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The three 
forces of 
computation
Extendibility, reusability and reliability, our principal goals, require a set of conditio
defined in the preceding chapters. To achieve these conditions, we need a syst
method for decomposing systems into modules.

This chapter presents the basic elements of such a method, based on a simple 
reaching idea: build every module on the basis of some object type. It explains the
develops the rationale for it, and explores some of the immediate consequences.

A word of warning. Given today’s apparent prominence of object technology, s
readers might think that the battle has been won and that no further rationale is nec
This would be a mistake: we need to understand the basis for the method, if only to
common misuses and pitfalls. It is in fact frequent to see the word “object-oriented”
“structured” in an earlier era) used as mere veneer over the most conventional techn
Only by carefully building the case for object technology can we learn to detect impr
uses of the buzzword, and stay away from common mistakes reviewed later in this ch

5.1  THE INGREDIENTS OF COMPUTATION
The crucial question in our search for proper software architectures is modularization:
what criteria should we use to find the modules of our software?

To obtain the proper answer we must first examine the contending candidates

The basic triangle

Three forces are at play when we use software to perform some computations:

Action Object

Processor
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Concurrency is the 
topic of chapter 30.
To execute a software system is to use certain processors to apply certain actions to
certain objects.

The processors are the computation devices, physical or virtual, that ex
instructions. A processor can be an actual processing unit (the CPU of a compu
process on a conventional operating system, or a “thread” if the OS is multi-threade

The actions are the operations making up the computation. The exact form 
actions that we consider will depend on the level of granularity of our analysis: a
hardware level, actions are machine language operations; at the level of the har
software machine, they are instructions of the programming language; at the leve
software system, we can treat each major step of a complex algorithm as a single a

The objects are the data structures to which the actions apply. Some of these o
the data structures built by a computation for its own purposes, are internal and exis
while the computation proceeds; others (contained in the files, databases and
persistent repositories) are external and may outlive individual computations.

Processors will become important when we discuss concurrent forms of
computation, in which several sub-computations can proceed in parallel; then we
need to consider two or more processors, physical or virtual. But that is the topic of a
chapter; for the moment we can limit our attention to non-concurrent, or sequential
computations, relying on a single processor which will remain implicit.

This leaves us with actions and objects. The duality between actions and obje
what a system does vs. what it does it to — is a pervasive theme in software engineer

A note of terminology. Synonyms are available to denote each of the two aspects: the
word data will be used here as a synonym for objects; for action the discussion will often
follow common practice and talk about the functions of a system.

The term “function” is not without disadvantages, since software discussions also use it
in at least two other meanings: the mathematical sense, and the programming sense o
subprogram returning a result. But we can use it without ambiguity in the phrase the
functions of a system, which is what we need here.

The reason for using this word rather than “action” is the mere grammatical convenience
of having an associated adjective, used in the phrase functional decomposition. “Action”
has no comparable derivation. Another term whose meaning is equivalent to that of
“action” for the purpose of this discussion is operation.

Any discussion of software issues must account for both the object and fun
aspects; so must the design of any software system. But there is one question for
we must choose — the question of this chapter: what is the appropriate criterio
finding the modules of a system? Here we must decide whether modules will be b
units of functional decomposition, or around major types of objects.

From the answer will follow the difference between the object-oriented appro
and other methods. Traditional approaches build each module around some u
functional decomposition — a certain piece of the action. The object-oriented me
instead, builds each module around some type of objects.
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“Modular continu-
ity”, page 44.

Top-down design 
was sketched in 
“Modular decom-
posability”, page 40.
This book, predictably, develops the latter approach. But we should not just em
O-O decomposition because the title of the book so implies, or because it is the “in”
to do. The next few sections will carefully examine the arguments that justify using o
types as the basis for modularization — starting with an exploration of the merits
limitations of traditional, non-O-O methods. Then we will try to get a clea
understanding of what the word “object” really means for software development, alth
the full answer, requiring a little theoretical detour, will only emerge in the next chap

We will also have to wait until the next chapter for the final settlement of 
formidable and ancient fight that provides the theme for the rest of the present discu
the War of the Objects and the Functions. As we prepare ourselves for a campa
slander against the functions as a basis for system decomposition, and of corresp
praise for the objects, we must not forget the observation made above: in the en
solution to the software structuring problem must provide space for both functions
objects — although not necessarily on an equal basis. To discover this new world 
we will need to define the respective roles of its first-class and second-class citizen

5.2  FUNCTIONAL DECOMPOSITION

We should first examine the merits and limitations of the traditional approach: u
functions as a basis for the architecture of software systems. This will not only lead
appreciate why we need something else — object technology — but also help us 
when we do move into the object world, certain methodological pitfalls such as prem
operation ordering, which have been known to fool even experienced O-O develop

Continuity

A key element in answering the question “should we structure systems around fun
or around data?” is the problem of extendibility, and more precisely the goal calle
continuity in our earlier discussions. As you will recall, a design method satisfies
criterion if it yields stable architectures, keeping the amount of design cha
commensurate with the size of the specification change.

Continuity is a crucial concern if we consider the real lifecycle of software syste
including not just the production of an acceptable initial version, but a system’s long
evolution. Most systems undergo numerous changes after their first delivery. Any m
of software development that only considers the period leading to that delivery
ignores the subsequent era of change and revision is as remote from real life as
novels which end when the hero marries the heroine — the time which, as eve
knows, marks the beginning of the really interesting part.

To evaluate the quality of an architecture (and of the method that produced it
should not just consider how easy it was to obtain this architecture initially: it is ju
important to ascertain how well the architecture will weather change.

The traditional answer to the question of modularization has been top-d
functional decomposition, briefly introduced in an earlier chapter. How well does 
down design respond to the requirements of modularity?
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Top-down development

There was a most ingenious architect who had contrived a new me
for building houses, by beginning at the roof, and working downwards
to the foundation, which he justified to me by the like practice of tho
two prudent insects, the bee and the spider. 

Jonathan Swift: Gulliver’s Travels, Part III, A
Voyage to Laputa, etc., Chapter 5.

The top-down approach builds a system by stepwise refinement, starting with a defi
of its abstract function. You start the process by expressing a topmost statement 
function, such as

[C0]

“Translate a C program to machine code”

or:

[P0]

“Process a user command”

and continue with a sequence of refinement steps. Each step must decrease the 
abstraction of the elements obtained; it decomposes every operation into a combina
one or more simpler operations. For example, the next step in the first example (
compiler) could produce the decomposition

[C1]

“Read program and produce sequence of tokens”

“Parse sequence of tokens into abstract syntax tree”

“Decorate tree with semantic information”

“Generate code from decorated tree”

or, using an alternative structure (and making the simplifying assumption that a C pro
is a sequence of function definitions):

[C'1]

from
“Initialize data structures”

until
“All function definitions processed”

loop
“Read in next function definition”

“Generate partial code”

end

“Fill in cross references”
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Top-down 
design:  tree 
structure

(This figure first 
appeared on
page 41.)
In either case, the developer must at each step examine the remaining incom
expanded elements (such as “Read program …”  and “All function definitions processed”)
and expand them, using the same refinement process, until everything is at a le
abstraction low enough to allow direct implementation.

We may picture the process of top-down refinement as the development of a
Nodes represent elements of the decomposition; branches show the relation “B is part of
the refinement of A”.

The top-down approach has a number of advantages. It is a logical, well-orga
thought discipline; it can be taught effectively; it encourages orderly developme
systems; it helps the designer find a way through the apparent complexity that sy
often present at the initial stages of their design.

The top-down approach can indeed be useful for developing individual algorit
But it also suffers from limitations that make it questionable as a tool for the desig
entire systems:

• The very idea of characterizing a system by just one function is subject to dou

• By using as a basis for modular decomposition the properties that tend to chan
most, the method fails to account for the evolutionary nature of software syste

Not just one function

In the evolution of a system, what may originally have been perceived as the sys
main function may become less important over time.

Consider a typical payroll system. When stating his initial requirement, the cust
may have envisioned just what the name suggests: a system to produce paycheck
the appropriate data. His view of the system, implicit or explicit, may have been a 
ambitious version of this:

A

B D C

C1 I I1 C2 I2

Sequence

Loop Condi tional

Topmost functional abstraction
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Structure of a 
simple payroll 
program
The system takes some inputs (such as record of hours worked and emp
information) and produces some outputs (paychecks and so on). This is a simple e
functional specification, in the strict sense of the word functional: it defines the pro
as a mechanism to perform one function — pay the employees. The top-down func
method is meant precisely for such well-defined problems, where the task is to perf
single function — the “top” of the system to be built.

Assume, however, that the development of our payroll program is a succes
program does the requisite job. Most likely, the development will not stop there. G
systems have the detestable habit of giving their users plenty of ideas about all the
things they could do. As the system’s developer, you may initially have been told th
you had to do was to generate paychecks and a few auxiliary outputs. But now the re
for extensions start landing on your desk: Could the program gather some statistics
side? I did tell you that next quarter we are going to start paying some employees m
and others biweekly, did I not? And, by the way, I need a summary every mont
management, and one every quarter for the shareholders. The accountants want th
output for tax preparation purposes. Also, you are keeping all this salary informa
right? It would be really nifty to let Personnel access it interactively. I cannot imagine
that would be a difficult functionality to add.

This phenomenon of having to add unanticipated functions to successful sy
occurs in all application areas. A nuclear code that initially just applied some algorith
produce tables of numbers from batch input will be extended to handle graphical inp
output or to maintain a database of previous results. A compiler that just translated
source into object code will after a while double up as a syntax verifier, a static ana
a pretty-printer, even a programming environment.

This change process is often incremental. The new requirements evolve fro
initial ones in a continuous way. The new system is still, in many respects, “the 
system” as the old one: still a payroll system, a nuclear code, a compiler. But the or
“main function”, which may have seemed so important at first, often becomes just o
many functions; sometimes, it just vanishes, having outlived its usefulness.

If analysis and design have used a decomposition method based on the functi
system structure will follow from the designers’ original understanding of the system’s 
function. As the system evolves, the designers may feel sorry (or its maintainers, if dif
people, may feel angry) about that original assessment. Each addition of a new fun
however incremental it seems to the customer, risks invalidating the entire structure

It is crucial to find, as a criterion for decomposition, properties less volatile than
system’s main function.

Employee
 

Hours

Paychecks
Produce Paychecks

Information

Worked 
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Finding the top

Top-down methods assume that every system is characterized, at the most abstrac
by its main function. Although it is indeed easy to specify textbook example
algorithmic problems — the Tower of Hanoi, the Eight Queens and the like — thro
their functional “tops”, a more useful description of practical software systems cons
each of them as offering a number of services. Defining such a system by a single fu
is usually possible, but yields a rather artificial view.

Take an operating system. It is best understood as a system that provides 
services: allocating CPU time, managing memory, handling input and output dev
decoding and carrying out users’ commands. The modules of a well-structured O
tend to organize themselves around these groups of functions. But this is no
architecture that you will get from top-down functional decomposition; the method fo
you, as the designer, to answer the artificial question “what is the topmost function?
then to use the successive refinements of the answer as a basis for the structure.
pressed you could probably come up with an initial answer of the form

“Process all user requests”

which you could then refine into something like

from

boot

until

halted or crashed

loop

“Read in a user’s request and put it into input queue”

“Get a request r from input queue”

“Process r”

“Put result into output queue”

“Get a result o from output queue”

“Output o to its recipient”

end

Refinements can go on. From such premises, however, it is unlikely that anyon
ever develop a reasonably structured operating system.

Even systems which may at first seem to belong to the “one input, one ab
function, one output” category reveal, on closer examination, a more diverse pic
Consider the earlier example of a compiler. Reduced to its bare essentials, or to th
of older textbooks, a compiler is the implementation of one input-to-output funct
transforming source text in some programming language into machine code for a c
platform. But that is not a sufficient view of a modern compiler. Among its many serv
a compiler will perform error detection, program formating, some configura
management, logging, report generation.
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Another example is a typesetting program, taking input in some text proce
format — TEX, Microsoft Word, FrameMaker … — and generating output in HTML
Postscript or Adobe Acrobat format. Again we may view it at first as just an inpu
output filter. But most likely it will perform a number of other services as well, so it se
more interesting, when we are trying to characterize the system in the most genera
to consider the various types of data it manipulates: documents, chapters, se
paragraphs, lines, words, characters, fonts, running heads, titles, figures and others

The seemingly obvious starting point of top-down design — the view that each
development fulfills a request for a specific function — is subject to doubt:

Functions and evolution

Not only is the main function often not the best criterion to characterize a system init
it may also, as the system evolves, be among the first properties to change, forci
top-down designer into frequent redesign and defeating our attempts to satisf
continuity requirement.

Consider the example of a program that has two versions, a “batch” one w
handles every session as a single big run over the problem, and an interactive one in
a session is a sequence of transactions, with a much finer grain of user-s
communication. This is typical of large scientific programs, which often have a “let it
a big chunk of computation for the whole night” version and a “let me try out a few th
and see the results at once then continue with something else” version.

The top-down refinement of the batch version might begin as

[B0] -- Top-level abstraction

“Solve a complete instance of the problem”

[B1] -- First refinement

“Read input values”

“Compute results”

“Output results”

and so on. The top-down development of the interactive version, for its part, could pr
in the following style:

Real systems have no top.
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[I1]

“Process one transaction”

[I2]

if  “New information provided by the user” then
“Input information”

“Store it”

elseif “Request for information previously given” then 

“Retrieve requested information”

“Output it”

elseif “Request for result” then 

if  “Necessary information available” then 

“Retrieve requested result”

“Output it”

else
“Ask for confirmation of the request”

if  Yes then
“Obtain required information”

“Compute requested result”

“Output result”

end
end

else
(Etc.)

Started this way, the development will yield an entirely different result. The 
down approach fails to account for the property that the final programs are bu
different versions of the same software system — whether they are deve
concurrently or one has evolved from the other.

This example brings to light two of the most unpleasant consequences of the
down approach: its focus on the external interface (implying here an early choice be
batch and interactive) and its premature binding of temporal relations (the order in w
actions will be executed).

Interfaces and software design

System architecture should be based on substance, not form. But top-down develo
tends to use the most superficial aspect of the system — its external interface — as 
for its structure.

The focus on external interfaces is inevitable in a method that asks “What wil
system do for the end user?” as the key question: the answer will tend to emphas
most external aspects.
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Chapter 32 dis-
cusses techniques 
and tools for user 
interfaces.
The user interface is only one of the components of a system. Often, it is also a
the most volatile, if only because of the difficulty of getting it right the first time; init
versions may be of the mark, requiring experimentation and user feedback to ob
satisfactory solution. A healthy design method will try to separate the interface from
rest of the system, using more stable properties as the basis for system structuring

It is in fact often possible to build the interface separately from the rest of the sy
using one of the many tools available nowadays to produce elegant and user-fr
interfaces, often based on object-oriented techniques. The user interface then be
almost irrelevant to the overall system design.

Premature ordering

The preceding examples illustrate another drawback of top-down functi
decomposition: premature emphasis on temporal constraints. Each refinement exp
piece of the abstract structure into a more detailed control architecture, specifying the
order in which various functions (various pieces of the action) will be executed. 
ordering constraints become essential properties of the system architecture; but th
are subject to change.

Recall the two alternative candidate structures for the first refinement of a com

[C1]

“Read program and produce sequence of tokens”
“Parse sequence of tokens into abstract syntax tree”
“Decorate tree with semantic information”
“Generate code from decorated tree”

[C'1]

from
“Initialize data structures”

until
“All function definitions processed”

loop
“Read in next function definition”
“Generate partial code”

end

“Fill in cross references”

As in the preceding example we start with two completely different architectu
Each is defined by a control structure (a sequence of instructions in the first case, 
followed by an instruction in the second), implying strict ordering constraints betwee
elements of the structure. But freezing such ordering relations at the earliest sta
design is not reasonable. Issues such as the number of passes in a compiler 
sequencing of various activities (lexical analysis, parsing, semantic proces
optimization) have many possible solutions, which the designers must devis
considering space-time tradeoffs and other criteria which they do not necessarily m
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See the bibliogra-
phical notes for
references on the 
methods cited.

Chapter 11 pre-
sents assertions.
at the beginning of a project. They can perform fruitful design and implementation 
on the components long before freezing their temporal ordering, and will want to r
this sequencing freedom for as long as possible. Top-down functional design doe
provide such flexibility: you must specify the order of executing operations before
have had a chance to understand properly what these operations will do.

Some design methods that attempt to correct some of the deficiencies of func
top-down design also suffer from this premature binding of temporal relationships.
is the case, among others, with the dataflow-directed method known as structured a
and with Merise (a method popular in some European countries).

Object-oriented development, for its part, stays away from premature ordering
designer studies the various operations applicable to a certain kind of data, and sp
the effect of each, but defers for as long as possible specifying the operations’ or
execution. This may be called the shopping list approach: list needed operations — all th
operations that you may need; ignore their ordering constraints until as late as poss
the software construction process. The result is much more extendible architecture

Ordering and O-O development

The observations on the risks of premature ordering deserve a little more amplific
because even object-oriented designers are not immune. The shopping list approach is on
of the least understood parts of the method and it is not infrequent to see O-O proje
into the old trap, with damaging effects on quality. This can result in particular f
misuse of the use case idea, which we will encounter in the study of O-O methodology

The problem is that the order of operations may seem so obvious a propert
system that it will weasel itself into the earliest stages of its design, with dire consequ
if it later turns out to be not so final after all. The alternative technique (under
“shopping list” approach), perhaps less natural at first but much more flexible, uses lo
rather than temporal constraints. It relies on the assertion concept developed later
book; we can get the basic idea now through a simple non-software example.

Consider the problem of buying a house, reduced (as a gross first approximati
three operations: finding a house that suits you; getting a loan; signing the contract
a method focusing on ordering we will describe the design as a simple sequence of

[H]

find_house

get_loan

sign_contract

In the shopping list approach of O-O development we will initially refuse to att
too much importance to this ordering property. But of course constraints exist betwe
operations: you cannot sign a contract unless (let us just avoid saying until for the time
being!) you have a desired house and a loan. We can express these constraints in
rather than temporal form:
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Exercise E6.7, page 
162 (in the next 
chapter).

“Use cases”, page 
738.
[H'1]

find_property
ensure

property_found

get_loan
ensure

loan_approved

sign_contract
require

property_found and loan_approved

The notation will only be introduced formally in chapter 11, but it should be clear
enough here: require states a precondition, a logical property that an operation requ
for its execution; and ensure states a postcondition, a logical property that will follo
from an operation’s execution. We have expressed that each of the first two oper
achieves a certain property, and that the last operation requires both of these prope

Why is the logical form of stating the constraints, H'1, better than the temporal f
H1? The answer is clear: H'1 expresses the minimum requirements, avoidin
overspecification of H1. And indeed H1 is too strong, as it rules out the scheme in w
you get the loan first and then worry about the property — not at all absurd for a part
buyer whose main problem is financing. Another buyer might prefer the reverse orde
should support both schemes as long as they observe the logical constraint.

Now imagine that we turn this example into a realistic model of the process wit
many tasks involved — title search, termite inspection, pre-qualifying for the loan, fin
a real estate agent, selling your previous house if applicable, inviting your friends 
house-warming party… It may be possible to express the ordering constraints, but
result will be complicated and probably fragile (you may have to reconsider everyth
you later include another task). The logical constraint approach scales up much
smoothly; each operation simply states what it needs and what it guarantees, all in
of abstract properties.

These observations are particularly important for the would-be object designer
may still be influenced by functional ideas, and might be tempted to rely on e
identification of system usage scenarios (“use cases”) as a basis for analysis. T
incompatible with object-oriented principles, and often leads to top-down functi
decomposition of the purest form — even when the team members are convinced th
are using an object-oriented method.

We will examine, in our study of O-O methodological principles, what role can be found
for use cases in object-oriented software construction.

Reusability

After this short advance incursion into the fringes of object territory, let us resume
analysis of the top-down method, considering it this time in relation to one of our prin
goals, reusability.
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design

On the project and 
product culture see 
[M 1995].
Working top-down means that you develop software elements in respons
particular subspecifications encountered in the tree-like development of a system
given point of the development, corresponding to the refinement of a certain node
will detect the need for a specific function — such as analyzing an input command li
and write down its specification, which you or someone else will then implement.

The figure, which shows part of a top-down refinement tree, illustrates this prop
C2 is written to satisfy some sub-requirement of C; but the characteristics of C2 are
entirely determined by its immediate context — the needs of C. For example, C could be
a module in charge of analyzing some user input, and C2 could be the module in charge
of analyzing one line (part of a longer input).

This approach is good at ensuring that the design will meet the initial specifica
but it does not promote reusability. Modules are developed in response to sp
subproblems, and tend to be no more general than implied by their immediate co
Here if C is meant for input texts of a specific kind, it is unlikely that C2, which analyzes
one line of those texts, will be applicable to any other kind of input.

One can in principle include the concern for extendibility and generality in a 
down design process, and encourage developers to write modules that transce
immediate needs which led to their development. But nothing in the method encou
generalization, and in practice it tends to produce modules with narrow specificatio

The very notion of top-down design suggests the reverse of reusability. Designin
reusability means building components that are as general as possible, then combinin
into systems. This is a bottom-up process, at the opposite of the top-down idea of s
with the definition of “the problem” and deriving a solution through success
refinements.

This discussion makes top-down design appear as a byproduct of what we ca
the project culture in software engineering: the view that the unit of discourse is 
individual project, independently of earlier and later projects. The reality is less sim
project n in a company is usually a variation on project n – 1, and a preview of project
n + 1. By focusing on just one project, top-down design ignores this property of prac
software construction,

 

C2 is written to satisfy a
sub-requirement of C.

A

C

C2
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[Jackson 1983], 
pages 370-371.
Production and description

One of the reasons for the original attraction of top-down ideas is that a top-down
may be convenient to explain a design once it is in place. But what is good to docu
an existing design is not necessarily the best way to produce designs. This poin
eloquently argued by Michael Jackson in System Development:

Top-down is a reasonable way of describing things which are already fully
understood... But top-down is not a reasonable way of developing, designing,
or discovering anything. There is a close parallel with mathematics. A
mathematical textbook describes a branch of mathematics in a logical order:
each theorem stated and proved is used in the proofs of subsequent theorem.
But the theorems were not developed or discovered in this way, or in this
order...

When the developer of a system, or of a program, already has a clear idea of
the completed result in his mind, he can use top-down to describe on paper what
is in his head. This is why people can believe that they are performing top-down
design or development, and doing so successfully: they confuse the method of
description with the method of development... When the top-down phase begins,
the problem is already solved, and only details remain to be solved.

Top-down design: an assessment

This discussion of top-down functional design shows the method to be poorly adap
the development of significant systems. It remains a useful paradigm for small prog
and individual algorithms; it is certainly a helpful technique to describe well-understood
algorithms, especially in programming courses. But it does not scale up to large pra
software. By developing a system top-down you trade short-term convenience for 
term inflexibility; you unduly privilege one function over the others; you may be le
devoting your attention to interface characteristics at the expense of more fundam
properties; you lose sight of the data aspect; and you risk sacrificing reusability.

5.3  OBJECT-BASED DECOMPOSITION

The case for using objects (or more precisely, as seen below, object types) as the
system modularization is based on the quality aims defined in chapter 1, in particular
extendibility, reusability and compatibility.

The plea for using objects will be fairly short, since the case has already been
at least in part: many of the arguments against top-down, function-based design re
naturally as evidence in favor of bottom-up, object-based design.

This evidence should not, however, lead us to dismiss the functions entirely
noted at the beginning of this chapter, no approach to software construction c
complete unless it accounts for both the function and object parts. So we will need to retain
a clear role for functions in the object-oriented method, even if they must submit t
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See “Factoring Out 
Common Behav-
iors”, page 85.
objects in the resulting system architectures. The notion of abstract data type will pr
us with a definition of objects which reserves a proper place for the functions.

Extendibility

If the functions of a system, as discussed above, tend to change often over the sy
life, can we find a more stable characterization of its essential properties, so as to
our choice of modules and meet the goal of continuity?

The types of objects manipulated by the system are more promising candi
Whatever happens to the payroll processing system used earlier as an example, i
will still manipulate objects representing employees, salary scales, company regula
hours worked, pay checks. Whatever happens to a compiler or other language proc
tool, it likely will still manipulate source texts, token sequences, parse trees, ab
syntax trees, target code. Whatever happens to a finite element system, it likely wi
manipulate matrices, finite elements and grids. 

This argument is based on pragmatic observation, not on a proof that object typ
more stable than functions. But experience seems to support it overwhelmingly.

The argument only holds if we take a high-level enough view of objects. If
understood objects in terms of their physical representations, we would not be much
off than with functions — as a matter of fact probably worse, since a top-down funct
decomposition at least encourages abstraction. So the question of finding a su
abstract description of objects is crucial; it will occupy all of the next chapter. 

Reusability

The discussion of reusability pointed out that a routine (a unit of functional decompos
was usually not sufficient as a unit of reusability.

The presentation used a typical example: table searching. Starting with a seem
natural candidate for reuse, a searching routine, it noted that we cannot easily reus
a routine separately from the other operations that apply to a table, such as cre
insertion and deletion; hence the idea that a satisfactory reusable module for s
problem should be a collection of such operations. But if we try to understand
conceptual thread that unites all these operations, we find the type of objects to whic
apply — tables.

Such examples suggest that object types, fully equipped with the assoc
operations, will provide stable units of reuse.

Compatibility

Another software quality factor, compatibility, was defined as the ease with w
software products (for this discussion, modules) can be combined with each other.

It is difficult to combine actions if the data structures they access are not des
for that purpose. Why not instead try to combine entire data structures?
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the final definition.
5.4  OBJECT-ORIENTED SOFTWARE CONSTRUCTION

We have by now accumulated enough background to consider a tentative definit
object-oriented software construction. This will only be a first attempt; a more con
definition will follow from the discussion of abstract data types in the next chapter.

An informal characterization of this approach may serve as a motto for the ob
oriented designer: 

To get a working implementation, you will of course, sooner or later, have to 
out what it does. Hence the word first. Better later than sooner, says object-orient
wisdom. In this approach, the choice of main function is one of the very last steps
taken in the process of system construction.

The developers will stay away, as long as possible, from the need to describ
implement the topmost function of the system. Instead, they will analyze the typ
objects of the system. System design will progress through the successive improve
of their understanding of these object classes. It is a bottom-up process of building 
and extendible solutions to parts of the problem, and combining them into more and
powerful assemblies — until the final assembly which yields a solution of the orig
problem but, everyone hopes, is not the only possible one: the same componen
assembled differently and probably combined with others, should be general enou
yield as a byproduct, if you have applied the method well and enjoyed your share of
luck, solutions to future problems as well.

For many software people this change in viewpoint is as much of a shock as
have been for others, in an earlier time, the idea of the earth orbiting around the sun
than the reverse. It is also contrary to much of the established software engin
wisdom, which tends to present system construction as the fulfillment of a syst
function as expressed in a narrow, binding requirements document. Yet this simpl
— look at the data first, forget the immediate purpose of the system — may hold th
to reusability and extendibility.

Object-oriented software construction (definition 1)

Object-oriented software construction is the software development method
which bases the architecture of any software system on modules deduced
from the types of objects it manipulates (rather than the function or functions
that the system is intended to ensure). 

OBJECT MOTTO

Ask not first what the system does:

Ask what it does it to!
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5.5  ISSUES

The above definition provides a starting point to discuss the object-oriented method
besides providing components of the answer it also raises many new questions, su

• How to find the relevant object types.

• How to describe the object types.

• How to describe the relations and commonalities between object types.

• How to use object types to structure software.

The rest of this book will address these issues. Let us preview a few answers.

Finding the object types

The question “how shall we find the objects?” can seem formidable at first. A later ch
will examine it in some detail (in its more accurate version, which deals with object types
rather than individual objects) but it is useful here to dispel some of the possible fear
question does not necessarily occupy much of the time of experienced O-O developers
thanks in part to the availability of three sources of answers:

• Many objects are there just for the picking. They directly model objects of
physical reality to which the software applies. One of the particular strength
object technology is indeed its power as a modeling tool, using software object 
(classes) to model physical object types, and the method’s inter-object-type rela
(client, inheritance) to model the relations that exist between physical object t
such as aggregation and specialization. It does not take a treatise on object-o
analysis to convince a software developer that a call monitoring system, 
telecommunications application, will have a class CALL and a class LINE, or that a
document processing system will have a class DOCUMENT, a class PARAGRAPH
and a class FONT.

• A source of object types is reuse: classes previously developed by others
technique, although not always prominent in the O-O analysis literature, is o
among the most useful in practice. We should resist the impulse to invent some
if the problem has already been solved satisfactorily by others.

• Finally, experience and imitation also play a role. As you become familiar w
successful object-oriented designs and design patterns (such as some of
described in this book and the rest of the O-O literature), even those which a
directly reusable in your particular application, you will be able to gain inspira
from these earlier efforts.

We will be in a much better position to understand these object-finding techni
and others once we have gained a better technical insight into the software notion of
— not to be confused with the everyday meaning of the word.
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Describing types and objects

A question of more immediate concern, assuming we know how to obtain the p
object types to serve as a basis for modularizing our systems, is how to describe
types and their objects.

Two criteria must guide us in answering this question:

• The need to provide representation-independent descriptions, for fear of losin
noted) the principal benefit of top-down functional design: abstraction.

• The need to re-insert the functions, giving them their proper place in soft
architectures whose decomposition is primarily based on the analysis of object
since (as also noted) we must in the end accommodate both aspects of the 
function duality.

The next chapter develops an object description technique achieving these go

Describing the relations and structuring software

Another question is what kind of relation we should permit between object types; 
the modules will be based on object types, the answer also determines the stru
techniques that will be available to make up software systems from components.

In the purest form of object technology, only two relations exist: client 
inheritance. They correspond to different kinds of possible dependency betwee
object types A and B:

• B is a client of A if every object of type B may contain information about one or mor
objects of type A.

• B is an heir of A if B denotes a specialized version of A.

Some widely used approaches to analysis, in particular information mod
approaches such as entity-relationship modeling, have introduced rich sets of relat
describe the many possible connections that may exist between the element of a s
To people used to such approaches, having to do with just two kinds of relation 
seems restrictive at first. But this impression is not necessarily justified:

• The client relation is broad enough to cover many different forms of depende
Examples include what is often called aggregation (the presence in every obj
type B of a subobject of type A), reference dependency, and generic dependenc

• The inheritance relation covers specialization in its many different forms.

• Many properties of dependencies will be expressed in a more general form th
other techniques. For example, to describe a 1-to-n dependency (every object of typ
B is connected to at least one and at most n objects of type A) we will express that B
is a client of A, and include a class invariant specifying the exact nature of the clien
relation. The class invariant, being expressed in the language of logic, covers
more cases than the finite set of primitive relations offered by entity-relation
modeling or similar approaches.
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5.6  KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Computation involves three kinds of ingredient: processors (or threads of con

actions (or functions), and data (or objects). 

• A system’s architecture may be obtained from the functions or from the object ty

• A description based on object types tends to provide better stability over time

better reusability than one based on an analysis of the system’s functions.

• It is usually artificial to view a system as consisting of just one function. A real

system usually has more than one “top” and is better described as providing

of services.

• It is preferable not to pay too much attention to ordering constraints during the 

stages of system analysis and design. Many temporal constraints can be des

more abstractly as logical constraints.

• Top-down functional design is not appropriate for the long-term view of softw

systems, which involves change and reuse.

• Object-oriented software construction bases the structure of systems on the ty

objects they manipulate. 

• In object-oriented design, the primary design issue is not what the system doe

what types of objects it does it to. The design process defers to the last ste

decision as to what is the topmost function, if any, of the system.

• To satisfy the requirements of extendibility and reusability, object-oriented softw

construction needs to deduce the architecture from sufficiently abstract descrip

of objects.

• Two kinds of relation may exist between object types: client and inheritance.

5.7  BIBLIOGRAPHICAL NOTES

The case for object-based decomposition is made, using various arguments, in [Cox 1990]

(original 1986), [Goldberg 1981], [Goldberg 1985], [Page-Jones 1995] and [M 1978],

[M 1979], [M 1983], [M 1987], [M 1988].

The top-down method has been advocated in many books and articles. [Wirth 1971]

developed the notion of stepwise refinement. 
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Of other methods whose rationales start with some of the same arguments tha
led this discussion to object-oriented concepts, the closest is probably Jackson’
[Jackson 1983], a higher-level extension of JSP [Jackson 1975]. See also Warnier’s data
directed design method [Orr 1977]. For a look at the methods that object technology
meant to replace, see books on: Constantine’s and Yourdon’s structured d
[Yourdon 1979]; structured analysis [DeMarco 1978], [Page-Jones 1980],
[McMenamin 1984], [Yourdon 1989]; Merise [Tardieu 1984], [Tabourier 1986].

Entity-relationship modeling was introduced by [Chen 1976].
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