
[

O
“
r
e

28
The software construction process
s the
es of
es.

tive on
il.
l

e role

tional
 — a
.

t

nput,
luster
sses,
tural
nd one
an

ts for
odule

M 1995].

n super-modules se
The architectural
ole of selective
xports”, page 209.
Foremost among the methodological issues of object technology is how it affect
broader picture of software development. We will now examine the consequenc
object-oriented principles on the organization of projects and their division into phas

Such a presentation is part of a more general topic: the management perspec
object technology. Another book, Object Success, explores management issues in deta
The discussion which follows, drawing in part from Object Success, presents the essentia
ideas: clusters, the basic organizational unit; principles of concurrent engineering
leading to the cluster model of the software lifecycle; steps and tasks of that model; th
of generalization for reusability; and the principles of seamlessness and reversibility .

28.1 CLUSTERS

The module structure of the object-oriented method is the class. For organiza
purposes, you will usually need to group classes into collections, called clusters
notion briefly previewed in the last chapter’s sketch of the Business Object Notation

A cluster is a group of related classes or, recursively, of related clusters.

The two cases are exclusive: for simplicity and ease of management, a cluster tha
contains subclusters should not have any classes of its own. So a cluster will be either a
basic cluster, made of classes, or a supercluster, made of other clusters.

Typical basic clusters could include a parsing cluster for analyzing users’ text i
a graphic cluster for graphical manipulations, a communications cluster. A basic c
will typically have somewhere between five and forty classes; at around twenty cla
you should start thinking about splitting it into subclusters. The cluster is also the na
unit for single-developer mastery: each cluster should be managed by one person, a
person should be able to understand all of it — whereas in a large development no one c
understand all of a system or even a major subsystem.

Clusters are not super-modules. In an earlier chapter we saw the argumen
avoiding the introduction of units such as packages, and instead keeping a single m
mechanism, the class.

e

THE SOFTWARE CONSTRUCTION PROCESS§28.2924

ear in
are a
der;
apter,
e. This
 truly

hich
 data
 which
rtise of
le and

 the
 The
de it
erns,
tance

On Lace see “Assem-
bling a system”, page
198.

The waterfall
model

(WARNING: this is
not the recom-
mended process
model for O-O de-
velopment!)
Unlike packages, clusters are not a language construct, although they will app
the Lace control files used to assemble systems out of components. They
management tool. The responsibility for finding clusters will rest with the project lea
less challenging than the task of finding classes, studied in detail in a previous ch
clustering classes mostly relies on common sense and the project leader’s experienc
point actually deserves some emphasis, as it is sometimes misunderstood: the
difficult job, which can launch a project on to an auspicious life or wreck it, and for w
one can talk of right and wrong solutions, is to identify the classes (the proper
abstractions); grouping these classes into clusters is an organizational matter, for
many solutions are possible, depending on the resources available and on the expe
the various team members. A less-than-optimal clustering decision may cause troub
slow the development, but will not by itself bring the project down.

28.2 CONCURRENT ENGINEERING

One of the consequences of the division into clusters is that we can avoid
disadvantages of the all-or-nothing nature of traditional software lifecycle models.
well-known “waterfall” approach, introduced in 1970, was a reaction against the “co
now and fix it later” approach of that bygone era. It had the merit of separating conc
of defining the principal tasks of software engineering, and of emphasizing the impor
of up-front specification and design tasks.

FEASIBILITY
STUDY

REQUIREMENTS
ANALYSIS

SPECIFICATION

IMPLEMEN-

DISTRIBUTION

GLOBAL
DESIGN

DETAILED
DESIGN

TATION

VALIDATION &
VERIFICATION

TIME

§28.2 CONCURRENT ENGINEERING 925

y of
l the
rtain
 a halt.

isk by
f the

ly for
h the

the
 with
hould
quires

tiality
kward
of this

:

of the
cretion
 over

Individual
cluster
lifecycle
But the Waterfall Model also suffers (among other deficiencies) from the rigidit
its approach: taken literally, it would mean that no design can proceed until al
specification is complete, no implementation until all design is complete. This is a ce
recipe for disaster: one grain of sand in the machine, and the whole project comes to

Various proposals such as the Spiral model have attempted to reduce this r
providing a more iterative approach, But they retain the one-thread approach o
Waterfall, which hardly reflects the nature of today’s software development, especial
large “virtual” teams that may be distributed over many sites, communicating throug
Internet and other “electronic collocation” mechanisms.

Successful object-oriented development needs to support a concurrent engineering
scheme, offering decentralization and flexibility, without losing the benefits of
waterfall’s orderliness. We will in particular have to retain a sequential component,
well-defined activities. Object-oriented development does not mean that we can or s
get rid of sound engineering practices. If anything, the added power of the method re
us to be more organized than before.

With a division into clusters we can achieve the right balance between sequen
and concurrent engineering. We will have a sequential process, but subject to bac
adjustments (this is the concept of reversibility, discussed in more detail at the end
chapter), and applied to clusters rather than to the entire system.

The mini-lifecycle governing the development of a cluster may pictured as this

The shape of the activity representations suggests the seamless nature
development. Instead of separate steps as in the waterfall model, we see an ac
process — think of the figure as depicting a stalactite — in which every step takes
from the previous one and adds its own contribution.

Generali-
zation

Implemen
tation

Design

Specification

V & V

TIME

THE SOFTWARE CONSTRUCTION PROCESS§28.3926

major

rily

n and
 steps

s with

, the
enced

 facing
ep that
flects

 own
iding

ility.
ontrol
ects of
 take
roject

e early
t one;
ol, you

 to do
y are
28.3 STEPS AND TASKS

The steps listed in the mini-lifecycle of each cluster are:

• Specification: identify the classes (data abstractions) of the cluster and their
features and constraints (yielding invariant clauses).

• Design: define the architecture of the classes and their relations.

• Implementation: finalize the classes, with all details added.

• Verification & Validation: check that the cluster’s classes perform satisfacto
(through static examination, testing and other techniques).

• Generalization: prepare for reuse (see below).

Given the high-level of abstraction of the method, the distinction between desig
implementation is not always clear-cut. So a variant of the model merges these two
into one, “design-implementation”.

The need remains for two system-wide, cluster-independent phases. First, a
any other approach, you should perform a feasibility study, resulting in a go or no-go
decision. Then, the project needs to be divided into clusters; this is, as noted
responsibility of the project leader, who can of course rely on the help of other experi
team members.

28.4 THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE

The general development scheme, known as the Cluster Model, appears on the
page. The vertical axis represents the sequential component of the process: a st
appears lower than another will be executed after it. The horizontal direction re
concurrent engineering: tasks at the same level can proceed in parallel.

Various clusters, and various steps within each cluster, will proceed at their
pace depending on the difficulty of the task. The project leader is in charge of dec
when to start a new cluster or a new task.

The result is to give the project leader the right combination of order and flexib
Order because the definition of cluster tasks provides a control framework and c
points against which to assess progress and delays (one of the most difficult asp
project management); flexibility because you can buffer unexpected delays, or
advantage of unexpectedly fast progress, by starting activities sooner or later. The p
leader also controls the degree of concurrent engineering: for a small team, or in th
stages of a difficult project, there may be a small number of parallel clusters, or jus
for a larger team, or once the basic existential questions seems to be under contr
can start pursuing several clusters at once.

Better than traditional approaches, the cluster model enables project leaders
their job to its full extent, exerting their decision power to devote resources where the

needed the most.

§28.4 THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE 927

ust be
r

t every
ts
 needs
istency
 project
 shape.

e set
d on
lasses
ter to
at the
e basis

The cluster
model of the
software
lifecycle
To avoid divergence, the current states of the various clusters’ development m
regularly reconciled. This is the task of integration , best performed at preset intervals, fo
example once a week. It is the responsibility of the project leader, and ensures that a
stage after start-up there will be a current demo, not necessarily up to date for all aspec
of the system, but ready to be showed to whoever — customers, managers... —
reassurance about the project’s progress. This also serves to remove any incons
between clusters before it has had the opportunity to cause damage, reassuring the
members themselves that the pieces fit together and that the future system is taking

What makes possible the cluster model’s form of concurrent engineering is th
of information hiding properties of the object-oriented method. Clusters may depen
each other; for example a graphical interface cluster may need, for remote display, c
of the communication cluster. Thanks to data abstraction, it is possible for a clus
proceed even if the clusters on which it depends are not yet finished; it suffices th
specification phase of the needed classes be complete, so that you can proceed on th

FEASIBILITY STUDY

TIME

Cluster 2

Cluster n

Cluster 1

Generali-
zation

Implemen
tation

Design

Specification

V & V

DIVISION INTO CLUSTERS

Generali-
zation

Implemen
tation

Design

Specification

V & V

Generali-
zation

Implemen
tation

Design

Specification

V & V

THE SOFTWARE CONSTRUCTION PROCESS§28.5928

f the
ow, to
eneral
n and

it, not
n the

as no
m into

an a
cess?

 The a

A project’s
clusters as a set
of abstraction
layers
of their official interface, given as a short form or deferred version. This aspect o
model is perhaps easier to picture if we rotate the preceding figure, as illustrated bel
emphasize the software layers corresponding to the various clusters, with the more g
clusters at the bottom and the more application-specific ones at the top. The desig
implementation of each cluster depend only on the specifications of clusters below
on their own design and implementation. The figure only shows dependencies o
cluster immediately below, but a cluster may rely on any lower-level cluster.

28.5 GENERALIZATION

The last task of cluster mini-lifecycles, generalization (the G on the above figure) h
equivalent in traditional approaches. Its goal is to polish the classes so as to turn the
potentially reusable software components.

Including a generalization step immediately suggests a criticism: instead of
posteriori add-on, should reusability concerns not be part of the entire software pro
How can one make software reusable after the fact? But this criticism is misplaced.

TIME

Cluster 2

Cluster n

Cluster 1IDS V&V G

IDS V&V G

IDS V&V G

More

More general

application-
specific

Client
dependency

§28.5 GENERALIZATION 929

sable
time
olicy
d

f an
 the
rsion
 see
so an
ed it,
it and
n,

t.

ability
t add
cy is
ote
nents.

licy.

to find
xists

ted
its may
y to

gement
 normal
diose
ard in

ll not

er that
riori
priori view of software reuse (“to be reusable, software should be designed as reu
from the start”) and the a posteriori view (“software will not be reusable the first
around”) are complementary, not contradictory. The success of a reusability p
requires both instilling a reusability culture in the minds of everyone involved, an
devoting sufficient resources to improving the reusability of classes’ initial versions.

In spite of the best of intentions, software elements produced as part o
application-oriented project will usually not be fully reusable. This is due in part to
constraints affecting projects — the pressure of customers wanting the next ve
ASAP, of the competition putting out its own products, of shareholders eager to
results. We live in a hurried world and an even more hurried industry. But there is al
intrinsic reason for not always trusting reusability promises: until someone has reus
you cannot be sure that a product has been freed of all its dependencies, explic
(particularly) implicit, on its original developers’ background, corporate affiliatio
technical context, working practices, hardware resources and software environmen

The presence of a generalization step is not, then, an excuse for ignoring reus
until the last moment. The arguments of the a priori school are correct: you canno
reusability as an afterthought. But do not assume that having a reusability poli
sufficient. Even with reusability built into everyone’s mindset, you will need to dev
some more time to your project’s classes before you can call them software compo

Including a generalization step in the official process model is also a matter of po
Very few corporate executives these days will take a public stand against reusability. Of
course, my friend, we want our software to be reusable! The software people need
out whether this is sincere commitment or lip service. Very easy. The commitment e
if management is ready to reserve some resources, on top of the money and time alloca
to each project, for generalization. This is a courageous decision, because the benef
not be immediate and other urgent projects may suffer a little. But it is the only wa
guarantee that there will, in the end, be reusable components. If, however, the mana
is not ready to pledge such resources, even modest ones (a few percent above the
project budget can make a world of difference), then you can listen politely to the gran
speeches about reuse and read sympathetically about the “reuser of the month” aw
the company’s newsletter: in truth, the company is not ready for reusability and wi
get reusability.

If, on the other hand, some resources are devoted to generalization, rememb
this is not sufficient either. Success in reusability comes from a combination of a p
and a posteriori efforts:

The reusability culture
Develop all software under the assumption that it will be reused.

Do not trust that any software will be reusable until you have seen it reused.

THE SOFTWARE CONSTRUCTION PROCESS§28.6930

 The
tep to

ind a

ts of
.

flect
ay also
eans

ave

nce
at we
 the
s often

nough
em —
r who
he first
tions,

than
g on
s to

nces
etween
ork for
t
 Object

On abstracting and
factoring see “Variet-
ies of class abstrac-
tion”, page 860.
The first part implies applying reusability concerns throughout development.
second implies not taking the result for granted, but performing a generalization s
remove any traces of context-specific elements.

The generalization task may involve the following activities:

• Abstracting: introducing a deferred class to describe the pure abstraction beh
certain class.

• Factoring: recognizing that two classes, originally unrelated, are in fact varian
the same general notion, which can then be described by a common ancestor

• Adding assertions, especially postconditions and invariant clauses which re
increased understanding of the semantics of the class and its features. (You m
have to add a precondition, but this is more akin to correcting a bug, since it m
the routine was not properly protected.)

• Adding rescue clauses to handle exceptions whose possibility may initially h
been ignored.

• Adding documentation.

The first two of these activities, studied in the discussion of inherita
methodology, reflect the non-standard view of inheritance hierarchy construction th
explored then: the recognition that, although it would be nice always to go from
general to the specific and the abstract to the concrete, the actual path to invention i
more tortuous, and sometimes just the other way around.

The role of generalization is to improve classes that may be considered good e
for internal purposes — as long, that is, as they are only used within a particular syst
but not any more when they become part of a library available to any client autho
cares to use them for his own needs. Peccadillos that may have been forgivable in t
setting, such as insufficient specification or reliance on undocumented assump
become show-stoppers. This is why developing for reusability is more difficult
ordinary application development: when your software is available to anyone, workin
applications of any kind for any platform anywhere in the world, everything start
matter. Reusability breeds perfectionism; you cannot leave good enough alone.

28.6 SEAMLESSNESS AND REVERSIBILITY

The “stalactite” nature of the cluster lifecycle reflects one of the most radical differe
between O-O development and earlier approaches. Instead of erecting barriers b
successive lifecycle steps, well-understood object technology defines a single framew
analysis, design, implementation and maintenance. This is known as seamless developmen;
one of its consequences, previewed in the last chapter’s discussion of the Business
Notation, is the need for a reversible software development process.

§28.6 SEAMLESSNESS AND REVERSIBILITY 931

g the
lt and
nplay

nd the
hout

ssed, the
and, as

ges in
 gaps

f
sign,
orst

t, you
nd the
rs,
asic

 will
are

 the

ent
 of the
 made

hem.
before
tation
 that

Do we

“Direct Mapping”,
page 47.
Seamless development

Different tasks will of course remain. To take extreme examples, you are not doin
same thing when defining general properties of a system that has yet to be bui
performing the last rounds of debugging. But the idea of seamlessness is to dow
differences where the traditional approach exaggerated them; to recognize, behi
technical variations, the fundamental unity of the software process. Throug
development the same issues arise, the same intellectual challenges must be addre
same structuring mechanisms are needed, the same forms of reasoning apply
shown in this book, the same notation can be used.

The benefits of a seamless approach are numerous:

• You avoid costly and error-prone transitions between steps, magnified by chan
notation, mindset, and personnel (analysts, designers, implementers...). Such
are often called impedance mismatches by analogy with a circuit made o
electrically incompatible elements; the mismatches between analysis and de
design and implementation, implementation and evolution, are among the w
causes of trouble in traditional software development.

• By starting from the analysis classes as a basis for the rest of the developmen
ensure a close correspondence between the description of the problem a
solution. This direct mapping property helps the dialog with customers and use
and facilitates evolution by ensuring that they all think in terms of the same b
concepts. It is part of the O-O method’s support for extendibility.

• The use of a single framework facilitates the backward adjustments that
inevitably accompany the normally one-directional progress of the softw
development process.

Reversibility: wisdom sometimes blooms late in the season

The last benefit cited defines one of the principal contributions of object technology to
software lifecycle — reversibility.

Reversibility is the official acceptance of a characteristic of software developm
which, although inevitable and universal, is one of the most closely guarded secrets
software literature: the influence of later stages of the software process on decisions
during initial stages.

We all wish, of course, that problems be fully defined before we get to solve t
That is the normal way to go, and in software it means that we complete the analysis
we engage in design, the design before we start implementation, the implemen
before we deliver. But what if, during implementation, a developer suddenly realizes
the system could do something better, or should do something different altogether?
scold him for not minding his own business? What if his suggestion is indeed right?

THE SOFTWARE CONSTRUCTION PROCESS§28.6932

n.
nable

engo,
alking
 the

ver
rt on a

d shut
fication
any’s
ion at

ware
n with
n that
roblem
blem

tation
ach
ally
ce for

 our
ity of

The bad managers
may be uncon-
sciously applying
another escalier
aphorism, Clem-
enceau’s “in love,
the best moment is
in the stairs” —
beforehand, that is.

Chapter 21.

Individual
cluster
lifecycle,
reversible
The phrase esprit de l’escalier, “wit of the staircase”, captures this phenomeno
Picture a pleasant dinner in an apartment on the second or fourth floor (the fashio
ones) of a Parisian building. Sharp comments fly back and forth over the veal Mar
and you feel dumb. The soirée finishes and you take leave of your hosts, start w
down the stairs, when … there it is: the smashing repartee that would have made you
hero of the evening! But too late.

Are bouts of esprit de l’escalier too late in software also? They have existed e
since software projects have been told to freeze the specification before they sta
solution. Bad managers suppress them, telling the implementers, in effect, to code an
up. Good managers try to see whether they can take advantage of belated speci
ideas, without attracting the attention of whoever is in charge of enforcing the comp
software quality plan and its waterfall-style ukases against changing the specificat
implementation time.

With O-O development it becomes clear that the esprit de l’escalier phenomenon is
not just the result of laziness in analysis, but follows from the intrinsic nature of soft
development. Wisdom sometimes blooms late in the season. Nowhere more tha
object technology do we see the intimate connection between problem and solutio
characterizes our field. It is not just that we sometimes understand aspects of the p
only at the time of the solution, but more profoundly that the solution affects the pro
and suggests better functionalities.

Remember the example of command undoing and redoing: an implemen
technique, the “history list” — which someone trained in a more traditional appro
would dismiss as irrelevant to the task of defining system functionality —, actu
suggested a new way of providing end-users of our system with a convenient interfa
undoing and redoing commands.

The introduction of reversibility suggests that the general forward thrust of
earlier cluster mini-lifecycle diagrams is actually tempered by the constant possibil
backward revisions and corrections:

Generali-
zation

Implemen
tation

Design

Specification

V & V

§28.7 WITH US, EVERYTHING IS THE FACE 933

versive
of the

ove
cepts,
nd to

ware
where
sing
lysis
 view
are

ogram
ess on
ing to
ces of
tches
ough

ween
selves
 was
solve
guage

selves
bstract
ithout

s for
28.7 WITH US, EVERYTHING IS THE FACE

The stress on seamlessness and reversibility is perhaps the most potentially sub
component of object technology. It affects project organization, and the very nature
software profession; in line with modern trends in other industries, it tends to rem
barriers between narrow specialties — analysts who only deal in ethereal con
designers who only worry about structure, implementers who only write code — a
favor the emergence of a single category of generalists: developers in a broad sense of the
term, people who are able to accompany part of a project from beginning to end.

The approach also departs from the dominant view in the current soft
engineering literature, which treats analysis and implementation (with design some
in the middle) as fundamentally different activities, susceptible to different methods, u
different notations and pursuing different goals, often with the connotation that ana
and design are all that really matters, implementation being an inevitable chore. This
has historical justifications: from its infancy in the nineteen-seventies, softw
engineering was an attempt to put some order into the haphazard nature of pr
construction by teaching software people to think before they shoot. Hence the str
early stages of software development, on the need to specify what you are go
implement. This is all justified, now as much as then. But some of the consequen
this essentially beneficial effort have gone too far, creating impedance misma
between the different activities, and producing a strictly sequential model even th
product and process quality demands seamlessness and reversibility.

With object technology we can remove the unnecessary differences bet
analysis, design and implementation — the necessary ones will manifest them
clearly enough — and rehabilitate the much maligned task of implementation. It
natural for the pioneers of software engineering, when programming meant trying to
many machine-dependent issues and explaining the result to the computer in a lan
that it could understand, usually low-level and sometimes inelegant, to detach them
from these mundane aspects and stress instead the importance of studying a
concepts from the problem domain. But we can retain these abstraction qualities w
losing the link to the solution.

The secret is to make the concepts of programming, and the notation
programming, high-level enough that they can serve just as well as tools for modeling.
This is what object technology achieves.

The following story, stolen from Roman Jakobson’s Essays on General Linguistics,
will perhaps help make the point clear:

In a far-away country, a missionary was scolding the natives. “You should not
go around naked, showing your body like this!” . One day a young girl spoke
back, pointing at him: “But you, Father, you are also showing a part of your
body!” . “But of course”, the missionary said with a dignified tone; “That is my
face”. The girl replied: “So you see, Father, it is really the same thing. Only,
with us, everything is the face”.

So it is with object technology. With us, everything is the face.

THE SOFTWARE CONSTRUCTION PROCESS§28.8934

rsible

cally

t of

uster
n team
.

ject
n and

ivities.

t.
28.8 KEY CONCEPTS COVERED IN THIS CHAPTER

• Object technology calls for a new process model, supporting seamless, reve
development.

• The unit for the sequential component of the lifecycle is the cluster, a set of logi
related classes. Clusters can be arbitrarily nested.

• The lifecycle model relies on concurrent engineering: parallel developmen
several clusters, each permitted to rely on the specification of earlier ones.

• Object technology rehabilitates implementation.

28.9 BIBLIOGRAPHICAL NOTES

[M 1995] discusses further the topics of this chapter. It develops in detail the cl
model, and explores the consequences of the object-oriented software process o
organization, on the manager’s role, and on the economics of software engineering

[Baudoin 1996] is an extensive discussion of the lifecycle issues raised by ob
technology, also covering many other important topics such as project organizatio
the role of standards, and including several case studies.

The first presentation of the cluster model appeared in [Gindre 1989]. Another O-O
lifecycle model, the fountain model, originally appeared in [Henderson-Sellers 1990] and is
further developed in [Henderson-Sellers 1991], [Henderson-Sellers 1994]; it complements
rather than contradicts the cluster model, emphasizing the need to iterate lifecycle act

A number of O-O analysis publications, in particular [Rumbaugh 1991] (the original
text on the OMT method) and [Henderson-Sellers 1991], stress seamless developmen
For a detailed treatment of reversibility as well as seamlessness, see [Waldén 1995].

Wisdom sometimes blooms late in the season
Or half-way down the stairs.

Is it, my Lords, a crime of high treason
To trust the implementers?

	28 28 The software construction process
	28.1 CLUSTERS
	28.2 CONCURRENT ENGINEERING
	The waterfall model
	(WARNING: this is not the recommended process mode...
	Individual cluster lifecycle

	28.3 STEPS AND TASKS
	28.4 THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE
	The cluster model of the software lifecycle

	28.5 GENERALIZATION
	A project’s clusters as a set of abstraction layer...
	The reusability culture

	28.6 SEAMLESSNESS AND REVERSIBILITY
	Seamless development
	Reversibility: wisdom sometimes blooms late in the...
	Individual cluster lifecycle, reversible

	28.7 WITH US, EVERYTHING IS THE FACE
	28.8 KEY CONCEPTS COVERED IN THIS CHAPTER
	28.9 BIBLIOGRAPHICAL NOTES

