
19
On methodology
o find
lysis;

tware
of the

le of
 how
te the

nomy
flect

w to

nch,
in much

arlier
ask. In
ular by
hat we
er was.

ogy.
u are
either

xpect.
eory.
s that

ess.
Entirely devoted to methodology, the next few chapters — making up part D of this
book — examine how to address the issues facing object-oriented projects: how t
the classes; how not to misuse inheritance; the place of object-oriented ana
fundamental design ideas (“patterns”); how to teach the method; the new sof
lifecycle. The result will, I hope, help you understand how best to take advantage
techniques that we have now finished exploring.

It is appropriate, before going into the study of the rules, to reflect on the ro
methodology in software. This will be an opportunity to define meta-rules — rules on
to make rules — which will help us devise sound methodological advice and separa
best from the rest in the methodological literature. In passing we will devise a taxo
of rules, finding out that certain kinds are more desirable than others. Finally we will re
on the attractive and dangerous role of metaphors, and take a short lesson in modesty.

19.1 SOFTWARE METHODOLOGY: WHY AND WHAT

People want guidance. The quest for Principles of Truth, which one only has to follo
succeed, is neither new nor specific to software.

The software literature, including for the past few years its object-oriented bra
has capitalized on this eagerness and attempted to offer recipes. This has resulted
useful advice being made available (along with some more questionable ideas).

We must remember, however, that there is no easy path to quality software. E
chapters have pointed out several times that software construction is a challenging t
the past few years our grasp of the issues has vastly improved, as illustrated in partic
the techniques presented in this book, but at the same time the size and ambition of w
are trying to do has been growing even faster, so the problem remains as difficult as it ev

It is important, then, to know the benefits and limitations of software methodol
From the following chapters and from the rest of the object-oriented literature, yo
entitled to expect good advice, and the benefit of other people’s experience. But n
here nor there will you find a sure-fire way to produce good software.

A comparison made in an earlier chapter helps set the limits of what you can e
In many respect, building a software system is similar to developing a mathematical th
Mathematics, as software construction, can be taught, including the general principle
help talented students produce brilliant results; but no teaching can guarantee succ

ON METHODOLOGY §19.2664

the
ay be
reas of
widely
 to be
 up the
wers
e of

 to the
is not
useful

t

to ask
rious

write
rison

ject to

ed to
t
ut not

ger is
. The
 may

[Dijkstra 1968].
Not all recipe-style approaches are doomed. If you sufficiently restrict
application domain until you are left with a basic set of problem patterns, then it m
possible to define a teachable step-by-step process; this has occurred in some a
business data processing, where methodologists have identified a small number of
applicable solution schemes. The eventual fate of such schemes, of course, is
subsumed by software packages or reusable libraries. But as soon as you open
problem domain, no simplistic approach will work; the designer must exert his best po
of invention. A method will help through general guidelines, through the exampl
previous successful designs — also the example of what does not work — but not much
more.

Keep these observations in mind both when reading part D and when going on
methodology literature, where some methods make exaggerated claims. That
necessarily a reason for rejecting them wholesale, as they may still include some
advice; but they should be taken with a grain of salt.

A point of terminology: it has become customary in some of the literature to talk about
specific “methodologies”, really meaning methods (actually even less: variants of a
single general method, the object-oriented method). This practice may be viewed as jus
another mildly irritating example of verbal inflation — such as talking of repairmen as
maintenance engineers — but is damaging since it leads readers to suspect that if the label
is inflated the contents must be oversold. This book only uses the word methodology in
the singular and sticks to the meanings that common dictionaries give for it: the study of
methods; the “application of the principles of reasoning to scientific and philosophical
inquiry”; and a system of methods.

19.2 DEVISING GOOD RULES: ADVICE TO THE ADVISORS

Before going into specific rules for using object-oriented techniques, it is necessary
ourselves what we should be looking for. The methodologist is entrusted with a se
responsibility: telling software developers how to write their software, and how not to
it. In a field where religious metaphors come up so often, it is hard to avoid the compa
with preachers or directors of conscience. Such a position, as is well known, is sub
abuse; it is appropriate, then, to define a few rules on rules: advice for the advisors.

The need for methodology guidelines

The field of software development methodology is not new. Its origins may be trac
Dijkstra’s famous Go To Statement Considered Harmful letter and subsequen
publications by the same author and his colleagues on structured programming. B
all subsequent methodological work has upheld their standards.

It is relatively easy indeed to legislate about software construction, but the dan
great of producing rules that are useless, poorly thought out, or even harmful
following guidelines, based on an analysis of the role of methodology in software,
help us avoid such pitfalls.

§19.2 DEVISING GOOD RULES: ADVICE TO THE ADVISORS 665

rea:

oto
refully
t deny
ment
your

ly be

 and
oning.
with
e case
project
gy in

tems;
 reach
ing the
 not
 a key
nds of

ysis,
 one
e and

 More
d leave
. The
Theory

The first duty of an advisor is to base his advice on a consistent view of the target a

Dijkstra’s example is still a good guide here. He did not just attack the G
instruction for reasons of taste or opinion, but supported his suggested ban by a ca
woven chain of reasoning. One may disagree with some of that argument, but no
that the conclusion is backed by a well thought-out view of the software develop
process. To counter Dijkstra’s view you must find a flaw in his theory and provide
own replacement for that theory.

Practice

The theory is the deductive part of software methodology. But rules that would on
rooted in theory could be dangerous. The empirical component is just as important:

Perhaps one day someone will disprove this principle by devising a brilliant
applicable method of software construction through the sole power of abstract reas
In physics, after all, some of the most directly practical advances originated
theoreticians who never came close an experiment. But in software engineering th
has not occurred — all the great methodologists have also been programmers and
leaders on large developments — and seems unlikely to occur. Object technolo
particular is among other things, an intellectual tool to build large and complex sys
the only approach, in fact, that has attempted consistently and comprehensively to
this goal. One can master the essential concepts through taking classes, read
literature, performing small-scale experiments and thinking further, but that is
preparation enough to give good methodological advice. The experience of playing
role in the building of large systems — thousands of classes, hundreds of thousa
lines — is indispensable.

Such an experience must include all activities of the software lifecycle: anal
design, implementation, and of course maintenance (the final reckoning, at which
recognizes whether the solution adopted at earlier stages stands the test of tim
change, or collapses miserably).

Analysis experience, or even analysis and design experience, is not enough.
than once I have seen analysis consultants who do their job, charge their fees, an
the company with no more than “bubbles and arrows” — an analysis document

Theoretical Basis methodology principle

Software methodology rules must be based on a theory of the underlying
subject.

Practical Basis methodology principle

Software methodology rules should backed by extensive practical experience.

ON METHODOLOGY §19.2666

alyst’s
actical

lysis
misses

In the
ctical

ble

sed by
t:

e in

s:

e they
company then has to pick up the pieces and do the hard work; sometimes the an
work turns out to be totally useless as it has missed some of the most important pr
constraints. An “analysis only” approach belies the fundamental ideas of seamlessness and
reversibility, the integrated lifecycle that characterizes object technology, where ana
and design are interwoven with implementation and maintenance. Someone who
part of this picture is not equipped to give methodological advice.

Reuse

Having played a key part in some large projects is necessary but not sufficient.
object-oriented field the Practical Basis precept yields a corollary: the need for pra
reusability experience.

Among the distinctive properties of the method is its ability to yield reusa
components. No one can claim to be an expert who has not produced a reused O-O library;
not just components claimed to be reusable, but a library that has actually been reu
a substantial number of people outside of the original group. Hence the next precep

A typology of rules

Next we should turn to the form of methodology rules. What kind of advice is effectiv
software development methodology?

A rule may be advisory (inviting you to follow a certain style) or absolute (enjoining
you to work in a certain way); and it may be phrased in a positive form (telling you what you
should do) or in negative form (telling you what you should not do). This gives four kind

The requirements are slightly different in each case.

Absolute positives

Rules of the absolute positive kind are the most useful for software developers, sinc
provide precise and unambiguous guidance.

Reuse Experience methodology principle

To claim expert status in the object-oriented field, one must have played a
key role in the development of a class library that has successfully been
reused by widely different projects in widely different contexts.

Classification of methodological rules

• Absolute positive: “Always do a”.

• Absolute negative: “Never use b”.

• Advisory positive: “Use c whenever possible”.

• Advisory negative: “Avoid d whenever possible”.

§19.2 DEVISING GOOD RULES: ADVICE TO THE ADVISORS 667

ture,
 tools
gical

 like a
d for

t who
jkstra

ense,
ology
ce no
s rule
 in so
 why
or to

ing
Unfortunately, they are also the least common in the methodological litera
partly for a good reason (for such precise advice, it is sometimes possible to write
that carry out the desired tasks automatically, removing the need for methodolo
intervention), but mostly because advisors are too cautious to commit themselves,
lawyer who never quite answers “yes” or “no” to a question for fear of being blame
the consequences if his client does act on the basis of the answer.

Yet such rules are badly needed:

Absolute negatives

Absolute negatives are a sensitive area. One wishes that every methodologis
followed in Dijkstra’s footsteps had taken the same care to justify his negatives as Di
did with the Goto. The following precept applies to such rules:

Advisories

Advisory rules, positive or negative, are fraught with the risk of uselessness.

It is said that to distinguish between a principle and a platitude you must consider
the negation of the property: only if it is a principle does the negation still make s
whether or not you agree with it. For example the often quoted software method
advice “Use variable names that are meaningful” is a platitude, not a principle, sin
one in his right mind would suggest using meaningless variable names. To turn thi
into a principle, you must define precise standards for naming variables. Of course
doing you may find that some readers will disagree with those standards, which is
platitudes are so much more comfortable; but it is the role of a methodological advis
take such risks.

Advisory rules, by avoiding absolute injunctions, are particularly prone to becom
platitudes, as especially reflected in qualifications of the form “whenever possible” or, for
advisory negatives, “unless you absolutely need to”, the most dishonest formula in
software methodology.

The next precept helps avoid this risk by keeping us honest:

Absolute Positives methodology principle

In devising methodological rules, favor absolute positives, and for each such
rule examine whether it is possible to enforce the rule automatically through
tools or language constructs.

Absolute Negatives methodology principle

Any absolute negative must be backed by a precise explanation of why the
author considers the rejected mechanism bad practice, and accompanied by
a precise description of how to substitute other mechanisms for it.

ON METHODOLOGY §19.2668

 type

ether
(type

pot the

ming
d at all.

ish to
stify
to a

ogy,

bout

cause
ways

ation

From [Ellis 1990].

From
[Lieberherr 1989].
Here is an example of advisory negative, extracted from the discussion of
conversions (casts) in the C++ reference book:

Explicit type conversion is best avoided. Using a cast suppresses the type checking
provided by the compiler and will therefore lead to surprises unless the programmer
really was right.

This is accompanied by no explanation of how the programmer can find out wh
he “really was right”. So the reader is introduced to a certain language mechanism
casts); warned, rightly, that it is dangerous and will “lead to surprises”; advised implicitly
that the mechanism may sometimes be needed; but given no clue as to how to s
legitimate uses.

Such advice is essentially useless; more precisely, it has a negative effect —
impressing on the reader that the tool being described, in this case a program
language, is marred by areas of insecurity and uncertainty, and should not be truste

Exceptions

Many rules have exceptions. But if you present a software methodology rule and w
indicate that it may not always apply, you should say precisely what cases ju
exceptions. Otherwise the rule will be ineffective: each time a developer runs in
delicate case (that is to say, each time he truly needs your advice), he will be entitled to
think that the rule does not apply.

Consider the following paragraph from an article about software methodol
coming after the presentation of a rather strict set of rules:

The strict version of the class form of the Law of Demeter is intended to be a
guideline, not an absolute restriction. The minimization version of the law’s
class form gives you a choice of how strongly you want to follow the strict
version of the law: the more nonpreferred acquaintance classes you use, the
less strongly you adhere to the strict version. In some situations, the cost of
obeying the strict version may be greater than the benefits.

It is difficult, after reading this extract, to decide how serious the authors are a
their own rule; when should you apply it, and when is it OK to violate it?

What is wrong in not the presence of exceptions in a general guideline. Be
software design is a complex task, it is sometimes inevitable (although al
undesirable) to add to an absolute positive “Always do X in situation A” or an absolute
negative “Never do Y in situation A” the qualification “except in cases B, C and D”. Such
a qualified rule remains an absolute positive or negative: simply, its domain of applic

Advisory Rules methodology principle

In devising advisory rules (positive or negative), use principles, not
platitudes.

To help make the distinction, examine the rules’ negation.

§19.2 DEVISING GOOD RULES: ADVICE TO THE ADVISORS 669

e
s (“

tified

and

t we
ashy

ashy
u are
ogical
ments
r you

o your
s that

d be

sign
evise

y
your
iding
is not the whole of A, but A deprived of B, C and D. What is unacceptable, however, is th
contrast between a precise, prescriptive rule, and a vague provision for exceptionin
some situations, the cost may be greater than the benefits” — what situations?). Later in
the cited article, an example is shown that violates the rule, but the exception is jus
in terms of ad hoc arguments. It should have been part of the rule:

If exceptions to a rule are included in the rule, they cease to be exceptions to the rule! This
is why the principle talks about the “guideline” associated with a rule. There may be
exceptions to the guideline, but they are not exceptions to the rule if the rule observes the
above principle. In “Cross the street only when the traffic lights are red, except if the
lights are out of order”, the guideline “cross only on red” has an exception, but the rule
as a whole does not.

This principle turns every rule of the form “Do this...” into an absolute positive,
every rule of the form “Do not do that...” into an absolute negative.

Self-doubt is an admirable quality in many circumstances of life, but not one tha
expect to find in software methodology rules. One could almost argue that a wishy-w
methodologist is worse than a brilliant one who is occasionally wrong. The wishy-w
advice is largely useless, as it comes with so many blanket qualifications that yo
never sure if it applies to your case of the moment; whereas if you study a methodol
precept and decide that you disagree with it, you must try to refute the author’s argu
with your own, and regardless of the outcome you will have learned something: eithe
fail, and gain a deeper, more personal appreciation of the rule and its relevance t
problem; or you succeed, and discover the rule’s limitations, gaining some insight
the rule’s author may have missed.

Abstraction and precision

A common theme of the last few principles is that methodological advice shoul
precise and directive.

This is of course more fully applicable for precise rules than for general de
guidelines. When looking for advice on how to discover the right classes or how to d
the best inheritance hierarchy, you cannot expect step-1-step-2-step-3 recipes.

But even then generality and abstraction do not necessarily mean vagueness. Man
of the principles of object-oriented design cover high-level issues; they will not do
work for you. Yet they are precise enough to be directly applicable, and to allow dec
without ambiguity whether they apply in any particular case.

Exceptions Included methodology principle

If a methodological rule presents a generally applicable guideline which may
suffer exceptions, the exceptions must be stated as part of the rule.

ON METHODOLOGY §19.2670

visory
 the
isory
it is
ol is
small.
ents

 then

 tool

is this
t
s

ce —
earlier
e

 just
d then

e of

n

Advice from [Bright
1995]. See page 516.

(Imaginary media
report.)

“A simple notion of
book”, page 221.

“Exceptions”, page
668.
If it is baroque, fix it

The advice on C++ type casts quoted earlier illustrates a general problem of ad
negatives: recommendations of this kind owe their existence to limitations of
underlying tool or language. For a perfect tool we would never have to give adv
negatives; every facility would be accompanied by a clear definition of when
appropriate and when it is not — a criterion of the absolute kind, not advisory. No to
perfect, but for a decent one the number of advisory negatives should remain very
If in teaching the proper use of the tool you find yourself frequently resorting to comm
of the form “Try to stay away from this mechanism unless you absolutely need it”,
most likely the problem is what you are teaching about, not your teaching of it.

In such a case one should abandon trying to give advice, and improve the
instead, or build a better one.

Typical phrases that signal this situation are

... unless you know what you are doing.

... unless you absolutely have to.

Avoid ... if you can.

Try not to ...

It is generally preferable not to ...

Better stay away from ...

The C/C++/Java literature has a particular fondness for such formulae. Typical
advice: “Don’t write to your data structure unless you have to”, from the same C++ exper
who in an earlier chapter was warning us against too much use of O-O mechanism.

This advice is puzzling. Why would developers write to a data structure for no reason?

Rampant Problem of Programmers Writing to Data Structures When They Don’t Have
To Worries US Software Industry. Why do they do it? Says Jill Kindsoul (not her real
name), a Senior Software Engineer in Santa Barbara, California: “My heart goes out to
the poor things. It can feel so lonely out there in swap space! I consider it my duty to write
to each one of my objects’ fields at least once a day, even if it’s just with its own previous
value. Sometimes I come back during the week-end just for it.” The actions of
programmers like Jill are a growing concern for the principal software vendors, all
rumored to have set up special task forces to deal with the issue.

Another case of trying to address language flaws through methodological advi
making language users responsible for someone else’s errors — was cited in an
chapter: the Java designers’ recommendation (“a programmer could still mess up th
object…”) against using direct field assignments a● x := y, in violation of basic information
hiding principles. It is a surprising approach, if you think a construct is bad, and
happen to be designing a programming language, to include the construct anyway an
write a book enjoining the language’s future users to avoid it.

The “Law of Demeter” cited earlier also provides an example. It restricts the typ
x, in a call x ● f (...) appearing in a routine r of a class C, to: types of arguments of r; types
of attributes of C; creation types (types of u in !! u …) for creation instructions appearing i

§19.3 ON USING METAPHORS 671

selves
e, for

t the

eter-

imits

s. This
ntract.
ct” to
tions,

is is

“SELECTIVE EX-
PORTS AND INFOR
MATION HIDING”,
7.8, page 191.
r. Such a rule, if justified, should be made part of the language. But as the authors them
imply in the quoted excerpt this would be too harsh. The rule would make it impossibl
example, to write a call my_stack● item● some_routine which applies some_routine to the
topmost element of my_stack; yet any alternative phrasing is heavier and less clear.

For the first few weeks after the initial design of the notation of this book, years ago,
multi-dot calls of the form a●b● c were not supported. This limitation proved insufferable
and we did not rest until it was removed.

Examination of the rationale for the Law, and for its exceptions, suggests tha
authors may not have considered the notion of selective export, through which one can
export a feature of a class C to specific clients having a close relation to C, while keeping
it away from all other clients. With this mechanism, there may be no need for a Dem
like law.

These observations yield our last precept:

19.3 ON USING METAPHORS

ANDROMAQUE:
I do not understand abstractions.

CASSANDRA:
As you like. Let us resort to metaphors.

Jean Giraudoux, The Trojan
War Will Not Happen, Act I.

In this meta-methodological discussion it is useful to reflect briefly on the scope and l
of a powerful expository tool: metaphors.

Everyone uses metaphors — analogies — to discuss and teach technical topic
book is no exception, with such central metaphors as inheritance and Design by Co
The name of our entire subject, indeed, is a metaphor: when we use the word “obje
talk about some computing concept, we rely on a term loaded with everyday connec
which we hijack for a very specific purpose.

In scientific discourse metaphors are powerful, but they are dangerous. Th
particularly applicable to software, and even more to software methodology.

Fixing What Is Broken methodology principle

If you encounter the need for many advisory negatives:

• Examine the supporting tool or language to determine if this reflects
deficiencies in the underlying design.

• If so, consider the possibility of shifting over some of the effort from
documenting that design to correcting it.

• Also consider the possibility of eliminating the problem altogether by
switching to a better tool.

-

ON METHODOLOGY §19.3672

on the

ey rely
atician

rtant
solve

 the
ling to

 and
 are in

t

hich
uta in
r
were

usion
 his
cs; and
ith the

sted
in the
s” of
arked
ere do

from
s ever
g to

[Hadamard 1945].

Swift, Gulliver’s
Travels, Part 3, “A
Voyage to Laputa,
etc.” , chapter 5.

[Bachelard 1960].
A colleague with whom I used to attend software engineering conferences once swore
that he would walk out the next time he heard an automotive comparison (“if programs
were like cars…”). Had he kept the pledge, he would not have attended many talks.

Are metaphors good or bad? They can be very good, or very bad, depending
purposes for which they are used.

Scientists use metaphors to guide their research; many have reported how th
on concrete, visual images to explore the most abstract concepts. The great mathem
Hadamard, for example, describes the vivid images — clouds, red balls colliding, “a kind
of ribbon, which is thicker or darker at the place corresponding to the possibly impo
terms” of a mathematical series — to which he and his peers have resorted to
difficult problems in the most abstract realms of analysis and algebra.

Metaphors can be excellent teaching tools. The great scientist-expositors —
Einsteins, Feynmans, Sagans — are peerless in conveying difficult ideas by appea
analogies with concepts from everyday’s experience. This is the best.

But the worst also exists. If we start taking metaphors at their face value,
deducing properties of the domain under study from properties of the metaphor, we
serious trouble. A pseudo-syllogism (“Proof by analogy”) of the form

A resembles B
B has property p

Ergo: A has property p

is usually fallacious because the conclusion (A has property p) is precise whereas the firs
premise (A resembles B) is not. What matters is how exactly A is like B, and, even more,
how A is unlike B; clearly some properties of B must be different from those of A,
otherwise A and B would be the same thing (as in those stories by Borges or Pérec in w
a novel or painting is about itself, or in the language that the academicians of Lap
Gulliver’s Travels devised from the observation that “since words are only names fo
things, it would be more convenient for all men to carry about them such things as
necessary to express the particular business they are to discourse on”). A metaphor is
defined by what differs as much as by what is common. But then to justify the concl
we have to check that p only involves the common part. Once Hadamard had intuited
result, he knew he had to prove it step by step using the austere rites of mathemati
many a student of a Feynman or Laurent Schwartz has realized, when faced w
week’s homework, that brilliant images are only the beginning of the process.

The more alluring the metaphor, the greater the danger of falling into twi
reasoning of the above form. Think for example of the analogy so commonly used
reusability literature, this book included, between software components and the “chip
our hardware colleagues, through such terms as “software IC” (coined and tradem
by Brad Cox). Up to where do we use the metaphor to help us gain insights, and wh
we start confusing the real thing A with the metaphor B?

Bachelard’s fascinating book on the Formation of the Scientific Mind, which shows
some of the best minds of the eighteenth century struggling with the transition
magical modes of reasoning to the scientific method, tells a story that anyone who i
tempted to use a metaphor in scientific discourse should keep in mind. In tryin

§19.4 THE IMPORTANCE OF BEING HUMBLE 673

 then
ast to

in the

r than
n

by an
to his
nsible
n we
 see an

n. To
he value
o sure

 self-
u have
e O-O

Réaumur, in
Memoirs of the
[French] Royal
Academy of
Sciences, 1731.
Quoted by
Bachelard, p. 74.

B. Franklin, in
“Experiences and
observations on
electricity,
expressed in severa
letters to P.
Collinson of
London’s Royal
Society”. Translated
back from the 1752
French text quoted i
Bachelard, p. 77.
understand the nature of air, the great physicist-philosopher Réaumur used the
common metaphor of a sponge — which, as Bachelard shows, goes back at le
Descartes. Why not? Many good physics teachers occasionally resort to such gimmicks to
capture students’ attention and convey a point, supported or not by a bit of clowning
classroom or the TV studio. But then things start to go wrong: the sponge becomes the air!

A very common idea is to consider air as being like cotton, like wool, like a
sponge, and much more spongious even than any other bodies or collections of
bodies to which they may be compared. This idea is particularly adequate to
explain why air can also become extremely rarefied, and occupy a volume
considerably bigger than what we had seen it occupy a moment before.

Air is like a sponge, so air expands like a sponge! And now comes none othe
Benjamin Franklin, who finds sponges so convincing as to use them to explai…
electricity. If matter is like a sponge, electric current must of course be like a liquid that
flows through a sponge:

Common matter is a kind of sponge for the electric fluid. A sponge could not
receive water if the parts which make up the water were bigger than the pores
of the sponge; it would only receive it very slowly if there was no mutual
attraction between its parts and the sponge’s parts; the sponge would fill up
faster if the mutual attraction between the water’s parts did not create an
obstacle, requiring that some force be applied to separate them; finally, the
filling up would be very fast if, instead of attraction, there was mutual repulsion
between the water’s parts, concurring with the sponge’s attraction. This is the
precise situation with electrical matter and common matter.

Comments Bachelard: “Franklin only thinks in sponge terms. The sponge, for him,
[has become] an empirical category.” He adds, with a touch of mockery: “Perhaps, in his
youth, [Franklin] had marveled at such a simple object [the sponge]. I have often surprised
children being fascinated by the sight of a blotter «drinking» ink”.

The Réaumur and Franklin quotations were not culled from a Usenet posting
undergraduate who has yet to be taught to pour a few drops of intellectual rigor in
enthusiasm. They emanate from intellectual giants of their time, each of them respo
for decisive scientific advances. They should serve as a sobering influence whe
discuss software concepts, and help us keep things in perspective the next time we
author getting a bit carried away by his own analogies.

19.4 THE IMPORTANCE OF BEING HUMBLE

One final word of general advice as we prepare to study specific rules of desig
produce great products, designers, even the best ones, should never overestimate t
of their experience. Every ambitious software project is a new challenge: there are n
recipes.

The design of a large software product is an intellectual adventure. Too much
confidence can hurt. The more books you have read (or written), the more classes yo
taken (or taught), the more programming languages you know (or designed), the mor

l

n

ON METHODOLOGY §19.5674

u have
ed (or
ed co-
d), the
your
te for

, from
rticular
essarily
e, and
rience

ssarily
asons

icularly
ctual

m a
nt on

ts of

ards,
ts of

 light

roup
pts.
software you have examined (or produced), the more requirements documents yo
tried to decipher (or make decipherable), the more design patterns you have learn
devised), the more design meetings you have attended (or led), the more talent
workers you have met (or hired), the more projects you have helped (or manage
better you will be equipped to deal with a new development. But do not think that
experience makes you infallible. In advanced software design there is no substitu
fresh thinking and creative insights. Every new problem calls for new ideas; everyone
the seasoned project leader to the latest recruit, can have the right insight on any pa
issue; and everyone can go wrong. What distinguishes the great designer is not nec
that he has fewer bad ideas, but that he knows how to discard them, swallow his prid
retain the good ideas whether or not he originated them. Incompetence and inexpe
are obvious obstacles in the quest for the right solution; conceit can be just as bad.

No one will be surprised by these comments who has heard (although not nece
believed) Luciano Pavarotti stating that he faces stage fright every night. One of the re
the best people are best is that they are toughest with themselves. This rule is part
relevant in software design, where there is always the risk of lapsing into intelle
laziness and making easy but wrong decisions, which may later be sorely regretted.

19.5 BIBLIOGRAPHICAL NOTES

The “advice to the advisors” part of this chapter is based on [M 1995b].

I first heard the definition of the difference between principles and platitudes fro
talk by Joseph Gurvets at TOOLS EUROPE 1992. I owe to Éric Bezault the comme
the relevance of selective exports to the Law of Demeter.

EXERCISES

E19.1 Self-applying the rules

Perform a critique of the methodological rules of this book in the light of the precep
this chapter. The list of all rules appears in Appendix C.

E19.2 Library rules

[M 1994a] contains an extensive set of rules, both design principles and style stand
for building library classes. Perform a critique of these rules in the light of the precep
this chapter.

E19.3 Application of the rules

Examine the software methodology book of your choice, and the rules it gives, in the
of this chapter’s precepts.

E19.4 Metaphors on the Net

Follow for a week or two the discussions of object technology in the Usenet newsg
devoted to it, comp.object. Track the use of metaphors to talk about software conce

§E19.4 EXERCISES 675

 author
Examine whether these metaphors are valuable, and whether any of them leads its
to make improper “proof by analogy” inferences.

ON METHODOLOGY §E19.4676

	19 19 On methodology
	19.1 SOFTWARE METHODOLOGY: WHY AND WHAT
	19.2 DEVISING GOOD RULES: ADVICE TO THE ADVISORS
	The need for methodology guidelines
	Theory
	Theoretical Basis methodology principle

	Practice
	Practical Basis methodology principle

	Reuse
	Reuse Experience methodology principle

	A typology of rules
	Classification of methodological rules

	Absolute positives
	Absolute Positives methodology principle

	Absolute negatives
	Absolute Negatives methodology principle

	Advisories
	Advisory Rules methodology principle

	Exceptions
	Exceptions Included methodology principle

	Abstraction and precision
	If it is baroque, fix it
	Fixing What Is Broken methodology principle

	19.3 ON USING METAPHORS
	19.4 THE IMPORTANCE OF BEING HUMBLE
	19.5 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E19.1 Self-applying the rules
	E19.2 Library rules
	E19.3 Application of the rules
	E19.4 Metaphors on the Net

