35

Simula to Java and beyond: major
O-0 languages and environments

Encouraged by the introduction of Simula in 1967, a number of object-oriented
languages have appeared on the scene, highlighting various aspects of the approach. 1
chapter reviews some of the languages that have attracted the most attention: Simu
Smalltalk; C++ and other O-O extensions of C; Java.

The literature still lacks an in-depth comparative study of important O-O languages
The ambition of this chapter is of necessity more modest. In particular, the space allotte
to each language is not an indication of the language’s practical significance, and some
the most publicized will indeed get a fairly short treatment. Our goal is to learnisdoes
and conceptsfinding them where we can, even if that means turning our attention for a
while to one of the less hyped approaches. The risk of under-representing one of tt
principal players is not great, since one only has to look around to pick up articles and bool
describing it in generous detail. The real risk would be the reverse: to miss a promising ide
just because the language supporting it (say Simula) does not currently enjoy top favor.
its coverage of notable languages, then, this survey is not equal-opportunity; it is instea
in its choice of notable language traits, a case of affirmative action.

Even when the concepts are the same or similar, the terms used to denote them
official language descriptions can vary. The discussion will use the native terms when the
reflect language peculiarities; for simplicity and consistency, however, it uses the
terminology of the rest of this book (desighed as an attempt at unification) wher
differences are unimportant. For example you will read about Simula routines, procedure
and functions, although the corresponding terms in official Simula usage are procedur
untyped procedure and typed procedure.

35.1 SIMULA

The undisputed founder of the House of Classes (Object Palace) is Simula, whose desi
was completed (if we ignore a few later updates, entirely minor) in 1967. This may seer
hard to believe: a full-fledged object-oriented language was around, and implementec
beforestructured programming, before Parnas had published his articles on informatiol
hiding, many years before anyone had come up with the phrase “abstract data type”. Tl
Vietnam War was still a page-4 item; barricades had not yet sprung up in the streets
Paris; a mini-skirt could still cause a stir: away by the Northern shores of the Baltic a fev

1114 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTSE35.1

fortunate software developers led by a handful of visionaries were already profiting from
the power of classes, inheritance, polymorphism, dynamic binding and most of the other
marvels of object orientation.

Background

Simula is actually a second design. In the early sixties, a language now known as Simula 1
was developed to support the programming of discrete-event simulations. Although not
quite object-oriented in the full sense of the term, it already showed some of the key
insights. “Simula” proper is Simula 67, designed in 1967 by Kristen Nygaard and Ole-
Johan Dahl from the University of Oslo and the Norwegian Computing Center (Norsk
Regnesentral). Nygaard has explained since how the decision to keep the name was meant
to ensure continuity with the previous language and the link to its user community; but an
unfortunate effect was that for a long time that name evoked for many people the image
of a language meant only for discrete-event simulation — a relatively narrow application
area — even though Simula 67 is definitely a general-purpose programming language,
whose only simulation-specific features are a handful of instructions SIMULATION

library class, used by a minority of Simula developers.

The name was shortened to just Simula in 1986; the current standard is from 1987.

Availability

Simula is often presented as a respectable but defunct ancestor. In fact it is still alive and
enjoys the support of a small but enthusiastic community. The language definition is
maintained by the “Simula Standards Group”. Compilers are available for a variety of
hardware and software environments from several companies, mostly Scandinavian.

Major language traits

We will take a general look at the basic properties of Simula. To some readers Simula will
be passé, and the author of this book will not feel insulted if you skip to the next section,
on Smalltalk. But if you do want to gain a full appreciation of object technology you will
find Simula worth your time; the concepts are there in their original form, and a few of
them show possibilities that may not yet, thirty years later, have been fully exploited.

Simula is an object-oriented extension of Algol 60. Most correct Algol programs are
also correct Simula programs. In particular, the basic control structures are those of Algol:
loop, conditional, switch (a multiple branch instruction, low-level precursor to Pascal's
case instruction). The basic data types (integer, real etc.) are also drawn from Algol.

Like Algol, Simula uses at the highest level a traditional software structure based on
the notion of main program. An executable program is a main program containing a
number of program units (routines or classes). Simula environments do support, however,
a form of separate class compilation.

Simula uses full block structure in the Algol 60 style: program units such as classes
may be nested within one another.

§35.1 SIMULA 1115

All Simula implementations support automatic garbage collection. There is a sme
standard library, including in particular two-way linked lists used bySIMULATION
class studied later in this chapter.

Se¢‘References and As in the notation of this book, the most common entities of non-basic types denc
Simplz;lé}lues”' references to class instances, rather than the instances themselves. Instead of &
page 27.

implicit, however, this property is emphasized by the notation. You will declare the tyr
of such an entity aref (C), rather than jusC, for some clasC; and the corresponding
operations will use special symba:— for an assignment where integer or real operands

chapter presented the rationale for and against this convention.

To create an instance, you will use, rather than a creation instructinewa
expression:

ref (C)a;...;a:—newC

Evaluation of thenew expression creates an instanciC and returns a reference to
it. A class may have arguments (playing the role of the arguments to creation procedt
in our notation), as in

classC (x, y); integer x, y
begin ... end;

In this case, thnew expression must provide corresponding actual arguments:
a:—new C (3, 9§

The arguments may then be used in routines of the class; but unlike with creati
instructions this gives only one initialization mechanism.

Besides routines and attributes, a class may contain a sequence of instructions,
body of the class; if so, thnew call will execute these instructions. We will see how to
use this possibility to make classes represents process-like computational elements ré
than just passive objects as in most other O-O languages.

No assertion mechanism is provided. Simula supports single inheritance; to decl:
B as an heir 0A, use

A classB;
begin ... end

To redefine a feature of a class in a descendant class, simply provide a n
declaration; it will take precedence over the original one. (There is no equivalent to t
redefine clause.)

The original version of Simula 67 did not have explicit information hiding
constructs. In more recent versions, a feature declarprotected will be unavailable to
clients; a protected feature which is further declarehidden will also be unavailable to
proper descendants. A non-protected feature may be protected by a proper descendan
a protected feature may not be re-exported by proper descendants.

1116 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTSE35.1

Deferred features are offered in the form of “virtual routines”, appearinvirtual
paragraph at the beginning of the class. It is not necessary to declare the arguments of a
virtual routine; this means that different effective definitions of a virtual routine may have
different numbers and types of arguments. For example, aPOLY GO might begin

classPOLYGON,
virtual : procedure set_vertices
begin

end

allowing descendants to provide a variable number of arguments olPOINT for
set_vertice: three forTRIANGLE, four for QUADRANGLE etc. This flexibility implies
that some of the type checking must be done at run time.
C++ users should beware of a possible confusion: although inspired by Simula, C++ uses“The C++
a different meaning for the wowirtual. A C++ function is virtual if it is meant to be approach to bind-
dynamically bound (it is, as we have seen, one of the most controversial aspects of C++ing”, page 51«
that you must specify this requirement explicitly). The C++ approximation to Simula’s
virtual procedures is called a “pure virtual function”.
Simula supports polymorphism:Blis a descendant A, the assignmeral:—blis
correct foral of type A andbl of type B. (Interestingly enough, assignment attempt is
almos there: if the type ob1 is an ancestor of the typeal, the assignment will work if
the run-time objects have the proper conformance relationship — source descendant of
target; if not, however, the result will be a run-time error, rather than a special value which,
as with assignment attempt, the software could detect and handle.) By default, binding is
static rather than dynamic, except for virtual routines. Sf is a non-virtual feature
declared atthA level,al.f will denote theA version off even if there is a different version
in B. You can force dynamic binding by using iqua construct, as in

(alqua B).f

This, of course, loses the automatic adaptation of every operation to its target. You
may however obtain the desired dynamic binding behavior (which may largely be
considered a Simula invention) by declaring polymorphic routines as virtual. In many of
the examples that we have studied, a polymorphic routine was not deferred but had a
default implementation right from the start. To achieve the same effect, the Simula
developer will add an intermediate class where the routine is virtual.

As an alternative to usirqua, theinspectinstruction makes it possible to perform
a different operation on an ential, depending on the actual type of the corresponding
object, which must be a descendant of the ‘A declared foa1l:

inspectal
whenAdo...;
whenBdo...;

This achieves the same effect but assumes that the set of descendants of a class is
frozen, and runs into conflict with the Open-Closed principle

§35.1 SIMULA

1117

An example

Chapter2C. Com- The following class extracts illustrate the general flavor of Simula

pare with the final the solution to the problem of full-screen entry systems.
class texts ir*AN

OBJECT-ORI- classSTATE;
ENTED ARCHI- .
TECTURE”, 20.5, virtual:
page 684 procedure display;
The originalSTATE procedure read;
;5;:6618%?9“90' on boolean procedur¢correct;
procedure messag;2
procedure proces;
begin
ref (ANSWEI) user_answg; integer choicg;
procedure execut; begin
boolear ok;
ok :=falsg;
while not ok do begin
display; reac; ok:= correc;
if not okthen messag(a)
end while;
proces;
end execute
end STATE;
The originalAPLI- C|&SSAPPL|CAT|ON(n, m);
CATIONCclass integer n, m;
gggeared on page begin

ref (STATI) array transition(1:n, 0:m-1);
ref (STATIE) array associated_stai(1:n);
integer initial ;

procedure execut; begin
integer st_numbe;r
st_number=initial;
while st_numbe/= 0 do begin
ref (STATE) s,
st:= associated_stat(st_numbe); st.execut;
st_number:= transition(st_numbe, st. choice)
end while
end execute

end APPLICATION

. They are drawn fro

1118 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTSE35.1

Coroutine concepts

Along with basic O-O mechanisms, Simula offers an interesting notion: coroutines.

The notion of coroutine was presented in the discussion of concurrency. Her(Coroutlnes page
brief reminder. Coroutines are modeled after parallel processes as they exist in ope
systems or real-time software. A process has more conceptual autonomy than a rot
printer driver, for example, is entirely responsible for what happens to the print
manages. Besides being in charge of an abstract object, it has its own lifecycle algorithm,
often conceptually infinite. The rough form of the printer process could be something like

from some_initializatiol loop forever For a more complete
" . . . e s e description of a
Obtain a file to be printed”; “Print it printer process see

“Processes pro-
grammed”, page 9¢.0

In sequential programming, the relationship between program units is asymmet
program unit calls another, which will execute completely and return to the caller at the
point of call. Communication between processes is more equal: each process pursues its
own life, interrupting itself to provide information to, or get information from another.

end

Coroutines are similarly designed, but for execution on a single thread of control.
(This sequential emulation of parallel execution is caquasi-parallelisn.) A coroutine
that “resumes” another interrupts its own execution and restarts its colleague at its last
point of interruption; the interrupted coroutine may itself be later resumed.

Coroutine

g sequencing
resumea resumea (This figure
resumeb resumeb appeared originally
on pagel01z.)

Coroutines are particularly useful when each of several related activities has its own
logic; each may be described as a sequential process, and the master-slave relationship
implied by routines is not adequate. A frequent example is an input-to-output
transformation in which different constraints are placed on the structure of the input and
output files. Such a case will be discussed below.

Simula represents coroutines as instances of classes. This is appropriate since
coroutines almost always need persistent data, and often have an associated abstract
object. As we noted earlier, a Simula class hbody, made of one or more instructions.

In a class representing a passive data abstraction, it will only serve as initialization of the
class instances (the equivalent of our creation procedure); but in a coroutine it will be the
description of a process. The body of a coroutine is usually a loop of the form

§35.1 SIMULA

1119

On the parallel
scheme se“A
multi-launcher”,
page 983

while continuation_conditio do begin
... Actions...;
resume other_coroutin;
...Actions ...

end

For some of the coroutines in a systemcontinuation_conditio is oftenTrueto yield
the equivalent of an infinite process (although at least one coroutine should terminate)

A system based on coroutines generally has a main program that first create
number of coroutine objects, and then resumes one of them:

coroutl:— new C1; corout2:—new C2; ...
resumecorout

The evaluation of eacnew expression creates an object and starts executing it
body. But the quasi-parallel nature of coroutines (as opposed to the true parallelism
processes) raises an initialization problem: with processes,new would spawn off a
new process and return control to the caller; but here only one coroutine may be activi
any given time. If thenew expression started the coroutine’s main algorithm, the above
main thread would never recapture control; for example it would never get a chance
createC?2 after spawning ofC1.

Simula addresses this problem through detact instruction. A coroutine may
execute «etachto give control back to the unit that created it throunew. Coroutine
bodies almost always begin (after initialization instructions if needed) wdetact,
usually followed by a loop. After executing idetact, the coroutine will become
suspended until the main program or another cororesumes it.

A coroutine example

Here is an illustration of the kind of situation in which coroutines may prove useful. Yo
are requested to print a sequence of real numbers, given as input; but every eighth nun
(the eighth, the sixteenth, the twenty-fourth etc.) is to be omitted from the outpt
Furthermore, the output must appear as a sequence of lines, with six numbers per
(except for the last line if there are not enough numbers to fill it). ii; denotes thin-th
input item, the output will start as

i1 2 i3 4 5 i6
iz dg i 11 g2 g3
Finally, the output should only include the first 1000 numbers thus determined.

This problem is representative of coroutine use because it conceptually involv
three processes, each with its specific logic: the input, where the constraint is to skip ev
eighth item; the output, where the constraint is to go to the next line after every sixth ite
and the main program, which is required to process 1000 items. Traditional contr
structures are not good at combining such processes with widely different constraints
coroutine solution, on the other hand, will work smoothly.

1120 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTSE35.1

Following the preceding analysis, we may use three coroutinesproducer
(input), theprinter (output) and thcontroller. The general structure is:

begin
class PRODUCERbegin ... See nex... end PRODUCER!
class PRINTERbegin ... See nex... end PRINTEF;
class CONTROLLEFbegin ... See nex... end CONTROLLEIR
ref (PRODUCEF) produce; ref (PRINTEF) printer; ref (CONTROLLEI) controlle;
producer—new PRODUCEL; printer:—new PRINTEF, controller:—new CONTROLLEIR
resume controller

end

This is a main program, in the usual sense; it creates an instance of each of the three
coroutine classes arresumes one of them, the controller. Here are the classes:

classCONTROLLEFL begin
integer i;
detach;
for i:= 1 ster 1until 2000do resume printer
end CONTROLLEIR
class PRINTEF; begin
integer i;
detach;
while true do
for i := 1steg 1 until 8do begin
resume produce;
outreal(producerlast_inpu);
resume controller

end,
next_line
end
end PRINTEF;
classPRODUCEF; begin Thisksfchr:eme will not
: i ; A . work if the program
integer i; real last_inpu, discarde; runs out of input
detach; before having

while true do begin printed 1000 output
items« See exercise

for i := 1steg 1 until 6do begin E35.1, page 1159
last_input:= inreal, resume printer
end;
discarded:= inreal
end
end PRODUCEEF;

§35.1 SIMULA 1121

Each class body begins widetacl to allow the main program to proceed with the
initialization of other coroutines. Procedioutrea prints a real number; functicinreal
reads and returns the next real on input; the extract assumes a prcext_line that
goes to the next line on input.

Coroutines fit well with the other concepts of object-oriented software constructior
Note how decentralized the above scheme is: each process minds its own business,
limited interference from the others. The producer takes care of generating candida
from the input; the printer takes care of the output; the controller takes care of when
start and finish. As usual, a good check of the quality of the solution is the ease
extension and modification; it is indeed straightforward here to add a coroutine that w
check for end of input (as requested by an exercise). Coroutines take decentralization,
hallmark of O-O architectures, one step further.

On the use of a con- The architecture could be made even more decentralized. In particular, the proces
fgg:ggﬁi’gegg‘gt'_sm in the above structure must still activate each other by name; ideally they should not h:
tines se¢Corou- 10 know about each other except to communicate requested information (as when
tines”, page 1012 printer obtainglast _inpu from the producer). The simulation primitives studied below
allow this; after that, the solution is to use a full concurrency mechanism, such
described in an earlier chapter. As you will remember, its platform-independence mese

that it will work for coroutines as well as true parallelism.

Sequencing and inheritance

“Synchronization Even if it does not use coroutine mechanisdetacl, resume), a Simula class may have

L‘gnggl’}f{;{g‘aﬂ‘t%ge a body (a sequence of instructions) in addition to its features, and so may take on

98C. ’ behavior of a process in addition to its usual role as an abstract data type implementat
When combined with inheritance, this property leads to a simpler version of what tt
discussion of concurrency called tinheritance anoma, to which Simula, thanks to its
limitation to single rather than multiple inheritance and coroutines rather than fu

parallelism, is able to provide a language solution.

For a clas<«C let body- be the sequence of instructions declared as bo«C and
actual_bod the sequence of instructions executed for every creation of an insteC.ce of
If C has no parenactual_bod¢ is justbodyc. If C has a parerA (it can have at most one)
thenactual_bod¢ is by default the sequence of instructions

actual_body; body-

In other words, ancestors’ bodies are executed in the order of inheritance. But tl
default may not be what you want. To supersede it, Simula offerinner instruction
which denotes the heir's body, so that the default policy is equivalent to havinnern
at the end of the parent’s body. If instead you write the boA ad

instructiong; inner; instructions

then (assuminiA itself has no parent) the executionC will execute not itsbody- as
written in the class but itactual_bod¢ defined as

instructiong; body; instructions,

1122 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTSE35.1

Although the reasons for this facility are clear, the convention is rather awkward:

* In many cases descendants would need to create their instances differently from their
ancestors. (RemembPOLYGOIMandRECTANGLL)

» Bodies of descendants, such C here, become hard to understand: just reading
body. does not really tell you what the execution will do.

e In addition, of course, the convention would not transpose easily to multiple
inheritance, although this is not an immediate concern in Simula.

Such difficulties withinner are typical of the consequences of making obje(‘Active objects

active, as we found out when discussing concurrency. clash with inherit-
ance”, page 953

Almost all object-oriented languages after Simula have departed frolinner:
convention and treated object initialization as a procedure.

Simulation

True to its origins, Simula includes a set of primitives for discrete-event simulation. It is
no accident, of course, that the first O-O language was initially meant for simulation
applications; more than in any other area, this is where the modeling power of the object-
oriented method can illustrate itself.

A simulation software system analyzes and predicts the behavior of some external
system — an assembly line, a chemical reaction, a computer operating syster... a ship

A discrete-event simulatioi software system simulates such an external system as
having, at any time, state that can change in responseevent occurring at discrete
instants. This differs frorcontinuous simulation, which views the state as continuously
evolving. Which of these two modeling techniques is best for a given external system
depends not so much on whether the system is inherently continuous or discrete (often a
meaningless question) as on what models we are able to devise for it.

Another competitor to discrete-event simulatioranalytical modeling, whereby

you simply build a mathematical model of the external system, then solve the equations.
This is a very different approach. With discrete-event simulation, you run a software
system whose behavior simulates the behavior of the external system: to get more
significant results, you will increase the length of the period that you simulate in the
external system'’s life, and so you will run the simulation longer. This is why analytical
models are usually more efficient. But many physical systems are too complex to admit
realistic yet tractable mathematical models; then simulation is the only possibility.

Many external systems lend themselves naturally to discrete event simulation. An
example is an assembly line, where typical events may include a new part being entered
into the line, a worker or machine performing a certain operation on one or more parts, a
finished product being removed from the line, a failure causing the line to stop. You may
use the simulation to answer questions about the modeled physical systems: how long
does it take (average, minimum, maximum, standard deviation) to produce a finished

§35.1 SIMULA

1123

product? How long will a given piece of machinery remain unused? What is the optimu
inventory level? How long does it take to recover from a power failure?

The input to a simulation is a sequence of events with their occurrence times. It m
come from measurements on the external systems (when the simulation is used
reconstruct and analyze past phenomena, for example a system failure); more commo
it is produced by random number generators according to some chosen statistical law

A discrete-event model must keep track of external system time, also calle
simulated time, representing the time taken by external system operations such .
performing a certain task on a certain part, or the instants at which certain events sucl
equipment failure will occur. Simulated time should not be confused wilcomputing
time needed to execute the simulation system. For the simulation system, simulated i
is simply a non-negative real variable, which the simulation program may only increa
by discrete leaps. It is available in Simula through the gtime, managed by the run-
time system and modifiable through some of the procedures seen next.

Featuretime and other simulation-specific features come from a library class
SIMULATION, which may be used as parent by another class. Let us call “simulatic
class” any class that is a descendarSIMULATION.

In Simula, you may also apply inheritance to blocks: a block written under the form
Chegin ... end has access to all the features declared in C. SIMULATION is often

used in this way as parent of a complete program rather than just a class. So we can also
talk of a “simulation program”.

First, SIMULATION contains the declaration of a cliPROCES. (As noted earlier,
Simula class declarations may be nested.) An instanPROCES represents a process
of the external system. A simulation class can declare descendiPROCES, which
we will call “process classes”, and their instances just “processes”. Among oth
properties, a process may be linked to other processes in a linked list (which means
PROCES is a descendant of the Simula equivalent of cLINKABLE). A process may
be in one of the following four states:

 Active, or currently executing.
* Suspende,, or waiting to be resumed.

« Idle, or not part of the system.

Terminated.

Any simulation (that is to say, any instance of a descendaiSIMULATION)
maintains anevent lisl, containing event notice. Each event notice is a pair
<procesactivation_tim>, whereactivation_tim: indicates when th¢roces must be
activated. (Here and in the rest of this section any mention of time, as well as words sucl
“when” or “currently”, refer to simulated time: the external system’s time, as availabl
throughtime.) The event list is sorted by increasiactivation_tim the first process is
active, all others are suspended. Non-terminated processes which are not in the list are

1124 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS835.1
An event list
pl p2 p4

p7
>
7:26 8:32 \ 9:57 9:57

The basic operation on processes is activation, which schedules a process to become
active at a certain time by inserting an event notice into the event list. Apparently for
syntactical reasons, this operation is not a call to a procedure 0SIMULATION, but
a specific instruction using the keywcactivate orreactivate. (A procedure call would
seem to be a more consistent approach; in fact the standard defines the semantics of
activate through a fictitious procedure text.) The basic form of the instruction is

/a

activate some_ process scheduling_clause

wheresome_ proce:is a non-void entity of type conforming PROCES. The optional
scheduling_claus is of one of

at some_time

delay some_ period
before another_ process
after another_ process

The first two forms specify the position of the new event notice by its activation time
(the sorting criterion for thevent list); the new activation time max(time, some_tim)2
in the at form andmax (time, time + some_ peric) in thedelay form. The new event
notice will be inserted after any other already present in the list with the same activation
time, unless you specifprior . The last two forms specify the position with reference to
another process in the list. A missischeduling claus is equivalent t«delay 0.

A process may activate itself at a later time by specifying itself as the target process
some_ proce. In this case the keyword should reactivate. This is useful to represent
an external system task that takes some simulated time — but of course no computer time.
So if you want to simulate a task that a worker takes three minutes (180 seconds) to
perform, you can let the corresponding prowvorkei execute the instruction

reactivate workerdelay 180
This case is so common as to justify a special syntax, avoiding explicit self-reference:
hold (180)

with exactly the same effect. Procedurehold is
. . _ part of theSIMU-
As you may have guessed, processes are implemented as coroutines; the sSim_ATIONclass

primitives internally use the coroutine primitives that we have reviewed. The effec. v
hold (some_ perio), for example, may be approximately described (in syntax similar to
the notation of this book but extended wresume) as

§35.1 SIMULA

1125

ExerciseE35.2,
page 1133

The Simula notation
this C, used within a
classC, is the equiv-
alent of Currentas
used in the rest of
this bool:

-- Insert new event notice into event list at position determined by its time:
my_new_time= max(time, time + some_ peric)l
I my_reactivation_noticimake(Current, my_new_tim)2
event_listput (my_reactivation_notic)2
-- Get first element of event list and remove it:
next:= event_listirst; event_listremove_first

-- Activate chosen process, advancing time if necessary:
time := time. max(next wher); resume nextwhat

assuming the following declarations:

my_new_tim: REAL; my_reactivation_noti¢, nex: EVENT_NOTICE
class EVENT_NOTICEcreation makefeature
wher: REAL-- i.e. time
wha: PROCESS
make(t: REAL p: PROCES) is
dowhen:=t; what:= pend
end

If a process becomes suspended by reactivating itself at a later time, execution v
resume the first suspended process (the one with the earliest reactivation time) and, i
reactivation time is after the current time, correspondingly advance the current time.

As this example shows, the simulation primitives, although based on the coroutil
primitives, belong to a higher level of abstraction; whenever possible it is preferable to u
them rather than relying directly on coroutine mechanisms. In particular you may vie
hold (0) as a form oresume through which you let the underlying event list mechanism
pick the process to be resumed, rather than specifying it explicitly.

A simulation example

Process classes and the simulation primitives provide an elegant mechanism for mode
external-world processes. Consider as an illustration a worker who may be asked to
either one of two tasks. Both may take a variable amount of time; the second requi
switching on a machirm, which takes 5 minutes, and waiting for the machine to do its job

PROCES classWORKERbegin
while true do begin
“Get next task typi and task duratiod”;
if i =21then
activate mdelay 30¢; reactivate this WORKEFRafter m;
end;
hold (d)
end while
end WORKER

1126 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS835.2

The operation “get next task type and task duration” will usually obtain the requested
value from a pseudo-random number generator, using a specified statistical distribution.
The Simula library includes a number of generators for common statistical laws. The type
of m is assumed to be some process cMACHINE representing the behavior of
machines. All actors of a simulation will be similarepreseted by process classes.

Simula; an assessment

Like Algol 60 before it, Simula has made its contribution less by its commercial success
than through its intellectual influence. The latter is everywhere; both in theory (abstract
data types) and in practice, most of the developments of the past twenty years are children
or grandchildren of the Simula ideas. As to the lack of widespread commercial success, a
number of reasons can be invoked, but the most important one by far is as regrettable as
it is obvious: like a few major inventions before it, Simula came too soon. Although a
significant community immediately recognized the potential value of the ideas, the
software field as a whole was not ready.

Thirty years later, as should be clear from the preceding overview, many of these
ideas are as timely as ever.

35.2 SMALLTALK

The ideas for Smalltalk were laid out around 1970 at the University of Utah by Alan Kay,
then a graduate student and part of a group that was particularly active in graphics, when
he was asked to look at an Algol 60 compiler that had just been delivered to the department
from Norway. Poring over it, he realized that the compiler actually went beyond Algol and
implemented a set of notions that seemed directly relevant to Kay’s other work. The
supported Algol extension was, of course, Simula. When Kay later joined the Xerox Palo
Alto Research Center (PARC), he used the same principles as the basis for his vision of
an advanced personal computing environment. The other two principal contributors to the
early development of Smalltalk at Xerox PARC were Adele Goldberg and Daniel Ingalls.

Smalltalk-72 evolved into Smalltalk-76, then Smalltalk-80, and versions were
developed for a number of machines — initially Xerox hardware but later industry-
standard platforms. Today Smalltalk implementations are available from several sources.

Language style

As a language, Smalltalk combines the influence of Simula with the free, typeless style of
Lisp. The emphasis is on dynamic binding. No type checking is performed: in contrast

with the approach emphasized in this book, the determination of whether a routine may be
applied to an object only occurs at run time.

This, by the way, is not the standard Smalltalk terminology. A routine is called a
“method” in Smalltalk; applying a routine to an object is called “sending a message” to
the object (whose class must find the appropriate method to handle the message).

§35.2 SMALLTALK 1127

“Metaclasses”,
page 163

Another important feature that distinguishes the Smalltalk style from what we hax
studied in this book is the lack of a clear-cut distinction between classes and objec
Everything in the Smalltalk system is an object, including the classes themselves. A cl:
is viewed as an instance of a higher-level class called a metaclass. This allows the ¢
hierarchy to encompass all elements in the system; at the root of the hierarchy is
highest-level class, calleobjec. The root of the subtree containing only classes is the
metaclasiclass. The arguments for this approach include:

» Consistency: everything in Smalltalk follows from a single concept, object.

* Environment effectiveness: making classes part of the run-time context facilitate
the development of symbolic debuggers, browsers and other tools that need run-ti
access to class texts

< Class methods: it is possible to define methods that apply to the class rather thal
its instances. Class methods may be used to provide special implementations
standard operations lilnew which allocates instances of the class.

An earlier discussion considered the arguments for other, more static approach
showing different ways to obtain the same results.

Messages

Smalltalk defines three main forms of messages (and associated methods): un:
keyword and binaryUnary messages express calls to routines without parameters, as |

accl balance

which sends the messabalance to the object associated wiaccl. This is equivalent to
the notatioraccl. balance used in Simula and this book. Messages may, as here, retul
values.Keyword messages represent calls to routines with arguments, as in

pointl translateB: vectorl
windowl moveHc¢ 5 Ver: -3

The use of upper-case letters in the middle of a word, giving identifiers such
translateB, is part of the established Smalltalk style. Note how the message name
collapsed with the keyword for the first argument. The corresponding syntax in Simula
our notation would have be pointl.translate(vectorl) andwindowl move(5, —3).

Binary messages, similar to the infix functions of Ada and the notation of this bool
serve to reconcile the “everything is an object” approach with more traditional arithmet
notations. Rather than

2 addMeT: 3

most people, at least from the older generations who learned arithmetic before obj
technology, still prefer to writ2+3. Smalltalk’s binary messages permits this latter form
as essentially a synonym for the former. There is a snag, however: precedence. °
expressiora + b [J ¢ means(a + b) [0 c. Smalltalk developers can use parentheses to re
establish standard precedence. Unary messages take precedence over binary messag
thatwindowl height + window?2 heiglhas the expected meaning.

1128 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS835.2

In contrast with Simula and the language of this book, Smalltalk classes may only
export methods (routines). To export an attribute, you must write a function that gives
access to its value. A typical example is

x|

yll
Tyy

scale: scaleFactor| |
xx<—xx L scaleFactor
yy<—yyL scaleFactor

Methodsx andy return the values of the instance variables (attribixx andyy. The
up arrowt means that the following expression is the value to be returned by the method
to the sender of the corresponding message. Mescale takes an argumerscaleFacto.
The vertical bar| would delimit local variables if there were any.

Inheritance is an important part of the Smalltalk approach, but except for some
experimental implementations it is limited to single inheritance. To enable a redefined
method to call the original version, Smalltalk allows the developer to refer to the object
viewed as an instance of the parent class through the supel, as in

aFunctior: anArgumen]...|
... super aFunctior: anArgumen...

Itis interesting to compare this approach with the techniques baPrecurso and ExerciseE35.5,

repeated inheritance. page 114. See
Keeping the origi-

All binding is dynamic. In the absence of static typing, errors resulting from sent”a:]'l"ferSi(‘j”f‘ °fta .
a message to an object that is not equipped with a proper method to handle it will LZQZ'ES!_S eature’,
run-time failure, rather than being caught by a compiler.

Dynamic typing also renders irrelevant some of the concepts developed earlier in
this book: Smalltalk does not need language support for genericity since a generic
structure such as a stack may contain elements of any type without any static coherence
checks; neither are deferred routines meaningful, since if the software includex 4 call
(the equivalent ox.f) there is no static rule requiring any particular class to provide a
methodf. Smalltalk provides, however, a run-time mechanism to raise an error if a class
C receives a message corresponding to a method whose effective definitions only appear
in proper descendants C. (In the rest of this boolC would be a deferred class, and
instances would only be created for non-deferred descendaC.) For example, we
could implemenrotate in a classFIGURE by

rotate: anAngle aroun: aPoint| |
self shouldNotImplement

The methocshouldNotimpleme is included in the general claobjec and returns
an error message. The notatselfdenotes the current object.

§35.2 SMALLTALK 1129

Environment and performance

Much of Smalltalk’s appeal has come from the supporting programming environment
among the first to include innovative interaction techniques (many of them devised |
other Xerox PARC projects around the time of the original Smalltalk development) whic
have now become commonplace: multiple windows, icons, integration of text ar
graphics, pull-down menus and use of the mouse as a pointing and selecting device. S
staples of current O-O environment tools such as browsers, inspectors and O-O debug
trace some of their roots to Smalltalk environments.

As with Simula, all commercial implementations support garbage collection
Smalltalk-80 and subsequent implementations are also renowned from their libraries
basic classes, covering important abstractions such as “collections” and “dictionarie
and a number of graphical concepts.

The lack of static typing has proved a formidable obstacle to the efficiency
software systems developed in Smalltalk. Although modern Smalltalk environments, |
longer solely interpretative, provide some mechanisms for compiling methods, tt
unpredictability of run-time target types deprives most Smalltalk developers of a numb
of crucial optimizations that are readily available to compilers for statically typec
languages (such as setting up arrays of functions references and hence ensuring cons
time resolution of dynamic binding, as discussed in the chapter on inheritance). N
surprisingly, many Smalltalk projects have reported efficiency problems. In fact, th
common misconception that object technology carries a performance penalty can
attributed in part to experience with Smalltalk environments.

Smalltalk; an assessment

Smalltalk was instrumental in associating interactive techniques with the concepts
object technology, turning the abstract objects of Simula into visual objects that becal
suddenly comprehensible and appealing to a larger audience. Simula had impres
programming language and programming methodology experts; Smalltalk, through t
famous August 1981 issue Byte, dazzled the masses.

Considering how dated the concepts of Smalltalk appear today, the commerc
success that it enjoyed in the early nineties is remarkable. It can be partly attributed to t
independena contraric phenomena:

* The “try the next one on the list” effect. Many people who were initially drawn to
object technology by the elegance of the concepts were disappointed with hybi
approaches such as C++. When looking for a better embodiment of the concey
they often went to the approach that the computer press has consistently presel
asthe pure O-O approach: Smalltalk. Many a Smalltalk developer is indeed someol
who “just says no” to C or C-like development.

« The decline of Lisp. For a long time, many companies relied on Lisp variants (alor
with Prolog and a few other approaches grounded in Artificial Intelligence) for sid
projects involving quick development of prototypes and experiments. Starting in tt
mid-eighties, however, Lisp largely faded from the scene; Smalltalk naturall
occupied the resulting vacuum.

1130 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTSE35.3

The last observation provides a good idea of the scope of the Smalltalk approach.
Smalltalk is an excellent tool for prototyping and experimentation, especially when visual
interfaces are involved (it competes in this area with more recent tools such as Borland’s
Delphi or Microsoft’s Visual Basic). But it has largely remained uninfluenced by later
developments in software engineering methodology, as attested by the absence of static
typing, assertion mechanisms, disciplined exception handling, deferred classes, all of
which are important for mission-critical systems — or simply any system whose proper
run-time behavior is important to the organization that has developed it. The performance
problems noted above do not help.

The lesson is clear: it would not in my opinion be reasonable today for a company to
entrust a significant production development to Smalltalk.

35.3 LISP EXTENSIONS

Like many other pre-O-O languages, Lisp has served as the basis for several object-
oriented extensions; in fact many of the earliest O-O languages after Simula and Smalltalk
were Lisp-based or Lisp-like. This is not surprising, since Lisp and its implementations
have for many years offered mechanisms that directly help the implementation of object-
oriented concepts, and have taken much longer to find their way into mainstream
languages and their environments:

* A highly dynamic approach to the creation of objects.
« Automatic memory management with garbage collection.
* Ready implementation of tree-like data structures.

* Rich development environments, such as Interlisp in the seventies and its
predecessors in the previous decade.

* Run-time selection of operations, facilitating the implementation of dynamic binding.

The conceptual distance to O-O concepts is, then, shorter if you start from Lisp than
if you start from C, Pascal or Ada, so that the term “hybrid” commonly used for O-O
extensions of these languages, such as the C-based hybrids which we will review in the
next sections, is less appropriate for extensions of Lisp.

Artificial Intelligence applications, the prime application of Lisp and Lisp-like
languages, have found in O-O concepts the benefits of flexibility and scalability. They
have taken advantage of Lisp’s uniform representation for programs and data to extend the
object-oriented paradigm with notions such as “meta-object protocol” and “computational
reflection” which apply some of the O-O principles not just to the description of run-time
structures (objects) but also to the software structure itself (classes), generalizing the
Smalltalk concept of metaclass and continuing the Lisp tradition of self-modifying
software. For most developers, however, these concepts are a little far-off, and they do not
blend too well with the software engineering emphasis on a strict separation between the
static and dynamic pictures.

§35.4 C EXTENSIONS 1131

Three main contenders were vying for attention in the world of O-O Lisp in the
eighties: Loops, developed at Xerox, initially for the Interlisp environmeFlavors,
developed at MIT, available on several Lisp-oriented architectCey», developed at
INRIA. Loops introduced the interesting concept of “data-oriented programming”
whereby you may attach a routine to a data item (such as an attribute). Execution of
routine will be triggered not only by an explicit call, but also whenever the item is access
or modified. This opens the way to event-driven computation, a further step towar
decentralizing software architectures.

The unification of the various approaches came with the Common Lisp Obje
System or CLOS (pronounced C-Los by most people), an extension of Common Li
which was the first object-oriented language to havANSI standard.

35.4 C EXTENSIONS

Much of the late nineteen-eighties transformation of object technology from an attracti
idea into an industrial practice can be attributed to the emergence and tremend
commercial success of languages that added object-oriented extensions to the stable
of a widely available non-O-O language, C. The first such effort to attract widespre:
attention was Objective-C; the best known today is C++.

The language styles reflect two radically different approaches to the problem
“hybrid” language design, so called because it combines O-O mechanisms with those
a language based on entirely different principles. (Examples of hybrids based
languages other than C include Ada 95 and Borland Pascal.) Objective-C illustrates
orthogona approach: add an O-O layer to the existing language, keeping the two parts
independent as possible. C++ illustratesmerget approach, intertwining concepts from
both. The potential advantages of each style are clear: the orthogonal approach shi
make the transition easier, avoiding unexpected interferences; the merged appro
should lead to a more consistent language.

Both efforts capitalized on the success of C, which had rapidly become one of t
dominant languages in the industry. The appeal to managers was obvious, based or
prospect of turning C programmers into O-O developers without too much of a cultu
shock. The model (evoked by Brad Cox) was that of the C and Fortran preprocessors s
as Ratfor which, in the seventies, enabled part of the software community to becol
familiar with concepts of “structured programming” while continuing to work in familiar
language frameworks.

Objective-C

Designed at Stepstone Corporation (originally Productivity Products International) k
Brad Cox, Objective-C is a largely orthogonal addition of Smalltalk concepts onto a C ba:
It was the base language for the NEXTSTEP workstation and operating system. Althot
obscured in part by the success of C++, Objective-C has retained an active user commul

1132 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS835.4

As in Smalltalk, the emphasis is on polymorphism and dynamic binding, but current
versions of Objective-C have departed from the Smalltalk model by offering static typing
as an option (and for some of them, somewhat surprisingly, bindingas well). Here
is an example of Objective-C syntax:

= Proceeding: Publication{id date, place; id articles;}
+ new({return[[super ney] initialize]}
—initialize{ articles= [OrderedCollection ne]; return sel;}
—adc: anArticle{return[contents ad: anArticle];}
—remove anArticle{return[contents remox:anArticle];}

— (int) size{return [contents siZ];}

ClassProceeding is defined as heir tPublicatior (Objective-C supports single
inheritance only). The braces introduce attributes (“instance variables”). The next lines
describe routinessel, as in Smalltalk, denotes the current instance. The iid denotes,
in the non-statically typed variant, a general class type for all non-C objects. Routines
introduced by+, known as “class methods” as in Smalltalk, are meant for the class; this is
the case here with the creation operanew. Others, introduced k-, are normal “object
methods” that send messages to instances of the class.

Stepstone’s Objective-C is equipped with a library of classes initially patterned after
their Smalltalk counterparts. Many other classes are also available for NEXTSTEP.

C++

Originally designed by Bjarne Stroustrup at AT&T Bell Laboratories (an organization
previously renowned, among other accomplishments, for its development of Unix and C),
C++ quickly gained, starting around 1986, a leading position for industrial developments
aiming to obtain some of the benefits of object technology while retaining compatibility
with C. The language has remained almost fupward-compatiblwith C (meaning that

a valid C program is also, in normal circumstances, a valid C++ program).

Early C++ implementations were simple preprocessors that removed O-O constructs
to yield plain C, based on techniques sketched in the preceding chapter. Today’s
compilers, however, are native C++ implementations; it has in fact become hard to find a
C compiler that is ncalsc a C++ compiler, requiring the user who just wants a basic C
compiler to turn on a special “no C++ constructs” compilation option. This is a measure
among many of the success of the approach. Compilers are available from many sources
and for many platforms.

Originally, C++ was an attempt at providing a better version of C, improved in
particular through a class construct and a stronger form of typing. Here is a class example:

§35.4 C EXTENSIONS

1133

“The C++ approach
to binding”, page
514.

class POINT {
float xx, yy;
public:
void translate(float, float);
void rotate(float);
float x();
float y();

friend void p_translat(POINT [1, float, float);
friend void p_rotate(POINT [, float);
friend float p_x(POINT [);
friend float p_y(POINT 0);
|3

The first four routines are the normal, object-oriented interface of the class. Z

shown by this example, the class declaration only shows the headers of these routines
their implementations (somewhat as in the output oshort command studied in earlier
chapters). The routine implementations must be defined separately, which raises quest
of scope for both compilers and human readers.

The other four routines are examples of “friend” routines. This notion is peculiar t

C++ and makes it possible to call C++ routines from normal C code. Friend routines w
need an extra argument representing the object to which an operation is applied;
argument is here of tyfPOINT [J, meaning pointer tPOINT.

C++ offers arich set of powerful mechanisms:
Information hiding, including the ability to hide features from proper descendants.

Support for inheritance. Original versions supported single inheritance only, but no
the language has multiple inheritance. Repeated inheritance lacks the flexibility

sharing or replicating on a feature-by-feature basis, which from the discussion

these topics seemed quite important. Instead, you share or duplicate an entire fea
set from the repeated ancestor.

Static binding by default, but dynamic binding for functions specified as virtual; the
C++ approach to this issue was discussed in depth in an earlier chapter.

A notion of “pure virtual function”, which resembles deferred features.
Stricter typing than in traditional C, but still with the possibility of casting.

Usually no garbage collection (because of the presence of casts and the use
pointers for arrays and similar structures), although some tools are available f
suitably restrained programs.

Because of the absence of automatic memory management by default, a notior
destructo for taking care of object disposal (complementingconstructorsof a
class, that is to say its creation procedures).

1134 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS835.4

» Exception handling, again not part of the original definition but now supported by
most compilers.

« A form of assignment attempt, “downcasting”.

« A form of genericity, “templates”, which suffers from two limitations: nSee‘Efficiency con-
constrained genericity; and, for reasons unclear to a non-implementesiderations’, page

considerable burden on compile-time performance (known in the C++ literatur??"
thetemplate instantiation proble).

« Operator overloading.

* Anasser instruction for debugging, but no assertions in the sense of supportfor Design
by Contract (preconditions, postconditions, class invariants) tied to O-O constructs.

« Libraries available from various suppliers, such as the Microsoft Foundation Classes.

Complexity

The size of C++ has grown considerably since the language’s first versions, and many
people have complained about its complexity. That they have a point is illustrated, among
many possible examples, by this little excerpt from a pedagogical article by a recognized
C and C++ authority, chair of the C standards committee of the American National
Standards Institute and author of several respected C++ books as weDictionary of
Standard (, from whom | was at some point hoping to learn the difference between the
C++ notions of reference and pointer:

While a reference is somewhat like a poi, a pointer is an object that From Rex Jae-
occupies memory and has an add. Non-consi pointers can also be made to schke's C++ column

point to different objects at run tir. On the other har, a reference is an alias

in DEC Profes-
sional November

to an object and does r, itsell, occupy any memo. Its address and value are 1991.
the address and value of the object to which it is ali. And while you can

have a reference to a poin, you cannot have a pointer to a reference or an

array of reference, nor can you have an object of some reference.type
References to thvoid type are also prohibite.d

References and pointer are not interchange. A reference to aint canno,
for exampl, be assigned to a pointer to &ént or vice vers. Howeve, a
reference to a pointer to eint can be assigned a pointer to int.

| swear | tried to understand. | was almost convinced | got the hang of it, although
perhaps not being quite ready for the midterm exam yet. (“Give convincing examples of
cases in which it is appropriate to use: (1) A pointer only. (2) A reference only. (3) Either.
(4) Neither. No notes or Web browsers allowed”.) Then | noticed | had missed the start of
the next paragraph:

From what we have seen so, it may not be obvious as to why references
indeed exis.t

§35.4 C EXTENSIONS 1135

Booch interviex:
http://iwww.
geekchi.con/repli-
gue.htrr. Knuth
interview: Dr.

Dobb’s Journg, na.

24¢€, April 199¢,
pages 16-22

Oh well. Proponents of C++ would undoubtedly state that most users can ignore st
subtleties. Another school holds that a programming language, the principal tool
software developers, should be based on a reasonable number of solid, powerful, perfe
understood concepts; in other words, that every serious user shouldall of the
language, and trust all of it. But it may be impossible to reconcile this view with the vel
idea of hybrid language.

C++: an assessment

C++ leaves few people indifferent. The eminent author Grady Booch lists it, in a “Gee
Chic” interview, as his programming language of choice. Then, according to Dona
Knuth, it would make Edsger Dijkstriphysically ill to think of programming in C+".-

C++ here could use the answer of Junia to Nero in RacBritannicus:

| have neither deserv, in all humility,
Such excess of hor, nor such indignity

Disappointment with C++ indeed follows from exaggerated hopes. Earlie
discussions in this book have carefully analyzed some of the language’'s mc
controversial design choices — especially in the areas of typing, memory manageme
inheritance conventions and dynamic binding — and shown that better solutions &
available. But one cannot criticize C++ as if it were the be-all and end-all of objec
oriented languages. What C++ has attempted, and achieved beyond anyone’s dreams,
to catch a particular moment in the history of software: the time at which a large part
the profession and its managers were ready to try object technoloqot ready to shed
their current practice<C++ was the almost magical answer: still C enough not to scar
the managers; already C enough to attract the forward-looking members of the trade. Ir
seizing the circumstance, C++ was only following the example of C itself, which, fiftee
years earlier, was another product of coinciding opportunities — the need for a portal
machine-oriented language, the development of Unix, the emergence of perso
computers, and the availability of a few decommissioned machines at Bell Labs. T
merits of C++ lie in the historic boost it gave to the development of object technolog
making it presentable to a whole community that might not have accepted the ideas ur
a less conventional apparel.

That C++ is not the ideal object-oriented language, a comment regularly made
authors and lecturers in the field, and obvious enough to anyone who has studied
concepts, should not obscure this contribution. We must not indeed look at C++ as i
were destined to remain a major tool for the software engineering community well into tl
twenty-first century, as it would then be overstaying its welcome. In the meantime C+
has admirably played its role: that of a transition technology.

1136 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS835.5

35.5 JAVA

Introduced by a Sun Microsystems team, Java gained considerable attention in thComputerworl, vol.
few months of 1996, presented as the way to help tame the Internet. Accordi3C nc. 2 15 July
ComputerWorl, the number of press mentions of Java in the first six months of 1996 199¢ Page 122
4325 (which we may multiply by 2 or 3 since this was presumably the US press onl'

a point of comparison, Bill Gates was mentioned only 5096 times.

The principal contribution of Java is in implementation technology. Building seg'Remote execu-
ideas already present in many other O-O environments but taken here to a new levetion”, page 954
execution rests on bytecode (a low-level, portable interpretable format) whos
specification is in the public domain, and a widely availairtual machine to interpret
bytecode programs. The virtual machine is simply a program, for which versions are
available for many different platforms, and can be downloaded freely through the Internet;
this enables almost anyone to execute bytecode programs produced by almost anyone else.
Often you do not even have to download anything explicitly: the virtual machine is built
in tools such as Web browsers; and such tools will be able to recognize references to a
bytecode program, for example a reference embedded in a link on a Web page, so that they
will then automatically download the program and execute it on the spot.

The explosion of the Internet has given this technology a great momentum, and Sun
has been able to convince many other major players to produce tools based on this
technology. As the bytecode is largely separate from the language, it stands a good chance
of becoming a medium of choice for compiler output, regardless of what the source
language is. Compiler writers for such notations as O-O extensions of Pascal and Ada, as
well as the notation of this book, have not been slow to recognize the opportunity for
developing software that will run without any change, and without even the need to
recompile, across all industry platforms.

Java is one of the most innovative developments in the software field, and there are
many reasons to be excited about it. Java’'s language is not the main one. As an O-O
extension of C, it has missed some of the lessons learned since 1985 by the C++
community; as in the very first version of C++, there is no genericity and only single
inheritance is supported. Correcting these early oversights in C++ was a long and painful
process, creating years of havoc as compilers never quite supported the same language,
books never quite gave accurate information, trainers never quite taught the right stuff, and
programmers never quite knew what to think.

Just as everyone in the C++ world has finally come up to speed, Java is starting along
the same road. The language does have one significant benefit over C++: by removing the
notion of arbitrary pointer, especially to describe arrays, it has finally made it possible to
support garbage collection. For the rest, it seems to take no account of modern software
engineering ideas: no assertion support (in fact, Java went so far as to remove the modest
asser instruction of C and C++); partial reliance on run-time type checking; a confusing
modular structure with three interacting concepts (classes, nested packages, source files);
and ever the cryptic syntax bequeathed from C, with such lines as the following typical
examples from the designers’ book on the language:

§35.6 OTHER O-O LANGUAGES 1137

From[Arnold 1996]

See“Formats for

String[] labels= (depth==0 7 basic: extende);
while ((name= getNextPlaye()) = null) {

exhibiting side-effect-producing functions as a way of life, us= conflicting with the
tradition of mathematics, semicolons sometimes required and sometimes illegal etc.

That the language is uninspiring should not, however, detract from the contributic

reusable componentthat Java technology has already made to portable software development. If it
eventually solve its current efficiency problems, Java could, through its bytecode, becol
the closest approximation (built from software rather than hardware, although “Ja
chips” have also been announced) to one of the oldest dreams of the computer industt
truly universal machine.

distribution”, page
7<.

“FROM ADA TO
ADA 95", 33.7, page
109 “Object-ori-
ented extensions of
Pascal’, page 11C.1

35.6 OTHER O-O LANGUAGES

The languages reviewed so far are some of the best known, but by no means the only
to have attracted significant attention. Here are a few other important contributions, whi
would each deserve a separate chapter in a book entirely devoted to object-orier
languages, and to which you can find references (books and Web pages) in
bibliographical section:

Oberonis Niklaus Wirth’'s O-O successor to Modula-2, part of a more genera
project which also involves a programming environment and even hardware suppc

Modula-Z, originally from Digital Equipment’'s research laboratory, is another
modular language with class-like record types, also starting from Modula-2.

Trellis, also from DEC Research, was among the first to offer both genericity ar
multiple inheritance.

Sathe, drawing in part from the concepts and notation of the first edition of this
book, especially assertions, has the benefit of a public-domain implementation;
pSathe version provides an interesting concurrency mechanism.

Betcis a direct descendant of Simula, designed in Scandinavia with the collaborati
of Kristen Nygaard (one of Simula’s original authors). It introducespattern
construct to unify the concepts of class, procedure, function, type and coroutine.

Sel is based not on classes but on “prototypes”, supporting inheritance as a relat
between objects rather than types.

Ada 95was discussed in the Ada chapter.

Borland Pasce and other O-O extensions of Pascal were cited in the discussio
of Pascal.

1138 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS835.7

35.7 BIBLIOGRAPHICAL NOTES

Simula

[Dahl 1966 describes an initial version of Simula subsequently known as Simula 1. The
current Simula, long known as Simula 67, was initially describe[Dahl 1970, which
assumed Algol 60 as a basis and only described the Simula extensions. A chapter in the
famousStructured Programminbook of Dahl, Dijkstra and Hoa[Dahl 1972 brought

the concepts to a wider audience. The language description was revised in 1984,
incorporating the Algol 60 elements. The official reference is the Swedish national
standarc[SIS 1987. For an account of Simula’s history by its designsee[Nygaard

1981.

The best known book on Simula [Birtwistle 1973. It remains an excellent
introduction. A more recent text [Pooley 1986

Smalltalk

References on the earliest versions of Smalltalk (-72 and -7{Goldberg 197€ and
[Ingalls 1978.

A special issue theByte devoted to Smalltal[Goldberg 1981 was the key event
that brought Smalltalk to prominence long before supporting environments became
widely available. The basic reference on the langua[Goldberg 1983, serving both as
pedagogical description and reference; complementing [Goldberg 198E, which
describes the programming environment.

For a good recent introduction to both the Smalltalk language and the VisualWorks
environment se[Hopkins 1995; for an in-depth treatment sLalonde’s and Pugh’s two-
volume se[Lalonde 1990-199..]

The story of Simula’s original influence on Smalltalk (the “Algol compiler from
Norway”) comes from an interview of Alan Kay TWA Ambassad (yes, an airline
magazine), exact issue number forgotten — early or mid-eighties. | am indebted to Bob
Marcus for pointing out the connection between Lisp’s decline and Smalltalk’s resurgence.

C extensions: Objective-C, C++

Objective-C is described by its designer in an ar[{Cox 1984 and a boo {Cox 1990]
(whose first edition dates back to 1986). Pinson and Wiener have written an introduction
to O-O concepts based on ObjectivPinson 1991]

There are hundreds of books on C-For a personal account of the language’s
history by its designer, sq{Stroustrup 199« The original article we [Stroustrup 1984]
it was extended into a bo(Stroustrup 198¢, later revised a[Stroustrup 199, which
contains many tutorial examples and useful backgrotThe reference manual is
[Ellis 1990..

8E35.1 EXERCISES 1139

The address shown
is for the first mes-
sage in the discus-
sior; from there you
can follow links to
the rest of the

“A coroutine exam-
ple”, page 1119

lan Joyner has published several editions of an in-depth “C++ critique
[Joyner 199€ available on a number of Internet sites and containing detailed compariso
with other O-O languages.

Lisp extensions

Loops: [Bobrow 1982; Flavors:[Cannon 198([Moon 1986; Ceyx: [Hullot 1984];
CLOS:[Paepcke 199.}]

Java

In the few months that followed the release of Java, many books have appeared on
topic. Those by the designing team inclufArnold 1996 for a language tutorial,
[Gosling 1996 as the language reference, {Gosling 1996a about the basic libraries.

A discussion about Java’s lack of assertions in the style of this book (that is to se
supporting the principles of Design by Contract), conducted on Usenet in August 19¢
appears ehttp://java.sur.con/archivedjava-interes/099z.html.

Other languages

Oberon: [Wirth 1992], [Oberon-Web. Modula-3: [Harbison 199z, [Modula-3-Web.
Sather[Sather-Wek. Beta:[Madsen 1997, [Beta-Web. Self: [Chambers 199;, [Ungar
1992.

EXERCISES

E35.1 Stopping on short files

Adapt the Simula coroutine example (printer-controller-producer) to make sure that
stops properly if the input does not have enough elements to produce 1000 out
elements.Hint: one possible technique is to add a fourth coroutine, the “reader”.)

E35.2 Implicit resume

(This is a exercise on Simula concepts, but you may use the notation of the rest of this b
extended with the simulation primitives described in this chapter.) Rewrite the produce
printer example in such a way that each coroutine does not need to resume one o
colleagues explicitly when it has finished its current job; declare instead the coroutil
classes as descendanttPROCES, and replace explicresume instructions b hold (0)
instructions. Hints: recall that event notices with the same activation time appear in th
event list in the order in which they are generated. Associate with each processiarcond
that needs to be satisfied for the process to be resumed.)

1140 SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTSSES35.3

E35.3 Emulating coroutines

Devise a mechanism for emulating coroutines in an O-O language of your choice (such as
the notation of the rest of this book) that does not provide coroutine sufHint: write
aresum: procedure, implemented as a loop containing a conditional instruction with a
branch for evenresume. Obviously, you may not for this exercise use the concurrency
mechanism of chapte30, which among other applications supports coroutines.) Apply
your solution to the producer-printer-controller example of this chapter.

E35.4 Simulation

Using the notation of this book or another O-O language, write classes for discrete-event
simulation, patterned after the Simula classSIMULATION, EVENT_NOTIC:
PROCES. (Hint: you may use the techniques developed for the previous exercise.)

E35.5 Referring to a parent’s version

Discuss the respective merits of Smalltallsuper technique against the technique‘Keeping the origi-

introduced earlier in this book to enable a redefined routine to use the original ve"a versionofa
redefined feature”,

Precurso construct and, when appropriate, repeated inheritance. page 55'

	35 35 Simula to Java and beyond: major O-O languag...
	35.1 SIMULA
	Background
	Availability
	Major language traits
	An example
	Coroutine concepts
	Coroutine sequencing
	(This figure appeared originally on page 1012.)

	A coroutine example
	Sequencing and inheritance
	Simulation
	An event list

	A simulation example
	Simula: an assessment

	35.2 SMALLTALK
	Language style
	Messages
	Environment and performance
	Smalltalk: an assessment

	35.3 LISP EXTENSIONS
	35.4 C EXTENSIONS
	Objective-C
	C++
	Complexity
	C++: an assessment

	35.5 JAVA
	35.6 OTHER O-O LANGUAGES
	35.7 BIBLIOGRAPHICAL NOTES
	Simula
	Smalltalk
	C extensions: Objective-C, C++
	Lisp extensions
	Java
	Other languages

	EXERCISES
	E35.1 Stopping on short files
	E35.2 Implicit resume����
	E35.3 Emulating coroutines��
	E35.4 Simulation��
	E35.5 Referring to a parent’s version

