ACTION="/cgi-bin/email.cgi" ENCTYPE="x-www-form-encoded" METHOD="GET">

<HR>

Your name:

<INPUT NAME="Name" TYPE="text" SIZE="53">

Your Address:

<TEXTAREA NAME="Address" ROWS="6" COLS="50"></TEXTAREA>

<HR>

<P ALIGN=CENTER>

<INPUT NAME="name" TYPE="submit" VALUE="Submit">

</P>

</FORM>

</BODY>

</HTML>

As you can see from the C code, the only thing really different about calling sendmail using C is that you use the popen()
system call within the unistd.h header file. This system call is actually also what Perl uses internally when you do an open() to
a pipe.

Random Data

They say variety is the spice of life. Well, if that's true, then it is the lifeblood of any good Web site. People will be certainly
more inclined to come back to your Web site if the information and look of your site changes over time. The problem with
keeping your site fresh and different is that it requires a lot of maintenance if you code it statically—that is, you have to
manually enter changes into one or more HTML files for display.

Randomizer programs can add a little variety to your Web site without a lot of tedious work. The two I discuss here are an
image randomizer and a URL randomizer.

An Image Randomizer

One good way to do this is through the use of an image randomizer program. Wouldn't it be nice if every time a user loaded
one of your pages, he or she would see a different image depending on the context of the page?

Or perhaps you're the enterprising type and you want to get into the advertising business. You could statically display banners
on each page, but that wouldn't be very flexible. You'd have to charge more for the most frequently hit pages, less accordingly
for the lesser-hit pages, and most importantly, you'd have to manually rotate the image tags if you wanted a rotating display
schedule! Well, what if you could guarantee an advertiser exposure on every page—say 1 in every 10 hits? Much more
attractive to the advertiser and easier on your time.

I have created such a beast for inclusion with this book, shown in Listing 5.13. The image randomizer displays a random image
from a configuration file with each hit on the page. Varying the frequency of each individual banner URL in the config file
increases the chances of seeing that particular banner, thus allowing for rate schedules for advertisers wanting more exposure.
The beauty of this scheme is that you can mix it with a static banner display scheme. Say, for example, one company wants to
pay you a ton of money for placing its banner on your front page all the time. Well, that's fine; just statically code the URL.
Done! The randomizer runs only when you tell it to. It doesn't have to be used on each page.

This program is written in Perl and must be run on a server with server-side includes enabled (see Chapter 6,
"SSI—Server-Side Includes"). Also, you need to specify a configuration file, which is a file consisting one or more lines of the
following format:

"Link-URL","Image-URL","IMAGE_OPTIONS"

Briefly, "Link-URL" specifies a fully qualified URL for the destination the user is taken to upon clicking the banner,
"Image-URL" is a fully qualified URL for the banner itself, and "IMAGE_OPTIONS" is a tag added to the <IMAGE> tag of
the banner graphic. Any string of valid tags and values is acceptable here, the most important, perhaps, being the "BORDER="
tag, which is a Netscape extension to HTML specifying the size and presence of a hyperlink color border around an image.

So a sample graphics.conf would look something like this:

"http://www.foobar.com","http://www.yoursite.com/banners/foobar.gif","BORDER=0"

"http://www.anothersite.com","http://www.yoursite.com/banners/anothersite.gif",

"BORDER=0"

"http://www.foobar.com","http://www.yoursite.com/banners/foobar.gif","BORDER=0"

"http://www.foobar.com","http://www.yoursite.com/banners/foobar.gif","BORDER=0"

In this configuration file, there are only two advertisers who have banners. However, foobar.gif will be seen 75 percent of the
time (3 out of 4), while anothersite.gif will be seen 25 percent of the time (1 out of 4). This allows for a schedule of rates, as I
mentioned.

Listing 5.13. The Perl randomizer .

#!/usr/local/bin/perl -w

#

random.cgi - prints a graphic at random from a configuration file

#

$conf_file: the absolute path to your configuration file (your listing of

URL's to the graphics.

#

$ad_tag: the string outputted to the web page SSI location

#

Call this script from a server-parsed html document (.shtml for example) and make

sure that server-side includes are enabled.

#

Use the following example code:

#

<!--#exec cmd="/yourpath/random.cgi"-->

#

Of course, substitute your actual path to the random.cgi for / yourpath. Again,

this won't work unless Server-Side Includes are activated for Apache...

use strict; # Declare all our variables before using them

$| = 1; # Flush the output buffer

#Variables

my($conf_file, $URL, $graphic, $ad_tag, $border);

my(@Graphics);

my($num_graphics, $rand_graphic);

$conf_file = "/path-to-config-file/graphics.conf";

srand;

open(IN, $conf_file) || die "Cannot open $conf_file: $!";

@Graphics = <IN>;

close(IN);

$num_graphics = @Graphics; #Get length of @Graphics array

$rand_graphic = int(rand($num_graphics - 1));

($URL,$graphic,$border) = split(/,/, $Graphics[$rand_graphic]);

$URL =~ s/\"//g;

$graphic =~ s/\"//g;

$border =~ s/\"//g;

$ad_tag = "";

print $ad_tag;

exit(0);

A URL Randomizer

You can very easily adapt the image randomizer to act as a URL randomizer . What good is a URL randomizer? Well, it adds
that ever-so-important quality of variety to your site, and it allows you to direct people to random, but related sites of interest.

Say you were writing a page about turtles—their habitats, behavior, variations, basically the whole "turtle thing." Being the
thorough person you are, you decide to include hyperlinks to those resources in your page. Naturally, there are a lot of
resources on turtles on the Internet. Yahoo! lists 31 entries on the query turtle—too many to include on a main page. So you
decide to include the hyperlinks on a separate page called "Turtle Links." But this is away from the main page; you need
something more eye-catching to draw people to other resources. Aha! Perhaps a "Link of the Day" at the top of your main page
would look cool.

How could you use the image randomizer to do this? Well, the easiest way to do it is to simply create one image for "Random
Turtle Link of the Day" and make it the default clickable image for each hyperlink in the graphics.conf file. No modifications
are necessary.

A Bulletin Board

Another useful application a bulletin board , or message board. This provides a way for a user of your Web site to not only
give feedback on various topics, but to see other people's opinions and ideas.

The program I have provided to illustrate this concept is very simple. (See Listing 5.14.) It provides a framework to which you
can add the features you need. In its current working form, a user can add a message, clear the board of messages, or update
the board to see new messages. Obviously, you don't want to give the user the capability to clear the board, and maybe you
don't want her to be able to directly modify the message board file by posting the message to the message board without your
review. You can make modifications to avoid this—for example, have all messages mailed to your address for review and
censorship. Then, if a message is appropriate, you could post it to the board. This would solve all sorts of problems, such as
people not conforming to the general theme of the board.

Another use of the board is as a chat vehicle. Two or more people could be given the address of the board, and then through
the use of the Add and Update buttons, a "conversation" could be held. This is very useful if you want to have a conference
call of more than two people, because IRC and talk are not options for everyone.

The program is written in Perl, as you can see from the source code, and it requires the CGILIB.pm library listed in Listing 5.8.

Listing 5.14. The Perl bulletin board .

#!/usr/local/bin/perl -w

#

board.cgi

#

This program writes messages to a message board.

#

unshift (@INC,"/NextLibrary/WebServer/htdocs/perl/lib");

use strict;

require CGILIB;

Parse the form data

my(%FORM) = CGILIB::parse_form();

The location of the messageboard file. This should be something

other than /tmp if you want the messages to hang around in case

your system goes down. However, /tmp is fine if all you want is

a chat session.

my($board_file) = "/tmp/messageboard";

Add a message

if ($FORM{action} =~ /add/)

{

 # Add message only if message body isn't empty

 if ($FORM{message} ne "")

 {

 add_message();

 }

}

Clear the board of messages.

elsif ($FORM{action} =~ /clear/)

{

 system("rm $board_file");

}

Default actions

display_form();

display_board();

exit(0);

##

#

sub display_form()

#

Prints out the header and the HTML for the form part of the page.

#

sub display_form

{

 CGILIB::print_header();

 print <<STOP;

<HTML>

<HEAD>

<TITLE>Message Board</TITLE>

</HEAD>

<BODY>

<H1>Message Board</H1>

<FORM METHOD="GET" ACTION="board.cgi">

<TEXTAREA NAME="message" ROWS=10 COLS=40 WRAP=VIRTUAL></TEXTAREA>

<INPUT NAME="action" TYPE="submit" VALUE="add">

<INPUT NAME="action" TYPE="submit" VALUE="clear">

<INPUT NAME="action" TYPE="submit" VALUE="update">

</FORM>

<HR>

STOP

}

##

#

sub display_board()

#

Displays each message, in the order of most recent to least recent.

#

sub display_board

{

 my(@board);

 my($count) = 0;

 my($message);

 # Check to see if messageboard file exists.

 if (-e $board_file)

 {

 # Load message file and slurp all the messages into an array.

 # One message per line. Newline is the delineator.

 open(BOARD, $board_file) || die "Cannot read $board_file: $_";

 @board = <BOARD>;

 close(BOARD);

 # Since messages are appended to the end of the file, simply

 # reversing the array will order them in most-recent-first.

 @board = reverse(@board);

 # Now traverse the array, printing each message

 foreach $message (@board)

 {

 $count++;

 print "Message $count:\n";

 print "<BLOCKQUOTE>$message\n";

 print "</BLOCKQUOTE>
\n";

 }

 }

 # Else message board is empty

 else

 {

 print "Message Board empty\n";

 }

 print "</BODY></HTML>\n";

}

##

#

sub add_message()

#

Appends a message to the end of the messageboard file. Converts

all newlines to
 tags for convenient processing.

#

sub add_message

{

 my($message);

 # Open messageboard file for appending.

 open(BOARD, ">>$board_file") || die "Cannot write $board_file: $_";

 $message = $FORM{message};

 # Convert newlines (\n) to

 $message =~ s/\n/
/g;

 print BOARD "$message\n";

 close(BOARD);

}

Summary

CGI is a very complex topic and one that is important for most Web applications. Instead of reinventing the wheel (that is,
unless you think you can do it better), there are tons of tools out on the Net such as cgic and Un-CGI that can make your life
much easier. Instead of reinventing, search. More than likely someone has already done what you are looking for.

While this chapter has discussed the generalities of how to write a CGI program, it didn't address any of the issues you need to
address when writing a secure CGI program. Before you write your first CGI program intended for public consumption, you
may want to read Chapter 16, "Web Server Security Issues." The information there may be very enlightening.

If your site is CGI intensive (you run many CGI programs), you may benefit from learning about FastCGI. FastCGI is a
replacement for the CGI mechanism that offers incredible performance gains with very little modification to what you have
learned in this chapter. Information about FastCGI is covered in great detail in Appendix C, "FastCGI."

SPML Commands

config■

echo■

exec■

fsize■

flastmod■

include■

■

Include Variables■

SSI Example■

Extended Server Side Includes (XSSI)

Variables■

Output Commands■

Flow Control■

■

Summary■

6

Server Side Includes (SSI)

Server Side Includes (SSI), also known as Server Parsed HTML (SPML), provides a convenient way of performing
server-side processing on an HTML file before it is sent to the client. SSI provides a set of dynamic features, such as
including the current time or the last modification date of the HTML file without developing a CGI program to that
performs this function. SSI can be considered as a server side scripting language.

Server parsed HTML documents are parsed and processed by the server before they are sent to the client. Only documents
with a MIME type of text/x-server-parsed-html or text/x-server-parsed-html3 are parsed and processed. The resulting
HTML is given a MIME type of text/html and is returned to the client.

You can include information such as the current time, execute a program and include its output, or include a document just
by adding some simple SPML commands to your HTML page. When the HTML page is properly identified to the server as
containing SPML tokens, the server parses the file and sends the result to the client requesting it.

Enabling Apache to Run Server Side Includes

By default, SSIs are not enabled on a standard Apache configuration. Before you can incorporate
SSI commands into your HTML documents, you will have to add a few directives to your
configuration files.
The first step is to uncomment (remove the # character at the beginning of a line) the two lines in
your srm.conf file that enable the following directives:
AddType text/html .shtml
AddHandler server-parsed .shtml
If these directives are missing, simply add them to the configuration file. The AddType directive
maps the extension .shtml to the MIME type text/html. The AddHandler directive maps the .shtml
extension to a handler. Handlers allow the server to perform some action based on a file type.
They handle the processing of the file before it is returned to the client. The server-parsed handler
referenced in the AddHandler directive is predefined in the base Apache distribution.
The AddType and AddHandler directives enable the server to recognize and process files that
contain SPML tokens. However, that alone is not enough to enable their use in Apache. Because
SSI can execute programs and include other documents in your filesystem, processing of the
SPML tokens is not allowed by default. To enable the processing of SPML commands, you’ll
need to override the default set of options. The Options directive allows you to control which
features are available in which server directory. This allows you to provide different security
settings to different areas of your server document tree. If the server attempts to execute an SSI
document in a directory that doesn’t enable this functionality, the request fails.
By default the htdocs document tree only allows Indexes and FollowSymLinks, which enable the
server to generate automatic directory listings and to follow symbolic links, respectively. Apache
provides two different options that enable SSI execution:
Includes
IncludesNOEXEC
Includes activates all commands available to server side includes. IncludesNOEXEC is a more
restrictive option; it disables the exec and include commands. As their names suggest, the exec
command executes programs and the include command inserts other documents into the requested
HTML file.
Because of the obvious security implications associated with executing programs and including
other documents, you should not enable SSI execution system wide, unless you are able to control
what those SSI do.
The Options directive can be found inside a <Directory> section inside the global access
configuration file, access.conf or in a per-directory access control file (.htaccess) files. For more
information, see Chapter 9, "Apache Server Core Directives," which explains in great detail the
<Directory> and Options directives.

An SPML document is parsed as an HTML document, with SPML commands embedded as Standard Generalized Markup
Language (SGML) comments. The commands follow this syntax:

<!--#command option=value option=value ...-->

Each command has a different set of options that you can specify. Usually options have a value portion (a parameter).
Currently the available commands include facilities to do the following:

Execute programs●

Obtain file size and modification information●

Include text from other documents or from a program●

Configure the format used to display results from the various commands●

SPML Commands

The available SPML commands are

config●

echo●

exec●

cmd●

fsize●

flastmod●

include●

config

The config command controls various aspects of the parsing and establishes various formatting options for displaying
errors, date-time strings, and file sizes. The valid options you can use are (note that quotes surround values):

errmsg="message" message is the message
returned to the client if
an error occurs during
the parsing of the
document.

sizefmt=["bytes"] | ["abbrev"] These options set the
format used to display a
file size. Valid values
are

bytes for a size returned
in bytes.

abbrev for a size
returned in KB or MB
as appropriate.

timefmt="format" format is a format string
that specifies the format
used to print the date. It
is compatible with the
strftime library available
under most UNIX
environments. The
various strftime format
options are

%% identical to %; use it if
you need a percent sign
in the output.

%a abbreviated weekday
name

%A full weekday name

%b abbreviated month
name

%B full month name

%c time and date using the
time and date
representation for the
locale (the same as
using the %X %x
options together).

%d day of the month as a
decimal number
(01–31)

%H hour based on a 24-hour
clock as a decimal
number (00–23)

%I hour based on a 12-hour
clock as a decimal
number (01–12)

%j day of the year as a
decimal number
(001–366)

%m month as a decimal
number (01–12)

%M minute as a decimal
number (00–59)

%p AM/PM designation
associated with a
12-hour clock

%S second as a decimal
number (00–61)

%w weekday as a decimal
number (0–6), where
Sunday is 0

%x date using the date
representation for the
locale

%X time using the time
representation for the
locale

%y year without century
(00–99)

%Y year with century (for
example, 1990)

%Z time zone name or
abbreviation, or no
characters if no time
zone is determinable.

echo

The echo command prints any of the include environment variables. If the specified variable doesn't have a value, it prints
as (none). Printing of dates is subject to the currently configuration of timefmt. Valid options include the following:

var="variable" variable is the name of the variable to print.

Beginning with Apache 1.1, the SSIs and CGIs you call from your SSI also have access to the CGI environment variables.
For a complete listing, refer to Chapter 5, "CGI (Common Gateway Interface) Programming."

Beginning with Apache 1.2, Apache adopted the use of the XSSI module as their standard SSI processor. XSSI is discussed
in detail in a section of this chapter entitled, "eXtended Server Side Includes (XSSI)."

exec

The exec command executes the specified shell command or CGI program. This option can be disabled by the
IncludesNOEXEC option. The valid options are

cgi="path" path specifies the program to be run. If path is not an absolute path
(one that begins with a /), then path is taken to be relative to the
current document.

The directory containing the program must be a CGI directory
approved by either a ScriptAlias or by setting the ExecCGI option
in the global access configuration file or on a per-directory access
file.

The program's environment include the PATH_INFO and
QUERY_STRING variables set to the values sent in the original
request. The include variables are available to the script in addition
to the standard CGI environment.

Programs that return a Location: header have their output
translated into an HTML anchor.

Use of the include virtual element is preferred to exec cgi.

cmd="string" The server will execute string using /bin/sh. The environment
includes the include variables and, beginning with Apache 1.1, the
complete set of CGI environment variables.

fsize

This command inserts the size of the specified file, subject to the sizefmt format specification. The options to this command
are

file="path" The value is a path relative to the directory containing the current
document being parsed.

virtual="path" If path is not an absolute path (one that begins with a (/), path is
taken to be relative to the current document.

flastmod

This command inserts the last modification date of the specified file, subject to the timefmt format specification. The
options for this command are

file="path" The value is a path relative to the directory containing the current
document being parsed.

virtual="path" If path is not an absolute path (one that begins with a (/), it is
taken to be relative to the current document.

include

This command inserts another document into the parsed file. Included files are subject to any access-control settings
governing their access, including any restrictions to CGI program execution. If there is a permissions restriction, the file or
program output won't be included.

An option specifies the document's location; an inclusion is done for each option given to the include command. Valid
options are as follows:

file="filename" filename is a filename relative to the directory containing the
current document being parsed. It cannot contain ../, nor can it
be an absolute path. The virtual option should always be used
in preference to this one.

virtual="urlpath" urlpath is a path relative to the current document being parsed.
The URL cannot contain a scheme or hostname, only a path
and an optional query string. If urlpath is not an absolute path
(one that begins with a /), path is taken to be relative to the
current document.

A URL is constructed from the option, and the output the
server would return if the URL were accessed by the client is
included in the parsed output; included files can be nested.

Include Variables

These variables are provided for includes and to any program invoked by the document:

DATE_GMT The current date in Greenwich Mean Time (GMT).

DATE_LOCAL The current date in the local time zone.

DOCUMENT_NAME The filename of the document requested by the user.
DOCUMENT_NAME does not include any path
information.

DOCUMENT_URI The path of the document requested by the user.

LAST_MODIFIED The document's last modification date.

[ic:Apache 1.1]In Apache 1.1, you can access the CGI environment variables (for a complete list, refer to Chapter 5) in
addition to the include variables. The standard CGI 1.1 specification defines the several variables. Some are filled for all
requests (SERVER_SOFTWARE, SERVER_NAME, and GATEWAY_INTERFACE). Others are request specific and may
not be defined. A third category is added by the client program. These variables start with HTTP.

With this information you can create some pretty useful SPML pages that start to act more like a CGI program than a
SPML. Two omissions from the Apache SSI module are conditional execution and user-defined variables. Howard Fear has
developed a full replacement for the Apache SSI module, adding this missing functionality. This module is called XSSI. It
is available from the CD-ROM included with this book, and is part of the standard Apache distribution for 1.2, which at the
time this book was written, is yet unavailable.

SSI Example

Here's an example, shown in Listing 6.1 and then in Figure 6.1, that puts it all together. You may want to implement
something like this on your own site. The page returned is generated at random, based on a small database of quotes (in my
programs the database is referred to as quotes.conf). Each entry in the database is a single line of text. Each record in the
quote database is separated by a newline.

Listing 6.1. quote.shtml.

<HTML>

<HEAD>

<TITLE> Random Quote </TITLE>

</HEAD>

<BODY>

<P ALIGN=CENTER>

Random Quote

</P>

<HR>

<BLOCKQUOTE>

<!--#exec cmd="cgi/quoteoftheday.cgi"-->

</BLOCKQUOTE>

<HR>

<!--#exec cmd="cgi/envvar.cgi"-->

<P>

<!--#config timefmt="%A, %B %d %Y"-->

<!--#echo var="DATE_LOCAL"-->

</BODY>

</HTML>

Figure 6.1. Quote of the day.

The quoteoftheday.cgi program returns a random line from the quote database (see Listing 6.2). The quote database is just a
simple text file with one quote per line. The CGI returns one line, which the server inserts into the HTML stream returned
to the client.

Listing 6.2. quoteoftheday.cgi.

#!/usr/local/bin/perl -w

#

quote.cgi - prints a quote at random

$conf_file: the absolute path to your configuration file

$ad_tag: the string outputted to the web page SSI location

Call this script from a server-parsed html document (.shtml for example) and make

sure that server-side includes are enabled.

#

Use the following example code:

<!--#exec cmd="/yourpath/random.cgi"-->

#

Of course, substitute your actual path to the random.cgi for / yourpath. Again,

this won't work unless Server-Side Includes are activated for Apache...

use strict; # Declare all our variables before using them

$| = 1; # Flush the output buffer

#Variables

my($conf_file, $quote);

my(@Quotes);

my($num_quotes, $rand_quote);

$conf_file = "/NextLibrary/WebServer/htdocs/AccessLink.htmld/cgi/quotes.conf";

srand;

open(IN, $conf_file) || die "Cannot open $conf_file: $!";

@Quotes = <IN>;

close(IN);

$num_quotes = @Quotes; #How many quotes are there?

$rand_quote = int(rand($num_quotes - 1));

$quote = $Quotes[$rand_quote];

print $quote;

exit(0);

Finally, envvar.cgi is a trivial Perl program that prints out two of my CGI environment variables. (See Listing 6.3.) If you
are using Apache 1.1.1's SSI module or XSSI, CGI variables are available as any of the standard SSI variables, so there's no
need for this program.

Listing 6.3. envvar.cgi.

#!/usr/local/bin/perl -w

#

use strict; # Declare all our variables before using them

$| = 1; # Flush the output buffer

print "HTTP_USER_AGENT = $ENV{HTTP_USER_AGENT}
\n";

print "REMOTE_ADDR = $ENV{REMOTE_ADDR}
\n";

Extended Server Side Includes (XSSI)

To circumvent some of the limitations of the standard SSI Apache module, Fear developed an extended SSI module that
provides additional functionality and directives.

XSSI is a plug-in replacement module for the built-in mod_include module. Extended Server Side Includes (XSSI)
enhances the server side include syntax and provides serveral additional features, including:

Conditional inclusion with if-then-else constructs●

User-defined variables●

Additional output directives●

Regular expression support●

[ic:cd icon]The SSI module is available on the CD-ROM included with this book. The latest version can be found at
http://pageplus.com/~hsf/xssi.

Variables

XSSI supports the notion of user-defined variables that you can use on all value tags, with the exception of var=, which you
can use on all directives.

To define a variable, you use the set directive:

<!--#set var="variableName" value="variable_value"-->

For example, to define a variable program that holds the value "/cgi-bin/printenv", you would set the following:

<!--#set var="program" value="/cgi-bin/printenv" -->

You can then use this variable on any value tag, except on the var=tags:

<!--#exec cgi="$program" -->

Alternatively, you can specify additional arguments by enclosing the variable in braces like the following:

<!--#exec cgi="${program} additional_text"-->

In addition to the variables defined for SSI, you can use any of the CGI environment variables (for a complete listing of
these variables, please refer to the Chapter 5), which help create very simple, yet powerful, SSI programs without the need
to write a CGI program.

It's worth noting that the $ syntax to denote variable names may cause problems in exec cmd constructs where the $ may be
used by another program to denote an argument. For example:

<!--#exec cmd="/usr/local/etc/httpd/cgi-bin/finger @${HOST_NAME} |/bin/ awk '{print
$1}'" -->

This SSI won't work as expected. The $1 is set to a null value, which causes awk to print the complete line instead of the
first word as intended. The solution to this minor inconveniece is to have an sh script handle all the output properly and
return the data to you.

Output Commands

In addition to the echo, fsize, and flastmod commands, which work as I've described, XSSI provides printenv, which prints
all variables currently set (this includes CGI environment variables):

<!--#printenv -->

Flow Control

XSSI provides you with basic flow control with the following directives:

<!--#if expr="condition" -->

<!--#elif expr="condition" -->

<!--#else -->

<!--#endif -->

The if constructs work as they do in any programming language. If condition evaluates to true, all text specified until the

next elif, else, or endif is included in the output. If condition evaluates to false, text specified after the else statement is
included in the output.

The elif condition is evaluated if the preceding if statement evaluated to false. Statements specified after an elif statement
are included in the output if the elif expression evaluates to true.

All conditional constructs must be terminated by an endif construct.

Any token that is not recognized as a variable or an operator is treated as a string. Strings can be quoted; variable
substitution is done within quoted strings (if you need a $ within a string, you can escape it by preceding it with a backslash
(\) character). Unquoted strings cannot contain whitespace because spaces are used to separate other tokens. condition can
be any of the following:

string Evaluates to true if the string or variable is not empty

stringA = stringB Evaluates to true if stringA is equal to stringB

stringA != stringB Evaluates to true if stringA is not equal to stringB

(condition) True if the condition evaluates to true

!condition True if the condition is false

conditionA && conditionB True if both conditions are true

conditionA || conditionB True if either conditionA or conditionB is true

More interesting than a straight comparison is that XSSI allows you to test using regular expressions that follow the UNIX
egrep syntax. In Table 6.1, character excludes newline.

Table 6.1. egrep syntax.

Syntax Effect

\character Matches that character.

^ Matches the beginning of a
line.

$ Matches the end of a line.

. Matches any character.

[string] Matches any single character
in the string. You can
abbreviate ranges of ASCII
character codes as a-z0-9. A]
may occur only as the first
character of the string. A
literal (a character) must be
placed where it can't be
mistaken as a range indicator.

character Matches that character, as
long as that character doesn't
have another meaning on a
regular expression

expresion* Matches a sequence of 0 or
more matches of the regular
expression.

expresion+ Matches a sequence of 1 or
more matches of the regular
expression.

expresion? Matches a sequence of 0 or 1
matches of the regular
expression.

expression expression Two regular expressions
concatenated match a match
of the first followed by a
match of the second.

expression|expression Two regular expressions
separated by | or a newline
can either match the first or
the second.

(expression) A regular expression enclosed
in parentheses matches the
regular expression definition.

The order of precedence of operators at the same
parenthesis level is [], then *+?, then
concatenation, and then | and newline.

The following example shows you how to output HTML based on the browser detected:

<!--#if expr="${HTTP_USER_AGENT} = /Mozilla/" -->

Output NETSCAPE specific HTML

<!--#else --> Output HTML 2.0 compliant formatting

<!--#endif -->

Summary

The benefits of Server Parsed HTML don't come gratis. The parsing process is costly in terms of server performance, and
also adds some security issues. If you are concerned about security, you may want to disable the IncludeNoExecs option,
which allows SPML but disables the #exec and #include commands from SSI. Obviously, this severely hampers the
usefulness of SSI severely. For more information on the security issues involved, take a tour to Chapter 16, "Web Server
Security Issues."

In terms of programming, SPML gives you the capability to embed some "programming" into your pages. However, there
are many features that have to be lacking for it to become a serious option to CGI programs.

If you are interested in pursuing HTML scripting type languages, of which SSI is a member, you may want to explore
PHP/FI, which is another HTML-embedded scripting language. For more information on PHP/FI, check its home page at
http://www.vex.net/php.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#4

mod_auth_cookies_file

Directives

Cookie_Access■

Cookie_AuthFile■

Cookie_Authorative■

Cookie_MustGive■

Cookie_EncryptedCookies■

■

■

mod_auth_cookies_msql

Directives

Cookie_Access■

Cookie_Authorative■

Cookie_MustGive■

Cookie_MSQL_table■

Cookie_MSQLcookie_namefield■

Cookie_MSQLcookie_valuefield■

Cookie_MSQLdatabase■

Cookie_MSQLhost■

Cookie_MSQLuid_field■

Cookie_EncryptedCookies■

■

■

mod_userpath

Directive

UserPath■

■

■

mod_cgi_sugid

Directives

UserID■

■

■

GroupID■

mod_auth_sys■

mod_perl and mod_perl_fast■

mod_auth_external

Directives

AddExternalAuth■

AuthExternal■

AddExternalGroup■

ExternalGroup■

■

■

mod_auth_kerb

Directives

AuthType■

KrbAuthRealm■

RedirectHttps■

■

■

mod_fontxlate■

mod_cntr■

mod_sucgi■

mod_auth_dbi

Directives

AuthDBIAuth■

AuthDBIDB■

AuthDBIDriver■

AuthDBINameField■

AuthDBIPasswordField■

AuthDBIUser■

AuthDBIUserTable■

■

■

mod_rewrite■

mod_neoinclude■

mod_xinclude (XSSI)■

mod_php■

Summary■

7

Third-Party Modules

There is a wide range of modules developed by third parties for Apache that extend the functionality of
the server in some useful way. Following the belief that it is better to reuse and enhance than to recreate,
this chapter covers some of the third-party modules registered with the Apache Module Registry. The
registry can be found at http://www.zyzzzyva.com/server/module_registry (see Figure 7.1).

Figure 7.1. The home page of the Apache Module Registry.

mod_auth_cookies_file

Source: mod_auth_cookie_file.c

Author: Dirk-Willem van Gulik

Type: User authentication/Access control

Home: http://med.jrc.it//~dirkx/mod_auth_cookie_file.c

This module is designed to allow transparent authentication to users who have previously registered with
your site. Suppose that you want to have visitors register with you before they access your software
download area. By collecting information from them and then issuing a persistent cookie, the next time
they visit your download area they can forgo the authentication procedure.

Cookies are a Netscape extension. The official reference for Netscape cookies can be found at
http://home.netscape.com/newsref/std/cookie_spec.html.

A cookie allows the browser to identify itself every time it makes a request. A cookie is no more than a
ticket. When you go to your dry cleaner and give them clothes for cleaning, they give you a ticket. That
ticket identifies you as having brought clothes in for cleaning; it associates you with your clothes. You
can think of the dry cleaner's ticket as a cookie.

There are two types of cookies: persistent and temporary. Persistent cookies get recorded in the visitor's
computer for use later. When the browser makes subsequent requests to the same URL, it first checks to
see if it has a cookie for it. If it does, the browser includes this information in the HTTP request header
where a program in the server (a CGI or a module) can use this information for any purpose it wants.
Temporary cookies are only used during the duration of the visit, after which they are discarded.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#11
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#12
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#13

A Netscape persistent cookie is set with an HTTP header like the following:

Set-Cookie: Name=value; [Expires=date;] [Path=path;] [Domain=domainname;] [Secure]

The Set-Cookie header can be embedded in an HTML document in a META tag, like the following, or
from a CGI:

<META HTTP-EQUIV="Set-Cookie" CONTENT="Customer=John Doe"; Path=/;
Domain=www.domain.com">

When sent from a CGI, this information must be sent as part of the HTTP header. For more information
on how to form a header, please refer to Chapter 5, "CGI (Common Gateway Interface) Programming."

Name specifies the name identifier for the cookie.

value can be any information you want to keep track of.

The Expires option sets a date that will be used for expiring the cookie. If not specified, the cookie will
expire at the end of the current session, making it a temporary cookie. The format is Wdy, DD-Mon-YY
HH:MM:SS GMT. Wdy is the day of the week; possible values for Wdy are Mon, Tue, Wed, Thu, Fri,
Sat, or Sun. DD is the day of the month; possible values are 01–31. Mon is the month; possible values for
it are Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec. YY is the last two digits of the year,
without the century (1996=96). HH specifies the hour in a 24-hour format. MM specifies the minutes,
and SS specifies the seconds. The date should be specified in the Greenwich Mean Time (GMT) time
zone. Previously issued cookies can be expired by sending a new cookie with the same name using an
expiration date that has already past. Expiration depends on the visitor's clock time, which may be far off
from the real time.

The Path option specifies the document hierarchy where the cookie is valid. This is typically set to / so
that it is valid for all documents in the document hierarchy. The browser uses this information to
determine if there are any cookies already stored in the visitor's computer that are associated with path. If
there are, the browser returns a Cookie: header along with the cookie Name and value along with the
request. Multiple cookies matching the path will be sent with semicolons separating them.

Domain specifies the Internet domain where the cookie is valid. You can specify a fully qualified domain
name such as host.domain.com.

When Secure is specified, the cookie will only be sent if the connection is secure by using a Secure
Socket Layer (SSL) server, such as Stronghold.

The mod_auth_cookies_file module requests a named cookie from the client that contains the
authentication information, which gets verified against an htpasswd like database.

Directives

mod_auth_cookie_file provides five directives:

Cookie_Access●

Cookie_AuthFile●

Cookie_Authorative●

Cookie_MustGive●

Cookie_EncryptedCookies●

Cookie_Access

Syntax: Cookie_Access [on]|[off]

Default: Cookie_Access off

This directive sets cookie access authentication.

Cookie_AuthFile

Syntax: Cookie_AuthFile authFile

Default: Cookie_AuthFile NULL (no file specified)

The format of the authentication file (authFile) is a list of colon (:)-separated values following this
format:

userId:name:value

where userID is the user's name, name is the cookie name, and value is the cookie value.

Cookie_Authorative

Syntax: Cookie_Authorative [on]|[off]

Default: Cookie_Authorative off

If the cookie fails, no authorization is given (authorization is final.) The user will have to re-register with
the site before she is able to log in.

Cookie_MustGive

Syntax: Cookie_MustGive [on]|[off]

Default: Cookie_MustGive off

When set to on, the client must present a cookie prior to authenticating.

Cookie_EncryptedCookies

Syntax: Cookie_EncryptedCookies [on]|[off]

Default: Cookie_EncryptedCookies on

This module specifies if the cookie value is encrypted using crypt—the program used by UNIX to
encrypt passwords.

mod_auth_cookies_msql

Source: mod_auth_cookie_msql.c

Author: Dirk-Willem van Gulik

Type: User authentication/Access control

Home: http://med.jrc.it//~dirkx/mod_auth_cookie_msql.c

This module is similar to mod_auth_cookie_file, but uses mini-SQL (mSQL) to store its authentication
data. It is designed to allow transparent authentication to users who have previously registered with your
site. Suppose that you want to have visitors register with you before they access your software download
area. By collecting information from them and then issuing a persistent cookie, the next time they visit
your download area they can forgo the authentication procedure.

This module will request a named cookie from the client that contains the authentication information,
which gets verified against tables in a mSQL database.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#14

Directives

Mod_auth_cookie_msql provides 10 directives:

Cookie_Access●

Cookie_Authorative●

Cookie_EncryptedCookies●

Cookie_MSQL_table●

Cookie_MSQLcookie_namefield●

Cookie_MSQLcookie_valuefield●

Cookie_MSQLdatabase●

Cookie_MSQLhost●

Cookie_MSQLuid_field●

Cookie_MustGive●

Cookie_Access

Syntax: Cookie_Access [on]|[off]

Default: Cookie_Access off

This directive sets cookie access authentication.

Cookie_Authorative

Syntax: Cookie_Authorative [on]|[off]

Default: Cookie_Authorative off

If the cookie fails, no authorization is given (authorization is final). The user will need to re-register with
the site.

Cookie_MustGive

Syntax: Cookie_MustGive [on]|[off]

Default: Cookie_MustGive off

When set to on, the client must present a cookie prior to authenticating.

Cookie_MSQL_table

Syntax: Cookie_MSQL_table tableName

Cookie_MSQL_table sets the name of the mSQL table that contains the username and cookie fields used
for authentication.

Cookie_MSQLcookie_namefield

Syntax: Cookie_MSQLcookie_namefield cookieFName

Cookie_MSQLcookie_namefield sets the name of the field from which the module will fetch the name of
the cookie.

Cookie_MSQLcookie_valuefield

Syntax: Cookie_MSQLcookie_valuefield valueFName

Cookie_MSQLcookie_valuefield sets the name of the field from which the module will fetch the value of
the cookie.

Cookie_MSQLdatabase

Syntax: Cookie_MSQLdatabase database

Cookie_MSQLdatabase sets the name of the mSQL database that contains the Cookie_MSQL_table
where the authentication information is stored.

Cookie_MSQLhost

Syntax: Cookie_MSQLhost [FQHN] | [IPAddress] | [localhost]

This directive sets the name of the host machine running the mSQL server. The name of the host can be
specified using its fully qualified domain name, its IP address, or localhost to specify that the server
running the database is the same as the Web server.

Cookie_MSQLuid_field

Syntax: Cookie_MSQLuid_field uidFName

Cookie_MSQLuid_field sets the name of the field from which the module will fetch the username or the
uid.

Cookie_EncryptedCookies

Syntax: Cookie_EncryptedCookies [on]|[off]

Default: Cookie_EncryptedCookies on

This directive specifies if the cookie value is encrypted using crypt—the program used by UNIX to
encrypt passwords.

mod_userpath

Source: mod_userpath.c

Author: Simon Wilkinson

Type: Resource location/Uniform Resource Identifier (URI) rewriting

Home: http://www.tardis.ed.ac.uk/~sxw/apache/mod_userpath.c

This module is a replacement for the mod_userdir module distributed with versions of Apache earlier
than 1.1. The version of mod_userdir distributed with Apache 1.1.1 provides this functionality and more.

mod_userpath rewrites the URI of requests following the pattern:

http://machine/~username

This module allows you to specify a directory where the server will look for a user's home page. This
module has the added benefit of allowing you to create home page directories that don't necessarily
match your internal usernames. Because this mechanism doesn't rely on user accounts, it allows you to
provide home pages on machines that don't contain any user information.

If you incorporate this module into Apache, you should remove mod_userdir because both of these
modules will attempt to rewrite the URI, and which one will win is anyone's guess.

Directive

mod_userpath adds one directive:

UserPath●

UserPath

Syntax: UserPath pathToUserPages

Default: UserPath /usr/local/etc/httpd/htdocs/

Requests ending in a username will have UserPath prepended before they are processed by the server.
For example:

http://machine/~username

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#15

will be translated into

http://machine/usr/local/etc/httpd/htdocs/~username

mod_cgi_sugid

Source: mod_cgi_sugid.c

Author: Philippe Vanhaesendonck

Type: CGI UID/GID execution options

Home: http://linux3.cc.kuleuven.ac.be/~seklos/mod_cgi_sugid.c

This module is a replacement for the standard Apache CGI module, mod_cgi. It provides the capability
to run CGI under the User ID (UID) and Group ID (GID) of a different user. UID and GID can be
specified inside the <Limit> sections. <Limit> sections are specified under <Location> or <Directory>
sections in the global access configuration file. By default, this module does not allow the use of its
directives from within per-directory access control files (.htaccess). Also, if the module fails to change
the UID/GID of a CGI, the script is aborted. As you should expect, this module won't run CGI with a
root UID.

Directives

mod_cgi_sugid adds two directives:

UserId●

GroupId●

UserID

Syntax: UserID [user]

The UserID directive sets the UID used to run a CGI. This directive rejects requests to run a CGI with
the root UID.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#16

GroupID

Syntax: GroupID [group]

The GroupID directive sets the GID used to run a CGI.

mod_auth_sys

Source: mod_auth_sys.c

Author: Franz Vinzenz

Type: Authentication

mod_auth_sys allows you to authenticate a user using the UNIX calls getpwnam_r and getgrnam_r to
retrieve password and group information for that user. This allows you to use your existing UNIX
authentication scheme, such as /etc/passwd files, Network Information Service (NIS), NIS++, and so on.
This module does not provide any directives.

To call the module, just put an entry like the following in your global access configuration file or in a
per-directory access file (omit the <Directory> section on per-directory access files):

<Directory somedir>

AuthType Basic

<Limit GET POST>

 require valid-user

</Limit>

</Directory>

The only concern with this module is the transmission of login and password information across the
Internet because basic authentication does not encrypt the login transaction in any way. If anyone
obtained this information in route, he would have full access to that user's account.

mod_perl and mod_perl_fast

Authors: Doug MacEachern

Type: Embedded interpreter

Home: http://www.osf.org/~dougm/apache

mod_perl and mod_perl_fast provide an alternative method for executing Perl programs. mod_perl and
mod_perl fast are not CGI, so the way you program them is a little different.

At the time of this writing, programs that you write to take advantage of these modules don't run from the
command line without the aid of the CGI::Switch Perl module. CGI::Switch is available from your
nearest CPAN archive at modules/by-module/Apache/CGI-XA-0_22305-alpha_tar.gz.

These modules embed a Perl interpreter in the Web server. Because the Perl interpreter is embedded, the
server can run Perl scripts by itself, and your Perl programs will run much faster. The embedded
interpreter eliminates much of the expense associated with running CGI on your Web server. Also,
scripts that run under these modules have full access to the Application Programming Interface (API) of
the server, giving you the option of writing modules using Perl.

These modules differ in the way they function. mod_perl allocates and constructs a Perl interpreter for
each request. This interpreter parses and executes the script. On completion, the Perl interpreter is
destroyed, freeing the resources that it consumed.

mod_perl_fast allocates and constructs one Perl interpreter when the server starts. It also loads and parses
a Perl script that is persistent.

mod_auth_external

Source: mod_auth_external.c

Author: Nathan Neulinger

Type: Authentication

Home: http://www.umr.edu/~nneul/

mod_auth_external allows you to specify an external program that will handle user and group
authentication. The specified program will receive authentication information the visitor entered in the
authentication panel via the USER and PASS environment variables. In addition, when doing group
authentication, the group name is passed in the environment variable GROUP. The external
authentication program is expected to return 0 to indicate successful authentication, or a nonzero result as
an indication of a failed authentication session or an error in the authentication program.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#17
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#18

This is a simple way of interfacing Apache to any authentication system.

Directives

mod_auth_external adds four directives:

AddExternalAuth●

AuthExternal●

AddExternalGroup●

GroupExternal●

AddExternalAuth

Syntax: AddExternalAuth token userAuthenticator

Adding the AddExternalAuth directive to your httpd.conf file will register userAuthenticator under
token. You can have multiple AddExternalAuth directives.

AuthExternal

Syntax: AuthExternal token

This directive is used inside a <Limit> section to specify the authenticator to use in this context. token
gets matched to the AddExternalAuth directive, and the appropriate authenticator is launched:

<Directory somedir>

AuthName authentication realm description

AuthType Basic

AuthExternal token

<Limit GET POST>

 require valid-user

</Limit>

</Directory>

AddExternalGroup

Syntax: AddExternalGroup token groupAuthenticator

Adding the AddExternalAuth directive to your httpd.conf file will register groupAuthenticator under
token. You can have multiple AddExternalGroup directives.

ExternalGroup

Syntax: ExternalGroup token

This directive is used inside a <Limit> section to specify the authenticator to use in this context. token
gets matched to the AddExternalGroup directive, and the appropriate authenticator is launched:

<Directory somedir>

AuthName authentication realm description

AuthType Basic

ExternalGroup token

<Limit GET POST>

 require group groupA

</Limit>

</Directory>

mod_auth_kerb

Source: mod_auth_kerb.c

Author: James E. Robinson, III

Type: Authentication

Home: http://www2.ncsu.edu/ncsu/cc/rddc/projects/mod_auth_kerb/mod_auth_kerb.c

mod_auth_kerb provides kerberos authentication to Apache. Kerberos is a network security system
designed at MIT that guarantees that users and services are who they claim to be without the need to ask
a user for his password whenever he requests access to additional services. If the user's browser does not
support kerberos directly, mod_auth_kerb will authenticate the user based on the user ID and password
supplied to the browser.

Directives

mod_auth_kerb provides the following directives:

AuthType●

KrbAuthRealm●

RedirectHttps●

AuthType

Syntax: AuthType [KerberosV4] | [KerberosV5]

This directive tells Apache and the browser which kerberos protocol to use when validating the user.
This is the only directive necessary for the module to be functional.

KrbAuthRealm

Syntax: KrbAuthRealm realm

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#19

The KbrAuthRealm directive takes one argument: a string specifying the kerberos realm name that the
server should use for authentication. For example, KrbAuthRealm MIT.EDU sets the authentication
realm to MIT.EDU.

RedirectHttps

Syntax: RedirectHttps [On] | [Off]

This directive tells Apache to redirect the user's request to an SSL Web server running on the same host,
if the original request was not under SSL. This allows for increased security on browsers that do not
support kerberos directly by preventing clear text passwords from being sent over the network.

mod_fontxlate

Source: mod_fontxlate.c and Apache server patches

Author: Warwick Heath

Type: Eastern European font conversion

Home: http://www.rcc-irc.si/eng/fontxlate

mod_fontxlate is a configurable font-conversion module that determines if a request needs to be
converted. Eastern European countries such as Slovenia use a variety of characters to represent local
non-ASCII characters. Proper functioning of this module requires that Apache be patched. The advantage
of this module is that it does its conversion very quickly.

For additional information, please refer to the documentation included in the module's source.

mod_cntr

Source: mod_cntr.c

Author: Brian Kolaci

Type: Page counter

Home: ftp://ftp.galaxy.net/pub/bk/webcounter.tar.gz

This module and ancillary CGI provide a transparent way of implementing Web counters. The module

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#20
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#21

will keep track of the page access count on ASCII or DBM databases. Because the Web server keeps
count of page access, there's no possible spoofing of the pages. To be counted, a page needs to be
delivered. This module comes with several different number styles.

When the page counter databases have been set with the provided utilities, displaying the counter is very
easy. On the Web page, you put an entry such as

where type specifies the subdirectory for the number type used and length is the number of digits to put
in the output, including any padding.

mod_sucgi

Source: mod_sucgi.c

Author: Jason A. Dour

Type: CGI under different UID

Home: http://www.louisville.edu/~jadour01/mothersoft

This module is a drop-in replacement for the mod_cgi provided in the Apache release. It allows you to
transparently change the UID of CGI scripts to match that of a user.

To enable the functionality, just add the following to your global access configuration file (access.conf):

<Directory userdir/*/cgi-bin>

Options ExecCGI

</Directory>

When the server receives a CGI request, it checks it see if it came from a UserDir. If it did, it will pass
the request to a supporting CGI program, suCGI, which will check the request and run it with the UID of
the appropriate user.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#22

mod_auth_dbi

Source: mod_auth_dbi.c

Author: Doug MacEachern

Type: Authentication

Home: http://www.osf.org/~dougm/apache

This module provides Perl DBI authentication. Database interface (DBI) provides a set of functions,
variables, and conventions that you can use to access a database. This programming interface is
independent of the database in use. For additional information on DBI, check
http://www.hermetica.com/technologia/DBI.

Directives

Mod_auth_dbi adds the following directives:

AuthDBIAuth●

AuthDBIDB●

AuthDBIDriver●

AuthDBINameField●

AuthDBIPasswordField●

AuthDBIUser●

AuthDBIUserTable●

AuthDBIAuth

Syntax: AuthDBIAuth password

This directive sets the DBI password. It is optional, depending on the driver used.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#17
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#23

AuthDBIDB

Syntax: AuthDBIDB databaseName

This directive sets the name of the database to use.

AuthDBIDriver

Syntax: AuthDBIDriver nameOfDBIDriver

AuthDBIDriver sets the name of the DBI driver (for example, Oracle).

AuthDBINameField

Syntax: AuthDBINameField fieldName

This directive sets the fieldname within the AuthDBIUserTable in AuthDBIDB database where the
username can be found.

AuthDBIPasswordField

Syntax: AuthDBIPasswordFiled fieldName

This directive sets the fieldname within the AuthDBIUserTable in the AuthDBIDB database where the
user's password can be found.

AuthDBIUser

Syntax: AuthDBIUser userName

This directive sets the user's DBI username. It is optional depending on the driver used.

AuthDBIUserTable

Syntax: AuthDBIUserTable tableName

This directive sets the tablename within the AuthDBIDB database where the user and password fields
can be found.

mod_rewrite

Source: mod_rewrite.c

Author: Ralf S. Engelschall

Type: URI rewriting

Home: http://www.engelschall.com/sw/mod_rewrite

This is a killer module that even has its own Web site (see Figure 7.2). It uses a regular expression parser
to rewrite requested URLs and can use external databases in both ASCII or DBM format for mapping
support. This module has been incorporated into the Apache 1.2 release (not yet made public at the time
of this writing). Apache 1.2 incorporates a built-in regular expression library. The latest version of
mod_rewrite uses this library, which further reduces its impact on Apache.

Figure 7.2. This module also has a nice home page.

mod_rewrite can replace several modules, including some of the default Apache modules (when properly
configured). This is great because it can provide more comprehensive functionality while reducing the
number of modules needed and the size of the Apache executable.

This module can easily replace mod_alias, mod_userdir (both Apache core modules),
mod_userdir_virtual (not covered in this book), mod_userpath, and mod_uri_remap.

If you don't have use for a fully configurable URI rewrite module, there's an additional module that will
replace the mod_alias and mod_userdir. This module, mod_rewrite_compat, uses mod_rewrite to provide
a plug-and-play replacement to those other two modules.

Oh, yes—and this is not a minor detail[dm] mod_rewrite, together with the FastCGI module
documentation, is by far the best-documented piece of software available for Apache. This one edges out
the FastCGI docs a bit and is easier to use, so it takes first place on my list. Documentation for both these
modules is commercial grade, matching documentation produced by Apple Computer or NeXT Software,
Inc. (the best documentation I has ever used). Most other modules feature rather thin information that
requires users and authors alike to spend a lot of time experimenting with software before they can get it

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#24

to work. This usually means diving into the source code to determine what really is going on. I didn't
have to do that with this one.

For information on mod_rewrite, see Chapter 10, "Apache Modules."

mod_neoinclude

Authors: Karl Lehenbauer, George Porter, Randy Kunkee, and Horace Vallas

Type: Tcl-based, secure server-side scripting language

Home: http://www.neosoft.com/neoscript

The neoinclude module processes NeoWebScript—a server-side scripting language based on Tcl.
NeoWebScript programs can perform sophisticated data processing and dynamic HTML generation
safely, without compromising the system. For comprehensive information on this module, please visit
http://www.neosoft.com/neoscript.

mod_xinclude (XSSI)

Source: mod_xinclude.c

Author: Howard Fear

Type: SSI module replacement

Home: ftp://pageplus.com/pub/hsf/xssi

This module implements and extends SSI functionality. In Apache 1.2, it replaces the standard SSI
module (mod_include). This module provides additional functionality and directives over the Apache
SSI module, including the following:

User-defined variables●

An additional output directive, printenv●

Flow-control directives●

XSSI (Extended SSI) supports the notion of user-defined variables, which you can use on all value tags
with the exception of var= constructs. In addition to the echo, fsize, and flastmod commands, XSSI
provides printenv, which prints all variables currently set (this includes CGI environment variables).
XSSI also provides basic flow control. For more information on this module, refer to Chapter 6, "Server

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#25
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#26

Side Includes (SSI)."

mod_php

Author: Rasmus Lerdorf

Type: Server-parsed scripting language with RDBMS support

Home: http://www.vex.net/php

This is a powerful SSI-type scripting language that provides a C-like syntax. Its main features include the
following:

Is supported via standard CGI, FastCGI, and Apache modules●

Access logging capabilities●

Built-in GUI-based configuration●

mSQL, Postgres95, and DBM support●

Supports a wide range of variables, arrays, and Perl-like associative arrays that can be passed from
page to page

●

Supports conditionals and while loops●

Supports regular expressions●

Provides raw HTTP header control for doing things like redirections●

Has on-the-fly GIF image support, with Thomas Boutell's GD library●

For more information, please visit the PHP/FI home page listed at the top of this section.

Summary

While modules are great, remember that they get incorporated into the server binary. The more modules
you add, the bigger the binary will get, which will increase the resources needed by your system to run
the server efficiently. Remember that the server runs multiple copies of the Web server. So increasing the

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#4

footprint by 100KB may translate into several megabytes depending on the number of server processes
you have running. Your production server should only include the default Apache modules and any
additional modules you absolutely need.

Part III: Complete Reference: Apache
Configuration in Detail

[lb] Apache Configuration Overview●

[lb] Apache Server Core Directives●

[lb] Apache Modules●

Apache Configuration Files

httpd.conf■

srm.conf■

access.conf■

mime.types■

■

Organization of the Configuration Directives

Accounting Directives■

Additional Configuration File Directives■

Automatic Indexing Directives■

Error-Handling Directives■

MIME, Language-Management, or Handler-Management Directives■

Resource Location Directives■

Resource-Management Directives■

Security and Access-Control Directives■

Server I/O Configuration Directives■

Server-Side Image Map Directives■

Proxy Server and Cache-Management Directives■

■

Summary■

8

Apache Configuration Overview

The Apache server loads most of its configuration settings from a series of files at runtime when the
server starts up. These files specify directives that control the behavior of the server. As you explore and
exploit additional functionality of your server, you will be referring to the main configuration files for
your changes.

Understanding the structure of the configuration files may help you find what you need more effectively.
Although you could create a giant master configuration file, this usually doesn't work from a practical
point of view because you'll spend a lot of time searching through a single, large file for what you need.
Some of the configuration files are already several pages in length. If you were to combine them, it
would only make searching a more complicated task.

Apache Configuration Files

Apache reads its configuration from several files located in the conf directory of your server root:

httpd.conf●

srm.conf●

access.conf●

mime.types●

httpd.conf

httpd.conf contains the main server configuration information. The basic behavior of the server is
contained in this file, such as how it runs, UIDs it runs under, what port it listens to, performance issues,
and information on how to find other configuration files.

srm.conf

srm.conf is the server's resource configuration file. The directives in this configuration file define the
namespace that users can access on your server and the settings that affect how requests are serviced and
formatted. The directives in this file control the location of the various resources that the server will
access to retrieve information, such as DocumentRoot, the path to user's home pages, the location of the
cgi-bin directory, the file the server looks for when the URL ends in a directory, the icons and format the
server uses for displaying automatic directory listings, and so on. Directives in this file also map other
areas of your UNIX file system into the server's document tree. This allows you to store resources, such
as your cgi-bin directory, and make them available as if they were located within the directory specified
by DocumentRoot.

access.conf

access.conf is the server's global access-configuration file. This file defines the types of services that are
allowed and under what circumstances. Careful configuration of this file is important because many
security issues can be avoided if you do your configuration correctly. access.conf defines whether the
server will handle server-side includes, execute CGI programs, follow symbolic links, or generate
automatic indexes of directories when an index.html file is not found. Many aspects can be overridden by
allowing use of per-directory access files (.htaccess files); however, this has a very adverse consequence
on the performance of the server. If you can manage it, it is much better to handle all
access-configuration issues in the global access-configuration file.

mime.types

The mime.types file more than likely won't ever need configuration from you. This file maps MIME
formats to file types that the server uses to know which files comply with which MIME standard.
Remember that your browser always sends a header like

HTTP_ACCEPT = image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

that informs the server of the various types it is able to handle. This file provides the crucial mapping that
allows your server to understand the content of a file from its extension.

Organization of the Configuration Directives

It's hard to group directives into descriptive categories. The Apache approach has been to classify
directives based on whether their functionality is part of the server core or added by optional modules.

Core directives are directives that are always available; the code and modules that incorporate core
functionality are built in. This functionality is central to the operation of the Apache Web server.

Other directives is a broad category that includes everything else that is not part of the core. These
directives enhance the server. Many of them are actually included in the default server configuration
(also called the base) because they are incredibly useful. Directives that are part of the base build, are
available for use without the need to recompile the server.

In addition to core and other directives, there are many other directives provided by optional modules. I
call these specialized directives because they add specialized functionality that not all servers will need.

I find this broad classification not clear in terms of providing a good description of what is available right
out of the box. I have further classified directives into subgroups (see Tables 8.1 and 8.2). I hope this will
help portray the overall set of directives more clearly. Some directives may fit into one or more
categories, but for clarity, I included them in only one category each.

Table 8.1. Apache core and base directives.

Directive Type Implemented In Base

ErrorLog Accounting Core

HostNameLookups Accounting Core

PidFile Accounting Core

TransferLog Accounting mod_log_common(mod_log_common) Yes

ResourceConfig Additional
configuration
files

Core

AccessConfig Additional
configuration
files

Core

AccessFileName Additional
configuration
files

Core

TypesConfig Additional
configuration
files

mod_mime Yes

AddDescription Automatic
indexing

mod_dir Yes

AddIcon Automatic
indexing

mod_dir Yes

AddIconByEncoding Automatic
indexing

mod_dir Yes

AddIconByType Automatic
indexing

mod_dir Yes

DefaultIcon Automatic
indexing

mod_dir Yes

FancyIndexing Automatic
indexing

mod_dir Yes

HeaderName Automatic
indexing

mod_dir Yes

IndexIgnore Automatic
indexing

mod_dir Yes

IndexOptions Automatic
indexing

mod_dir Yes

ReadmeName Automatic
indexing

mod_dir Yes

DirectoryIndex Automatic
indexing

mod_dir Yes

PassEnv CGI mod_env Yes

SetEnv CGI mod_env Yes

ErrorDocument Error handling Core

ServerAdmin Error handling Core

Action MIME,
language, or
handler
management

mod_actions Yes

Script MIME,
language, or
handler
management

mod_actions Yes

AddHandler MIME,
language, or
handler
management

mod_mime Yes

SetHandler MIME,
language, or
handler
management

mod_mime Yes

DefaultType MIME,
language, or
handler
management

Core

AddEncoding MIME,
language, or
handler
management

mod_mime Yes

AddLanguage MIME,
language, or
handler
management

mod_mime Yes

AddType MIME,
language, or
handler
management

mod_mime Yes

ForceType MIME,
language, or
handler
management

mod_mime Yes

LanguagePriority MIME,
language, or
handler
management

mod_negotiation Yes

XBitHack MIME,
language, or
handler
management

mod_include Yes

CacheNegotiatedDocs Proxy
server/Cache
management

mod_negotiation Yes

ScriptAlias Resource
location

mod_alias Yes

Alias Resource
location

mod_alias Yes

Redirect Resource
location

mod_alias Yes

UserDir Resource
location

mod_userdir Yes

KeepAlive Resource
management

Core

KeepAliveTimeout Resource
management

Core

MaxClients Resource
management

Core

MaxRequestsPerChild Resource
management

Core

MaxSpareServers Resource
management

Core

MinSpareServers Resource
management

Core

StartServers Resource
management

Core

TimeOut Resource
management

Core

<Directory> Security/Access
control

Core

<Limit> Security/Access
control

Core

<Location> Security/Access
control

Core

AllowOverride Security/Access
control

Core

AuthName Security/Access
control

Core

AuthType Security/Access
control

Core

Options Security/Access
control

Core

require Security/Access
control

Core

IdentityCheck Security/Access
control

Core

Group Security/Access
control

Core

User Security/Access
control

Core

allow Security/Access
control

mod_access Yes

deny Security/Access
control

mod_access Yes

order Security/Access
control

mod_access Yes

AuthGroupFile Security/Access
control

mod_auth Yes

AuthUserFile Security/Access
control

mod_auth Yes

ImapBase Server-side
image map

mod_imap Yes

ImapDefault Server-side
image map

mod_imap Yes

ImapMenu Server-side
image map

mod_imap Yes

BindAddress Server I/O
configuration

Core

Listen Server I/O
configuration

Core

Port Server I/O
configuration

Core

<VirtualHost> Server I/O
configuration

Core

ServerAlias Server I/O
configuration

Core

ServerName Server I/O
configuration

Core

ServerType Server I/O
configuration

Core

ServerPath Server I/O
configuration

Core

Table 8.2. Apache specialized directives.

Directive Type Implemented In

CookieLog Accounting mod_cookies

AgentLog Accounting mod_log_agent

LogFormat Accounting mod_log_config

TransferLog Accounting mod_log_config

RefererIgnore Accounting mod_log_referer

RefererLog Accounting mod_log_referer

LoadFile External module loading mod_dld

LoadModule External module loading mod_dld

MetaDir Meta header mod_cern_meta

MetaSuffix Meta header mod_cern_meta

CacheDefaultExpire Proxy server/Cache
management

mod_proxy

CacheGcInterval Proxy server/Cache
management

mod_proxy

CacheLastModified Proxy server/Cache
management

mod_proxy

CacheMaxExpire Proxy server/Cache
management

mod_proxy

CacheRoot Proxy server/Cache
management

mod_proxy

CacheSize Proxy server/Cache
management

mod_proxy

NoCache Proxy server/Cache
management

mod_proxy

ProxyPass Proxy server/Cache
management

mod_proxy

ProxyRemote Proxy server/Cache
management

mod_proxy

ProxyRequests Proxy server/Cache
management

mod_proxy

Anonymous Security/Access control mod_auth_anon

Anonymous Authorative Security/Access control mod_auth_anon

Anonymous LogEmail Security/Access control mod_auth_anon

Anonymous VerifyEmail Security/Access control mod_auth_anon

AuthDBGroupFile Security/Access control mod_auth_db

AuthDBUserFile Security/Access control mod_auth_db

AuthDBMGroupFile Security/Access control mod_auth_dbm

AuthDBMUserFile Security/Access control mod_auth_dbm

Auth_MSQL_Authorative Security/Access control mod_auth_msql

Auth_MSQL_EncryptedPasswords Security/Access control mod_auth_msql

Auth_MSQLdatabase Security/Access control mod_auth_msql

Auth_MSQLgrp_field Security/Access control mod_auth_msql

Auth_MSQLgrp_table Security/Access control mod_auth_msql

Auth_MSQLhost Security/Access control mod_auth_msql

Auth_MSQLnopasswd Security/Access control mod_auth_msql

Auth_MSQLpwd_field Security/Access control mod_auth_msql

Auth_MSQLpwd_table Security/Access control mod_auth_msql

Auth_MSQLuid_field Security/Access control mod_auth_msql

AuthDigestFile Security/Access control mod_digest

As you can see, Apache is well equipped right from a basic configuration, and the specialized directives
add a myriad of features. These additional modules enhance existing functionality by providing
additional ways to perform a function, such as user authentication, or add completely new server
features. Some modules such as mod_proxy implement a totally different kind of server, a proxy server.

Directives can be subclassified as

Accounting directives●

Additional configuration file directives●

Automatic indexing directives●

Error-handling directives●

MIME type, language, and handler directives●

Resource-location directives●

Resource-management directives●

Security and access-control directives●

Server I/O configuration directives●

Server-side image map directives●

Proxy server and cache-management directives●

Accounting Directives

These directives set the location of log files where Apache will record data about the server operation,
such as server access information.

Additional Configuration File Directives

The server will look for additional configuration information in the files specified by these directives.
The server has compiled in defaults settings for these directives so if a directive is not overridden, the
server will attempt to read additional configuration information from the compiled-in defaults.

Automatic Indexing Directives

These directives control what gets returned when a request is for a directory: http://localhost/directory/.
First, the server will try to return an user-generated index file in directory that matches the
DirectoryIndex file specification. If a user-generated index is not found, the server will automatically
create an index file. Typical automatic indexes look like directory listings, but they can be quite fancy
and graphical. Listings can associate an icon and description based on the file type or name and
incorporate headers and readme information.

Error-Handling Directives

Apache can be configured to provide informational error messages. It provides a directive that lets you
customize what gets returned when an error is generated for a request.

MIME, Language-Management, or Handler-Management Directives

These directives allow you to map a file extension into a MIME type. Some of the MIME types are
processed by a program prior to returning data to the server. Programs that perform this processing are
called handlers. For example, CGI programs that live in a cgi-bin directory or have a .cgi extension are
processed by the mod_cgi module. The server passes execution to a handler program that knows how to
deal with the special file type or condition.

Resource Location Directives

These directives help the server find files. They define places where you can put CGI programs, or where
documents you publish on the Web live.

Resource-Management Directives

Resource-management directives control issues that affect the performance of the server. Default settings
for many of these directives should not be changed unless there's a good reason for it, and you
understand what you are doing. Apache manages many of its resources dynamically. Arbitrarily
modifying these default settings can adversely affect the performance of the server.

Security and Access-Control Directives

Directives of this kind affect the security of your site in one way or another. They set the UID and GUI
the server runs as, control who has access to what resources, and implement access control and
user-validation measures. The <Directory>, <Limit>, and <Location> sections allow you to group a
series of settings on a directory or URL basis.

Server I/O Configuration Directives

These directives control the IP and the port the server listens to for requests, as well as some other basic
(and not-so-basic) things regarding the normal operation of the server.

Server-Side Image Map Directives

Apache has a built-in module to handle server-side image maps. Traditionally, image maps have been
implemented with CGI programs. Incorporating image map handling into the server core provides a
significant enhancement in performance. This functionality is really a subcategory of the MIME,
language management, or handler management directives, but its functionality is distinct enough to merit
its own category.

Proxy Server and Cache-Management Directives

Starting with Apache 1.1, Apache is able to function as a caching proxy server. This allows the server to
make transactions on behalf of a browser and store the results in a cache. Future requests to the same
URL by a different user in the network are satisfied from the cache, reducing the load of the network.
These directives control the cache management: how long files will be cached, and how big the cache
can grow.

Summary

The next two chapters will explain with great detail all the directives available in Apache. When
searching for a directive, you may want to reference the tables in this chapter because the next two
chapters organize directives alphabetically and by module for ease of reference.

AccessConfig■

AccessFileName■

AllowOverride■

AuthName■

AuthType■

BindAddress■

DefaultType■

DocumentRoot■

ErrorDocument■

ErrorLog■

Group■

IdentityCheck■

KeepAlive■

KeepAliveTimeout■

Listen■

MaxClients■

MaxRequestPerChild■

MaxSpareServers■

MinSpareServers■

Options■

PidFile■

Port■

require■

ResourceConfig■

ServerAdmin■

ServerAlias■

ServerName■

ServerPath■

ServerRoot■

ServerType■

StartServers■

TimeOut■

User■

<Directory>■

<File>■

<Limit>■

<Location>■

<VirtualHost>■

9

Apache Server Core Directives

The main server module is called the core. It implements what the Apache on-line server documentation describes as a
"barely functional HTTP server." The core implements the basic support for the HTTP protocol as well as the foundation
framework that allows for Apache's modular design.

AccessConfig

Syntax: AccessConfig filename

Default: AccessConfig conf/access.conf

Extent: server configuration, virtual host

Status: core

The AccessConfig directive defines the location of the global access control file. A filename can be specified relative to the
ServerRoot pathname or as a full pathname. Traditionally, this file contained <Directory> sections and other directives that
affected access control and user authentication; today, however, you can put any server-configuration directives allowed in
the server configuration context.

If not defined, the default is

AccessConfig conf/access.conf

The AccessConfig directive can also be specified inside a <VirtualHost> section. Only one AccessConfig directive is allowed
in the http.conf file unless the additional directives are part of a <VirtualHost> section, and then only a single AccessConfig
directive is allowed per <VirtualHost> section.

To disable reading configuration settings from conf/access.conf set /dev/null as the filename parameter. The file specified by
AccessConfig is read after the file specified by ResourceConfig.

AccessFileName

Syntax: AccessFileName filename

Default: AccessFileName .htaccess

Extent: server configuration, virtual host

Status: core

The AccessFileName directive allow you to change the default name Apache uses for per-directory access control files.

If not defined, the default is

AccessFileName .htaccess

Before returning a document to the client, Apache looks for additional per-directory access control files (ACF) in all
directories in the path of the request.

The effects of any access control directive specified by an ACF can be disabled with an AllowOverride None directive
specified in a <Directory> section on the global ACF (conf/access.conf).

AllowOverride

Syntax: AllowOverride [All] | [None] | [AuthConfig] [FileInfo] [Indexes] [Limit]
[Options]

Default: AllowOverride All

Context: directory

Status: core

The AllowOverride directive specifies the extent to which a per-directory access control file can override defaults set in the
global ACF conf/access.conf. If security is a concern, you will probably want to specify a setting of None.

This directive is specified inside a <Directory> section in the global ACF. The various options are as follows:

All Allows all overrides.

AuthConfig Allows use of the directives used to control user authentication and
access control: AuthName, AuthType, AuthGroupFile,
AuthUserFile, AuthDBMGroupFile, AuthDBMUserFile, and
require.

Apache 1.1 adds several additional AuthConfig directives:
AuthDBGroupFile, AuthDBUserFile, Auth_MSQL.pwd_table,
Auth_MSQL_Authorative, Auth_MSQL_EncryptedPasswords,
Auth_MSQL_nopasswd, Auth_MSQLdatabase,
Auth_MSQLgrp_field, Auth_MSQLgrp_table, Auth_MSQLhost,
Auth_MSQLpwd_field, and Auth_MSQLuid_field

FileInfo Allows you to use the directives that control document types:
AddEncoding, AddLanguage, AddType, DefaultType, and
LanguagePriority.

Indexes Allows you to use the directives that control directory indexing:
AddDescription, AddIcon, AddIconByEncoding, AddIconByType,
DefaultIcon, DirectoryIndex, FancyIndexing, HeaderName,
IndexIgnore, IndexOptions, and ReadmeName.

Limit Allows you to use the directives that control host access: allow,
deny, and order.

None Disables all override directives for the directory.

Options Allows you to use the directives that control specific directory
features: Options and XBitHack.

AuthName

Syntax: AuthName label

Default: none

Context: directory, .htaccess

Status: core

The AuthName directive allows you to label an access-controlled resource. label is displayed in the user authentication panel
(login) that is displayed to the user when he is trying to access a controlled resource. If label is omitted, there is no default.

label can contain spaces:

AuthName This is a secured resource, please login first.

This directive requires the use of the AuthType and require directives, and requires that directives such as AuthUserFile and
AuthGroupFile or any of their derivatives work properly.

AuthType

Syntax: AuthType [Basic] | [Digest]

Context: directory, .htaccess

Status: core

The AuthType directive controls the type of authentication used. Basic authentication provides no encryption to the
authentication session. Password information is transmitted in code form but not encrypted, making it quite simple to decode.

Digest authentication uses RSA MD5 encryption, which makes the authentication process more
secure because the authentication session is encrypted. The login and password entered by the user
are also encoded so that they are only good for retrieving the requested URL. On requesting a
different URL within the authentication realm, the browser will encode a new key (password) to
retrieve those materials.

These directives require the use of the AuthName and require directives. In addition, if you using Basic authentication, you
need to use directives such as AuthUserFile and AuthGroupFile or any of their derivatives work properly. When using Digest
authentication, you'll need to use AuthDigestFile.

BindAddress

Syntax: BindAddress [*] | [IP] | [fully qualified domain name]

Default: BindAddress *

Context: server configuration

Status: core

The httpd server can listen for connections to the host's IP address or to multiple IP addresses if the server is multihomed. If
given a BindAddress, the httpd server will only listen for connections to the IP address specified by this directive.
BindAddress can be specified by IP, such as

BindAddress 204.12.123.123

or by the fully qualified name of the machine, such as

BindAddress www.foo.com

To have the server listen to all IP addresses accepted by the host, use

BindAddress *

This is also the default value if not specified.

DefaultType

Syntax: DefaultType mime-type

Default: DefaultType text/html

Context: server configuration, virtual host, directory, .htaccess

Override: FileInfo

Status: core

When a client requests a document, the server is responsible for setting the document type of the requested document in the
HTTP header. If a client asks for a document type that the server does not recognize (either because the extension of the
document is missing or because the extension is not registered as a valid MIME type) the server returns the mime-type
defined by DefaultType.

If you have a directory that contains many Graphical Interchange Format (GIF) files that are not properly named with a .gif

extension, an entry in an .htaccess such as

DefaultType image/gif

would ensure that the client browser would handle unknown files as GIFs. Some browsers are fairly smart and actually
identify a type based on the encoding and format of the file.

DocumentRoot

Syntax: DocumentRoot path

Default: DocumentRoot /usr/local/etc/httpd/htdocs

Context: server configuration, virtual host

Status: core

The DocumentRoot directive specifies the server's document root. The server will append path to all requests prior to
executing them, unless the paths are matched by an Alias directive. Do not terminate the path with a trailing slash (/).

DocumentRoot /usr/local/etc/httpd/htdocs

A request for http://www.foo.com/index.html will translate into /usr/local/etc/htdocs/index.html.

ErrorDocument

Syntax: ErrorDocument error-code [pathname] | [URL] | [message string]

Default: none

Context: server configuration, virtual host

Status: core

This is one of the great features of Apache. Instead of returning the standard error responses, Apache can be configured to
return customized error messages or to redirect the request to a local or external URL that can handle the request.

You can specify that a file be retrieved by putting in the complete pathname to the file:

Error code 404 - file not found

ErrorDocument 404 /error/filenotfound.html

Or you can specify a message on-the-fly:

ErrorDocument 404 "This file is not on this server. Go away.

ErrorDocument 500 "Your request failed, because: %s. Oh well

If you provide the characters %s in message string, Apache inserts further information about the error if available.

You can also force the client to redirect to an external site by specifying a complete URL:

ErrorDocument 404 http://www.server.com/filex.html

Redirecting is especially useful for debugging CGI. If you code your CGI so that debugging and
error output are stored in one file, you can have the server return the error file whenever your
program fails. This saves you the step of manually testing for error responses.

With Apache 1.1 you can place ErrorDocument directives in per-directory access control files
(.htaccess). This setting is toggled with the FileInfo option in AllowOverrides.

ErrorLog

Syntax: ErrorLog filename

Default: ErrorLog logs/error_log

Context: server configuration, virtual host

Status: core

This directive specifies the location of the error-log file. The error log is, not surprisingly, the file where the httpd server logs
errors. An error can be any request that timed out, or any request that the server could not fulfill because of an access- or
resource-availability error. As system administrator, you should check error logs often, especially after upgrading or adding a
new CGI program. Many problems of which you may be unaware get logged here, and checking the error log may be the
only way to see if someone is trying to attack your server.

If the filename specified in this directive is not an absolute path (a path starting with a /), the filename location is assumed to
be relative to the path indicated by ServerRoot.

To turn off error logging, execute

ErrorLog /dev/null

Group

Syntax: Group GID

Default: Group #-1

Context: server configuration

Status: core

The Group directive sets the group ID (GID) that the server will use to answer any requests. In order to use this directive, the
standalone server needs to be started as root because only the superuser is able to change the real and effective GID of a
process.

When started by root, the parent httpd process will have root GID (usually wheel). However, httpd requests are served by
child processes that use the GID assigned by the Group directive. If started by a user other than root, the GID is inherited
from the user that started the httpd process.

If root doesn't start the httpd daemon, the Group directive will fail to change the GID of the child
processes, leaving you with a potential security problem.
The GID under which you run the server is a very important security-configuration setting. The
server should execute under a GID that has very low UNIX privileges. Also, to avoid potential
security problems, the server should not be able to execute any programs not intended for use over
the Web.

You can supply the GID in number format by preceding it with a #, like this:

Group #-1

You can also specify a valid group name as an argument:

Group nogroup

On my system, nogroup has a GID of -2. On many systems, however, nogroup has a GID of -1, which is the default setting
for Apache.

When assigning a GID by number, you should examine the /etc/group file for the proper GID of the
group under which you want the httpd daemon to run. On most systems, the GID you want is listed
in the third field. The field delimiter for the group file is a colon (:).

If the server is started by root, you should make sure that neither the User directive nor the Group
directive is set to root. Otherwise, you'll be seriously compromising security.

IdentityCheck

Syntax: IdentityCheck [on] | [off]

Default: IdentityCheck off

Context: server configuration virtual host, directory, .htaccess

Status: core

The IdentityCheck directive determines whether the user name of the remote user is logged to the transfer log. For this
feature to work, the remote machine must be running an RFC931-compliant identity daemon. It should be obvious that this
information should not be trusted outside of your network. The transferlog file is defined by the TransferLog directive.

This directive creates an additional server load because the server tries to determine the identity of each user making a
request.

Only one IdentityCheck directive is allowed in your server-configuration file. If omitted, the default is

IdentityCheck off

Apache 1.1 enhances the IdentityCheck directive. It can now be used on a per-directory basis. The new version of
IdentityCheck is RFC1413-compliant.

KeepAlive

Syntax: KeepAlive numrequests

Default: KeepAlive 5

Context: server configuration

Status: core

The KeepAlive directive enables multiple transactions to be sent by the server over a single TCP connection, otherwise
known as a persistent connection. Persistent connections greatly enhance the performance of the transaction because the
overhead of establishing a new connection for each request is reduced or eliminated. The numrequests limit is imposed to
prevent a client from grabbing all the server resources.

The following criteria must be met in order for this feature to work:

[lb] The client must support this feature. All leading browsers, including Netscape Navigator and Microsoft Internet
Explorer, support this feature.

●

[lb] The length of the resources being transmitted must be known beforehand. That means that most CGI scripts,
Server Side Includes files, and directory listings won't be able to take advantage of this protocol.

●

KeepAliveTimeout

Syntax: KeepAliveTimeout seconds

Default: KeepAliveTimeout 15

Context: server configuration

Status: core

This directive sets the maximum amount of time, in seconds, that the server will wait for subsequent requests before closing
the connection. The time-out period starts the moment a request is received by the server. (See KeepAlive.)

Listen

Syntax: Listen IP_address[:port]

Context: server configuration

Status: core

This directive is similar to the BindAddress directive. The Listen directive instructs Apache to listen to more than one IP
address or port; by default it listens in for requests on all interfaces, but only on the port given by the Port directive (Port is by
default set to 80, the standard HTTP port). New versions of Stronghold (see Chapter 14, "Secure Web Servers") will use this
feature to implement both SSL and standard servers in a single process. (Currently, you need two servers running: one for
standard requests and another for SSL requests).

MaxClients

Syntax: MaxClients number

Default: MaxClients 150

Context: server configuration

Status: core

This directive specifies the maximum number of connections that the httpd server will handle. Connections beyond number
get put on a wait state until the server gets freed. number should be changed with care, because setting it too low will place
new connections on a wait state, and setting it too high will rapidly exhaust server resources. The default setting is probably
fine for the typical server. High-performance servers may benefit from setting number higher, as long as the hardware
resources are able to cope with the additional load.

MaxRequestPerChild

Syntax: MaxRequestsPerChild number

Default: MaxRequestsPerChild 30

Context: server configuration

Status: core

This directive specifies how many requests an individual child httpd process will handle before getting terminated.
MaxRequestPerChild was initially developed to autokill processes that had aged longer than a certain number of requests
with the intention of limiting the number of memory leaks that the process could consume. This option is still valuable on
many systems such as Solaris where memory leaks in the libraries still exist.

MaxSpareServers

Syntax: MaxSpareServers number

Default: MaxSpareServers 10

Context: server configuration

Status: core

The MaxSpareServers directive sets the maximum number of idle child processes. Idle processes are httpd server processes
not currently fulfilling HTTP requests.

Should the number of idle processes increase above what is specified by number, the parent process will terminate the excess
processes.

Extremely busy sites can benefit from increasing the default setting of 10, in case there's a drop in usage for a few seconds. If
usage drops, idle processes will go up, which the server will then kill. When usage resumes, the system will be scrambling to
find resources to fulfill the requests. Unless you have a very good reason for altering it, don't change the default setting.

(See MinSpareServers and StartServers.)

MinSpareServers

Syntax: MinSpareServers number

Default: MinSpareServers 5

Context: server configuration

Status: core

The MinSpareServers directive controls the minimum number of idle child server processes that are available at any one
time. Idle processes are server processes not currently handling HTTP requests. If the idle-process count should decrease
below the amount designated by MinSpareServers, the parent process will create new child processes. New processes are
created at one-second intervals.

This setting should not be changed from the default value unless you have a very good reason for the change.

(See MaxSpareServers and StartServers.)

Options

Syntax: Options [All] | [None] | [ExecCGI] [FollowSymLinks] [Includes]
[IncludesNOEXEC] [Indexes] [MultiViews]
[SymLinksIfOwnerMatch]

Context: server configuration, virtual host, directory, .htaccess

Override: Options

Status: core

The Options directive controls which server options are available in a particular directory:

All Enables all options except MultiViews.

ExecCGI Execution of CGI programs is allowed.

FollowSymLinks Following of symbolic links is allowed.

Includes Use of Server Side Includes (SSI) is allowed

IncludesNOEXEC SSI is allowed with the following restrictions: the
#exec and #include commands are disabled.

Indexes Enables return of directory listings in cases where a
client requests a directory for which there is no
DirectoryIndex file (index.html).

MultiViews Enables content negotiation based on document
language. See LanguagePriority.

SymLinksIfOwnerMatch Following of symbolic links is allowed if the target file
or directory is owned by the same user as the link. This
setting offers better security than the FollowSymLinks
option.

When multiple <Directory> sections that contain Options directives match a request, the Options in the best match are
applied. As the following script shows, Option settings are not cumulative:

<Directory /usr/local/etc/htdocs/miscfiles>

Options Indexes

</Directory>

<Directory /usr/local/etc/htdocs>

Options MultiViews

</Directory>

For requests in the /usr/local/etc/htdocs/miscfiles tree, the only option enforced is MultiViews.

PidFile

Syntax: PidFile filename

Default: PidFile logs/httpd.pid

Context: server configuration

Status: core

This directive specifies the location of a file that contains the process ID of the main httpd process on a standalone
configuration. The contents of this file are very useful if you need to stop or start the server. A convenient way to restart the
server is to run

kill -HUP 'cat pathToPidFile'

If you are running your server using inetd instead of standalone, the contents of this file are bogus.

A filename is set to be relative to ServerRoot if it's not an absolute path specification (begins with a slash).

Port

Syntax: Port number

Default: Port 80

Context: server configuration

Status: core

The Port directive sets the port where a standalone server listens for requests. The standard port for the HTTP protocol is 80.

The number is a TCP port, and as such it has certain restrictions. Ports numbered below 1024 are reserved for the system.
Nonroot users cannot bind to reserved ports. If you want to use the default HTTP port (80), httpd must be started by root.

require

Syntax: require option name name...

Context: directory, .htaccess

Override: AuthConfig

Status: core

This directive sets the selection criteria used to determine which authenticated users may access a restricted resource.

require also selects which authenticated users can access a directory. The allowed options are as follows:

user Only users named in the list can access the resource:

require user1 user2 ...

group Only users that are members of the groups specified in the list can
access the resource:

require group1 group2 ...

valid-user Any valid user can access the resource:

require valid-user

If the require directive appears inside a <Limit> section, it restricts access to the named HTTP methods; otherwise, access is
restricted for all methods:

AuthType Basic

AuthName somedomain

AuthUserFile /web/users

AuthGroupFile /web/groups

Limit <GET POST>

require group admin

</Limit>

This directive requires the use of the AuthName and AuthType directives, and directives such as AuthUserFile and
AuthGroupFile or any of their derivatives, to work properly.

ResourceConfig

Syntax: ResourceConfig filename

Default: ResourceConfig conf/srm.conf

Context: server configuration, virtual host

Status: core

The ResourceConfig directive defines the location of a secondary configuration file. Filename can be specified relative to the
ServerRoot or as a full pathname. Traditionally, this file contained most configuration directives with the exception of the
server configuration and <Directory> sections. This file can contain any directive with a context of server configuration.

If not defined, the default is

ResourceConfig conf/srm.conf

The ResourceConfig directive can also be specified inside a <VirtualHost> section. Only one ResourceConfig directive is
allowed in the server configuration file unless the additional directives are part of a <VirtualHost> section, and then only a
single ResourceConfig directive is allowed per <VirtualHost> section.

To ignore the default setting for the ResourceConfig, define /dev/null as the filename parameter. The file specified by
ResourceConfig is read after the server configuration file.

ServerAdmin

Syntax: ServerAdmin emailaddress

Default: none

Context: server configuration, virtual host

Status: core

The ServerAdmin directive sets the e-mail address of the webmaster that will be returned to a client in case of an error.

If you are hosting virtual domains, this directive gives you an opportunity to effectively add information; in some cases, it
may be valuable to set up more elaborate aliases (such as ServerAdmin webmaster-smartsoft@accesslink.com) so that you
know which server caused the problem. When you receive e-mail addressed to webmaster-smartsoft@accesslink.com, you
know immediately that the sender was at SmartSoft's Web site.

For a more sophisticated method of handling e-mail aliases, please see Appendix B, "Managing Virtual Domains with
sendmail V8."

ServerAlias

Syntax: ServerAlias host1 host2...

Context: server configuration, virtual host

Status: core

The ServerAlias directive sets additional names the server will respond to for requests. This directive is intended for use with
non-IP intensive virtual hosts. For more information, please refer to Chapter 4, "Virtual Hosts," for the section titled, "Non-IP
Virtual Hosts."

ServerName

Syntax: ServerName hostname

Default: ServerName (Deduced from IP; may not be what you want.)

Context: server configuration, virtual host

Status: core

This directive sets the name returned by your server. hostname should be a fully qualified domain name. hostname should be
a valid DNS name.

ServerPath

Syntax: ServerPath path

Context: server configuration,

virtual host

Status: core

The ServerPath directive is used as a workaround for browsers that don't support non-IP virtual hosts. Non-IP virtual hosts
are supported by a browser by including an extra HTTP header, HTTP_HOST, that contains the name of the server requested.
Because older browsers don't include this information, requests for a non-IP virtual host will end up in your real server's
home page, which the virtual host shares its IP address.

ServerPath provides you with a mechanism to redirect requests to the proper place by using additional path information.
Please refer to Chapter 4 for additional information on how to use and implement non-IP intensive virtual hosts.

ServerRoot

Syntax: ServerRoot path

Default: ServerRoot /usr/local/etc/httpd

Context: server configuration

Status: core

The ServerRoot directive specifies where the server directory tree lives. Path is appended to all relative path definitions.
Many of the server resources are expected to be found in this tree.

The location of this tree can also be specified by using the -d option to the httpd executable.

ServerType

Syntax: ServerType [standalone] | [inetd]

Default: ServerType standalone

Context: server configuration

Status: core

The ServerType directive sets how the HTTP server is run by UNIX. The server can be run from inetd (which listens for
socket connections to the Internet ports and then passes the request to the appropriate software) or in standalone mode (where
the server itself listens and handles requests to its port).

inetd runs a new copy of the server per request. After the request is processed, the server exits. Standalone servers fork
several server processes that handle several connections before being disposed of by the main server process. This reuse of
existing processes provides for increased efficiency.

inetd-run servers are considered by many administrators to be more secure and less prone to attack than standalone servers.

To have inetd start the Web server, you need to edit /etc/inetd.conf and /etc/services. For more information, please refer to
Chapter 2, "Installing and Configuring an Apache Server."

StartServers

Syntax: StartServers number

Default: StartServers 5

Context: server configuration

Status: core

The StartServers directive specifies the number of child server processes that are forked at server startup. The actual number
of server processes at any one time is dynamically controlled by the server load and the MaxSpareServers, MinSpareServers,
and MaxClients directives.

There's no need to change this parameter from its default setting.

TimeOut

Syntax: TimeOut seconds

Default: TimeOut 1200

Context: server configuration

Status: core

This directive sets the maximum amount of time, in seconds, that the server will wait for a request to be completed. If it is set
too low, the server will terminate the connection before a large transfer is completed. Note that unless you are downloading
huge pages, the default is set to 20 minutes. If you notice problems with many stuck-open connections, reducing this number
will increase performance of your site.

User

Syntax: User uid

Default: User #-1

Context: server configuration

Status: core

The User directive sets the user ID (UID) the server will use to answer requests. In order for the server to change UIDs, the
server needs to be started as root, because only the superuser is able to change the real and effective UID of a process.

When started as root, the owner of the parent server will remain as root. However, requests are handled by child processes
will run under the UID assigned by this directive.

If root doesn't start the server, the User directive will have no effect, leaving the server running
under the UID of the user that started the server process.

To set the user ID of httpd to nobody, use

User nobody

or

User #-1

where # is followed by the UID. You may find nobody to have a UID of -1 on many systems. The default for the User
directive is -1. On my system, nobody has an UID of -2.

When specifying UIDs by number, verify the /etc/passwd file for the proper UID of the user under which you want the httpd
daemon run. On most systems, the format of the passwd file is

login:encryptedPassword:UID:GID:realname and other info:home directory:shell program

As seen in the preceding /etc/passwd sample entry, UID is the third field. All fields on the passwd file are separated by colons
(:).

If the server is started by root, ensure that the UID is NOT set to root.

<Directory>

Syntax: <Directory dir>...</Directory>

Context: server configuration, virtual host

Status: core

A <Directory> section is a group of control directives enclosed by a <Directory dir> and </Directory> tag pair. Control
directives inside a <Directory> section only apply to the document tree specified by dir. The effects of a <Directory> section
apply to any subdirectories in the tree.

You can use any directive in a <Directory> section that is allowed in a directory context. dir is specified either as a full path
or as a wildcard string. Wildcard strings can use ? and * characters, with results similar to a shell; ? matches any single
character, whereas * matches any sequence of characters.

Because a directory may match various <Directory> sections, the directives are applied in the order of the shortest match
first:

<Directory /usr/local/etc/htdocs>

AllowOverride None

</Directory>

<Directory /usr/local/etc/htdocs/public/*>

AllowOverride AuthConfig Limit

</Directory>

For a request to /usr/local/etc/htdocs/public/project/foo.html, the preceding directives get applied in the following order:

Apply AllowOverride None, which disables per-directory access control files.●

Apply AllowOverride and AuthConfig Limit directives to /usr/local/etc/htdocs/public/project, which enables the use of
the user authentication and host access control directives.

●

Apply any AuthConfig and Limit directives found on the /usr/local/etc/htdocs/public/project/.htaccess file.●

<Directory> sections are usually found in the global ACF conf/access.conf, or inside a <VirtualHost> section. However, you
can put them in any configuration file, with the exception of per-directory ACFs (.htaccess). <Directory> sections cannot nest
or appear inside a <Limit> section.

You can specify dir, using a regular expression. For information on creating regular expressions, please see Table 6.1.

<File>

Syntax: <File filepath>...</File>

Context: server configuration, virtual

host

Status: core

The <File> section provides for access control on a per-file basis. It functions exactly like the <Directory> section; however,
instead of using a directory specification, it specifies a file in a directory.

You can specify filepath, using a regular expression. For information on creating regular expressions, please see Table 6.1.

<Limit>

Syntax: <Limit method method...>...</Limit>

Context: any

Status: core

A <Limit> section is a group of access control directives, enclosed by a <Limit> and </Limit> tag pair, which applies only to
listed HTTP access methods such as GET, POST, HEAD, and so on.

Typically, you use a require directive nested by limit tags to specify authentication requirements before the request is served:

...

 <Limit Get>

 require valid-user

 order deny,allow

 deny from all

 allow from domain

 </Limit>

...

Any HTTP request that uses the GET or POST method will be processed by the server only if the user authenticates (other
authentication directives are not shown) and is a member of the group groupname. For the sake of completeness:

<Location>

Syntax: <Location URI>...</Location>

Context: server configuration, virtual host

Status: core

The <Location> section provides for access control on a per-file or per-URL basis. It functions exactly like the <Directory>
section, but instead of using a filepath specification, it uses an URI for its target.

URI is a URL without the http://servername portion. URI is specified either as a full path or a wildcard string. Wildcard
strings can use ? and * characters, with results similar to a shell. ? matches any single character; * matches any sequence of
characters.

<Location> sections are evaluated in the order listed after <Directory> sections and .htaccess files have been evaluated.

You can specify URI, using a regular expression. For information on creating regular expressions, please see Table 6.1.

(See <Directory>.)

<VirtualHost>

Syntax: <VirtualHost host[:port]>...</VirtualHost>

Context: server configuration, virtual host

Status: core

The <VirtualHost> and </VirtualHost> section tags are used to group directives that only apply to a particular host. Any
directive that is allowed in a virtual host context can be used. The server receives a request directed toward a virtual host; the
configuration directives enclosed in the <VirtualHost> and </VirtualHost> section tags override directives found elsewhere.

You can specify the host to which the section applies by specifying the IP address of the virtual host, or by specifying a fully
qualified domain name (fqdn). In addition, you can specify the TCP port for the configuration. This way virtual hosts can
return different content solely on the basis of the port used to access it.

<VirtualHost www.company.com>

ServerAdmin webmaster@company.com

DocumentRoot /www/docs/company

ServerName www.company.com

ErrorLog logs/company.error_log

TransferLog logs/company.transfer_log

</VirtualHost>

New in Apache 1.1 is support for non-IP intensive virtual hosts. The declaration of the directive is identical to the original
IP-intensive version. The difference in implementation is that the IP of the virtual host must be the same as that of the main
host. This new functionality works in conjunction with an HTTP/1.1 protocol, which requires the browser sends the name
used for addressing the server.

For IP-intensive virtual hosts, each host IP-identified by the VirtualHost directive must be unique; in order for the host to
work, the computer must be configured to accept multiple IP addresses. This configuration, unlike the new non-IP virtual
hosts, works regardless of the browser.

For more information on how to build virtual hosts, refer to Chapter 4.

The mod_access Module

mod_access Directives

allow from■

deny from■

order■

■

■

[ic:Apache 1.1]The mod_actions Module

mod_actions Directives

Action■

Script■

■

■

The mod_alias Module

mod_alias Directives

Alias■

Redirect■

ScriptAlias■

■

■

The mod_asis Module■

The mod_auth Module

mod_auth Directives

AuthGroupFile■

AuthUserFile■

■

■

The mod_auth_anon Module

mod_auth_anon Directives

Anonymous■

Anonymous_MustGiveEmail■

Anonymous_LogEmail■

Anonymous_VerifyEmail■

Anonymous_NoUserID■

Anonymous_Authorative■

■

mod_auth_anon Configuration Example■

■

The mod_auth_db Module

mod_auth_db Directives

AuthDBGroupFile■

AuthDBUserFile■

■

■

The mod_auth_dbm Module

mod_auth_dbm Directives

AuthDBMGroupFile■

AuthDBMUserFile■

■

■

The mod_auth_msql Module

mod_auth_msql Directives

Auth_MSQLhost■

Auth_MSQLdatabase■

Auth_MSQLpwd_table■

Auth_MSQLgrp_table■

Auth_MSQLuid_field■

Auth_MSQLpwd_field■

Auth_MSQLgrp_field■

Auth_MSQL_nopasswd■

Auth_MSQL_Authorative■

Auth_MSQL_EncryptedPasswords■

■

The mSQL password database■

■

The mod_cern_meta Module

mod_cern_meta Directives

MetaDir■

MetaSuffix■

■

MetaSuffix Example■

■

The mod_cgi Module■

The mod_cookies Module

The mod_cookies Directive

The CookieLog Directive■

■

■

The mod_digest Module

The mod_digest Directive

AuthDigestFile■

■

htdigest■

Configuring the Server to Use Digest Authentication■

■

The mod_dir Module

mod_dir Directives

AddDescription■

AddIcon■

AddIconByEncoding■

AddIconByType■

DefaultIcon■

DirectoryIndex■

FancyIndexing■

■

■

HeaderName■

IndexIgnore■

IndexOptions■

ReadmeName■

The mod_env Module

mod_env Directives

PassEnv■

SetEnv■

■

■

The mod_dld Module

mod_dld Directives

LoadFile■

LoadModule■

■

■

The mod_imap Module

mod_imap Directives■

ImapMenu■

ImapDefault■

ImapBase■

Using Server-Side Image Maps

A Map File Example■

Referencing the Map File■

■

■

The mod_include Module

SPML Command Format■

SMPL Commands■

The mod_include Directive

XBitHack■

■

■

The mod_info Module■

The mod_log_agent Module

The mod_log_agent Directive

AgentLog■

■

■

The mod_log_common Module

Logfile Format Description■

mod_log_common Directives

TransferLog■

■

■

The mod_log_config Module

mod_log_config Directives

LogFormat■

TransferLog■

■

■

The mod_log_referer Module

Logfile Format Description■

mod_log_referer Directives■

■

RefererIgnore■

RefererLog■

The mod_mime Module

mod_mime Directives

AddEncoding■

AddLanguage■

AddType■

TypesConfig■

AddHandler■

ForceType■

SetHandler■

■

■

The mod_negotiation Module

Type Maps■

MultiViews■

mod_negotiation Directives

CacheNegotiatedDocs■

LanguagePriority■

■

■

The mod_proxy Module

mod_proxy Directives

ProxyRequests■

ProxyRemote■

ProxyPass■

CacheRoot■

CacheSize■

CacheGcInterval■

CacheMaxExpire■

CacheLastModifiedFactor■

CacheDefaultExpire■

NoCache■

■

■

The mod_status Module■

The mod_userdir Module

mod_userdir Directives

UserDir■

■

■

Summary■

10

Apache Modules

Apache's modular structure has simplified the way that functionality is added to the server. Its generalized Application
Programmer's Interface (API) greatly simplifies the process of adding new or enhancing existing functionality. Modules are
usually developed in a single source code file named after the module. Many of these modules are so useful that they are
included on a default server configuration. Modules that are included in this fashion are part of the Base release. Other
modules are not included in the Base release either because they are in the initial stages of development or have not received
a methodical testing to insure that they are of production quality. The lack of inclusion should not be a deterrent to their use,
however. The DBM Authentication module is not part of the Base release, yet it is heavily used in many sites.

The following sections describe all the modules shipped with Apache and the directives they provide. For a list of modules
provided by third parties take a look at Chapter 7, "Third-Party Modules."

The mod_access Module

Source: mod_access.c

Base: Yes

Type: Security/Access Control

The mod_access module is built into Apache by default. It provides host-based (or domain-level) access control security
options.

Host-based access control grants or denies access on the basis of the Internet Protocol (IP) address of the machine generating
a request. Machines matching an allow or deny description are allowed or denied access as appropriate. Flexible descriptions
can be formed by the combination of both lists and the use of the order directive.

mod_access Directives

The mod_access module provides three directives for building the allow and deny criteria:

allow from●

deny from●

order●

These directives are typically specified in the <Directory>, <Limit>, or <Location> sections or inside an .htaccess file.
<Location> sections are available only in Apache 1.1 or better.

allow from

Syntax: allow from host host...

Override: AllowOverride Limit

Context: directory, .htaccess

allow from specifies hosts that are allowed to access the protected resource. You can specify more than one host or network
by separating the additional host specifications with a space. host can be specified in any of the following formats:

all This option allows all hosts to access the resource.

FQDN You can specify a host using its fully qualified domain name. A fully
qualified domain name must include a hostname, subnets (if any), and a
domain name, such as www.xyc.com.

PDN You can specify a group of hosts by using a partial domain name, which
allows you to group several hosts in a particular domain. An entry such as
xyc.com would match any host in the xyc.com domain.

A more selective grouping could be specified by using a network subnet.
If available, group.xyc.com would match any host in the group subnet in
the xyc.com domain.

IP You can also specify machines by their IP address. This option may
provide tighter security than name-based specifications; however, names
are easier for humans to maintain.

PIP You can also specify partial IP patterns, 1–3 bytes of the IP address, to
define groups of hosts. Hosts matching the IP description are included in
the group. If 204.95.160.0 is a class C address, specifying 204.95.160 as
the PIP would match any host from that network. If the network is
subdivided into subnets, you can specify the subnet number to create a
more restrictive grouping within a network.

Here's an example of the allow from directive:

allow from .cs.uwm.edu bar.com 204

All hosts from the specified domain are allowed access. Note that the comparison is based on the entire name. The entry for
bar.com would not match foobar.com.

deny from

Syntax: deny from host host...

Override: AllowOverride Limit

Context: directory, .htaccess

deny from specifies hosts that are to be denied access to the resource. You can specify more than one host or network by
separating additional host specifications with a space. host can be specified in any of the following formats:

all This option allows all hosts to access the resource.

FQDN You can specify a host using its fully qualified domain name. A fully
qualified domain name must include a hostname, subnets if any, and a
domain name, such as www.xyc.com.

PDN You can specify a group of hosts by using a partial domain name. This
allows you to group several hosts in a particular domain. An entry like
xyc.com would match any host in the xyc.com domain.

A more selective grouping could be specified by using a network subnet,
if available. group.xyc.com would match any host in the group subnet in
the xyc.com domain.

IP You can also specify machines by their IP address. This option may
provide tighter security than name-based specifications; however, names
are easier for we humans to maintain.

PIP You can also specify partial IP patterns, 1–3 bytes of the IP address, to
define groups of hosts. Hosts matching the IP description are included in
the group. If 204.95.160.0 is a class C address, specifying 204.95.160 as
the PIP would match any host from that network. If the network is
subdivided into subnets, you can specify the subnet number to create a
more restrictive grouping within a network.

Here's an example of the deny directive:

deny from .cs.uwm.edu bar.com 204

All hosts from the specified domain are denied access. Note that comparison is based on the entire name. The entry for
bar.com would not match foobar.com.

order

Syntax: order [deny,allow] | [allow,deny] | [mutual-failure]

Default: order deny,allow

Override: AllowOverride Limit

Context: directory, .htaccess

The order directive specifies the order in which the allow from and deny from directives are evaluated within a <Limit>,
<Location>, or <Directory> section. Possible options are

deny,allow Evaluates the deny from directive first and then grants exceptions
based on the allow from directive.

allow,deny Evaluates the allow from directive first and then grants exceptions
based on the deny from directive.

mutual-failure Evaluates so that only hosts that appear in the allow from
directive and do not appear on the deny from directive are granted
access.

Here's an example of the order directive:

order deny,allow deny from all allow from aol.com

In this example, requests from America Online users would be allowed. All other hosts are denied access.

[ic:Apache 1.1]The mod_actions Module

Source: mod_actions.c

Base: Yes

Type: Handler Management

The mod_actions module is compiled into Apache by default. It adds the functionality of setting user-defined handlers that
execute CGI programs based on the MIME type of a request or the HTTP access method used for the request.

mod_actions Directives

mod_actions adds two directives:

Action●

Script●

Action

Syntax: Action mime-type cgi

Context: server configuration, virtual host, directory, .htaccess

Override: AllowOverride FileInfo

The Action directive adds a handler that runs cgi when mime-type is requested. The Action directive sets the URL and
filepath of the request using the standard CGI environment variables PATH_INFO and PATH_TRANSLATED, respectively.
The CGI program can then perform whatever action it needs to handle the request.

Script

Syntax: Script http-method cgi

Context: server configuration, virtual host, directory, .htaccess

Override: AllowOverride FileInfo

The Script directive adds a handler that runs cgi when a file is requested using the http-method. Supported HTTP methods are
GET, POST, PUT, or DELETE. The Action directive sets the URL and filepath of the request using the standard CGI
environment variables PATH_INFO and PATH_TRANSLATED, respectively. The CGI program can then perform whatever

action it needs to handle the request.

Script handlers only define default actions. If some resource is capable of handling the request internally, that resource will
be called. GET requests are only passed to handler when they have query arguments—that is, the query string contains a
question mark (?). This directive provides you with a way of implementing the PUT or DELETE methods in Apache.

The mod_alias Module

Source: mod_alias.c

Base: Yes

Type: Resource Location

This module is compiled into Apache by default. It provides directives that allowF you to map document and CGI program
directories that are in the local filesystem, but outside of DocumentRoot, into the server's document tree. This allows clients
to reference these resources as if they were inside your DocumentRoot. The alias module also provides facilities for uniform
resource locator (URL) redirection, which allows you to redirect the request to a different URL, perhaps in a different
network.

mod_alias Directives

The directives provided are

Alias●

Redirect●

ScriptAlias●

Typically, these directives are specified in the conf/srm.conf configuration file.

Alias

Syntax: Alias url-path directory-filename

Context: server configuration, virtual host

The Alias directive allows you to reference directories in your local filesystem that are outside of your DocumentRoot as if
they were located inside it. The Alias directive maps the request to url-path into the directory tree specified by
directory-filename:

Alias /icons/ /usr/local/etc/httpd/icons/

A request for http://www.mydomain.com/icons/text.gif will be mapped by the server to the file
/usr/local/etc/httpd/icons/text.gif.

Redirect

Syntax: Redirect url differenturl

Context: server configuration, virtual host, and .htaccess (in Apache 1.1 or
better).

The Redirect directive allows you to map one URL into another. It can redirect a local request to a different Web server or an
external URL. When the server receives a request for url, it returns differenturl to the client along with a REDIRECT HTTP
response code. Better clients automatically re-requests the materials from the new URL:

Redirect /projectA http://www.domain.dom/projectA

Use Redirect if you change the name of an often-accessed file. That way the error logs won't fill up
with requests for the file from users who have bookmarked the URL, and visitors will have less
trouble finding the new location.

Apache 1.1 allows you to use the Redirect directive from an .htaccess file if the FileInfo option is enabled by the
AllowOverride directive.

Redirect directives take precedence over Alias and ScriptAlias directives.

ScriptAlias

Syntax: ScriptAlias path URL

Context: server configuration, virtual host

The ScriptAlias directive is similar to the Alias directive. The ScriptAlias directive allows you to reference a CGI directory
that is stored outside of your DocumentRoot, but in your local filesystem, as if it were inside your DocumentRoot. The
difference is that the server marks the directory as containing CGI programs and permits their execution:

ScriptAlias /cgi-bin/ /usr/local/etc/httpd/cgi-bin/

In this example, a request for http://www.mydomain.com/cgi-bin/foo.cgi will make the server run the program
/usr/local/etc/httpd/cgi-bin/foo.cgi.

The mod_asis Module

Source: mod_asis.c

Base: Yes

Type: handler management

Context: server configuration

The mod_asis module is built into Apache by default. This module allows you to specify type as a filetype that is to be sent
without HTTP headers except for date and server headers. This module is internally used to send server redirects and other
responses without the need for a CGI or a no parse header (nph) program.

Because the server does not return headers, you'll need to add them yourself. You'll need to return a status header (a
three-digit HTTP response code) followed by a message. Apache can return any of the following HTTP response codes:

200: OK

302: Found

304: Not Modified

400: Bad Request

401: Unauthorized

403: Forbidden

404: Not Found

500: Server Error

503: Out Of Resources (Service Unavailable)

501: Not Implemented

502: Bad Gateway

Here's an example of how to enable mod_asis:

Syntax: AddType httpd/send-as-is type

The following example defines the filetype .asis as a send-as-is filetype:

AddType httpd/send-as-is asis

Here's an example that implements redirection using the send-as-is feature. A redirection makes the client look for the
requested resource in a different location:

Status: 302 Site closed, go to a different server.

Location: http://www.mirror.com/index.html

Content-type: text/html

<HTML>

<HEAD>

<TITLE>This portion of our site is currently under remodeling, please visit a mirror
site.</TITLE>

</HEAD>

<BODY>

<H1>This portion of our site is currently under remodeling,

you can find a mirror of this site

here</H1>

</BODY>

</HTML>

The mod_auth Module

Source: mod_auth.c

Base: Yes

Type: Security/Access Control

The mod_auth module is built into Apache by default. This module provides user authentication by using text files.

User authentication allows you to control access to a document tree on an individual user basis, using user and password lists
to provide the necessary authentication verification. When a user requests a restricted resource, the server requires him to log
in by specifying a username and a password. If the user supplies the proper information, access is granted to roam across the
site without additional login requests. Also, you should be aware that this process is repeated for every document you request
(your password and user ID (UID) are sent with every page request, thus your password is sent not once, but many times).

mod_auth Directives

mod_auth provides you with the following directives:

AuthGroupFile●

AuthUserFile●

These directives allow you to specify the location of your password and group files. Password files that are usable by this
module are maintained with the htpasswd program included in the server's support directory. For more information on how to
use the htpasswd program, see Chapter 15, "Access Control and User Authentication."

AuthGroupFile

Syntax: AuthGroupFile filename

Context: directory, location, .htaccess

The AuthGroup directive allows you to specify the location of the group file. filename should be specified with an absolute
path—a path beginning with a slash (/)—that is outside of your Web server's DocumentRoot. For security reasons, it is
important that filename resides outside of the directory it is trying to protect:

AuthGroupFile /usr/local/etc/httpd/passwords/mygroupfile

The group file is an ASCII file with the following format:

groupname: username1 username2 username3...

groupname2: username1, username3

...

groupname is the name of your group followed by a colon (:) and then followed by a list of valid usernames that appear in the
user file. Use your favorite editor to maintain this file.

Use AuthGroupFile to authenticate a large group of users, such as a workgroup. This way, you can
easily manage multiple levels of access with just one directive.

AuthUserFile

Syntax: AuthUserFile filename

Context: directory, location, .htaccess

The AuthUserFile directive allows you to specify the location of the user/password file. filename should be an absolute path
outside of DocumentRoot. For security reasons, it is important that filename is outside of the directory it is trying to protect:

AuthUserFile /usr/local/etc/httpd/passwords/.htpasswd

The password file is maintained with the htpasswd program. The file format of the password file is similar to the /etc/passwd
file: it contains a username followed by a colon (:) and a crypt() encrypted password. For information on how to maintain
password files, please see Chapter 15.

Use the DBM authentication module when the number of users is greater than 100. It will speed up
things greatly.

The mod_auth_anon Module

Source: mod_auth_anon.c

Base: No

Type: Security/Access Control

The mod_auth_anon module allows you to have an FTP-style anonymous login. This will allow visitors that are not
registered with your site to still gain access, if they provide the appropriate information, typically their e-mail addresses.

mod_auth_anon Directives

Anonymous●

Anonymous_LogEmail●

Anonymous_VerifyEmail●

Anonymous_NoUserID●

Anonymous_Authorative●

Anonymous

Syntax: Anonymous login login2...

This directive allows you to specify various acceptable anonymous names. Typical logins include: Anonymous, guest, or
visitor. These logins are not case sensitive. Because there's no default, be sure to include Anonymous in the very least.

Anonymous_MustGiveEmail

Syntax: Anonymous_MustGiveEmail [on] | [off]

Default: Anonymous_MustGiveEmail off

The Anonymous_MustGiveEmail directive specifies that the password field must not be left empty. Typically users will be
required to enter their e-mail address.

Anonymous_LogEmail

Syntax: Anonymous_LogEmail [on] | [off]

Default: Anonymous_LogEmail on

The Anonymous_LogEmail directive specifies that the password field should be logged in the server's access log.

Anonymous_VerifyEmail

Syntax: Anonymous_VerifyEmail [on] | [off]

Default: Anonymous_VerifyEmail off

The Anonymous_VerifyEmail directive specifies that the password field must contain a valid e-mail address. That is, it will
be checked syntactically for resemblance to an e-mail address. It must contain at least one (@)and a period (.).

Anonymous_NoUserID

Syntax: Anonymous_NoUserID [on] | [off]

Default: Anonymous_NoUserID off

The Anonymous_NoUserID directive permits anonymous logins without entering any values in the user or password fields.

Anonymous_Authorative

Syntax: Anonymous_Authorative [on] | [off]

Default: Anonymous_Authorative off

The Anonymous_Authorative directive returns a denies access if the UID entered doesn't match one of the anonymous logins
specified by Anonymous. The ultimate order of the modules, by which login information is processed, depends on the linking
order of the various authentication modules. Modules that appear later in the src/Configuration file can override those that
come earlier in the file.

mod_auth_anon Configuration Example

This excerpt, from an access.conf, permits anonymous logins so long as a proper e-mail is entered in the password field.

Anonymous anonymous guest

Anonymous_MustGiveEmail on

Anonymous_VerifyEmail on

Anonymous_NoUserId off

AuthName This resource contains restricted materials.For guest entry use 'anonymous'
in the login prompt, and enter you email address as the password.

AuthType basic

<Limit get,post>

order deny,allow

allow from all

require valid-user

</Limit>

The mod_auth_db Module

Source: mod_auth_db.c

Base: No

Type: Security/Access Control

The mod_auth_dbm module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and recompile the server. This module provides user authentication using Berkeley DB (BSD)
files. It is very similar to mod_auth_dbm and should be used as an alternative to mod_auth_dbm on those systems that
support DB and not DBM.

mod_auth_db Directives

mod_auth_db provides you with the AuthDBGroupFile and AuthDBUserFile directives that you can use to specify the
location of your password and group files. Password and group files are maintained with the dbmmanage program included
in your server's support directory. For more information on how to use the dbmmanage program, see Chapter 15.

AuthDBGroupFile

Syntax: AuthDBroupFile dbfilename

Context: directory, location, .htaccess

Override: AllowOverride AuthConfig

The AuthDBGroupFile directive allows you to specify the location of the user/password/group file. dbfilename should be an
absolute path outside of DocumentRoot. For security reasons, it is important that filename is outside of the directory it is
trying to protect:

AuthDBGroupFile /usr/local/etc/httpd/passwords/passworddb

DB password files store username, password, and group information. Typically you'll reference dbfilename on both the
AuthDBGroupFile and AuthDBUserFile directives. User information in the group file is maintained using the dbmmanage
program included in the server's support directory. You'll need a copy of Perl to run dbmmanage. For information on how to
use the dbmmanage program, see Chapter 15.

AuthDBUserFile

Syntax: AuthDBUserFile dbfilename

Context: directory, location, .htaccess

Override: AllowOverride AuthConfig

The AuthDBUserFile directive allows you to specify the location of the user/password/group file. dbfilename should be an
absolute path outside of DocumentRoot. For security reasons, it is important that filename is outside of the directory it is
trying to protect:

AuthDBUserFile /usr/local/etc/httpd/passwords/passworddb

DBM password files store username, password, and group information. Typically you'll reference dbfilename on both
AuthDBGroupFile and AuthDBUserFile directives. User information in the group file is maintained using the dbmmanage
program included in the server's support directory. You'll need a copy of Perl to run dbmmanage. For information on how to
use the dbmmanage program, see Chapter 15.

The mod_auth_dbm Module

Source: mod_auth_dbm.c

Base: No

Type: Security/Access Control

The mod_auth_dbm module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and recompile the server.

This module provides user authentication using DBM files. User authentication allows you to control access to a document
tree on an individual user basis, using user and password lists to provide the necessary authentication verification. When a
user requests a restricted resource, the server requires him to log in by specifying a username and a password. If the user
supplies the proper information, access is granted to roam across the site without additional login requests.

DBM files provide a significant performance improvement over the authentication routines provided by mod_auth. If your
password file has more than 100 entries, you should use the mod_auth_dbm module and its directives instead.

mod_auth_dbm Directives

mod_auth_dbm provides you with the AuthDBMGroupFile and AuthDBMUserFile directives that you can use to specify the
location of your password and group files. Password and group files are maintained with the dbmmanage program included
in your server's support directory. For more information on how to use the dbmmanage program, see Chapter 15.

AuthDBMGroupFile

Syntax: AuthDBMGroupFile dbmfilename

Context: directory, location, .htaccess

Override: AllowOverride AuthConfig

The AuthDBMGroupFile directive allows you to specify the location of the user/password/group file. dbmfilename should be
an absolute path outside of DocumentRoot. For security reasons, it is important that filename is outside of the directory it is
trying to protect:

AuthDBMGroupFile /usr/local/etc/httpd/passwords/passworddbm

DBM password files store username, password, and group information. Typically you'll reference dbmfilename on both the
AuthDBMGroupFile and AuthDBMUserFile directives. User information in the group file is maintained using the
dbmmanage program included in the server's support directory. You'll need a copy of Perl to run dbmmanage. For
information on how to use the dbmmanage program, see Chapter 15.

AuthDBMUserFile

Syntax: AuthDBMUserFile dbmfilename

Context: directory, location, .htaccess

Override: AllowOverride AuthConfig

The AuthDBMUserFile directive allows you to specify the location of the user/password/group file. dbmfilename should be
an absolute path outside of DocumentRoot. For security reasons, it is important that filename is outside of the directory it is
trying to protect:

AuthDBMUserFile /usr/local/etc/httpd/passwords/passworddbm

DBM password files store username, password, and group information. Typically you'll reference dbmfilename on both
AuthDBMGroupFile and AuthDBMUserFile directives. User information in the group file is maintained using the
dbmmanage program included in the server's support directory. You'll need a copy of Perl to run dbmmanage. For
information on how to use the dbmmanage program, please see Chapter 15.

The mod_auth_msql Module

Source: mod_auth_msql.c

Base: No

Type: Security/Access Control

The mod_auth_msql module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and recompile the server.

mod_auth_msql allows you to provide access control using the mini SQL (mSQL) relational database engine, which can be

obtained from ftp://ftp.bond.edu.au/pub/Minerva/msql. mSQL is not free for commercial or private use. Price for the engine
is U.S. $170 for commercial organizations and $50 for private use. For more information, please visit the mSQL FTP site.
On-line documentation for the server can be found at http://Huges.com.au and
http://cscsun1.larc.nasa.gov/~beowulf/msql/msql.html.

mod_auth_msql Directives

mod_auth_msql provides you with several directives that allow you to map the various authentication pieces of information
to tables and fields within a mSQL database.

Auth_MSQLhost●

Auth_MSQLdatabase●

Auth_MSQLpwd_table●

Auth_MSQLgrp_table●

Auth_MSQLuid_field●

Auth_MSQLpwd_field●

Auth_MSQLgrp_field●

Auth_MSQL_nopasswd●

Auth_MSQL_Authorative●

Auth_MSQL_EncryptedPasswords●

Auth_MSQLhost

Syntax: Auth_MSQLhost [FQDN] | [IPaddress] | [localhost]

The Auth_MSQLhost directive sets the address of the host that is running the mSQL server. The host's address can be
specified as the fully qualified domain name (FQDN), by IP address (IPaddress), or by specifying localhost, when the Web
server host is also the database server. The localhost option forces the use of the faster interface /dev/msql instead of a slower
socket connection.

Auth_MSQLdatabase

Syntax: Auth_MSQLdatabase databasename

The Auth_MSQLdatabase directive sets the name of the mSQL database that contains the various authentication tables.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#97
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#98
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#99

Auth_MSQLpwd_table

Syntax: Auth_MSQLpwd_table passwd-table

The Auth_MSQLpwd_table directive sets the name of the table that contains the fields defined by Auth_MSQLuid_field and
Auth_MSQLpwd_field.

Auth_MSQLgrp_table

Syntax: Auth_MSQLgrp_table group-table

The Auth_MSQLgrp_table directive sets the name of the table that contains the fields defined by Auth_MSQLgrp_field and
Auth_MSQLuid_field.

Auth_MSQLuid_field

Syntax: Auth_MSQLuid_field uid-name

The Auth_MSQLuid_field directive sets the name of the field that holds the username in the Auth_MSQLpwd_table and
Auth_MSQLgrp_table.

Auth_MSQLpwd_field

Syntax: Auth_MSQLpwd_field pwd-name

The Auth_MSQLpwd_field directive sets the name of the field that holds the password in the Auth_MSQLpwd_table.

Auth_MSQLgrp_field

Syntax: Auth_MSQLgrp_field pwd-name

The Auth_MSQLgrp_field directive sets the name of the field that holds the group membership in the Auth_MSQLgrp_table.

Auth_MSQL_nopasswd

Syntax: Auth_MSQL_nopasswd [on] | [off]

Default: Auth_MSQL_nopasswd off

The Auth_MSQL_nopasswd directive sets whether the password authentication is skipped when Auth_MSQLpwd_field is
empty (NULL). The default is set to disable this feature.

Auth_MSQL_Authorative

Syntax: Auth_MSQL_Authorative [on] | [off]

Default: Auth_MSQL_Authorative on

The Auth_MSQL_Authorative directive, when set to off, makes it possible to fall through to other authentication modules. If
authentication fails, the server will pass control to other authentication modules such as mod_auth_anon. If authentication
fails when set to on, the user is denied access. The default is set to on.

Auth_MSQL_EncryptedPasswords

Syntax: Auth_MSQL_EncryptedPasswords [on] | [off]

Default: Auth_MSQL_EncryptedPasswords on

When set to on, the password field is assumed to be encrypted with the crypt function. Incoming passwords are encrypted
before they are compared. When set to off, the passwords are assumed to be in plain text format and are compared directly.

The mSQL password database

Please refer to your mSQL database manual for information on how to install and run the database server. This information
assumes that you have some understanding of mSQL and SQL syntax. You can create the mSQL password database by
typing the following commands:

msqladmin create passwords

msql passwords

-> create table user (

-> uid char(32) primary key,

-> pwd char(32) not null,

-> grp char(32) null

->) \g

To enter records on the password database, type the following:

-> insert into user

-> values ('User Name', 'asdflkjwer2223', 'registered')

-> \g

Note that for this example the password field is not encrypted.

To reference the previous table for authentication, enter the following on your conf/access.conf in a <Directory> section or in
a per-directory (.htaccess) file:

Auth_MSQLhost localhost

Auth_MSQLdatabase passwords

Auth_MSQLpwd_table user

Auth_MSQLuid_field uid

Auth_MSQLpwd_field pwd

Auth_MSQLgrp_field grp

Auth_MSQL_Authorative on

Auth_MSQL_EncryptedPassords off

Auth_Name secured area

Auth_Type basic

<Limit GET POST>

 order deny,allow

 allow for all

 require valid-user

</Limit>

For more information, please see Chapter 15.

The mod_cern_meta Module

Source: mod_auth_msql.c

Base: No

Type: Meta Header

The mod_cern_meta module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and recompile the server.

mod_cern_meta provides you with the ability to include additional HTTP headers into the requested document. This module

was originally developed to provide additional compatibility to users of the CERN Web server who were migrating to
Apache.

mod_cern_meta Directives

mod_cern_meta provides two additional directives:

MetaDir●

MetaSuffix●

MetaDir

Syntax: MetaDir directoryName

Default: MetaDir .web

Context: server configuration

The MetaDir directive will set the name of the directory the server will search for additional Meta information files. To have
the server search the same directory as the request, set directoryName to a period (.).

MetaSuffix

Syntax: MetaSuffix fileExtension

Default: MetaSuffix .meta

Context: server configuration

The MetaSuffix directive will set the file extension of the file containing the additional header information.

MetaSuffix Example

This is a sample configuration:

MetaDir .

MetaSuffix .meta

For a request like http://somehost/index.html, the server will look for a file called index.html.meta in the same directory as the
request. The contents of index.html.meta will be included as additional MIME-header information.

The mod_cgi Module

Source: mod_cgi.c

Base: Yes

Type: Handler Management

The mod_cgi module is built into Apache by default.

This module enables the execution of CGI programs. Files ending in .cgi or inside a directory defined by ScriptAlias will be
processed as a CGI program and run by the server. Output of CGI programs is returned to the client.

When a CGI program is run by the server, the server will add the following variables to the environment:

DOCUMENT_ROOT This variable will be set to the value of DocumentRoot.

REMOTE_HOST This variable is added only if the server was not compiled
with MINIMAIL_DNS or if the new HostnameLookups
runtime directive was enabled in Apache 1.1.

REMOTE_IDENT This is set to the name of the user if IdentityCheck is
enabled and the user is running an RFC931- or
RFC1413-compliant identity daemon.

REMOTE_USER This variable is set to the name of the user if the CGI
program is subject to user authentication.

The mod_env module adds additional environment variables. For more information, see the module mod_env later in this
chapter.

The mod_cookies Module

Source: mod_cookies.c

Base: No

Type: Administration

The mod_cookies module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and recompile the server.

Cookies help a Web server to maintain persistent state by handing the browser a unique identifier. Maintaining state has been
one of the tedious programming issues for anyone developing a Web site. The Web is, by design, stateless: The server
receives a request, answers the request, and disconnects. It doesn't care what you were doing. It doesn't know where you've
been or where you are going.

Initial efforts at maintaining state were put on the server side. Although that works great, it adds to the load and to the
complexity of programming Web-based applications. Netscape developed an extension to the HTTP protocol that
implements Cookies, which off-load the persistence issue off to the client—a better thing to do. Although cookies are great,
they are not part of the HTTP specification; however, browsers from Netscape, Microsoft, and others support them. For a
better description of Netscape cookies, please refer to Chapter 7.

The mod_cookies module handles the process of generating and handing out cookies. When a request is received, the server
looks for a Cookie: header. If one isn't found, the server assumes that the user has not visited the site in the current session, so
it sends a Set_Cookie: header out with the request. Additional requests from the client will maintain the Cookie header sent

by the server. Apache generates cookies with every request, no matter what browser was used to make the request. Unique
cookie tags are generated by making a new tag by using the process ID of the server, the time, and the host IP of the client.

Although cookies are generated automatically by the server, it is up to your software to do something useful with them. You
can use cookies to implement shopping carts or create meaningful logs that track users. The possibilities are almost endless.

The mod_cookies Directive

The mod_cookies module provides a directive you can use to log cookies: CookieLog.

Versions of Apache prior to 1.1 only support hands-out cookies to Netscape browsers. Apache 1.1 generates cookies for
every request no matter what the browser.

The CookieLog Directive

Syntax: CookieLog filename

Context: server configuration, virtual host

The CookieLog directive sets the filename where the server will log cookies and the request that accompanied them. filename
is relative of the path specified by the ServerRoot directive.

This directive does not log the initial request— the request that generated the cookie.

The mod_digest Module

Source: mod_digest.c

Base: No

Type: Security/Access Control

The mod_digest module is not built into Apache by default. This module adds a new form of authentication called Digest
authentication, which uses RSA MD5 encryption technology. Digest authentication encrypts and encodes the password the
visitor provided so that it is only useful for retrieving the requested URL. The browser generates encodes a new password for
each request. This ensures that if the password sent was compromised, it would only be useful for retrieving one URL only.
Use of Digest authentication requires the use of a supporting Web browser. Be aware that unless you are using a secure
server to access your documents, the information that you transmit is still sent in world-readable form.

Digest authentication requires a compatible browser to operate the work.

The mod_digest Directive

The mod_digest module adds one directive:

AuthDigestFile●

AuthDigestFile

Syntax: AuthDigestFile filepath

Context: directory, .htaccess

The AuthDigestFile directive specifies the file that contains the user and password information. This file is created with the
htdigest utility found in the support subdirectory of the Apache server distribution. htdigest is similar in functionality to the
htpassword utility.

htdigest

Usage: htdigest [-c] filepath realm username

The -c flag creates a new password file in filepath.

realm is the server realm being protected (set with the AuthName directive).

username is the name of the user to add an entry.

The htdigest program will prompt you for the password to add.

Configuring the Server to Use Digest Authentication

Using Digest authentication is very simple. Set authentication the way you normally would (see Chapter 15). Use AuthType
Digest and AuthDigestFile instead of AuthType Basic and AuthUserFile. All else should remain the same.

The mod_dir Module

Source: mod_dir.c

Base: Yes

Type: Automatic Indexing

The mod_dir module is built into Apache by

default. This module provides directives that control the handling of requests ending in a directory name.

The mod_dir module controls the resource and formatting returned by the server when the request is for a directory.
Directory indexes can be generated by a file written by an user, typically called index.html, or on-the-fly by the server (an
automatic directory listing).

The DirectoryIndex directive sets the default name for the user-generated index file. The server looks for this file on any
request for a directory.

The additional directives control the formatting of server-generated indexes, such as the embellishment of a listing by adding

icons and descriptions to filenames. The filename-mapping conventions are very flexible. You can use wildcard expressions
to make any file matching a pattern or content type display a particular description and icon next to its name.

mod_dir Directives

mod_dir provides a number of directives that help you associate icons, descriptions, header and footer files, and the selective
inclusion of files and other information on a listing, as well as the name of user-generated index files:

AddDescription●

AddIcon●

AddIconByEncoding●

AddIconByType●

DefaultIcon●

DirectoryIndex●

FancyIndexing●

HeaderName●

IndexIgnore●

IndexOptions●

HeaderName●

ReadmeName●

AddDescription

Syntax: AddDescription description file [file]...

Context: server configuration, virtual host, directory, .htaccess

Override: AllowOverrides Indexes

The AddDescription directive maps a description to a filename or a filetype. description is displayed next to the filename on
server-generated indexes when the FancyIndexing directive is set to on. description is a text string enclosed by double quotes
("). file can be described by a

file extension: .gif—This would match files with a .gif extension.

partial filename: Readme—This would match any file called Readme
anywhere in the server.

full filename: /usr/local/etc/httpd/htdocs/myfile.doc

wildcard
expression:

asg??MAR.doc—The ? character matches a single character.
The * character matches any sequence of characters. This
would provide a match for asg01MAR.doc, asg02MAR.doc,
and so on.

Here's an example of the AddDescription directive:

AddDescription "This is a Graphics Interchage Format" *.gif

AddDescription "Read This file before you do anything else" readnow

AddDescription "This is a picture of my boat" boat.gif

AddIcon

Syntax: AddIcon [iconfile] | [(description,iconfile)] file file ...

Context: server configuration, virtual host, directory, .htaccess

Override: AllowOverrides Indexes

This directive sets the icon displayed next to a file listing on server-generated indexes when the FancyIndexing directive is
set to on. iconfile can be a relative URL to the icon file or can follow the format (description,iconfile) where description is
the text provided to nongraphical browsers.

The description string is enclosed by double quotes ("). file can be specified by a

file extension: .gif—This would match files with a .gif extension.

partial filename: Readme—This would match any file called Readme
anywhere in the server.

full filename: /usr/local/etc/httpd/htdocs/myfile.doc

wildcard
expression:

asg??MAR.doc—The ? character matches a single character.
The * character matches any sequence of characters. This
would provide a match for asg01MAR.doc, asg02MAR.doc,
and so on.

file can be either

^^DIRECTORY^^ for directories●

^^BLANKICON^^ for blank lines (to format the list correctly)●

A file extension, wildcard expression, partial filename, or complete filename●

Here's an example of the AddIcon directive:

AddIcon(image,/icons/image.gif) .gif .jpg .xbm

AddIcon /icons/dir.gif ^^DIRECTORY^^

AddIcon /icons/text.gif *.txt

Use of the AddIconByType directive is preferred over AddIcon.

AddIconByEncoding

Syntax: AddIconByEncoding [iconfile] | [(description,iconfile)]
mime-encoding mime-encoding ...

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

When the FancyIndexing directive is set to on, AddIconByEncoding sets the icon displayed next to the file with
mime-encoding on a server-generated index. Iconfile can be a relative URL to the file containing the icon or of the format
(description,iconfile) where description is the text provided to nongraphical browsers.

mime-encoding is a wildcard expression matching the content encoding of the file. An example includes the following:

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType

Syntax: AddIconByType [iconfile] | [(description,

iconfile)] mime-type
mime-type ...

Context: server configuration, virtual host, directory,
.htaccess

Override: Indexes

This directive sets the icon displayed next to a file of type mime-type on server-generated indexes when the FancyIndexing
directive is set to on. iconfile can be a relative URL to the file containing the icon or of the format (description,iconfile)
where description is the text provided to nongraphical browsers.

mime-type is a wildcard expression matching the required MIME types. The following is an example of this:

AddIconByType (IMG,/icons/image.gif) image/*

DefaultIcon

Syntax: DefaultIcon iconfile

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

When the FancyIndexing directive is set to on, this directive sets the icon displayed next to a file that has not been given an
icon with any of the other directives on server-generated indexes. iconfile can be a relative URL to the file containing the
icon or of the format (description,iconfile) where description is the text provided to nongraphical browsers.

Here's an example of the DefaultIcon directive:

DefaultIcon /icon/unknown.gif

DirectoryIndex

Syntax: DirectoryIndex url url ...

Default: DirectoryIndex index.html

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

The DirectoryIndex directive identifies which resources to look for when a request ends in a directory name. DirectoryIndex
provides a list of files to return if such a request is made.

Here's an example of the DirectoryIndex directive:

DirectoryIndex index.html readme.txt

If a request is made to a directory, the server would first try to return index.html. If that file does not exist, it tries to return a
file called readme.txt. If that file doesn't exist, it returns a server-generated index.

URLs don't need to be relative to the directory. In the following example, the output from a program that tells you your
fortune would be returned if the first two files didn't exist:

DirectoryIndex index.html readme.txt /cgi-bin/fortune.cgi

FancyIndexing

Syntax: FancyIndexing [on] | [off]

Context: server configuration, virtual host, directory, .htaccess

Override: AllowOverrides Indexes

The FancyIndexing directive sets the FancyIndexing option for a directory. It can be set to on to enable the display of icons
and other adornments or to off to provide more generic listings.

The IndexOptions directive described in the following section should be used instead of FancyIndexing, because it gives
better control over the format of server-generated indexes. This directive is provided for National Center for Supercomputing
Applications (NCSA) httpd server compatibility.

HeaderName

Syntax: HeaderName filename

Context: server configuration, virtual host, directory, .htaccess

Override: AllowOverrides Indexes

The HeaderName directive specifies the name of the file to include at the top of a server-generated listing. filename is the
name of the file to include, and it is taken to be relative to the directory being indexed. The server first tries to include
filename.html as an HTML document. Otherwise, it includes filename as an ASCII document:

HeaderName README

When generating a server index for /usr/local/htdocs, the server will include the file /usr/local/htdocs/README.html if such
a file is found. Otherwise, it will try to include /usr/local/htdocs/README if it exists.

This is a great way of posting information about a series of documents. (See also ReadmeName.)

IndexIgnore

Syntax: IndexIgnore file file ...

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

The IndexIgnore directive specifies the files to omit on server-generated indexes.

file can be specified by a

file extension: .gif—This would match files with a .gif extension.

partial filename: Readme—This would match any file called Readme
anywhere in the server.

full filename: /usr/local/etc/httpd/htdocs/myfile.doc

wildcard
expression:

asg??MAR.doc—The ? character matches a single character.
The * character matches any sequence of characters. This
expression would provide a match for asg01MAR.doc,
asg02MAR.doc, and so on.

Here's an example of the IndexIgnore directive:

IndexIgnore README core *~

By default, IndexIgnore ignores dotfiles—files that are normally hidden from directory listings. Dotfiles start with a period
(.), such as .cshrc, .mailrc, and so on.

IndexOptions

Syntax: IndexOptions option option ...

Default: No options enabled

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

The IndexOptions directive controls the features available on server-generated indexes. option can be

FancyIndexing This enables fancy indexing of directories.

IconsAreLinks This makes the icons part of the anchor for the filename.
For fancy indexing, clicking on the icon would have the
same effect as clicking on the filename (it would retrieve
the file).

ScanHTMLTitles This enables reading the title from HTML documents for
fancy indexing. If the file does not have a description
associated with an AddDescription directive, the server
will scan the document for the value of the <TITLE> tag.
Needless to say, this is CPU and disk intensive.

SuppressLastModified This will suppress display of the last modification date in
fancy indexing listings.

SuppressSize This will suppress the file size in fancy indexing listings.

SuppressDescription This will suppress the file description in fancy indexing
listings.

The default doesn't enable any options. When multiple IndexOptions apply to a directory, only the most specific one is used;
the options are not cumulative.

Here's an example of the IndexOptions directive:

<Directory /usr/local/etc/httpd/htdocs/

IndexOptions FancyIndexing

</Directory>

<Directory /usr/local/etc/httpd/htdocs/projectA>

IndexOptions ScanHTMLTitles

</Directory>

In this example, ScanHTMLTitles is the only option used in requests for /usr/local/etc/httpd/htdocs/projectA.

ReadmeName

Syntax: ReadmeName filename

Context: server configuration, virtual host, directory, .htaccess

Override: AllowOverrides Indexes

The ReadmeName directive specifies the name of the file to include at the bottom of a server-generated listing. filename is
the name of the file to include, and it is taken to be relative to the directory being indexed. The server first tries to include
filename.html as an HTML document. Otherwise, it includes filename as an ASCII document, as in this example:

ReadmeName README

When generating an index for /usr/local/htdocs, the server will include the file /usr/local/htdocs/README.html if such a file
is found. Otherwise, the server will try to include /usr/local/htdocs/README if it exists.

This is a great way to post information about a series of documents. (See also HeaderName.)

The mod_env Module

Source: mod_env.c

Base: Yes

Type: CGI

This module extends the environment variables passed to CGI and SSI scripts. It permits CGI and SSI scripts to inherit all
environment variables from the shell that invoked the httpd process. It was originally developed to provide additional
compatibility to users migrating from the CERN Web server.

mod_env Directives

mod_env provides two additional directives

PassEnv●

SetEnv●

PassEnv

Syntax: PassEnv environmentVariable

Context: server configuration, virtual host

The PassEnv directive allows you to define an environment variable, from the server's own environment, that will be passed
to CGI and SSI scripts. For example:

PassEnv PATH

SetEnv

Syntax: SetEnv environmentVariable value

Context: server configuration, virtual host

The SetEnv directive allows you define an environment variable that will be passed to CGI and SSI scripts. For example:

SetEnv SERVER_TOOL_PATH /usr/lib/tools

The mod_dld Module

Source: mod_dld.c

Base: No

Type: External Module Loading

The mod_dld module is not built into Apache by default. In order to use any of its directives you need to reconfigure Apache
to include this module and recompile the server.

mod_dld is a proof of concept module—that is, it is experimental code. It allows for loading of modules at
server-configuration time instead of statically linking them in at compile time. This option may be useful to someone
developing modules to reduce the compile and linking process. Its use requires GNU's dynamic linking library, DLD. As
with any other dynamic linking, the httpd binary and the modules you are dynamically loading should not have their symbols
stripped (see strip in your UNIX manual).

mod_dld Directives

The mod_dld module provides two directives:

LoadFile●

LoadModule●

LoadFile is for loading support libraries. LoadModule loads modules and properly inserts the module in the server's module
list.

LoadFile

Syntax: LoadFile filename filename ...

Context: server configuration

The LoadFile directive links at runtime the named object code files or libraries listed in filename at server configuration. The
LoadFile directive is used to link additional code that may be required by a module. filename is relative to ServerRoot. Here's
an example of the LoadFile directive:

LoadFile /lib/libc.a

LoadModule

Syntax: LoadModule module filename

Context: server configuration

The LoadModule directive links in the object file or library filename and adds the module structure named module to the list
of active modules. module is the name of the external variable of type module in the file. The following is an example of this:

LoadModule cookies_module modules/mod_cookies.o

The mod_imap Module

Source: mod_imap.c

Base: Yes

Type: Server-Side Image Map

The mod_imap module is built into Apache by default. It replaces the image map CGI program for server-side processing of
image map (.map) files.

mod_imap Directives

New with Apache 1.1 is an enhanced image map module. The new enhanced dmodule provides three directives:

ImapMenu●

ImapDefault●

ImapBase●

ImapMenu

Syntax: ImapMenu [none] | [formatted] | [semiformatted] | [unformatted]

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

The ImapMenu directive controls the behavior taken when an image map is called without valid coordinates, such as when a
nongraphical browser accesses it. Here are the valid options:

none If set to none, no menu is generated and the default action is
performed. The default action can be set by the ImapDefault
directive or by a default entry in the image map itself.

formatted Generates the simplest menu: A header, a rule (HR), and the link
are printed (one per line).

semiformatted This menu also includes any comments in the image map file.
Comments are lines that begin with a pound character (#). They
can include HTML tags. Blank lines in the map are turned into
HTML BR tags. This menu does not print a header or a rule like
the formatted menu.

unformatted This is the most flexible menu format. Comments are lines that
begin with a pound character (#). They can include HTML tags.
Blank lines are ignored. All content sent to the client must be
specifically included in the image map file. Headers and breaks
should be included as comments in the image map file.

ImapDefault

Syntax: ImapDefault [error] | [nocontent] | [map] | [referer] | [url]

Default: ImapDefault nocontent

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

The ImapDefault directive sets the default for image map files. This default can be overridden by a default directive inside
the image map file.

error Returns a 500 Server Error.

nocontent This option returns a 204 No Content HTTP status code, which keeps
the client focused on the original page.

map Sets the default action to the URL of the image map itself. This option
will generate a menu, unless ImapMenu is set to none.

referer Sets the default action to the URL of the referring document. If no
referer header is available, the default URL is set to the server's
DocumentRoot.

url A URL.

ImapBase

Syntax: ImapBase [map] | [referer] | [URL]

Default: ImapDefault DocumentRoot-URL

Context: server configuration, virtual host, directory, .htaccess

Override: Indexes

The ImapBase directive sets the base URL used in the image map files. This directive will be overridden by the value of the
base directive in the image map file. If omitted, the default is set to the server's DocumentRoot.

Using Server-Side Image Maps

Map files define regions within a graphic that behave as a link when clicked on by the user. Regions are defined as simple
shapes: circles, rectangles, or polygons.

Documents tagged as being MIME-type application/x-httpd-imap are processed by this module, which offers better
performance and more flexibility than the original CGI program used for this purpose. This functionality is compiled into the
server, so no external CGI server transaction is generated. To get this module to process .map files, you'll need to associate a
MIME-type format to a file extension using the AddType directive in an entry such as

AddType application/x-httpd-imap map

An entry like this already exists in the Apache configuration templates provided, so you don't need to alter this unless you
want to use a different filename.

The image map module adds some new features that were not possible with previously distributed image map programs:

URL can reference documents relative to the Referer: information (relative of the current document).●

Default <BASE> assignment through a new map field base_uri, which appears in imagemap files.●

Eliminates the need for the imagemap.conf file, a configuration file that associates .map files to the images. You can
now just reference the relevant map file in your HTML document.

●

Supports point references.●

base_uri options appear in an image map and include:

map Provides the default and old behavior of map relative reference

Referer Uses the Referer: header information to reference a URL relative to
the current document

http://URL Has the effect of setting <BASE> to that URL, which makes all
references relative to that <BASE>

A Map File Example

Here's an example of an imagemap file:

default http://lincoln/

base_uri referer

rect .. 0,0 77,27

poly http://www.inetnebr.com/ 78,0 194,27

circle http://www.inetnebr.com/lincoln/feedback/ 195,0 305,27

rect search_index 306,0 419,27

point http://www.zyzzyva.com/ 420,0 549,27

Referencing the Map File

Map files are referenced right from the HTML page:

The mod_include Module

Source: mod_include.c

Base: Yes

Type: Handler Management

The mod_include module is built into Apache by default. It provides support for server-parsed HTML (SPML) documents.

SPML documents are processed by the server before they are sent to the client. Documents with a MIME-type
text/x-server-parsed-html or text/x-server-parsed-html3 are parsed. The resulting HTML document is sent to the client.

SPML Command Format

The document is parsed as an HTML document with commands embedded as Standard Generalized Markup Language
(SGML) comments. The commands can

Execute programs●

Obtain file size and modification information●

Include text from other documents or from a program●

Configure the format used to display results from the various commands●

Commands follow this syntax:

<!--#command option=value option=value ...-->

SMPL Commands

The available commands are

config●

echo●

exec●

cmd●

fsize●

flastmod●

include●

A plug-in replacement module called Extended Server Side Includes (XSSI) extends the server-side include syntax (which
adds conditional inclusion with if-then-else constructs), adds the capability to set and use variables, and provides regular
expression support. This package is available at http://pageplus.com/~hsf/xssi/.

For complete documentation on how to use Server Side Includes and its commands, see Chapter 6.

The mod_include Directive

mod_include adds one directive:

XBitHack●

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#101

XBitHack

Syntax: XBitHack [off] | [on] | [full]

Default: XBitHack off

Context: server configuration, virtual host, directory, .htaccess

Override: Options

The XBitHack directive controls processing of ordinary HTML documents. The following options are available:

off No special treatment of HTML files marked as executable.

on Any .html file that has the user-execute bit set will be parsed by the server.

full The same as for on, but also test the group-execute bit. If it is set, then the
server will set the last-modified date of the returned file to be the
last-modified time of the file. If the group-execute bit is not set, no
last-modified date is sent. Setting this bit allows clients and proxies to cache
the result of the request because it is possible to determine the date of the
document's last modification.

The mod_info Module

Source: mod_info.c

Base: No

Type: Server Information

The mod_info module is not built into Apache by default. In order to use its functionality, you need to reconfigure Apache to
include it and then rebuild the server. mod_info displays all your server configuration settings. The report includes modules
and all runtime configuration settings in a nicely formatted HTML file. It's way cool!

Once you rebuild your server, you'll need to add the following directives to your conf/access.conf configuration file:

<Location /configuration>

SetHandler server-info

</Location>

If you want to keep your server configuration private—an important thing because this report will list all your settings—add
a Limit section specifying some access restrictions (see Chapter 15 for more information). Restart the server and point your
Web browser to http://yourhost/configuration. The server will return its very detailed configuration report.

The mod_log_agent Module

Source: mod_log_agent.c

Base: No

Type: Logging

The mod_log_agent module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and then recompile the server. This module is provided for compatibility with NCSA 1.4.

This module enables logging the client user agents—the browsers used for accessing your site. This feature is not very
reliable; because many sites provide different pages to different browsers, there is a trend with some browsers to fake their
identity to obtain the more elaborate versions of the site. The faked agent is usually Mozilla, the Netscape Navigator browser.

The mod_log_agent Directive

mod_log_agent adds one directive:

AgentLog●

AgentLog

Syntax: AgentLog [filename] | [|program]

Default: AgentLog logs/agent_log

Context: server configuration, virtual host

The AgentLog directive specifies the file where the server logs the UserAgent header on incoming requests. The options are
either filename or |program.

filename is the name of a file relative of ServerRoot.●

|program is the pipe symbol (|) followed by path to a program capable of receiving the log information on standard
input (stdin).

●

As with any program started by the server, the program is run with the UID and GID of the user that started the httpd
daemon. If the user starting the program is root, be sure that the user directive demotes the server privileges to those of an
unprivileged user such as nobody. Also, make sure the program is secure.

The mod_log_common Module

Source: mod_log_common.c

Base: Yes

Type: Logging

The mod_cgi module is built into Apache by default.

This module logs requests made to the server using the Common Logfile format. For more information, please see chapter
13.

Logfile Format Description

The Common Logfile Format logs each request in a separate line. A line is composed of several fields separated by spaces:

host ident authuser date request status bytes

Null fields (fields that have no values) contain a dash (-).

The following options are available:

host The host field contains the fully qualified domain name or, if the name
was not available, the IP of the machine that made the request.

Ident If IdentityCheck is enabled and the client machine is running an
identity daemon, this field contains the name of the user that made the
request.

Authuser If the request requires authentication, this field contains the login of the
user who made the request.

date This field contains the date and time of the request. The date format
used is day/month/year:hour:minute:second timezone.

request The request line from the client enclosed in double quotes (").

status The three-digit HTTP status code returned to the client.

bytes The size of the transfer in bytes returned to the client, not counting
header information.

mod_log_common Directives

The mod_log_common module provides the following directive to set the file where the log information is stored:

TransferLog●

TransferLog

Syntax: TransferLog [filename] | [|program]

Default: TransferLog logs/transfer_log

Context: server configuration, virtual host

The TransferLog directive specifies the file where the server logs request information on incoming requests. The options are
filename or |program.

filename is the name of a file relative of ServerRoot.●

|program is the pipe symbol (|) followed by a path to a program capable of receiving the log information on standard
input (stdin).

●

As with any program started by the server, the program is run with the UID and GID of the user that started the httpd
daemon. If the user starting the program is root, be sure that the user directive demotes the server privileges to those of an
unprivileged user such as nobody. Also, make sure the program is secure.

The mod_log_config Module

Source: mod_log_config.c

Base: No

Type: Administration

The mod_log_config module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and recompile the server.

This module allows logging server requests using a user-specified format. This module is experimental in nature. It
implements the TransferLog directive (same as the mod_log_common) and an additional directive, LogFormat.

The argument to the LogFormat directive is a string that can include literal characters copied into the log files as well as %
directives:

%h Remote host.

%l Remote logname (from identd, if supplied).

%u Remote user [from auth; may be bogus if return status (%s) is 401].

%t Time, in common log format time format.

%r First line of request.

%s Status. For requests that got internally redirected, this is the status
of the original request.

%>s Status. For requests that were internally redirected, this is the status
of the last request.

%b Bytes sent.

%{Header}i Inserts the contents of the HTTP header Header that was received
from the client.

%{Header}o Inserts the contents of the HTTP header Header that was sent back
to the client.

You can specify the conditions for inclusion of a particular field by specifying an HTTP status code between the % and the
letter code for the field. You can specify more than one by separating them with a comma (,):

%400,500{User-agent}I

This line of code logs User-Agent headers only as Bad Request or Not Implemented errors.

You also can specify that an item should be logged, if a certain HTTP code is not returned by adding an exclamation symbol
(!) in front of the code you want to see:

%!200,304,302{Referer}i

This line of code logs Referer header information on all requests not returning a normal return code.

If any condition is not met, the field is null. As with the common log format, a null field is indicated by a dash (-) character.

Virtual hosts can have their own LogFormat and/or TransferLog. If no LogFormat is specified, it is inherited from the main
server process. If the virtual host doesn't have its own TransferLog, entries are written to the main server's log.

To differentiate between virtual hosts that are writing to a common log file, you can prepend a label to the log format string
like in this next example:

<VirtualHost xxx.com>

LogFormat "xxx formatstring"

...

</VirtualHost>

<VirtualHost yyy.com>

LogFormat "yyy formatstring"

...

</VirtualHost>

mod_log_config Directives

mod_log_config provides two directives:

LogFormat●

TransferLog●

LogFormat

Syntax: LogFormat string

Default: LogFormat "%h %l %u %t \"%r\" %s %b"

Context: server configuration, virtual host

This sets the format of the log file.

TransferLog

Syntax: TransferLog [filename] | [|program]

Default: TransferLog logs/transfer_log

Context: server configuration, virtual host

The TransferLog directive specifies the file where the server logs all request transactions. The options are filename or
|program:

filename is the name of a file relative of ServerRoot.●

|program is the pipe symbol (|) followed by path to a program capable of receiving the log information on stdin
(standard input).

●

As with any program started by the server, the program is run with the UID and GID of the user that started the httpd
daemon. If the user starting the program is root, be sure that the user directive demotes the server privileges to those of an
unprivileged user such as nobody. Also, make sure the program is secure.

The mod_log_referer Module

Source: mod_log_refer.c

Base: No

Type: Administration

The mod_log_referer module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and recompile the server.

This module provides logging of documents that reference documents on the server.

Logfile Format Description

The logfile contains a separate line for each reference. Each line has the format

uri -> document

where uri is the URI for the document that references the one requested by the client, and document is the local URL to the
document being referenced.

mod_log_referer Directives

RefererIgnore●

RefererLog●

RefererIgnore

Syntax: RefererIgnore string string ...

Context: server configuration, virtual host

The RefererIgnore directive adds to the list of strings to ignore in Referer headers. If any of the strings in the list are
contained in the Referer header, no information will be logged for the request. An example of this is as follows:

RefererIgnore webcrawler.com

This avoids logging requests from webcrawler.com.

RefererLog

Syntax: RefererLog [filename] | [|program]

Default: RefererLog logs/referer_log

Context: server configuration, virtual host

The RefererLog directive specifies the file where the server logs referer information. The options are filename or |program:

filename is the name of a file relative of ServerRoot.●

|program is the pipe symbol (|) followed by a path to a program capable of receiving the log information on stdin.●

As with any program started by the server, the program is run with the UID and GID of the user that started the httpd
daemon. If the user starting the program is root, be sure that the user directive demotes the server privileges to those of an
unprivileged user such as nobody. Also, make sure the program is secure.

This directive is provided for compatibility with NCSA httpd 1.4.

The mod_mime Module

Source: mod_mime.c

Base: Yes

Type: MIME

The mod_mime module is built into Apache by default.

This module maps MIME-encodings of documents based on their filenames. Filenames are composed of a basename
followed by one or more extensions:

base.type.language.encoding

The type sets the document type; an HTML document has a .html type. The language extension describes the language in
which the document is written. encoding specifies if the document has been processed by a program, such as a compression
program.

This module is used to map the MIME types of documents based on their type, language, and encoding extensions. MIME
types requiring some special processing by the server are handed down to the appropriate modules, such as the mod_imap
module which processes .map files or the mod_include module which processes SPML documents. Types not requiring any
processing, such as .gif or .html, are returned to the client where the browser can process the document as needed.

mod_mime Directives

mod_mime adds the following directives:

AddEncoding●

AddLanguage●

AddType●

TypesConfig●

The following directives are only available in Apache 1.1 or better:

AddHandler●

ForceType●

SetHandler●

AddEncoding

Syntax: AddEncoding mime-enc extension extension...

Context: server configuration, virtual host, directory, .htaccess

Override: FileInfo

The AddEncoding directive maps file extension's extension to the encoding type mime-enc. The following is an example:

AddEncoding x-gzip gz

AddEncoding x-compress Z

The preceding example will mark files ending in .gz as encoded using the x-gzip encoding, and files ending in .Z as encoded
with x-compress encoding.

AddLanguage

Syntax: AddLanguage mime-lang extension extension...

Context: server configuration, virtual host, directory, .htaccess

Override: FileInfo

The AddLanguage directive maps language extension's extension to the language type mime-lang. mime-lang is the MIME
language of the files after any encoding formats have been removed. An example of this is as follows:

AddEncoding x-gzip gz

AddLanguage en .en

AddLanguage fr .fr

Then the document document.en.gz will be treated as being a gzipped-compressed English-language document. The
AddLanguage directive is useful in content negotiation, where the server selects from several documents one that is
appropriate for the client's language preference.

AddType

Syntax: AddType mime-type extension extension...

Context: server configuration, virtual host, directory, .htaccess

Override: FileInfo

The AddType directive maps filename extension's extension to the content type mime-type. mime-type is the content encoding
of the file, after any encoding formats and language extensions have been removed. The following is an example:

AddType image/gif GIF

You should add new MIME types using the AddType directive instead of modifying entries in the TypesConfig file
(conf/mime.types).

Unlike the NCSA httpd, the AddType directive cannot be used to set the type of particular files.

TypesConfig

Syntax: TypesConfig filename

Default: TypesConfig conf/mime.types

Context: server configuration

The TypesConfig directive specifies the location of the MIME-types configuration file. filename is a relative of ServerRoot.
This file contains the default list of filename extension mappings to content types. Don't alter this file unless you know what
you are doing. Use the AddType directive in conf/srm.conf instead.

The MIME types configuration file contains lines in the format of the arguments to an AddType command:

mime-type extension extension...

Extensions are specified in lowercase. Blank lines and lines beginning with a pound sign (#) are ignored.

AddHandler

Syntax: AddHandler handler-type file-type

Context: server configuration, virtual hosts, diretory, .htaccess

The AddHandler directive specifies the handler that will process the filetype. handler is nothing more than a program that
knows how to handle the specified filetype. For example, CGI programs are handled by the cgi-script handler. Server Side
Includes are handled by the server-parsed handler.

In addition to cgi-script and server-parsed handlers, the following handlers are available:

send-as-is Sends files with HTTP headers. See mod_asis.

imap-file Processes image map files. See mod_imap.

server-info Informs you of the server configuration. See mod_info.

server-status Informs you of the server status. See mod_status.

type-map Parses type maps for content negotiation information. See
mod_negotiation.

To add a handler that will process CGI programs with a .program extension, you might specify in your conf/srm.conf or
httpd.conf:

AddHandler cgi-script program

Once the server is restarted, any file with the program extension will be treated as a CGI.

ForceType

Syntax: ForceType MIME-type

Context: directory, location, .htaccess

The ForceType directive specifies the MIME-type format that will be applied to files matching a <Directory> or <Location>
section. This directive is useful to remap many files of a particular type that don't sport the appropriate extension. The

following is an example:

<Location /images>

ForceType image/gif

</Location>

Any request in the /images directory will send any file regardless of filetype extension as a GIF.

SetHandler

Syntax: SetHandler handler-type

Context: directory, location, .htaccess

The SetHandler directive specifies the handler that will process a particular request based on access to a directory or location.
Requests matching the directory or location specification will be processed by the handler. This is how you enable the status
module (mod_status):

<Location /status>

SetHandler server-status

</Location>

Requests for the /status URI will return a status report.

The mod_negotiation Module

Source: mod_negotiations.c

Base: Yes

Type: MIME

The mod_negotiation module is built into Apache by default.

This module provides for content negotiation. Any document with MIME type application/x-type-map will be processed by
this module.

Content selection is the selection of the document that best matches the client's capabilities from several equivalent
documents. There are two ways of providing this functionality.

One way is through a type map (a file with the MIME type application/x-type-map), which lists equivalent files.

The other way to provide this functionality is through a MultiViews search (enabled by the Option MultiViews), which
forces the server to perform a filename pattern match and choose from the resulting list.

Type Maps

A type map uses the same format as RFC822 mail headers that contain document descriptions separated by blank lines. Lines
beginning with a pound (#) are treated as comments.

The description consists of several of these headers. Records may be continued on additional lines if the additional lines start
with spaces. The leading space will be deleted and the lines concatenated.

A header record consists of a keyword name, which always ends in a colon, followed by a value. Whitespace is allowed
between the header and the value, and between the tokens of value. The headers allowed are

Content-Encoding: The encoding of the file. Currently only two encodings are
recognized by HTTP; x-compress for compressed files and
x-gzip for gzipped files.

Content-Language: The language of the variant as an Internet standard language
code, such as en (English).

Content-Length: The length of the file in bytes. If this header is not present,
the actual length of the file is used.

Content-Type: The MIME media type of the document with optional
parameters. Parameters are separated from the media type
and from each other by semicolons. Parameter syntax is
name=value. Allowed parameters are

Level: The value is an integer that specifies the version of the
media type. For text/HTML, this defaults to 2; otherwise, 0.

qs: The value is a floating-point number with a value
between 0 and 1. It indicates the quality of this variant.

Example: Content-Type: image/jpeg; qs=0.8

URI: The path to the file containing this variant, relative to the
map file.

MultiViews

A MultiViews search is enabled by the MultiViews option (Options MultiViews). When the server receives a request for a
file and it does not exist, the server searches for a file using the name requested as a basename (without any extensions) and
tries to match the name to a list of files that use basename as a name.

Here's a sample request:

.../path/file

The server searches for files matching the pattern

.../path/file.*

By using the filetype, language, and encoding-mapping information, the server effectively builds a type map from which to
select the best match for the client's requirements, which it will then return to the client.

mod_negotiation Directives

The mod_negotiation module adds the following directives:

CacheNegotiatedDocs●

LanguagePriority●

CacheNegotiatedDocs

Syntax: CacheNegotiatedDocsmime-lang...

Context: server configuration

When set, content-negotiated requests are cachable by proxy servers.

LanguagePriority

Syntax: LanguagePriority mime-lang mime-lang...

Context: server configuration, virtual host, directory, .htaccess

Override: FileInfo

The LanguagePriority directive sets the precedence of language encodings in cases when the client does not express a
preference. The list of mime-lang is in order of decreasing preference. The following is an example:

LanguagePriority en fr de

In a request for index.html, where the browser did not specify a language preference but only the French and German
versions of the document were available, the server would return the French version.

The mod_proxy Module

Source: mod_proxy.c

Base: Yes

Type: Proxy Server/Cache Management

A proxy server is a Web server that sits between a local client and an external Web server. It acts as an intermediary to the
client and fetches information from other Web servers. Instead of having a client connect to a server on the Internet directly,
it establishes a connection with a proxy server in the user’s local network. The proxy server then retrieves the resources

requested and serves them to the client as if the resources were its own.

Caching proxy servers can be a powerful tool in your arsenal to increase the performance of your internal Web traffic. While
originally developed as a way of allowing access to the Web through a firewall, proxy servers have also been used to reduce
the traffic your organization generates to popular Web sites.

For additional information on proxy servers, please see Chapter 12, "Web Server Performance Tuning."

mod_proxy Directives

mod_proxy supplies a variety of directives to help you manage the behavior of the server and its cache:

CacheegotiatedDocs●

CacheDefaultExpire●

CacheGcInterval●

CacheLastModified●

CacheMaxExpire●

CacheRoot●

CacheSize●

NoCache●

ProxyPass●

ProxyRemote●

ProxyRequests●

ProxyRequests

Syntax: ProxyRequests [on] | [off]

Default: ProxyRequests off

Context: server configuration

The ProxyRequest directive enables or disables the proxy functionality of the server. A proxy server is one that is able to act
as an intermediary to fulfill requests from a browser to another Web server. It is frequently used as a way of providing access
to clients behind a firewall to the Web without compromising the security requirements of the organization.

Disabling the ProxyRequest functionality does not disable the ever cool ProxyPass directive
functionality provided with the module.

ProxyRemote

Syntax: ProxyRemote [pattern] [remote-server]

Context: server configuration

The ProxyRemote directive allows you to specify remote proxies to this proxy server. Its configuration is based on a pattern
specified as a partial URL that the remote server can understand. To indicate that a specified server should be contacted for
all requests, specify a dollar sign ($) as the URL.

ProxyRemote http://www.company.com/ http://mirror.somewhere.com

You can specify a server that runs in a different port as:

ProxyRemote http://www.company.com/ http://mirror.somewhere.com:8080

ProxyPass

Syntax: ProxyPass [path] [URL]

Context: server configuration

This is a very cool directive. ProxyPass allows you to map a remote server into your local server’s document tree, much as if
you were mounting the remote document tree into your server’s document tree. The local server appears as a mirror of the
remote server. ProxyPass takes two arguments: path is the file path you want to use for inserting the remote server into your
document tree; and URL is the address of the real server that the proxy request should be sent to:

ProxyPass /SmartSoft.htmld http://www.smartsoft.com/

In this case, a request such as

http://proxy/SmartSoft.htmld/index.html

will get translated into a proxy request to

http://www.SmartSoft.com/index.html

You can specify as many ProxyPass directives as you like.

CacheRoot

Syntax: CacheRoot [directory-path]

Context: server configuration

CacheRoot specifies the directory that the server should use to store cache information. The server must be able to write to
the directory specified by directory-path. Typically, since this means that user nobody must have write privileges to this
directory, this translates into a directory that is world writable.

If you are concerned about security, you may wish to have the server run under a special UID that
has low permissions. This would allow you to create a directory that is writable by the server but
not the world.

CacheSize

Syntax: CacheSize [size]

Default: CacheSize 5

Context: server configuration

This directive specifies the maximum size of the cache in KB (1024 byte units). While the cache will grow beyond the
amount specified by size, at garbage collection intervals, the server will remove cached documents until the space consumed
is at or below the amount specified by this directive. The garbage collection interval is specified by the CacheGcInterval
directive.

CacheGcInterval

Syntax: CacheGcInterval [time]

Context: server configuration

The garbage collection interval is specified by the CacheGcInterval directive. At this time the server will check the disk space
consumed by the cache. It will then prune the cache until the disk space consumed is less or equal to the space specified by
the CacheSize directive.

time is specified in hours.

CacheMaxExpire

Syntax: CacheMaxExpire [time]

Default: CacheMaxExpire 24

Context: server configuration

The CacheMaxExpire directive controls how long (in hours) cacheable documents will be kept in the cache without
re-requesting documents from the original server.

In effect this setting controls the maximum amount of time that documents could potentially be served out of date because it
is feasible that changes may be introduced into documents while they are in cache.

The CacheMaxExpire directive is enforced even when a document has an expiration date supplied in a meta tag within.

CacheLastModifiedFactor

Syntax: CacheLastModifiedFactor [factor]

Default: CacheLastModifiedFactor 0.1

Context: server configuration

The CacheLastModifiedFactor directive supplies an expiration time for a document based on the formula:

expiry = timeOfLastModification * factor

If a document was modified in the last 24 hours and the factor is set to the default, the expiry period will be set to 2.4 hours
(24 x 0.1 = 2.4 hours; 2 hours and 24 minutes).

If the expiration time specified by CacheMaxExpire arrives sooner, it takes precedence over the expiry time calculated by
CacheLastModifiedFactor.

CacheDefaultExpire

Syntax: CacheDefaultExpire [time]

Default: CacheDefaultExpire 1

Context: server configuration

If a protocol does not supply an expiration time, the value specified by CacheDefaultExpire is used. This expiration time is
not overridden by CacheMaxExpire. Currently, the proxy module only provides proying capabilities for FTP and HTTP (both
HTTP/0.9 and HTTP/1.0) protocols.

NoCache

Syntax: NoCache [host] | [domain] ...

Context: server configuration

The NoCache directive provides you with a mechanism to specify a list of hosts or domains that you don’t want cached by
the proxy server. You can specify hosts and/or domain names in a list form where each host or domain is separated by
spaces:

NoCache foo.xxxx.com bar.com

This directive is particularly useful if you know a site is dynamic, and you don’t want stale information to ever be served for
it.

The mod_status Module

Source: mod_status.c

Base: No

Type: Server Status

The mod_status module is a great tool for informing the server administrator what the server is doing. It takes a snapshot of
all the server processes and creates an HTML report that can be viewed with a browser. The report includes a wealth of
information including the following:

The number of children processes and their status●

Transfers performed by each child●

The average number of requests per second●

The average number of bytes served per second●

The amount of resources utilized by each child and by the entire group●

Current clients and the requests being served.●

mod_status is not included by default; you'll need to reconfigure and rebuild the server. Once built, you'll need to add the
following directives to your conf/access.conf configuration file:

<Location /status>

SetHandler server-status

</Location>

If you want to keep your server statistics private, add a Limit section specifying some access restrictions (see Chapter 15 for
more information). Restart the server and point your Web browser to http://yourhost/status. The server will return its detailed
status report.

The mod_userdir Module

Source: mod_userdir.c

Base: Yes

Type: Resource Location

The mod_userdir module is built into Apache by default. It provides a mechanism through which users can publish their own
home page information.

This module specifies the directory, relative of a local user's home directory, where public HTML documents and home
pages can be found. Requests for user's home pages take the form of

http://www.somedomain.com/~user

mod_userdir Directives

The only directive provided by this module is UserDir.

UserDir

Syntax: UserDir [disabled] | directoryname

Default: UserDir public_html

Context: server configuration, virtual host

The UserDir directive sets the directory name relative of a local user's home directory where public HTML documents may
be found. This feature can be disabled by specifying the disabled option to the directive. If omitted, it defaults to

UserDir public_html

Although this may be a useful directive to allow users in a UNIX environment to specify their own home pages, some users
may not be aware of this fact, resulting in the possibility of them creating a directory named public_html that contains private
files. Additionally, depending on the kind of users in your system, this can create some security problems.

Apache 1.1 enhances this module to redirect home page requests to a different directory, removing the security concerns
previously raised. By specifying an absolute path such as the following:

UserDir /Users/homepages

The server will look for a directory matching the request in /Users/homepages. Requests for http://www.somedomain.com/~x
will be retrieved from /Users/homepages/x.

If you have enabled Options FollowSymLinks or AllowOverrides Options for the directory
containing your users' home directories, any users could attach, via a link, any portion of your
filesystem to their public_html directory. This, in effect, would make private materials from your
organization available to anyone outside of your organization. This might not be what you want,
and might be a good reason to scan logs frequently.

Here's an example of the UserDir directive:

UserDir public_html

A request for http://www.somedomain.com/~user will return the file http://www.somedomain.com/~user/index.html.

Summary

This chapter serves as a reference guide for Apache modules. In the next chapters, you will learn about system
administration, including the basics, Web server performance tuning, and Web accounting.

Part IV: Keeping Up: Web Server System
Administration

Basic System Administration●

Web Performance Tuning●

Web Accounting●

Making Backups

Backup Media

Floppy Disks■

Floptical Disks■

Magneto-Optical Disks■

Quarter-inch Cartridge Tapes (QIC)■

Travan Tapes■

Write-Once CD-ROMs■

Iomega Jaz and Zip drives■

Nine-Track Magnetic Tapes■

4mm DATs■

8mm Cartridge Tapes■

■

A Backup Strategy

The dump Command■

restore■

■

■

Monitoring Disk Space

Rotating the Logs■

Resetting the Logs■

■

Upgrading the Server

Keeping the Old Server Around■

■

Making Sure It Is All Running

Monitoring Your Hosts and Network Interfaces■

Monitoring H TTP: httpd_Monitor and the Status Module■

Monitoring Your Name Server

Dealing with DNS Outages■

■

■

Summary■

11

Basic System Administration

HTTP servers provide information; however, if your servers are unreachable, no one can get at this information. Your job as a
system administrator is to ensure that your computers and networks are running smoothly. You must be both proactive and
reactive. A proactive system administrator monitors his system resources to prevent basic problems, such as running out of
disk space or some other disaster. A reactive system administrator has a contingency plan ready to be implemented in case of a
disaster.

Proactive system administration is better than reactive system administration. Proactive administration can help you avoid the
unpleasant experience of responding to a barrage of users' complaints about services that are down. However, should such a
situation arise, your efficiency in resolving the matter (reactive administration) will affect how those complaining users
perceive you and your level of competence. Therefore, it is your responsibility to maintain a close watch on all that is under
your control.

The system administrator's central task is to orchestrate and choreograph the installation, setup, and maintenance of all
hardware and software. Ancillary obligations can include setting up additional systems that help users obtain more information
regarding access patterns and logs (HTTP logs and other UNIX logs).

The key word here is maintenance. This word can mean several different things: backing up your computers, pruning logfiles,
and ensuring that name servers and HTTP servers are running. The most important of these is backing up your computers. If
your system catastrophically failed, how long would it take you to get it up and running again? If it took you weeks to set up
and install everything the first time, doing it over is not acceptable and definitely not fun. Instead, do it once and back it up. In
case of a failure, replace the hardware or software that caused the failure with your backups.

If your information system is critical to your organization, any downtime is unacceptable. This means that you must build
redundant systems that guarantee the trouble-free, continuous operation of your site. How much you can do depends on your
budget.

Making Backups

Backing up is not hard to do, and if you want to keep your job as a system administrator, you should consider it an essential
task. Although backing up is not difficult, it is tedious and time-consuming, especially when the disks you are backing up are
large.

How can you back up a heavily used resource without taking it down and making it unavailable? How often should these
backups occur? The answer to both of these questions is that it depends. A server that constantly has new information on it
needs to be backed up more often than one that rarely changes. If your server is also a fileserver on which users or other
programs store data, all bets are off. You don't have the luxury of determining what is a good interval; you will have to back it
up daily.

Some technologies, such as Redundant Arrays of Inexpensive Disks (RAID), can provide automatic reliability, in case of
media failure, and uninterrupted operation during hardware replacement. If a single drive on a RAID configuration fails, the
data can be reconstructed from the information stored in the other drives and the redundant parity or Error Correcting Code
(ECC) information. However, this feature will not help much if the root of the problem is a bad disk controller or some other
problem that compromises the integrity of your data. RAID reliability is dependent on only a single drive going bad. RAID-6
arrays address this problem by allowing up to two disk failures without compromising the data. However, these
multidimensional disk arrays have never been commercially implemented. Because of the auto-correcting nature of RAID,

problems with the disk array are often found only when a second drive goes bad. By that time it's usually too late, and the
likelihood of irreparable data loss is great. I suggest that you monitor your RAID array on a daily basis and back it up to ensure
that you have a way to restore your files.

The good news is that Web servers don't change too often. If your machine is dedicated to just serving pages, your site will
change when someone modifies it by adding, deleting, or updating information on the pages. The site also will change when
you configure your server or install some new piece of software. How often you do backups depends on how much you are
willing to lose. Keep in mind that your server logs may contain valuable information that takes time to accumulate, and unless
you back them up, they will be lost. If your server also handles any sort of commercial transactions, you may want to make
sure that the point-of-sale information is safely backed up.

How you handle your backup strategy is really a matter of personal preference. If you establish policies, such as describing
what you back up, it becomes easier to do many system-administration tasks. Also, it is important to have the right hardware
for making backups. By right hardware I mean that the disks you back up must fit into a convenient backup medium;
otherwise, you'll have more tapes than you'll know what to do with. If you can afford it, buy a tape drive. This medium is
inexpensive and can hold a lot of data. Other backup solutions may work on your network, depending on how much data you
need to back up.

Backup Media

There is an incredible array of choices for backup media these days:

Floppy disks●

Floptical disks●

Magneto-optical (MO) disks●

Quarter-inch Cartridge tapes (QIC)●

Travan tapes●

Write-once CD-ROMs●

Iomega Jaz and Zip drives●

Nine-track magnetic tapes●

4mm Digital Audio Tapes (DAT)●

8mm cartridge tapes●

Floppy Disks

Floppy disks are the most convenient backup medium available because your system likely has a built-in floppy disk drive.
The standard capacity is 1.44MB. Some 2.88MB drives made it into the market a few years back, but they never caught on.
The drawback of floppy disks is that they are slow, fairly expensive (about 50[155] to 60[155] per disk), and not very useful
for backing up anything that is larger than a couple disks.

Floptical Disks

These higher-capacity disks take advantage of optical tracking technology to improve head positioning, and therefore
maximize the amount of data that can be packed onto the surface of a disk. Floptical drives can read standard 1.44MB and
720KB floppy disks. Density of information can be anywhere from a few megabytes to 200MB per disk.

Magneto-Optical Disks

Magneto-optical disks have a plastic or glass substrate coated with a compound that, when heated to its Curie point, allows a
magnetic source to realign the polarity of the material. Once the material cools, its polarity is frozen. The material can be
repolarized by a subsequent write operation.

Data is read by a lower-intensity beam, and the polarization pattern is interpreted as a byte stream. A wide variety of these
devices are commercially available, ranging in format from 5 1/2 inches to 3 1/2 inches. These devices can store information
ranging in size from 128MB to more than 2GB.

Read speed on these devices is as fast as that on a hard disk. Write operations usually take a little longer, but are still faster
than write operations on a slow hard disk. Media reliability is very high.

Quarter-inch Cartridge Tapes (QIC)

A QIC tape is a low-end, PC-market backup storage solution that uses .25-inch tape. Some vendors, including IBM, are
pushing the format to store up to 1600MB by using a .315-inch format; these tapes are commonly known as Travan tapes.

Standard QIC tapes can hold anywhere from 11MB to 150MB, and are usually designated as QIC-11, QIC-24, and QIC-150,
depending on the amount of storage space they provide. Storage space in megabytes is indicated by the number following the
QIC portion of the designation.

Sometimes tapes created on one vendor's drive are not readable by another vendor's drive. This is due to byte ordering and
other special formatting issues. Within a vendor, tapes are usually backward compatible, meaning that you may be able to read
lower-density tapes on a higher-density drive; however, you should verify this before you upgrade to a new drive in the same
product line.

Travan Tapes

Travan tapes are similar in size to QIC tapes, but store anywhere from 120MB to 1600MB per tape depending on the type of
tape drive mechanism used. Travan tapes are compatible with the QIC tape formats, making them attractive if you have legacy
QIC tapes.

Write-Once CD-ROMs

New technology and price drops have made the write-once CD-ROM a popular choice with multimedia enthusiasts.
Write-once CD-ROMs use a technology similar to a CD burner. CDs created by write-once CD-ROMs are not as rugged as

pressed CDs, but will last forever if you take care of the disk. These disks are compatible with any desktop system that has a
CD-ROM, which has helped in making this a popular Write Once Read Many (WORM) format. Current capacity is about
600MB. Recording speed is slow. New formats for CD-ROMs that are currently in the works will yield 17GB storage, making
it a very interesting solution to backup and archival tasks.

Iomega Jaz and Zip drives

Zip is a popular removable disk drive. They are very inexpensive: around $200 for the drive and $10 to $15 per disk. Each disk
holds about 100MB. They are available in SCSI and parallel flavors.

Jaz drives are a higher-performance, higher-capacity version of the Zip drives. Jaz drives are a bit more expensive, about $599,
and require a SCSI interface. Disks cost more than $99 and pack 1GB of fast storage space. You can back up 1GB of
information in about 5 minutes on PC platforms. This is a hot product.

Nine-Track Magnetic Tapes

This is an old format of tape written at 800, 1600, or 6250BPI (bits per inch) density. This format is not in great use today
except by old mainframes.

4mm DATs

A DAT, which stores 1.3GB of information on a 60-meter tape, was originally designed for the audio market. Digital data
storage (DDS), the computer version of DAT, provides the smallest storage solution of all. You can store about 2GB of data
per cartridge. Drives with hardware compression can store up to 8GB. DDS is the preferred tape backup system for most
UNIX users.

8mm Cartridge Tapes

8mm cartridges (also known as "Exabytes" for the company that first produced them) are the same size as their video
counterparts. Many Administrators purchase high-quality "video grade" tapes instead of the premium data versions. Drives can
store 2–5GB, and versions boasting hardware compression can pack up to 10GB into a single tape. Because fewer tapes are
needed, this is a very convenient format. Next to the 4mm format, this is the best storage solution.

A Backup Strategy

Doing incremental backups under UNIX means using the dump utility. This utility is powerful, but somewhat dangerous.
Using it incorrectly can cause serious problems. However, dump can handle backups that span multiple tapes. If you can fit
your entire backup onto a single tape, you'll be able to automate backups. Just start up the backup, and let it run.

Web sites have a slightly different usage pattern from your typical server. Because Web sites don't have users creating files all
the time, the filesystem doesn't change very often (unless your server provides some sort of intranet application that uses a
database for persistence, or you want to back up your logfiles).

A production server, the server people connect to in order to obtain information, is very different from a development server.
Development servers contain an individual's work. They should be backed up often! Incremental backups should be used to
minimize the media and time required to perform them.

If you have been following my suggestions, you will probably agree that the server documents (.html files) should reside on a
separate disk. If you cannot afford another disk, a separate partition may offer the same benefits. Partition is just a fancy word
for a smaller logical unit (smaller disk) of a big disk. Partitioning a large disk can offer many advantages:

Partitions are smaller in size, more likely to fit into a single tape, and much faster to back up because they contain less
data.

●

Partitions protect your system from a runaway program that fills up a disk.●

On the negative side, if you fill up a partition, UNIX doesn't provide you with a way to enlarge or shrink it. What you choose
is what you live with. Don't go partition-crazy either; if you have too many little partitions, you'll probably find that some of
your partitions need more space. A two-partition scheme works well. It is a good idea to partition a disk so that the base
operating system fits easily into one partition and allows 15 to 25 percent of the partition space for future growth. This is the
system partition. The second partition is allocated to a single user area. Any customizations or added third-party software
should go there. If you cannot afford a second disk for user-generated files, you can store them in the second partition as well.

Separate disks or partitions help the backup process because both can be dumped separately to tape. If you are unable to
partition or have multiple filesystems, your backups will take a little longer.

If you follow this scheme, you'll only need to back up software and configuration files that you add or modify, instead of
having to back up the whole system. Likewise, the user partition can be backed up separately.

My strategy is to back up production servers at well-defined times:

Right after the system software is installed, but before anything is configured.●

After the server software is installed and configured.●

Any time additional software is installed and configured.●

If your operating-system software distribution comes on a CD-ROM or some other easily installed medium, the first backup
you make after installing your system software doesn't need to go to tape. If you send it to /dev/null, you'll be able to create a
backup set that doesn't include your system's software distribution. This will set the beginning of time for the dump utility to
operate. The backup level for this dump should be at level 0; it must include everything in the newly installed system.

If the installation of basic software is problematic, you should probably direct the backup to a tape and save it for future
disaster recovery. If you need to reinstall your distribution software, simply restore it to a clean disk instead of rebuilding a
kernel or something else.

Subsequent backups should be performed at level 9; this will effectively back up everything that has been modified in the
machine since the first backup was made.

To restore files stored in a tape created with the dump utility, use the restore program.

The dump Command

The dump command uses the following syntax:

/usr/etc/dump [options [argument ...] filesystem]

The dump command tracks the scope of a backup by assigning each backup a level. Levels range from 0 to 9. Level 0 copies
the entire filesystem. Subsequent dump levels copy only files that have changed since the most recent dump with a lower-level
number.

If you dump a disk at level 5, it includes all files that have changed since the date of the last dump with the next lowest level
(in this case, last level 4 dump, or lower if no dump level 4 was performed). When executed with the u flag, dump tracks the
backup level along with the date and time the backup was performed.

The typical strategy is to begin with a level 0 dump and then make incremental backups at regular intervals. Level 0 dumps
should be performed with extreme care; they should be run with the machine in single-user mode, and fsck, the filesystem
consistency checker, should run before the dump to verify that the filesystem is consistent. This is important because most of
the files you restore will come from dump level 0 tapes!

One disadvantage worth noting is that dump is unable to back up single directories or files. It can only be used to back up an
entire filesystem. To back up individual files or directories, use the programs tar or cpio. For information on how to use these
programs, refer to your UNIX documentation.

Note that tapes created under one hardware/software configuration are not usually portable to other operating systems or
drives. On some environments, even tapes created with older versions of the dump program are unreadable by newer versions
of the restore program.

dump Examples

The following command will create a level 0 dump (specified by the 0) of the specified disk, /dev/rsd0a:

dump 0u /dev/rsd0a

Replace rsd0a with the appropriate name for your raw disk device. This dump will include all the files found on the device. If
you specify the u option and the backup finishes successfully, dump will remember the date, time, and level of this backup.
This effectively sets a reference point that can be used to evaluate which files need to be dumped next time.

To create a partial backup that includes only files modified since the last backup of a lower level, in this case 0, use a level 9
dump:

dump 9u /dev/rsd0a

By default, dump writes its output to the default tape unit, in this case /dev/rxt0. The /dev/rxt0 is a rewinding interface to the
tape drive. When the backup is finished, the tape will be automatically rewound. To finish the backup and prevent the tape
from rewinding, use the nonrewinding device. On my system, this is called /dev/nrxt0. For the name of this device, please
check the dump UNIX manual page. To specify a different backup device or file, use the f option:

dump 9uf /tmp/backup /dev/rsd0a

The preceding command will create a file called backup in the /tmp directory. To redirect dump's output to stdout (standard
output), specify a - instead of a filename:

dump 9uf - /dev/rsd0a | gzip > /tmp/backup.gz

In the preceding example, output from dump was sent to stdout and piped to the gzip program to be compressed. If your tape
doesn't provide hardware compression, using the preceding command can be an effective way of increasing tape capacity.

For complete information on the myriad of options that dump provides, read your system's documentation.

restore

To extract files backed up with dump, use restore. restore copies files stored in a dump tape or file to the current directory.
Note that using restore can and will clobber exiting files with matching names. restore will also create any directories or
directory trees that it needs before extracting a file. This feature is powerful if you know what you are doing. If in doubt,
restore to an empty directory and move the files by hand. restore has the following syntax:

/usr/etc/restore [options [argument]]

By default, restore will use the tape drive at /dev/rxt0 (check your man page). If you want to override this device, use the f
option.

restore has an easy-to-use interactive shell-like interface that allows you to navigate through the dump tape as if your were in a
filesystem. The interactive session is started by using the i option.

restore Examples

To restore all files from a tape, use this:

restore r

To restore a particular file, use this:

restore x /Users/demo/file.rtf

The preceding command will extract (x) the file specified (/Users/demo/file.rtf) from the tape. If the directories don't exist, it
will create them. It's a good idea to direct restore to put recovered files on an empty directory, and then move the files to their
final destination.

To restore from a compressed gzip archive, use this:

gzcat /tmp/backup.gz | restore f -

To create a catalog from files on a dump tape, use the t option. It is always a good idea to create a catalog from your tape. This
will ensure that the backup tape you made contains the correct information and that the tape is readable.

Listing 4.1 is a script I use to automate backups. It is called from cron (see your UNIX documentation) with the level for the

backup. Customizing it to fit your needs should not be very hard. Just read over all the options and make sure that the
commands in your system are located in the same place. Also verify that the /dev files I reference match your configuration
and change accordingly. This script automatically creates a catalog of the backups; it will also send a message notifying you if
the backup was successful.

Listing 4.1. An automated backup script.

#!/bin/csh -f

Simple backup csh program. Takes one argument, the dump level.

The goal of a backup is not only to save the data in case of disaster,

but to minimize the time and grief required to get the system

running again...

cAlberto Ricart, 7/1/1996

#

This example backups 2 disks /dev/rsd1a and /dev/rsd0a, in order of preference.

/dev/rsd1a contains a lot of user data, if the tape were to fill up in the

middle of

the second backup, we are assured that the important data copied OK.

as a peace of mind, this script generates a listing of all the files. This is

just

a test to verify that the tape can be read. Also helpful for locating files.

Please verify that these commands have the same significance as yours.

Also, more than likely you'll have to change the /dev/rsd1a and /dev/rsd0a to

point to

your raw disk device, as well as your tape device /dev/nrxt0 on our case.

set LOGGER = '/usr/ucb/Mail '

set DUMP_LOG = '/usr/local/adm/dump.log'

set DUMP = '/usr/etc/dump'

set DUMP_ARGS = ''$1'ufs /dev/nrxt0 1200000'

set GZIP = '/usr/bin/gzip -9'

set RM = '/bin/rm'

set TAPE = '/bin/mt -f /dev/nrxt0'

set PRINTCAT = '/usr/etc/restore t'

set CATDIR = '/usr/local/amd/Tape_Catalogs'

set DATE = `/bin/date | /bin/awk '{print $1":"$2":"$3":"$6 }'`

set OPERATOR = 'webmaster'

if ($#argv == 1) then

 $DUMP $DUMP_ARGS /dev/rsd1a |& $LOGGER $DUMP_LOG || mail -s DISK1_ BACKUP_FAILED
$OPERATOR

 $DUMP $DUMP_ARGS /dev/rsd0a |& $LOGGER $DUMP_LOG || mail -s DISK0_ BACKUP_FAILED
$OPERATOR

 $TAPE rewind

 $PRINTCAT > $CATDIR/$DATE.rsd1a.dump.$1

 $TAPE fsf 1

 $PRINTCAT > $CATDIR/$DATE.rsd0a.dump.$1

 $TAPE rewind

 mail -s BACKUP_OK $OPERATOR

 exit (0)

else

 echo "Backup script had no dump level, aborting" | mail -s BACKUP_ ABORTED $OPERATOR

 exit (1)

endif

exit (1)

Monitoring Disk Space

UNIX provides tools for monitoring your disk space as well as for monitoring the load incurred by your disk: df and iostat,
respectively.

df (disk free) displays various statistics regarding all currently mounted disks on your system. It reports on capacity, used
amount, and free amount, in kilobytes and percentage formats:

% df

Filesytem kbytes used avail capacity Mounted on

/dev/sd0a 1014845 397882 515478 44% /

/dev/sd0b 1014845 329337 584023 36% /usr/local

iostat displays information about disk performance, including the number of characters read and written to terminals for each
disk, the number of transfers per second, and other information.

From this information you can glean the load affecting your disks:

% iostat

tty sd0 cpu

tin tout bps tps msps us ni sy id

0 6 80 14 0.5 2 0 5 93

One of the main reasons to monitor disk space is because if the logs are not checked periodically, they will fill up your
filesystem. You should monitor what's in logs as well as the size of the logs.

Rotating the Logs

If there's one thing that logs do, it's grow. The bigger they are, the longer it takes to process them. Organizing and managing
your logs is a good thing to do because it provides you with a systematic way of naming and storing the logs. Once the logs are
properly named, you can dump them to tape and forget about them. Should you ever need them, you can quickly retrieve them.

Small sites may not need their logs rotated more often than once a month. Heavy-traffic systems should really consider not
logging at all. However, if logging is absolutely necessary, resetting the logs on a daily basis can produce a more manageable
logfile.

To give you an idea of how quickly logs grow, the typical access log entry contains 85 bytes per request. Not much. However,
on a site that handles 5 million requests a day at 85 bytes per request, this translates into 405MB of log data per day! You
should rotate logs at an interval that gives you a manageable file size.

Resetting the Logs

Resetting logs is a bit tricky. Apache won't start logging on to a new file until it restarts. The easiest way to accomplish the
rotation is through a script that renames the logfile and then sends the server a HUP (hangup) signal. However, the problem
with this approach is that all the current connections to the server will be terminated.

A simple script is shown in Listing 4.2.

Listing 4.2. Resetting the logfile.

This scrip resets the log file, the log is renamed with todays date

c1996 Alberto Ricart

This script asumes that the PID file exists in its default location

Bugs: Should handle a list of filenames, instead of just one.

#

set OPERATOR = 'webmaster'

set DATE = `/bin/date | /bin/awk '{print $1":"$2":"$3":"$6 }'`

if ($#argv == 1) then

 if (-e $1) then

 mv $1 1DATE.weblog

 kill -HUP 'cat /usr/local/etc/httpd/logs/apache.pid'

 exit (0)

 else

 echo "Logfile $1 doesn't exist." | mail -s LOG_ROTATION_ABORTED $OPERATOR

 exit 1

 endif

else

 echo "You didn't provide a path to a log file." | mail -s LOG_ROTATION_ ABORTED
$OPERATOR

 exit 1

endif

exit 0

Apache 1.1 ships with a utility program called rotatelogs that can be used to automatically reset the log without having to stop
the server. As a side benefit, the program also names files incrementally.

To use rotatelogs, you'll need to compile it. You can do this easily by issuing the following commands:

cd /usr/local/etc/httpd/support

cc -o rotatelogs rotatelogs.c

strip rotatelogs

After a few moments, the program rotatelogs will be built. Next, you'll need to specify that output to the logfiles should be
redirected to rotatelogs. The rotatelogs program uses the following syntax:

rotatelogs logfilename time

Where logfilename is the path to a logfile. logfilename will be used as the base name for the log. It's followed by a number that
represents the system time. A new logfile will be started at the end of time. time specifies the rotation time in seconds.

To rotate the access and error logs every 24 hours, you'll need to modify the TransferLog and ErrorLog directives in your
httpd.conf file like this:

TransferLog "|/usr/local/etc/httpd/support/rotatelogs
/usr/local/etc/httpd/logs/access_log 86400"

ErrorLog "|/usr/local/etc/httpd/support/rotatelogs
/usr/local/etc/httpd/logs/error_log 86400"

Upgrading the Server

Upgrades are always a cause for concern in production environments. The overall strategy should be to install any new
versions of the server in a test environment prior to putting the server into production. Always read the distribution
documentation to see if some behavior has changed from previous versions.

Keeping the Old Server Around

To be on the safe side, you should keep an old version of the server on hand just in case the new one causes some problems.
An easy way to do this is to install the new server after you rename the old one to httpd.old, and restart the server. If you
discover any problems, you can quickly put the old server back online by renaming httpd.old to httpd and restarting the server
again.

Making Sure It Is All Running

One of the biggest concerns you'll have is making sure that your machines are working correctly. Automated periodic testing
of your site can help you ensure that it is accessible. A good setup has internal and external testing systems.

The best type of testing is actually the type that you don't have to do. For a small fee, some companies monitor your site every
few minutes. If there's a problem, they call your beeper and inform you that something is afoot. They even go so far as making
sure that your Web page is accessible. One such service can be found at http://www.redalert.com.

Having an external source test the accessibility of your Web site is a great idea because it confirms to your customers that users
are able to access your site. You will know within a reasonable amount of time if your network becomes unreachable because
of a problem with your provider.

Monitoring Your Hosts and Network Interfaces

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#28

The easiest way for you to test whether your server is reachable is to use the ping command. The ping command will send an
ECHO_REQUEST datagram to a host or network interface. On reception, the packet is returned with an ECHO_RESPONSE
datagram. While this test does not verify that your server is operating correctly, it does verify that the networking portion of it
is reachable.

The format of the command is

/etc/ping ipaddress packetsize pingcount

Typically, you will want to use the ping command to send a datagram to the host to verify that your network interface is
running. Once this is verified, you can start test from other hosts and gateways farther away.

Monitoring H TTP: httpd_Monitor and the Status Module

When you monitor HTTP, you ensure that the server is running and you assess its current load. Apache has implemented a
series of child processes that are semipersistent. Unlike some servers, which fork a new server process with each request and
then kill off the new process as the request is satisfied, Apache implements a system that tracks all idle and busy server
processes. If more server processes are needed, it creates more to handle the load (up to a limit). If the count of idle server
processes exceeds a certain amount, the extra httpd processes are killed. This avoids a condition in which too many server
processes compete for resources and effectively kill the machine. If the machine starts swapping, it becomes unusable and it is
brought to its knees.

Apache's server implementation makes it harder to ascertain the current status of the server. To circumvent this problem,
Apache has implemented a scoreboard status file. The scoreboard file allows all the various server processes to write status
information on a designated portion of a file. A special program, httpd_monitor, located in the support subdirectory of the
Apache distribution, is able to read the scoreboard file and display information regarding the server:

Usage: httpd_monitor [-d config-dir] [-s sleep-time]

Defaults: config-dir: /usr/local/etc/httpd/

 sleep-time: 2 seconds

Here's a sample run on a quiet server:

% httpd_monitor

sssss (0/5)

httpd_monitor displays the status of all child processes and whether they are sleeping (s), starting (t), active (R) or dead (_). In
the preceding example, there are five processes, all of them sleeping.

If you are running version 1.1 or better, there's a easier way of obtaining server status information. The status_module shipped
with Apache can display a nice HTML report that you can access with a browser.

To enable this module, just uncomment the following line from your src/Configuration file:

Module status_module mod_status.o

For more descriptive status reports, also add the -DSTATUS flag to the CFLAGS section near the start of the file. Build and
install the new version of Apache by issuing the following commands:

cd /usr/local/etc/httpd/src

./Configure

make

strip httpd

mv httpd ../

In addition to building the new program, you'll have to edit your conf/access.conf file and add an entry like this one:

<Location /status>

SetHandler server-status

order deny,allow

deny from all

allow from yourdomain

</Location>

Change yourdomain to your Internet domain. As you should be able to tell from this configuration, the server will only supply
status information to requests that originate within your domain name. Once the server is restarted, a request for the for /status
on your server (http://www/status) will return a nicely formatted report.

Fig. 11.1 A server status report generated by the staus_module.

You can have the status information (produced by the status_module) updated every few seconds by calling typing

http://your.server.name/status/?refresh=N

Replace N with the number of seconds between updates.

In addition, you can access a machine-readable ASCII version of the report by requesting:

http://your.server.name/status/?auto

Monitoring Your Name Server

The Berkeley Internet Name Domain (BIND) system includes a utility called name daemon control (ndc) interface, which
allows you to easily send various signals to the name server. It also allows you to start, restart, or stop the name server. Even
better, it allows you to display many status settings, as well as display cache and query log information. For extensive

information on what a name server does, see Appendix E, "DNS and BIND Primer."

To check if your name server is running, just enter the following commands on a shell:

% ndc status

3170 ? SW 0:00 named

This displays a short line with process-status information.

From this line I know that my process is running, sleeping, and swapped out of memory. For more information on what this
output means, check out the man page for ps.

If your server was not running, it would display a line such as this:

named (no pid file) not running

or this:

named (pid 3262?) not running

A better way to monitor the name server is to look at the logfiles. named uses the syslog facility to log problems. To see where
syslog logs named messages, run this command:

grep daemon /etc/syslog.conf

Check the lines that contain named. An easy way to do this is to do a grep on named. It should be obvious when the problem is
due to an incorrectly defined dbfile because named should echo a descriptive message to this effect. It is important to look for
these errors because some of them may lead to your server stopping. An unreachable message can result in a secondary name
server declaring that the data is stale and refusing to serve it. malformed type errors usually mean that some server provided a
malformed response.

Dealing with DNS Outages

The worst thing that could happen (besides your processor catching fire) is that your domain name server stops running. If the
DNS goes, your network grinds to a halt. External users will be unable to reach it, and internal users will be unable contact
external resources.

There are several solutions to this problem:

Make sure that you have at least two DNS servers running. If your preferred DNS machine fails, each new request to
your site will time-out for 4 seconds. After 4 seconds, DNS servers that you listed as alternatives for your site will be
queried for the information. However, this will only work for a certain amount of time. After a while, if the only server
running is not a primary server, the information will be declared stale, and the secondary server will refuse to serving it.

●

One way to ensure that your DNS is always running is to have several servers. Some of the servers should be in your
local network; others should be in a completely different network.

●

DNS servers should also be located in stable and protected environments; do not trust prerelease software unless you
know it is stable for both named and your operating system. Protect your server against power outages and other similar
problems.

●

Summary

This chapter covers some basic system administration points as they relate to the management of your Web site. Preventive
action in terms of backups and the monitoring of processes and resources signal issues before they become a problem. The
tools covered in this chapter are universally available to most unices. Commercial products are also available that address
network monitoring. However, these tools are costly; some of the most popular tools cost thousands of dollars.

An inexpensive, efficient way to automate the generation of the server and network status information is by having a Web page
that summarizes the information from the commands described in this chapter. When used under cron, you can ensure
systematic testing of the various systems.

Hardware Tuning

CPU Subsystem Tuning

Distributed Servers■

■

RAM■

Disk Tuning

RAID■

■

Network Tuning

Network Services (WAN)■

Local Networks: Ethernet LANs■

■

■

Software Tuning

HTTP Server■

TCP/IP Tuning

Listen Backlog (SOMAXCONN)■

■

File System Tuning■

CGI Program Tuning

Compiled CGI■

FastCGI■

Distributed CGI Servers■

■

Databases■

■

Kernel Tuning

A/UX■

BSDI and FreeBSD■

Linux■

■

Network Topology Tuning

Network Plumbing 99

The Network or Communication Layer■

The Internet Protocol Layer■

IP Addresses■

Reserved Addresses■

■

Subnetting

Building a Subnet■

■

■

Caching Proxy Servers: Reducing the Bandwidth You Consume■

What Is a Proxy Server?■

Content Tuning

Graphics■

Client-side Image Maps■

■

Summary■

12

Web Server Performance Tuning

If there's one thing there is never enough of, it's speed. Speedy delivery of your content is one way to enhance your site's
appeal. Slow sites usually get clicked away because computers are good at eliminating patience from their users. A computer
will never be fast enough. As a webmaster, it is your responsibility to maintain and tune your system to meet the performance
needs of your users. Many of the things you can do will depend on the size of your budget. Dream systems and high-speed
networks are available, but at a premium.

Performance tuning is an art. Where you spend money in terms of hardware can make a big difference in the cost and
performance of your site. Performance enhancements also raise the initial cost of hardware, which gets cheaper and more
powerful everyday. Some performance tuning issues don't cost anything; they relate more to the design of your site and how
users navigate it. Other issues involve tuning your software so that your system can run optimally. Another option involves
the organization of your systems; arranging your network in a certain way can provide certain benefits that enhance the
overall performance of your site.

Here are the four performance issues you'll explore in this chapter:

Hardware tuning●

Software tuning●

Network-topology tuning●

Content tuning●

If you are willing to spend the time, fine-tuning your kernel can make all the difference in the world in terms of performance.
However, you should be very careful to have a bootable kernel available in case you manage to kill the system. The best
advice regarding kernel configuration is don't do it unless you know exactly what you're doing.

Other than tuning your kernel and server software, there's only so much you can do to enhance the performance of your
server. Performance is really an input/output issue, and it affects all aspects of your system and network. Think of your
system as plumbing: The bigger the pipes, the faster the drain. No matter how much water you have, it can only drain so
quickly. To make matters worse, ultimate transfer rates are determined by the smallest segment of the pipe, no matter how
fast your server is.

All performance issues are interrelated. When some subsystems get maxed out before others, a cascading effect usually
occurs; a system with insufficient memory will swap, slowing the processing speed and the network I/O. A server with really
fast networking hardware but slow disk access won't be able to match its networking subsystem, so the networking
hardware's potential is never realized.

Hardware Tuning

Your Web server's performance depends on the following hardware and associated software subsystems:

CPU●

Disk●

Memory●

Network●

CPU Subsystem Tuning

Processing speed is how fast your computer can process a request in terms of CPU usage. The Web doesn't create a very
strenuous demand on most capable systems unless they are subjected to a very intense load. A Pentium box running Linux
can swamp a DS-1 (T-1) line way before the hardware even feels it. Chances are that the networking bottlenecks are going to
be noticed. Assuming that traffic increases proportionally to the size of your wide area network (WAN) interface, bigger
WAN interfaces require more processing to handle requests.

Distributed Servers

Distributed Web servers are a way of increasing the performance of your Web site when the bottleneck is load on your Web
server. Assuming that your gateway bandwidth is greater than the performance of your computer, you may be able to obtain
better performance by evenly distributing the load over several servers.

Instead of having all traffic directed to one system, the load is distributed as evenly as possible across an array of servers
(mirrors). This allows heavy traffic sites to maximize the performance of their servers and at the same time reduce the delays
associated with slow server response due to an overly loaded host.

The technique I will describe is a Domain Name System (DNS) technique that provides a different server for each new
connection. When a client contacts DNS to find the IP address of the server, it will answer with a rotating list of IPs so each
request will be replied with a different machine in a round-robin fashion. This allows for a more equal load distribution
across the number of hosts you provide because each connection will be served by a different host.

For moderate traffic sites, a two-server machine will offer better performance at peak times. Some busy sites, such as
www.yahoo.com, have more than nine Web servers serving requests for their main entry point, http://www.yahoo.com.

As far as users are concerned, there's only one machine, www.yahoo.com. However, the distribution helps tremendously
because sites such as www.yahoo.com have very intense computational CGI loads. This positively affects responsiveness of
the site.

The technique for distribution is almost trivial to implement. And while it is not guaranteed to be supported in the future
because, according to the DNS Requests For Comments (RFCs) papers, this round-robin behavior is not defined. This
solution works, and it works well. I believe many sites use this feature, and eventually the Berkeley Internet Name Domain
(BIND) system release and associated RFCs will address it in a more formal way. For now, let's hope that the developers of

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#84

BIND don't fix what isn't broken.

Here's a snippet of a simple db.file that implements distribution of its Web server over three different hosts (for information
about setting up DNS, see Appendix D, "DNS and BIND Primer"):

www IN CNAME www1.domain.COM.

 IN CNAME www2.domain.COM.

 IN CNAME www3.domain.COM.

www1 IN A 4.3.2.1

www2 IN A 4.3.2.2

www3 IN A 4.3.2.3

This simple setup would rotate the three addresses. However, if you observed closely and are aware of DNS caching, you'll
know that this would only work for new DNS requests. Remember that DNS requests are cached for the duration of the Time
To Live (TTL) delay. This delay is usually set to 24 hours (86,400 seconds). In order to avoid this caching, you'll most
certainly want to set the TTL anywhere between 180-600 seconds (3-10 minutes). This will force some clients to re-request
the IP of your server when the TTL has expired, forcing requests to be more evenly balanced across machines. On the
downside, this setting creates a bigger DNS load. But any DNS load is minor in contrast to the volume of data that your
server will move around.

It is worth mentioning that many Web browsers (Netscape included) cache DNS address/name mappings internally and
disregard TTL altogether. This means that one client, once he begins accessing a given server, will stick with that particular
address until the next time it is restarted. However, the distribution effect is still achieved over many different clients, and
that is what is important.

For busier sites, you could implement multilevel rotations by specifying a setting such as the following:

www IN CNAME www1.AccessLink.COM.

 IN CNAME www2.AccessLink.COM.

 IN CNAME www3.AccessLink.COM.

www1 IN A 4.3.2.1

 IN A 4.3.2.11

 IN A 4.3.2.21

www2 IN A 4.3.2.2

 IN A 4.3.2.12

 IN A 4.3.2.22

www3 IN A 4.3.2.3

 IN A 4.3.2.13

 IN A 4.3.2.23

This setup would require nine separate servers and would implement a two-level rotation. The first rotation occurs at the
CNAME level and the second at each A (Alias) level.

While any server rotation technique may only be useful on heavily loaded sites, it is very useful when combined with
multihomed Web servers. By making distributed servers multihomed, you have the ability to build a more reliable Web
service. Not only would the load be distributed between machines, but in case of a failure, one of the mirror servers could
take over transparently. Even if the system administrator didn't become aware of the problem immediately, the virtual (or
real) sites would continue to operate by providing uninterrupted service. Naturally, this robustness is equally valuable for
distributed single-homed sites. But because the likelihood of a server failure is greater on a multihomed host (Murphy's Law),
preparing for such a disaster and implementing a fault-tolerant service may be the best tool to use to avoid a server outage.

RAM

Because Web servers are RAM hogs, RAM is the one hardware addition that will pay off big. RAM helps every part of your
system. The more RAM you have, the better your system works.

How much RAM is enough? There isn't a single administrator who wouldn't love to have 256MB of RAM on his server. So it
depends. If you have a RISC machine, you'll probably need double the memory of an equivalent CISC box. Some smaller
sites with limited traffic can do very well with under 16MB of RAM. 32MB is probably a good starting point. You can then
start monitoring you server for bottlenecks and add RAM as needed.

One easy way to test for memory bottlenecks is to use the vmstat (or vm_stat) command, which will display virtual memory
statistics for your system. You want to watch the number of pageins and pageouts, which tell you how much swapping your
system is doing. If it gets so bad that you can hear the machine constantly swapping (the disk making constant accesses), you
are in trouble. Go buy some RAM.

One way to reduce the amount of RAM your system consumes is to limit the number of services that are running on the
server. If your Web server is a busy one, and you are also running a myriad of other services such as DNS, NFS, NNTP,
SMTP, shell accounts, and FTP, your system will have to divide its resources between those tasks. Running only the
necessary services on your server box will allow you to maximize your resources. If the machine is not a mail server, you can
probably have sendmail, the mail daemon, run under inetd. Do the same for any other services that you may want available
but that are non-essential. You may want to consider using separate boxes to provide all the other services, thus freeing
resources for the Web server to do its thing.

If you have a Web server that makes heavy use of CGI, the performance of your server will decrease. One way to alleviate
this problem is to recode the CGI program to a compiled language instead of an interpreted script. Both programs do the
same thing, but the speed and efficiency of a compiled binary can be several orders of magnitude greater. The section in this
chapter titled, "CGI Program Tuning," discusses the CGI impact in more detail.

Disk Tuning

Disk speed is probably one of the first bottlenecks you'll run into. The speed of a modern hard disk does not even begin to
match the capacity of some of the most common processors. Disks are the turtles of the system, and Web servers demand a
lot from them. After all, all requests end up generating a disk access of some sort. The faster your processor is able to read
the disk and process it, the faster it can go handle another request.

Although purchasing a faster disk can help a lot, adding a dedicated disk subsystem to handle swapping (your server should
not really swap anyway), log files, and data files will help even more. For real performance, a RAID solution may be the only
way to go for data storage in a heavily loaded server.

RAID

The concept of RAID was developed at the University of California at Berkeley in 1987 by Patterson, Gibson, and Katz in a
paper titled "A Case for Redundant Arrays of Inexpensive Disks (RAID)."

The idea behind RAID is to combine several small, inexpensive disks into a battery of disk drives, yielding performance
exceeding that of a Single Large Expensive Drive (SLED). All disks in the array appear as a single logical storage unit, or a
single disk, to the computer. Because the disk controller(s) and the host processor are able to request or initiate read or write
operations more quickly than any disk can satisfy them, having multiple disks allows some degree of parallelism and
concurrency between transactions. Another important consideration is that by spreading a single data file on various disks
(striping), all disks can work concurrently. This provides better load balancing than would be otherwise possible. Without
this improved load balancing, some disks would end up doing most of the work. By distributing the load, requests can be
fulfilled more quickly because each disk has less to do. This allows each drive to work on a different read/write operation and
maximize the number of simultaneous I/Os that the array can perform, thus increasing the transfer rate.

Although RAID offers a big enhancement in performance, your mileage may vary depending on the RAID configuration
implemented. Also, it is important to note that using more hardware increases the likelihood of a failure; given that data is
spread across multiple disks, a drive failure could be catastrophic. RAID can achieve increased reliability by mirroring data
on duplicate drives or by using error-recovery technology that allows on-the-fly data reconstruction. However, this
redundancy comes with a performance trade-off.

RAID systems usually allow for the hot-swapping of drive components without having to halt the system. On replacement,
most RAID implementations reconstruct data that was stored on the failed drive, allowing the array to continue operation at
optimal speeds. On the current commercial RAID offerings, an array will tolerate the loss of a single drive, but multiple drive
failures in the array will destroy data. Most catastrophic array failures are due to the system administrator's lack of awareness
of a drive going bad ; failure of a second drive is what causes the devastating consequences.

Striping

The basis for RAID is striping, which is a method of integrating several disk drives into a single logical storage unit that
offers parallelism in the I/O (see Figure 12.1).

Figure 12.1. Striping disk drives. Data stripes from disks A, B, and C are interleaved to create a single logical storage
unit.

The same way normal (non-stripe) storage space is organized into sectors on a single disk, the RAID system is able to
partition drives into stripes. These stripes start on one disk and continue to the next. Unlike adjacent disk sectors, adjacent
stripe sectors are located on different disks. This allows the individual drives to fetch portions of the data at the same time.

Stripes can be as small as one sector (512 bytes) or as large as several megabytes; the size of the stripe determines how
responsive the array is. Large stripes allow for concurrent access to different files because the data is not necessarily spread
across all disks. Small stripes provide quick data transfers without the concurrency because the data has to be retrieved from
all drives. The stripes are interleaved in a round-robin fashion so that the storage space is composed of stripes in each drive.
For each read or write transaction, each drive reads or writes its own stripe; when the stripes are combined, you have the
complete data.

Unlike storage that is on separate disks, which is never balanced (data stored in one disk may be used more frequently than
data on another disk), data striping divides work evenly among all drives. Balancing the disk I/O across all the drives greatly
reduces the time required to access files.

Single-user systems benefit from small stripes (512 bytes) because they help ensure that most of the data spans across all
drives in the array. Small stripes also help to access large files because most of the operations can occur concurrently. The
negative effect of a small-stripe partition is that if the drives are not synchronized, performance worsens relative to the

number of drives in the array. This is because the I/O operation is not completed until the last disk drive has finished its read
or write operation.

There are several different RAID topologies, labeled RAID 0 through 7.

RAID 0: Non-Redundant Striped Array

RAID 0 is a non-redundant group of striped disk drives. That means that if one drive fails, the entire array fails. Failure is an
important concern of any RAID strategy. Under a RAID setup, the Mean Time Between Failures (MTBF) rating listed by a
drive should be divided by the number of drives in the setup. A diagram of RAID 0 can be found in Figure 12.2.

Figure 12.2. Non-redundant striped array. Data stripes from disks A, B, and C are interleaved to create a single
logical storage unit. Reads and writes can occur concurrently on all drives.

The best performance in any RAID configuration is on a RAID 0 configuration. This is because no data-integrity processing
is done on read or write operations, and because disks can perform concurrently. The array can have two or more disks.

RAID 0 supports multiple concurrent read and write transactions on short requests. Longer read and write transactions can be
split and handled concurrently.

RAID 1: Mirrored Arrays

RAID 1 provides disk mirroring—information is duplicated to both disks. Each adapter manages two drives. There is no
striping between the two disks; information is duplicated to both disks. However, you can stripe several RAID 1 arrays
together. A diagram of RAID 1 can be found in Figure 12.3.

Figure 12.3. A mirrored array. Data is written in duplicate to drives A and B. Different read transactions can occur
concurrently on either drive.

To maintain the mirroring, both disks write the same data. Therefore, RAID 1 offers no performance gains on write accesses.
However, different read transactions can occur simultaneously, with a performance increase of 100 percent. RAID 1 delivers
the best performance of any RAID in a multi-user environment. It provides faster short- and long-read transactions because
the operations can resolve to either of the disks.

Write transactions are slower because both disks must write the same amount of data. Implementing RAID 1 can be quite
expensive because it requires double the number of disks and double the storage capacity.

RAID 2: Parallel Array with Error-Correcting Code (ECC) Data Protection Disk

RAID 2 uses a sector-stripe array. Data is written to a group of drives with some drives storing the ECC. Because most
modern drives store ECC information at the end of a sector, this configuration offers no particular advantage over a RAID 3
configuration. A diagram of RAID 1 can be found in Figure 12.4.

Figure 12.4. Parallel array with ECC. Multiple drives are striped for data storage. ECC is stored on one or more
drives. Read and write transactions span all drives.

The ECC is calculated from the multiple-disks stripe and stored in a separate drive. Reads happen at normal speed. Writes are
slower than normal because of the ECC that needs to be calculated and stored.

RAID 3: Parallel Array with Parity

RAID 3, like RAID 2, sectors data into stripes across a group of drives. Error detection is dependent on the ECC stored in
each sector on each drive. If a failure is detected, data consistency is assured by mathematically calculating the correct data
from information stored on the remaining drives. Files usually span all drives in the array, making disk transfer rates optimal.
However, I/O cannot overlap because each transaction affects all drives in the array. This configuration provides the best
performance for a single-user workstation. To avoid performance degradation on short-file accesses, synchronized drives, or
spindles, are required. A diagram of RAID 3 can be found in Figure 12.5.

Figure 12.5. Parallel array with parity. Multiple drives are striped for data storage. Parity is stored on one drive.
Read and write transactions span all drives. In the event of a hardware failure, the data from the failed drive can be
reconstructed on-the-fly from the data stored on the other drives.

RAID 4: Striped Array with Parity

The configuration of RAID 4 is the same as that of RAID 3, but the size of the stripes is larger, which allows read operations
to be overlapped. Write operations have to update the parity drive and cannot be overlapped. This configuration offers no
significant advantage over a RAID 5 configuration. RAID 4 disk arrays can have three or five disks. A diagram for RAID 4
can be found in Figure 12.6.

Figure 12.6. Striped array with parity. Stripes in this configuration are larger, so read and write transactions can
occur concurrently. Because there is only a single-parity drive, all write transactions need to update the parity drive.

RAID-5 Rotating Parity Array

RAID 5 implements a rotating parity array that eliminates the bottleneck of the single-parity drive configuration used in
RAID 4. RAID 5 uses large stripes to enable the overlap of multiple I/O transactions. Each drive takes a turn storing parity
for a stripe. Most write operations access only a single data drive and the current parity drive. Write operations can overlap.
A diagram for RAID 5 can be found in Figure 12.7.

Figure 12.7. Rotating parity array. All drives store data and parity information. Reads and writes can occur
concurrently.

This is the best configuration for a fault-tolerant setup in a multi-user environment that is not performance sensitive or that
performs few write operations. Disk arrays can have between three and seven disks. RAID 5 is efficient because it uses parity
information instead of duplicating data. However, because parity information must be calculated for all drives with each
write operation, write operations are not as efficient. This setup is not recommended for applications that write data. Read
operations, such as those sustained by a Web server, are better with RAID 5 than with the RAID 1 counterpart. For a Web
server application, RAID 5 provides the best performance and reliability.

RAID 6

RAID 6 describes a scheme involving a two-dimensional disk array that promises to tolerate any two-drive failure; however,
no commercial implementation of RAID 6 exists as of this writing.

RAID 7

RAID 7 is a marketing term created by Storage Computer, Inc. Information on the Internet about RAID 7 indicates that while
some of RAID 7's performance claims may be worthwhile, RAID 7 is controversial because of its use of a cache. A few
major vendors have started to introduce RAID 7 products. RAID 7 is basically just RAID with caching.

Software Striping

Some operating systems include software striping options, which allow your system to effectively implement RAID.
However, there is a tradeoff in performance, as well as additional CPU overhead, when these options are used. Some of the
vendors and operating systems that offer software striping options include Silicon Graphics, Linux, and Hewlett-Packard and
Sun. For more information, check your UNIX documentation.

Network Tuning

For a busy site, network tuning will be the second major performance issue you'll face. Even if your disk subsystem is tuned
for optimal performance, its impact will be limited unless you are able to push data through the wire quickly enough. Here
are a few issues to consider:

The size of your connection to the Internet backbone and the speed of your WAN interface. Increasing these is the
most costly enhancement, but any serious Web service requires ISDN or better. An ISDN service may be more than
adequate for personal Web servers, but typically, network bandwidth of less than a DS-1 (T-1) won't be able to handle
any sort of intense traffic. Large providers will need DS-3 connections.

●

The speed of your local Ethernet network, 10Mbps (Megabits per second) Ethernet or 100Mbps Ethernet. This factor
dictates how long network transactions will take, and is affected by local traffic on your local area network (LAN). If
you have a large number of systems on your network, chances are your network is not performing well. Add traffic
from the outside, and it's no wonder the network seems slow! There are hardware and organizational solutions to this
problem; the organizational solutions are described in the "Network Topology Tuning" section later in this chapter.

●

These issues can be addressed by limiting traffic to well-defined sections of your network or by adjusting the size of your
network plumbing to match your needs. The bigger the pipes and the pumps, the better the performance.

Network Services (WAN)

How much bandwidth you have depends on the type of service to which you subscribe. For Internet information providers,
this is generally some sort of leased line. The faster the line, the more expensive it is. Top-of-the-line DS-3 services cost tens
of thousands of dollars per month. This figure doesn't even include the initial cost of the networking hardware, which can
easily be over $80,000, plus any other setup fees and the rental of the line! New technologies are going to increase bandwidth
for consumers, and if the pricing is attractive, many providers may begin looking at them as possible additions to or
replacements of their current leased lines. (See Table 12.1.)

Telephone companies, with their huge infrastructure, are in a position to bring the price of this technology down, making it
affordable to almost anyone. Network plumbing varies greatly in price and performance. For a graphical comparison of the
various options, see Figures 12.8 and 12.9. The shaded areas are proportional to the amount of data they can carry. Table 12.1

presents the various services available for a WAN interface and the monthly costs associated with them.

Figure 12.8. Relative size comparison of 100Mbps Ethernet, DS-3, and 10Mbps Ethernet.

Figure 12.9. Relative size comparison of 10Mbps Ethernet, DS-1, ISDN, DS-0, and 28.8 modems.

Table 12.1. Service and price comparison for dedicated services.

Service Type Bandwidth Price/Month

DS-3/ATM 45,000Kbps >$25,000

ADSL/DMT Modems* (downloading) 1,500-8,000Kbps Unknown

T-1 or DS-1 (Digital Service 1) 1,500Kbps $770–$950

ISDN 128Kbps $325–$450

ADSL/DMT Modems* (uploading) 64-768Kbps Unknown

DS-0 (Digital Service 0) 56-64Kbps $180–$225

Modem 29Kbps $95–$150

The Price/Month column doesn't include costs related to leasing the line that connects you to the Internet Service Provider
(ISP). Typically, you could approximate costs by figuring that a single voice line is $30/month. 28.8 modems, DS-0, and
ADSL/DMT lines* take a single line. Any other service requires multiple lines. An ISDN line requires two lines
($60/month); a DS-1 line requires 24 lines ($720/month); a full DS-3 needs around 672 lines ($20,160/month).

Dedicated network connections vary in price depending on your geographic location, your distance from the provider, the
length of your contract, and other factors. The following sections describe the most common services.

DS-0 (Digital Service 0)

DS-0 service is used to enhance two-wire or four-wire voice or analog data, providing a single transmission channel between
the end user and the provider. It can also be used as a dedicated link between two remote office locations.

DS-1 (Digital Service 1)

A DS-1 service has a capacity of 1.544Mbps and can carry up to 24 64Kbps voice-grade signals. This service is also known
as a T-1, referring to the "T Carrier" digital communication system.

DS-3 (Digital Service 3)

A DS-3 circuit has the capacity of 44.736Mbps. It is the equivalent of 28 DS-1 circuits, having a capacity of 672 voice-grade
signals. This service is also known as a T-3. This is a very high-capacity service.

Discrete Multitone Asymmetrical Digital Subscriber Line (ADSL)

New technology, such as Discrete Multitone ADSL, promises to deliver incredible performance inexpensively. The
technology, intended for consumer Internet access, has varying rates of bandwidth depending on the direction of the transfer.
Downloads that operate from DS-1 to almost Ethernet speeds are sure to be hot with consumers. Uploads range from 64Kbps
to half of a DS-1 line—respectable performance, considering that it operates over existing copper lines.

ISDN: Integrated Services Digital Network

ISDN is a service that allows the combination of voice and data connections over a single high-speed connection. The quality
of the voice line is better than the standard voice line because the service is digital. This service works over existing copper
wires and requires a modem-like device. The typical consumer ISDN modem costs around $300.

Local Networks: Ethernet LANs

The type of LAN you implement on your network will greatly affect the performance and reliability of your server.

An Ethernet network is a well-behaved, polite group of computers. If one talks, the others listen. However, that means that
the more systems there are on the wire, the more time computers are going to spend waiting to talk. If two talk at the same
time, a packet collision occurs. On detecting a collision, all computers will randomly reset their talk interval to avoid a
deadlock, which is a condition where the collision continues to occur due to a predetermined silence period.

One way to improve performance is to have a faster Ethernet. The faster the network, the quicker the packets travel and the
more opportunity each system has to talk and deliver its message. Ethernet LANs come in two flavors: 10Mbps and
100Mbps.

In contrast to most WAN interfaces, Ethernet networks are very fast. However, Ethernet network capacity is only 60 to 80
percent of the rated bandwidth. On a 10Mbps Ethernet network, a server responding to 100 requests per second, each request
having an average size of 7KB, is using roughly 60 percent of the available bandwidth. A network experiencing this sort of
activity should have a 100Mbps Ethernet backbone support.

Software Tuning

Software tuning will allow your system to operate optimally given a load. There are several configuration details that will
make your system more efficient; they are detailed in the following sections.

HTTP Server

The HTTP server software is critical. The Apache server in its default configuration is already tuned very well. Apache
provides you with configuration directives that allow you address just about every issue that could affect the performance of
your server. These directives cover issues relating to the life of the HTTP children processes, the maximum and minimum
number of processes the server runs, whether to enable server-side includes or per-directory access control files, and so on.
Configurability is one of the big strengths of the Apache server. If the server does it, you can configure it.

You will achieve maximum performance for your HTTP server by following these tips:

Run a standalone server. The overhead of starting a server under inetd just won't work for any sort of real traffic.●

Don't log anything unless you need to. Logging takes time and resources. If you need to log, you might want to
consider some of the special logging options that Apache provides. Configurable logging is one way of building audit
trails that are important.

●

If you log, don't force the DNS lookups. Requesting reverse DNS lookups takes extra work from the server. Don't use
them unless you really need them. Also, log into a different disk (not just a different partition). This will allow the
server to access files and write the log files almost concurrently, almost always yielding a performance enhancement
for servers that do some logging.

●

Server Side Includes. In a word: Don't! Server Side Includes (SSI) increase disk access. In order to return a requested
page, the server has to parse the SSI page, perform some computations, and then return results to the client. How much
this increased disk access matters depends on the type of SSI you have. Including big files won't affect your server
much, but including many small files will result in several disk accesses. If your SSI includes a header and a footer,
that alone accounts for three accesses. In that same amount of time, your server could have returned the same three
documents to three separate clients. Consider instead having a script that adds header and footer information to a static
HTML file. The script would run under cron every so often and produce a page that the server can return without
preprocessing it. Needless to say, an SSI which also makes a CGI call, is twice as expensive.

●

Per-directory access control files generate a lot of server load because the server looks for an .htaccess file in every
directory in the path of a request, which can be very painful for deeply-nested requests. As an alternative, consider
putting any access restrictions in the global-access control file, conf/access.conf.

●

Don't let httpd processes expire too soon. Although it does provide some benefit in terms of memory use to expire the
processes every so often (some unices, notably Solaris, leak memory in some of the libraries, making a more frequent
process expiration a must), that benefit comes at a cost: a new process needs to be forked to replace the old one.
Forking is expensive, especially when your server is under heavy load.

●

If you need user authentication, use any of the database-authentication modules that Apache provides. The dbm
module provides incredible performance gains. If you have many users on your system (I would go to dbm for any
number of users greater than 30, although you may not notice any improvements until you have 200+ users), using one
of the database-authentication systems will provide a great speed enhancement over the inefficient flat-file version. A
complete description of all user-authentication modules is given in Chapter 15, "Access Control and User
Authentication." If you use one of these enhanced modules, the server will spend less time checking for permissions
and serving pages. These savings can be considerable on very large htpasswd files.

●

Server-generated indexes are expensive. If the server needs to find out what files are on a directory before returning a
list, this adds to the load. Create an index.html file instead, listing the contents you want to make available. If you
absolutely need automatic directory indexing, you may consider writing a small program that can create an index page
every so many hours versus having the server generate them on-the-fly.

●

Don't CGI unless you have to. If you need something that is generated on-the-fly, think about how often the data
changes. There may be another way of providing an up-to-date result without having to build the page from a CGI
every time. If you have some data that changes every few hours, or even every few minutes, prebuild a page that
contains the same data. Requests will be fulfilled much more quickly, and the server load created by the CGI will be
eliminated.

●

If you need to CGI, determine how server intensive your CGI is. Not all CGI programs are equal. The load generated
by a Perl CGI script is several times greater than that generated by a C program. To access the load your program
creates, run it by hand and use the UNIX time command to compute the resources. For more information, consult the
time command in the first section of the manual. If you are using a csh, the time command is built-in. However, its

●

output is a little different. Check your UNIX manual for more information on csh.

If you are using server-side image maps, don't forget that Apache has a built-in module to handle them. Performance of
the built-in module versus the CGI version is much better, and it's provided on the default Apache configuration free of
charge. Even better, consider a client-side image map. However, note that client-side image maps have a different
syntax from regular maps. For more information, please refer to Appendix D, "HTML Reference."

●

TCP/IP Tuning

Your operating system's TCP/IP implementation determines the number of connections, the connection rate, and the
maximum throughput that your system will achieve. Some of the default settings for your kernel may not be adequate for a
high-traffic Web server.

Before you attempt to fix anything, you should try to determine whether your system has a problem. The netstat program
provides a wealth of information that you can use to determine what is going on.

The following sections explain of the enhancements you'll need to do yourself, presented system by system.

Listen Backlog (SOMAXCONN)

A frequent source to TCP/IP performance problems is attributed to the system call listen(). The listen() call is responsible for
enabling incoming connections for a socket. The source of the problem is that the call sets a backlog parameter that specifies
the maximum size that the queue of pending connections may reach. If the number of waiting connections grows beyond the
defined size, the client will receive an error message that will prompt the client to issue a new request. Typically, the backlog
parameter is set to 5, which is hopelessly inadequate.

To determine whether your system is running into trouble because of the listen backlog, type the following command:

netstat -n | grep SYN_RCVD

If you continually don't get any lines listed, the listen backlog issue is not causing you grief. However, if you regularly get six
or seven lines, you may be running into trouble.

The only ways to fix this problem are to rebuild the kernel or to apply a runtime kernel patch that increases the value of the
backlog variable. If your Web server is a busy one, you definitely want to address this problem. Please note that the valid
ranges for each OS are different. The great majority of operating systems can only use 256 as the maximum value.

If you rebuild your kernel, make sure you have a backup of your old kernel plus any necessary files,
such as /vmunix. That way, in case of trouble, you can boot your computer using the old kernel. For
more information on rebuilding your kernel, look at your system documentation. If you make
changes to your kernel and do not have the hardware resources to match your settings, it is very
likely that your computer will boot to a kernel panic.

Apple UNIX (A/UX)

A/UX has a hardwired SOMAXCONN. You will need the patch BNET-somax.tar.gz, available from
ftp://ftp1.jagunet.com/pub/aux/.

This patch is just a simple ksh script that patches the runtime kernel using adb. The documentation included in the patch
specifies how to install it at system startup time.

BSDI and FreeBSD

Look for the SOMAXCONN definition:

#define SOMAXCONN 5

which is typically found in

/usr/include/sys/socket.h

/usr/src/sys/sys/socket.h

Change the value from 5 to 32. After you make your changes, you will have to rebuild your kernel and reboot your system.

Digital UNIX

You need to patch the kernel's global variable somaxconn using dbx -x. The default value is set to 8, but you can bump it up
all the way to 32767. Servers with high traffic shouldn't even consider values that are less than 2048. Digital's Alta Vista
servers get 5 million hits per day, and they probably have set theirs to 32767.

Digital has also published some patches that address the listen backlog and other related performance issues regarding Web
servers. The patch ID is 0SF350-146. This patch improves the performance of the network subsystem for machines used as
Web servers.

Linux

Modify the following lines in /usr/src/linux/net/inet/af_inet.c:

...

if ((unsigned) backlog > 5)

backlog = 5;

...

Replace both instances of 5 with the size of the listen queue you want. A valid number ranges from 0 to 255, but some
experts suggest not exceeding 128. Then rebuild your kernel.

Sun

On Solaris 2.4 and 2.5, you can patch the running kernel using the ndd command. To patch SOMAXCONN, type

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max N

where N is a number. On Solaris 2.4, the maximum value of N is 32. Solaris 2.5 defaults to 32, and the limit is 1024. You will
probably want to patch this value automatically at system startup time. Do so in /etc/rc2.d/s69inet, putting the preceding
command at the end of the file. For more information on ndd, check the man page.

Under SunOS 4.1.3, things are not as easy. Unless you have licensed the kernel code, you will have to patch the object code
file that defines those values. The object code file is

/sys/sun4m/OBJ/uipc_socket.o

Of course, you should make a backup of the uipc_socket.o file before you proceed.

These modifications involve changing a value stored at octal locations 0727, 0737, and 0753 in the preceding file. You can
change these values using the following program:

/*This program was originally developed by Mark Morley (mark@islandnet.com), and was
copied with permission*/

#include <stdio.h>

main()

{

 FILE* fp;

 fp = open("/sys/sun4m/OBJ/uipc_socket.o", "r+");

 if (fp != NULL){

 fseek(fp, 0727, 0);

 putc(128, fp);

 fseek(fp, 0737, 0);

 putc(128, fp);

 fseek (fp, 0757, 0);

 putc(128, fp);

 fclose(fp)

 printf("/sys/sun4m/OBJ/uipc_socket.o was successfully patched.

[ic:cc]You need to rebuild your kernel and restart\n");

 exit(0);

 }

 printf("Sorry /sys/sun4m/OBJ/uipc_socket.o could not be open\n");

 exit(-1);

}

File System Tuning

Most HTTP requests will involve a disk access, so the performance of your file system will be tested. Some systems allow
you to implement RAID in software at the cost of some additional processing overhead.

CGI Program Tuning

If a significant number of the requests processed by your server involve CGI execution, the performance of your Web server
will be closely related to the performance of the CGI programs.

CGI is inherently inefficient; request requires the server to fork a process. The process then needs to initialize itself, execute,
and exit. If the CGI is based on some interpreted programming language, such as Perl or Tcl, the process is even more
demanding because an interpreter will have to be launched, the script compiled, and then finally executed.

Porting your CGI to a compiled language is one way of improving the performance of your programs. Another way of
enhancing program performance is by using FastCGI or an imbedded interpreter, or in some cases, by developing a server
module that accomplishes what you need.

If you have a server that frequently incurs hits from CGI programs, you might want to consider one of these solutions:

Compiled CGI●

FastCGI●

Imbedded Interpreters●

Distributed CGI servers●

Compiled CGI

Porting the most-used CGI to C or some other compiled language will increase performance a lot. You may want to take a
look at server-side compiled JavaScript or WebObjects as an environment to develop Web applications (intranets).

WebObjects offers some very interesting technology. WebObjects was developed by NeXT Software, Inc.
(http://www.next.com), a leader in object-oriented software development technology. The WebObjects package currently
runs under Windows NT, Sun Solaris, NEXTSTEP, and OPENSTEP for Mach. A version will be available for
Hewlett-Packard's HPUX in the near future.

WebObjects is an environment for interfacing objects to the Internet via the Web. WebObject's object technology is based on
NeXT's OPENSTEP technology. It uses NeXT's Enterprise Objects Framework (EOF) for database access and Portable
Distributed Objects (PDO) for object distribution. PDO provides automatic load balancing of CGI between various CGI
servers. It all happens automatically, and is fully compatible with any HTTP server with a CGI, ISAPI, or NSAPI interface
(including Apache). WebObjects allows you to publish dynamic content and materials obtained from a database or some
other dynamic source through the Web.

WebObjects provides the scripting language WebScript. It will also provide full support for VBScript, Perl, and JavaScript in
the very near future.

FastCGI

Of the various options, FastCGI may be the one you'll want to explore first because it can potentially provide you with the
greatest benefits while requiring the least efforts. For more information, check out Appendix C, "FastCGI."

FastCGI is a high-performance extension to the CGI standard that offers a significant improvement in performance over the
existing CGI program interface. FastCGI is improved CGI; however, the programming methods are virtually the same.
FastCGI accomplishes its performance enhancement by having the CGI be a long-lived process. The long-lived process
remains ready to serve requests until it is destroyed by the system administrator or the server stops running.

This difference can have a dramatic effect on the performance of your programs and the servers that run them. The
performance savings are really noticeable especially if your program needs to establish a connection with a database or some
other process. A FastCGI application will maintain a connection to the database server, eliminating this time-consuming step.
FastCGI requests are almost as fast as requesting a static document, and that is a tremendous improvement!

Distributed CGI Servers

Another way of reducing the CGI load is to dedicate servers for CGI execution. Netscape runs CGI servers on their network.

FastCGI can be used for this purpose as well. It can connect to any process via a TCP/IP connection. This means that you
have your Web server separate from your FastCGI servers.

Some CGI development systems offer automatic CGI load balancing. WebObjects allows you to use distributed objects that
provide services to any processes on your network. The system is distributed by design. When a process looks for a service, it
will bind to the first server process that answers the request. This has the effect of making the least utilized servers the ones
more likely to answer first, hence the load distribution. Not only can one item be distributed, but different objects can
seamlessly bind to other objects in the network, making the application truly distributed.

Databases

More and more applications of Web server technology involve intranet technology. An intranet is an internal application
deployed over the Web. Web technology is proving to be a viable solution for implementing client-independent
mission-critical applications. Any system capable of using a browser has access to the corporate information. This scales well
when you consider that a typical network houses systems of various architectures and operating systems. Software
development on the server side ensures a great reduction in software-development costs. Intranet applications ultimately
depend on the performance of the database server and the CGI programs used to access the data.

Kernel Tuning

Although there are a few well-known ways to increase your Web server's performance, such as the SOMAXCOMM kernel
variable discussed in the preceding section, there are other software bottlenecks that are less known.

As operating-system vendors are learning about these bottlenecks, they are quickly fixing them. Some of these kernel
enhancements offer Web server speed improvements of 33 percent or better over previous versions of the operating system.
One of the best things you can do as a webmaster is keep informed of these updates and evaluate whether these changes will
enhance your system.

A/UX

You might want to update the NMBUFS kernel variable if you are finding many connections with a TIME_WAIT status.
You can easily determine how many connections have this status by running the netstat command. The value you need for
NMBUFS should be a lot higher than you might think. Mid-transfer disconnections will make sockets unavailable for several
minutes, impeding the formation of new good connections. A good value for NMBUFS is 4096.

BSDI and FreeBSD

You may want to up the maxusers kernel variable. This variable controls several things, including

The maximum number of system processes●

The maximum number of processes per user●

The maximum number of open files●

The maximum number of files that processes can have open●

If your server is heavily loaded, you might want to consider upping maxusers to 256, but make sure that you have enough
RAM resources for that. The maxusers variable will increase the value of several other kernel variables. For information on
the values derived from the maxusers variable, see the file /usr/src/sys/conf/param.c.

If you find that there are many connections with a TIME_WAIT status when you run the netstat command, you may want to
up the NMBCLUSTERS value. The value you need for this should be a lot higher than what you might think. Mid-transfer
disconnections will make sockets unavailable for several minutes, impeding the formation of new good connections. A good
value for NMBCLUSTERS is 4096.

Linux

In the file /usr/src/kernel/linux/include/fs.h changes NR_OPEN from 256 to 1024 and NR_FILE from 1024 to 2048.

Network Topology Tuning

The number of hosts that you have on your network will affect your network's overall performance. By rethinking and
reorganizing the layout of your network, you might be able to reduce your network traffic, allowing the server to send and
receive data.

Network Plumbing 99

Before discussing how the size of the pipe affects your data speed, it is useful to understand just what travels through your
pipe. After all, you cannot be a plumber until you know about water. The water in your network is the data, and its motion
through the wire on the Internet is controlled by a set of networking protocols known collectively as TCP/IP. TCP/IP is
named after the two main protocols used: Transmission Control Protocol (RFC793) and Internet Protocol (RFC791).

The success of TCP/IP is attributed to its design. It was developed under an open standard, which means the protocol is
independent of any particular operating system or hardware. Because of this independence, TCP/IP is able to run over a
dial-up connection, Ethernet, X.25 Net, token rings, or virtually any other physical medium.

The TCP fits into a layered protocol architecture above the Internet Protocol. The Internet Protocol provides TCP with a
mechanism to send and receive data packets of variable length that have been prepackaged in an Internet envelope, also
called a datagram.

The datagram provides a way of addressing the sender and recipient TCP packets in different networks.

The layers used by the protocol are

The Application Layer●

The TCP Layer●

The IP Layer●

The Network Layer●

The Network or Communication Layer

The Network Layer is responsible for handling the specifics of moving a piece of data through the underlying hardware. This
layer also manages electrical voltages and interfaces (connectors), as well as packet sizes and structures required to transfer a
packet from one point to another through a particular network. This portion of the protocol is not part of TCP; rather, it is
merely used by the protocol. Hardware designers are responsible for implementing the details necessary for the TCPs to be
able to use the underlying hardware.

The Internet Protocol Layer

The Internet Protocol Layer, or Routing Layer, is the foundation of the Internet. It defines the transmission unit, the
datagram, and the addressing scheme; connects the Network Layer to the TCP Layer, routes datagrams between hosts, and
splits and reassembles datagrams into sizes appropriate for the underlying network hardware.

A datagram, as I mentioned, is the envelope used for delivering the data. It contains several pieces of information, including
the source address that generated the datagram, the destination of the datagram, a serial number so that the data can be
reassembled in the right order, and a check sum value that can be used to determine whether the datagram arrived intact.

When a datagram is sent between two hosts, if the recipient host is outside of the local Net, it gets forwarded to a gateway.
This gateway is typically a router. In turn forwards the datagram to other gateways until the datagram is delivered to a
gateway that knows how to deliver it to its final destination—a host or another device local of that network.

A router is a specialized computer that forwards datagrams across networks. Although this might seem like a simple task, it
is in fact quite involved. Packets not acknowledged within the given time period will get re-sent, requiring the router to figure
out where to process and forward packets rapidly. Routers build dynamic tables to help forward datagrams to different
networks. If a router has various ways of forwarding the datagram, it will (unless directed by a static route) forward the
packet in the most efficient way possible.

In order for one device to communicate with another on an IP network (be it the Internet or your local TCP/IP network), each
device must know three different pieces of information:

An Internet Protocol (IP) address●

A network submask●

The broadcast address●

IP Addresses

An IP is an address format used on TCP networks and the Internet. It is composed of four or more 8-bit numbers represented
as octets. A new standard allows addressing 2^128 computers, roughly—my calculator doesn't go that far!—3.40282367E38,
which is a huge number! It has been said that under this scheme there are enough addresses to put 10 computers per square
meter all over the world. For simplicity's sake, I'll stick to the old 32-bit implementation for these examples. Each octet can
represent values ranging from 0 to 255, allowing 256 unique values. Each octet is separated by a period. Here's a sample IP
address: 1.2.3.4

The maximum number of hosts that you can address on an IP network is set by the class of the address. There are currently
three address classes: A, B, and C. (See Table 12.2.)

Table 12.2. IP network classes.

Address Class Network Portion Hosts Allowed Per Network

A 1.-127. More than 16 million

B 128.0-191.255. 65,536

C 192.0.0-223.255.255 255

Reserved Addresses

In order for a device to work on a network, it needs to know three addresses:

The IP address●

A network mask●

A broadcast address●

The IP address is the address of the device. Outside networks don't know anything about your subnet mask, which is just an
internal organization tool for you. Instead, outside networks reference the device by its IP address. The network mask tells
your router how to interpret the IP address, specifying which portion of the address corresponds to the network address and
which portion corresponds to the host portion of the address.

The broadcast address is a special address to which all devices on the network listen. Routing information is propagated this
way, as are messages you send using the UNIX wall (write-all) program. Typically, address 0, or the first address in the
subnet range, belongs to the address of the network or subnet. Address 255, or the last address available to the subnet range,
is used as the broadcast address. (See Table 12.3.) What this means to you is that when you add a subnet, you give away two
IPs per subnet for overhead in exchange for the organizational and performance benefits of subnetting.

Table 12.3. Masks and their effect on a C-class address

Address Class Default Mask

255.255.255.0 The C-class address mask. Hosts' numbers

range from 1–254. 0 and 255 are reserved for

the network and broadcast address,

respectively.

255.255.255.128 2 subnets with hosts numbered: 1-126, 129-254 0 & 127 are
reserved for the network address; 127 and 255 are reserved for
broadcast address.

255.255.255.192 4 subnets: 1-62, 65-126, 129-190, 193-254.

255.255.255.224 8 subnets, each with 30 possible hosts

255.255.255.240 16 subnets, each with 14 possible hosts

255.255.255.248 32 subnets, each with 6 possible hosts

The number of hosts available listed in Table 12.3 takes into account the requirement for a network and broadcast address.

Typically, unless you are a large organization, your IP address will be a C-class address. Even if your gateway to the Internet
is through a DS-1 line, having a 100Mbps Ethernet network may improve the performance and responsiveness of your
servers, as well as help you maximize the potential of your DS-1 line.

Subnetting

Another way is to improve performance is to reduce the amount of traffic that gets into your network in the first place. If you
have a busy Web server, network traffic to and from the server will slow your local network activity. By segmenting your
network into various smaller networks, you allow each of the segments to operate at peak performance. If you have high
traffic, you might want to consider putting your Web server on its own subnet.

Subnetworks require the installation of additional hardware, namely bridges or routers. Routers don't grab packets that are not
destined for their LAN. By subnetting, you are basically reducing the number of hosts you can have on each subnet, thus
eliminating the amount of data that can travel through your subnet. Only traffic that is destined for elsewhere will exit the
subnet. If you organize subnets around workgroups, you will have the opportunity to better your network organization. Some
of the benefits of subnetting follow:

Subnetting will help you isolate traffic within your network. This may actually be a security benefit, because traffic
from a department won't be reaching other parts of your organization, helping you tighten security and privacy of
information. In R&D departments, you can ensure that experimental software or hardware doesn't hose your entire
network.

●

If you manage a large network, using subnets may allow you to delegate network administration and IP management to
smaller departments within your organization. Problems within each network segment will then affect only that portion
of the network. If these network segments have their own system administrator, you won't have to deal with problems
that arise within them.

●

Subnetting can also help you isolate independent departments within your organizational structure without losing the
overall control of your large network. This can have several benefits. Each department could handle their own internal
network, but coordination of the corporate network could still go through a central control, thus ensuring that the left
hand knows what the right hand is doing.

●

Building a Subnet

Building a subnet is not too tricky. However, there are a couple of things that you will need to understand: the math behind
network masks and the reserved IPs that you cannot use for a machine.

The main thing you must decide is the number of segments you want to create. Subnetting works by specifying a different
network mask from the default. The network mask specifies how many bits of the IP address belong to the network portion of
the address. However many bits are left can be used for the host portion of the address. Table 12.4 lists the default network
mask for each address class.

Table 12.4. Default network masks.

Address Class Default Mask

A 255.0.0.0

B 128.0-191.255

C 192.0.0-223.255.255

Some of the octets represent network numbers others represent host numbers. Each octet represents a function of the network
mask. A mask is simply a binary number that specifies which bits belong to the network and which bits belong to the host
portion. Bits that are "on" (represented by 1) will be used for network address.

For example, if you have an IP, such as 204.95.222.100, and the mask for this IP is 255.255.255.0, you can determine that the
host portion can use all bits in the last octet; that amounts to 256 unique values ranging from 0-255. I find it easier to work
with masks in binary:

204.95.222.100: 11001100.01011111.11011110.01100100

255.255.255.0: 11111111.11111111.11111111.00000000

In the next example the mask was set to 255.255.255.128:

204.95.222.100: 11001100.01011111.11011110.01100100
255.255.255.128: 11111111.11111111.11111111.10000000

This mask yields an extra bit for the network address (shown in bold). This means that you can have two subnets, and the
host portion can use 7 bits, or 127 unique addresses, for each of the subnets.

Caching Proxy Servers: Reducing the Bandwidth You
Consume

Caching proxy servers can be a powerful tool in your arsenal to increase the performance of your internal Web traffic. While
originally developed as a way of allowing access to the Web through a firewall, proxy servers can also be used to reduce the
traffic your organization generates to popular Web sites.

Versions of Apache, beginning with 1.1, include a caching proxy server module that enables Apache to function as a caching
proxy server.

What Is a Proxy Server?

A proxy server is a Web server that sits between a local client and an external Web server. It acts as an intermediary to the
client and fetches information from other Web servers. Instead of a client connecting to a server on the Internet directly, it
establishes a connection with a proxy server in the user's local network. The proxy server then retrieves the resources
requested and serves them to the client as if the resources were its own.

Besides negotiating a transaction for a client, proxy servers usually cache data they receive from other servers. Over time this
cache will grow rich in pages from the most popular destinations on the Internet, allowing subsequent requests to be served
from the local proxy.

Instead of each request consuming your WAN bandwidth, subsequent requests to the same URL are served from the cache,
locally and at LAN speeds. This virtually eliminates the bulk of the traffic to previously contacted sites and improves access
times dramatically. This functionality has the effect of freeing bandwidth that would have been used to download duplicate
information for other purposes, such as to serve your company's pages to outside users.

If your connection to the Internet is not very fast, a catching proxy server can help you enhance your access to some of the
most frequented sites on the Internet. Obviously, performance enhancements you obtain from a cache will depend on the
richness of the cache, the surfing patterns of your users, and the amount of disk resources that you are willing to dedicate for
this purpose.

Overall, dedicating a caching server in your organization may provide many potential benefits to warrant its deployment.
Setup of a proxy is not complicated and requires very little administrative time.

Content Tuning

So far, most of the issues I have talked about revolve around the software and hardware behind the server, but it is worth
mentioning that there is one more way you can optimize performance.

The less bandwidth that your content requires for transmission, the more quickly transfers will occur. Organizing and
breaking your documents into smaller pieces will help tremendously. For example, if you have a DS-1 line, you are capable
of transmitting about 200KB per second. If your line were to support 50 users per second at optimal speed, your average
reply should not exceed 4KB. Although requiring that each of your pages be 4KB in size is a very unreasonable request, it
can help you to understand how many users your line can realistically support. The smaller your line, the smaller your reply
content should be.

I have seen many Web pages that take quite a few seconds to download. Pages and images that are carefully designed can
help provide the feel of a very fast site. Many designers who develop graphics for Web pages don't know how to prepare
graphics that maximize the intent of the work while minimizing image size.

Graphics

If you are using Graphical Interchange Format (GIF) files, you should be aware of Netscape's color cube. Netscape's color
cube only supports 6x6x6 combinations of colors, or 216 colors. Any color that doesn't fall in the cube will be dithered. The
Netscape color palette includes the values 00, 33, 66, 99, CC, and FF for each of the RGB channels. Some programs, such as
Adobe's Photoshop, allow you to specify a custom color lookup table (CLUT) when converting images to GIF format. If you
map and dither to this CLUT, what you see on your screen is what everyone else will see too.

Also, be aware that Netscape has only four grays plus black and white, which can be very limiting. If you have artwork that is
grayscale (no color), convert it to grayscale and then back to RGB format. This will set any pixels that dithered to a grayish
tone but still will contain some color information to a true grayscale. You can then convert your artwork to GIF and map the
grays to those that fall within the cube.

For a very interesting resource, visit http://www.adobe.com. This site has information on color reduction techniques that are
very effective. They also have a CLUT available that you can use in Photoshop, which contains the Netscape palette.

Also visit the home of the Bandwidth Conservation Society at http://www.infohiway.com/faster/index.html. Their site
contains a lot of information on how to get the most out of your images without requiring huge file transfers.

Another great tool that I use all the time is DeBabelizer. DeBabelizer is a powerful graphics program by Equilibrium (
http://www.equilibrium.com) that can translate between many image formats. More importantly, it has a great color dithering
algorithm that will reduce colors (reduce the file size) while maintaining an equally pleasing image. In most instances the
results are amazing, and the reductions are significant. Color reductions by this software render equally well on all
graphically capable browsers, eliminating color discrepancy issues.

Photographic images are usually smaller, and they dither better when saved in Joint Picture Experts
Group (JPEG) format. Be aware that some old browsers don't support in-line JPEG files.

Client-side Image Maps

Client-side image maps embed the map file right into the HTML document sent to the client. On selection, the browser does

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#85
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#86

the hit detection and requests the appropriate document, instead of passing down the coordinates where the user clicked back
to the server.

Client-side image maps will help remove a load from the server. However, their operation is not reliable on all browsers yet,
and it's only supported by Netscape and Microsoft Internet Explorer. Netscape seems to dislike polygonal areas, while
Microsoft Internet Explorer seems to work just fine.

Summary

This chapter covers a great deal of topics. Tuning your system for efficiency as you can see covers every possible area.
There's so much an Administrator can do that it is impossible to cover it all in one chapter. Your best strategy is to determine
where the bottlenecks are and what can be done to address them. Many of the solutions will involve money. To make your
action list work, you may want to assign a price to all possible solutions. That usually helps you to narrow your choices.

A great resource for tuning your server is Adrian Cockroft's Q&A article. It is available at
http://www.sun.com:80/sunworldonline/swol-03-1996/swol-03-perf.html.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#87

Apache Standard Access Logs (Common Logfile Format)

Fields Available in the CLF■

Enabling Logging■

■

Additional Logging Modules■

The mod_log_config Module

LogFormat■

■

The Error Log■

Searching and Gathering

Counting the Unique Number of Visitors■

Using grep to Determine the Origin of the User■

Daily Statistics■

Home Page Statistics■

Searching the Error Log■

■

Tools for Summarizing Information

AccessWatch■

Wusage■

Analog■

wwwstat■

■

Summary■

13

Web Accounting

Soon after a Web site is up and running, you will get many requests for Web traffic statistics. Log administration in terms of
providing accounting information, "Web accounting," will be one of the primary services you'll be involved with after your
Web site is up and running.

The importance and relevance of any Web accounting information depends on what you are going to do with it. If you are not
going to do anything with this information, then don't even enable it!

However, Web accounting allows you to create a database of information that you can use in many aspects of your Web site

administration. Even when deciding to implement a browser-specific feature, you may be interested in knowing how many
visitors will be able to take advantage of the new feature. Logging provides the answers to this question and others, including
the following:

Who is visiting your Web site?●

How many visitors are there and where are they from?●

When do international users visit your Web site?●

Which Web sites refer visitors to your Web site?●

What are the most popular areas of your Web site?●

Which browsers do your visitors use?●

What are your Web site's peak load times?●

Is your Web site working properly?●

All this information can be very useful to you as an administrator of the site and to the people responsible for the content. This
accounting information can provide immediate feedback as to how your site is being accepted by the Internet community. If
the service is useful, you will want to know which sections are more attractive to visitors and which areas need improvement.
This information gives you the opportunity to modify and tweak your site to make it more responsive to your visitors needs.

Sites that thrive on traffic will also be very interested in the traffic patterns because the cost of advertising could be rated
according to the access patterns for a page. Instead of having a flat rate, you could develop a random ad banner. Ads could be
targeted to match the profile of your visitors. The type of ad that appears can be dependent on factors such as the time of day,
where the visitor is coming from, and so on. The possibilities are many. Chapter 5, "CGI (Common Gateway Interface)
Programming," develops a program that you can use for implementing random banners.

Over time, your traffic information will grow to provide sufficient statistical information that depicts interesting patterns such
as the resources most frequently requested, the peak times and days for server access, and the way that people travel from page
to page.

As an administrator, your main interests will probably be centered around the overall traffic generated in terms of transfer
rates. How much is requested will impact the overall performance of your server and network. The monitoring of the error logs
should also be important. The error logs will provide you with information about broken links, security violation attempts, and
problems related to your CGI programs. If you decide to log, you'll also have to deal with the physical management of the log
files. They grow, and they grow fast!

Monitoring logs is an important task because it provides you with vital information and also acts as an indicator of the proper
operation of your site.

Monitoring your site's traffic can be accomplished with many tools. Some of which are already built into your system. This
chapter explores different ways that you can sift through the information and summarizes the results into useful information.

Apache Standard Access Logs (Common Logfile Format)

The Apache server provides several logging modules that will help you keep track of many things. The standard logging
module, called mod_log_common, is built into Apache by default. This module logs requests using the Common Logfile
Format (CLF).

Starting with Apache 1.2, the default logging module will be via mod_log_config, a fully configurable module.
mod_log_config is explained in the "The mod_log_config Module" section later in this chapter.

The CLF is used by all major Web servers, including Apache. This is a good thing, because it means that you'll be able to run
several log analysis tools that are both freely and commercially available for this purpose.

The CLF lists each request on a separate line. A line is composed of several fields separated by spaces. Fields for which
information could not be obtained contain a dash character (-). Each log entry uses the following format:

host ident authuser date request status bytes

Fields Available in the CLF

Here's a list of the data each field contains:

host The host field contains the fully qualified domain name or IP, if the name
was not available, of the machine that made the request.

From a performance standpoint, you should not force your server to perform a reverse Domain Name
System (DNS) lookup of the client. Some of the logging tools I'll describe can perform this reverse
lookup at the time you create your reports. Apache 1.1.1 ships with a little support utility called,
logresolve, which will obtain this information from the IP address stored in the log.

ident If IdentityCheck is enabled and the client machine was running an
identity daemon, the ident field will contain the name of the user that
made the request. You should never trust this information, unless you
know that the host is trusted. Otherwise, understand that this
information can be spoofed and is not trustworthy, don't bother
enabling it!

authuser If the request required authentication, the authuser field will contain the
login of the user who made the request.

date The date field contains the date and time of the request, including the
offset from Greenwich Mean Time. The date format used is
day/month/year:hour:minute:second timezone

request The request field is set to the actual request received from the client. It
is enclosed in double quotes (").

status This field contains the three-digit HTTP status code returned to the
client. Apache can return any of the following HTTP response codes:

200: OK

302: Found

304: Not Modified

400: Bad Request

401: Unauthorized

403: Forbidden

404: Not Found

500: Server Error

503: Out Of Resources (Service Unavailable)

501: Not Implemented

502: Bad Gateway

The HTTP standard defines many other codes, so this list is likely to
grow as new features are implemented in Apache.

bytes The size of the transfer in bytes returned to the client, not counting any
header information.

Enabling Logging

To enable logging using the standard log format, use the TransferLog directive. This directive allows you to specify the
filename to receive the logging information. Instead of a file, you can also specify a program to receive the information on its
Standard Input stream (stdin).

The syntax of the TransferLog directive is as follows:

Syntax: TransferLog [filename] | [|program]

Default: TransferLog logs/transfer_log

filename is the name of a file relative of ServerRoot. If for some reason you don't want to log, specify /dev/null as the access
log file.

|program is the pipe symbol (|) followed by a path to a program capable of receiving the log information on stdin.

As with any program started by the server, the program is run with the User ID (UID) and Group ID (GID) of the user that
started the httpd daemon. If the user starting the program is root, be sure that the User directive demotes the server privileges to
those of an unprivileged user such as nobody. Also, make sure the program is secure.

Here's a sample from an accesslog file generated by Apache for http://www.PlanetEarthInc.COM, a site hosted at accessLINK:

sundmz1.bloomberg.com - - [20/Jul/1996:09:56:03 -0500] "GET /two.gif HTTP/1.0" 200
2563

sundmz1.bloomberg.com - - [20/Jul/1996:09:56:03 -0500] "GET /three.gif HTTP/1.0" 200
4078

sundmz1.bloomberg.com - - [20/Jul/1996:09:56:03 -0500] "GET /four.gif HTTP/1.0" 200
4090

pn3-ppp-109.primary.net - - [20/Jul/1996:09:57:29 -0500] "GET / HTTP/1.0" 200 5441

pn3-ppp-109.primary.net - - [20/Jul/1996:09:57:36 -0500] "GET /images/ultimate.gif
HTTP/1.0" 200 7897

pn3-ppp-109.primary.net - - [20/Jul/1996:09:57:38 -0500] "GET
/sponsors/banner-bin/emusic2.gif HTTP/1.0" 200 8977

pn3-ppp-109.primary.net - - [20/Jul/1996:09:57:44 -0500] "GET /images/hero.gif
HTTP/1.0" 200 16098

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#77

128.58.101.231 - - [20/Jul/1996:09:59:19 -0500] "GET / HTTP/1.0" 200 5441

128.58.101.231 - - [20/Jul/1996:09:59:23 -0500] "GET / HTTP/1.0" 200 5441

slip-2-28.slip.shore.net - - [20/Jul/1996:10:03:44 -0500] "GET / HTTP/1.0" 200 5439

slip-2-28.slip.shore.net - - [20/Jul/1996:10:04:07 -0500] "GET
/sponsors/banner-bin/books.gif HTTP/1.0" 200 5726

slip-2-28.slip.shore.net - - [20/Jul/1996:10:04:09 -0500] "GET /images/ultimate.gif
HTTP/1.0" 200 7897

slip-2-28.slip.shore.net - - [20/Jul/1996:10:04:16 -0500] "GET /images/hero.gif
HTTP/1.0" 200 16098

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:09:38 -0500] "GET / HTTP/1.0" 200 5441

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:09:50 -0500] "GET /anim.class HTTP/1.0"
200 12744

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:00 -0500] "GET /one.gif HTTP/1.0"
404 -

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:01 -0500] "GET /two.gif HTTP/1.0"
200 2563

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:05 -0500] "GET /three.gif HTTP/1.0"
200 4078

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:09 -0500] "GET /four.gif HTTP/1.0"
200 4090

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:12 -0500] "GET /five.gif HTTP/1.0"
200 3343

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:15 -0500] "GET /six.gif HTTP/1.0"
200 2122

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:18 -0500] "GET /seven.gif HTTP/1.0"
200 2244

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:11:06 -0500] "GET /eight.gif HTTP/1.0"
200 2334

www-j8.proxy.aol.com - - [20/Jul/1996:10:31:50 -0500] "GET / HTTP/1.0" 200 5443

www-j8.proxy.aol.com - - [20/Jul/1996:10:31:57 -0500] "GET /images/ultimate.gif
HTTP/1.0" 200 7897

www-j8.proxy.aol.com - - [20/Jul/1996:10:31:57 -0500] "GET /images/hero.gif HTTP/1.0"
200 16098

www-j8.proxy.aol.com - - [20/Jul/1996:10:31:57 -0500] "GET
/sponsors/banner-bin/ktravel.gif HTTP/1.0" 200 1500

sage.wt.com.au - - [20/Jul/1996:10:43:05 -0500] "GET / HTTP/1.0" 200 5441

By simple inspection of this log excerpt, you can see that most requests are answered successfully. Only one entry is
suspicious:

slip-12-16.ots.utexas.edu - - [20/Jul/1996:10:10:00 -0500] "GET /one.gif HTTP/1.0"
404 -

It has a response code 404 - "Not Found." The person maintaining this site should check to see if this error is repeated
elsewhere because one of his pages could be referencing a broken link.

In addition to the standard mod_log_common logging module, Apache provides a log that is fully customizable. This log
module is still considered experimental as of release 1.1, but according to some sources, it will be the preferred and default
logging module for Apache 1.2. Even in its "experimental" state (actually it is just as reliable as the other one), its flexible log
format may provide you with more useful logging capabilities and may give you the opportunity to reduce several logs into a
single one.

Additional Logging Modules

While the default logging agent, mod_log_common, will be more than adequate for most needs, other logging modules may be
useful to you. As of version 1.1.1, Apache included the following modules which added logging capability:

mod_cookies●

mod_log_agent (NCSA 1.4 Compatibility)●

mod_log_referer(NCSA 1.4 Compatibility)●

mod_log_config●

Of these four modules, the most important ones are mod_log_config and mod_cookies. mod_log_config is a configurable
module that provides much more flexibility when logging information. mod_cookies also provides a log, but more importantly
it enables the automatic generation of cookies from within Apache (these cookies should not be confused with Netscape
persistent cookies. For information on Netscape persistent cookies, refer to Chapter 7, "Third-Party Modules").

Cookies are an unique identifier that get handed down by the server when a browser makes an initial connection. Because this
identifier is guaranteed to be unique, you can use it to follow a user navigating through your Web site.

The mod_log_agent and mod_log_referer are compatibility modules for users of the NCSA 1.4 Web server that are migrating
to Apache. mod_log_agent logs the client (browser) that was used to access the resource. mod_log_referer logs the Web site
the user is coming from. This last piece of information is useful to help you determine where users are coming from and where
your site is referenced. The referer module is also useful for tracking stale links that refer to resources that have since moved or
have been removed from your site. mod_log_config allows logging of the same information provided by mod_log_agent and
mod_log_referer except that instead of logging into several different files, the information can be consolidated into one log.
mod_log_config will help you reduce the complexity of log analysis scripts you develop, while at the same time produce
logging information that is compatible with CLF.

Apache 1.2 will introduce new logging capabilities, including the ability to redirect errors from your CGI to a logfile—an
enhanced user tracking cookie based log module—and the ability to have multiple configurable log files.

The mod_log_config Module

The mod_log_config module is not built into Apache by default. In order to use any of its directives, you need to reconfigure
Apache to include this module and comment out the standard mod_log_common from the list, and recompile the server.

This module allows the logging of server requests using a user-specified format. It is considered experimental; however, in my
experience it works great. As previously mentioned, this will be the default logging module for Apache 1.2 and beyond.
mod_log_config implements the TransferLog directive (same as the common log module) and an additional directive,
LogFormat. Because both the mod_log_common and mod_log_config implement the TransferLog directive, I would consider
it wise to only compile one or the other into Apache. Otherwise, your results may be unexpected.

The log format is flexible; you can specify it with the LogFormat directive. The argument to the LogFormat is a string, which
can include literal characters copied into the log files and percent sign (%) directives like the following:

%h Remote host.

%l Remote logname (from identd, if supplied).

%u Remote user (from auth; may be bogus if return status (%s) is 401).

%t Time of the request using the time format used by the Common
Log Format.

%r First line of request.

%s Status. For requests that got internally redirected, this is the status
of the original request; %>s for the last.

%b Bytes sent.

%{Header}i The contents of Header: header line(s) in the request sent to the
client.

%{Header}o The contents of Header: header line(s) in the reply.

One of the better features this module produces is conditional logging. Conditional logging can include the information
depending on a HTTP response code. You can specify the conditions for inclusion of a particular field by specifying the HTTP
status code between the % and letter code for the field. You may specify more than one HTTP status code by separating them
with a comma (,). In addition, you can specify to log any of the environment variables, such as the User-Agent or the Referer,
received by the server by specifying its name between braces ({variable}). Here are a few examples:

%400,500{User-agent}i

The preceding example logs User-agent headers only on Bad Request or Not Implemented errors.

You can also specify that a field be logged. If a certain HTTP code is not returned by adding an exclamation symbol (!) in
front of the code, you want to check for

%!200,304,302{Referer}i

This example logs the Referer header information on all requests not returning a normal return code. When a condition is not
met, the field is null. As with the common log format, a null field is indicated by a dash (-) character.

Virtual hosts can have their own LogFormat and/or TransferLog. If no LogFormat is specified, it is inherited from the main
server process. If the virtual hosts don't have their own TransferLog, entries are written to the main server's log. To
differentiate between virtual hosts writing to a common log file, you can prepend a label to the log format string:

<VirtualHost xxx.com>

LogFormat "xxx formatstring"

...

</VirtualHost>

<VirtualHost yyy.com>

LogFormat "yyy formatstring"

...

</VirtualHost>

LogFormat

The format of the log is specified as a string of characters:

Syntax: LogFormat string

Default: LogFormat "%h %l %u %t \"%r\" %s %b" (same as the CLF)

You are free to specify the fields in any order you want. But for compatibility with the CLF, you may want to observe the
order of the standard elements (as in the CLF specification):

host ident authuser date request status bytes

I like the following format, which provides a lot of useful information:

"%h %l %u %t \"%r\" %s %b %{Cookie}i %{User-agent}i %400,401,403,404{Referer}i"

In order to enable the Cookie header, we compiled in the mod_cookies. We also disabled the CookieLog by pointing it to
/dev/null. There is no need to have a separate Cookie log when you can include this information in the main log.

To enable logging, you need to use the TransferLog directive:

Syntax: TransferLog [filename] | [|program]

Default: TransferLog logs/transfer_log

filename is the name of a file relative of ServerRoot.

|program is the pipe symbol (|) followed by a path to a program capable of receiving the log information on stdin.

As with any program started by the server, the program is run with the UID and GID of the user that started the httpd daemon.
If the user starting the program is root, be sure that the User directive demotes the server privileges to those of an unprivileged
user such as nobody. Also, make sure the program is secure.

The Error Log

In addition to the transfer (or access) logs, you'll want to keep a close watch on the error log. The location of the error is
defined with the ErrorLog directive, which defaults to logs/error_log. The format of this log is rather simple, it lists the date
and time of the error, along with a message. Usually you'll want to look for messages that report a failed access because that
could mean that there is a broken link somewhere.

If you are debugging CGI, you will want to be aware that information sent by a CGI to the standard error stream (stderr) is
logged to the error log file, which makes the contents of this file invaluable while debugging your CGI.

Apache 1.2 introduces the ScriptLog directive, which will send all stderr messages to the log file specified with it. However, at
the time of this writing, I could not obtain additional information to fully document this directive. Please check the Apache site
for the latest information on Apache 1.2.

If you want to keep a watch on any of your log files as the entries are added, you can use the UNIX tail command. The tail
command delivers the last part of a file. tail has an option that allows it to remain listening in for new text to be appended to a
file. You can specify this functionality by specifying the -f switch:

tail -f /usr/local/etc/httpd/logs/error_log

This will display any error entries as they happen. You can also use this command on the transfer log and have
up-to-the-second information regarding any activity on your Web server. (For an even better activity report, take a look at
Chapter 11, "Basic System Administration," for information on the Status module.)

Searching and Gathering

Now that you have your logs accumulating data, you may want to be able to quickly search them. UNIX comes with a wide
range of tools that can easily search a large file for a pattern. Our examples use our richer log files. I used a CLF-file format
that had extra information at the end. I used the mod_log_config module and specified a log format of

LogFormat "%h %l %u %t \"%r\" %s %b %{Cookie}i %{User-agent}i
%400,401,403,404{Referer}i"

This log format adds the Cookie header (a number) associated with each request. It also logs the browser the visitor was using
and the Referer header information if the request was bad.

This format allows you to pack a lot of useful information into a single log file while still remaining compatible with most, if
not all, of the standard logging tools available. (The order of the first seven fields is the same as the CLF.)

Counting the Unique Number of Visitors

If you are interested in counting the number of visitors and you are logging the cookie information as in our example log
format, it becomes a matter of just counting the number of unique cookies in our log file. On entering the site, each visitor is
assigned a unique cookie by Apache. A cookie looks like the following:

Apache=##################

Each # character represents a number. Counting users becomes a matter of counting unique cookies. The following series of
commands retrieves this information:

awk '{print $11}' logfile | sort | uniq | wc -l

The awk command prints the eleventh field in the file. Fields in the logfile are separated by spaces, so each space creates a
field. Output containing only the cookies numbers is piped to sort, which will sort all the cookies in numerical order. The
sorted output is piped to uniq, which removes duplicate lines. Finally, the thinned out list is sent to wc which counts the
number of lines in the result. This number matches the number of unique visitors that came to your site. For more information
on these commands, please consult your UNIX documentation.

Using grep to Determine the Origin of the User

Another tool that is very useful for extracting information from your logs is the grep program.

By issuing the simple command

grep ibm.com access_log

You can see all the requests that originated from the ibm.com domain. If you just wanted a count of the accesses that came
from the ibm.com domain, issue a -c flag to the command:

grep -c ibm.com access_log

Daily Statistics

If you wanted command a quick count of all the hits that your site sustained on a certain date, say on July 19, 1996, type the
following:

grep -c 19/Jul/1996 access_log

To count all hits that your site sustained on July 19, 1996, between 3 and 3:59 p.m. (15:00 hours, UNIX time is expressed in
the 24-hour format), type the following:

grep -c "19/Jul/1996:15" access_log

Home Page Statistics

To count all accesses command to your home page, type the following:

grep -c "GET / " access_log

or

grep -c "GET /index.html " access_log

or

grep -c "~/username" accesslog

The sum of these two searches is the number of total accesses to your home page, assuming that your home page is at the root
directory and it is named index.html. For private home pages, you should use the third option. Just replace username with the
login of the user.

Searching the Error Log

You should frequently check your error logs. Of special interest are the following messages user not found or password
mismatch. If you get many repeated lines with these errors, someone may be trying to break into your site.

Tools for Summarizing Information

While the command line is invaluable for creating on-demand reports that search for something very specific, there are many
tools available that create nice reports that summarize most everything you want to know about your site's traffic. Many of
these tools are free, and they all answer, in varying degrees of greatness, the following basic questions:

Who is visiting your site?●

How many visitors are there and where are they from?●

What are the most popular areas of your site?●

What are your site's peak load times?●

Your choice will depend on what type of output you like. These tools are available in two types: graphical and text. You can
find free, shareware, and expensive versions of these tools. Shop closely, and look on the Net for the latest on these tools. A
good place to search is

 http://www.yahoo.com/Computers_and_Internet/World_Wide_Web/HTTP/Servers/Log_
Analysis_Tools/

The higher-end tools, such as net.Analysis from net.Genesis (http://www.netgen.com), cost anywhere from $295–$2,995.
They provide a number of features that may be interesting to very high-traffic sites.

In the inexpensive range (less than $100), there are many nice tools with tons of options available. My favorite tools are
described in the following sections.

AccessWatch

AccessWatch by Dave Maher, http://netpressence.com/accesswatch/, is a graphically appealing log analyzer. It provides
information about today's Web access. The software is implemented as a Perl script, so it is portable to environments that run
Perl. This software is free for the U.S. Government, noncommercial home use, and academic use. Any other use has a license
of U.S. $40/year. Figures 13.1–13.5 show examples of AccessWatch reports.

Figure 13.1. AccessWatch daily access and predictions report.

Figure 13.2. AccessWatch summary report.

Figure 13.3. AccessWatch hourly access report.

Figure 13.4. AccessWatch page access report.

Figure 13.5. AccessWatch domain access report.

Wusage

Wusage by Thomas Boutell, http://www.boutell.com, is a powerful and appealing log analyzer that is distributed in binary
form. There are versions for various types of UNIX and Windows. Wusage provides all the configuration commands you could
possibly want. As a bonus, it comes with a friendly utility for configuring the program. It utilizes Boutell's gd Graphical
Interchange Format (GIF) library to generate a variety of attractive charts. Its number one feature is that it lets you create
reports based on a pattern, be it a filename or a site. It can also analyze multiple log files at once. The license price varies
depending on the number of copies you purchase and the intended use. Single user licenses are $25 for educational and
nonprofit institutions. All others are $75. Various Wusage reports are shown in Figures 13.6–13.10.

Figure 13.6. Wusage daily access report.

Figure 13.7. Wusage monthly access report.

Figure 13.8. Wusage hourly graph report.

Figure 13.9. Wusage domain access report.

Figure 13.10. Wusage top 10 document requests.

Analog

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#78
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#78
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#79
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#80
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#76

Analog by Stephen Turner with the Statistical Laboratory, University of Cambridge (
http://www.statslab.cam.ac.uk/~sret1/analog), is highly configurable and is fully HTML 2.0 compliant. It does have some
graphics options, but I like the text reports, as shown in Figures 13.11–13.14. They are very comprehensive. Analog runs under
UNIX, Macintosh, and DOS.

Figure 13.11. Analog's summary report.

Figure 13.12. Analog's monthly report and partially showing the daily report.

Figure 13.13. Analog's hourly summary report.

Figure 13.14. Analog's domain report.

wwwstat

Another popular utility is wwwstat, http://www.ics.uci.edu/WebSoft/wwwstat/. This utility, when coupled with gwstat (
ftp://dis/cs.umass.edu/pub/gwstat.tar.gz), produces nice graphic reports. However, the graphic system only works under the
X11 (The X Windowing System). I also had trouble with it processing my 40MB log file on a very fast PA-RISC server,
something that leads me to believe that there was a compatibility problem on my side. The other software packages previously
mentioned quickly processed the 40MB log file in a minute or so without any problems.

Summary

Logging information provides you with interesting statistical information about visitors to your site. By carefully analyzing
this data, you may be able to catch a glimpse on a trend. This information can be invaluable in terms of determining what
visitors like to see in your site as well as pointing out the content you should enhance. Responding to these perceived needs
will help you build a better site—one that is useful to your visitors and one that will attract more of them.

Using software tools to graph Web accounting information is better than looking at raw numbers. "A picture is worth a
thousand words," and in this case, it will help you understand your site's traffic statistics better. Many of these reporting tools
summarize information by time periods and access groups, which lets you see your information in several different ways. By
associating this data with press releases and other media-dissemination information, you can gage customer interest in your
products or services. Your traffic is your feedback.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#81
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#82
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#83

Part V: Security: Options & Procedures

Secure Web Servers●

Access Control and User Authentication●

Web Server Security Issues●

U.S. Law Regarding Exportation and Importation of Cryptography■

The Public Key Partners Patent on RSA (Public-key Cryptography)■

Two versions of Apache-SSL

Apache-SSL■

Stronghold (Apache-SSL-US)■

■

So Which Secure Version of Apache Can You Legally Use?■

Installing Apache-SSL

Configuring Apache-SSL■

■

Installing and Configuring Stronghold

Generating a Key Pair and CSR for Stronghold■

How Many Certificates Do You Need?■

Stronghold Utilities■

■

SSL-Configuration Directives

BanCipher■

RequireCipher■

SSLCACertificateFile■

SSLCACertificatePath■

SSLErrorFile■

SSLFakeBasicAuth■

SSLLogFile■

SSLRequireCiphers■

SSLRoot■

SSLVerifyClient■

SSLVerifyDepth■

■

Summary■

14

Secure Web Servers

With the increase in the use of the Internet as a vehicle for commercial transactions, there are more reasons now than ever to
protect sensitive information from reaching unintended eyes. A whole slew of secure client/server applications are
appearing every day. Also making an inroad is the digital signature technology, which helps certify that messages you
received were indeed sent by the sender. Both of these technologies are rooted in the same core of public-key encryption,
which is currently the only feasible way of implementing security over an insecure network such as the Internet. The scope
of this technology is to ensure that any form of communication that may contain sensitive information is protected while in
transit and to assure the receiver that the message was really sent by the sender.

In the case of Web server technology, this is accomplished with a server that implements encryption at the communication
level. The current crop of products implementing security are based on the Secure Socket Layer (SSL) protocol
specification developed by Netscape Communications for use with their server and browser products. For details on the
SSL protocol, visit http://home.netscape.com/newsref/std.

Of the many reasons to use a secure HTTP server, the two most important ones are information privacy and data integrity. If
you put sensitive information on your server, you may want to protect your information from being captured or modified by
unscrupulous people while in transit. The SSL technology ensures this.

An SSL server is not secure in terms of prohibiting access to unauthorized users. All versions of
the Apache server, SSL or plain, provide you with tools and configuration directives to help you
control access to your site. The SSL technology only secures or makes it really difficult to spy or
modify the transmission of the information from the server to the destination—the communication
channel. Servers that contain highly sensitive information and should be secure don't belong on
the Internet. The SSL technology is only designed to permit the safe transfer of sensitive data
through an unsecured network such as the Internet; this technology is not designed to keep people
out of your system.

Two variants of the Apache server, Apache-SSL and Stronghold (Apache-SSL-US), are available. They both provide
128-bit symmetric-key encryption that is fully compatible with the Netscape's SSL protocol. These servers are fully
compatible with browsers that understand this protocol. Currently, this includes browser offerings from Netscape,
Microsoft, and others.

Because of the technology involved, which flavor of the Apache software you'll be able to legally use will depend on where
you live. There are two issues that affect most products that implement encryption technology, including SSL technologies:

The U.S. law regarding exportation of encryption technology (cryptography).1.

The Public Key Partners patent on Rivest-Shamir-Adleman (RSA) public-key cryptography2.

U.S. Law Regarding Exportation and Importation of
Cryptography

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#89

Exportation of cryptographic technology is highly restricted and regulated by the U.S. State Department under the
International Trade in Arms Regulation. This regulation classifies cryptographic devices, including software, as munitions
(as in armament and ammunition).

Ultimately, any export license request for cryptographic technology is passed down for approval to the National Security
Agency (NSA). The NSA has jurisdiction over the exportation of cryptographic technology issues because its mandate as an
agency is to listen and decode all foreign communications of interest to the security of the United States. Encryption
technology can obviously create problems for this agency when they are trying to go about their business. Naturally, from
their point of view, they need a policy to eliminate sources of grief where they can. This means putting restrictions on the
exportation of U.S. products that implement encryption technology.

In other words, the intention of the law is to reduce or prevent the possibility of some subversive country utilizing a
U.S.-developed encryption technology that is too strong and time consuming for the NSA to break. This type of technology
could make it difficult to decode information that may adversely affect the security of the United States.

The problem with this law is complex. The NSA will approve (and has done so in the past) exportation of cryptographic
technologies that it is able to crack or have some sort of backdoor available for this purpose. Rumor has it that they have all
the toys and best minds in the business dedicated to this purpose alone.

From a technology provider's point of view, the problem is that the intention of any cryptographic technology is to make it
very difficult to read encrypted data. Even if it was feasible to crack through brute force, the resources needed for this task
would approach government budgets. Even then it should take some time to crack. The result is that many encryption
products don't make a debut outside of the United States because an international version may have to compromise its
security to get the export license or the hassles involved in exporting it are too great. Developers of encryption technology
are angry because this policy limits their ability to reach a world market. In a world-information system such as the Internet,
it becomes very difficult to police and enforce this type of law.

The Public Key Partners Patent on RSA (Public-key
Cryptography)

The second issue regarding use of Apache-SSL, Apache-SSL-US, and other encryption technologies has to do with the
patent on public key encryption systems.

The traditional problem with encryption is that in order for the recipient to decode encrypted material, she would need to
know the key used by the sender to encrypt it; the sender uses a key (like a password) to encrypt a message. The receiver
must use the same key to decrypt it. Since the keys need to be the same, for both encryption and decryption, the problem
with this technology (secret-key cryptography) lies in the transmission of the key. Exchange of the key information needs to
transpire without anyone else learning it.

This makes the data vulnerable because even though the encrypted data could be easily and securely transmitted over open
communication lines, the key portion could not. If anyone else got a hold of your key, be it by looking at your e-mail or
listening in on your phone lines, they could decode the information. The more times you transmit and reuse the key, the
more vulnerable the key becomes.

To eliminate the problem of key transmission, public-key cryptography was developed. This system uses two keys: a
private key and a public key. The private key, as its name suggests, is kept private by its owner. This key is used for
decoding information, it is never sent to anyone (see the following note). The public key on the other hand can be freely
disseminated and can be publicly posted because it can only be used to encrypt messages destined to its owner.

When you wish to send a message to someone, you would use their public key to encrypt your message. Only the recipient,
with his private key, would be able to decipher that message.

A second benefit of public-key cryptography is that it can be used to create digital signatures.
Digital signatures are great because they provide digital proof of the sender of the message. If you
send a message to me, a value is computed using your private key and the message itself. That
value can then be attached to a message. When I receive the message, I can compute another value
by using the public key and the message itself. If your digital signature has a mathematical
relation to the computed value, then I know that the message was unaltered, and that it was
encoded by you. The only way to forge a message is to get a hold of your private key.

RSA, the algorithm that implements public-key encryption, is patented under U.S. Patent 4,405,829, which was issued on
August 20, 1983 (this patent expires in the year 2000). The patent is held by Public Key Partners (PKP) of Sunnyvale,
California. RSA is licensed under a royalty-based licensing policy, which works as follows:

If you develop a product and license the RSA technology, any one who purchases the product has a right to use the
RSA technology within the product you developed. The U.S. government can use RSA without a license because it
was invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman at Massachusetts Institute of Technology
with partial government funding.

1.

PKP allows free noncommercial use of RSA with written permission, for personal, educational, and intellectual
reasons. RSA Laboratories has even made available a collection of cryptographic routines in source form that include
the RSA algorithm, which can be used, improved, and redistributed noncommercially.

2.

RSA is not patented outside of North America.3.

Two versions of Apache-SSL

As mentioned earlier, there are currently two versions of the Apache server implement SSL encryption technology. The
SSL technology uses a public-key encryption system to encode the transmission.

Apache-SSL

Apache-SSL is a set of patches developed in the United Kingdom by Ben Laurie (ben@algroup.co.uk) that incorporate
SSL functionality to Apache. In addition to his patches available from http://www.algroup.co.uk/Apache-SSL, you'll need
to obtain the sources to Apache and the SSLeay library to build Apache-SSL. The product is free for both commercial and
noncommercial use. It supports 128-bit encryption, client authentication, and all the other features of Apache.

Apache-SSL uses the SSLeay, an implementation of the Netscape's SSL, the software encryption protocol behind
Netscape's products. SSLeay was developed by Eric Young as a library that can provide SSL security to any TCP
application. This implementation was programmed using only the publicly available protocols and supports DES, RSA,
RC4, and IDEA encryption algorithms. You can obtain the SSLeay library from http://www.psy.uq.oz.au/~ftp/Crypto/.
However, its use is only legal outside of the United States and Canada because of the patent issues with RSA and RC4.

Stronghold (Apache-SSL-US)

mailto:ben@algroup.co.uk
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#90
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#91

Stronghold, developed by Community ConneXion (http://www.us.apache-ssl.com), also uses the SSLeay SSL
implementation. However, it licenses the RSAREF libraries from RSA Data Security Inc., which provide SSL configuration
documentation. Stronghold also provides Certificate of Authority tools. Stronghold is free for noncommercial use.
Commercial users must pay a licensing fee of $495.00. Customers upgrading from a competing SSL Web server from
Netscape have a special discount price of $295.00.

Some of the technical differences between Apache-SSL and Stronghold are the licensing of the RSA technology,
availability of the CA, additional software tools, and availability of support. Apache-SSL's SSL implementation doesn't
license the RSA technology; Stronghold does. Because Stronghold licenses the RSAREF libraries, it is an approved
product. So VeriSign, an offshoot of RSA, will issue a Certificate Authority (CA) for Stronghold, although in the future
they may also do it for Apache-SSL. Stronghold also provides additional tools useful for creating new certificates and
manage existing ones. Lastly and most importantly, you can think of Stronghold as shrink-wrap. Commercial licenses of
Stronghold (paid versions) are entitled for technical support. The Stronghold software is also much easier to install because
it comes as a complete package, not just as a set of patches. Stronghold is currently compatible with 16 platforms including
SunOS, Sparc, Solaris, X86 Solaris, AIX, BSDI, Linux (ELF & a.out), FreeBSD, IRIX, UnixWare, Ultrix, DG/UX,
HP-UX, OSF/1, and NEXTSTEP.

So Which Secure Version of Apache Can You Legally Use?

As I mentioned earlier, which version of Apache you are allowed to use depends on where you live. If you live in the
United States or Canada, you must use Stronghold (Apache-SSL-US). This version of Apache uses the same SSLeay
libraries as Apache-SSL, but it licenses the RSA libraries. By licensing the RSA libraries, Community ConneXions
eliminated the patent issues associated with the RSA public-key encryption implemented by the SSLeay libraries.

To add another twist, by legalizing Stronghold in the United States by incorporating the RSA libraries, exportation of
Stronghold now falls under the regulations of the U.S. State Department under the International Trade in Arms Regulation,
making its use only possible in the United States and Canada. Stronghold is not licensed to be exported outside of the
United States under the current law.

In you live outside of the United States and Canada, then the United States patent on the public-key cryptographic system
doesn't apply to you. Apache-SSL, with its own implementation of the RSA algorithm that doesn't incorporate any code
from the RSAREF toolkit, can be used legally anywhere but in the United States and Canada. In those two countries it
violates U.S. patent law. To be certain, you may also want to become aware of other local restrictions and regulations
regarding the use of cryptographic technology before you implement a server that uses this technology.

Installing Apache-SSL

For users outside of the U.S. and Canada, Apache-SSL is distributed in patch form (note the version of the patches). The
patches can be obtained from http://www.algroup.co.uk/Apache-SSL. You'll also need the SSLeay libraries, available in
source form from http://www.psy.uq.oz.au/~ftp/Crypto, and pick the latest version. You'll also need to verify that you have
a matching version of the Apache server from http://www.apache.org.

As of this writing, the patches were for Apache version 1.1.1. The files you'll need are

Apache source: apache_1.1.1.tar.gz

SSLeay library: SSLeay-0.6.3.tar.gz

SSL patches: apache_1.1.1+1.3.ssl.tar.gz

You should move all the distribution files to a directory. You can use Apache Server as a temporary holder. Here's how the

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#92
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#90
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#94
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#27

patches are unpacked and applied. Note that apache_1.1.1+1.3.ssl.tar.gz is unpacked in the Apache 1.1.1 distribution
directory. Doing this will install additional files for the patch program as well as create some files unique to the SSL
distribution. The SSL patches are applied with the patch utility. If your system does not have patch, I have included a copy
on the CD-ROM. Otherwise, you can download the latest version from ftp://prep.ai.mit.edu/systems/gnu/patch-2.1.tar.gz.

Before compiling SSLeay, read the INSTALL document. Then edit Makefile.ssl to match your system configuration. If
your perl binary is in /usr/local/bin/perl and you don't mind installing the libraries and other programs in /usr/local/ssl, all
you may need to do is set up your compiler options.. When you are done, run the Configure program. Here's a listing of the
commands you'll need to apply:

% mkdir ApacheServer

% mv apache_1.1.1 ApacheServer

% mv SSLeay-0.6.3.tar.gz ApacheServer

% cd ApacheServer

% gzcat apache_1.1.1.tar.gz | tar -xf -

% cd apache_1.1.1

% gzcat ../apache_1.1.1+1.3.ssl.tar.gz | tar -xf -

% patch < SSLpatch

% cd ..

% gzcat SSLeay-0.6.3.tar.gz | tar -xf -

% cd SSLeay-0.6.3

% ./Configure os-compiler

Replace os-compiler with the name of your system. To see a list of available configurations, run Configure, but don't
provide an argument. Run by issuing make at the command prompt:

% make

After a while the libraries and tools will be built. To install them in their proper places, execute as root: make install.

After the libraries compile properly, you'll need to edit the Apache src/Configuration file. For an idea of a basic
configuration, see Chapter 2, "Installing and Configuring the Apache Server." The SSL patch installed a few more
directives in this file that you need to set values for. The ones you'll want to look for are SSL_BASE.

I set SSL_BASE=../../SSLeay-0.6.1 to the location of our SSLeay-0.6.1 distribution. You should be able to do a make and
the binary httpsd will be built. Move the httpsd binary to the apache_1.1.1 directory:

% mv httpsd ../

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#95

At this point your software is properly installed. The next step is configuring the software and generating a CA so that you
can use the software.

Configuring Apache-SSL

Before you configure Apache-SSL you'll need to generate a Certificate Request. A test certificate can be generated simply
by issuing a make certificate in the apache-sll/src directory:

control1 > make certificate

../../SSLeay-0.6.1/apps/ssleay req -config ../../SSLeay-0.6.1/apps/ssleay.conf -new
-x509 -nodes -out ../SSLconf/conf/httpsd.pem -keyout ../SSLconf/conf/httpsd.pem; ln
-s ../SSLconf/conf/httpsd.pem ../SSLconf/conf/`../ ../SSLeay-0.6.1/apps/ssleay x509
-noout -hash < ../SSLconf/conf/httpsd.pem`.0

Generating a 512 bit private key

..+++++

.....................+++++

writing new private key to '../SSLconf/conf/httpsd.pem'

Next, you'll be prompted to enter information about yourself and your company. Follow the directions:

You are about to be asked to enter information that will be incorperated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:DO

State or Province Name (full name) [Queensland]:Distrito Nacional

Locality Name (eg, city) []:Santo Domingo

Organization Name (eg, company) [Mincom Pty Ltd]:CXA

Organizational Unit Name (eg, section) [MTR]:""

Common Name (eg, YOUR name) []:

Email Address []:webmaster@CXA.DO

Next, you'll need to edit the SSLconf/conf/httpd.conf file. This file contains many of the same configuration directives as
conf/httpd.conf, but it also includes directives for specifying the location of the certificate and other things. The directives
you need to set are fully documented.

Installing and Configuring Stronghold

Stronghold comes as a prebuilt binary, and it is by far the easiest Apache server to install. Community ConneXion has made
a very nice interactive shell script that installs and configures both servers (the distribution includes both the non-SSL
version of Apache (httpd) and Stronghold (httpsd). A future version, currently under development, will implement both the
secure and plain servers in one server process.

To start the installation process, type the following:

./Install.sh

The program will show you a list of the available prebuilt binaries (if your distribution contains more than one). Enter the
name of the operating system matching your platform like this:

Available platforms:

Pick your platform > NS

Next, it will ask you where to store the SSL security utilities. Enter a different pathname if you want Stronghold stored
elsewhere.

Where do you want to install SSLeay? [/usr/local/ssl]

Testing permissions...done

Installing SSLeay...done

The installation script will then ask for the name of the directory where Stronghold will store Apache and other files
necessary for the operation of the Web server.

Where would you like to locate the ServerRoot? [/usr/local/apache]

Next it will request a directory for the normal logs (nonsecure transactions).

Where would you like to locate the non-SSL logs? [/usr/local/apache/logs]

And for the secure transaction logs:

Where would you like to locate the SSL logs? [/usr/local/apache/ssl_logs]

Next, the script will configure some of the server runtime configuration directives. First, it will request the server name. If
the server will use an alias such as www.company.com, enter that name here:

What's the name of your server? [www.company.com]

Next, it will ask you for the e-mail address for the administrator responsible for this site. This address gets returned to the
client in case of an error:

What is the email address of the server admin? [webmaster@company.com]

Next, it will ask you for the TCP port address for the plain (non-SSL) server. The standard HTTP port is 80:

What port do you want to run the plain server on? [80]

Next, it will ask you for the TCP port address for the SSL server. The standard SSL port is 443:

What port do you want to run the SSL server on? [443]

The following setting will control the user ID (UID) that the children server processes will run as. It should be set to a UID
with minimal privileges, such as nobody:

What user should the server run as? [nobody]

Never set the UID the server runs as to root!

The final setting will control the group ID (GID) that the children server processes will run as. It should be set to a UID
with minimal privileges, such as nogroup:

What group should the server run as? [nogroup]

Installing Stronghold...done

Configuring Stronghold...done

At this point the basic software is configured. The installation program will add the /usr/local/ssl path to your environment.
This will allow you to use the installed utilities without having to type their complete pathnames. You should follow the
instructions printed by the program and add them to your .cshrc, .login, or .profile files. The instructions printed are:

Now you must add SSLTOP=/usr/local/ssl to your environment.

Also add /usr/local/ssl/bin to your PATH.

Edit your .cshrc, .login, or .profile appropriately:

csh:

> setenv SSLTOP /usr/local/ssl

> setenv PATH /usr/local/ssl/bin:/etc:/usr/etc:/usr/ucb:/bin:/usr/bin:/usr/
local/bin:/usr/sybase/bin:/.

sh:

$ SSLTOP=/usr/local/ssl

$ PATH=/usr/local/ssl/bin:/etc:/usr/etc:/usr/ucb:/bin:/usr/bin:/usr/local/bin:/
usr/sybase/bin

$ export SSLTOP PATHHit return when ready:

You now need to generate the public/private encryption key pair. If you don't have an existing key, type B and follow the
instructions:

Now you need to install a key/cert pair.

A) Convert an existing Netscape Commerce key/cert pair

B) Generate a new key/cert pair

Choose [A/B] B

The key will be called www.key.

The certificate will be called www.cert.

They will be stored in /usr/local/ssl

Hit return:

********* READ ME *************

You are now generating a new key and key request. The key request will be

sent to the CA of your choice and the keyfile will reside

/usr/local/ssl/private/www.key.

If you have already sent off a key request for this server before, make

sure you aren't overwriting your old key which is awaiting a corresponding

certificate from your CA.

If they key generation fails, move the file

/usr/local/ssl/private/www.key to a backup location and try again.

********* READ ME *************

Hit return:

Choose the size of your key. The smaller the key you choose the faster your

server response will be, but you'll have less security. Keys of less than 512

bits are trivially cracked, while for high security applications you

probably don't want a key of less than 1024 bits. Choosing an appropriate

keysize is your responsibility.

How many bits of key (384 minimum, 1024 maximum): 1024

Now we will generate some random data, using the truerand library

developed by Matt Blaze, Jim Reeds, and Jack Lacy at AT&T.

This may take some time.

Generating 2048 bits of
randomness..

Now we generate more random data, from keystrokes

We need to generate 2048 random bits. This is done by measuring the

time intervals between your keystrokes. Please enter some random text

on your keyboard until you hear the beep:

 0 * -Enough, thank you.

Finally, choose some files with random bits, to complete our random

number seed generation. You might want to put in logfiles, utmp, wtmp,

etc.

Once the key is generated you will be asked to enter a PEM pass phrase.

This is the pass phrase used to encrypt the key on the disk.

 --- DO NOT LOSE THIS PASS PHRASE ---

Enter colon-seperated list of files: /usr/adm/messages

Now we are generating the key. This may also take some time. Be patient.

The passphrase you enter here is very important. Do not lose it.

22320 semi-random bytes loaded

Generating RSA private key, 1024 bit long modulus

.+++++

..+++++

e is 65537 (0x10001)

Next, you'll enter the permission phrase (your private password). Characters entered here are not echoed. Do NOT forget
your permission phrase! Enter the following:

Enter PEM pass phrase:

Verifying password Enter PEM pass phrase:

Key generated

If you would like to send your Certificate Signing Request (CSR) to a CA, type y, otherwise type n. If you type y, the CSR
will be sent to the CA. This process costs $290.00 from VeriSign. The session to prepare the Certificate Signing Request
looks like this:

Would you like to send a Certificate Request to a CA? [Y/n] n

Not generating CSR

Now we will create a self-signed certificate for use until the CA of your

choice signs your certificate. You will have to use this cert until

your CA responds with the actual signed certificate.

Enter PEM pass phrase:

You are about to be asked to enter information that will be incorperated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [California]:Somestate

Locality Name (city, town, etc.) [Springfield]:Somecity

Organization Name (company) [Random Corporation]:company, com.

Organizational Unit Name (division) [Secure Services Division]:

Common Name (webserver FQDN) [www.random.com]:www.company.com

--COMPLETE--

Your key has been generated and a test certificate has been installed

--COMPLETE--

Starting the server...

helium: Jul 22 23:41:19 1996 UTC - Aug 21 23:41:19 1996 UTC

WARNING: Certificate expires in 29 day(s)

Before the SSL server starts, you'll be asked to enter the permission phrase. This is done because the server is trying to
access an encrypted file. The prompt will look like the following:

Enter PEM pass phrase:

Congratulations! Your secure server is now running. To access it you'll need an SSL-compliant browser. Secure servers are
accessed by specifying an extra s following http (http secure) https://www.company.com URL. The visual differences
between a secure and nonsecure site are shown in Figures 14.1 and 14.2.

To start and stop the server, use the scripts created by the installation program, start and stop.

In the case of Netscape, accessing the secure site causes the browser to show warnings because it doesn't know who
certified this site. If the Certificate Request that you prepared earlier was approved by one of the authorities, such as
VeriSign, the browser will not show these warnings.

As of the second beta, Microsoft Internet Explorer (MIE) will not allow you to access a secure site
when the CA was unknown to the software. Netscape Navigator had this same sort of behavior in
its 1.x release. You'd think Microsoft would think about this possibility!

Figure 14.1. The installed SSL server looks like this when viewed by Netscape. Note the bar under the address area
and the icon on the lower left corner (on the computer the bars are rendered in blue).

Figure 14.2. A plain server looks like this when viewed by Netscape. Note the bar under the address area is missing,
and the key icon is broken.

Generating a Key Pair and CSR for Stronghold

In addition to generating a key pair when doing the initial installation, you can use the genkey program to generate
additional keys. Why do you need the key pair? The server generates a private and public key pair. The public key is used to
encrypt transmissions to the server. The server's private key is used to decrypt the transmissions. Only the private key can
be used to decrypt an encrypted message. It is kept in the server while the public key is sent to the client.

In addition to the private/public key pair, genkey generates a CSR for sending to a CA—an entity that acts as a notary
public, authenticating that the holder of a certificate is indeed the entity listed in the certificate itself. The certificate
contains your server's public key, an expiration date, information about your organization, and the digital signature of the
issuer.

When a server starts up a secure connection, it transmits the certificate to the client. The client decodes it by revealing your
public key, an expiration date, information about your organization, and the digital signature of the issuer it displays to the
user. The client then authenticates that the certificate has not been altered, and that it is signed by a CA it knows. This
allows the client to generate a symmetric key that it can use to communicate with the server.

The genkey program allows you to generate the key pair and e-mail it to a CA, typically VeriSign. The certification process
costs $290 and takes a few days. To complete the certification process, VeriSign will request more information about you or
your organization before they issue the CA for your server. For more information, please visit http://www.verisign.com.

Once you receive your certificate, you must install it using the getca program. Remember to save a copy of this certificate in
a safe place. As root install it with the following commands:

getca hostname < certificate

hostname is your fully qualified hostname. certificate is the path to the certificate. Don't keep copies of your certificate
laying around!

How Many Certificates Do You Need?

Most of the time you will only need to get one certificate. You will need to get an additional certificate if you are

Using a different hostname or physical machine●

Using a different key pair●

Using a different brand of Web server●

However, there may be creative ways of reducing your costs. Using Apache virtual hosts (described in Chapter 4, "Virtual
Hosts"), you could implement a common site in your organization that handles all secure transactions for the various
divisions in your organization, such as a point of sale system. All you need to do is create a link from your HTML to the
secure URL when you need to transfer information via a secure environment. The secure server will then handle all secure
transactions for all the other sites. Just remember to leave the "Organization Unit" field blank during configuration so that
you don't confuse visitors. You may want to consider that while the most popular browsers support SSL, some may not, and
you may want to offer a nonsecure transaction choice.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#96

Stronghold Utilities

The SSL distribution also includes a number of program utilities to help you manage your certificates and passwords.

change_pass Sets the passphrase used to encrypt the server's private key. The
private key should be kept encrypted to avoid any problems if
someone obtains it. However, an encrypted private key will require
providing a passphrase every time the server is started.

decrypt_key This utility decrypts the private key to allow the server to start
without requesting a passphrase. Having an unencrypted private key
may jeopardize your key if someone is able to obtain it.

gencert This tool is used to generate a test certificate. It also allows you use
private certificate authorities such as yourself (you authorize your
own CA). Third-party tools are available to help you implement a
more complex CA. For information, visit http://www.xcert.com.

genkey This utility generates a private/public key pair and a CSR that you
can send to a CA, such as VeriSign, for processing.

getca This utility installs a certificate provided by a CA such as VeriSign.

getreq This utility generates a CSR based on an existing private key
located in $SSLTOP/private/hostname.private

makeca This utility sets up a self-signed CA for Stronghold.

renewal This utility submits a certificate renewal request to your CA.

SSL-Configuration Directives

Apache SSL extensions are incorporated into Apache via ssl_module. This module provides a number of configuration
directives that you can use to control where the server will find configuration files, logs, and certificates among other
things. Most of these configuration files are written to a httpd.conf file that resides in the ssl_conf directory if you are using
Stronghold, or in SSLconf/conf/ directory for Apache-SSL installations.

These directives can be used in a <VirtualHost> section. However, note that browsers such as Netscape Navigator 2.x and
better check the URL against the hostname on the server certificate. This requires that you provide a different certificate for
each virtual host you house.

BanCipher

Syntax: BanCipher cipher

Scope: server configuration, directory, virtual host

This directive limits the use of ciphers that do not meet your security requirements for a particular directory:

<Directory path>

BanCipher cypher

</Directory>

RequireCipher

Syntax: RequireCipher cipher

Scope: server configuration, directory, virtual host

This directive is typically used inside a <Directory> section to require a specific cipher for the specified directory:

<Directory path>

RequireCipher cipher

</Directory>

cipher can be any of the following cipher types:

Cipher Type Description

NULL-MD5 No encryption, MD5 hash

RC4-MD5 Export-controlled, RC4-compatible cipher; MD5 hash

EXP-RC4-MD5 8-cent–secure, RC4-compatible cipher; MD5 hash

RC2-CBC-MD5 Export-controlled, RC2-compatible cipher in CBC mode;
MD5 hash

EXP-RC2-CBC-MD5 Export-crippled, RC2-compatible in CBC mode; MD5
hash

IDEA-CBC-MD5 IDEA cipher in CBC mode, MD5 hash

DES-CBC-MD5 DES in CBC, MD5 hash

DES-CBC-SHA DES in CBC, SHA hash

DES-CBC3-MD5 3DES in CBC, MD5 hash

DES-CBC3-SHA 3DES in CBC, SHA hash

DES-CFB-M1 DES in CFB

SSLCACertificateFile

Syntax: SSLCACertificateFile filepath

Scope: server configuration, virtual host

The SSLCACertificateFile directive specifies the trusted CA root client certificate file instead of a certificate directory like
the following SSLCACertificatePath directive.

SSLCACertificatePath

Syntax: SSLCACertificatePath path

Scope: server configuration, virtual host

The SSLCACertificatePath directive specifies a path were trusted CA root certificates can be found. Root certificates for
client certification should be stored here.

SSLErrorFile

Syntax: SSLErrorFile filename

Default: SSLErrorFile SSLLogFile

Scope: server configuration, virtual host

The SSLErrorFile directive specifies a file where error messages and SSL-diagnostic output are sent. If omitted, these
messages are logged to the file specified with the SSLLogFile directive.

SSLFakeBasicAuth

Syntax: SSLFakeBasicAuth

Scope: server configuration, virtual host

If set, this option will translate client X509 in usernames that can be used for authentication.

SSLLogFile

Syntax: SSLLogFile filename

Scope: server configuration, virtual host

The SSLErrorFile directive specifies a file where all SSL connections to the server are logged. It stores cipher and client
authentication data.

SSLRequireCiphers

Syntax: SSLRequireCiphers cipher:cipher:cipher...

Scope: server configuration

This is a colon (:)-delimited list of cipher types permitted for all SSL transmission in order of preference.

SSLRoot

Syntax: SSLRoot path

Default: SSLRoot /usr/local/ssl

Scope: server configuration, virtual host

The SSLRoot directive specifies where the SSL directory tree lives. path is prepended to all SSL file directives (except for
the logging directives) that don't specify an absolute path.

SSLVerifyClient

Syntax: SSLVerifyClient [0] | [1] | [2]

Default: SSLVerifyClient 0

Scope: server configuration, virtual host

This directive sets the X.509 Client Authentication option:

Option Value

0 No certification is required.

1 X.509 certificate is optional.

2 X.509 certificate is required.

Client authentication can be an effective way of restricting access to your Web site.

SSLVerifyDepth

Syntax: SSLVerifyDepth n

Default: SSLVerifyDepth 0

Scope: server configuration, virtual host

This directive controls the depth that the server will follow when verifying client certificates. The server will progressively
search the CA chain until it reaches a decisive authority or reaches n.

Summary

Secure transactions are the foundation for the commercialization of the Web. Currently there are a lot people looking at
what's new, but not many people are using the Internet to purchase things. Most buyers have been frightened by the media
into thinking that shopping the Internet could lead to someone using your credit card to make fraudulent charges. While this
is possible, the real issue here is privacy and assurance that the person or company you are communicating with is indeed
who they say they are. In the electronic age, the need for this technology is undeniable.

The Internet makes it possible to put bits of information about yourself together that are much more descriptive about you
as a person. If you are using the Web to connect to another system, it is trivial for me to figure out what machine you are
connecting from because this information is sent with every request you make. Some browsers, such as Internet Explorer,
send additional information, such as the computer processor you are running and the color capabilities of your monitor. If
you happen to be running some version of UNIX that allows fingering of your machine, there's a good chance of figuring
out your name and address. With your name, it's easy to find your telephone number and everything you may have posted to
Usenet. From that your hobbies and interests can be determined. With your address, it's easy to get a map of how to get to
you or find where junk mail can be sent. All it takes is a few seconds. As more and more information about us floats out
there, the scarier it becomes.

Encryption may solve one of the problems—how to avoid thugs from looking up your credit card number or some other
important information. However, it doesn't do anything about other information that can easily be extracted from just
pointing a Web browser to some URL.

Host-Based Access Control (Domain-Level Access Control)

The order Directive■

The allow Directive■

The deny Directive■

Host-based Access Control Examples■

■

User Authentication Control

Requesting a Password■

Managing Flat-File Password Files with htpasswd■

Managing DBM and DB Password Databases with dbmmanage■

■

Group Authentication■

Summary■

15

Access Control and User Authentication

User authentication and access control allow you to restrict access to your Web server's document tree. If you are building a
site that will be accessible to the world and you don't need to restrict access to your materials, you may want to skip this
chapter.

Servers with sensitive information should be behind a firewall or should use encryption technology that protects your
materials from unauthorized viewing. Directly connecting to the Internet with a server that has sensitive information is
asking for trouble.

Apache provides several methods you can use to restrict unauthorized access to your documents. These access control and
user authentication extensions are implemented in the form of modules. Modules extend the functionality of Apache by
adding new functionality that is not part of the Apache core itself. Modules provide additional directives that allow you to
control the behavior of the server much the same way you control other aspects of the server's configuration.

As with any resource that needs to be secured, security factors depend on many issues. If the information you are publishing
is of a highly sensitive nature, you should consider an alternative publishing medium. You may want to consider using a
secure server, such as Apache-SSL or Stronghold. Both of these servers are based on the Apache source, but they add
Secure Socket Layer (SSL) technology, which encrypts transactions between the server and the client when accessed with a
compatible browser. Information on SSL servers is covered in Chapter 14, "Secure Web Servers."

The topics in this chapter offer an extremely basic measure of security, if you can call it that. User authentication and access
control put a basic barrier between the user accessing your data and your server. If your data is sensitive, don't place your
trust in any piece of software unless you understand the potential risks that could create a hole in your security scheme.
Once again, do not place highly sensitive information on a publicly accessible server!

Apache provides a simple authentication scheme by which a user can prove his identity to the server: Basic authentication.
While the mechanisms used to verify the authentication information are reliable, you should be aware that Basic
authentication is not secure. It assumes that your network connection to the server is trustworthy—an assumption that is
questionable once you access your server from outside your local network. Be aware when you transmit a password that
unless you are using a secure server, the password transaction is not encrypted in any way by the client browser. It is
encoded using a similar process to the UNIX uuencode program, which ensures its integrity during transmission. However,
this method of encoding doesn't provide any encryption or other means of securing the data. Anyone with some technical
ability who intercepts the request could decode the password information and use it to access your restricted materials. You
should also be aware that when you authenticate, this process is repeated for every document you request (your password
and user id are sent with every page request, thus your password is sent not once but many times).

Apache 1.1 adds a new form of authentication called Digest authentication, which uses RSA MD5 encryption technology.
The use of Digest authentication requires a supporting Web browser. Be aware that unless you are using a secure server to
access your documents, the information that you transmit is still sent in world-readable form.

Now you understand that not one single measure of security is enough or infallible; that passwords can be compromised by
someone decoding them or intercepting them; and that your networking wires can be tapped, or someone with access to a
Domain Name System (DNS) server could make any machine masquerade as if it were in your network. The tools Apache
provides can help you build a basic barrier to discourage and stop most unauthorized users from accessing your information.

Apache provides two methods you can use to control access to the documents you make available on the Web:

Host-based or domain-level access control●

User authentication●

You can enable access control and user authentication on a serverwide basis or on a per-directory basis by using the
appropriate access control file (ACF):

Serverwide access is controlled by settings on the global ACF, conf/access.conf.●

Per-directory access control can also be configured on the global ACF by using <Directory> sections or by using
per-directory ACFs or .htaccess files. The use of per-directory ACFs may be restricted or not allowed by the global
access control file.

●

A section is a special type of directive that follows an SGML-type syntax: <directive
option...>...</directive>. Apache implements a few sections: <VirtualHost>, <Directory>,
<Limit>, and new to 1.1, <Location>. The <Location> directive allows you to implement access
control on a URL basis.
Access control on a per-file basis is not available to Apache versions prior to 1.1. If you need to
restrict access to a file, you will need to create a directory for that file and restrict access to the
directory instead.
Apache 1.1 introduces the <Location> section, which allows you to restrict access based on an
uniform resource locator (URL) or file address.
Apache 1.2 will introduce a new section directive, <File>, which is similar in functionality to the
<Location> section.

In general, per-directory ACFs are not a good idea for a site that needs tight security because some of the directives can

override settings you specified on your global ACF. However, if for administration reasons you want to relegate access
control management to the owners of the materials, per-directory access control files are the only way to go.

The name of the per-directory ACF is set by the AccessFileName directive. This directive is typically found in
conf/srm.conf. The default value for AccessFileName is

AccessFileName .htaccess

Note that the period in the filename will make the file invisible to most users, unless they use the -a flag to ls (the program
used for listing directories). Access control directives are usually found inside a <Limit> section. A <Limit> section
contains control directives enclosed by a <Limit>...</Limit> tag pair:

<Limit method method ...>

ControlDirective

...

</Limit>

method refers to any HTTP valid access method (GET, POST, HEAD, and so on). Apache only enables GET, POST, and
HEAD. The HEAD method returns an HTTP header describing the document, not the document itself. Other potentially
dangerous methods are not implemented in Apache: PUT, DELETE, LINK, and UNLINK. So you should not have to worry
about those. However, always read the documentation and be aware of HTTP methods that may compromise your security.

The enclosed directives only apply to the directory tree listed in a <Directory> section if the <Limit> section is in the global
ACF. If they are found on a per-directory ACF, then all directories under that tree will share the requirements listed. If they
are found outside a <Directory> section on the global ACF, then the requirement applies globally to all directories, even to
documents outside your DocumentRoot pointed to by an Alias directive. (For more information, please refer to Chapter 10,
"Apache Modules."

Host-Based Access Control (Domain-Level Access Control)

Host-based access control grants or denies access depending on the Internet Protocol (IP) address of the machine that
generated the request. This system is the least intrusive to legitimate users because access is granted on the basis of the
machine address. Machines matching a description are allowed or denied access to the document tree without requesting
further information from the client.

Host-based access control is provided by the mod_access module. The mod_access module is compiled into Apache by
default, so the directives it provides can be used without the need for additional configuration.

The mod_access module provides three directives to help you control access to your site:

order●

allow from●

deny from●

The order Directive

The order directive defines the order in which the allow and deny directives are evaluated within the <Limit> or
<Directory> section. The syntax for the order directive is

order [deny,allow] | [allow,deny] | [mutual-failure]

The possible options are

deny,allow Evaluates the deny directive first and then grants exceptions based
on the allow directive.

allow,deny Evaluates the allow directive first and then grants exceptions
based on the deny directive.

mutual-failure Evaluates so that only hosts that appear in the allow list and do
not appear on the deny list are granted access.

The allow Directive

The allow directive lists hosts that are allowed access to the directory. allow has the following syntax:

allow from host host...

host can be specified by [all] | [fully qualified host name] | [partial domain name] | [IP address] | [partial IP address].

The deny Directive

The deny directive lists hosts that are denied access to the directory. deny has the following syntax:

deny from host host...

host can be specified by [all] | [fully qualified host name] | [partial domain name] | [IP address] | [partial IP address].

Host-based Access Control Examples

To limit access control to your server's DocumentRoot to hosts in your domain (assuming that your document root is
htdocs), you would have an entry in your conf/access.conf file that looks like this:

<Directory /usr/local/etc/httpd/htdocs>

<Limit GET POST>

order deny,allow

deny from all

allow from yourdomain.dom

</Limit>

</Directory>

If you were limiting access to a directory inside your DocumentRoot (using .htaccess), you would specify this:

<Limit GET POST>

order deny,allow

deny from all

allow from yourdomain.dom

</Limit>

As described in the syntax, you can also specify hosts by IP or partial IP address. Using an IP address to list hosts may be
more secure than by name. The following is a more complex example. To only allow access to hosts in the your.domain
domain and the marketing subnet of the friendly.com domain and to all hosts from network 204.95.160 (in this case, this is
a C class address so there are 254 possible hosts), the <Limit> section would look like this:

<Limit GET POST>

order deny,allow

deny from all

allow from yourdomain.dom marketing.friendly.com 204.95.160

</Limit>

User Authentication Control

User authentication allows you to control access to the document tree on an individual user basis by utilizing user and
passwords lists to provide the necessary authentication. When a user accesses a restricted portion of the site, the server
requires him to log in by specifying a username and a password. If the user supplies the proper information, access is
granted for him to roam across the site without additional login requests. (Although the user does not enter a password, the
username and password get re-sent by the browser with each new request to the protected realm.) See Figure 15.1 for an
example of a login panel and Figure 15.2 for an example of a rejected login.

Figure 15.1. A login panel. The message You need a password to access this page was added by the AuthName
directive.

Figure 15.2. A rejected login. This is the message Apache displays if the client doesn't provide the correct
authentication information.

User authentication based on access control provides more selective security because access permission is validated on a
per-user basis. Apache requires login and a password validation before granting access to a restricted portion of your site. It
is important to note that there is no correlation between the UNIX password file (/etc/passwd) and the server's password
files; it is not necessary for a user to have an account on your system to be able to access protected materials on your Web
server. Also, it goes without saying that security is only as good as the passwords and the secrecy used to guard them.

Because passwords are transmitted as encoded text, there are no safeguards preventing someone
from intercepting a request and decoding the password. The security of your information really
depends on the trustworthiness of the networks used to access your server; a condition that is
nonexistent when your server is accessed from the Internet.

To provide user authentication you will need to create and maintain password files. You can have many different password
files within your site; however, you may find it easier to create a single password file and create a group file to further
refine permissions. By also using a group file, you can establish access restrictions based on the user's group memberships.

Currently, user authentication is provided by the following modules:

mod_auth—Authentication using flat file databases●

mod_auth_dbm—Authentication using DBM (hashed database) files●

mod_auth_db—Authentication using the Berkeley Software Distribution (BSD) UNIX DB files (BSD's hashed
database format). This module is included in Apache 1.1. Users of Apache 1.0.x can find the module on the Apache
site under third-party contributions.

●

The previous modules provide the following directives:

Module User Authentication Directive

mod_auth AuthUserFile file

mod_auth_dbm AuthDBMUserFile dbmfile

mod_auth_db AuthDBUserFile dbfile

The only difference between the modules, besides the small change in the naming of the directive, is the database format
used to store the user and password information. The modules providing DBM and DB support offer incredible
performance enhancements over the flat files used by mod_auth. DBM and DB formats are hashed tables. A hashed table
orders all entries with a unique index, otherwise known as a key, which is generated from the username and a value. In order
to look up a password, the hashing algorithm computes the key for the user and retrieves the password. In contrast, the flat
file version (mod_auth) needs to read every user in the file, and when it finds a match, it retrieves it. This process becomes
very inefficient and slow as soon as there are more than a few hundred users in the database.

The DBM version of the module was originally developed for HotWired (http://www.hotwired.com), which has over
150,000 users.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#100

Requesting a Password

To request authentication for your document tree to users within your network, just modify your access.conf configuration
file to have an entry like this:

<Directory /usr/local/etc/httpd/htdocs>

 AllowOverride None

 AuthUserFile /usr/local/etc/httpd/passwords/passwordfile

Group authentication is disabled by pointing it to /dev/null

 AuthGroupFile /dev/null

 AuthName These documents are only available to authorized users in our domain name

 AuthType Basic

 <Limit Get>

 require valid-user

 order deny,allow

 deny from all

 allow from domain

 </Limit>

</Directory>

The order, deny, and allow directives limit who will get a login panel. If you want users to be able to use your server from
outside your network, just omit these directives. Otherwise, just replace domain with the domain name for your
organization, or better yet, specify your domain by using an IP address notation.

The previous example defines the location of the database using the AuthUserFile and AuthGroupFile directives provided
by the mod_access module. If you wish to use the DBM or DB supporting modules, just replace the authentication
configuration directives with the equivalent version provided by the module you wish to use.

Next, you'll need to create the password directory on your httpd tree:

mkdir /usr/local/etc/httpd/passwords

Make sure the /usr/local/etc/httpd/ passwords directory is readable by the user or group your server runs under. If the server
cannot access the file, no one will be able to get in.

The tools you use to manage the password file depend on the type of authentication you use. If you are using flat files,
you'll use the htpasswd program. If you are using database files, you'll use the dbmmanage script.

Managing Flat-File Password Files with htpasswd

To add users to your password file, you'll need to use the htpasswd program. The source code for this program is included
in the support directory (/usr/local/etc/httpd/support), but it is not compiled by default. You'll need to edit the CC= directive
in the makefile in that directory to match the name of your compiler. And then issue a make. After a few seconds, the binary
htpasswd and other utilities will be built. Once htpassword is built, you can create a password file. The htpasswd program
has the following syntax:

htpasswd [-c] passwordfile username

The -c flag creates the password file passwordfile. Here's a sample session:

cd /usr/local/etc/httpd

support/htpasswd -c passwords/passwordfile user

Adding password for user.

New password:

Re-type new password:

The passwords won't be displayed on the terminal as you type, so as a security measure, htpasswd will ask for the password
twice. If the username you entered exists, htpasswd will ask you for the new password.

You can create as many password files as you like. However, you'll have to use different filenames to reference them.

Do not put a password file in the directory you are trying to protect. The best place for a password
file is outside of your server's document root.

Managing DBM and DB Password Databases with dbmmanage

If you have more than a few visitors, you will need to authenticate; you'll want to use DBM or DB password databases.
Password lookups using hashed databases are much more efficient. To manage DBM password files, you'll use the
dbmmanage script. dbmmanage is a Perl script, so you'll need to have Perl installed. Perl is an interpreted programming
language that is widely used for CGI program development. The Perl program is located in the support directory. You may
have to edit the location of the Perl binary on the first line of the script to match the location of your copy. You'll also need
to set the execute bit on the script so that your shell will execute it. The syntax to the dbmmanage program is

dbmmanage dbmfile [adduser] [add] [delete] [view] username password group

The name of your DBM database is dbmfile; if it doesn't exist, it will be created for you. Note that DBM databases may be
implemented as two files: dbmfile.pag and dbmfile.dir. DBM files are not user readable. They contain binary information.

Don't try to edit them by hand or alter their contents with anything besides the dbmmanage tool. The hashed database
routine needs them both to operate correctly.

When I refer to dbmfile I am talking about the base name of the file without the .pag or .dir
extensions! The DBM code used to access the files automatically references whichever of these
files it needs to work with. All your references to DBM files should just specify the base name of
the file, excluding any suffixes.

The adduser option to dbmmanage encrypts the password field. You can specify as many groups as you like. Just separate
them with a comma (,) without any surrounding whitespace. Adduser is the option you'll use for adding users to your
database. Here's an example:

support/dbmmanage passwords/password adduser user1 pw group1,group2

User user1 added with password pw:group1,group2, encrypted to XXZx5yHFQJRp.:
group1,group2

support/dbmmanage passwords/password adduser user2 pw group2

User user2 added with password pw:group2, encrypted to XXZx5yHFQJRp.:group2

The add option adds a key/value pair. You can use this to add descriptions or notes to your DBM file. Just make sure your
key value doesn't overwrite a username. Also, if your value has more than one word, quote the contents:

dbmmanage dbmfile add key "This is a multiword value"

The delete option deletes a entry matching key:

dbmmanage dbmfile delete key

The view option displays all entries in dbmfile:

support/dbmmanage passwords/password view

user1 = XXZx5yHFQJRp.:group1,group2

user2 = XXZx5yHFQJRp.:group2

Group Authentication

Besides authenticating users on an individual basis, you can group users. This grouping process is similar to the grouping
concept used for permissions under UNIX. Grouping users is a convenient method for providing a finer degree of access
control. It allows you to manage many users as a single entity.

If you request membership to a particular group as a requirement to access materials, then users not only need to provide a
valid login and password, but they also need to be members of the specific group in order to gain access.

To enable group authentication to your document root, you'll need to edit your AuthGroupFile directive to point to a valid
group file. As in the previous section, the directive you use to specify the location of your group file will vary depending on
the module you use to provide the authentication. AuthGroupFile is available on the base release because the module
mod_auth is compiled by default into Apache. The other variants, AuthDBMGroupFile and AuthDBGroupFile, are
available if you reconfigure and recompile Apache to include mod_auth_dbm or mod_auth_db, respectively. Here's a
sample configuration:

<Directory /usr/local/etc/httpd/htdocs>

 AllowOverride None

 AuthUserFile /usr/local/etc/httpd/passwords/passwordfile

 AuthGroupFile /usr/local/etc/httpd/passwords/groupfile

 AuthName These documents are only available to authorized users in our domain name

 AuthType Basic

 <Limit Get>

 require group group1 group2 ...

 order deny,allow

 deny from all

 allow from domain

 </Limit>

</Directory>

The only changes made to the previous section were to the AuthGroupFile directive. Previously, I disabled group
authentication by pointing it to /dev/null as the group file. I also modified the require directive. Earlier I was allowing any
valid users in the password file. Now I am requiring that, besides being in the password file, the user belong to either
group1 or group2.

As previously, both the directive and the file used for group authentication depend on the module you are using:

Module Group Authentication Directive

mod_auth AuthGroupFile groupfile

mod_auth_dbm AuthDBMGroupFile dbmgroupfile

mod_auth_db AuthDBGroupFile dbgroupfile

To create a group file for use with the mod_auth module (AuthGroupFile directive), you'll need a text editor.

The format of the file is simple:

groupname: user1 user2 user3 ...

groupname is the name for the group followed by a colon (:), and then followed by a list of usernames that appear in the
password file separated by spaces. Different groups are separated by a new line (\n) character:

group1: user1 user2 user3

group2: user2 user3

You'll need to restart httpd for your changes to take effect.

If you are using mod_auth_dbm or mod_auth_db, the group management process is a little easier. dbmmanage allows you
to specify group memberships right on the password file.

Using the adduser option to dbmmanage, you can assign group memberships at the same time you add a user. You can
specify as many groups as you like for each user. Just separate them with a comma (,) without any surrounding whitespace:

support/dbmmanage passwords/password adduser user1 pw group1,group2

User user1 added with password pw:group1,group2, encrypted to XXZx5yHFQJRp.:
group1,group2

support/dbmmanage passwords/password adduser user2 pw group2

User user2 added with password pw:group2, encrypted to XXZx5yHFQJRp.:group2

Then all you need to do is reference the same password file for group information:

 AllowOverride None

 AuthDBMUserFile /usr/local/etc/httpd/passwords/passwordfile

 AuthDBMGroupFile /usr/local/etc/httpd/passwords/passwordfile

 AuthName These documents are only available to authorized users in our domain name

 AuthType Basic

 <Limit Get>

 require group group1 group2

 order deny,allow

 deny from all

 allow from domain

 </Limit>

In case it was not obvious, the examples have been using two or more forms of authentication at the same time. Using
domain-level access plus user and group authentication methods provides additional levels of security because users need to
meet several criteria before gaining access: They need to access the material from a specified domain, then they need to
have a valid login and password, and finally their login name must belong to a group.

Summary

As mentioned earlier, the access control and authentication methods provided by Apache can help to make your server
relatively safe; however, no single mode of protection is bulletproof. If you can trust your DNS, then access control is a safe
method for restricting access.

Passwords are transmitted in clear text form and encoded to ensure that they arrive intact. However, this encoding does not
provide an encryption layer, so any user along the network could intercept a request to your server and decode the
password. Finally, even if you trusted that no one will listen for passwords, remember that transactions on plain vanilla
versions of Apache are not encrypted. Your materials are sent in world-readable form.

Beginning with Apache 1.1, some new authentication modules and methods are available. One of them, mod_auth_msql,
allows you to store authentication information on a relational database (mSQL). For more information on how to use the
mod_auth_msql directives, please refer to Chapter 10.

Why Security?

Unauthorized Use of Computing Resources■

Denial of Service Attacks■

Information Theft■

Vandals■

■

How Do They Get In?■

Avoiding Bad Input

Securing Your CGI■

Server Parsed HTML (SSI) Security Issues■

■

Security and Permissions

The Options Directive

ExecCGI■

FollowSymLinks■

Includes■

Indexes■

■

Access Control

Filtering By Address■

Login and Passwords■

Basic Authentication■

■

Protecting UNIX■

■

Additional Sources of Security Information■

Summary■

16

Web Server Security Issues

Throughout this book I have not discussed the security implications of running a Web server mainly
because I wanted to focus all this vital information into a single chapter. My thinking is that by putting
all security information together, it would be much easier for you to read and reference. While other
chapters may have made a reference to security, they didn't address it. This chapter does.

More than likely after you read this information, you'll be worrying about a few things. That's good. You
should worry. While at times I may sound paranoid, take it with a grain of salt. The level of security you
implement should reflect the level of security that you need. Creating a secure network is a very
extensive topic, and one that changes constantly. This chapter will focus closely on the issues that affect
a Web server; general network security is touched on but not really addressed.

Why Security?

Connecting a computer to the Internet is a very exciting event. It opens up a world of information and
communication. By setting up a Web server, you have plugged into that world and transformed yourself
into an information provider. The only trouble is that by doing so you have just exposed your network to
a series of potential security problems. These dangers are packaged in many forms, including the
following:

Unauthorized use of your computing resources●

Denial of service attacks●

Information theft●

Vandalism●

While any of these issues should warrant terror from you, knowing what they do will help you prepare to
face these possibly adverse situations.

Before you go any further, you should think of dedicating a system to serving
Web pages. This system should be a bare bones machine: Have no user

accounts and contain minimal software. It also should not be directly on your
local area network (LAN). If you haven't set up a firewall yet, do it. A firewall
will isolate your network from the Internet—a smart thing to do.

Unauthorized Use of Computing Resources

Many of the attacks on a network have obtaining illicit use of your systems as their goal. These attackers
will try to seize control of your system using its resources for whatever they see fit. While on the surface
this seems like the least harmful of problems, these attackers can create serious problems that could even
affect your reputation. For one, your systems could become the home base from which to launch attacks
onto other networks. They could turn your computers into illegal software distribution depots by
distributing copies of copyrighted or pornographic material right from your systems!

Denial of Service Attacks

Denial of service attacks are designed to keep you from using your own computing resources. Some of
the attacks can capitalize on known vulnerabilities of your operating system, such as flooding your
system with so much e-mail that it cannot keep up with other legitimate requests. Intruders can also shut
down your equipment, affecting services that are available to other users of your network. Sometimes
this sort of attack is part of a well-orchestrated attack towards another system. By making a trusted
system unavailable, an attacker could make another computer masquerade as your trusted host and gain
access to a different machine.

Information Theft

Information theft may be a serious problem if you store sensitive information on your systems. Even if
you don't, the information gathered could be used to gain further access to your system or personal
information that should be kept private. Confidential information, be it your secret formula for lemonade
or your banking records, should not be anyone's business but your own.

Vandals

This is probably the most annoying of all attacks. A vandal will attempt to destroy information that you
keep on your computer. Your best survival technique is simple. Have a backup of your data! Why would

someone do this? Usually its a personal attack by a disgruntled employee or someone else that somehow
thinks they have a score to settle.

How Do They Get In?

People who break into computers do it by exploiting some sort of software weakness. Usually, this is a
bug in some program or a library. Many years back, sendmail, the mailer agent that delivers mail on most
UNIX machines, was the target for one of these types of attacks. The sendmail worm exploited known
bugs, and while it created no damage to data, the worm managed to consume all the resources of the
effected computer. The sendmail worm managed to invade thousands of computers in just a few hours.

If you see what I am getting at, most security problems are rooted in software bugs. This is why it is
extremely important that your software is kept up-to-date. Systems that are running old software are
more likely to be broken into because they contain bugs and problems that are known.

Unlike PCs and Macintoshes, UNIX systems offer a wide range of services. For example, if you tried to
FTP into a Mac or a PC, you would not be able to do it unless the user installed a program that supported
this protocol. Under UNIX, this and many other client/server programs are already installed and waiting
for a connection. For a list of what is running on your system, check your /etc/inetd.conf file.

Even if you don't know anything about plumbing, you can easily understand that the more complicated
the plumbing, the easier it is to clog a drain. Software is not any different. The more complicated a
program is, the more likely that it has bugs. Web servers are complicated programs, and your UNIX box
is full of many complex programs, including shells and interpreters.

Thankfully, Apache doesn't have any known security problems. A basic configuration setting is fairly
secure because it doesn't permit the execution of CGI programs or Server Side Includes. If you forget for
a minute about all the other potential problems outside of your Web server, you will find that the source
of security problems on a Web server is usually caused by you, the administrator. Here's a list of the
possible holes you can open:

Insecure CGI programs you write or insecure programs others write that get placed into your
server.

●

Permissive and promiscuous security policies you set; this allows other users or uninvited guests to
override your security policies. This refers to permitting the use of per-directory access files
(.htaccess).

●

Additional server features that you enable. Unless you know what those third-party modules do
and how they have been coded, it is difficult to see if any of them will cause you grief. The best
defense is to run a minimal server: one that supplies the absolute minimum level of facilities that
do what you need. This approach has the added benefit of making your server lighter in weight,
which translates into a faster and more responsive server.

●

You should be able to tell I am emphasizing (and maybe putting my foot on my mouth) that Apache,
from a software standpoint, is fairly secure. No known bugs have severe security implications in the
current version, and if one was discovered, the Apache team would be quick to rectify the situation.
Always run the latest and greatest software to avoid problems.

From a Web server standpoint, the main focus of your worries should focus on CGI and SSI because
these two powerful features usually process user data. If you trust that the input data is good, you are in
for something.

My first recommendation is that you should carefully evaluate any CGIs you have written. Your CGIs
should be coded defensively because unexpected input will cause problems. This simply means that the
information your CGI takes in should not be trusted and must be qualified before it is passed to another
program for execution.

Data sent by a visitor via a form should be digested carefully. Just because input is generated by a form
that you coded doesn't mean that the visitor didn't alter your form in an attempt to crash your program.
Perhaps they returned different values or more data than what you expected. Their intent is to capitalize
on a weakness, such as overflowing your CGI. Perhaps a path specification is different from what you
would normally expect.

What your CGI can receive could be anything. Maybe through their e-mail address there's an attempt at
getting your computer to do something else. Unless you are ready to cope with that possibility, you are
creating a huge security risk.

Avoiding Bad Input

Here's what you should keep in mind regarding filenames:

Filenames you code are OK.●

Filenames sent by a form or coded by others are not.●

Restrict the files that others can supply to you. Perhaps have your program only access files that
you explicitly permit.

●

Your CGI programs should be able to gracefully handle a missing temporary file. Perhaps your
CGI programs should be able to determine if the file they are opening is the one they thought it
was.

●

Filenaming. Keep it simple: Only allow filenames that use letters and numbers. Any other
character is suspicious. Spaces or other whitespace in a filename can introduce problems. This also
means that under UNIX, you really don't want files that start with periods (.), semicolons (;), or
dashes (-). Files that include any of the shell metacharacters should not be permitted.
Metacharacters are characters like * or ?, which have a special meaning to a shell.

●

File permissions. Perhaps temporary files should not be world readable or writable, since this
allows users from within your organization to read information that they perhaps should not. This
is the one reason to have your server run as special user such as 'httpd,' so that you can assign a
reasonable umask. The umask (the user mask) is used to set the default file permission. The easiest
way to calculate a umask is to subtract the permissions from it.

●

If you want your files to be readable and writable by you and no one else, you
need to set your file mode to 700 (I added 400+200+100 from the following
table). To create an umask that responds to this file mode, subtract 700 from
777. This leaves you with a umask of 77. Typically, you specify umasks with a
0 for the owner bit because you want to be able to have execute permissions on
directories and executables you create, thus you would specify a 077 umask
value.
Permissions under UNIX take the following bits, which that you can add or
subtract to arrive at the permissions you want.

Bit Mode Significance

4000 Set user ID on execution

2000 Set group ID on execution

1000 Set sticky bit*

0400 Read by owner

0200 Write by owner

0100 Execute (search in directory) by owner

0040 Read by group

0020 Write by group

0010 Execute (search in a directory) by group

0004 Read by others

0002 Write by others

0001 Execute by others

*When set, unprivileged users cannot delete or rename files of other users in that directory

Securing Your CGI

The main problem with CGIs is passing user variables when executing an exec() or system() call. These

variables, if not carefully watched, could contain shell metacharacters that will cause the shell to do
something other than what was intended.

Suppose you have a simple script that uses the UNIX utility grep to search the contents of a phone
database. The user enters a first or last name, and the script returns any matching items. The script does
most of its work like this (please note that Perl has much better, built-in ways of doing this). Here's the
script:

system("grep $pattern database");

The pattern variable is set from a form input by the user. Now see what would happen if the user entered
a line like the following:

"-v ffffffff /etc/passwd |mail someAddress"

This effectively would send your /etc/passwd file via e-mail to someAddress. The -v argument to grep
tells it to include all lines that don't match. Our matching pattern ffffffff more than likely won't match
anyone.

The real solution to this type of problem is to do several things. One easy way of dealing with this
problem is by making a call to system a little differently:

system("/bin/grep", $pattern, "database");

By doing this, you have eliminated calling a shell. This effectively eliminated the calling of a shell,
which would have interpreted the pipe and done something you didn't want. Alternatively, you could
have escaped each special shell character before passing it to the grep call, as this line of Perl shows:

$pattern =~ s/[^\w]/\\\&/g;

system("grep \"$pattern\" database");

Perl has built-in checks for shell metacharacters and other expressions that could spell trouble. To enable
this feature, just start your Perl scripts with #!/usr/local/bin/perl -T.

This will enable Perl's taint checks. Data from outside the program (environment variables, standard
input stream, or program arguments) cannot use eval(), exec(), system(), or piped open() calls. Any
program variable that obtains a value from one of these sources also becomes tainted and cannot be used
either. In order for you to use a tainted variable, you'll need to untaint it. Untainting requires that you
perform a pattern matching on the tainted variable that extracts matched substrings. To untaint an e-mail
address, use the following code:

$email=~/([\w-.]+\@[\w-.]+)/;

Server Parsed HTML (SSI) Security Issues

Server Parsed HTML (SPML), also known as Server Side Includes (SSI), provides a convenient way of
performing server-side processing on an HTML file before it is sent to the client. This allows for the
opportunity to introduce some dynamic features without having to program a CGI to provide the
functionality.

SPML documents are processed by the server before they are sent to the client. Only documents with a
MIME type text/x-server-parsed-html or text/x-server-parsed-html3 are parsed. The resulting HTML is
given a MIME type text/html and is sent back to the client.

SPML can include information such as the current time, can execute a program, or can include a
document, just by adding some special SPML commands to your HTML page. When the HTML page is
properly identified to the server as containing SPML tokens, the server parses the file and sends the
results to the client requesting it. While this seems rather innocuous, it isn't. SSIs are parsed like a script
and can be a source of grief.

File inclusion is not usually a problem, as long as users are not including sensitive files such as
/etc/passwd. One condition to watch for is SSI that are built from data provided by an user over the Web.
Suppose that you created a bulletin board SSI that would include items added by external users via a
CGI. If your CGI was not smart enough to check for what it is being handed, it is possible for a user to
add something nasty such as a line like <!--#cmd cmd="/bin/rm -rf />. This, as you guessed, would
attempt to remove all files in your disk. Obviously, the example is intended as an illustration.

Security and Permissions

Exercising security on your Web site means enforcing policies. If you happen to allow per-directory
access files, in a way you have relinquished some control over the implementation of that policy. From
an administrative point of view, it is much better to manage one global access file (conf/access.conf) with
many different entries than a minimal global configuration file plus hundreds of per-directory access
files.

Per-directory access files also have the terrible side effect of slowing down your server considerably
because, once enabled, your server will scan each directory in the path to a request. If found, it then
needs to figure out what options to apply and in what order. This takes time.

The Options Directive

Permissions are specified in <Directory> sections in the global access control file or on a per-directory
basis with .htaccess files. The Options directive specifies what server options are enabled for that
particular server domain. Here are some of the options:

All Enables all options except MultiViews.

ExecCGI Enables the execution of CGI programs.

FollowSymLinks Enables the traversing of symbolic links.

Includes Enables the use of SSI.

IncludesNOEXEC Enables the use of SSI with the following restrictions:
The #exec and #include commands are disabled.

Indexes Enables the return of a server-generated directory
listing for requests where there is no DirectoryIndex
file (index.html).

MultiViews Enables content negotiation based on document
language. See the LanguagePriority directive in
Chapter 10, "Apache Modules."

SymLinksIfOwnerMatch The traversing of symbolic links is allowed if the target
file or directory is owned by the same user as the link.
This setting offers better security than the
FollowSymLinks option.

The following is a list of the security issues raised by the Options directive. Relevance to your particular
application depends on what type of site you manage.

ExecCGI

On my site, the option to run CGIs on a directory other than cgi-bin doesn't pose many security risks
because I control all CGI programs on the server. However, if you have a melange of users, permitting
execution of CGIs from anywhere may be too permissive and is a way of asking for trouble.

FollowSymLinks

The FollowSymLinks option is another option to worry about. If a user is able to create a link to a
directory from inside your Web document tree, she's just created an alternative way of navigating into the

rest of your filesystem. You can consider this option as an easy way to publish your entire disk to the
world. The SynLinksIfOwnerMatch option tries to mitigate this option a bit. However, both these options
are very dangerous if your ship is not a tight one.

Includes

Includes allows the execution of SSI in the directory. This option can be tamed down by specifying the
IncludesNOEXEC option, which disables file inclusion (so your users cannot do a <!----#include
virtual=/etc/passwd -->) or executes programs from within an include statement.

Indexes

This feature can be corrupted easily. If you recall the discussion about FollowSynLinks, automatic
indexes go hand-in-hand with it. When the user travels to a directory that doesn't contain a
user-generated index file, one gets generated by the server if you have automatic indexing enabled. This
basically provides a nice listing of your files and provides a nice interface with which to retrieve them.

Access Control

Apache provides you with several methods of authenticating users before you grant them access to your
materials. Third-party modules provide support for an even greater number. You can authenticate using
cookies, SQL databases, flat files, and so on. You can also control access to your machine based on the
IP of the host requesting the documents. Neither of these methods provides a good measure of security
by themselves; however, together they are much more robust.

There are a few issues that should be mentioned before you rely on any of these methods.

Filtering By Address

Although looking at a machine's address to determine if it is a friendly computer is better than not doing
it, any host can be spoofed. Some evildoers on the Net can configure their computers to pretend to be
someone you know. Usually this is done by making a real host unavailable and then making the Domain
Name System (DNS) provide the wrong information. For your security, you may want to enable
-DMAXIMUM_DNS while compiling the server software (under Apache 1.1 there's a new directive
HostnameLookups that does the same thing as a runtime directive). This will solicit a little more work on

your computer because DNS information will need to be verified more closely. Typically, the server will
do a reverse lookup on the IP address of a client to get its name. Setting up the HostnameLookups will
force one more test. After the name is received, the server will query DNS for its IP address. If they both
match, things are cool. Otherwise, the access fails.

Login and Passwords

One problem with login and password verification over the Web is that an evildoer can have a ball at
trying to crack a password. On many UNIX systems, if you tried this at a user account, the system would
eventually disable access to the account, making it more difficult to break in. On the Web, you could try
a few hundred passwords in a few seconds (with a little software) without anyone noticing it. Obviously,
this doesn't present much danger, with the exception of obtaining access to private information, until you
consider that most users use one password for most services.

Basic Authentication

Basic authentication is basic in that information exchanged between the browser and the server is not
encrypted in any way. This method only encodes, not encrypts, the authentication session. Anyone that
can intercept your authentication session can decode it and use the information to access your materials.
The browser sends in authentication information with each request to the protected realm, which means
that your login and password are sent not once, but several times through the wire.

To resolve this problem, a new method has been introduced: Digest authentication. Unlike Basic, Digest
encodes and encrypts (trivially) the password in a way that it is only valid for the requested resource. If
someone captured the authentication information and was able to decode it, that password would only be
useful to retrieve that one resource. Access to each page requires a new password, which the browser
generates. This makes the entire process a bit more secure.

If you want to have truly secure access to your server and you don't want to send passwords in the clear,
the only current viable solution is to use an SSL server, such as Stronghold or Apache SSL. Chapter 14,
"Secure Web Servers," goes into great detail about these products. An SSL server ensures that
information sent between the browser and the server is kept confidential. So even if someone is spying
on the line, it is very difficult to recover the original information. Secure transactions also ensure that the
data you receive originated from a trusted point.

Protecting UNIX

One way of reducing the likelihood of a problem is to reduce the number of sources to potential

problems. One way of dealing with this is to reduce the number of software systems that could be
subverted in an unexpected way, meaning your server should be as light as possible in the software
department.

Your host should house the minimum number of users possible.●

Your host should house the necessary Internet services (see your /etc/inetd.conf file for services
you are currently running). Remove services that are not needed.

●

Your host should be running the latest stable versions of the server programs, including sendmail,
httpd, ftp, and so on.

●

The logfiles in your host should be checked often.●

Additional Sources of Security Information

If you don't do much about security, the least you could do is frequently read the newsgroup
comp.security.announce. This Usenet group contains posts for the Computer Emergency Response Team
(CERT), which lists security holes as they are found. The CERT home page (see Figure 16.1) can be
found at http://www.cert.org.

Figure 16.1. The CERT Coordination Center's home page.

In addition to CERT advisories, you may want to check Internet Security Systems, Inc.'s home page (see
Figure 16.2). It is located at http://www.iss.net. Its Web site has a nice mailing list and a vulnerability
database for a variety of programs where security problems are grouped. Naturally, there's one for
Apache too.

Figure 16.2. Internet Security Systems, Inc.'s home page.

There are many excellent books available that will provide more detail than you'll probably ever need.
Here's a few:

UNIX Security for the Organization, by Richard Bryant, Sams Publishing.

Internet Firewalls and Network Security, by Karanjit Siyan, Ph.D. and Chris Hare, New Riders
Publishing.

Building Internet Firewalls, by D. Brent Chapman and Elizabeth D. Zwicky, O'Reilly & Associates, Inc.

Practical UNIX Security, by Simson Garfinkel and Gene Spafford, O'Reilly & Associates, Inc.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#93

Summary

The issues in this chapter only begin to address a few of the many configuration issues that may affect
the security of your site. Security is a very complex issue. Because of UNIX and the networking
necessary to make a Web server work, your task is a complicated one. I hope some of the warnings will
point you in the right direction. And yes, while some of the examples are extreme, they were meant to
catch your attention. The truth is you really cannot be sure of what can be done. Expect the unexpected,
and prepare for disaster. This way, should you be unfortunate and have a security breach, you'll be
prepared to deal with it from a practical, as well as an emotional, point of view.

Document any security problems you may find. If you think something is not right, document it. If you
shut down your system, the intruder will know she's been had, and it will be very difficult for you to
track her. On the other hand, if you wait and document, you may have a better chance of catching her and
finding out her true identity.

Part VI: Other References

Un-CGI VERSION 1.7 Documentation●

Managing Virtual Domains with sendmail V8●

FastCGI●

HTML Reference●

DNS and Bind Primer●

Introduction■

Installation■

Usage

Special Processing■

■

Other Features■

Frequently Asked Questions

I Get an Error About sys_errlist When I Compile■

Where Do I Put Everything?■

Why Does Un-CGI Tell Me It Can't Run My Script?■

What Do I Do in My Forms?■

I Get an Error 403 when I Submit My Form■

I Get an Error Code 500 From the Server■

My Script Doesn't See the Form Variables■

The Browser Just Sits There When I Submit My Form■

How Do I Parse Check Box Results?■

Do I Need to Make a Directory Called uncgi?■

Does Un-CGI Strip Out Special Shell Characters that Might Cause Security
Problems?

■

■

Summary■

A

Un-CGI Version 1.7 Documentation

The Un-CGI documentation was reprinted, with minor alterations, with kind permission from its author,
Steven Grimm. The most recent version of this software and its documentation are available via the Web
at http://www.hyperion.com/~koreth/uncig.html.

Introduction

This is Un-CGI, a frontend for processing queries and forms from the Web on UNIX systems. You can
get it via anonymous File Transfer Protocol (FTP) from ftp.hyperion.com or, depending on your browser,
by following this link:

http://www.hyperion.com/~koreth/uncgi.html.

If you wanted to process a form without this program, you would have to either write or dig up routines
to translate the values of the form's fields from URL encoding to whichever your program required. This
was a hassle in C and a real pain in the shell, and you had to do things differently for GET and POST
queries.

This is where uncgi comes in. It decodes all the form fields and sticks them into environment variables
for easy peruse by a shell script, a C program, a Perl script, or whatever you like. Then it executes
whichever program you specify. (Actually, Un-CGI is something of a misnomer because the weird URL
syntax is from the HTML forms specification, not from CGI itself.)

Installation

Let's assume that you have at least a passing familiarity with compiling and installing programs from the
Internet. You know how to unpack a compressed tarfile and use make, and are familiar with the
operation of your HTTP server. If you don't, you're probably not the right person to install Un-CGI; ask
your system administrator to set it up for you.

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs0.htm#88

To install, edit the makefile. Change the following settings:

CC The name of your system's C compiler—typically cc or gcc.

SCRIPT_DIR The directory where you want Un-CGI to look for your programs.
This doesn't have to be the same as your server's CGI directory.
Note that you cannot use a tilde (~) here to signify a home
directory; you have to use the entire path, beginning with /.

DESTDIR The directory where you want the Un-CGI executable to be
installed. If your server has a cgi-bin directory, it is generally what
you'll need to put here because the server needs to know to run
Un-CGI as a CGI program. Often that can only happen for
programs that are located in the server's cgi-bin directory.

Note that you cannot just make a directory called cgi-bin in your
account and expect Un-CGI to be run from it. The HTTP server
needs to be configured to know where to look for executable
programs. If you don't manage the HTTP server on your system,
you probably cannot install Un-CGI in the right place. (On some
servers, you can put CGI programs anywhere if you give them a
certain file extension; talk to your system administrator to find out
if this is the case on your system. If so, see the next item.)

EXTENSION If your server allows CGI programs to be run from anywhere as
long as they have a particular filename extension (typically .cgi),
you should set this to that extension, including the period (.). In
that case, you can set DESTDIR to point into any directory that
the server has access to (for example, your public_html directory).

You don't need to follow any particular naming rules for the
programs you're going to ask Un-CGI to run. As long as they're in
the SCRIPT_DIR directory, you can name them any way you see
fit.

Once you're done editing the makefile, run make install and your system will build and install Un-CGI
into the directory you specified as DESTDIR. If you get an error message like make: Command not
found or cc: Command not found, talk to your system administrator. There's no way of magically
knowing where your system happens to put its compiler tools.

Make sure the file permissions on the Un-CGI binary (and the directory it's in) are set so that the HTTP
server can execute it. On most systems the HTTP server runs as user nobody or www. You may want to
make Un-CGI a setuid program if you want to manipulate private files with your back-end scripts
because they will ordinarily be run under the same user ID as the HTTP server. Consult your system
administrator to find out your site's policy on setuid programs; they are frowned upon in some places.

Usage

An example is the easiest way to demonstrate Un-CGI's use. Suppose you have the following in an
HTML file:

<form method=POST action="/cgi-bin/uncgi/myscript">

What's your name?

<input type=text size=30 name=name>

<p>

Type some comments.

<textarea name=_comments rows=10 cols=60></textarea>

What problem are you having? <select name=problem multiple>

<option> Sleeplessness

<option> Unruly goat

<option> Limousine overcrowding

</select>

<p>

<input type=submit value=" Send 'em in! ">

</form>

When the user selects the Send 'em in! button, the HTTP server will run Un-CGI. Un-CGI will set three
environment variables—WWW_name, WWW_comments, and WWW_problem—to the values of the
name, comments, and problem fields in the form, respectively. Then it will execute myscript in the
SCRIPT_DIR directory.

All the usual CGI environment variables (PATH_INFO, QUERY_STRING, and so on) are available to
the script or program you tell Un-CGI to run. A couple of them (PATH_INFO and
PATH_TRANSLATED) are tweaked by Un-CGI to the values they would have if your program were

being executed directly by the server. PATH_INFO is, in case you haven't read up on CGI, set to all the
path elements after the script name in your URL (if there is any). This is an easy way to specify
additional parameters to your script without resorting to hidden fields.

myscript might be as simple as this:

#!/bin/sh

echo 'Content-type: text/html'

echo ''

mail webmaster << __EOF__

$WWW_name is having $WWW_problem problems and said:

$WWW_comments

__EOF__

cat /my/home/directory/htmlfiles/thanks.html

With Un-CGI, that's all you need to write a script to send your mail from a form and print a prewritten
file as a response. It's the same whether you want to use GET or POST queries.

If you're using Perl, $ENV{"WWW_xyz"} will look up the value of the xyz form field.

If more than one problem is selected in the previous example, the values will all be placed in
WWW_comments and separated by hash marks (#). You can use the library function strtok() to separate
and replace the hash marks with newlines using tr. Type the following:

echo $WWW_problem | tr '#' \\012 | while read value; do

echo $value 'selected.'

done

A useful learning tool is to point your form at a script that just prints the contents of the environment. On
most systems there is a program to do that, called either env or printenv. You can write a little script that
runs it:

#!/bin/sh

echo 'Content-type: text/plain'

echo ''

env

This script will print all the CGI environment variables set by the server.

Special Processing

You eagle-eyed readers may have noticed that the text area in the previous example had an underscore
(_) at the beginning of its name. When Un-CGI sees a form field whose name begins with an underscore,
it strips whitespace from the beginning and end of the value and makes sure that all the end-of-line
characters in the value are UNIX-style newlines (as opposed to DOS-style CR-LF pairs or
Macintosh-style CRs, both of which are sent by some browsers). This makes processing text easier
because your program doesn't have to worry about the browser's end-of-line conventions. Note that if a
form field is named _xyz, you still get an environment variable called WWW_xyz. The extra underscore
doesn't show up in the environment variable name.

Un-CGI also modifies variable names containing periods. The major source of which is <input
type=image>. Shell scripts have trouble coping with periods in environment variable names, so Un-CGI
converts periods to underscores. This is only done to variable names; periods in values will remain
untouched.

Other Features

If you compile with -DNO_MAIN, you can use Un-CGI as a library function in a C program of your
own. Just call uncgi() at the start of your program. Follow this example.

Un-CGI will handle hybrid GET/POST requests. Specify a method of POST in the form, and add a
GET-style query string to the action An example of this is as follows:

<from method=POST action="/cgi-bin/uncgi/myscript?form id=feedback">

When your script is run, WWW_form_id will be set to feedback. This will only work if your HTTP
server supports it (NCSA's does, for now anyway).

Un-CGI is freeware. If you want to include it in a commercial product, please send me mail. I'll probably
just ask you to include a pointer to this page with your product. If you want to pay me for Un-CGI, send
me a picture postcard to help decorate my wall! My address is

Steven Grimm
Hyperion
173 Sherland Ave.
Mountain View, CA 94043

Frequently Asked Questions

As with any kind of program, many questions arise regarding its use. What follows is a compilation of
the most frequently asked questions about Un-CGI.

I Get an Error About sys_errlist When I Compile

Some UNIX variants' standard-include files contain a declaration for the list of system error codes, and
some don't. For the latter, I need to include the declaration in uncgi.c. If you get an error about a previous
declaration of sys_errlist, edit uncgi.c and remove the line:

extern char *sys_errlist[];

Then recompile and everything should work.

Where Do I Put Everything?

Short answer: Look in the makefile.

Long answer: When you edit Un-CGI's makefile, you'll see two macro definitions relating to paths. The
first, SCRIPT_DIR, tells Un-CGI where to look for your scripts or programs. It must be set to the name
of an existing directory; you can set it to any directory you like.

Sometimes it is set to the location of your server's cgi-bin directory, although that's not necessary. The
second, DESTDIR, tells the makefile where to install Un-CGI. It must point to your server's cgi-bin
directory, if your server has one.

Note that you can't just create a directory called cgi-bin in your account and expect it to work. The server
has configuration files that tell it where to look for scripts and programs. Talk to your system
administrator if you aren't the person in charge of the server on your machine.

An additional makefile setting, EXTENSION, should be of help if your server allows you to put CGI

programs anywhere on the system. Again, consult your system administrator to see if this is the case.

Why Does Un-CGI Tell Me It Can't Run My Script?

First, make sure your script is in the right place; see the preceding section. Second, make sure your script
can be executed by the server. Remember, Un-CGI is run by the server, which is probably using a system
user ID, not your user ID. You need to set the permissions on your script so that it can be run by any
user. Usually, you can say "chmod 755 scriptname" (replacing scriptname with the name of your script)
to set the permissions properly.

If you're still having trouble, edit the makefile, uncomment the DEBUG_PATH line, and rebuild. This
will instruct Un-CGI to include the full path to where it thinks your script should be in its error message.

What Do I Do in My Forms?

The <form> tag has two attributes, METHOD and ACTION. METHOD must be set to either GET or
POST. Un-CGI will handle either one, but POST is preferred if you have text area fields or are expecting
a lot of information from the client. Note that the attribute name (METHOD) can be upper or lowercase,
but the value must be all caps.

ACTION should have the following components:

The alias for your server's cgi-bin directory (usually just /cgi-bin/).●

uncgi/ to tell the server which program to execute.●

The name of your script as it appears in the directory where you told Un-CGI to find your scripts
and programs (the CGI_BIN macro in the makefile). Example: myscript.

●

Optionally, a forward slash followed by additional parameters—often the path to another file you
want your script to print. This path information will be available to your script in the PATH_INFO
and PATH_TRANSLATED environment variables. The latter contains the full path to the
document, including the path to the server root directory. Note that you can't use tilde (~) notation.
Example: /form_output/acknowledge.html.

●

So, if you wanted to tell Un-CGI to run sendmemail with no additional parameters, you'd put
sendmemail in the directory you specified as the value of CGI_BIN in Un-CGI's makefile, and use the
following tag to begin your form:

<form method=POST action="/cgi-bin/uncgi/sendmemail">

I Get an Error 403 when I Submit My Form

The usual cause of this is that your server requires a special filename extension on CGI programs. (Most
often it's .cgi.) You need to give Un-CGI a name that will identify it as a CGI program to the Web server.
There is nothing special about Un-CGI from the Web server's point of view; it's just another program that
gets run like any other, and your installation of it has to obey the same rules as other programs.

I Get an Error Code 500 From the Server

This usually means your script isn't specifying a content type to the server. The first thing your script
needs to output is Content-type: text/html followed by a blank line. Note that the blank line following the
header is not optional, and it has to be completely empty—no whitespace. (See Chapter 5, "CGI
(Common Gateway Interface) Programming," for more information.) If you're writing a shell script, for
instance, you'll need the following:

echo Content-type: text/html

echo ""

The empty quotes on the second line are necessary; otherwise, echo won't print anything, not even a
blank line. Of course, if your script is outputting something other than HTML, adjust the content type
accordingly.

My Script Doesn't See the Form Variables

There are a few common causes for this:

Make sure you're actually running Un-CGI. If you install Un-CGI but your form's ACTION
attribute still points to something like /cgi-bin/myscript, Un-CGI isn't being executed by the Web
server when the user submits the form. See the previous example forms.

●

Environment variables are case sensitive, which means that if you have a field in your form named
revision, Un-CGI will create an environment variable named WWW_revision, not
WWW_REVISION or WWW_Revision.

●

Most shells restrict the characters you can use in variable names. In particular, spaces and
punctuation are usually illegal. Underscores and numbers are fine.

●

The Browser Just Sits There When I Submit My Form

The most common cause of hangs like that is from trying to convert an old CGI-compliant program or
script to run under Un-CGI. Your script is detecting that the form was submitted with the POST method
and is trying to read form results from the browser. Unfortunately, by the time your script is run, Un-CGI
has already read the results, so your program sits there waiting forever for bytes that have already been
consumed.

Remove the part of your code that reads a query from the standard input. It'll generally be located
somewhere around the word POST, which is easy to search for. Replace it with code that fills your
program's internal variables via getenv() calls (assuming that your program is in C) on the WWW_
variables defined by Un-CGI.

How Do I Parse Check Box Results?

Un-CGI puts hash marks (#) between check box selections if there are several of them. How you parse
depends entirely on which language you're using. In C, use strtok(). In Python, use string.splitfields(). In
Perl, use split(). In Bourne shell, use something like the following:

echo $WWW_whatever | tr \# \\012 | while read result;

 do echo User picked $result

done

Do I Need to Make a Directory Called uncgi?

No. You're probably assuming that because your form has an ACTION like /cgi-bin/uncgi/xyz, there
must be an uncgi directory under cgi-bin. That's not how it works.

The parts of a URL between the slashes are not directory names. They are symbols that tell the server

where to find a particular document. In most cases, the server will look for a directory with the same
name as the symbol in question. If there is one, go in that directory and proceed to the next symbol.
However, that isn't always what happens. If the server sees that a particular symbol matches the name of
a program, it will typically run that program and pass the rest of the URL to the program as an argument.
And that's exactly what's happening here.

There's no uncgi directory. You can think of /cgi-bin/uncgi/xyz as /cgi-bin/uncgi xyz if that helps.
(Strictly speaking, it's not accurate, but that's the concept.) Un-CGI sees the xyz argument and looks in
its SCRIPT_BIN directory to find a program by that name.

If you're still not sure what all this means, just try it out and see what happens!

Does Un-CGI Strip Out Special Shell Characters that Might Cause
Security Problems?

No, it doesn't for the simple reason that Un-CGI isn't tied to any one shell or any shell at all, for that
matter. Un-CGI sits in front of C programs just as easily as Bourne shell scripts, Perl scripts, or Python
scripts. (All of which, incidentally, are used in conjunction with Un-CGI at Hyperion.)

In most of those languages, there aren't any special characters that are inherently security problems, so
having Un-CGI strip characters that cause problems for a particular shell would just end up pointlessly
mangling the input to other kinds of scripts and programs. People using shells with different special
characters would still have to specially handle them anyway.

On most UNIXes, you can use the tr -d command to strip out characters that your shell processes. For
example, to strip out dollar signs from a Bourne shell variable, you would type:

WWW_puppycount="`echo $WWW_puppy | tr -d \$`"

Summary

Un-CGI can be a key piece of software when you are developing quick shell-based CGIs to handle
output from forms. However, you should keep in mind that Un-CGI doesn't perform any sort of security
checks on the submitted values it processes. For more information on security issues that you should
address on your CGI, please refer to Chapter 16, "Web Server Security Issues."

Managing Several Domains

Building the Database■

Configuring sendmail to Use the Mailbox Database

Editing the Rulesets■

■

Restarting sendmail■

■

Summary■

B

Managing Virtual Domains with sendmail
V8

The technique described in this chapter will help you map e-mail addresses to a system mailbox. While
in most installations you won't have to worry about this because UNIX will handle this for you, more
complex installations that make use of virtual domains will probably require you to provide some sort of
e-mail address support.

An Internet e-mail address can be divided into two components: the username and the domain name
(user@domain.dom).

The user portion usually matches the login name of a local user. It can also be an alias to a different user
or a distribution list for many other users in the system. As you may be aware, you cannot create two
identical login names on the same machine under UNIX. It would also be unwise to create an alias that
matched an existing user's login name. If you did create such an inconsistency, the results will be
unexpected and more than likely not be what you want. Mail addressed to the user will end up delivered
to someone else.

While under typical installation, this is never a problem. When it comes to dealing with virtual domain
names and virtual Web sites, it's like you will run into a problem. Someone responsible for handling
e-mail for one of your virtual domains will want you to provide the ability to redirect mail written to
user@his.domain to be mapped to his e-mail account on your system or forwarded elsewhere. For
addresses such as webmaster@domain.com, you can easily see the problem. sendmail, by default, doesn't
make a distinction between e-mail accounts destined to different domains. To sendmail, if the domain in
question is not forwarded elsewhere, it must belong to the user addressed in the envelope, regardless of
the domain name.

The following article is reprinted and enhanced from a posting made on November 10, 1995, to
comp.mail.sendmail by Johan Svensson (<johan@jos.net>). He granted kind permission for the inclusion
of this article. It describes how to handle this situation by allowing each domain to have standard e-mail
addresses, which are forwarded to the appropriate user based on the domain name information.

Managing Several Domains

If you want to provide e-mail to several domains and be able to use identical usernames across different
domains such as in

user@a.dom.ain mb1@dom.ain

user@b.dom.ain mb2@dom.ain

user@c.dom.ain mb@outer.space

you'll need a way to map the full e-mail address to use an external database. You will also need to do
some minor Ruleset rewriting in the sendmail.cf. Many Internet Service Providers have asked for a
general solution to this problem, and here's the solution.

This process involves two major steps:

1. Creating a database to map from an e-mail address to a mailbox.1.

2. Modifying a sendmail ruleset so that it uses the e-mail to mailbox database to figure out where
to deliver the e-mail.

2.

Building the Database

The database is compiled out of an American Standard Code of Information Interchange (ASCII) file that
has the following structure (the incoming e-mail address and the destination mailbox, which can be in a
totally different system or machine):

user@a.dom.ain mb1@dom.ain

user@b.dom.ain mb2@dom.ain

user@c.dom.ain mb@outer.space

The left column contains the e-mail address of a particular user, and the right column contains the
corresponding mailbox. If you maintain several domains, you may want to create several databases (one
per domain) and cat them together (using the UNIX cat program) prior to compilation. This may make it
easier to maintain domain aliases for a domain in the future because maps for each domain are saved on
their own file.

The following example may closely match your needs. Some of the destination addresses are forwarded
to other domains for resolution (webmaster@client2.se). Others will be remapped to other addresses that
will require reprocessing and derefencing the address several times before arriving at the final mailing
address (webmaster@client1.se):

webmaster@josnet.se wm.list@eowyn.josnet.se

webmaster@client1.se joe@client1.se

webmaster@client2.se anne@another.provider.se

webmaster@client3.se joe@client3.se

joe@client1.se c1_joe@mail.josnet.se

joe@client3.se joeuser

Note that you need to write the complete e-mail address in the left column. The right column entry can be
a local address (for example johan if that account exists) or a complete e-mail address on another system
(or a domain the server recognizes as local).

After you build the ASCII representation of the database, you'll need to compile it into a more efficient
lookup table using the makemap utility that came with your sendmail distribution (if your system
supports hash, dbm or btree, you can use those commands instead). Your command will look something
like the following:

makemap hash mbt.db <mbt

The resulting hashed database in this example is called mbt.db. The input ASCII database is called mbt.

Configuring sendmail to Use the Mailbox Database

In /etc/sendmail.cf, add the following line right after the DM entry. You'll need to replace method with
the type of database it is (use hash for makemap files, dbm -o for dbm files, or btree for a btree-generated
databases):

Kmbt method /etc/sendmail/mbt.db

Editing the Rulesets

Edit the ruleset 98 section (S98) and add the following inside the ruleset. Which modifications you make
will depend on the version of sendmail you are using.

For sendmail versions prior to 8.7.1, add the following:

R$+ < @ $+ . > $: $1 < @ $2 > .

R$+ < @ $+ > $* $: $(mbt $1@$2 $: $1 < @ $2 > $3 $)

R$+ < @ $+ > $* $: $(mbt $2 $: $1 < @ $2 > $3 $)

R$+ < @ $+ > . $: $1 < @ $2 . >

For sendmail versions later than 8.7.1, add this instead:

R$+< $+. > $1< $2 >

R$+< $+ > $: < > $(mbt $1$2 $)

R< > $+ @ $* $: < $1 > $(mbt * @ $2 $)

R< > $* $: $>3 $1

Restarting sendmail

Finally, restart sendmail to see your changes. You must do this in order to reread the configuration file
and test with sendmail -bv or sendmail -bt.

Summary

This technique will make it easier for you to support multiple info and webmaster mailboxes for the
various domains you host. Because the various mapping are external to the sendmail configuration file,
adding and deleting entries are much easier to maintain than would otherwise be possible.

FastCGI Features■

Performance Enhancement■

FastCGI API■

What a FastCGI Application Looks Like

FastCGI and C■

FastCGI with Perl and Tcl■

■

Installing and Configuring FastCGI

Incorporating FastCGI Functionality into Apache■

cgi-fcgi■

■

Building the FastCGI Developer's Kit■

Making Perl Fly

Perl FastCGI Programs■

■

The mod_fastcgi Module

The AppClass Directive■

Example■

■

Summary■

C

FastCGI

FastCGI is a high-performance replacement to the CGI standard. It provides a significant improvement in performance
over the existing CGI interface. In its current implementation, FastCGI provides many desirable enhancements that make
it a very attractive and competitive alternative to proprietary technologies for developing Web-based applications. Under
many circumstances, it will be a better choice to implement FastCGI than to develop a custom server module using
Apache's proprietary server Application Programmer's Interface (API).

FastCGI is available from http://www.fastcgi.com. (See Figure C.1.) The site is the official
resource to all FastCGI information. It has complete documentation and whitepapers on

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#102

FastCGI. Also nice is a mailing list—a threaded archive that is available through the Web.

Figure C.1. The FastCGI home page.

FastCGI is a proposed open standard; this means that it is not currently widely accepted, but it has received a warm
welcome by many significant people on the Internet who are responsible for setting the standards. More than likely, this
welcome will turn into acceptance on both free and commercial Web server offerings, which will help it in becoming
"blessed" from a standard point of view.

FastCGI is appealing not only because of its performance enhancements but because the effort required to migrate existing
code is very small. As a bonus, software developed under this proposed standard has a high degree of portability. These
portability issues help a great deal toward setting it as a viable candidate to become a standard, especially on installations
that have committed extensive resources to CGI development.

FastCGI is not a development environment in terms of having to learn yet another programming language. In a very
simplistic description, FastCGI it is a CGI program that uses additional libraries, so it does require that you learn an API.
The basic API is tiny, though; one call is all you need to migrate many of your current programs.

FastCGI Features

The main features of FastCGI are as follows:

A huge increase in performance. FastCGI programs continue to live between requests, making their responsiveness
faster and reducing delays due to forking and program initialization.

●

Programming language-independent implementation. Like CGI, you can develop your FastCGI application with a
variety of languages. Currently there are programming libraries for Perl, C/C++, Tcl, and Java. Porting existing
code to FastCGI is easy, allowing you to easily migrate your existing code base without having to redo what you
have done.

●

FastCGI processes are isolated from the Web server core. Much like CGI, FastCGI applications offer greater
security and reliability than developing a similar functionality as a module using a server API.

●

Server technology separation. There are FastCGI modules for various servers, including Apache, NCSA, and the
Open Market Secure WebServer. For any other server that supports CGIs, the cgi-fcgi program, included in the
FastCGI distribution, implements the FastCGI environment.

●

Distributed computing support. FastCGI applications can execute on a different host from the Web server. This
allows you to offload FastCGI execution to other application servers, permitting your Web server to handle an
increased load. FastCGI programs can run on any host that can be reached over TCP/IP.

●

The concept of roles. Traditional CGI programs fall into the responder role; they respond to some action initiated by
a browser and send back some HTML. FastCGI programs can also perform other roles, such as a filter or as part of
some authentication scheme. This allows for providing extra functionality that would usually be relegated to a
server module. The currently available FastCGI module for Apache does not include support for roles other than
responder, but this may change in the future.

●

Performance Enhancement

The increase in performance alone would be a good enough reason to migrate CGIs to FastCGI, especially on loaded
servers. This increase in performance is achieved primarily because FastCGI processes are persistent. Forking under
UNIX is very expensive, and FastCGI addresses this issue by reusing processes. This saves on the initialization time and
can also provide enhancements when data calculated by one call to the program can be reused in another transaction.

Unlike CGIs, which are forked every time there's a request for the functionality, FastCGI processes are reused. After a
request is fulfilled, the process remains, waiting for additional requests.

Programs that rely on an interpreter such as Perl or Tcl can gain a great deal from this technology because the command
interpreter will compile the program once, not once per call. The time required to do all this pre-run initialization is
eliminated. On the program side, this can yield to enhancements such as establishing a connection with a database or some
other process because the connection only needs to happen once. Add to this the load to launch the interpreter program,
and the savings are significant.

What sort of performance gains can you obtain? According to information posted on the FastCGI Web site, Open Market's
tests show the following:

Request Client, Server, and Application Processing Time

Static File 21ms + 0.19ms/KB

FastCGI 22ms + 0.28ms/KB

CGI 59ms + 0.37ms/KB

Add to this the cumulative time that it takes for an application to establish a TCP/IP connection to, say, a database. Under
CGI, a process will have to initialize each time it is run. FastCGI can yield a performance increase of four times the speed
of the same program used as CGI. In load terms, this could mean that your server could potentially handle four times your
current CGI load. However, the level of enhancement will depend on the source of the bottleneck. If your database server
is the current source of the problem, FastCGI cannot do much about that except reduce the number of connections that the
database server will need to perform, perhaps giving it more time to process data instead.

FastCGI API

The FastCGI API has a handful of calls:

FCGI_Accept is used to implement the server connectivity and control the running of the FastCGI program.●

FCGI_Finish gives you control after the FastCGI program has executed, but before running the next request.●

FCGI_SetExitStatus is used to set the exit status of the request. Most CGI programs don't return meaningful exit
status, so this call is seldom used.

●

FCGI_StartFileterData enables you to implement a special type of FastCGI application, called a filter. Currently the
Apache implementation of the FastCGI module doesn't support roles, of which the filter type is a member, but this
likely will change in the near future. Filters allow you to implement programs that will convert one data format to
another on-the-fly (for example, TIFF to GIF).

●

Data is read and written through the standard input, output, and error streams. FastCGI also provides macros that map files

and streams to native calls supported by your operating system.

Like CGI, you can create FastCGI applications in almost any language. However, you are currently limited to the ports of
the library. Currently available are Perl, C/C++, Tcl, Java, and very soon Python, which should be available by the time
you read this. Also in the works is a multithreaded C/C++ library that has not been released, but should be available as
part of the 1.6 release. The multithreaded library allows a single application process to handle concurrent requests, which
will allow you to implement things like HTTP-based chat applications.

Even though FastCGI is not universal, most developers should find themselves at home in one of the programming
languages previously mentioned. As soon as FastCGI gains more acceptance, there will be additional libraries
implemented. Developers are encouraged to port the FastCGI libraries to their programming language of choice, ensuring
that the openness of the extension is more widely supported. The success of FastCGI will depend on getting many vendors
and programmers to support it. Given its current feature set, it should have no trouble reaching this goal.

The design of FastCGI also wins big on the learning curve because unlike server APIs, you are still programming a CGI,
so you can leverage what you already know. The only issues that you will need to address have to do with reorganizing
your application so that the initialization code, which is done once, is kept separate from the application body. FastCGI
applications are long-lived; they are kept alive between transactions. This also means that memory needs to be managed
because unlike CGIs, which have a short life span, FastCGI processes may execute for undetermined amounts of time.

Data sent to a FastCGI application by the server is accessed through special streams that provide complete binary
compatibility with the CGI standard. This also allows a FastCGI program to run as a regular CGI program. A FastCGI
program can determine, at runtime, if it is being run as CGI or as FastCGI and behave accordingly.

This translates into an environment that allows you to migrate FastCGI programs down, should you ever need to. This
provides server independence because the same binary can be run on two servers—say Apache and Netscape—under the
same operating system without even needing to be rebuilt or require programming modifications, even if the server
couldn't support FastCGI. This feature alone is very interesting from a legacy and recycling standpoint. Also, all servers
support FastCGI. The FastCGI Developer's Kit comes with a program called cgi-fcgi that allows you to run FastCGI
responder applications. The cgi-fcgi program allows any Web server that supports CGI to run FastCGI.

FastCGI applications communicate with Apache using a single full-duplex connection. Through this connection, the
server transmits the environment variables and stdin to the FastCGI application; stdout and stderr streams from the
application are sent back to the server.

What a FastCGI Application Looks Like

A modified version of my HelloWorld.c looks like this:

#include "fcgi_stdio.h"

#include <stdio.h>

int main (void)

{

 int timesVisited = 0;

 while(FCGI_Accept() >=0)

 {

 printf ("Content-type: text/html\r\n\r\n");

 printf("<HTML>");

 printf("<HEAD><TITLE>Hello World!</TITLE></HEAD>");

 printf("<BODY><H1>Hello, this is a FastCGI program!</H1>");

 printf("<BIG><P>I can tell that you are visiting from %s.</P>");

 printf("<p>This page has been accessed: %d times</P></BIG></BODY>",
getenv("REMOTE_HOST"), ++timesVisited);

 printf("</HTML>");

 }

}

This version makes use of the fact that the application is persistent and will maintain a count of the times the program is
run (until the program dies).

As you can see from this example, FastCGI applications follow this sequence:

Initialization. Persistent connections or data that should be available from request to request are initialized in this
section. Initialization is done only once. The initial environment for FastCGI applications is set through the
AppClass directive, which is added by the FastCGI module.

1.

The Response Loop. This loop is started by the FCGI_Accept() routine, implemented in the FastCGI library. A call
to this routine blocks program execution until the program receives a client request. When it receives one, the
routine unblocks, sets up an environment for the program, and runs one loop through the body. This routine is also
responsible for determining the context under which the program is running (FastCGI or CGI) and sets the
environment accordingly.

2.

Body. This portion of the program gets executed by each request. This is the meat of your program. Each request
will have its own environment variables, just as in a regular CGI.

3.

End of Response. A subsequent call to FCGI_Accept informs the server that the program has completed a request
and is ready for another. FCGI_Accept once more blocks execution until the next request.

4.

This process is repeated until the FastCGI application is killed by the System administrator or the Web server. If the
process were to die, the FastCGI module or cgi-fcgi program in the Web server is responsible for making a FastCGI
process available to handle the request. This means that if it dies, the server will fork another process to replace the
original.

FastCGI and C

FastCGI implements two libraries: fcgi_stdio and fcgiapp. Both of these libraries are provided for building C applications
utilizing the FastCGI toolkit.

The fcgi_stdio library implements stdio-compatible functionality and can be used for developing or porting existing C
CGI applications. This library provides full binary compatibility between FastCGI and CGI programs.

fcgiapp provides additional functionality to FastCGI applications at the expense of losing the CGI compatibility. There's
also an increase in the knowledge required to develop the application.

FastCGI with Perl and Tcl

You can run Perl- and Tcl-interpreted programs under FastCGI. In order to run them, you'll have to compile a specially
modified version of the interpreter that has been modified to work with FastCGI. You will not, however, need to maintain
both a regular and a special version of the interpreter. The special version will work as expected when used under a
normal context. Future versions of Perl and Tcl will incorporate changes that will make it possible to use unmodified
versions of the program with FastCGI.

Patches for both Perl and Tcl are available. Some prebuilt binaries are also available at http://www.fastcgi.com.

Installing and Configuring FastCGI

To build and run FastCGI applications, you'll need to have two different pieces of software: the FastCGI module for
Apache and the FastCGI Developer's Kit.

Both the toolkit and the Apache module are included in the CD-ROM that accompanies this book; however, you should
make sure that they are still current. At the time of this writing, the Apache module was still based on a beta version of
1.1. The latest and greatest versions of the module and developer's kit are available at the FastCGI Web sites:
http://www.fastcgi.com/servers and http://www.fastcgi.com/applibs, respectively. The version of the toolkit included on
the CD-ROM is 1.5.

Incorporating FastCGI Functionality into Apache

To add the FastCGI module to Apache is simple. Copy apache-fastcgi/src/mod_fastcgi.c to the Apache source directory
(/usr/local/etc/httpd/src). Then you need to add an entry for the module in Apache's src/Configuration file. Add the
following line at the end of the Module listings:

Module fastcgi_module mod_fastcgi.o

You'll need to run Apache's configuration program, src/Configure, and rebuild the Apache by issuing a make command
while focused on the Apache src directory.

While Apache builds, you can add the following configuration directives to your servers conf/srm.conf configuration file:

AddType application/x-httpd-fcgi .fcgi

Alias /fcgi-bin/ /usr/local/etc/httpd/fcgi-bin

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#103
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#104

AppClass

Create the fcgi-bin directory, while in /usr/local/etc/httpd:

% mkdir fcgi-bin

As you may be able to guess by now, FastCGI applications should be run from a directory other than the cgi-bin directory.

After Apache builds, issue the following commands:

% cd /usr/local/etc/httpd

% mv httpd httpd.prev

% mv src/httpd .

% strip httpd

% kill -HUP 'cat /usr/local/etc/httpd/logs/httpd.pid`

This will restart the server and force rereading of the new configuration directives you just added. Watch for any error
messages. If you get an error, more than likely one of the directives you added is incorrect.

If the restart of the server proceeded without problems, congratulations—your sever is now ready to run FastCGI
programs.

cgi-fcgi

An alternative way of implementing FastCGI on Apache, or any other server, is to use the cgi-fcgi program. cgi-fcgi is a
standard CGI program that uses TCP/IP sockets to communicate with FastCGI applications. cgi-fcgi takes the pathname or
host/port name as a parameter and connects to the FastCGI application listening on that TCP port. cgi-fcgi then forwards
the environment variables and stdin to the FastCGI application and returns to the server the stdout and stderr streams.
When the FastCGI application ends the connection, cgi-fcgi flushes and exits.

Although this is not as efficient as a module imbedded into the server because the cgi-fcgi program gets forked with every
request, it is much better than not having it. For example, if your Perl FastCGI program takes 1 second to compile and 2
seconds to connect to a database, you'll still have significant savings over forking Perl and recompiling the program with
each request. cgi-fcgi is a tiny program when compared to Perl and many other programs.

Building the FastCGI Developer's Kit

To build the developer's kit, you'll need to configure it. The folks at Open Market have provided a nice script that
automates the configuration process to run it. Just type ./configure while focused inside the fcgi-devel-kit directory. After
a few moments you should be able to type make and have the libraries built. You will need this kit to build FastCGI-savvy
interpreters or C programs.

After you build the kit, you may be interested in installing the library libfcgi/libfcgi.a to some place useful such as
/usr/local/lib. Remember to do a ranlib on the library after you move it to refresh it. While you're at it, you may want to
copy the include directory to /usr/local/include/fcgi. That way it will be easier for you to reference it while building your
own programs.

After the kit is built, you may want to try your luck at building the sample HelloWorld.c program listed earlier. Note that
you may need to change the location of the fcgi_stdio.h header file to reflect its new location.

To build the FastCGI program, issue the following commands:

cc -o Hello.fcgi -lfcgi HelloWorld.c

Put the resulting Hello.fcgi on your fcgi-bin directory. Before you can access it, you'll need to add an AppClass entry into
your srm.conf:

AppClass /usr/local/etc/httpd/fcgi-bin/Hello.fcgi

and restart the server with

% kill -HUP `cat /usr/local/etc/httpd/logs/httpd.pid`

The AppClass directive takes care of starting and maintaining the FastCGI application. At this point you should be able to
access it by pointing your browser to http://localhost/fcgi-bin/Hello.fcgi.

You should get a similar result to those displayed in Figure C.2.

Figure C.2. The FastCGI version of Hello World!. Notice that it keeps state. My version is fancier than the
HelloWorld listing.

Making Perl Fly

You will notice an even bigger improvement on Perl CGIs. This is because FastCGI will keep the Perl program running;
the interpreter won't have to fork, exec, compile, and execute for each request. A good thing.

Before you can incorporate FastCGI into your Perl programs, you have to build a special version of Perl. The FastCGI
Developer's Kit contains the patches you'll need to build a version of Perl that supports FastCGI. After you build this
version, there's no need to keep your old Perl around. A FastCGI-savvy Perl binary will work just fine with regular Perl
scripts.

Future versions of Perl may have support for FastCGI right out of the box. Currently there's an active discussion on the
perl5-porters mailing list regarding the issues that need to change in Perl's implementation to support FastCGI as a true
Perl module—that is, requiring no recompiling. The Tcl7.5 FastCGI module, when it makes its debut, won't require a
rebuilt of Tcl. The new Python module also doesn't need a rebuild.

At the time of this writing, the patches available for FastCGI were for version 5.002 of Perl. By the time you read this,
they will be updated to the current Perl version, 5.003.

The patch process is simple; you just replace a few files in the standard Perl distribution with files provided in the kit.
Here's the process:

1. Put the unarchived Perl and fcgi-devel-kit on a directory side by side and issue the following commands:
% cd perl5.002
% mv perl.c perl.c.dist
% mv proto.h proto.h.dist
% mv Configure Configure.dist
% cp -r ../fcgi-devel-kit/perl-5/perl5.002/*
% cp -r ../fcgi-devel-kit/perl-5/common/*

1.

2. Set the environment variable FCGIDIR to the absolute path of the fcgi-devel-kit. In my case, the distribution was
in the /tmp/fcgiPerl directory. This variable will tell the configuration program where to find things:
setenv FCGIDIR /tmp/fcgiPerl/fcgi-devel-kit

2.

3. If you don't use gcc, set the environment variable CC to the name of your compiler:
setenv CC cc

3.

4. If you want to install the Perl distribution somewhere other than /usr/local/bin, define the environment variable
PERL_PREFIX. I kept the default setting.

4.

5. Execute the fcgi-configure script:
% ./fcgi-configure
The fcgi-configure script is a wrapper that automatically sets some of the configure variables without requiring user
input. If this fails, you'll have to run the Configure command in the Perl directory. You may want to take a look at
the documentation that came with the FastCGI Developer's Kit for any tips to solve the problem.

5.

6. Do a make to build the software:
% make

6.

If it all goes smoothly, you can finish the installation with a make install, which will install Perl to the location specified.
That's it for the install! Make sure your scripts reference the correct version of Perl.

Perl FastCGI Programs

The modified version of my HelloWorld.c looks like this:

#!/usr/local/bin/perl

use strict;

use FCGI;

my($timesVisited) = 0;

while(FCGI::accept() >=0){

 print "Content-type: text/plain\n\n";

 print <<STOP;

 <HTML>

 <HEAD>

 <TITLE>Hello World!</TITLE>

 </HEAD>

 <BODY>

 <H1>Hello, this is a FastCGI program!</H1>

 <P>I can tell that you are visiting from $ENV{REMOTE_HOST}</P>

 <P>This page has been accessed: ++$timesVisited</P>

 </BODY>

 </HTML>

 STOP

}

As you can see, this is pretty much the same organization as the C program. The one gotcha with Perl is that if the initial
environment to a FastCGI Perl application is empty when the first call to FCGI::accept returns, the environment will still
be empty. The easiest workaround is to add an environment with the AppClass -initial-env directive. See the section
entitled, "The AppClass Directive," for more detailed information.

The mod_fastcgi Module

The FastCGI module provides Apache compatibility to FastCGI applications. This module is not part of the standard
Apache release, so you'll have obtain a copy from http://www.fastcgi.com. A copy of the latest version at the time this was
written, August 1996, is included on the CD-ROM.

This module processes any file with a MIME-type application/x-httpd-fcgi. Because the ScriptAlias directive may have
higher priority over AddType, FastCGI applications should not reside on the cgi-bin directory; if they do, they may be
processed by the mod_cgi module regardless of the extension given. This means that the application/x-httpd-fcgi MIME
type is given to files that do not reside in the ScriptAlias directory and that have a name using the extension defined by the
AddType application/x-httpd-cfgi directive. Typically this will be .fcgi. The reason for this is that Apache assigns priority
to the directives based on the order of compilation in the modules.

The AppClass Directive

Syntax: AppClass executablePath [-processes p] [-listen-queue-Depth q]
[-restart-delay secs] [-priority N] [-initial-env key=value]

Default: AppClass executablePath [-processes 1] [-listen-queue-Depth 5]
[-restart-delay 5] [-priority sameAsHTTP]

Context: srm.conf

Module: mod_fastcgi

The AppClass directive, provided by mod_fastcgi, is responsible for starting up one or more FastCGI application
processes using the executable specified by executablePath.

When a request for the file specified by executablePath is received, the request is handled by the mod_fastcgi module,
which connects the request to the appropriate process belonging to the proper AppClass.

In addition to starting the process, the server will ensure that a process for handling a particular AppClass will be
available. Should a process exit because of an error or some other condition, the server will launch another process
capable of handling the requests.

AppClass has several other options:

processes: Specifies the number of FastCGI processes that the server
will spawn. Default value for this setting is 1.

listen-queue-depth: Sets the depth of the listen queue that is shared by the
processes. The listen queue stores additional requests that
may be received while the FastCGI application is processing
another. Requests will queue until they reach the limit
imposed by listen-queue-depth. Additional requests beyond
the size of the queue are responded with an error to the
client. Default value is 5.

restart-delay: Specifies the number of seconds the server will wait before
restarting a dead FastCGI process. The server won't restart a
process more often than the time specified by this flag. The
default value is 5 seconds.

priority: This flag specifies the execution priority of the FastCGI
process. The default priority is inherited from the parent
httpd server process.

initial-env: This flag allows you to specify the initial environment sent to
a FastCGI program when the program initializes. You can
specify multiple initial-env flags, one per key=value pair. If
not specified, the initial environment is empty. It would be
very useful to provide the FastCGI application with
information during its initialization phase.

Example

If you wanted to start the HelloWorld.fcgi program, you would need to type this:

AppClass /usr/local/etc/httpd/fcgi-bin/HelloWorld.fcgi -processes 2

For a Perl program, to circumvent the environment problem, you would have to do this:

AppClass /usr/local/etc/httpd/fcgi-bin/HelloWorld.fcgi -processes 2 -initial- env:

DB_PATH_NAME=/proj/accts/db2

Summary

Although FastCGI is not the sole alternative for high performance CGI alternatives, the features and price cannot be beat.
It's especially interesting that existing code can be ported easily without a real learning curve. This alone makes it very
attractive for programmers who have a backlog and don't have much time to spend experimenting with new tools, yet need
to implement a high-performance CGI solution. FastCGI is a great choice—the learning-and-setup curve is hours, not days
like other environments.

HTML Formatting Tag Structure■

HTML Document Structure■

A (Anchor)

Example of A■

■

ADDRESS

Example of ADDRESS■

■

APPLET

Example of APPLET■

■

AREA

Example of AREA■

■

B (Bold)

Example of B■

■

BASE

Example of BASE■

■

BASEFONT

Example of BASEFONT■

■

BGSOUND (Background Sound)

Example of BGSOUND■

■

BIG

Example of BIG■

■

BLINK

Example of BLINK■

■

BLOCKQUOTE

Example of BLOCKQUOTE■

■

BODY

Example of BODY■

■

BR (Break)

Example of BR■

■

CAPTION■

Example of CAPTION■

CENTER■

Example of CENTER■

CITE■

Example of CITE■

CODE

Example of CODE■

■

COL (Column Properties)

Example of COL■

■

COLGROUP (Column Group)

Example of COLGROUP■

■

COMMENT

Example of COMMENT■

■

DD (Definition)

Example of DD■

■

DFN (Definition)

Example of DFN■

■

DIR (Directory)

Example of DIR■

■

DIV (Division)

Example of DIV■

■

DL (Definition List)■

Example of DL■

DT (Definition Term)

Example of DT■

■

EM (Emphasis)

Example of EM■

■

EMBED

Example of EMBED■

■

FONT

Example of FONT■

■

FORM

Example of FORM■

■

FRAME

Example of FRAME■

■

FRAMESET

Example of FRAMESET■

■

Hn (Heading)

Example of Hn■

■

HEAD

Example of HEAD■

■

HR (Horizontal Rule)

Example of HR■

■

HTML■

Example■

I (Italics)

Example of I■

■

IMG (Image)

Example of IMG■

■

INPUT

Example of INPUT■

■

ISINDEX

Example of ISINDEX■

■

KBD

Example of KBD■

■

LI (List)

Example of LI■

■

LINK

Example of LINK■

■

LISTING

Example of LISTING■

■

MAP

Example of MAP■

■

MARQUEE

Example of MARQUEE■

■

MENU

Example of MENU■

■

META

Example of META■

■

NOBR

Example of NOBR■

■

NOFRAMES

Example of NOFRAMES■

■

OBJECT■

OL (Ordered List)

Example of OL■

■

OPTION

Example of OPTION■

■

P (Paragraph)

Example of P■

■

PARAM

Example of PARAM■

■

PLAINTEXT

Example of PLAINTEXT■

■

PRE (Preformatted)

Example of PRE■

■

S (Strikethrough)

Example of S■

■

SAMP

Example of SAMP■

■

SCRIPT

Example of SCRIPT■

■

SELECT

Example of SELECT■

■

SMALL

Example of SMALL■

■

STRIKE

Example of STRIKE■

■

STRONG

Example of STRONG■

■

SUB

Example of SUB■

■

SUP

Example of SUP■

■

TABLE

Example of TABLE■

■

TBODY

Example of TBODY■

■

TD

Example of TD■

■

TEXTAREA

Example of TEXTAREA■

■

TFOOT

Example of TFOOT■

■

TH (Table Heading)

Example of TH■

■

THEAD

Example of THEAD■

■

TITLE

Example of TITLE■

■

TR

Example of TR■

■

TT (Teletype)

Example of TT■

■

U (Underline)

Example of U■

■

UL (Unordered List)■

VAR

Example of VAR■

■

WBR

Example of WBR■

■

XMP (Example)

Example of XMP■

■

D

HTML Reference Guide

Hypertext Markup Language (HTML) is the most important component of the Web. It is responsible for providing the
"formatting" to the pages you see every day on the Web.

HTML does not provide the formatting control you would expect, simply because different browsers render HTML in different
ways. The task has been to abuse and creatively use tags to provide a desired look to a page. Creative types will find that
HTML is fairly limited in what it can do; however, it is amazing to see the level of quality that can be brought out given the
current control. The markup language is rapidly evolving to allow for more page-oriented layout, while keeping with the
device-independent intent of HTML. Designers will always find a way of getting their intentions across.

Early in the Web, there was a lot of concern with being compatible with low resolution browsers such as Lynx—a text-only
browser. Lynx has been used for a long time as a way of testing HTML for universal compatibility. This meant that you could
not rely in the nonstandard HTML tags for your formatting or on graphic items alone for navigation. This interest—while still
kept active by many people—is quickly dying out. I know of many Web service providers that will implement sites with a
compatibility set to Netscape or Microsoft Internet Explorer. I believe that there's room for everybody, but the implementation
specifications should really be set by the owner of the site and the intended target audience. This is due mostly to the evolution
of the Web and supporting technologies. Personal bandwidth has increased very quickly, with 28.8Kbps modems becoming the
low end, and faster technologies enabling higher bandwidth than it was thought possible over standard copper wires a few
years ago. With the advent of inexpensive high bandwidth, visitors will demand more complex sites that offer a variety of
multimedia presentation systems.

While many people will disagree, the reality of the Web is that much of the interest is based on the graphic appeal of a Web
site. For once the graphical user interface (GUI) provided by a particular page is appealing, letting the visual types have more
fun. Although Lynx does provide a serviceable interface to information you need while behind a terminal, the use of graphical
browsers such as Netscape and Internet Explorer are where the technology is at.

This means that the basic design target has been changed to accommodate the features implemented by these browsers,
perhaps at the expense of losing usability on the lower-end browsers. However, this has always been the argument in
computers. Before GUI applications were popular, the issues were why did you need a mouse. Now that GUIs are the standard,
many people find it dreadful to downgrade to a command prompt, although it may be very helpful sometimes. The Web is not
TV; it is interactive. A great deal of its power comes from the its multimedia capabilities and its ability to give a feeling of
being there. This can only be accomplished with graphic-capable browsers.

So to what standard should you develop your pages? It really depends on who is your target audience. If your message is too

important not have it seen by some users, yet you want an enhanced site, the solution is simple: You'll need to prepare two or
three versions of your pages that can be used with different levels of richness. This way you won't limit or stifle the more
advanced browsers. You'll be able to provide features that will make it easier for people visiting your site to navigate through
it. If their browser doesn't provide the proper support, then you'll have a scaled down version of your Web site that provides
the information more plainly.

This doesn't mean the site is less capable; it just means that you are giving your users options. This also gives you the
opportunity to provide different bandwidth versions of your site, which will allow people with the bigger intakes to enjoy more
complex pages. Bandwidth conservation should still be a priority. A site should be designed to use the least amount of
bandwidth possible given the design intent. This will allow your material to zip through. Your users will love it, and your
server will be able to serve more users.

With that thought in mind, here's an HTML reference manual. This appendix is not intended as an HTML style guide. It
assumes that you have a basic understanding of HTML. Most of the options you see will only work with Netscape or Microsoft
Internet Explorer. At the current time of this writing, Microsoft just released, (Aug 13, 1996), Internet Explorer 3.0. Netscape,
following suit, also will unleash their new Navigator. As I see it now, the competition is red hot. Both products have their
advantages, and they offer an almost 99 percent feature match. I like them both equally well. However, I think in terms of the
future, Netscape will have to be much further ahead to justify its price. Explorer is free and will ship with every new PC,
giving it the price and distribution advantage.

HTML Formatting Tag Structure

HTML is a markup language, which means that text is marked up with tags to produce the desired results. You can create
HTML with any good text editor. However, there are many editors specially made for editing and marking up HTML. HTML
is fairly easy to learn. HTML markup tags surround text or other items that they affect. Tags are a formatting directive
enclosed in angle brackets (< and >). Most tags have an opening and a closing tag. Opening tags are just the name of the
directive. Closing tags prefix a forward slash (/) to the name of the directive. If the closing tag is optional, it is better to close
them anyway in most cases. This will make your HTML style more consistent and readable, and will reduce problems
associated with a missing close tag. Here's the basic syntax of any HTML tag:

<tag>some object</tag>

Some tags may contain additional options. For example, the <P> tag, which defines a new paragraph, allows some simple
formatting in some browsers. These options are specified as <P ALIGN=center>...</P>. This simply says that the paragraph
should align center. The closing tag never takes any arguments.

Formatting tags can be nested with other tags to produce compound results. However, the nesting order is important. Some
tags don't like to be nested. Each tag described in this appendix will include an elements allowed within and an element is
allowed inside table. The first lists all the HTML elements that can nest inside the currently described element. The second
lists all the HTML elements that can contain the currently described element.

HTML Document Structure

HTML documents have a very precise structure; they have a head and a body. In addition, HTML 3.2 requires that the first line
of any HTML document you write contains the following line:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

This specifies the version of HTML that you are using among other things. The basic structure for an HTML document is:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<HTML>

<HEAD>

infomration about your document

</HEAD>

<BODY>

content, what users see

</BODY>

</HTML>

The first thing you do is set the document type. Then that the document contains HTML markup. The HTML surrounds your
document's content. Notice that HTML contains the HEAD and BODY sections.

The HEAD element of an HTML document contains information about the document itself. This information is only usable by
the browser and other programs. For example, browsers render the title of your document based on a TITLE element inside the
HEAD section.

The BODY element contains your content—information you want displayed to your users. This is what you see on your
browser.

The simplest HTML page you could write that does something useful is HelloWorld.html. This is what such a page would look
like in HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<HTML>

<HEAD>

<TITLE>Hello World in HTML </TITLE>

</HEAD>

<BODY>

<P>Hello World!</P>

</BODY>

</HTML>

This example does a couple of things. It sets up the basic structure of the document and uses the TITLE element in the HEAD
section. The TITLE element titles the document, and the browser uses this information to put a title in the windows title bar.

In the BODY section, our small sample starts a paragraph with the <P> tag, and then prints the words Hello World!. It finishes
the paragraph with the optional close paragraph tag, </P>. There are many more elements that will help you control the
organization and formatting of your document, but they all basically work in the same form.

The list of elements that follows describes most, if not all, the elements as of HTML 3.2 that are implemented in the two most
popular graphic browsers (Netscape and Internet Explorer). In the interest of saving space, all of the figures will show the
HTML element's use with IE 3.0.

A (Anchor)

The A element defines a hyperlink anchor that references a resource. The referenced resource, or destination, can be located in
the current document or in a different uniform resource locator (URL) altogether. The A element is the fundamental building
element of the Web. It allows you to easily jump from one document to another.

The basic syntax of the A element specifies an anchor address or Uniform Resource Identifier (URI). The URI is optionally
followed by a pound symbol (#) and a token called a fragment identifier, which specifies a particular location within the
referenced resource (a bookmark).

The HREF attribute sets the target to be a URI or a local reference within the same document. Local references are specified
by prefixing a token with a # symbol. Destinations or fragment identifiers are specified by using another <A> tag with the
NAME attribute.

Activating a local reference will jump the browser to the location of the reference be it by scrolling the current document or by
loading the referenced URL. Anchors are represented graphically by underlined text, but this visual clue is user controlled and
can be turned off in most browsers. The A element requires a closing tag. A elements cannot nest. See Figure D.1 for an
example of the A element.

Figure D.1. The A element.

Syntax: <A HREF=url NAME=#token REL=relation REV=relation
TARGET=window-name TITLE=title>...

The A element has the following options:

Option Description

HREF=url Specifies a destination address. Resources are specified in
URL format or as #name for a reference within the current
document.

NAME=name Defines a named anchor for use as a hyperlink destination.

REL=relation Defines a relationship of the HREF (source) to the anchor
(destination), which is authorized and recognized by the
source document.

REV=relation Defines a relationship anchor (destination) to the HREF
(source), which is desired and claimed by the destination, but
needs to be verified by the source.

TITLE=title Informational token, used to describe the HREF

TARGET=window Netscape 2.0 Extension that defines the window name for use
by the retrieved hyperlink. If the named window is not yet
open, Navigator will open a new window and assign this
name to it.

The A element is allowed within these elements:

APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of A

This is a text hyperlink to accessLINK, inc.

<P>

Graphics can be clickable images with a border:

<P>

Or without: <IMG SRC="websiteby.gif"
BORDER=0>

ADDRESS

The ADDRESS element is used to render multiline contact information (such as a name, address, and signature). This element
acts much like a paragraph; it automatically puts breaks before and after itself. The ADDRESS element requires a closing tag.

Figure D.2. The ADDRESS element.

Syntax: <ADDRESS>...</ADDRESS>

The ADDRESS element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DIV, FROM, TD, and TH

Example of ADDRESS

<ADDRESS>

accessLINK, inc.

N70 W6340 Bridge Rd.

Cedarburg, WI 53012

Voice: 414.376.4590

</ADDRESS>

APPLET

The APPLET element specifies the Java application to load and execute for Java-enabled browsers. This element allows you to
embed a Java applet right into HTML documents. Java applets are usually used to dynamically provide additional functionality
to a browser, often in the form of an animation or some other adornment. However, Java applets can also be used to provide
client-side processing, such as verification, to ensure that all items on a form have been completed by the visitor prior to
sending it back to the server. The content of the APPLET element is displayed if the applet cannot be executed.

Parameters can be passed to an applet by using the PARAM element inside the APPLET element. You can specify multiple
PARAM elements to provide multiple parameters to the applet. The APPLET element requires a closing tag.

Figure D.3. The LED applet.

Syntax: <APPLET ALIGN=alignment ALT=text CODEBASE=url
CODE=appletFile HEIGHT=n HSPACE=n NAME=appletInstance
VSPACE=n HSPACE=n WIDTH=n>...</APPLET>

Options for APPLET include the following:

Option Description

ALIGN=alignment Specifies the alignment in the applet window. The
various legal options are TOP, MIDDLE, BOTTOM,
LEFT, RIGHT.

ALT=text Sets the alternate text displayed when the applet cannot
be loaded.

CODE=appletFile Specifies the Java class to load and execute.

CODEBASE=url Specifies the base URL of the applet—the directory
where the applet is located.

HEIGHT=n Sets the initial suggested height of the applet window in
pixels

HSPACE=n Sets the horizontal space (in pixels) reserved for a gutter
around the applet.

NAME=appletInstance Name of the applet instance. This name allows multiple
applets on the same page to communicate.

VSPACE=n Sets the vertical space (in pixels) reserved for a gutter
around the applet specified in pixels.

WIDTH=n Sets the initial suggested width of the applet window in
pixels.

The APPLET element is allowed within these elements:

PARAM and TEXTFLOW

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SU, TD, TEXTFLOW,
TH, TT, U, and VAR

Example of APPLET

...

<applet codebase="../LED" code="LED.class" width=500 height=48 align=center>

<param name="script" value="../scripts/Demo.led">

<param name="border" value="2">

<param name="bordercolor" value="100,130,130">

<param name="spacewidth" value="3">

<param name="wth" value="122">

<param name="ht" value="9">

<param name="font" value="../fonts/default.font">

<param name="ledsize" value="3">

<hr>

If you were using a Java-enabled browser,

you would see an animated scrolling text sign that looks like this:

<hr>

</applet>

...

AREA

The AREA element is used to implement client-side image maps. The various elements allow you to define regions in an
image that, when activated, will hyperlink the resource identified by the HREF attribute. When multiple AREA elements in the
same MAP overlap, the first encountered takes precedence. This can be useful to define complex areas.

The AREA element is allowed within a MAP element only. The AREA closing tag is optional.

Syntax: <AREA SHAPE=shape COORDS=coords HREF=url|NOHREF
[TARGET=window]>

Options for AREA include the following:

Option Description

ALT=text Sets the alternate text displayed if the
browser doesn't accept images.

COORDS=coords A comma-separated list of coordinates.
Format is dependent on the shape used.

RECT: x,y,w,h: Upper-left corner x,y
with a width and height w,h.

CIRCLE: x,y,r: Circle centered at x,y
with radius r.

POLY: x1,y1,x2,y2...xi,yi: Ordered
coordinate pairs that define a closed
polygon.

HREF=url Specifies the hypertext destination of
the specified area.

NOHREF Specifies an area that has no action.

SHAPE=shape Specifies the shape of the area.
Possible values are

RECT: rectangle

CIRCLE: circle

POLY: polygon

TARGET=window Specifies that the target be loaded into
the specified window. Possible values
for window are

window: Specifies to load the link into
the named window.

blank: Creates the frame in a new
unnamed window.

self: Loads the frame in the parent
window.

parent: Loads in the parent window.

top: Loads in the top window.

The AREA element is allowed within the
following element:

MAP

The element is allowed inside the
following:

None. The AREA element is not a
container.

Example of AREA

Note that the USEMAP option requires a # sign (just like a local HREF) before the name of the fragment containing the map
coordinates:

<AREA SHAPE=RECT COORDS="56,7,106,86" HREF="#b" ALT=b>

<AREA SHAPE=CIRCLE COORDS="219,63,23" HREF="#e" ALT=e>

B (Bold)

The B element provides emphasis by rendering its contents in boldface. The B element requires a closing tag.

Figure D.4. The B element.

Syntax: ...

The B element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

B is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD, TXTFLOW,
TH, TT, U, and VAR

Example of B

Bold can be used on normal text.

<PRE>

You can also use Bold on preformatted text.

</PRE>

You can even use Bold and <I>Italics</I> <I>together</I>!

BASE

The BASE element provides an absolute URL from which to interpret any relative URL links specified in the document. This
allows the original document to be moved, while preserving all relative links. The default base address is the URL used to
access the document; however, when the document is moved or copied elsewhere, the default base URL is not correct. The
BASE element is very useful in ensuring that hyperlinks don't break when a page is moved or is mirrored by an user.

This element is only allowed within a HEAD element.

Syntax: <BASE HREF=url [TARGET=window]>

Options include the following:

Option Description

HREF Specifies the base URL

TARGET Netscape 2.0 extension that allows to define a named target window
for each hyperlink in the document that doesn't set an explicit
TARGET attribute.

The BASE element is allowed within these elements:

Not applicable. Element is not a container.

The element is allowed inside the following:

HEAD

Example of BASE

<BASE HREF="http://www.somewhere.com/files/">

<BASE HREF="http://www.somewhere.com/files/ TARGET=_blank>

BASEFONT

The BASEFONT element alters the base font that is used as a default for any nonspecifically formatted text.

Figure D.5. The BASEFONT element.

Syntax: <BASEFONT COLOR=color NAME=name SIZE=n>

Options include the following:

COLOR=color Specifies the color of the base font. Colors are specified using
hexadecimal notation for each component in the RGB channel in
the following format: #RRGGBB, or by specifying one of the
Microsoft Internet Explorer predefined colors: Aqua, Black,
Blue, Fuchsia, Gray, Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, Yellow, White.

NAME=name Specifies the name of the font.

SIZE=n Specifies the size of the base font to be one of seven predefined
sizes. The default size is 3, and the largest is 7. You can specify
sizes relative to BASEFONT using the FONT element. n can
range in size from 1 to 7, inclusive.

The BASEFONT element is allowed within these elements:

None. BASEFONT is not a container element.

BASEFONT is allowed inside the following:

A, ADDRESS, B, BLOCKQUOTE, BODY, CITE, CODE, DD, DT, EM, FORM, H1, H2, H3, H4, H5, H6, I,
KBD, LI, P, PRE, SAMP, STRONG, TT, and VAR

Example of BASEFONT

Here is some unadultered normal text (no basefont).

<P>

<BASEFONT SIZE=4>

This is some text after BASEFONT size is set to 4.

Here is size +1.

Here is size +2.

Here is size +3.

BGSOUND (Background Sound)

The BGSOUND element is a Microsoft Internet Explorer 2.0 extension which defines the audio file to be played as a
background to the document.

Syntax: <BGSOUND SRC=url LOOP=n>

Options for BSOUND include the following:

SRC=url Specifies the URL of the audio file to play.

LOOP=n|INFINITE Specifies the number of times the source sound will play
while the document is displayed. The default is to play once,
but you can also specify infinite for unlimited playback.
There's no way of disabling the audio, except for turning off
the volume or traveling to another page.

The BGSOUND element is allowed within these elements:

None. BGSOUND is not a container element.

The element is allowed inside the following:

A, ADDRESS, B, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, COMMENT, DD, DFN, DT,
EM, ENTITY, FONT, FORM, H1...H6, HEAD, I, KBD, LI, MARQUEE, P, SAMP, STRIKE, STRONG, TD,
TH, TT, U, and VAR

Example of BGSOUND

<BGSOUND SRC="/sounds/my.mid" LOOP=INFINITE>

BIG

The BIG element specifies that the enclosed text be rendered one size larger than the current font. The BIG element requires a
closing tag.

Figure D.6. The BIG element.

Syntax: <BIG>...</BIG>

The BIG element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

BIG is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIF, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD, TEXTFLOW, TH,
TT, U, and VAR

Example of BIG

...

Big is good for initial caps, but it can also be used for emphasis.

<BIG>B</BIG>ig is good for initial caps, but it can also be used for
<BIG>emphasis</BIG>.

...

BLINK

The BLINK element specifies that the enclosed text be rendered using a blinking font. BLINK is a Netscape only extension.
The BLINK element requires a closing tag.

Syntax: <BLINK>...</BLINK>

The BLINK element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

BLINK is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIF, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD, TEXTFLOW, TH,
TT, U, and VAR

Example of BLINK

<P>This is normal text. <BLINK>Hello, this text blinks!</BLINK>

BLOCKQUOTE

The BLOCKQUOTE element specifies that the enclosed text represents a block quote. Block quotes are rendered by indenting
both the left and right margins. The BLOCKQUOTE element requires a closing tag.

Figure D.7. The BLOCKQUOTE element.

Syntax: <BLOCKQUOTE>...</BLOCKQUOTE>

The BLOCKQUOTE element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM,
FONT, FORM, H1...H6, HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE, SAMP,
SCRIPT, SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR, and
XMP.

BLOCKQUOTE is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of BLOCKQUOTE

...

<BLOCKQUOTE>

"I said what I meant, and meant what I said. An elephant is faithful - 100 per cent"

- Horton the Elephant

</BLOCKQUOTE>

...

BODY

The BODY element contains the content of a document. It specifies the beginning and end of the document body. This
contrasts with the HEAD of a document, which contains information about the document. All displayable elements should be
included within the BODY section. The opening and closing of the BODY element is inferred, so it is optional. However, it is
considered good style to open and close it.

Figure D.8. Some changes to the standard BODY settings.

Syntax: <BODY ALINK=color BAGROUND=url BGCOLOR=color
BGPROPERTIES=FIXED LEFTMARGIN=n LINK=color TEXT=color
TOPMARGIN=n VLINK=color>...</BODY>

The options available for BODY include the following:

ALINK=color Specifies the color of the active link. Colors are
specified in the HEX, 00-FF for each component of
the RGB channel in the #RRGGBB format.

BACKGROUND=url Specifies an image to be used as the background.

BGCOLOR=color Specifies the background color of the document.
Colors are specified in the HEX, 00-FF for each
component of the RGB channel in the #RRGGBB
format, or by specifying one of the Microsoft Internet
Explorer predefined colors: Aqua, Black, Blue,
Fuchsia, Gray, Green, Lime, Maroon, Navy, Olive,
Purple, Red, Silver, Teal, Yellow, White.

BGPROPERTIES=FIXED Specifies that the BACKGROUND image be used as
a watermark. The image is not replicated and remains
stationary in the center of the window.

LEFTMARGIN=n Sets the margin for the left of the page. When set to
zero, the left margin is set on the left edge of the
window.

LINK=color Specifies the color of a normal link. Colors are
specified in the HEX, 00-FF for each component of
the RGB channel in the #RRGGBB format.

TEXT=color Specifies the color of normal text. Colors are
specified in the HEX, 00-FF for each component of
the RGB channel in the #RRGGBB format.

TOPMARGIN=n Sets the margin for the top of the page. When set to
zero, the top margin is set on the top edge of the
window.

VLINK=color Specifies the color of a visited or viewed link. Colors
are specified in the HEX, 00-FF for each component
of the RGB channel in the #RRGGBB format.

The BODY element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, DFN, DIR, DIV, DL, EM, FONT,
FORM, H1...H6, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE, SAMP, SCRIPT,
SELECT, SMAL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR, and XMP

The element is allowed inside the following:

HTML

Example of BODY

<BODY BGCOLOR="#FFFFFF" TEXT="#FF3333" LINK="00FF00" VLINK="#00FF00" ALINK="#00FF00">

<H1>BODY</H1>

<HR>

Here is a link to Microsoft.

<P>(We changed the default text color to red, and the link color to green).

</BODY>

BR (Break)

The BR element inserts a line break and continues the rendering of objects that follow in the next line.

Figure D.9. The BR element.

Syntax: <BR CLEAR=align-type>

Options include the following:

CLEAR The CLEAR attribute forces the line to break clear of floating images or
tables. Possible values for the CLEAR attribute are

LEFT: Move down until the left margin is clear.

ALL: Move down until all margins are clear.

RIGHT: Move down until the right margin is clear.

NONE: Do not clear the margins.

The BR element is allowed within these elements:

Not applicable.

BR is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of BR

The BR element inserts a line break and continues
 rendering of objects

that follow in the next line. The CLEAR attribute forces the line to break

'clear' of floating images or tables. This example uses a break element

without a CLEAR attribute. The break is on the word 'continues.'

<P>

The BR element inserts a line break and continues <BR CLEAR=ALL> rendering

of objects that follow in the next line. The CLEAR attribute forces the line

to break 'clear' of floating images or tables. This is an example of using

a break element with a CLEAR attribute. Note how the text after the andlt;BRandgt;

element is cleared past the image, as opposed to the previous example,

where the text continued flowing around the image after the break.

CAPTION

The CAPTION element is used to label a table. The ALIGN attribute specifies the alignment of the caption. The CAPTION
element requires a closing tag.

Figure D.10. The CAPTION element.

Syntax: <CAPTION ALIGN=align-type>...</CAPTION>

Options for CAPTION include the following:

ALIGN The ALIGN attribute specifies what edge to place the caption relative of.

LEFT: Places captions on the left.

RIGHT: Places captions on the right.

TOP: Places caption at the top.

BOTTOM: Places captions at the bottom of the image. This is the
default setting.

The CAPTION element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, SAMP, SCRIPT, SELECT,
SMALL, STRIKE, STRONG, SUB, SUP, TEXAREA, TT, U, and VAR

CAPTION is allowed inside the following:

TABLE

Example of CAPTION

...

<CAPTION ALIGN=TOP>This is a caption on the top.</CAPTION>

<TR>

<TH>Name</TH> <TH>Address</TH> <TH>Telephone</TH>

</TR>

<TR>

<TD>John Doe <TD>500 Elm Street <TD>555-1212

</TR>

</TABLE>

<P>

<TABLE BORDER=1>

<CAPTION ALIGN=BOTTOM>This is a caption on the bottom.</CAPTION>

<TR>

<TH>Name</TH> <TH>Address</TH> <TH>Telephone</TH>

</TR>

<TR>

</TR>

</TABLE>

...

CENTER

The CENTER element centers objects between the left and right margin. The CENTER element requires a closing tag.

Figure D.11. The CENTER element.

Syntax: <CENTER>...</CENTER>

The CENTER element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM,
FONT, FORM, H1...H6, HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE, SAMP,
SCRIPT, SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR, and
XMP.

CENTER is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of CENTER

<CENTER>

<P>

This text is centered.

</CENTER>

CITE

The CITE element renders its contents—a reference to a book, paper, or other published materials—as a citation. The CITE
element requires a closing tag.

Figure D.12. The CITE element.

Syntax: <CITE>...</CITE>

The CITE element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

CITE is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of CITE

<CITE>Randall L. Schwartz - Learning Perl </CITE>

CODE

The CODE element renders its contents as computer code. It is intended for short words or phrases. Multiline listings should
use the PRE element instead. CODE is usually rendered in a monospaced font. The CODE element requires a closing tag.

Figure D.13. The CODE element.

Syntax: <CODE>...</CODE>

The CODE element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of CODE

<CODE>

% gcc -Wall -o run *.o -L./ -lcgic

</CODE>

COL (Column Properties)

The COL element sets the properties of one or more columns on a table. It is used together with the COLGROUP element to
set the properties of columns within a group. The end tag is not required.

Figure D.14. The COL element.

Syntax: <COL ALIGN=align-type SPAN=n>

Options include the following:

ALIGN=align-type Specifies the alignment of text in the
column. Legal values are

CENTER: Centers text in the column.

LEFT: Text is left aligned in the column.

RIGHT: Text is right aligned in the
column.

SPAN=n Specifies the number of consecutive
columns that this property affects.

The COL element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

COLGROUP

Example of COL

...

<TABLE WIDTH=600 BORDER=1>

<COLGROUP>

<COL ALIGN=LEFT>

<COL ALIGN=CENTER>

<COL ALIGN=RIGHT>

<TBODY>

<TR>

<TD>I am aligned on the left

<TD>I am centered

<TD>I am on the right

</TR>

<TR>

<TD>I am aligned on the left

<TD>I am centered

<TD>I am on the right

</TR>

</TABLE>

...

COLGROUP (Column Group)

The COLGROUP element sets properties for one or more columns. A closing tag is not required.

Figure D.15. The COLGROUP element.

Syntax: <COLGROUP ALIGN=align-type SPAN=n>

Options include the following:

ALIGN=align-type Specifies the alignment of text in the column. Legal values
are

CENTER: Centers text in the column.

LEFT: Text is left aligned in the column.

RIGHT: Text is right aligned in the column.

SPAN=n Specifies the number of consecutive columns that this
property affects.

The COLGROUP element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

TABLE

Example of COLGROUP

...

<TABLE BORDER=1 WIDTH=600>

<COLGROUP ALIGN=LEFT SPAN=2>

<COLGROUP ALIGN=RIGHT SPAN=2>

<TBODY>

<TR>

<TD>I am aligned on the left

<TD>I am aligned on the left

<TD>I am on the right

<TD>I am on the right

</TR>

<TR>

<TD>I am aligned on the left

<TD>I am aligned on the left

<TD>I am on the right

<TD>I am on the right

</TR>

</TABLE>

...

COMMENT

This element defines a comment. The text it contains is ignored unless it contains HTML code.

Syntax: <COMMENT>...</COMMENT>

The COMMENT element is allowed within these elements:

Any valid HTML; however, that makes for an oxymoron!

The element is allowed inside the following:

Anywhere.

Example of COMMENT

<COMMENT>This is a comment</COMMENT>

If you really need comments, you may want to use SGML-style comments, which are supported by all browsers. SGML
comments follow this syntax: <!-- comment -->. Any text inside the comment brackets won't print, and it can handle multiple
lines of text between the tags:

<!-- some comment

More comments

-->

DD (Definition)

The DD (definition) element is used to provide a definition for a DT (definition term) within a DL (definition list) element.
The closing tag is optional.

Figure D.16. The DD element.

Syntax: <DD>...</DD>

The DD element is allowed within these elements:

A, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM, FONT, FORM,
HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE, SAMP, SCRIPT, SELECT,
SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR, and XMP

The element is allowed inside the following:

DL

Example of DD

<DL>

<DT>Tree<DD>Vegetable

<DT>Dog<DD>Animal

<DT>Diamond<DD>Expensive mineral

</DL>

DFN (Definition)

The DFN element renders its content as a definition. The DFN closing element is required.

Figure D.17. The DFN element.

Syntax: <DFN>...</DFN>

The DFN element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of DFN

<P>Oxymoron: <DFN>"A combination of contradictory or incongruous words"</DFN>

DIR (Directory)

The DIR element specifies a directory list of items, each starting with a LI element and none containing more than 20
characters. The list should display in columns (current third generation browsers don't). Ending tag is required.

Figure D.18. The DIR element.

Syntax: <DIR>............</DIR>

The DIR element is allowed within this element:

LI

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIB, FORM, LI, TD, and TH

Example of DIR

<DIR>

UNO

DOS

TRES

CUATRO

CINCO

SEIS

SIETE

OCHO

NUEVE

DIEZ!

</DIR>

DIV (Division)

The DIV element is used to create divisions or groupings of related elements. The DIV element is intended to represent
different kinds of containers (such as a chapter, section, abstract, or appendix) when used with the CLASS attribute. DIV
allows the enclosed group of elements to be given a distinctive style. The closing tag is required.

Syntax: <DIV ALIGN=align-type CLASS=container-type>...</DIV>

Figure D.19. The DIV element.

Options include the following:

ALIGN=align-type Specifies the horizontal
alignment of text.

align-type can be:

LEFT:

Text is placed flush to the left margin. This is the
default value.

CENTER:

Text is placed center between the margins.

RIGHT:

Text is placed flush to the right margin.

CLASS=container-type Specifies the type of
container.

container-type can be set to
different kinds of containers,
such as a chapter, section,
abstract, or appendix.

The DIV element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P,
PRE, SAMP, SCRIPT, SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL,
VAR, and XMP

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of DIV

<DIV>This is section ONE</DIV>

<DIV>This is section TWO</DIV>

DL (Definition List)

The DL element defines a definition list. A definition list is used to build two-column lists for terms and their corresponding
definitions. The closing tag is required.

Syntax: <DL><DT>...<DD>...</DL>

Options include the following:

COMPACT This setting suggests that items in the list are rendered in a compact
way, by using a smaller font size or by reducing the vertical spacing
between items in the list whenever possible.

The DL element is allowed within these elements:

DD and DT

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of DL

<DL>

<DT>Tree<DD>Vegetable

<DT>Dog<DD>Animal

<DT>Diamond<DD>Expensive mineral

</DL>

DT (Definition Term)

The DT element specifies a term within a definition list (DL) element. The closing tag is optional.

Syntax: <DT>...</DT>

The DT element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

DL

Example of DT

<DL>

<DT>Tree<DD>Vegetable

<DT>Dog<DD>Animal

<DT>Diamond<DD>Expensive mineral

</DL>

EM (Emphasis)

The EM is used for text that should be rendered with emphasis; usually it is rendered in italics. The EM element doesn't have
any attributes.

Figure D.20. The EM element.

Syntax: ...

The EM element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of EM

<H1>This title is emphasized, and should be shown italized</H1>

This text is emphasized, and should be shown italized

<P>

This text is emphasized and strong,

and should be shown italized and strong

EMBED

The EMBED element allows the insertion of arbitrary objects directly into an HTML page. Embedded objects obtain support
via plug-ins and allow arbitrary attributes that plug-ins support. You should consider using the OBJECT element.

Syntax: <EMBED HEIGHT=n NAME=name OPTIONAL PARAM="value"
PALETTE="option" SRC=url WIDTH=n>

Options for EMBED include the following:

HEIGHT=n Sets the height of the object in pixels.

NAME=name Sets the name of the object.

OPTIONAL PARAM=value Sets parameters sent to the object. You can
have as many of these as you need.

PALETTE=foreground|background Sets the color palette for the foreground and
background.

SRC=url Sets the URL of any data to be inputted into
the object.

WIDTH=n Specifies the width of the object in pixels.

Example of EMBED

<EMBED WIDTH=300 HEIGHT=180 SRC="foo.wrl">

</EMBED>

FONT

The FONT element changes the font size and color.

Figure D.21. The FONT element.

Syntax:

Options for FONT include the following:

COLOR=color Specifies the color of the font. Colors are specified in the HEX,
00-FF for each component of the RGB channel in the following
format: #RRGGBB

FACE=name Sets the font. A list of comma-separated fonts can be provided.
The system will search for the first available match. If none are
available, the default font is used.

SIZE=n Specifies the size of the font. Font size ranges from 1-7 inclusive,
with 7 being the largest. Prefixing n with a + or - sign specifies a
relative font size based on the base font (usually set to 3).

The FONT element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of FONT

 Helvetica Size +7, Red

 Times Size +6, Blue

 Times Size +5

 Times Size +4

 Times Size +3

 Times Size +2

 Times Size +1

FORM

The FORM element is used to create fill-out forms. The browser will permit the user to enter data into the fields provided and
will send the entered data to the CGI program specified in the URL by the ACTION option. Closing tags are required.

Figure D.22. The FORM element.

Syntax: <FORM ACTION=url
ENCTYPE="application/x-www-form-urlencoded"
METHOD=GET|POST TARGET=window>...</FORM>

Options for FORM include the following:

ACTION A URL that specifies the location to submit the
contents.

ENCTYPE MIME-content type for encoding
(application/x-www-form-urlencoded).

METHOD Specifies variations in the protocol to send form
contents.

GET

Information is passed via
an environment variable.

POST

Information is passed via
the programs stdin.

TARGET=window Specifies that the target is loaded into the specified
window. Possible values for window are

window: Specifies to load the link into the named
window.

blank: Creates the frame in a new unnamed window.

self: Loads the frame in the parent window.

parent: Loads in the parent window.

top: Loads in the top window.

The FORM element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM,
FONT, H1, H2, H3, H4, H5, H6, HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE,
SAMP, SCRIPT, SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR,
and XMP

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, LI, TD, and TH

Example of FORM

…

<FORM ACTION="http://localhost/cgi-bin/printenv" METHOD="GET">

<INPUT TYPE="text" NAME="name" SIZE=30>

<P>

<INPUT TYPE=checkbox NAME=foo> Foo

<INPUT TYPE="submit" VALUE="Submit">

</FORM>

...

FRAME

The FRAME element defines a frame in a FRAMESET. The SRC attribute value is the URL of the document to be displayed
inside the frame. If the SRC attribute is not specified, leave the frame blank.

Figure D.23. The FRAME element.

Syntax: <FRAME ALIGN=align-type FRAMEBORDER=0|1
MARGINHEIGHT=n MARGINWIDTH=n NAME=name
SCROLLING=YES|NO SRC=url>

Options for FRAME include the following:

ALIGN=align-type Specifies the alignment of the frame with respect to the
surrounding text. Possible values are

TOP: Places the top of the image at the text baseline.

MIDDLE: Centers the image on the text baseline.

BOTTOM: Places the bottom of the image at the text
baseline.

LEFT: Image is aligned flush with the left margin.

RIGHT: Image is flush with the right margin.

FRAMEBORDER=0|1 Draws a tridimensional border. If 1, the default draws it.
If 0, it doesn't display a border.

SCROLLING=YES|NO This attribute specifies whether a scrollbar will be
provided for the frame. This attribute accepts three
values: YES, NO, or AUTO. AUTO is the default value.

MARGINWIDTH=n Horizontal margin size in pixels.

MARGINHEIGHT=n Vertical margin size in pixels.

NAME=name The name attribute specifies a name for using as the
destination of a hyperlink (similar to the A element).
Netscape has reserved the following values for NAME:

blank: Creates the frame in a new unnamed window

self: Loads the frame in the parent window.

parent: Loads in the parent window.

top: Loads in the top window.

NORESIZE NORESIZE prevents the user from resizing the frame.

SRC=url This specifies the URL for the document that will be
displayed inside the frame. If this value is not defined,
the frame is left blank.

The FRAME element is allowed within these elements:

None. FRAME element is not a container.

The element is allowed inside the following:

FRAMESET

Example of FRAME

<FRAME SRC="frame2.html">

<FRAME SRC="frame3.html">

FRAMESET

The FRAMESET element takes the place of the BODY element. It hosts the FRAME, FRAMESET, and NOFRAME
elements. FRAMESET is used in HTML documents whose purpose is to define the layout of a FRAME-based document—one
that includes additional HTML documents into specified areas of a window. FRAMESETs are specified as a list of
comma-separated values.

Syntax: <FRAMESET COLS=n FRAMEBORDER=1|0 FRAMESPACING=n
ROWS=n>

Options for FRAMESET include the following:

ROWS=n Specifies the height of the FRAMESET.

Values are specified as integers with optional subfix
modifiers:

A % specifies a percentage of the window size. Legal
values are between 1-100.

A * specifies a multiplier of the width height.

A plain number (no subfix) specifies the size in pixels.
This is the default setting.

A single * with no number specifies whatever is left of
the window.

COLS=n Specifies the width of the FRAMESET.

Values are specified as integers with optional subfix
modifiers:

A % specifies a percentage of the window size. Legal
values are between 1-100.

A * specifies a multiplier of the width height.

A plain number (no subfix) specifies the size in pixels.
This is the default setting.

A single * with no number specifies whatever is left of
the window.

FRAMEBORDER=0|1 Draws a tridimensional border. If 1, the default draws it.
If 0, displays no border.

FRAMESPACING=n Adds additional spacing (specified in pixels) between
frames.

Example of FRAMESET

<FRAMESET ROWS=100%>

<NOFRAMES>

<BODY>

You don't have frames!

</BODY>

</NOFRAMES>

<FRAMESET COLS=25%,75%>

<FRAME SRC="frame1.html">

<FRAMESET ROWS=25%,75%>

<FRAME SRC="frame2.html">

<FRAME SRC="frame3.html">

</FRAMESET>

</FRAMESET>

</FRAMESET>

Hn (Heading)

The heading elements H1-H6 specify the size of a header in varying levels. The biggest header is H1, the smallest is H6, and
all the others are in descending order between those two.

Figure D.24. H1 through H6 as rendered by Microsoft Internet Explorer.

Syntax: <Hn>...</Hn>

Options for Hn include the following:

n Is the heading size. Possible values are 1-6 with 1 being the
largest heading size.

ALIGN=align-type This attribute specifies the horizontal alignment of the
header. Possible values are

LEFT: Header is set flush with the left margin.

CENTER: Header is centered.

RIGHT: Header is set flush with the right margin.

The Hn element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, LI, TD, and TH

Example of Hn

<H1>Heading 1</H1>

<H2>Heading 2</H2>

<H3>Heading 3</H3>

<H4>Heading 4</H4>

<H5>Heading 5</H5>

<H6>Heading 6</H6>

HEAD

The HEAD element of an HTML document contains information about the document itself. None of the elements that legally
belong on the HEADER section are displayed for the user. All displayed elements should appear in the BODY section. In
addition to the following elements that are allowed within the HEAD, you can also use META tags. META tags provide
additional information useful to indexing robots or to caching proxy servers.

The HEAD element is allowed within these elements:

BASE, ISINDEX, and TITLE

The element is allowed inside the following:

HTML

Example of HEAD

<HEAD>

<TITLE="This is my document">

<META NAME="created" CONTENT="AUG, 12 Mon 1996 22:46:36 CST">

<META HTTP-EQUIV="Content-Language" CONTENT="en-us">

<META HTTP-EQUIV="Last-Modified" CONTENT="AUG, 12 Mon 1996 22:46:36 CST">

<BASE HREF="http://www.someaddress.com/ TARGET=_blank>

</HEAD>

HR (Horizontal Rule)

The HR element is used for drawing horizontal rules or lines. Horizontal rules can be used to visually divide sections.

Figure D.25. The HR element.

Syntax: <HR ALIGN=align-type COLOR=color NOSHADE SIZE=n
WIDTH=n>

Options include the following:

ALIGN=align-type Specifies alignment of the rule. Allowed values are

LEFT: Rule is aligned to the left margin.

CENTER: Rule is centered.

RIGHT: Rule is aligned to the right margin.

COLOR=color Specifies the color of the base font. Colors are specified
using hexadecimal notation for each component in the RGB
channel in the following format: #RRGGBB, or by
specifying one of the Microsoft Internet Explorer predefined
colors: Aqua, Black, Blue, Fuchsia, Gray, Green, Lime,
Maroon, Navy, Olive, Purple, Red, Silver, Teal, Yellow,
White.

NOSHADE Specifies that no shading should be used on the rule and that
it should be displayed as a plain line.

SIZE The thickness of the rule in pixels.

WIDTH The width of a rule. Allowed values are

number: width in pixels.

percentage (number%): Specifies width of the rule as a
percentage of the width of the window.

The HR element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of HR

WIDTH=50%<HR WIDTH=50%>

SIZE=15<HR SIZE=15>

COLOR=red<HR COLOR="#FF0000">

No Shading<HR NOSHADE>

HTML

The HTML element encloses an entire HTML document; they are the outermost elements and should not be nested inside any
other element. While their specification is not required, it is considered good practice to do it.

Syntax: <HTML>...</HTML>

The HTML element is allowed within these elements:

BODY and HEAD

The element is allowed inside the following:

Not applicable.

Example

<HTML>

<HEAD>

<TITLE>This is HTML</TITLE>

</HEAD>

<BODY>

<H1>This is HTML</H1>

</BODY>

</HTML>

I (Italics)

The I element specifies that its contents are rendered in italics.

Figure D.26. The I element.

Syntax: <I>...</I>

The I element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,

SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of I

<H2>Here is a normal header</H2>

<H2><I>Same header size, but italicized</I></H2>

Here is some normal text

<I>Here is some text with italics</I>

IMG (Image)

The IMG element is used to insert inline graphics into an HTML document. The closing tag is optional.

Syntax: <IMG ALIGN=align-type ALT=text BORDER=n CONTROLS DYNSRC=url HEIGHT=n HSPACE=n ISMAP
LOOP=n SRC=address START=start-event USEMAP=map-name VSPACE=n WIDTH=n>

Figure D.27. The IMG element.

Options include the following:

ALIGN=align-type Specifies the vertical alignment of the image with respect to
the text line, possible values are

TOP: Places the top of the image at the text baseline.

MIDDLE: Centers the image on the text baseline.

BOTTOM: Places the bottom of the image at the text
baseline.

LEFT: The image is aligned flush with the left margin and
text flows around it.

RIGHT: The image is flush with the right margin and text
flows around it.

ALT=text Specifies a description that will be displayed on
nongraphical browsers or when pictures are turned off.

BORDER=n Specifies a border to be displayed around the image in pixels
if the image is a hyperlink.

CONTROLS If the image is a video clip, a set of controls is displayed
under the clip.

DYNSRC=url (Dynamic Source); Specifies the address of the video clip or
Virtual Reality Modeling Language (VRML) world.

HEIGHT=n Specifies the height of the image in pixels. This value
together with the width allows the browser to layout the
page more quickly because it can reserve space for the
image beforehand. If you specify a different size than the
actual size of the image, the image is scaled to fit into the
specified dimension.

HSPACE=n Specifies a horizontal margin or gutter that gets added to the
picture in pixels. The n amount is split between the left and
right sides of the image.

ISMAP Is used to identify the image as a server-side image map.

LOOP=n Specifies how many times the video clip will loop when the
page is activated. If set to INFINITE or -1, the clip will loop
forever.

SRC Specifies the URI of the image to be inserted.

START=start-event Starts playing the file specified by DYNSRC. start-event
can be one of the following:

FILEOPEN: Starts playing as soon as the file is downloaded
(default setting).

MOUSEOVER: Starts playing when the user moves the
mouse over the animation.

USEMAP=map Specifies that the image is a client-side image map and
specifies that map should be used for defining the hotspots.
Maps are defined using the MAP element.

VSPACE Specifies a vertical margin or gutter in pixels around the
image. It's split between the top and bottom sides of the
image.

WIDTH Specifies the width of the image in pixels. This value,
together with the height, allows the browser to lay out the
page more quickly because it can reserve space for the
image beforehand. If you specify a different size than the
actual size of the image, the image is scaled to fit into the
specified dimension.

The IMG element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD, TEXTFLOW, TH,
TT, U, and VAR

Example of IMG

<IMG SRC="websiteby.gif" WIDTH=156 HEIGHT=39

ALT="WBAL" BORDER=15 ALIGN=TOP> BORDER=15

Aligned to the top of the image.<BR CLEAR=ALL>

<P>

Vertical Spacing of 10, and aligned to the middle <BR CLEAR=ALL>

<P>

Right aligned. Additional space provided by HSPACE.

Text flows around the image until it hits the BR CLEAR.<BR CLEAR=ALL>

<P>

Doubled in size and bottom aligned!<BR CLEAR=ALL>

INPUT

INPUT specifies a form control that the user can use to return values to a program on the server.

Figure D.28. The INPUT element.

Syntax: <FORM ALIGN=align-type [CHECKED] MAXLENGTH=n
NAME=name SIZE=n SRC=url TYPE=type VALUE=value>

Options for INPUT include the following:

ALIGN=align-type Used when the TYPE is set to image. It specifies how the
following line of text will be aligned with the image. Valid
alignment types are

TOP: Text is aligned with the top of the image.

MIDDLE: Text is aligned with the center of the image.

BOTTOM: Text is aligned with the bottom of the image.

CHECKED Sets a check box or radio control to selected setting when the
form is initially loaded.

MAXLENGTH=n Specifies the maximum number of characters that the input
field will accept.

NAME=name Sets the name of the control.

SIZE=size Specifies the size of the control in characters.

SRC=url Specifies the URL for an image type control.

TYPE=type Specifies the type of control to use. It can be any of the
following:

CHECKBOX: A simple control that allows ON or OFF
relationships. The default setting is set to YES.

HIDDEN: The input field is hidden from the user; however,
the contents of the field are returned to the server. Hidden
fields can be used for passing values between your CGI and
the browser without having them displayed in the browser
window.

IMAGE: Sets the input field to be a graphic that when
clicked submits the form. The coordinates where the user
clicked are returned to the server with the upper-left corner
of the image being the origin. Coordinates are returned as
two values matching the name of the field with the
coordinate designator ".x" or ".y" appended to it.

PASSWORD: Specifies a text field where the user can enter
a password or other information that should not be echoed
back in the form.

RADIO: A radio button allows the user to select one of
several options. Each radio button part of a group should be
named the same. Only the selected button will return a value,
which should be explicitly set using the VALUE option.

RESET: A button that when activated will reset the contents
of the form to their default settings. You can specify a
different name for the RESET button using the VALUE
option.

SUBMIT: A button that when activated will submit the
contents of the form. You can rename the button with the
VALUE option. If the NAME option is set, the SUBMIT
button will contribute the value set in NAME to the
submitted data.

TEXT: A single line text entry field. This is the default
control type.

VALUE=value Sets the default value for text or numerical controls.

The INPUT element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of INPUT

<FORM ACTION="http://www.accesslink.com/cgi-bin/envvar" METHOD="GET">

Name: <INPUT TYPE="text" NAME="name" SIZE=40>

Password: <INPUT TYPE="password" NAME="passwd" SIZE=30>

<HR>

Food:

<INPUT TYPE=radio NAME="food" VALUE="chicken"> Chicken

<INPUT TYPE=radio NAME="food" VALUE="fish"> Fish

<INPUT TYPE=radio NAME="food" VALUE="beef"> Beef

<INPUT TYPE=radio NAME="food" VALUE="vegies"> Vegan

<HR>

Equipment Compatibility:

<INPUT TYPE=checkbox NAME=equip VALUE="cd-rom">CD-ROM

<INPUT TYPE=checkbox NAME=equip VALUE="audio">Audio

<INPUT TYPE=checkbox NAME=equip VALUE="networking">Ethernet

<INPUT TYPE=checkbox NAME=equip VALUE="battery">DC

<HR>

Pick Your Ride:

<SELECT NAME="car" MULTIPLE>

<OPTION SELECTED VALUE="pacer"> Pacer

<OPTION VALUE="ferrari"> Ferrari

<OPTION VALUE="small convertible"> Small Vintage British Sports Cars

<OPTION VALUE="luxurious german sendan"> Mercedes Benz

</SELECT>

<P>

<INPUT TYPE="submit" VALUE="Deliver my Toys!">

</FORM>

ISINDEX

The ISINDEX element is a precursor of the FORM element. It informs the browser that the document is searchable. This
element automatically generates an input field for the user.

Figure D.29. The ISINDEX element.

Syntax: <ISINDEX ACTION=url PROMPT=prompt>

Options include the following:

ACTION=url Specifies the URL of the CGI program that will handle the
entered information.

PROMPT=prompt Specifies the text placed next to the input field. The default
message is You can search this index. Type the keyword(s)
you want to search for:.

The ISINDEX element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, HEAD, LI, TD, and TH

Example of ISINDEX

<ISINDEX ACTION="http://www.somesite.com/seach" PROMPT="Enter a product name here.">

KBD

The KBD element renders text to represent text that the user should enter at the keyboard. Generally this is represented using a
monospaced bold font. Close tags for this element are required.

Figure D.30. The KBD element.

Syntax: <KBD>...</KBD>

The KBD element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1-H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of KBD

<KBD>

gcc -Wall -o run *.o

</KBD>

<P>

After that, type the following:

<P>

<KBD>

run file1 file2 file3

</KBD>

LI (List)

The LI element is used to specify an element in a list under a DIR, MENU, OL, or UL element. The closing tag is optional and
seldom used.

Figure D.31. The LI element as rendered by Microsoft Explorer.

Figure D.32. The LI element as rendered by Navigator.

Syntax: <LI TYPE=order-type VALUE=n>...

Options include the following:

TYPE=order-type Specifies the type of bullet to be used in the list. Valid values
are

DISK: A standard solid bullet.

SQUARE: Square bullets

CIRCLE: Unfilled circles

1: Bullets with numbers

a: Bullets with lowercase letters

A: Bullets with uppercase letters

i: Bullets with small Roman numerals

I: Bullets with large Roman numerals

VALUE=n Specifies the number for the first item on the list. It is
specified as a number and converted as needed.

The LI element is allowed within these elements:

A, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM, FONT, FORM,
HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE, SAMP, SCRIPT, SELECT,
SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR, and XMP

The element is allowed inside the following:

DIR, MENU, OL, and UL

Example of LI

Here is an unordered list:

Red

Blue

Green

Here is an unordered list with different bullet types (Netscape only):

<LI TYPE=DISK>Red

<LI TYPE=SQUARE>Blue

<LI TYPE=CIRCLE>Green

Here is an ordered list:

<OL COMPACT>

Red

Blue

Green

LINK

The LINK element is used to define a relationship between the current document and another object or document. Multiple
LINK relationships can exist in a single document. This element is not widely used, and many browsers don't support it yet.
However, it provides useful information because it relates documents to authoritative sources responsible for the contents. You
may use more than one LINK elements.

Syntax: <LINK HREF=URL ID=ID REL=rel REV=rev TITLE=cdata>

Options include the following:

HREF The URL of the object being linked to.

ID The SGML ID attribute.

REL Defines a relationship where the target recognizes, authorizes, or verifies.
(Not usually implemented.)

REV Defines a relationship where the source desires and expects a claimed
relationship. However, this relationship needs to be verified with the
target. (Not usually implemented.)

TITLE Used to label a link, perhaps with the title of the document.

The LINK element is allowed within these elements:

The LINK element is an empty container. As such it doesn't have any content.

The element is allowed inside the following:

HEAD

Example of LINK

<LINK HREF="http://www.someplace.com/products.html">

LISTING

The LISTING element renders text literally. It does not reinterpret whitespace so multiline entries are rendered as they are in
the source text with the same line breaks and multiple spaces. LISTING is usually rendered in a monospaced font. The
LISTING element was a precursor to the PRE element. This element is available for backward compatibility purposes. Open
and close tags are required.

Figure D.33. The LISTING element.

Syntax: <LISTING>...</LISTING>

The LISTING element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of LISTING

Try the following program:

<P>

<LISTING>

#include <stdio.h>

int main()

{

printf("Hello World!\n");

return 0;

}

</LISTING>

MAP

The MAP element is used to define a client-side image map. A client-side image map specifies a set of regions on an image
that can be used as hyperlinks by clicking on them. The advantage of client-side image maps is that they take map processing
loads from the server, as well as activate additional visual cues on the user's browser regarding "hot spots" in the images. The
closing tag is required.

Syntax: <MAP NAME="#name">...</MAP>

Options include the following:

NAME Specifies the NAME used to reference the map in the IMG attribute
USEMAP option. Note the pound sign (#) before the name.

The MAP element is allowed within this element:

AREA

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of MAP

Note that USEMAP option requires a # sign (just like a local HREF) before the name of the fragment containing the map
coordinates. An example is as follows:

<MAP NAME=map>

<AREA SHAPE=RECT COORDS="56,7,106,86" HREF="#b" ALT=b>

<AREA SHAPE=CIRCLE COORDS="219,63,23" HREF="#e" ALT=e>

</MAP>

<P> You clicked on B!

<P> You clicked on E!

MARQUEE

The MARQUEE element defines an area where scrolling text will be displayed. This is a Microsoft Internet Explorer 2.0
extension. The MARQUEE element provides many options to control the behavior of the MARQUEE and provides an
interesting way of adding text animation without increasing download requirements.

Figure D.34. The MARQUEE element.

Syntax: <MARQUEE ALIGN=align-type BEHAVIOR=type BGCOLOR=color
DIRECTION=direction HEIGHT=n HSPACE=n LOOP=n
SCROLLAMOUNT=n SCROLLDELAY=n VSPACE=n
WIDTH=n>…</MARQUEE>

Options include the following:

ALIGN=align-type Specifies the alignment of the text surrounding the
marquee. Legal values for align-type are

TOP: Aligns the surrounding text with the top of the
marquee.

MIDDLE: Aligns the surrounding text with the middle
of the marquee.

BOTTOM: Aligns the surrounding text with the bottom
of the marquee.

BEHAVIOR=type Specifies how the text scrolls. Type can be one of the
following values:

SCROLL: Scrolls text starting on one side and
disappearing on the other, reappears again on the
starting side.

SLIDE: Starts on one side and stops scrolling as soon as
the text touches the opposite margin.

ALTERNATE: Bounces back and forth between
margins.

BGCOLOR=color Specifies the background color of the document. Colors
are specified in the HEX, 00-FF for each component of
the RGB channel in the #RRGGBB format. or by
specifying one of the Microsoft Internet Explorer
predefined colors: Aqua, Black, Blue, Fuchsia, Gray,
Green, Lime, Maroon, Navy, Olive, Purple, Red, Silver,
Teal, Yellow, White.

DIRECTION=direction DIRECTION specifies the direction of travel that the
text will follow. Possible values are LEFT or RIGHT.
The default value is LEFT (text starts scrolling from the
right).

HEIGHT=n Specifies the height of the marquee. HEIGHT can be
specified as pixels or as a percentage of the screen size
when suffixed with a % character.

HSPACE=n Specifies the horizontal gutter to separate surrounding
elements from the marquee.

LOOP=n Specifies the number of iterations that the marquee will
loop. A setting of -1 or INFINITE will loop the text
while the page remains on the screen.

SCROLLAMOUNT=n Specifies the number of pixels the text will scroll at a
time.

SCROLLDELAY=n Specifies the number of milliseconds between
successive draws of the marquee.

VSPACE=n Specifies the vertical gutter that separates surrounding
elements from the marquee.

WIDTH=n Specifies the width of the marquee. HEIGHT can be
specified as pixels or as a percentage of the screen size
when suffixed with a % character.

The MARQUEE element is allowed within these elements:

A, B, BGSOUND, BR, CITE, CODE, DFN, EM, ENTITY, FONT, I, IMG, KBD, MAP, MARQUEE, NOBR,
SAMP, STRIKE, STRONG, TT, U, VAR, and WBR

The element is allowed inside the following:

A, ADDRESS, B, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, COMMENT, DD, DFN, DT,
EM, ENTITY, FONT, FORM, H1-H6, I, KBD, LI, MARQUEE, P, SAMP, STRIKE, STRONG, TD, TH, TT, U,
and VAR

Example of MARQUEE

<MARQUEE ALIGN=MIDDLE BEHAVIOR=ALTERNATE>

This is an alternating banner

</MARQUEE>

<MARQUEE ALIGN=MIDDLE BEHAVIOR=ALTERNATE BGCOLOR="#FFFFFF" HEIGHT=30 DIRECTION=LEFT>

This is also an alternating banner, but with HEIGHT=30, and a white background.

</MARQUEE>

<MARQUEE ALIGN=MIDDLE BEHAVIOR=SCROLL WIDTH=50%>

This is a scrolling banner, WIDTH=50%

</MARQUEE>

<MARQUEE ALIGN=MIDDLE BEHAVIOR=SLIDE WIDTH=50%>

This is a sliding banner, WIDTH=50%

</MARQUEE>

MENU

The MENU element defines an list of items. Each entry is started with a LI element.

Figure D.35. The MENU element.

Syntax: <MENU>...</MENU>

Options include the following:

COMPACT Specifies the items that should be rendered in a compact form,
usually by reducing the vertical space between list items.

The MENU element is allowed within this element:

LI

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of MENU

<MENU>

Steak

Eggs

Chicken

Liver

Fish

Donut

</MENU>

META

The META element provides information about the HTML document to browsers and programs such as search engines or
caching proxy servers. META information is placed in the HEAD section of a document.

Syntax: <META HTTP-EQUIV=response CONTENT=description
NAME=description URL=url>

The options available for META include the following:

CONTENT=description Sets the description to be associated with the given
NAME or HTTP-EQUIV response header. It can be
used with a URL= and a date/time specification to
reload a document at a specified interval.

HTTP-EQUIV=response Binds the META element to the HTTP response
header. The server will include response as fields in the
header information.

NAME=description A description.

URL=url The document's URL.

The META element is allowed within this element:

HEAD

The element is allowed inside the following:

Not applicable because it is not a container element.

Example of META

A typical use of the META element is to embed expiration date dates for documents. This will avoid any caching of a
document past the specified date. In addition, you can use META tags to insert reply-to information (an e-mail address for the
person responsible for the document). An interesting use is to specify an auto-refresh setting that will force the browser to

reload the contents of the document every so often or to load an entirely different document, as with a client-pull. Another
frequent use is to imbed keywords that indexing robots will use to classify your document. Here are some examples (they can
all coexist in the same document):

<META HTTP-EQUIV="Expires" CONTENT="Aug, 11 Mar 1996 12:00:00 -0600">

<META HTTP-EQUIV="Reply-to" CONTENT="info@yourcompany.com">

<META HTTP-EQUIV="REFRESH" CONTENT="10"
URL="http://www.yourcompany.com/timeIsUp.html">

<META NAME="keywords" CONTENT="This document describes the META tag which you can
only view for 10 seconds">

NOBR

The NOBR element turns off line breaking. The browser won't wrap text when the window is resized. This is originally a
Netscape 1.x extension. Microsoft Internet Explorer supports this feature since version 3.0.

Figure D.36. The NOBR element.

Syntax: <NOBR>...</NOBR>

The NOBR element is allowed within these elements:

A, B, BLOCKQUOTE, BR, CITE, CODE, DIR, DL, EM, FORM, I, IMG, ISINDEX, KBD, LISTING, MENU,
OL, P, PRE, SAMP, STRONG, TT, UL, VAR, and XMP

The element is allowed inside the following:

A, ADDRESS, B, BLOCKQUOTE, BODY, CITE, CODE, DD, DT, EM, FORM, H1-H6, I, KBD, LI, P, PRE,
SAMP, STRONG, TT, and VAR

Example of NOBR

<NOBR>This is a very long line of text that I don't it to be broken.</NOBR>

If you shorten your browser window, you'll see that while this line wraps the one
above doesn't

NOFRAMES

The NOFRAMES element contains HTML that gets displayed to browsers that don't have support for frames. By using the
NOFRAMES element, you can create an entry page that is compatible with all browsers because you can present two different
entrances to your frame content. Frame-aware browsers ignore this element.

This was originally a Netscape 2.0 extension that has since been adopted by Microsoft Internet Explorer 3.0.

Figure D.37. The browser renders the content of the NOFRAMES element.

The NOFRAMES element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLINK, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL,
EM, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU,
OL, P, PRE, SAMP, SCRIPT, SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT,
U, UL, VAR, and XMP

The element is allowed inside the following:

FRAMESET

Example of NOFRAMES

<NOFRAMES>

<BODY>

<H1>You don't have frames!</H1>

You should provide alternative HTML here to access the site.

</BODY>

</NOFRAMES>

OBJECT

The OBJECT element inserts an object such as an image, document, applet, or control into an HTML document. It is intended
to be a more general and flexible mechanism for handling multimedia elements.

Syntax: <OBJECT ALIGN=align-type BORDER=n CLASSID=url
CODEBASE=url CODTYPE=codetype DATA=url DECLARE
HEIGHT=n HSPACE=n NAME=url SHAPES STANDBY=message
TYPE=type USEMAP=utl VSPACE=n WIDTH=n>…</OBJECT>

Options include the following:

ALIGN=align-type Specifies the alignment for the object:

BASELINE: The bottom of the object aligns to the
baseline of the surrounding text.

CENTER: The object is centered between the margins.
Text following the object is placed on the next line.

LEFT: The object is left-margin aligned. Text wraps
along the right edge of the object.

MIDDLE: The middle of the object is aligned with the
baseline of the surrounding text.

RIGHT: The object is right-margin aligned. Text wraps
along the left side of the object.

TEXTBOTTOM: The bottom of the object aligns with
the bottom of the text.

TEXTMIDDLE: The middle of the object aligns with the
middle of the text.

TEXTTOP: The top of the object aligns with the top of
the text.

BORDER=n Specifies the width of the border displayed for objects
that are hyperlinks.

CLASSID=url Identifies the object implementation. The syntax for the
URL depends on the object type.

CODEBASE=url Identifies the codebase for the object. Syntax is object
dependent.

CODETYPE=codetype Specifies the Internet media type for code.

DATA=url Specifies the source for the data. Syntax is object
dependent.

DECLARE Declares the object without creating it. Useful if you are
creating a cross-reference or using the object as a
parameter.

HEIGHT=n Specifies the height of the object.

HSPACE=n Specifies the horizontal gutter for the object.

NAME=url Sets the name of the object when submitted as part of a
form.

SHAPES Specifies that the object has hyperlinks, as in a
client-side image map for the object.

STANDBY=message Sets the message that is displayed while the object is
loaded.

TYPE=type Specifies the Internet media type for the data.

USEMAP=utl Specifies the image map to use with the object.

VSPACE=n Specifies the vertical gutter.

WIDTH=n Specifies the width of the object.

The element is allowed inside the following:

All elements that are legal inside a BODY element.

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

OL (Ordered List)

The OL element specifies an ordered list. An ordered list consists of a number of LI elements that are ordered numerically in
some way. OL elements need to be properly closed.

Figure D.38. The OL element.

Syntax: <OL COMPACT START=n TYPE=order-type>…

Options include the following:

COMPACT Specifies that the list should be rendered in compact form,
perhaps by reducing the leading between entries.

START=n Specifies the starting number for the list. Representation of
this number will vary depending on the TYPE specified.

TYPE=order-type TYPE specifies the numbering style for the list. Legal values
include the following:

A: Use uppercase letters.

a: Use lowercase letters.

I: Use large Roman numerals.

i: Use small Roman numerals.

1: Use numbers.

The OL element is allowed within this element:

LI

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of OL

This example shows the use of the OL element. Note that it is very flexible in terms of what you need to do to start
renumbering in the right spot.

<H1>Automatic Lists are Great!</H1>

 This is the first item

 This is the second

<OL TYPE=a>

Alphabetical listing (restarted numbering)

This is another entry

Yet another

This is another item

 This is another section, start renumbering where we left

<I>Some wordprocessors I use have trouble doing this</I>

<OL START=4>

 This is the first item (started where we left-off)

 This is the second

<OL TYPE=a>

Alphabetical listing

This is another entry

Yet another

This is another item

OPTION

The OPTION element specifies one choice in a SELECT element, which in turn is part of the contents of a FORM element.

Syntax: <OPTION SELECTED VALUE=value>

Options include the following:

SELECTED Designates the default item. If the item doesn't exit, then the first
element becomes the default.

VALUE Specifies the value that will be returned to the server if this were
chosen.

The OPTION element is allowed within these elements:

Not applicable. Element is not a container.

The element is allowed inside the following:

SELECT

Example of OPTION

<INPUT TYPE=radio NAME="food" SELECTED VALUE="chicken"> Chicken

P (Paragraph)

The P element inserts a paragraph break and separates two blocks of text. Paragraph elements do not nest, so starting a new
paragraph automatically implies closing the previous one. Many elements imply a text separation, such as headings, list
elements, and blockquotes. A closing paragraph tag is not required, but is considered good style

Figure D.39. The P element.

Syntax: <P ALIGN=align-type>...</P>

Options include the following:

ALIGN The ALIGN options are Netscape extensions. Microsoft Internet
Explorer supports them, too. ALIGN sets the alignment for the
paragraph. Possible alignment types are LEFT, CENTER, and RIGHT.
The default setting is LEFT.

The P element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

ADDRESS, BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of P

<P>This is a plain paragraph. It uses the default LEFT alignment.</P>

<P ALIGN=CENTER>This next paragraph aligns to the center of the window.</P>

<P ALIGN=RIGHT>This last paragraph aligns to the right of the window.</P>

PARAM

The PARAM element is used to pass values to a given object, such as a Java applet.

Syntax: <PARAM NAME=name VALUE=value VALUETYPE=type
TYPE=type>

Options include the following:

NAME=name Identifies the name of the parameter or key that VALUE
will set.

VALUE=value Specifies the value passed to the object.

VALUETYPE=type On Microsoft Internet Explorer only, it specifies how to
interpret the value. The type can be any of the following:

DATA: The value is data. This is the default value type.

REF: The value is an URL.

OBJECT: The value is an URL of an object in the same
document.

Type=type On Microsoft Internet Explorer only, it specifies the
MIME-type of the object.

The PARAM element is allowed within these elements:

Not applicable. Element is not a container.

The element is allowed inside the following:

APPLET, (Microsoft Internet Explorer only: OBJECT)

Example of PARAM

<applet codebase="../LED" code="LED.class" width=500 height=48 align=center>

<param name="script" value="../scripts/Demo.led">

<param name="border" value="2">

<param name="bordercolor" value="100,130,130">

<param name="spacewidth" value="3">

<param name="wth" value="122">

<param name="ht" value="9">

<param name="font" value="../fonts/default.font">

<param name="ledsize" value="3">

</applet>

PLAINTEXT

The PLAINTEXT element renders text in a fixed font without processing elements until a closing PLAINTEXT tag is found.

Text is rendered with a monospaced font.

Figure D.40. The PLAINTEXT element.

Syntax: <PLAINTEXT>...</PLAINTEXT>

The PLAINTEXT element is allowed within these elements:

Not applicable. Element disables HTML parsing.

The element is allowed inside the following:

Not applicable. Element disables HTML parsing.

Example of PLAINTEXT

<PLAINTEXT>

<P>This is a plain paragraph.

It uses the default LEFT alignment.</P>

<P ALIGN=CENTER>This paragraph is center aligned.</P>

<P ALIGN=RIGHT>This paragraph is right aligned</P>

</PLAINTEXT>

PRE (Preformatted)

The PRE element renders text in a fixed font. It is useful for displaying ASCII art or any other type of formatting that relies on
the spacing of the characters.

Figure D.41. The PRE element.

Syntax: <PRE WIDTH=n>...</PRE>

Options include the following:

WIDTH The browser will try to render at least n characters.

The PRE element is allowed within these elements:

A, APPLET, B, BR, CITE, CODE, DFN, EM, I, INPUT, KBD, MAP, SAMP, SCRIPT, SELECT, STRIKE,
STRONG, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of PRE

<!DOCTYPE html PUBLIC "-//Netscape Comm. Corp.//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>PRE Sample</TITLE>

</HEAD>

<BODY>

Formatting maintained with the aid of the PRE element

<PRE>

 Jul Aug Sep

 S M Tu W Th F S S M Tu W Th F S S M Tu W Th F S

 1 2 3 4 5 6 1 2 3 1 2 3 4 5 6 7

 7 8 9 10 11 12 13 4 5 6 7 8 9 10 8 9 10 11 12 13 14

14 15 16 17 18 19 20 11 12 13 14 15 16 17 15 16 17 18 19 20 21

21 22 23 24 25 26 27 18 19 20 21 22 23 24 22 23 24 25 26 27 28

28 29 30 31 25 26 27 28 29 30 31 29 30

</PRE>

No PRE element

 Jul Aug Sep

 S M Tu W Th F S S M Tu W Th F S S M Tu W Th F S

 1 2 3 4 5 6 1 2 3 1 2 3 4 5 6 7

 7 8 9 10 11 12 13 4 5 6 7 8 9 10 8 9 10 11 12 13 14

14 15 16 17 18 19 20 11 12 13 14 15 16 17 15 16 17 18 19 20 21

21 22 23 24 25 26 27 18 19 20 21 22 23 24 22 23 24 25 26 27 28

28 29 30 31 25 26 27 28 29 30 31 29 30

</BODY>

</HTML>

S (Strikethrough)

The S element renders text in strikethrough type.

Figure D.42. The S element.

Syntax: <S>...</S>

The S element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of S

Use strikethrough to indicate a <S>corections</S> corrections or revisions

SAMP

The SAMP element renders its context as sample text.

Figure D.43. The SAMP element.

Syntax: <SAMP>...<SAMP>

The SAMP element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of SAMP

<P>

<SAMP>

You are called to the scene of an unusual accident.

It seems that a semi-truck has become stuck under

a railroad trestle and simply can't be moved.

Tow trucks have tried both pushing and pulling it out,

but to no avail. Taking the trestle out to free the

truck is being considered and officials are considering

getting a heavy duty crane to remove it.

You, being clever, however, come up with a suggestion,

and within 10 minutes, the truck is free and on its way.

</SAMP>

<P>

What suggestion did you make?

SCRIPT

The SCRIPT element denotes the inclusion of a script that a script-enabled browser can execute. Scripts execute and instatiate
objects in the order in which they appear in the HTML document.

Options include the following:

LANGUAGE=scripting-language The language used for the script. Valid
options are

VBScript: For Visual Basic Scripts

JavaScript: For JavaScripts

The SCRIPT element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, HEAD, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG,
SUB, SUP, TD, TEXTFLOW, TH, TT, U, and VAR

Example of SCRIPT

<SCRIPT LANGUAGE="JavaScript">

</SCRIPT>

SELECT

The SELECT element creates a single or multiple choice MENU.

Syntax: <SELECT MULTIPLE NAME=name SIZE=n>...</SELECT>

Options include the following:

MULTIPLE Enables multiple item selection.

NAME=name Specifies the name of the list.

SIZE=n Specifies the height of the list control.

The SELECT element is allowed within this element:

OPTION

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, IV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, TRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of SELECT

Pick Your Ride:

<SELECT NAME="car" MULTIPLE>

<OPTION SELECTED VALUE="pacer"> Pacer

<OPTION VALUE="ferrari"> Ferrari

<OPTION VALUE="small convertible"> Small Vintage British Sports Cars

<OPTION VALUE="luxurious german sendan"> Mercedes Benz

</SELECT>

SMALL

The SMALL element

renders its contents one size smaller, if appropriate.

Figure D.44. The SMALL element.

Syntax: <SMALL>...</SMALL>

The SMALL element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of SMALL

<P>This is normal text

<P>

<SMALL>This is one size smaller</SMALL>

STRIKE

The STRIKE element renders text in strikethrough type. This element produces similar results to the previously mentioned S
element.

Figure D.45. The STRIKE element.

Syntax: <STRIKE>...</STRIKE>

The STRIKE element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of STRIKE

Use strike to indicate a <STRIKE>corections</STRIKE> corrections or revisions

STRONG

The STRONG element emphasizes text, which is usually rendered in boldface. Its use may be more desirable than the B
element for backwards compatibility.

Figure D.46. The STRONG element.

Syntax: ...

The STRONG element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of STRONG

<P>This word is strong!

<P>This word is strong and emphasized!

SUB

The SUB element renders text as subscript.

Figure D.47. The SUB element.

Syntax: _{...}

The SUB element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of SUB

<P>Drink lots of H₂O!

<P>Do not drink concentrated H₂SO₄!

SUP

The SUP element renders text as superscript.

Figure D.48. The SUP element.

Syntax: ^{...}

The SUP element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of SUP

E = mc²

TABLE

The TABLE element creates an empty table to which you can add rows and cells using the TR, TD, and TH elements.

Figure D.49. The TABLE element.

Figure D.50. Another TABLE example. Note that table cells can have different attributes under Microsoft Internet
Explorer.

Syntax: <TABLE ALIGN=align-type BACKGROUND=url BGCOLOR=color
BORDER=n BORDERCOLOR=color BORDERCOLORDARK=color
BORDERCOLORLIGHT=color CELLPADDING=n
CELLSPACING=n COLS=n FRAME=frame-type RULES=rules
WIDTH=n>...</TABLE>

Options include the following:

ALIGN=align-type Specifies the alignment of the contents of the
table. Align type can be

LEFT: The table contents align to the left edge
of the table. This is the default setting.

CENTER: The table contents are aligned to the
center edge of the table.

RIGHT: The table contents align to the right
edge of the table.

BACKGROUND=url Specifies a background picture to be tiled in the
table background.

BGCOLOR=color Specifies the background color of the
document. Colors are specified in the HEX,
00-FF for each component of the RGB channel
in the #RRGGBB format, or by specifying one
of the Microsoft Internet Explorer predefined
colors: Aqua, Black, Blue, Fuchsia, Gray,
Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, Yellow, or White.

BORDER=n Specifies the size, in pixels, of the table border.
The default is zero.

BORDERCOLOR=color Specifies the border color of the table. Colors
are specified in the HEX, 00-FF for each
component of the RGB channel in the
#RRGGBB format.

BORDERCOLORDARK=color Specifies the dark color used for drawing
tridimensional table borders. Colors are
specified in the HEX, 00-FF for each
component of the RGB channel in the
#RRGGBB format.

BORDERCOLORLIGHT=color Specifies the light color used for drawing
tridimensional table borders. Colors are
specified in the HEX, 00-FF for each
component of the RGB channel in the
#RRGGBB format.

CELLPADDING=n Specifies the amount of space in pixels between
the sides of a cell and its contents.

CELLSPACING=n Specifies the amount of space in pixels between
cells.

COLS=n Specifies the number of columns in a table.
This option can speed up the rendering of
complex tables because the browser doesn't
need to calculate various settings.

FRAME=frame-type Specifies which sides of the frame are
displayed. Possible values include

VOID: Removes all borders.

ABOVE: Displays a border on the top side of
the table frame.

BELOW: Displays a border on the bottom side
of the table frame.

HSIDES: Displays a border on the horizontal
sides, that is top and bottom sides of the table
frame.

LHS: Displays a border on the left side of the
table frame.

RHS: Displays a border on the right side of the
table frame

VSIDES: Displays a border on the vertical
sides of the table frame, which is the left and
right table frames.

BOX: Displays a border on all sides of the table
frame.

BORDER: Displays a border on all sides of the
table frame.

RULES=rules Specifies the inner lines of the table frame.
Possible values are

NONE: Doesn't display interior table lines.

GROUPS: Displays horizontal lines between all
table sections or groups, such as the head, body,
foot, and column groups (by use of the
THEAD, TBODY, TFOOT, and COLGROUP
elements, respectively).

ROWS: Displays horizontal lines between all
table rows.

COLS: Displays vertical lines between table
columns.

ALL: Displays all lines.

WIDTH=n Sets the width of the table in pixels, or as a
percentage of the window if n is specified with
the % suffix.

The TABLE element is allowed within these elements:

CAPTION and TR

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of TABLE

<TABLE BORDER=1 ALIGN=LEFT>

<TR>

<TH>Name<TH>Age<TH>Phone

</TR>

<TR>

<TD>Joe Blow<TD>27<TH>272-2920

</TR>

<TR>

<TD>John Doe<TD COLSPAN=2 ALIGN=CENTER>UNKNOWN

</TR>

</TABLE>

This table has one cell with a COLSPAN of 2. It also is bordered

by a BORDER=1 setting. This text is wrapping along the side due to

the ALIGN=LEFT attribute in the TABLE element.

<BR CLEAR=ALL>

<P>

<TABLE BORDER=3 ALIGN=RIGHT >

<TR>

<TH>Name<TH>Age<TH>Phone

</TR>

<TR>

<TD>Joe Blow<TD>27<TH>272-2920

</TR>

<TR>

<TD>John Doe<TD COLSPAN=2 ALIGN=CENTER>UNKNOWN

</TR>

</TABLE>

This table is much like the table above, except for the fact

that it has a thicker BORDER (3) and table is aligned to the

right rather than to the left.

TBODY

TBODY defines the body of the table in contrast to the header or footer. The TBODY element is optional if the table doesn't
have a header and a footer. A table can have multiple TBODY elements. The closing tag is optional.

Syntax: <TBODY>...</TBODY>

The TBODY element is allowed within this element:

TABLE

The element is allowed inside the following:

TR, TH, and TD

Example of TBODY

<TABLE>

<THEAD>

<TR>

 </TR>

<TBODY>

<TR>

 </TR>

</TBODY>

</TABLE>

TD

The TD element is used to define a table data cell.

Syntax: <TD ALIGN=align-type BACKGROUND=url BGCOLOR=color
BORDERCOLOR=color BORDERCOLORDARK=color
BORDERCOLORLIGHT=color COLSPAN=n NOWRAP=NOWRAP
ROWSPAN=n VALIGN=align-type>…</TD>

Options include the following:

ALIGN=align-type Specifies the alignment of the contents of the
cell, align-type can be one of the following:

LEFT: The contents are left aligned.

CENTER: The contents are centered.

RIGHT: The contents are right aligned.

BACKGROUND=url Specifies a background picture to be tiled in the
cell background.

BGCOLOR=color Specifies the background color of the
document. Colors are specified in the HEX,
00-FF for each component of the RGB channel
in the #RRGGBB format. or by specifying one
of the Microsoft Internet Explorer predefined
colors: Aqua, Black, Blue, Fuchsia, Gray,
Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, Yellow, White.

BORDERCOLOR=color Specifies the border color of the cell. Colors are
specified in the HEX, 00-FF for each
component of the RGB channel in the
#RRGGBB format.

BORDERCOLORDARK=color Specifies the dark color used for drawing
tridimensional cell borders. Colors are specified
in the HEX, 00-FF for each component of the
RGB channel in the #RRGGBB format.

BORDERCOLORLIGHT=color Specifies the light color used for drawing
tridimensional cell borders. Colors are specified
in the HEX, 00-FF for each component of the
RGB channel in the #RRGGBB format.

VALIGN=align-type Specifies the vertical alignment of the objects
inside the cell. Align-type can be one of the
following values:

TOP: Text is aligned with the top of the cell.

MIDDLE: Text is centered vertically with the
middle of the cell. This is the default setting.

BOTTOM: Text is aligned with the cell's
bottom.

BASELINE: Text in neighboring cells is
aligned along a common baseline.

The TD element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM,
FONT, FORM, H1...H6, HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE, SAMP,
SCRIPT, SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR, and
XMP

The element is allowed inside the following:

TR

Example of TD

 <TR>

<TD>John Doe<TD COLSPAN=2 ALIGN=CENTER>UNKNOWN

</TR>

TEXTAREA

The TEXTAREA creates a multiline text entry widget that can be used to enter and edit multiple lines of text.

Figure D.51. The TEXTAREA element.

Syntax: <TEXTAREA COLS=n NAME=name ROWS=n>

Options include the following:

COLS=n Sets the width of the text area in characters.

NAME=name Sets the name of the text area. name is used to map the contents of
the widget to a variable that is submitted when the form is sent.

ROWS=n Sets the height of the text area in lines of text.

The TEXTAREA element is allowed within these elements:

Not applicable. The TEXTAREA element is not a container element.

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of TEXTAREA

<TEXTAREA COLS=80 ROWS=10 NAME=textarea></TEXTAREA>

TFOOT

The TFOOT element defines a table footer. This element is optional and is used to distinguish possible rows in the head and
body of a table. Closing tag is optional.

Syntax: <TFOOT>...</TFOOT>

The TFOOT element is allowed within this element:

TR

The element is allowed inside the following:

TABLE

Example of TFOOT

<TABLE>

<THEAD>

<TR>

 </TR>

<TBODY>

<TR>

 </TR>

</TBODY>

<TFOOT>

<TR>

 </TR>

</TFOOT>

</TABLE>

TH (Table Heading)

The TH element creates a row or column heading in a table. Elements in the table head are emphasized because they label the
columns.

Syntax: <TD ALIGN=align-type BACKGROUND=url BGCOLOR=color
BORDERCOLOR=color BORDERCOLORDARK=color
BORDERCOLORLIGHT=color COLSPAN=n NOWRAP=NOWRAP
ROWSPAN=n VALIGN=align-type>...</TD>

The following are options for TH:

ALIGN=align-type Specifies the alignment of the contents of the
cell. align-type can be one of the following:

LEFT: The contents are left aligned.

CENTER: The contents are centered.

RIGHT: The contents are right aligned.

BACKGROUND=url Specifies a background picture to be tiled in the
cell background.

BGCOLOR= Specifies the background color of the
document. Colors are specified in the HEX,
00-FF for each component of the RGB channel
in the #RRGGBB format, or by specifying one
of the Microsoft Internet Explorer predefined
colors: Aqua, Black, Blue, Fuchsia, Gray,
Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, Yellow, or White.

BORDERCOLOR=color Specifies the border color of the cell. Colors are
specified in the HEX, 00-FF for each
component of the RGB channel in the
#RRGGBB format.

BORDERCOLORDARK=color Specifies the dark color used for drawing
tridimensional cell borders. Colors are specified
in the HEX, 00-FF for each component of the
RGB channel in the #RRGGBB format.

BORDERCOLORLIGHT=color Specifies the light color used for drawing
tridimensional cell borders. Colors are specified
in the HEX, 00-FF for each component of the
RGB channel in the #RRGGBB format.

VALIGN=align-type Specifies the vertical alignment of the objects
inside the cell. align-type can be one of the
following values:

TOP: Text is aligned with the top of the cell.

MIDDLE: Text is centered vertically with the
middle of the cell. This is the default setting.

BOTTOM: Text is aligned with the cell's
bottom.

BASELINE: Text in neighboring cells is
aligned along a common baseline.

The TH element is allowed within these elements:

A, ADDRESS, APPLET, B, BIG, BLOCKQUOTE, BR, CENTER, CITE, CODE, DFN, DIR, DIV, DL, EM,
FONT, FORM, H1...H6, HR, I, IMG, INPUT, ISINDEX, KBD, LISTING, MAP, MENU, OL, P, PRE, SAMP,
SCRIPT, SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TABLE, TEXTAREA, TT, U, UL, VAR, and
XMP

The element is allowed inside the following:

TR

Example of TH

<TABLE BORDER=3 ALIGN=RIGHT >

<TR>

<TH>Name<TH>Age<TH>Phone

</TR>

</TABLE>

THEAD

The THEAD element defines a table header. This element is optional and only one is allowed per table. Its purpose is to give
control of the rendering of the rows from those in the table body and table footer.

Syntax: <THEAD>...</THEAD>

The THEAD element is allowed within this element:

TR

The element is allowed inside the following:

TABLE

Example of THEAD

<TABLE>

<THEAD>

<TR>

 </TR>

<TBODY>

<TR>

 </TR>

</TBODY>

<TFOOT>

<TR>

 </TR>

</TFOOT>

</TABLE>

TITLE

The TITLE element specifies the title of the document. The title specified is usually displayed as the window title. This
element is only valid within the HEAD element. A closing tag is required.

Syntax: <TITLE>...</TITLE>

The TITLE element is allowed within these elements

Not applicable.

The element is allowed inside the following:

HEAD

Example of TITLE

<TITLE>This is the title of my document</TITLE>

TR

The TR element creates a row inside a table. The closing tag is optional.

Syntax: <TR ALIGN=align-type BACKGROUND=url BGCOLOR=color
BORDERCOLOR=color BORDERCOLORDARK=color
BORDERCOLORLIGHT=color VALIGN=align-type>…</TR>

Options include the following:

ALIGN=align-type Specifies the alignment of the contents of the
cell, align-type can include one of the
following:

LEFT: The contents are left aligned.

CENTER: The contents are centered.

RIGHT: The contents are right aligned.

BACKGROUND=url Specifies a background picture to be tiled in the
cell background.

BGCOLOR=color Specifies the background color of the
document. Colors are specified in the HEX,
00-FF for each component of the RGB channel
in the #RRGGBB format, or by specifying one
of the Microsoft Internet Explorer predefined
colors: Aqua, Black, Blue, Fuchsia, Gray,
Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, Yellow, White.

BORDERCOLOR=color Specifies the border color of the cell. Colors are
specified in the HEX, 00-FF for each
component of the RGB channel in the
#RRGGBB format.

BORDERCOLORDARK=color Specifies the dark color used for drawing
tridimensional cell borders. Colors are specified
in the HEX, 00-FF for each component of the
RGB channel in the #RRGGBB format.

BORDERCOLORLIGHT=color Specifies the light color used for drawing
tridimensional cell borders. Colors are specified
in the HEX, 00-FF for each component of the
RGB channel in the #RRGGBB format.

VALIGN=align-type Specifies the vertical alignment of the objects
inside the cell. align-type can be one of the
following values:

TOP: Text is aligned with the top of the cell.

MIDDLE: Text is centered vertically with the
middle of the cell. This is the default setting.

BOTTOM: Text is aligned with the cell's
bottom.

BASELINE: Text in neighboring cells is
aligned along a common baseline.

The TR element is allowed within these elements

TD and TH

The element is allowed inside the following:

TABLE

Example of TR

<TABLE>

<TR>

 </TR>

</TABLE>

TT (Teletype)

The TT element specifies that text should be rendered in a monospace font to simulate output from a teletype.

Figure D.52. The TT (teletype) element.

Syntax: <TT>...</TT>

The TT element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1...H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP, TD,
TEXTFLOW, TH, TT, U, and VAR

Example of TT

...

<TT>

Here is some text rendered in a teletype (TT) style

</TT>

...

U (Underline)

The U element renders emphasis on the text by underlining it.

Figure D.53. The U element.

Syntax: <U>...</U>

The U element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of U

<U>

Here is some underlined text.

</U>

UL (Unordered List)

The UL element renders lines of text as a bulleted list. Each element in the list is denoted by a LI element. Open and closing
tags are required.

Syntax: <UL COMPACT TYPE=bullet-type>...

Options include the following:

COMPACT This setting suggests that items in the list are rendered in a
compact way, by using a smaller font size or by reducing the
vertical spacing between items in the list whenever possible.

TYPE=bullet-type Specifies the type of bullet to render. Possible options include

DISK: Renders a standard solid bullet.

SQUARE: Renders a square bullet.

CIRCLE: Renders a nonsolid solid bullet.

The UL element is allowed within this element:

LI

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

VAR

The VAR element renders the enclosed text as a variable. Text is displayed in a small monospaced font. Open and close tags
are required.

Figure D.54. The VAR element.
Syntax: <VAR>...</VAR>

The VAR element is allowed within these elements:

A, APPLET, B, BIG, BR, CITE, CODE, DFN, EM, FONT, I, IMG, INPUT, KBD, MAP, SAMP, SCRIPT,
SELECT, SMALL, STRIKE, STRONG, SUB, SUP, TEXTAREA, TT, U, and VAR

The element is allowed inside the following:

A, ADDRESS, B, BIG, BLOCKQUOTE, BODY, CAPTION, CENTER, CITE, CODE, DD, DFN, DIV, DT, EM,
FONT, FORM, H1, H2, H3, H4, H5, H6, I, KBD, LI, P, PRE, SAMP, SMALL, STRIKE, STRONG, SUB, SUP,
TD, TEXTFLOW, TH, TT, U, and VAR

Example of VAR

In Einstein's general law of relativity, <VAR>E</VAR> is energy,

<VAR>m</VAR> is mass, and <VAR>c</VAR> is the speed of light.

WBR

>A HREF="s eleme.gif"<Syntax: <WBR>

The WBR element is allowed within these elements:

Not applicable. Element is not a container.

The element is allowed inside the following:

NOBR

Example of WBR

<NOBR>

<P>This is a very long line of text that I want to break here,

<WBR> because I want this line unbroken!

</NOBR>

XMP (Example)

The XMP element renders text it encloses as an example. Usually, the text is rendered in a monospaced font.

Figure D.55. The XMP element.

Syntax: <XMP>...</XMP>

The XMP element is allowed within these elements:

Not applicable.

The element is allowed inside the following:

BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, and TH

Example of XMP

<HTML>

<HEAD>

<TITLE>XMP (Example)</TITLE>

</HEAD>

<BODY>

<H1>XMP (Example)</H1>

<HR>

What is the answer to this problem:

<P>

<XMP>

What is the square root of -1?

</XMP>

<P>

What did you suggest?

</BODY>

</HTML>

DNS: the Domain Name System■

What Is DNS?

Top-Level Domain Designations in the United States■

Geographical Domain Designations■

■

How named Works■

Running Your Own Domain Name Server■

DNS Configuration Files

Reverse Lookups: IP to Hostname, the IN-ADDR.ARPA Domain■

SOA Record■

NS Records■

Address and Alias Records■

■

The db.IP File

PTR Records■

The Loopback Interface■

The named.root File■

The /etc/named.boot File■

■

Starting named■

Testing Your Name Server■

Configuring a Secondary Name Server■

Configuring Hosts in Your Network to Use the Name Server■

Summary■

E

DNS and BIND Primer

The Internet is a vast collection of networks. Before a computer can talk to another, it needs an address. This
address typically takes the form of a name because names are easier for people to remember. Computers, on
the other hand, prefer numbers.

Without the Domain Name System (DNS), your computer would need to have a huge address book of names
and addresses that included every computer on the Internet. If you wanted to send e-mail to a user at
host.foo.com, the system would have to figure out that you wanted to talk to the machine at address 1.2.3.4
and do its thing.

This approach has several problems, including the following:

Your address book would always have to be up-to-date. An old address book would not have entries
that were recently added; or worse, if a host changed addresses, you would no longer be able to
communicate with that host.

●

Your address book would have to include every address for every system that you wanted to
communicate with.

●

No two hosts could share the same name.●

What a mess! Believe it or not, this was the way that it was until 1984. A large host table (HOSTS.TXT) was
maintained in one server at the Stanford Research Institute Network Information Center (the NIC). With more
and more networks going online, it became almost impossible to keep the host list up-to-date. Before the list
would be downloaded by all hosts, someone would have introduced a change that would require downloading
yet another new list!

Vestiges of this address book are still used by your system to look up hosts in your local network— the
/etc/hosts file.

DNS: the Domain Name System

A new system developed by Paul Mockapetris of USC's Information Sciences Institute was proposed as a
replacement for HOSTS.TXT. Mockapetris's system addressed the network-load and consistency problems
that the infamous HOSTS.TXT system had. Mockapetris's system boasted the following capabilities:

The elimination of the single repository for host information would eliminate network traffic problems
caused by network administrators downloading an updated version of the HOSTS.TXT file.

1.

It would also introduce a name-based domain system, where each domain would have its own internal
context; thus allowing for hosts in different domains to have the same name.

2.

And most importantly, it would allow for delegation of host information management. The
responsibility for managing each network and each network's subdomain was handed to the local
administrator for the zone in question, which made the task of keeping information up-to-date much
more manageable. Local host information could be made available globally through the client/server
nature of the system, insuring that each request was answered with reliable data from an authoritative
source.

3.

The original DNS system was described in the 1983 Request for Comment (RFC) documents 882 and 883.
Both have been updated and superseded in 1987 by RFCs 1034 and 1035, and again in 1990 by RFCs 1101
and 1183, which implement the current specification of the DNS. In software, DNS is implemented on UNIX
systems as the Berkeley Internet Name Domain (BIND) system. BIND is shipped in almost every UNIX box.

The current BIND release is composed of several programs including: named, named-xfer, named.restart,
named.reload, ndc, nslookup, and the resolver libraries. The resolver libraries provide routines for programs to
query DNS name servers, so you can design programs that make use of the DNS. Here's a list of the entire
distribution and what each does:

dig A domain information groper; a command line tool that can be
used to gather information from a DNS server. It has zillions of
options.

dnsquery A program that uses the BIND resolver library calls to query name
servers.

host A program that does reverse DNS lookups. Instead of specifying a
hostname to find its IP address, you supply the IP, and host returns
the hostname.

named-xfer A tool for doing zone transfers. Usually this program is called by
other software. It can also be used to debug a zone transfer
problem. But more than likely you won't use it at all.

named The Internet domain name server daemon, and the focus of my
attention in this appendix.

named.reload A convenience program to restart the named daemon and force the
server to reload and update its database files, if necessary. This
program uses a hangup (SIGHUP) signal.

named.restart A convenience program to restart the named daemon and to force
the server to reload and update its database files, if necessary. This
program kills the name server by using a kill (SIGKILL) signal
and then starts a new server.

ndc A cool program that allows you to send various signals to the
named daemon. This command allows you to monitor the status of
the server as well as to force database reloads. It has many other
options.

What Is DNS?

DNS is a distributed database. By distributed I mean that no single repository contains complete information
regarding other domains. A program called name server is responsible for implementing the server portion of
the equation. When a machine is configured to use DNS, client programs making calls to the gethostbyname()
and gethostbyaddr() library routines use the resolver library. This library allows them to query a name server
across a network instead of looking up information in the /etc/host file.

The structure of the Internet domain system is similar to that of the UNIX file system. There's a root domain
and a series of directories called top-level domains. In turn, top-level domains are composed of other
subdirectories or subdomains. Each domain or subdomain is separated by a dot (.). Each second-level domain
can have up to 26 characters. Subdomain labels can have up to 63 characters in length. The root domain is
null, meaning there's no label, and is usually represented by empty quotes (""). Unlike a file path, domain
names are written and read from the bottom up:

host.subdomain.domain.topleveldomain

The host label is the name of the machine.

The subdomain label is a subdivision of a domain. Typically subdomains are used to create logical groupings
of machines to match some internal organization criteria. Don't be surprised if you ever see more than one
subdomain. As a matter of fact, subdomains are common under geographical domain designations.

The domain is the domain name of the organization, usually matching the organization's name, such as IBM,
APPLE, and NEXT.

The topleveldomain is a classification of the domain.

Top-Level Domain Designations in the United States

COM Reserved for commercial organizations such as Digital Equipment
Corporation (digital.com) or Hewlett-Packard Corporation (hp.com).

EDU Used by educational organizations such as the University of Wisconsin
(uw.edu).

GOV Used by U.S. government organizations and agencies such as NASA
(nasa.gov) or the Federal Bureau of Investigation (fbi.gov).

MIL Reserved for use by the U.S. Armed Forces such as the Air Force (af.mil)
or the Navy (navy.mil).

NET Reserved for networking organizations and leased line providers such as
Internet Connect (inc.net), a regional Internet service provider in
Wisconsin.

ORG Reserved for noncommercial organizations such as the popular Electronic
Frontier Foundation (eff.org).

INT International organizations such as NATO (nato.int)

ARPA This is a historical domain that was used during transition from the host
tables to the DNS. Organizations and networks originally found under
this domain have since migrated to their appropriate locations on one of
the previous subdomains.

Fig. E.1. The U.S. Top-Level Domains. Domains are shown in ovals. A machine is shown as a box

This statement is actually not the full truth. The original classifications originated before the Internet became
an international entity. Given its incredible and unexpected success everywhere, additional classifications
emerged—geographical designations.

Geographical Domain Designations

Geographical designations follow the ISO 3166 standard, which establishes a two-letter abbreviation for
country names. The only inconsistency is Great Britain, which goes by UK instead of GB. The United States
also has a geographical designation, US, which is not yet as widely used as the others. The U.S. geographical
domain is supposed to accommodate U.S. state and local government agencies, schools, libraries, museums,
and individuals.

Geographical domains are at the same hierarchical level as the standard U.S. domains and are properly
registered with the NIC. However, administration of those domains is handled by different organizations in
various countries.

The subdomains for the U.S. domain follow postal abbreviation's conventions for the states and territories.
Each state can then further subdomain according to an individual city name, locale, plus the hostname.

In addition to the state subdomains, there are two other categories: FED for agencies of the federal
government and DNI for Distributed National Institutes or organizations that span state, regional, and other
organization boundaries that are national in scope.

Within each state's subdomain there are locality names. These can be cities, counties, or local names. The
locality can be a CI for city or CO for county:

hostname.CI.locality.state.US -> pear.CI.CEDARBURG.WI.US

hostname.CO.locality.state.US -> apple.CO.MILWAUKEE.WI.US

A state subdomain, groups the following subdomains:

K12 For public schools. Private schools add the PVT name,
schoolname.PVT.K12.state.US.

CC For community colleges: collegename.CC.state.US.

TEC For technical colleges: collegename.TEC.state.US.

LIB For libraries: library.LIB.state.US.

STATE For state government agencies: agency.STATE.state.US.

GEN For General Independent Entity. For anything that doesn't fit in the other
categories.

Fig. E.2. The U.S domain. Notice that other countries and standard U.S top level domains share the same
level.

Table E.1 lists all the top-level domains known at the time of this writing. However, this may be outdated by
now. This table is a reflection on the dynamics of our world: New countries are formed, and new countries
join the Internet community.

Table E.1. Geographical domains.

Domain Country or Organization

AD Andorra

AE United Arab Emirates

AF Afghanistan

AG Antigua and Barbuda

AI Anguilla

AL Albania

AM Armenia

AN Netherlands Antilles

AO Angola

AQ Antarctica

AR Argentina

AS American Samoa

AT Austria

AU Australia

AW Aruba

AZ Azerbaijan

BA Bosnia and Herzegovina

BB Barbados

BD Bangladesh

BE Belgium

BF Burkina Faso

BG Bulgaria

BH Bahrain

BI Burundi

BJ Benin

BM Bermuda

BN Brunei Darussalam

BO Bolivia

BR Brazil

BS Bahamas

BT Bhutan

BV Bouvet Island

BW Botswana

BY Belarus

BZ Belize

CA Canada

CC Cocos (Keeling) Islands

CF Central African Republic

CG Congo

CH Switzerland

CI Cote D'Ivoire (Ivory Coast)

CK Cook Islands

CL Chile

CM Cameroon

CN China

CO Colombia

CR Costa Rica

CS Czechoslovakia (former)

CU Cuba

CV Cape Verde

CX Christmas Island

CY Cyprus

CZ Czech Republic

DE Germany

DJ Djibouti

DK Denmark

DM Dominica

DO Dominican Republic

DZ Algeria

EC Ecuador

EE Estonia

EG Egypt

EH Western Sahara

ER Eritrea

ES Spain

ET Ethiopia

FI Finland

FJ Fiji

FK Falkland Islands (Malvinas)

FM Micronesia

FO Faroe Islands

FR France

FX France, Metropolitan

GA Gabon

GD Grenada

GE Georgia

GF French Guiana

GH Ghana

GI Gibraltar

GL Greenland

GM Gambia

GN Guinea

GP Guadeloupe

GQ Equatorial Guinea

GR Greece

GS S. Georgia and S. Sandwich Isls.

GT Guatemala

GU Guam

GW Guinea-Bissau

GY Guyana

HK Hong Kong

HM Heard and McDonald Islands

HN Honduras

HR Croatia (Hrvatska)

HT Haiti

HU Hungary

ID Indonesia

IE Ireland

IL Israel

IN India

IO British Indian Ocean Territory

IQ Iraq

IR Iran

IS Iceland

IT Italy

JM Jamaica

JO Jordan

JP Japan

KE Kenya

KG Kyrgyzstan

KH Cambodia

KI Kiribati

KM Comoros

KN Saint Kitts and Nevis

KP Korea (North)

KR Korea (South)

KW Kuwait

KY Cayman Islands

KZ Kazakhstan

LA Laos

LB Lebanon

LC Saint Lucia

LI Liechtenstein

LK Sri Lanka

LR Liberia

LS Lesotho

LT Lithuania

LU Luxembourg

LV Latvia

LY Libya

MA Morocco

MC Monaco

MD Moldova

MG Madagascar

MH Marshall Islands

MK Macedonia

ML Mali

MM Myanmar

MN Mongolia

MO Macau

MP Northern Mariana Islands

MQ Martinique

MR Mauritania

MS Montserrat

MT Malta

MU Mauritius

MV Maldives

MW Malawi

MX Mexico

MY Malaysia

MZ Mozambique

NA Namibia

NC New Caledonia

NE Niger

NF Norfolk Island

NG Nigeria

NI Nicaragua

NL Netherlands

NO Norway

NP Nepal

NR Nauru

NT Neutral Zone

NU Niue

NZ New Zealand (Aotearoa)

OM Oman

PA Panama

PE Peru

PF French Polynesia

PG Papua New Guinea

PH Philippines

PK Pakistan

PL Poland

PM St. Pierre and Miquelon

PN Pitcairn

PR Puerto Rico

PT Portugal

PW Palau

PY Paraguay

QA Qatar

RE Reunion

RO Romania

RU Russian Federation

RW Rwanda

SA Saudi Arabia

SB Solomon Islands

SC Seychelles

SD Sudan

SE Sweden

SG Singapore

SH St. Helena

SI Slovenia

SJ Svalbard and Jan Mayen Islands

SK Slovak Republic

SL Sierra Leone

SM San Marino

SN Senegal

SO Somalia

SR Suriname

ST Sao Tome and Principe

SU USSR (former)

SV El Salvador

SY Syria

SZ Swaziland

TC Turks and Caicos Islands

TD Chad

TF French Southern Territories

TG Togo

TH Thailand

TJ Tajikistan

TK Tokelau

TM Turkmenistan

TN Tunisia

TO Tonga

TP East Timor

TR Turkey

TT Trinidad and Tobago

TV Tuvalu

TW Taiwan

TZ Tanzania

UA Ukraine

UG Uganda

UK United Kingdom

UM U.S. Minor Outlying Islands

US United States

UY Uruguay

UZ Uzbekistan

VA Vatican City State (Holy See)

VC Saint Vincent and the Grenadines

VE Venezuela

VG Virgin Islands (British)

VI Virgin Islands (U.S.)

VN Vietnam

VU Vanuatu

WF Wallis and Futuna Islands

WS Samoa

YE Yemen

YT Mayotte

YU Yugoslavia

ZA South Africa

ZM Zambia

ZR Zaire

ZW Zimbabwe

COM U.S. commercial

EDU U.S. educational

GOV U.S. government

INT International

MIL U.S. military

NET Network

ORG Nonprofit organization

ARPA Old style Arpanet

NATO NATO field

How named Works

named (pronounced name-d) is the BIND name server daemon. This software answers queries about
hostnames and IP addresses. When named doesn't know the answer to a query, it asks other servers (typically
in the top-level domains) that provide information on how to contact other name servers responsible for the
domain in question. named caches this information in case there's a need to find another host near that domain.
This allows it to ask a closer name server for the answer in future queries. This effectively skips the top-level
name servers from the process and reduces the overall effort required to obtain the new address.

There are three types of name servers:

Primary●

Secondary●

Caching-only●

Name servers are distinguished by the source of their information and if the server providing the information
is authoritative for the domain. Authoritative name servers provide information that is "guaranteed" to be
correct. While nonauthoritative answers are usually correct, primary and secondary servers for a domain are
the only servers authoritative for the information. Caching-only name servers are never authoritative, although
they help speed up the process a great deal.

I should qualify the guaranteed qualifier I used in the last paragraph. It is possible for information provided by
a secondary name server to be stale. Unless the System Administrator manually updates the secondary servers,
it is possible for secondary servers to distribute stale information until their refresh period expires. A refresh
period forces secondary name servers to check for changes on the domain database file after the period of time
specified by the Administrator managing the domain is complete. Typically this period is no longer than six
hours.

If you were wondering about the reliability of cached information, it will satisfy your curiosity to learn that
DNS information is usually cached for a little while. Cached information only exists until the Time To Live
(TTL) delay expires. The TTL for DNS-cached records is usually set to one day. You should also be aware
that the top-level and sometimes second-level domain name servers never cache information. Otherwise,
top-level information could be vulnerable to tainted information. Also, because of the amount of information
they handle, their caches would quickly grow and bloat, which increases the computational load required to
find an answer.

Running Your Own Domain Name Server

Before you proceed, you will need to register your domain name with the InterNIC if your domain falls into
any of the ORG, NET, EDU, GOV, and COM domains. If you want to register a U.S. domain, go to
http://www.isi.edu/in-notes/usdnr.

Registering your domain involves a few steps:

Figure out where in the domain hierarchy your organization falls.1.

Find a domain name that is not in use by another site in that domain hierarchy.2.

If you are not on the Internet yet, find someone that will host a temporary name server for you.3.

Fill out an application.4.

Wait for the application to be approved.5.

Registering your own domain can be a great thing. It establishes your identity in the Internet, and it makes you
available to the world. To search for names that have not been taken, you can visit http://rs.internic.net for
searches involving ORG, NET, EDU, GOV, and COM domains. To search in the U.S. subdomain, visit

http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#105

http://www.isi.edu/in-notes/usdnr).

Choose the registration services link. Once on that page, choose the Whois registration tool. This page gives
you a Web interface to the whois program. The whois program allows you to research domain name
information among other things. If you find a match, your name is in use. Some things to keep in mind:
domain names cannot be longer than 26 characters and can only contain letters, digits, and dashes.

Once you find a name that is not in use, you can go ahead and complete the World Wide Web application
form. You will need to have the address for two name servers that supply information about your domain. The
machines you list in the application will be queried for information about your domain, so you need to make
sure that they are reachable or if your network is not up, that someone runs DNS for you temporarily. Usually
your service provider can help with this. If the name servers are not found during the verification process, your
application will be delayed.

Once you complete the online form, a copy of the application will be mailed to you. Please note that the
application you filled online is not processed. To process the request you need to e-mail the form back to
domreg@internic.net.

A small charge is associated with registering a domain name. New registrations cost $100, and the registration
is good for two years. Subsequent renewals are $50/year. If you don't pay your registration fee, the top-level
domain servers will forget about your domain, and no one will be able to reach you. That's power!

Once your domain is approved, you are ready to set up your own domain name server. Approvals can take
anywhere from one day to three weeks depending on load and other things.

To run a domain name server, you will need to install BIND. The source for BIND can be found at
http://www.isc.org/isc or from ftp://ftp.vix.com/pub/bind/release/bind.tar.gz. For your convenience, a copy has
been included on the CD-ROM that accompanies this book.

Once you obtain the source, you should follow the compilation instructions in the package. The official release
at the time I grabbed my copy was 4.9.3. As usual, running outdated software creates a source of security
problems. If your system comes with an older version of the software, you really should upgrade. The
installation steps are as follows:

FTP the source.1.

Unpack the source.2.

Change your directory to the BIND distribution directory.3.

Create a build directory by issuing a make DST=build links.4.

Cd to the build directory you just created.5.

Set the appropriate options, if any, in conf/options.h.6.

Configure the makefile for settings appropriate for your machine/os. This is easily done by removing
the # from all the lines under the section that describes your operating system. If you have special
locations where you want the binaries installed, set the DEST (for destination) variable to a path more
palatable to you.

7.

mailto:domreg@internic.net
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#106
http://www.freeonlinebooks.com/cgi002t59fbi046/apache/apache_server/tppmsgs/msgs1.htm#107

To avoid confusion, keep the default paths and rename your distribution copies of
named and nslookup that came with your system to named.dist and nslookup.dist,
respectively. This way you can keep your original binaries in case you run into
trouble and you need to revert to something known to work.

Type make to build everything.1.

If compilation fails, you may want to add ./bin to your path. You can do this simply enough on a csh by
issuing the following:

set path = (./bin $path)

After make builds everything, you will want to verify which files are going to be installed. Issue a make -n
install to see where make wants to install everything. This will list all the commands that are going to be
executed by the install target without actually running them. You should then backup or rename any remaining
files that are going to be replaced with an .orig extension.

If you are running SunOS 4.1.x, NetBSD-1 or Solaris 2.x, you can integrate the new client-side resolver library
into your system shared libraries. This will upgrade all dynamically linked programs to use the new libraries
instead of the old ones. For more information, read the information included in the shres directory of the
BIND release.

If the installation proceeded properly, BIND should now be installed in your system. Congratulations!

DNS Configuration Files

The first step in setting up your DNS database is to convert your existing /etc/hosts file into its equivalent
DNS format. To configure DNS you'll need to create a few databases and startup files. I placed everything in
/usr/local/named with the exception of /etc/named.boot. named looks by default for its boot file in
/etc/named.boot. To get things running, you'll need to create a few files (replace DOMAIN with your domain
name, and IP with your network IP address):

/etc/named.boot●

/usr/local/named/db.DOMAIN●

/usr/local/named/db.IP●

/usr/local/named/db.127.0.0●

The db files: db.DOMAIN and db.IP, contain hostname-to-IP and IP-to-hostname translation tables,
respectively. The basic components for these files are

SOA Record●

NS Records●

Address and Alias Records●

PTR Records●

While the structure of the db files is similar, there's one significant difference. I mentioned that the
db.DOMAIN maps hosts to IP addresses. Data in DNS is indexed by name, including addresses. Mapping
from an IP address to a hostname (the reverse) actually turns out to be a little more difficult. Given the current
design, searching for a name would require searching the entire database until a match was found. Obviously,
this would not be very efficient. To solve the problem, the designers of DNS created a special domain that
uses IP addresses as names. This domain is called the IN-ADDR.ARPA domain.

Reverse Lookups: IP to Hostname, the IN-ADDR.ARPA Domain

The IN-ADDR.ARPA domain has four levels of subdomains. Each level represents one of the octets in a
32-bit IP address. Each level has 256 (from 0 to 255) subdomains, each named after each possible octet value.

The IN-ADDR.ARPA domain has enough room for every host on the Internet given the current 32-bit
(four-octet) IP representation.

Remember the domain names are read from the bottom up, like host.domain.dom. Because of this,
IN-ADDR.ARPA domains are represented with their IP addresses in reverse.

If your host IP address is 1.2.3.4, your host number is 4, and the IN-ADDR.ARPA name would be written as
4.3.2.1.IN-ADDR.ARPA.

This way the name server can group, organize, and retrieve IP-to-hostname queries as efficiently as the regular
name-based queries.

Before you proceed, you may want to create your db.DOMAIN and db.IP files. I created mine in
/usr/local/named and renamed DOMAIN and IP to the name of my domain and network IP, respectively
(db.ACCESSLINK.COM and db.204.95.222).

SOA Record

A start of authority (SOA) resource record is the first entry in a db file. This record indicates that the name
server is authoritative. An authoritative name server provides the most accurate and reliable information about
a domain. A single SOA record is required at the beginning of each db.DOMAIN and db.IP file.

A SOA record looks like this:

domain.dom IN SOA hostname.domain.dom. root.domain.dom. {

1 ; Serial ID

10800 ; Record Refresh in seconds (3 hours)

3600 ; Retry after one hour (in seconds)

604800 ; Expire after one week (in seconds)

86400) ; Minimum TTL (Time to live) of one day

On your db.DOMAIN file, replace domain.dom with the name of your domain (for example, acme.com).

IN stands for Internet. There are other possible values, but for this example, and more likely for your needs,
this will fit the bill.

Replace hostname.domain.dom. with the fully qualified domain name of the host where you are creating this
data. Note that the trailing period needs to be there.

Replace root.domain.dom. with a valid e-mail address for the person managing your DNS. Replace the @ sign
on the e-mail address with a period. Again, note that there's a trailing period after the address.

The serial id of the record is very important. Any time you update any of the database files, you must
increment this number. If for some reason you forget to increment the serial id, the secondary name servers
won't realize that you have modified the database and won't update their information. Secondary name servers
use this number to determine if their copy of the db file is up-to-date. A good strategy is to put the current date
in a format such as YYYYMMDDR where

YYYY is the year: 1996.

MM is the month: 06.

DD is the day: 30.

R is the number of the revision (in case you modify the file more than once on the same day): 1.

The refresh interval tells the secondary server how often to check for updates on this file.

The retry interval tells the secondary server how long to wait before trying to reach the primary
server, if the initial attempt failed.

If the secondary server repeatedly fails to contact the primary after the expire interval, data on the database is
going to be considered stale, and the secondary server will stop responding to requests for the domain.

The TTL value specifies how long resource records served from this file will remain in a caching server's
cache. After the TTL expires, the server will have to requery your server for information about your domain.

NS Records

Next, you need to specify the names of domain name servers in your domain. You do this by using name
server (NS) resource records. They look like this:

"domain.dom IN NS hostname.domain.dom."

All domain name servers that you list here will be designated authoritative for the domain. Replace
domain.dom and hostname.domain.dom. with the name of your domain (don't forget the period) and the fully
qualified domain name of the domain name server. An example of this is as follows:

ACCESSLINK.COM IN NS ns1.ACCESSLINK.COM.

ACCESSLINK.COM IN NS ns2.ACCESSLINK.COM.

Address and Alias Records

Now you'll create name-to-address mappings. Resource records for address and Alias records look like this:

; Host Addresses

localhost IN A 127.0.0.1

router IN A 204.95.222.100

www IN A 204.95.222.200

hydrogen IN A 204.95.222.1

lithium IN A 204.95.222.3

; Aliases

mailhost IN CNAME hydrogen.ACCESSLINK.COM.

ns1 IN CNAME hydrogen.ACCESSLINK.COM.

ns2 IN CNAME lithium.ACCESSLINK.COM.

ftp IN CNAME hydrogen.ACCESSLINK.COM.

The db.IP File

The db.IP file stores an IP-to-name lookup table. The main difference between the two is that instead of listing
regular IP addresses, it uses the funny IN-ADDR.ARPA notation.

Like the db.DOMAIN file, the db.IP file has a SOA Record. The only difference is that the name of the
domain is specified as IN-ADDR.ARPA domain notation:

222.95.204.IN-ADDR.ARPA IN SOA hostname.domain.dom. root.domain.dom. {

1 ; Serial ID

10800 ; Record Refresh in seconds (3 hours)

3600 ; Retry after one hour (in seconds)

604800 ; Expire after one week (in seconds)

86400) ; Minimum TTL (Time to live) of one day

The db.IP file also lists NS resource records. These are also specified in IN-ADDR.ARPA domain notation:

1.222.95.204.IN-ADDR.ARPA. IN NS ns1.ACCESSLINK.COM.

3.222.95.204.IN-ADDR.ARPA. IN NS ns2.ACCESSLINK.COM.

In addition, the db.IP file also lists its reverse version of the Address Records (IN A entries, in your
db.DOMAIN file). These are called PTR Records.

PTR Records

The DNS resource records used for IP-to-name mappings are called Pointer (PTR) Records. There's one
record for each IP address on your network. All IP addresses are specified using the IN-ADDR.ARPA domain
notation:

1.222.95.204 IN PTR hydrogen.ACCESSLINK.COM.

3.222.95.204 IN PTR lithium.ACCESSLINK.COM.

100.222.95.204 IN PTR router.ACCESSLINK.COM.

200.222.95.204 IN PTR www.ACCESSLINK.COM.

The Loopback Interface

In addition to the db.DOMAIN and db.IP files, the server will need a db.IP file for the loopback interface. This
is a special IP address that hosts use to route traffic to themselves. The address of the loopback network is
(almost always) 127.0.0.0, and the host number for the localhost is 127.0.0.1.

The file is pretty standard. If you copy your other db.IP file, you'll only need to delete all PTR records and
insert a new PTR record pointing to the localhost, the last line in the following listing:

222.95.204.IN-ADDR.ARPA IN SOA hostname.domain.dom. root.ACCESSLINK.COM. {

1 ; Serial ID

10800 ; Record Refresh in seconds (3 hours)

3600 ; Retry after one hour (in seconds)

604800 ; Expire after one week (in seconds)

86400) ; Minimum TTL (Time to live) of one day

; Name Servers

;

1.222.95.204.IN-ADDR.ARPA. IN NS ns1.ACCESSLINK.COM.

3.222.95.204.IN-ADDR.ARPA. IN NS ns2.ACCESSLINK.COM.

;

; localhost

1.0.0.127.IN-ADDR.ARPA. IN PTR localhost.

The named.root File

In addition to knowing all the gory details about your network, DNS needs to know how to contact the name
servers for the root domain. Your BIND release should have included a copy of this file. If not, you can find a
copy at

ftp://ftp.rs.internic.net/domain/named.root

This file is only used at startup. After named is able to contact the top-level name servers, it updates its
internal information.

The /etc/named.boot File

If you are following at the terminal, you have now developed and downloaded all the files you need to get
named going. However, you need to create a configuration file that can tell named where to find all its files. If
you have followed my example and created your files in /usr/local/named, your boot file will look like this:

directory /usr/local/named

primary domain.dom db.DOMAIN

primary xxx.xxx.xxx.IN-ADDR.ARPA db.IP

primary 0.0.127.IN-ADDR.ARPA db.127.0.0

cache . named.root

Here's how my boot file looks after I replace the placeholders with the naming convention described earlier:

directory /usr/local/named

primary ACCESSLINK.COM db.ACCESSLINK

primary 222.95.204.IN-ADDR.ARPA db.204.95.222

primary 0.0.127.IN-ADDR.ARPA db.127.0.0

cache . named.root

Starting named

To start the name server as root on a terminal, type:

/etc/named.

If you located your boot file somewhere other than in the default /etc/named.boot, you can tell named where to
look for it by using the -b flag, /etc/named -b pathtobootfile.

If there were any errors in your configuration files, named will log an error using syslog, and if the error is bad
enough, it will quit. To see where named will log any errors, type in the following:

grep daemon /etc/syslog.conf

This will print the name of the file where named will log errors to. In my case, the result of this command is
/usr/adm/messages, yours may be /usr/var/messages or something like that. Please note that by default named
logs a restart message whenever it starts. It is very likely that if you made a typo or forgot to enter a field,
named will complain by saying ...Unknown type:... or ...unknown field 'foo'.... Look for the offending line and
compare it to the examples.

Testing Your Name Server

If named started correctly, then you can use nslookup to see if it is serving information correctly. If your
machine was not on the Internet before, chances are that you have not set the domainname for it. On some
systems this is done with the hostname command. Other systems use domainname. To check if your system
has been set up, type hostname (or domainname) on a terminal.

If the domainname has not been set up, the superuser can set it up by giving the command an argument:

domainname domain.dom

Replace domain.dom with the name of your domain. You may want this to happen automatically at the system
startup time. Just include the line domainname domain.dom on your /etc/rc.local or equivalent system startup
file.

To see if it is all working correctly, type the following:

% nslookup lithium

Server: ns1.ACCESSLINK.COM

Address: 204.95.222.1

Name: lithium.ACCESSLINK.COM

Address: 204.95.222.3

You may want to also see if you can use nslookup to find a machine out of your network::

% nslookup www.next.com

Server: ns1.ACCESSLINK.COM

Address: 204.95.222.1

Non-authoritative answer:

Name: ftp.next.com

Address: 129.18.1.3

Aliases: www.next.com

A final test involves querying a remote name server to see if it can obtain your address. You can do this easily
with nslookup by specifying the address of the remote name server after the host you are looking for:

% nslookup lithium.accesslink.com beta.inc.net

Server: ns1.inc.net

Address: 204.95.160.2

Name: lithium.ACCESSLINK.COM

Address: 204.95.222.3

If it works, then you'll probably want named to be started up when you reboot the computer. You can
accomplish this easily enough by putting an entry such as the following in your /etc/rc.local file:

if -f [/etc/named.boot]; then

 echo "starting named …"

 /usr/etc/named

fi

The preceding script will check to see if your /etc/named.boot file exists in the /etc directory. If it does, then
name server is started.

If when you Telnet or FTP to other machines, you find that there's a long lag (10
seconds or so) between connecting and receiving a login prompt, more than likely
your reverse DNS lookups are not working properly. It is possible that your ISP, to
whom your IP addresses are registered, is not providing the proper information.
Have them check their DNS information.

Congratulations, your primary name server is now running.

Configuring a Secondary Name Server

Configuring a secondary name server is a lot less work. You should strongly consider running a secondary
name server on your site or have someone else run one for you. It is even better have someone else run DNS
for you at another site, and remember to add the address of that name server to your domain registration form.
This will ensure that if your name servers go down, your network doesn't grid to a halt.

To build a secondary name server, follow these steps:

Install the software as you did for your primary name server.1.

Copy /etc/named.boot to the other computer's /etc directory.2.

Copy /usr/local/named/named.root and db.127.0.0 to /usr/local/named/ on the other computer.3.

Edit the file /etc/named.boot on your secondary server. Change all instances of primary to secondary,
with the exception of the line referring to db.127.0.0. This name server is also primary for the loopback
address; it is its own loopback address.

4.

And that's it. To finish, copy the startup commands you put in your primary server's rc.local file.

On starting the secondary server, it will transfer a copy of all the databases to the /usr/local/named directory.

Configuring Hosts in Your Network to Use the Name
Server

Before any client in your network can use your name server, you'll need to create the /etc/resolv.conf file. This
file contains a list of all the name servers in your network and the order they are queried in. The basic format
is as follows:

search domainname...

nameserver ipaddress

Ours looks like this:

seach accesslink.com

nameserver 204.95.222.1

nameserver 204.95.222.2

Summary

Because the intention of this appendix was to provide you with a basic reference and to help you quickly set
up DNS, the information is by no means complete. DNS is not particularly complicated. However, complex
networks require complex DNS setups, and as should be expected, powerful software cannot be mastered in an
appendix; DNS keeps the Internet running. This appendix gets your DNS running; it is not an absolute
reference on the subject. For more information, I would suggest that you read the documentation included with
your release of DNS. If you FTPed the package, it contains excellent documentation as well as a frequently
asked questions (FAQ) list. As for printed information, the following might be helpful.

DNS and BIND, by Paul Albitz & Cricket Liu, is published by O'Reilly and Associates, Inc. ISBN
1-56592-010-4. It's a great book. However, some of the information is a little out-of-date.

For an excellent UNIX system administration book, the best this author has ever seen, check out UNIX System
Administration Handbook, now in its second edition. While it is impossible to cover UNIX in one volume, it
does an excellent job of explaining the art of UNIX system administration. It has more than enough detail to
get you going. This book was written by Evi Nemeth, Garth Snyder, Scott Seebass, and Trent R. Hein. It is
published by Prentice Hall, ISBN 0-13-151051-7.

