28

The software construction process

Foremost among the methodological issues of object technology is how it affects th
broader picture of software development. We will now examine the consequences ¢
object-oriented principles on the organization of projects and their division into phases.

[M 1995]. Such a presentation is part of a more general topic: the management perspective
object technology. Another boolbject Succesexplores management issues in detail.
The discussion which follows, drawing in part fr@bject Succespresents the essential
ideas: clusters the basic organizational unit; principles ofncurrent engineering
leading to the cluster model of the software lifecycle; steps and tasks of that model; the ro
of generalizationfor reusability; and the principles séamlessnesandreversibility .

28.1 CLUSTERS

The module structure of the object-oriented method is the class. For organizations
purposes, you will usually need to group classes into collections, called clusters —
notion briefly previewed in the last chapter's sketch of the Business Object Notation.

A cluster is a group of related classes or, recursively, of related clusters.

The two cases are exclusive: for simplicity and ease of management, a cluster that
contains subclusters should not have any classes of its own. So a cluster will be either a
basic clustey made of classes, orsaperclustermade of other clusters.

Typical basic clusters could include a parsing cluster for analyzing users’ text input
a graphic cluster for graphical manipulations, a communications cluster. A basic cluste
will typically have somewhere between five and forty classes; at around twenty classe:
you should start thinking about splitting it into subclusters. The cluster is also the nature
unit for single-developer mastery: each cluster should be managed by one person, and ¢
person should be able to understafidf it — whereas in a large development no one can
understand all of a system or even a major subsystem.

Onsuper-modules see .
“The architectural Clusters are not super-modules. In an earlier chapter we saw the arguments fi

role of selective avoiding the introduction of units such as packages, and instead keeping a single modt
exports’, page 209 mechanism, the class.

924 THE SOFTWARE CONSTRUCTION PROCESS§28.2

Unlike packages, clusters are not a language construct, although they will appon Lace se*Assem-
the Lace control files used to assemble systems out of components. They blingasystem”, page
management tool. The responsibility for finding clusters will rest with the project lea %
less challenging than the task of finding classes, studied in detail in a previous ch_..._.,
clustering classes mostly relies on common sense and the project leader’s experience. This
point actually deserves some emphasis, as it is sometimes misunderstood: the truly
difficult job, which can launch a project on to an auspicious life or wreck it, and for which
one can talk of right and wrong solutions, is to identify the classes (the proper data
abstractions); grouping these classes into clusters is an organizational matter, for which
many solutions are possible, depending on the resources available and on the expertise of
the various team members. A less-than-optimal clustering decision may cause trouble and
slow the development, but will not by itself bring the project down.

28.2 CONCURRENT ENGINEERING

One of the consequences of the division into clusters is that we can avoid the
disadvantages of the all-or-nothing nature of traditional software lifecycle models. The
well-known “waterfall” approach, introduced in 1970, was a reaction against the “code it
now and fix it later” approach of that bygone era. It had the merit of separating concerns,
of defining the principal tasks of software engineering, and of emphasizing the importance
of up-front specification and design tasks.

FEASIBILITY The waterfall
STUDY ‘\ mode]
EQUIREMENTS (WARNINC i this is
(ANALYSIS) not the recom-
k; ‘\ mended process
model for O-O de-
(SPECIFICATION > velopmer)
LBAL
DESIGN
IMPLEMEN-
TATION
ALIDATION &
VERIFICATION
VT'ME (DISTRIBUTION)

§28.2 CONCURRENT ENGINEERING 925

Individual
cluster
lifecycle

But the Waterfall Model also suffers (among other deficiencies) from the rigidity o
its approach: taken literally, it would mean that no design can proceed until all tt
specification is complete, no implementation until all design is complete. This is a certa
recipe for disaster: one grain of sand in the machine, and the whole project comesto al

Various proposals such as the Spiral model have attempted to reduce this risk
providing a more iterative approach, But they retain the one-thread approach of t
Waterfall, which hardly reflects the nature of today’s software development, especially f
large “virtual” teams that may be distributed over many sites, communicating through t
Internet and other “electronic collocation” mechanisms.

Successful object-oriented development needs to supportcairrent engineering
scheme, offering decentralization and flexibility, without losing the benefits of the
waterfall’s orderliness. We will in particular have to retain a sequential component, wi
well-defined activities. Object-oriented development does not mean that we can or sho
get rid of sound engineering practices. If anything, the added power of the method requi
us to beanoreorganized than before.

With a division into clusters we can achieve the right balance between sequential
and concurrent engineering. We will have a sequential process, but subject to backw
adjustments (this is the concept of reversibility, discussed in more detail at the end of t
chapter), and applied wustersrather than to the entire system.

The mini-lifecycle governing the development of a cluster may pictured as this:

=

Implemen
tation

The shape of the activity representations suggests the seamless nature of
development. Instead of separate steps as in the waterfall model, we see an accre
process — think of the figure as depicting a stalactite — in which every step takes o\
from the previous one and adds its own contribution.

926 THE SOFTWARE CONSTRUCTION PROCESS§28.3

28.3 STEPS AND TASKS

The steps listed in the mini-lifecycle of each cluster are:

« Specification: identify the classes (data abstractions) of the cluster and their major
features and constraints (yielding invariant clauses).

Design: define the architecture of the classes and their relations.

< Implementation: finalize the classes, with all details added.

Verification & Validation: check that the cluster's classes perform satisfactorily
(through static examination, testing and other techniques).

e Generalization: prepare for reuse (see below).

Given the high-level of abstraction of the method, the distinction between design and
implementation is not always clear-cut. So a variant of the model merges these two steps
into one, “design-implementation”.

The need remains for two system-wide, cluster-independent phases. First, as with
any other approach, you should perforrfeasibility study, resulting in a go or no-go
decision. Then, the project needs to be divided into clusters; this is, as noted, the
responsibility of the project leader, who can of course rely on the help of other experienced
team merbers.

28.4 THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE

The general development scheme, known as the Cluster Model, appears on the facing
page. The vertical axis represents the sequential component of the process: a step that
appears lower than another will be executed after it. The horizontal direction reflects
concurrent engineering: tasks at the same level can proceed in parallel.

Various clusters, and various steps within each cluster, will proceed at their own
pace depending on the difficulty of the task. The project leader is in charge of deciding
when to start a new cluster or a new task.

The result is to give the project leader the right combination of order and flexibility.
Order because the definition of cluster tasks provides a control framework and control
points against which to assess progress and delays (one of the most difficult aspects of
project management); flexibility because you can buffer unexpected delays, or take
advantage of unexpectedly fast progress, by starting activities sooner or later. The project
leader also controls the degree of concurrent engineering: for a small team, or in the early
stages of a difficult project, there may be a small number of parallel clusters, or just one;
for a larger team, or once the basic existential questions seems to be under control, you
can start pursuing several clusters at once.

Better than traditional approaches, the cluster model enables project leaders to do
their job to its full extent, exerting their decision power to devote resources where they are

needed the most.

§28.4 THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE 927

The cluster
model of the
software
lifecycle

(FEASIBILITY STUDY >

(DIVISION INTO CLUSTERS >

Cluster 1

Specificatio
Implemen
tation

Generali-
zation

Cluster 2

Specificatio NN

~
~
~
~
~
~
~
~
~
~

=

Clustern

Implemen
tation

Implemen

tation

Generali-

zation zation

TIME

To avoid divergence, the current states of the various clusters’ development must
regularly reconciled. This is the taskintegration, best performed at preset intervals, for
example once aweek. It is the responsibility of the project leader, and ensures that at e\
stage after start-up there will becurrent demo, not necessarily up to date for all aspects
of the system, but ready to be showed to whoever — customers, managers... — ne
reassurance about the project’'s progress. This also serves to remove any inconsisti
between clusters before it has had the opportunity to cause damage, reassuring the pr
members themselves that the pieces fit together and that the future system is taking sh

What makes possible the cluster model's form of concurrent engineering is the ¢
of information hiding properties of the object-oriented method. Clusters may depend |
each other; for example a graphical interface cluster may need, for remote display, clas
of the communication cluster. Thanks to data abstraction, it is possible for a cluster
proceed even if the clusters on which it depends are not yet finished; it suffices that
specificatiol phase of the needed classes be complete, so that you can proceed on the |

928 THE SOFTWARE CONSTRUCTION PROCESS§28.5

of their official interface, given as a short form or deferred version. This aspect of the
model is perhaps easier to picture if we rotate the preceding figure, as illustrated below, to
emphasize the software layers corresponding to the various clusters, with the more general
clusters at the bottom and the more application-specific ones at the top. The design and
implementation of each cluster depend only on the specifications of clusters below it, not
on their own design and implementation. The figure only shows dependencies on the
cluster immediately below, but a cluster may rely on any lower-level cluster.

A project’s

clusters as a set
Clustern of abstraction
layers

El kA N

A More u
application-

specific

More general

Cluster 2
dependency
Cluster 1
|

28.5 GENERALIZATION

The last task of cluster mini-lifecycles, generalization (the G on the above figure) has no
equivalent in traditional approaches. Its goal is to polish the classes so as to turn them into
potentially reusable software components.

Including a generalization step immediately suggests a criticism: instead of an a
posteriori add-on, should reusability concerns not be part of the entire software process?
How can one make software reusable after the fact? But this criticism is misplaced. The a

§28.5 GENERALIZATION 929

priori view of software reuse (“to be reusable, software should be designed as reuse
from the start”) and the a posteriori view (“software will not be reusable the first tim
around”) are complementary, not contradictory. The success of a reusability poli
requires both instilling #eusability culturc in the minds of everyone involved, and
devoting sufficient resources to improving the reusability of classes’ initial versions.

In spite of the best of intentions, software elements produced as part of :
application-oriented project will usually not be fully reusable. This is due in part to th
constraints affecting projects — the pressure of customers wanting the next versi
ASAP, of the competition putting out its own products, of shareholders eager to s
results. We live in a hurried world and an even more hurried industry. But there is also
intrinsic reason for not always trusting reusability promises: until someone has reusec
you cannot be sure that a product has been freed of all its dependencies, explicit
(particularly) implicit, on its original developers’ background, corporate affiliation,
technical context, working practices, hardware resources and software environment.

The presence of a generalization step is not, then, an excuse for ignoring reusabi
until the last moment. The arguments of the a priori school are correct: you cannot &
reusability as an afterthought. But do not assume that having a reusability policy
sufficient. Even with reusability built into everyone’s mindset, you will need to devote
some more time to your project’s classes before you can call them software componel

Including a generalization step in the official process model is also a matter of polic
Very few corporate executives these days will take a public agains reusability. Of
course, my friend, we want our software to be reusable! The software people need to f
out whether this is sincere commitment or lip service. Very easy. The commitment exi:
if management is ready to resesome¢resources, on top of the money and time allocated
to each project, for generalization. This is a courageous decision, because the benefits
not be immediate and other urgent projects may suffer a little. But it is the only way
guarantee that there will, in the end, be reusable components. If, however, the manager
is not ready to pledge such resources, even modest ones (a few percent above the nc
project budget can make aworld of difference), then you can listen politely to the grandic
speeches about reuse and read sympathetically about the “reuser of the month” awar
the company’s newsletter: in truth, the company is not ready for reusability and will n
get reusability.

If, on the other hand, some resources are devoted to generalization, remember
this is not sufficient either. Success in reusability comes from a combination of a pric
and a posteriori efforts:

The reusability culture
Develop all software under the assumption that it will be reused.
Do not trust that any software will be reusable until you have seen it rgused.

930 THE SOFTWARE CONSTRUCTION PROCESS§28.6

The first part implies applying reusability concerns throughout development. The
second implies not taking the result for granted, but performing a generalization step to
remove any traces of context-specific elements.

The generalization task may involve the following activities:

* Abstracting: introducing a deferred class to describe the pure abstraction behon abstracting and

certain class. factoring se¢‘Variet-
ies of class abstrac-

« Factoring: recognizing that two classes, originally unrelated, are in fact variant'o"" Page 860

the same general notion, which can then be described by a common ancestor.

e Adding assertions, especially postconditions and invariant clauses which reflect
increased understanding of the semantics of the class and its features. (You may also
have to add a precondition, but this is more akin to correcting a bug, since it means
the routine was not properly protected.)

» Adding rescueclauses to handle exceptions whose possibility may initially have
been ignored.

¢ Adding documentation.

The first two of these activities, studied in the discussion of inheritance
methodology, reflect the non-standard view of inheritance hierarchy construction that we
explored then: the recognition that, although it would be nice always to go from the
general to the specific and the abstract to the concrete, the actual path to invention is often
more tortuous, and sometimes just the other way around.

The role of generalization is to improve classes that may be considered good enough
for internal purposes — as long, that is, as they are only used within a particular system —
but not any more when they become part of a library available to any client author who
cares to use them for his own needs. Peccadillos that may have been forgivable in the first
setting, such as insufficient specification or reliance on undocumented assumptions,
become show-stoppers. This is why developing for reusability is more difficult than
ordinary application development: when your software is available to anyone, working on
applications of any kind for any platform anywhere in the world, everything starts to
matter. Reusability breeds perfectionism; you cannot leave good enough alone.

28.6 SEAMLESSNESS ANCREVERSIBILITY

The “stalactite” nature of the cluster lifecycle reflects one of the most radical differences
between O-O development and earlier approaches. Instead of erecting barriers between
successive lifecycle steps, well-understood object technology defines a single framework for
analysis, design, implementation and maintenance. This is kncseamless developm ;:nt

one of its consequences, previewed in the last chapter’s discussion of the Business Object
Notation, is the need forreversibl¢ software development process.

§28.6 SEAMLESSNESS AND REVERSIBILITY 931

“Direct Mapping”,
page 47

Seamless development

Different tasks will of course remain. To take extreme examples, you are not doing t
same thing when defining general properties of a system that has yet to be built ¢
performing the last rounds of debugging. But the idea of seamlessness is to downg
differences where the traditional approach exaggerated them; to recognize, behind
technical variations, the fundamental unity of the software process. Througho
development the same issues arise, the same intellectual challenges must be addresse
same structuring mechanisms are needed, the same forms of reasoning apply anc
shown in this book, the same notation can be used.

The benefits of a seamless approach are numerous:

« You avoid costly and error-prone transitions between steps, magnified by changes
notation, mindset, and personnel (analysts, designers, implementers...). Such g
are often calledimpedance mismatche by analogy with a circuit made of
electrically incompatible elements; the mismatches between analysis and desi
design and implementation, implementation and evolution, are among the wol
causes of trouble in traditional software development.

< By starting from the analysis classes as a basis for the rest of the development,
ensure a close correspondence between the description of the problem and
solution. Thisdirect mapping property helps the dialog with customers and users,
and facilitates evolution by ensuring that they all think in terms of the same bas
concepts. It is part of the O-O method’s support for extendibility.

« The use of a single framework facilitates the backward adjustments that w
inevitably accompany the normally one-directional progress of the softwar
development process.

Reversibility: wisdom sometimes blooms late in the season

The lat benefit cited defines one of the principal contributions of object technology to th
software lifecycle — reversibility.

Reversibility is the official aceptance of a characteristic of software development
which, although inevitable and universal, is one of the most closely guarded secrets of
software literature: the influence of later stages of the software process on decisions m
during initial stages.

We all wish, of course, that problems be fully defined before we get to solve ther
Thatis the normal way to go, and in software it means that we complete the analysis bef
we engage in design, the design before we start implementation, the implementat
before we deliver. But what if, during implementation, a developer suddenly realizes th
the system could do something better, or should do something different altogether? Do
scold him for not minding his own business? What if his suggestion is indeed right?

932 THE SOFTWARE CONSTRUCTION PROCESS§28.6

The phraseesprit de I'escalie, “wit of the staircase”, captures this phenomenon.
Picture a pleasant dinner in an apartment on the second or fourth floor (the fashionable
ones) of a Parisian building. Sharp comments fly back and forth over the veal Marengo,
and you feel dumb. The soirée finishes and you take leave of your hosts, start walking
down the stairs, whe... there it is: the smashing repartee that would have made you the
hero of the evening! But too late.

Are bouts ofesprit de I'escalie too late in software also? They have existed e\The bad managers
since software projects have been told to freeze the specification before they starmay be uncon-
solution. Bad managers suppress them, telling the implementers, in effect, to code arzz'g#]ﬂfeigg:i’g?g
up. Good managers try to see whether they can take advantage of belated specifaphorisn, Clem-
ideas, without attracting the attention of whoever is in charge of enforcing the compienceau’s‘in love,
software quality plan and its waterfall-style ukases against changing the specificatitrr}‘?hbee;tari‘:gﬁem s
implementation time. beforehan, that is.

With O-O development it becomes clear thatesprit de I'escaliephenomenon is
not just the result of laziness in analysis, but follows from the intrinsic nature of software
development. Wisdom sometimes blooms late in the season. Nowhere more than with
object technology do we see the intimate connection between problem and solution that
characterizes our field. It is not just that we sometimes understand aspects of the problem
only at the time of the solution, but more profoundly that the solution affects the problem

and suggests better functionalities.

Remember the example of command undoing and redoing: an implementchapter21.
technique, the “history list” — which someone trained in a more traditional apprc ...
would dismiss as irrelevant to the task of defining system functionality —, actually
suggested a new way of providing end-users of our system with a convenient interface for
undoing and redoing commands.

The introduction of reversibility suggests that the general forward thrust of our
earlier cluster mini-lifecycle diagrams is actually tempered by the constant possibility of
backward revisions and corrections:

Individual

Specificatio cluster

//—'» -
(11 _ lifecycle,

| '\\ N \\ reversible
| —

|

|

Implemen
tation

zation

§28.7 WITH US, EVERYTHING IS THE FACE 933

28.7 WITH US, EVERYTHING IS THE FACE

The stress on seamlessness and reversibility is perhaps the most potentially subver
component of object technology. It affects project organization, and the very nature of t
software profession; in line with modern trends in other industries, it tends to remo
barriers between narrow specialties — analysts who only deal in ethereal concej
designers who only worry about structure, implementers who only write code — and
favor the emergence of a single category of generedevelopersin a broad sense of the
term, people who are able to accompany part of a project from beginning to end.

The approach also departs from the dominant view in the current softwa
engineering literature, which treats analysis and implementation (with design somewht
in the middle) as fundamentally different activities, susceptible to different methods, usil
different notations and pursuing different goals, often with the connotation that analys
and design are all that really matters, implementation being an inevitable chore. This vi
has historical justifications: from its infancy in the nineteen-seventies, softwar
engineering was an attempt to put some order into the haphazard nature of progt
construction by teaching software people to think before they shoot. Hence the stress
early stages of software development, on the need to specify what you are going
implement. This is all justified, now as much as then. But some of the consequences
this essentially beneficial effort have gone too far, creating impedance mismatch
between the different activities, and producing a strictly sequential model even thou
product and process quality demands seamlessness and reversibility.

With object technology we can remove the unnecessary differences betwe
analysis, design and implementation — the necessary ones will manifest themsel
clearly enough — and rehabilitate the much maligned task of implementation. It ws
natural for the pioneers of software engineering, when programming meant trying to sol
many machine-dependent issues and explaining the result to the computer in a langt
that it could understand, usually low-level and sometimes inelegant, to detach themsel
from these mundane aspects and stress instead the importance of studying abs
concepts from the problem domain. But we can retain these abstraction qualities with
losing the link to the solution.

The secret is to make the concepts of programming, and the notations f
programming, high-level enough that they can serve just as well as tomodeling
This is what object technology achieves.

The following story, stolen from Roman JakobscEssays on General Linguist,cs
will perhaps help make the point clear:

In a far-away countr, a missionary was scolding the nati. “You should not
go around nake, showing your body like tt!”.. One day a young girl spoke
bacl, pointing at hin: “But you, Fathel, you are also showing a part of your
body!" . “But of course’, the missionary said with a dignified t¢; “That is my
face”. The girl repliec “So you se, Fathey, it is really the same thir. Only,
with us, everything is the face.”

So it is with object technology. With us, eything is he face.

934 THE SOFTWARE CONSTRUCTION PROCESS§28.8

28.8 KEY CONCEPTS COVERED IN THIS CHAPTER

< Object technology calls for a new process model, supporting seamless, reversible
development.

« The unit for the sequential component of the lifecycle is the cluster, a set of logically
related classes. Clusters can be arbitrarily nested.

* The lifecycle model relies on concurrent engineering: parallel development of
several clusters, each permitted to rely on the specification of earlier ones.

« Object technology rehabilitates implementation.

28.9 BIBLIOGRAPHICAL NOTES

[M 1995] discusses further the topics of this chapter. It develops in detail the cluster
model, and explores the consequences of the object-oriented software process on team
organization, on the manager’s role, and on the economics of software engineering.

[Baudoin 199€|is an extensive discussion of the lifecycle issues raised by object
technology, also covering many other important topics such as project organization and
the role of standards, and including several case studies.

The first presentation of the cluster model appeargGindre 1989. Another O-O
lifecycle model, thdéountain mode, originally appearein [Henderson-Sellers 19€ and is
further developein [Henderson-Sellers 19¢, [Henderson-Sellers 19€; it complements
rather than contradicts the cluster model, emphasizing the need to iterate lifecycle activities.

A number of O-O analysis publications, in particfRumbaugh 199: (the original
text on the OMT method) ar[Henderson-Sellers 19¢, stress seamless development.
For a detailed treatment of reversibility as well as seamlesssee[Waldén 199%]

*kk

Wisdom sometimes blooms late in the season
Or half-way down the stai.s
Is it, my Lord;, a crime of high treason
To trust the implemente?s

	28 28 The software construction process
	28.1 CLUSTERS
	28.2 CONCURRENT ENGINEERING
	The waterfall model
	(WARNING: this is not the recommended process mode...
	Individual cluster lifecycle

	28.3 STEPS AND TASKS
	28.4 THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE
	The cluster model of the software lifecycle

	28.5 GENERALIZATION
	A project’s clusters as a set of abstraction layer...
	The reusability culture

	28.6 SEAMLESSNESS AND REVERSIBILITY
	Seamless development
	Reversibility: wisdom sometimes blooms late in the...
	Individual cluster lifecycle, reversible

	28.7 WITH US, EVERYTHING IS THE FACE
	28.8 KEY CONCEPTS COVERED IN THIS CHAPTER
	28.9 BIBLIOGRAPHICAL NOTES

