14

Introduction to inheritance

I nteresting systems are seldom born into an empty world.

Almost always, new software expands on previous developments; the best way t
create it is by imitation, refinement and combination. Traditional design methods largely
ignored this aspect of system development. In object technology it is an essential concer

The techniques studied so far are not enough. Classes do provide a good modu
decomposition technique and possess many of the qualities expected of reusak
components: they are homogeneous, coherent modules; you may clearly separate th
interface from their implementation according to the principle of information hiding;
genericity gives them some flexibility; and you may specify their semantics precisely thank:
to assertions. But more is heeded to achieve the full goals of reusability and extendibility.

For reusability any comprehensive approach must face the problem of repetition
and variation, analyzed in an earlier chapter. To avoid rewriting the same code over ar
over again, wasting time, introducing inconsistencies and risking errors, we neet
techniques to capture the striking commonalities that exist within groups of similar
structures — all text editors, all tables, all file handlers — while accounting for the many
differences that characterize individual cases.

Forextendibility the type system described so far has the advantage of guaranteein
type consistency at compile time, but prohibits combination of elements of diverse form:
even in legitimate cases. For example, we cannot yet define an array containin
geometrical objects of different but compatible types sudhG@sl Tand SEGMENT

Progress in either reusability or extendibility demands that we take advantage of th
strong conceptual relations that hold between classes: a class may be an extensi
specialization or combination of others. We need support from the method and th
language to record and use these relations. Inheritance provides this support.

A central and fascinating component of object technology, inheritance will require
several chapters. In the present one we discover the fundamental concepts. The next th
chapters will describe more advanced consequences: multiple inheritance, renamin
subcontracting, influence on the type system. Chapteromplements these technical
presentations by providing the methodological perspective: how to use inheritance, ar
avoid misusing it.

460 INTRODUCTION TO INHERITANCE §14.1

14.1 POLYGONS AND RECTANGLES

To master the basic concepts we will use a simple example. The example is sketched
rather than complete, but it shows the essential ideas well.

Polygons

Assume we want to build a graphics library. Classes in this library will describe
geometrical abstractions: points, segments, vectors, circles, ellipses, general polygons,

triangles, rectangles, squares and so on.
Consider first the class describing general polygons. Operations will include
computation of the perimeter, translation, rotation. The class may look like this:
indexing
descriptior: "Polygons with an arbitrary number of verti'es
class POLYGONcreation

feature -- Access
coun: INTEGER
-- Number of vertices

perimete: REALIs
-- Length of perimeter

do... end
feature -- Transformation
displayis

-- Display polygon on screen.
do... end
rotate (cente: POINT; angle: REAL) is
-- Rotate byangle arounccente.
do
... See nex...
end
translate(a, b: REAL) is
-- Move bya horizontally,b vertically.
do... end

... Other feature declaratiou...

feature {NONE} -- Implementation
vertices LINKED_LIST[POINT]
-- Successive points making up polygon
invariant
same_count_as_implementat: count= verticescount

at_least_thre: count>=3
-- A polygon has at least three vertices (see exercise 14.2)

end
The attributevertice: yields the list of vertices; the choice of a linked list is only gSee also exercise
possible implementation. (An array might be better.) E24.4, page 8t9

§14.1 POLYGONS AND RECTANGLES 461

Here is a possible implementation for a typical procedrotate. The procedure
performs a rotation by a certain angle around a certain rotation center. To rotate a polyc
it suffices to rotate every vertex in turn:

rotate(cente: POINT; angle: REAL) is
-- Rotate arounicenterby angle.
do
from
vertices start
until
vertices after
loop
verticesitem.rotate (cente, angle)
verticesforth
end
end

The text of class To understand this procedure, note that feasitemfrom LINKED LIS yields the

POINTappeared on yalue of the currently active list element (where the cursor is). dvertice: is of type

pageL7t. LINKED_LIST[POINT], verticesitemdenotes a point, to which we may apply procedure
rotatedefined for classPOINT in an earlier chapter. It is valid — and common — to give
the same name, herotate, to features of different classes, as the target of any featur
always has a clearly defined type. (This is the O-O form of overloading.)

Another routine, more important for our immediate purposes, is the function t
compute the perimeter of a polygon. Since our polygons have no special properties,
only way to compute their perimeter is to loop through their vertices and sum the ed
lengths. Here is an implementationperimete:

perimete: REALIs
-- Sum of edge lengths

local
this, previous POINT
do
from
verticesstari; this := verticesitem
check notvertices afterend-- A consequence at_least_three
until _ a
verticesis_last this (is_las)
loop - _
previous := this it .
verticesforth M previous first i
this := verticesitem '
Result := Result + thisdistance(previou: ~—(star)
end

Result ;= Result + thisdistance(verticesfirst)
end

462 INTRODUCTION TO INHERITANCE §14.1

The loop simply adds the successive distances between adjacent vertices. Functiofa jist interface will
distancewas defined in clag8OINT. Resul representing the value to be returned by the pe discussed in

function, is automatically initialized to 0 on routine entry. From clas&KED_LISTwe “ACTIVE DATA
use feature$rst to get the first elemenstartto move the cursor to that first element, STRUCTURES”,
forth to advance it to the nextemto get the value of the element at cursor posiiion, 23.4, page 774

lastto know whether the current element is the last afte;to know if the cursor is past
the last element. As recalled by titeeckinstruction the invariant clausg least three
will guarantee that the loop starts and terminates properly: since it startiméer
state,verticesitem is defined, and applyinérth one or more time is correct and will
eventually yield a state satisfyimg last the loop’s exit condition.

Rectangles

Now assume we need a new class representing rectangles. We could start from scratch.
But rectangles are a special kind of polygon and many of the features are the same: a
rectangle will probably be translated, rotated or displayed in the same way as a general
polygon. Rectangles, on the other hand, also have special features (such as a diagonal),
special properties (the number of vertices is four, the angles are right angles), and special
versions of some operations (to compute the perimeter of a rectangle, we can do better
than the above general polygon algorithm).

We can take advantage of this mix of commonality and specificity by defining class
RECTANGLEas anheir to classPOLYGON This makes all the features BOLYGON
— called aparent of RECTANGLE— by default applicable to the heir class as well. It
suffices to giveRECTANGLEaninheritance clause

classRECTANGLEnNherit

POLYGON
feature

... Features specific to rectangles
end

Thefeature clause of the heir class does not repeat the features of the parent: they
are automatically available because of the inheritance clausi#l.dtly list features that
are specific to the heir. These may be new features, suth@snal but they may also
be redefinitions of inherited features.

The second possibility is useful for a feature that was already meaningful for the
parent but requires a different form in the heir. Considerimeter It has a better
implementation for rectangles: no need to compute four vertex-to-vertex distances; the
result is simply twice the sum of the two side lengths. An heir that redefines a feature for
the parent must announce it in the inheritance clause througteéne subclause:

classRECTANGLEnNherit
POLYGON
redefine perimeterend
feature

end

§14.1 POLYGONS AND RECTANGLES 463

This allows thefeature clause of RECTANGLI to contain a new version of
perimete, which will supersede thPOLYGOV version for rectangles. If thredefine
subclause were not present, a new declaratiolperimete among the features of
RECTANGLI would be an error: sSihcRECTANGLI already has ¢perimete feature
inherited fromPOLYGOL, this would amount to declaring a feature twice.

The RECTANGLI class looks like the following:

indexing
descriptior: "Rectangle, viewed as a special case of general poly''ons
class RECTANGLEinherit
POLYGON
redefine perimeterend
creation
make
feature -- Initialization
make(cente: POINT; s1, s2, angle: REAL) is
-- Set up rectangle centeredcente, with side lengths
-- sl andsZ2 and orientatiorangle.

do ... end
feature -- Access
side’, sidez;: REAL
-- The two side lengths

diagona: REAL
-- Length of the diagonal

perimete: REALIs

-- Sum of edge lengths
-- (Redefinition of theteOLYGON version)

do 4 3

Result := 20 (sidel + side)!
end side2
. . sidel
invariant 1 >
four_side: count= 4
For alist i_th (i) first_side: (verticesi_th (1)).distance(verticesi_th (2)) = sidel
glve; the ﬁ'}emtehm at second_sid: (verticesi_th (2)).distance(verticesi_th (3)) = side2
Fe);)esr;]g:t'h(enig the third_side (verticesi_th (3)).distance(verticesi_th (4)) = sidel
name of the que)y fourth_side (verticesi_th (4)).distance(verticesi_th (1)) = side2
end

BecauseRECTANGLLI is an heir olPOLYGOW, all features of the parent class are
still applicable to the new clasverticey, rotate, translate, perimete (in redefined form)
and any others. They do not need to be repeated in the new class.

This process is transitive: any class that inherits fRECTANGLI, saySQUARIE;
also has thPOLYGON features.

464 INTRODUCTION TO INHERITANCE §14.1

Basic conventions and terminology

The following terms will be useful in addition to “heir” and “parent”.

Inheritance terminology

A descendan of a clas«C is any class that inherits directly or indirectly frgm
C, includingC itself. (Formally: eitheC or, recursively, a descendant of @n
heir of C.)

A proper descendan of C is a descendant other thC itself.

An ancestol of C is a clas<A such thalC is a descendant (A. A proper
ancestoi of Cis a clas‘A such thaC is a proper descendantA.

In the literature you will also encounter the terms “subclass” and “superclass”, but
we will stay away from them because they are ambiguous; sometimes “subclass” means
heir (immediate descendant), sometimes it is used in the more general sense of proper
descendant, and it is not always clear which. In addition, we will see that the “subset”
connotation of this word is not always justified.

Associated terminology applies to the features of a class: a feature isinherited
(coming from a proper ancestors)immediat: (introduced in the class itself).

In graphical representations of object-oriented software structures, where classes are
represented by ellipses (“bubbles™), inheritance links will appear as single arrows. This
distinguishes them from links for the other basic inter-class relation, client, which as you
will recall uses a double arrow. (For further distinction this book uses black for client and

color for infteritance.)
perimeter An inheritance
link
d_iagonal N Inherits from
perimetef

A redefined feature is marke'Z, a convention from the Business Object Notation
(B.O.N.).

The arrow points upward, from the heir to the parent; the convention, easy to
remember, is that it represents the relation “inherits from”. In some of the literature you
will find the reverse practice; although in general such choices of graphical convention are
partly a matter of taste, in this case one convention appears definitely better than the other
— in the sense that one suggests the proper relationship and the other may lead to
confusion. An arrow is not just an arbitrary pictogram but indicates a unidirectional link,
between the two ends of the arrow. Here:

§14.1 POLYGONS AND RECTANGLES 465

* Any instance of the heir may be viewed (as we shall see in more detail) as an insta
of the parent, but not conversely.

e The text of the heir will always mention the parent (as irinherit clause above),
but not conversely; it is in fact an important property of the method, resulting amor
others from the Open-Closed principle, that a class does not “know” the list of i
heirs and other proper descendants.

Mathematically, the direction of the relationship is reflected in algebraic models for
inheritance, which use morphisn (a generalization of the notion of function) from the
heir's model to the parent’'s model — not the other way around. One more reason for
drawing the arrow from the heir to the parent.

Although with complex systems we cannot have an absolute rule for class placem
in inheritance diagrams, we should try whenever possible to position a class above its he

Invariant inheritance

You will have noticed the invariant of claRECTANGLI, which expresses that the
number of sides is four and that the successive edge lengtside], side’, sidel and
side

ClassPOLYGOM also had an invariant, which still applies to its heir:

Invariant inheritance rule

The invariant property of a class is the booland of the assertions appearing
in itsinvariant clause and of the invariant properties of its parents if any.

Because the parents may themselves have parents, this rule is recursive: in the
the full invariant of a class is obtained anding the invariant clauses of all its ancestors.

The rule reflects one of the basic characteristics of inheritance: to sB inherits
from Ais to state that one may view any instancB also as an instance A (more on
this property later). As a result, any consistency constraint applying to instarA, asof
expressed by the invariant, also applies to instancB:; of

In the example, the second clauat_least thre) invariant ofPOLY GOl stated that
the number of sides must be at least three; this is subsumedfour_sidessubclausin
RECTANGLYIs invariant clause, which requires it to be exactly four.

You may wonder what would happen if the heir's clause, instead of making the parent’s
redundant as here (sincount= 4 impliescount>= 3), were incompatible with it, as with

an heir of POLYGONthat would introduce the invariant clawcount= 2. The result is
simply an inconsistent invariant, not different from what you get if you include, in the
invariant of a single class, two separate subcl: that rcad count>= 3andcount= 2.

Inheritance and creation

Although it was not shown, a creation procedurePOLYGOI might be of the form

466 INTRODUCTION TO INHERITANCE §14.1

make_polygoi(vl: LINKED_LIST[POINT]) is
-- Set up with vertices taken frovl.
require
vl.count>= 3
do
... Initialize polygon representation from the itemsvl ...
ensure
-- verticesandvl have the same items (can be expressed formally)
end

This procedure takes a list of points, containing at least three elements, and uses it to
set up the polygon.

The procedure has been given a special rmake_polygc to avoid any name conflict See'FEATURE
whenRECTANGLEinherits it and introduces its own creation procecmake. This is RENAMING”, 15.2,
not the recommended style; in the next chapter we will learn how to give the standardPage 535
namemake to the creation procedure POLY GOI, and use renaming in the inheritance

clause olRECTANGLEto remove any name clash.

The creation procedure of claBRECTANGLI, shown earlier, took four arguments:
a point to serve as center, the two side lengths and an orientation. Note thatvertices
is still applicable to rectangles; as a consequence, the creation proceRECTANGLE
should set up thvertice: list with the appropriate point values (the four corners, to be
computed from the center, side lengths and orientation given as arguments).

The creation procedure for general polygons is awkward for rectangles, since only
lists of four elements satisfying the invariant of ccRECTANGLIwould be acceptable.
Conversely, the creation procedure for rectangles is not appropriate for arbitrary polygons.
This is a common case: a parent’s creation procedure is not necessarily right as creation
procedure for the heir. The precise reason is easy to spot; it follows from the observation
that a creation procedure’s formal role is to establish the class invariant. The parent's
creation procedure was required to establish the parent’s invariant; but, as we have seen,
the heir's invariant may be stronger (and usually is); we cannot then expect that the
original procedure will guarantee the new invariant.

In the case of an heir adding new attributes, the creation procedures might need to
initialize these attributes and so require extra arguments. Hence the general rule:

Creation Inheritance rule

An inherited feature’s creation status in the parent class (that is to say,
whether or not it is a creation procedure) has no bearing on its creation| status
in the heir.

An inherited creation procedure is still available to the heir as a normal feature of the
class (although, as we shall see, the heir may prefer to make it secret); but it does not by
default retain its status as a creation procedure. Only the procedures listed in the heir's
own creation clause have that status.

§14.2 POLYMORPHISM 467

In some cases, of course, a parent’s creation procedure may still be applicable
creation procedure; then you will simply list it in the creation clause:

classB inherit
A

creation
make

feature

wheremake is inherited — without modification — froiA, which also listed it in its own
creation clause.

An example hierarchy

For the rest of the discussion it will be useful to considelPOLYGOMRECTANGLE
example in the context of a more general inheritance hierarchy of geometrical figure typ
such as the one shown on the next page.

Figures have been classified into open and closed variants. Along with polygons,
example of closed figure is the ellipse; a special case of the ellipse is the circle.

Various features appear next to the applicable classes. The s;., as noted,

means “redefined”; the symbc'. and* will be explained later.

In the original example, for simplicityRECTANGLI was directly an heir of
POLYGOI. Since the sketched classification of polygons is based on the number
vertices, it seems preferable to introduce an intermediate QUADRANGLI, at the
same level aTRIANGLE, PENTAGO! and similar classes. Featudiagona can be
moved up to the level (QUADRANGLE:

Note the presence (SQUARIE an heir toRECTANGLI, characterized by the
invariantsidel= sideZ Similarly, an ellips x> s> has two focuses (or foci), which for
a circle ® are the same point, givinCIRCLE an invariant property of the form
equal(focusl= focusi).

14.2 POLYMORPHISM

Inheritance hierarchies will give us considerable flexibility for the manipulation o
objects, while retaining the safety of static typing. The supporting technique
polymorphism and dynamic binding, address some of the fundamental issues of softw
architecture discussed in piB of this book. Let us begin with polymorphism.

Polymorphic attachment

“Polymorphism” means the ability to take several forms. In object-oriented developme
what may take several forms is a variable entity or data structure element, which will he
the ability, at run time, to become attached to objects of different types, all controlled
the static declaration.

468 INTRODUCTION TO INHERITANCE §14.2

Figure type
displa .
extent play* hierarchy
barycentet rotate*
perimetef CLOSED—
FIGURE
perlmetei’ -

perimete?T
diagonal (QUADRANGLE] -

perimetef*

perimetef™
side] side2

perimetef*

§14.2 POLYMORPHISM 469

Polymorphic
reference
reattachment

Assume, with the inheritance structure shown in the figure, the following
declarations using short but mnemonic entity names:

p: POLYGON r: RECTANGLI; t: TRIANGLE

Then the following assignments are valid:

p:=r

p:=t

These instructions assign to an entity denoting a polygon the value of an ent
denoting a rectangle in the first case, a triangle in the second.

Such assignments, in which the type of the source (the right-hand side) is differe
from the type of the target (the left-hand side), are cipolymorphic assignment. An
entity such ap which appears in some polymorphic assignmenpolymorphic entity.

Before the introduction of inheritance, all our assignments were monomorphic (no
polymorphic): we could assign — in the various examples of earlier chapters — a point
a point, a book to a book, an account to an account. With polymorphism, we are start
to see more action on the attachment scene.

The polymorphic assignments taken as example are legitimate: the inheritar
structure permits us to view an instanceRECTANGLI or TRIANGLEas an instance of
POLYGOI. We say that the type of the souconforms tc the type of the target. In the
reverse direction, as wir := p, the assignment would not be valid. This fundamental type
rule will be discussed in more detail shortly.

Instead of an assignment, you may achieve polymorphism through argument pass
as with a call of the forrf (r) or f (t) and a feature declaration of the form

f(p: POLYGODisdo... end

As you will remember, assignment and argument passing have the same seman
and are together calleattachmer; we can talk ofpolymorphic attachment when the
source and target have different types.

What exactly happens during a polymorphic attachment?

All the entities appearing in the preceding cases of polymorphic attachment are
reference types: the possible valuesp, r andt are not objects but references to objects.
So the effect of an assignment suclp := r is simply to reattach a reference:

o1
@ (bEfOI’Q D -

(aften)

O >

(POLYGOMN

02

(RECTANGLI).

470 INTRODUCTION TO INHERITANCE §14.2

So in spite of the name you should not imagine, when thinking of polymorphism,
some run-time transmutation of objects. Once created, an object never changes its type.
Only references do so by getting reattached to objects of different types. This also means
that polymorphism does not carry any efficiency penalty; a reference reattachment — a
very fast operation — costs the same regardless of the objects involved.

Polymorphic attachments will only be permitted for targets of a reference type -See‘COMPOSITE
for the other case, expanded types. Since a descendant class may introduce new al©BJECTS AND
T)) ; EXPANDED TYPES”,
the corresponding instances may have more fields; the last figure suggested i
showing theRECTANGLI object bigger than thPOLYGON object. Such differences ir
object size do not cause any problem if all we are reattaching is a reference. But if instead
of a referencep is of an expanded type (being for example declareexpanded
POLYGON), then the value op is directly an object, and any assignmenp would

overwrite the contents of that object. No polymorphism is possible in that case.

.7, page 2t4

Polymorphic data structures

Consider an array of polygons:
poly_arr: ARRAY[POLYGON
When you assign a valix to an element of the array, as in
poly arr.put(x, some_inde)x

(for some valid integer index valusome_inde), the specification of clasARRAY
indicates that the assigned value’s type must conform to the actual generic parameter:
classARRAY[G] creation This is extracted
from classARRA" as

it appears on page
feature -- Element change 372

put(v: G; i: INTEGEF) is
-- Assignv to the entry of indei

end -- classARRAY

Becausev, the formal argument corresponding, is declared of typG in the class,
and the actual generic parameter correspondiG isPOLYGONMin the case cpoly_ari,
the type oix must conform t(POLYGO!. As we have seen, this does not reqx to be
of typePOLYGOL: any descendant POLYGOL is acceptable.

So assuming that the array has bounds 1 and 4, that we have declared some entities as
p: POLYGOLI; r: RECTANGLI; s SQUARE t: TRIANGLE
and created the corresponding objects, we may execute

poly_arr.put(p, 1)
poly_arr.put(r, 2)
poly_arr.put(s, 3)
poly_arr.put(t, 4)

yielding an array of references to objects of different types:

§14.2 POLYMORPHISM 471

A polymorphic

anay : (TRIANGLE
3 ——>
(SQUARB
2 >
(RECTANGLE
1 > (POLYGON

The graphical objects have been represented by the corresponding geometrical shapes
rather than the usual multi-field object diagrams.

Such a data structure, containing objects of different types (all of them descenda
of a common type), are call¢polymorphic data structures. We will encounter many
examples in later discussions. The use of arrays is just one possibility; any other conta
structure, such as a list or stack, can be polymorphic in the same way.

The introduction of polymorphic data structures achieves the aim, stated at t
beginning of chaptel0, of combining genericity and inheritance for maximum flexibility
and safety. It is worth recalling the figure that illustrated the idea:

Dimensions of Abstraction

generalization
SET[BOOK]

LIST[BOOK]

LINKED_LIST[BOOK]

Specialization

Types that were informally calltlSET _OF BOOK and the like on the earlier figure
have been replaced with generically derived types, SUSET[BOOK].

(See pag8&17)

Type parameterization Type parameterization

This combination of genericity and inheritance is powerful. It enables you t
describe object structures that are as general as you like, but no more. For example:

472 INTRODUCTION TO INHERITANCE §14.3

e LIST[RECTANGLI: may contain squares, but not triangles.
* LIST[POLYGON: may contain squares, rectangles, triangles, but not circles.

e LIST [FIGURE]: may contain instances of any of the classes inFIGURE
hierarchy, but not books or bank accounts.

« LIST[ANY]: may contain objects of arbitrary types.
The last case uses cleANY, which by convention is an ancestor to all classes. We will studyANY in

i “Universal classes”,
By choosing as actual generic parameter a class at a varying place in the hierpage 58)

you can set the limits of what your container will accept.

14.3 TYPING FOR INHERITANCE

That the remarkable flexibility provided by inheritance does not come at the expense of
reliability follows from the use of statically type: approach, in which we guarantee at
compile time that no incorrect run-time type combination can occur.

Type consistency

Inheritance is consistent with the type system. The basic rules are easy to explain on the
above example. Assume the following declarations:

p: POLYGON
r: RECTANGLE

referring to the earlier inheritance hierarchy, of which the relevant extract is this:

extent L display
barycentet rotate*

perimetef @

diagonal QUADRANGL

perimetef™
sidel side2

§14.3 TYPING FOR INHERITANCE 473

Chapterl7 dis-
cusses typir.g

Then the following are valid:
* p.perimete: no problem, sincperimete is defined for polygons.
* p.verticey, p.translate(...), p.rotate(...) with valid arguments.

e r.diagona, r.sidel, r.sideZ the three features considered are declared at th
RECTANGLIor QUADRANGLE level.

e r.verticey, r.translate(...), r.rotate (...): the features considered are declared at the
POLYGOL level or above, and so are applicable to rectangles, which inherit a
polygon features.

* r.perimete: same case as the previous one. The version of the function to be call
here is the redefinition given RECTANGLI, not the original irPOLYGON.

The following feature calls, however, are illegal since the features considered are |
available at the polygon level:

p.sidel
p.side2
p.diagonal

These cases all result from the first fundamental typing rule:

Feature Call rule

In a feature calx.f, where the type «x is based on a claC, featur¢ f must
be defined in one of the ancestor<C. f

Recall that the ancestors C includeC itself. The phrasing “where the type x is
based on a clasG” is a reminder that a type may involve more than just a class name
the class is generiLINKED_LIST[INTEGEF] is a class type “based on” the class name
LINKED_LIST; the generic parameters play no part in this rule.

Like all other validity rules reviewed in this book, the Feature Call rule is static; thi
means that it can be checked on the sole basis of a system’s text, rather than through
time controls. The compiler (which typically is the tool performing such checking) wil
reject classes containing invalid feature calls. If we succeed in defining a set of tight-prc
type rules, there will be no risk, once a system has been compiled, that its execution
ever apply a feature to an object that is not equipped to handle it.

Static typing is one of object technology’s main resources for achieving the goal
software reliability, introduced in the first chapter of book.

It has already been mentioned that not all approaches to object-oriented software
construction are statically typed; the best-known representatidynamically typed
languages is Smalltalk, which has no static Feature Call rule but will let an execution
terminate abnormally in the case of a “message not understood” run-time error. The
chapter on typing will compare the various approaches further.

474 INTRODUCTION TO INHERITANCE §14.3

Limits to polymorphism

Unrestrained polymorphism would be incompatible with a static notion of type.
Inheritance governs which polymorphic attachments are permissible.

The polymorphic attachments used as examples, stp :=r andp :=t, all had as
source type a descendant of the target's class. We say that the souiconform: to the
target class; for exampSQUAREconforms tctRECTANGLI and toPOLYGO! but not to
TRIANGLE. This notion has already been used informally but we need a precise definition:

Definition: conformance

-+

A type U conforms to a typiT only if the base class U is a descendant ¢
the base class T; also, for generically derived types, every actual parameter
of U must (recursively) conform to the corresponding formal parameT.r{in

Why is the notion of descendant not sufficient? The reason is again that sinSee“Types and
encountered genericity we have had to make a technical distinction between typclasses’, page 3.5
classes. Every type hasbase clas, which in the absence of genericity is the type its
(for examplePOLYGON is its own base class), but for a generically derived type is the
class from which the type is built; for example the base cleLIST[POLYGON isLIST.

The second part of the definition indicates tB [Y] will conform to A [X] if B is a
descendant cA andY a descendant «X.

Note that, as every class is a descendant of itself, so does every type conform to itself.

With this generalization of the notion of descendant we get the second fundamental
typing rule:

Type Conformance rule

An attachment of targex and sourciy (that is to say, an assignmr:=y, or
the use oy as an actual argument to a routine call where the corresponding
formal argument ix) is only valid if the type oy conforms to the type .

The Type Conformance rule expresses that you can assign from the more specific to
the more general, but not conversely.p :=r is valid butr := p is invalid.

The rule may be illustrated like this. Assume | am absent-minded enough to write just
“Animal” in the order form | send to the Mail-A-Pet company. Then, whether | receive a
dog, a ladybug or a killer whale, | have no right to complain. (The hypothesis is that
classesDOG etc. are all descendants ANIMAL.) If, on the other hand, | specifically
request a dog, and the mailman brings me one morning a box with a label that reads
ANIMAL, or perhapsMAMMAL (an intermediate ancestor), | am entitled to return it to
the sender — even if from the box come unmistakable sounds of yelping and barking.
Since my order was not fulfilled as specified, | shall owe nothing to Mail-A-Pet.

§14.3 TYPING FOR INHERITANCE 475

Instances

The original discus- With the introduction of polymorphism we need a more specific terminology to talk abot
sion was'The mold jnstances. Informally, the instances of a class are the run-time objects built according

and the instance”,
page 167

the definition of a class. But now we must also consider the objects built from tt
definition of its proper descendants. Hence the more precise definition:

Definition: direct instance, instance

A direct instance of a cla:C is an object produced according to the exact
definition of C, through a creation instructid! x... where the targex is of
type C (or, recursively, by cloning a direct instanceC).

An instance oC is a direct instance of a descendarC.af

The last part of this definition implies, since the descendants of a class include the class
itself, that a direct instance C is also an instance C.

So the execution of
pl, pz: POLYGON r: RECTANGLE

will create two instances (POLYGOL but only one direct instance (the one attached to
pl). The other object, to which the extract attaches p2 andr, is a direct instance of
RECTANGLE— and so an instance of bcPOLYGOMN andRECTANGLI:

Although the notions of instance and direct instance are defined above for a cla
they immediately extend to any type (with a base class and possible generic paramete

Polymorphism means that an entity of a certain type may become attached not o
to direct instances of that type, but to arbitrary instances. We may indeed consider that
role of the type conformance rule is to ensure the following property:

Static-dynamic type consistency

An entity declared of a typT may at run time only become attached| to
instances oT.

Static type, dynamic type

The name of the last property suggests the concepts of “static type” and “dynamic typ
The type used to declare an entity is static typt of the corresponding reference. If, at
run time, the reference gets attached to an object of a certain type, this type become:
dynamic typeof the reference.

So with the declaratiop: POLYGON, the static type of the reference tp denotes
is POLYGOL, after the execution ¢!! p, the dynamic type of that reference is also
POLYGOL after the assignmelp := r, with r of typeRECTANGLI and non-void, the
dynamic type isRECTANGLI:

476 INTRODUCTION TO INHERITANCE §14.3

The Type Conformance rule states that the dynamic type must always conform to the
static type.

To avoid any confusion remember that we are dealing with three leveentity is See“States of a ref-
an identifier in the class text; at run time its value referenci (except in the expandecrence’, page 240
case); the reference may get attached tobjec. Then:

* An object only has a dynamic type, the type with which it has been created. That type
will never change during the object’s lifetime.

* At any time during execution, a reference has a dynamic type, the type of the (NONEwill be seen in
to which it is currently attached (or the special tNONE if the reference is void).tht‘epg‘;téoggf’f the
The dynamic type may change as a result of reattachment operations. ’ “

« Only an entity has both a static type and dynamic types. Its static type is the type with
which it was declaredT if the declaration wax: T. Its dynamic type at some
execution-time instant is the type of its reference value, meaning the type of the
attached object.

In the expanded case there is no reference; the vax is an object of typ T, andx has
T as both its static type and as its only possible dynamic type.

Are the restrictions justified?

The two typing rules may sometimes seem too restrictive. For example, the second
instruction in both of the following sequences will be statically rejected:

Rle p=rr:=p
R2e¢ p:=r;x:=p.diagonal

In R1, we refuse to assign a polygon to a rectangle entity even though that polygon
happens at run time to be a rectangle (like refusirartept a dog because it comes in a
box marked “animal”). IrR2, we decide thediagona is not applicable tp even though
at run time it would in fact be — as it were by accident.

But closer examination of these examples confirms that the rules are justified. If you
attach a reference to an object, better avoid later problems by making sure that they are of
compatible types. And if you want to apply a rectangle operation, why not declare the
target as a rectangle?

In practice, cases of the forR1 andR2 are unlikely. Assignments such p:=r
will normally occur as part of some control structure that depends on run-time conditions,
such as user input. A more realistic polymorphic scheme may look like this:

" r.make(...); ...

screendisplay_icons -- Display icons representing various polygons

screenrwait_for_mouse_click -- Wait for the user to click the mouse button

X := screenmouse_position -- Find out at what position
-- the mouse was clicked

chosen_icon = screeicon_where_ig(x) -- Find out what icon appears at the
-- mouse’s position

§14.3 TYPING FOR INHERITANCE 477

After a
polymorphic
attachment

if chosen_icol= rectangle_icorthen
p:=r
elseit ...
p := “Some other type of polygor ...
o
end
... Uses olp, for examplep.display, p.rotate, ...

On the last linep can denote arbitrary polygons, so you should only apply genere
POLYGONfeatures. Clearly, operations valid for rectangles only, sucdiagona,
should be applied tr only (for example in the first clause of tif). Wherep as such is
going to be used, in the instructions following if instruction, only operations defined
for all variants of polygons are applicable to it.

In another typical casip could just be a formal routine argument:
some_routing(p: POLYGON) is...

and you execute a cisome_routin(r), valid as per the Type Conformance rule; but when
you write the routine you do not know about this call. In fact asome_routingt) for t

or type TRIANGLE, or any other descendant POLYGOL! for that matter, would be
equally valid, so all you can assume is ip represents some kind of polygonany kind

of polygon. It is quite appropriate, then, that you should be restricted to applyir
POLYGOL features tcp.

It is in this kind of situation — where you cannot predict the exact type of th
attached object — that polymorphic entities sucp are useful.

Can ignorance be bliss?

It is worthwhile reinforcing the last few points a bit since the concepts now bein
introduced will be so important in the rest of our discussion. (There will be nothing real
new in this short section, but it should help you understand the basic concepts bet
preparing you for the more advanced ones which follow.)

If you are still uneasy at the impossibility of writipediagona even after a call
p:=r — caseR2 — you are not alone; this is a shock to many people when they sta
grappling with these concepts. We know tp is a rectangle because of the assignment,
so why may we not access its diagonal? For one thing, that would be useless. After
polymorphic assignment, as shown in the following extract from an earlier figure, tt
sameRECTANGLEobject now has two names, a polygon nip and a rectangle nanr:2

@\ 02

© (RECTANGLI)

478 INTRODUCTION TO INHERITANCE §14.3

In such a case, since you do know that the object O2 is a rectangle and have access
to it through its rectangle namewhy would you write a diagonal access operation in the
form p.diagonaP This is uninteresting since you can just write it.a$agonal using the
object’s official rectangle name removes any doubt as to the validity of applying a
rectangle operation. Using the polygon namehich could just as well denote a triangle
object, brings nothing and introduces uncertainty.

Polymorphism, in factiosesinformation: when as a result of the assignnent r
you are able to refer to the rectangle object O2 under its polygon mayoe have lost
something precious: the ability to use rectangle-specific features. What then is the
purpose? In this case, there is none. The only interesting application, as noted, arises when
you do not know for sure what kind of polygptis, as a result of a conditional instruction
if some_conditiothen p:=r elsep := something_else., or becausg is a formal routine
argument and you do not know what the actual argument will be. But then in such cases
it would be incorrect and dangerous to apply @nything else thaROLYGONfeatures.

To continue with the animal theme, imagine that someone asks “do you have a pet?”
and you answer “yes, a cat!”. This is similar to a polymorphic assignment, making a
single object known through two names of different typesy “pet and “my_cat

now denote the same animal. But they do not serve the same purpose; the first has less
information than the second. You can use either name if you call the post-sales division
of Mail-A-Pet, Absentee Owner Department €m going on holidaywhat’s your

price for keeping my_pefor: my_ca}l for two weeky; but if you phone their
Destructive Control Department to askCan | bring my_pet for a de-clawing
Tuesda®’, you probably will not get an appointment until the employee has made you
confirm that you really meamy_cat

When you want to force a type

In some special cases there may be a need to try an assignment going against the grain of
inheritance, and accept that the result is not guaranteed to yield an object. This does not
normally occur, when you are properly applying the object-oriented method, with objects
that are internal to a certain software element. But you might for example receive over the
network an object advertized to be of a certain type; since you have no control over the
origin of the object, static type declarations will guarantee nothing, and youestisie

type before accepting it.

When we receive that box marked “Animal” rather than the expected “Dog”, we might
be tempted to open the “Animal” box anyway and take our chances, knowing that if its
content is not the expected dog we will have forfeited our right to return the package, and
depending on what comes out of it we may not even live to tell the story.

Such cases require a new mechaniassignment attempt which will enable us to Se¢'ASSIGNMENT
write instructions of the form 2= p (where?=is the symbol for assignment attempATTEMPT", 16.5,
versus := for assignment), meaning “do the assignment if the object type is the ex|
one forr, otherwise make void”. But we are not equipped yet to understand how this
instruction fits in the proper use of the object-oriented method, so we will have to return
to it in a subsequent chapter. (Until then, you did not read about it here.)

§14.3 TYPING FO

R INHERITANCE 479

Se€‘The creation
instruction”, page 232
and“CREATION
PROCEDURES”, 84,
page 235

Polymorphic creation

The introduction of inheritance and polymorphism suggests a small extension to t
mechanism for creating objects, allowing direct creation of objects of a descendant tyj

The basic creation instruction, as you will recall, is of one of the forms
I x

Il x.make(...)

where the second form both assumes and requires that the base x's type T contain

a creation clause listingmake as one of the creation procedures. (A creation procedur:
may of course have any nammake is the recommended default.) The effect of the
instruction is to create a new object of tyT, initialize it to the default values, and attach
it to x. In addition, the second form will appmake, with the arguments given, to the just
created and initialized object.

Assume thaT has a proper descend:U. We may want to usx polymorphically
and, in some cases, make it denote a newly created direct insteU rather tharT. A
possible solution uses a local entity of tyUi2

some_routing...) is

local

u_temp U
do

...;Mu_tempmake(...); x := u_temy; ...
end

This works but is cumbersome, especially in a multi-choice context where we m:
want to attactx to an instance of one of several possible descendant types. The lo
entities,u_tem; above, play only a temporary part; their declarations and assignmen
clutter up the software text. Hence the need for a variant of the creation instruction:

U !x

U ! x.make(...)

The effect is the same as with 1! forms, except that the created object is a direct
instance oiU rather tharT. The constraint on using this variant is obvious: tU must
conform to typeT and, in the second forrmakemust be defined as a creation procedure
in the base class WU; if that class indeed has one or more creation procedures, only tt
second form is valid. Note that whettT's own base class has creation procedures is
irrelevant here; all that counts is wtU: requires.

A typical use involves creation of an instance of one of several possible types:

480 INTRODUCTION TO INHERITANCE §14.4

f: FIGURE

“Display a set of figure icons”

if chosen_icol= rectangle_icorthen
I RECTANGLE! f

else ifchosen_icor= circle_icor then
I CIRCLE! f

else

end

This new form of creation instruction suggests introducing the noticcreation
type of a creation instruction, denoting the type of the object that will be created:

» For the implicit-type forn!! x ..., the creation type is the type x.f

» For the explicit-type forn! U! x ..., the creation type iU.

14.4 DYNAMIC BINDING

Dynamic binding will complement redefinition, polymorphism and static typing to make
up the basic tetralogy of inheritance.

Using the right variant

Operations defined for all polygons need noimplemente identically for all variants.

For exampleperimete has different versions for general polygons and for rectangles; let
us call themperimetepo, and perimetegecq. ClassSQUAREwWiIll also have its own
variant (yielding four times the side length). You may imagine further variants for other
special kinds of polygon. This immediately raises a fundamental question: what happens
when a routine with more than one version is applied to a polymorphic entity?

In a fragment such as
Il p.make(...); x := p.perimeter

it is clear thaperimetepn, will be applied. It is just as clear that in
Il r.make(...); x := r.perimeter

perimeteiec1 Will be applied. But what if the polymorphic entp, statically declared as
a polygon, dynamically refers to a rectangle? Assume you have executed

"' r.make(...)
p:=r
X = p.perimeter

The rule known adynamic binding implies thatthe dynamic form of the object
determines which version of the operation to apply. Here it wiperimeteggc.

§14.4 DYNAMIC BINDING 481

As noted, of course, the more interesting case arises when we cannot deduce fro
mere reading of the software text what exact dynamic p will have at run time, as in

-- Compute perimeter of figure budtcording to user choice
p: POLYGON

if chosen_icor= rectangle_icorthen
' RECTANGLE!' p.make(...)
elseifchosen_icol= triangle_iconthen
I TRIANGLE! p.make(...)
elseif

end

X 1= p.perimeter

or after a conditional polymorphic assignmif ... thenp :=r elsei... thenp :=t...; or

if pis an element of a polymorphic array of polygons; or simgp is a formal argument,
declared of typiPOLY GOW, of the enclosing routine — to which callers can pass actua
arguments of any conforming type.

Then depending on what happens in any particular execution, the dynamic pype ¢
willbe RECTANGLI, orTRIANGLE, and so on. You have no way to know which of these
cases will hold. But thanks to dynamic binding you do neec to know: whatevepp
happens to be, the call will execute the proper variaperimete.

This ability of operations to adapt automatically to the objects to which they ai
applied is one of the most important properties of object-oriented systems, direc
addressing some of the principal quality issues discussed at the beginning of this book.
will examine its consequences in detail later in this chapter.

Dynamic binding also gives the full story about the information-loss aspects
polymorphism discussed earlier. Now we really understand why it is not absurd to lo
information about an object: after an assignnp := g, or a callsome_routin«q) where
p is the formal argument, we have lost the type information speciq but we can rest
assured that if we apply an operatiprpolygon_featurewherepolygon_featur has a
special version applicable g, that version will be the one selected.

Itis all right to send your pets to an Absentee Owner Department that caters to all kinds

— providec you know that when meal time comes your cat will get cat food and your dog

will get dog food.

Redefinition and assertions

If a client of POLYGOL callsp. perimete, it expects to get the value p’s perimeter, as
defined by the specification of functiperimete in the definition of the class. But now,
because of dynamic binding, the client may well be calling another routine, redefined
some descendant. IRECTANGLI, the redefinition, while improving efficiency,
preserves the result; but what prevents you from redefperimete to compute, say, the
area?

482 INTRODUCTION TO INHERITANCE §14.5

This is contrary to the spirit of redefinition. Redefinition should change the
implementation of a routine, not its semantics. Fortunately we have a way to constrain the
semantics of a routine — assertions. The basic rule for controlling the power of
redefinition and dynamic binding is simple: the precondition and postcondition of a
routine will apply (informally speaking) to any redefinition; and, as we have already seen,
the class invariant automatically carries over to all the descendants.

The exact rules will be given in chaptl€é. But you should already note that
redefinition is not arbitrary: only semantics-preserving redefinitions are permitted. It is up
to the routine writer to express the semantics precisely enough to express his intent, while
leaving enough freedom to future reimplementers.

On the implementation of dynamic binding

One might fear that dynamic binding could be a costly mechanism, requiring a run-time
search of the inheritance graph and hence an overhead that grows with the depth of that
graph and becomes unacceptable with multiple inheritance (studied in the next chapter).

Fortunately this is not the case with a properly designed (and statically typed) O-O
language. This issue will be discussed in more detail at the end of this chapter, but we can
already reassure ourselves that efficiency consequences of dynamic binding should not be
a concern for developers working with a decent environment.

14.5 DEFERRED FEATURES AND CLASSES

Polymorphism and dynamic binding mean that we can rely on abstractions as we design
our software, and rest assured that execution will choose the proper implementations. But
so far everything was fully implemented.

We do not always need everything to be fully implemented. Abstract software
elements, partially implemented or not implemented at all, help us for many tasks:
analyzing the problem and designing the architecture (in which case we may keep them in
the final product to remind ourselves of the analysis and design); capturing commonalities
between implementations; describing the intermediate nodes in a classification.

Deferred features and classes provide the needed abstraction mechanism.

Moving arbitrary figures

To understand the need for deferred routines and classes, consider a(FIGURE
hierarchy, reproduced for convenience on the facing page.

The most general notion is that FIGURE. Relying on the mechanisms of
polymorphism and dynamic binding, you may want to apply the general scheme described
earlier, as in:

§14.5 DEFERRED FEATURES AND CLASSES 483

The FIGURE extent display
hierarchy barycentet rotate*

again

o
\

. perimetef

perimetef

Tperimete?+

diagonal

perimetef™*

* deferred

+

perimetef* effected

** redefined

transform(f: FIGURE) is

-- Apply a specific transformation .
do

f.rotate(...)
f.translate(...)
end

with appropriate values for the missing arguments. Then all the following calls are vali

transform(r) -- withr: RECTANGLE

transform(c) -- withc: CIRCLE

transform(figarray.item(i)) -- with figarray: ARRAY[POLYGOI

In other words, you want to approtate andtranslate to a figuref, and let the

underlying dynamic binding mechanism pick the appropriate version (different for class
RECTANGLI andCIRCLE) depending on the actual formf, known only at run time.

484 INTRODUCTION TO INHERITANCE §14.5

This should work, and is a typical example of the elegant style made possible by
polymorphism and dynamic binding, applying the Single Choice principle. You should
simply have to redefinrotate andtranslate for the various classes involved.

But there is nothing to redefinFIGURE is a very general notion, covering all kinds
of two-dimensional figure. You have no way of writing a general-purpose version of
rotateandtranslatewithout more information on the figures involved.

So here is a situation where routitransformwould execute correctly thanks to
dynamic binding, but is statically illegal sinrotate andtranslateare not valid features
of FIGURE. Type checking will catcfii rotate andf.translate as invalid operations.

You could, of course, introduce attFIGURE level arotateprocedure which would
do nothing. But this is a dangerous road to follrotate(cente, angle) has a well-defined
intuitive semantics, and “do nothing” is not a proper implementation of it.

Deferring a feature

What we need is a way to specrotate andiranslate at theFIGURE level, while making

it incumbent on descendants to provide actual implementations. This is achieved by
declaring the features as “deferred”. We replace the whole instruction part of the body
(do Instructions) by the keyworcdeferred. ClassFIGURE will declare:

rotate(cente: POINT; angle: REAL) is
-- Rotate byangle aroundcente.
deferred
end

and similarly fortranslate. This means that the featureknowr in the class where this
declaration appears, bimplemente only in proper descendants. Then a call such as catch
f.rotate in proceduretransforn becomes valid.

With such a declaratiorrotate is said to be a deferred feature. A non-deferred
feature — one which has an implementation, such as all the features that we had
encountered up to this one — is said tceffective.

Effecting a feature

In some proper descendantsFIGURE you will want to replace the deferred version by
an effective one. For example:

classPOLYGONinherit
CLOSED_FIGURE
feature
rotate (cente: POINT; angle: REAL) is
-- Rotate byangle aroundcente.

do
... Instructions to rotate all vertices (see page «..1)
end

end -- classPOLYGON

§14.5 DEFERRED FEATURES AND CLASSES 485

“Conflicts under

sharing: undefinition

Note thatPOLYGOL inherits the features oFIGURE not directly but through
CLOSED_FIGURI; procedurerotate remains deferred iCLOSED FIGUR 2

This process of providing an effective version of a feature that is deferred in a pare
is calledeffecting. (The term takes some getting used to, but is consistent: to effect
feature is to make it effective.)

A class that effects one or more inherited features does not need to list them in
redefine subclause, since there was no true definition (in the sense of an implementati
in the first place. It simply provides an effective declaration of the features, which mu
be type-compatible with the original, as in rotate example.

Effecting is of course close to redefinition, and apart from the listing iredefine
subclause will be governed by the same rules. Hence the need for a common term:

Definition: redeclaration

To redeclare a feature is to redefine or effect it.

The examples used to introduce redefinition and effecting illustrate the differen
between these two forms of redeclaration:

* When we go fronPOLYGONto RECTANGLI, we already had an implementation
of perimeterin the parent; we want to offer a new implementatioRECTANGLI:
This is a redefinition. Note that the feature gets redefined agSQUARE:

* When we go fronFIGURE to POLYGON, we had no implementation rotate in
the parent; we want to offer an implementatiolPOLYGON. This is an effecting.
Proper descendants POLYGOM may of course redefine the effected version.

There may be a need to change some properties of an inherited deferred feat
while leaving it deferred. These properties may not include the feature’s implementati
(since it has none), but they may include the signature of the feature — the type of
arguments and result — and its assertions; the precise constraints will be reviewed in
next chapter. In contrast with a redeclaration from deferred to effective, such
redeclaration from deferred to deferred is considered to be a redefinition and requires
redefine clause. Here is a summary of the four possible cases of redeclaration:

Redeclaring from - Deferred Effective
to !
Deferred | Redefinition Undefinition
Effective | Effecting Redefinition

This shows one case that we have not seerundefinitior, or redeclaration from

and join”, page 551 effective to deferred — forgetting one’s original implementation to start a new life.

486 INTRODUCTION TO INHERITANCE §14.5

Deferred classes

A feature, as we have seen, is either deferred or effective. This distinction extends to classes:

Definition: deferred, effective class

A class is deferred if it has a deferred feature. A class is effective if it is not
deferred.

So for a class to be effective, all of its features must be effective. One or more
deferred features make the class deferred. In the latter case you must mark the class:

Deferred class declaration rule

The declaration of a deferred class must use the juxtaposed keywords
deferred clas: (rather than jusclas: for an effective class).

SoFIGURE will be declared (ignoring thindexing clause) as:

deferred clas: FIGUREfeature
rotate(...) is
... Deferred feature declaration as shown ea...2r
... Other feature declaratiol...
end -- classFIGURE

Conversely, if a class is marked deferred it must have at least one deferred
feature. But a class may be deferred even if it does not declare any deferred feature of its
own: it might have a deferred parent, from which it inherits a deferred feature that it does
not effect. In our example, the cliOPEN_FIGURI most likely does not effedisplay,
rotate and other deferred features that it inherits fIFIGURE, since the notion of open
figure is still not concrete enough to support default implementations of these operations.
So the class is deferred, and will be declared as

deferred clast OPEN_FIGUREinherit
FIGURE

even if it does not itself introduce any deferred feature.

A descendant of a deferred class is an effective class if it provides effective
definitions for all features still deferred in its parents, and does not introduce any deferred
feature of its own. Effective classes suchPOLYGOI and ELLIPSE must provide
implementations adisplay, rotate and any other routines that they inherit deferred.

For convenience we will say that a type is deferred if its base class is deferred. So
FIGURE, viewed as a type, is deferred; and if the generic (LIST is deferred — as it
should be if it represents general lists regardless of the implementation — the type
LIST[INTEGEF is deferred. Only the base class counts C [X] is effective if clasC
is effective and deferred C if is deferred, regardless of the statuoXof

§14.5 DEFERRED FEATURES AND CLASSES 487

Graphical conventions

The graphical symbols that have illustrated inheritance figures can now be fully explaine
An asterisk marks a deferred feature or class:

FIGURE*
display*
perimete* -- At the level ofOPEN_FIGUREin the illustration of page 483

A plus sign means “effective” and marks the effecting of a feature:
perimete’ -- At the level ofPOLYGON in the illustration of page 483

You may mark a class with a plus sig to indicate that it is effective. This is only
used for special emphasis; an unmarked class is by default understood as effective, li
class declared as juclassC ..., without thedeferred keyword, in the textual notation.

You may also attach a single plus sign to a feature, to indicate that it is beil
effected. For examplperimeterappears, deferred and hence in the fperimete*, as
early as clasCLOSED_FIGUR]|, since every closed figure has a perimeter; then at the
level of POLY GO the feature is effected to indicate the polygon algorithm for computing
a perimeter, and so appears nexPOLYGONasperimete:’.

Finally, two plus signs (informally suggesting double effecting) mark redefinition:
perimete’* -- At the level ofRECTANGLEandSQUARE:IN the ficure of page 483

What to do with deferred classes

The presence of deferred elements in a system prompts the question “what happens i
applyrotate to an object of typFIGURE?”; more generally, if we apply a deferred routine
to a direct instance of a deferred class. The answer is draconian: there is no such thin
an object of typiFIGURE — no such thing as a direct instance of a deferred class.

Deferred Class No-Instantiation rule

The creation type of a creation instruction may not be deferred

Recall that the creation type of a creation instruction is the tyxin the form!! x,
and isU in the explicit-type forn! U ! x. A type is deferred if its base class is.

So the creation instructic!! 1... is invalid, and will be rejected by the compiler, if
the type off is one ofFIGURE, OPEN_FIGURI, CLOSED_FIGUR| all deferred. This
rule removes any danger of causing erroneous feature calls.

Note, however, that even thour's type is deferred you can still uf as target in the
type-explicit form of the creation instruction, as! RECTANGLE! f, as long as the
creation type, herRECTANGLYI, is one of the effective descendantsFIGURE. We
saw how to use this technique in a multi-branch instruction to creFIGURE object
which, depending on the context, will be a direct instanclRECTANGLI, or of
CIRCLE, etc.

488 INTRODUCTION TO INHERITANCE §14.5

At first the rule may appear to limit the usefulness of deferred classes to little I1See also exercise
than a syntactic device to fool the static type system. This would be true buE14.5,page 518
polymorphism and dynamic binding. You cannot creatobject of type FIGURE, but
you can declare a polymorphentity of that type, and use it without knowing the type
(necessarily based on an effective class) of the attached object in a particular execution:

f: FIGURE f could also be a for-
mal argument, as in

)) some_routine
f:= “Some expression of an effective type, suclCIRCLE or POLYGOM (f: FIGURE) is ...

f.rotate (some_poir, some_angl)2
f.display

Such examples are the combination and culmination of the O-O method’s unique
abstraction facilities: classes, information hiding, Single Choice, inheritance, polymorphism,
dynamic binding, deferred classes (and, as seen next, assertions). You manipulate objects
without knowing their exact types, specifying only the minimum information necessary to
ensure the availability of the operations that you require (here, that these objects are
figures, so that they can be rotated and displayed). Having secured the type checker’s
stamp of approval, certifying that these operations are consistent with your declarations,
you rely on a benevolent power — dynamic binding — to apply the correct version of each
operation, without having to find out what that version will be.

Specifying the semantics of deferred features and classes

Although a deferred feature has no implementation, and a deferred class has either no
implementation or a partial implementation only, you will often need to express their
abstract semantic properties. You can use assertions for that purpose.

Like any other class, a deferred class can have a class invariant; and a deferred
feature can have a precondition, a postcondition or both.

Consider the example of sequential lists, described independently of any particular
implementation. As with many other such structures, it is convenient to associate with
each list a cursor, indicating a currently aciposition:

before after List with
item cursor
count
Cursor

index

§14.5 DEFERRED FEATURES AND CLASSES

489

The class is deferred:
indexing

descriptior: "Sequentially traversable li<'ts

deferred class
LIST[G]
feature -- Access
coun: INTEGERIs
-- Number of items
deferred
end

inde>. INTEGERIs
-- Cursor position
deferred
end
iter: G is
-- Iltem at cursor position
deferred
end
feature -- Status report

after: BOOLEANIs
--Is cursor past last item?
deferred
end
before: BOOLEANIs
--Is cursor before first item?
deferred
end
feature -- Cursor movement

forthis

--Advance cursor by one position.

require
not after
deferred
ensure
index=old index + 1
end

... Other feature....

invariant
non_negative_cou: count>=0

offleft_by_at_most_or: index>=0

offright_by at most_or: index<= count + 1

after_definitior: after= (index= count +)

before definitior before= (index= 0)
end -- classLIST

490 INTRODUCTION TO INHERITANCE §14.5

The invariant expresses the relations between the various queries. The first two
clauses state that the cursor may only get off the set of items by one f left or right:

before Occupied positions after Cu rsor
(Left (Right positions
sentinel) | | sentinel)
] I I BH BEH B B
0 1 count count+1

The last two clauses of the invariant could also be expressed as postconditions:

ensure Result= (index= count + J) in after andensureResult= (index= 0) in before.

This choice always arises for a property involving argumentless queries only. In such a

case | prefer to use an invariant clause, treating the property as applying globally to the

class, rather than attaching it to any particular feature.

The assertions cforth express precisely what this procedure must do: advance the
cursor by one position. Since we want to maintain the cursor within the range of list
elements, plus two “sentinel” positions as shown on the last figure, applicatforthof
requiresnot after; the result, as stated by the postcondition, is to inclindex by one.

Here is another example, our old friend the stack. Our library will need a general
STACK][G] class, which we now know will be deferred since it should cover all possible
implementations; proper descendants sucFIXED STACHandLINKED STACHwill
describe specific implementations. One of the deferred proceduSTACKIis put:

put(x: G)is

-- Addx on top.
require
not full
deferred
ensure
not_empt: not empty
pushed_is_tc: item=x
one_mor: count=old count + 1
end

The boolean functionempty andfull (also deferred at thSTACF level) express
whether the stack is empty, and whether its representation is full.

Only with assertions do deferred classes attain their full power. As noted (although
the details will wait until two chapters from now), preconditions and postconditions apply
to all redeclarations of a routine. This is especially significant in the deferred case: these
assertions, if present, will set the limits for all permissible effectings. So the above
specification constrains all variantspui in descendants (STACFE.

Thanks to these assertion techniques you can make deferred classes informative and

semantics-rich, even though they do not prescribe any implementation. “THE ROLE OF

. _ DEFERRED
At the end of this chapter we will come back to deferred classes and explore fICLASSES”, 14.8,

their many roles in the object-oriented process of analysis, design and implementaPage 50

§14.6 REDECLARATION TECHNIQUES 491

See“Uniform
Access”, page £5

14.6 REDECLARATION TECHNIQUES

The possibility of redeclaring a feature — redefining or effecting it — provides us with
flexible, incremental development style. Two techniques add to its power:

* The ability to redeclare a function into an attribute.

< A simple notation for referring to the original version in the body of a redefinition.

Redeclaring a function into an attribute

Redeclaration techniques provide an advanced application of one of the central princi
of modularity that led us to the object-oriented method: uniform access.

As you will recall, the Uniform Access principle stated (originally in less technica
terms, but we can afford to be precise now) that there should not be any fundamel
difference, from a client’s perspective, between an attribute and an argumentless funct
In both cases the feature is a query; all that differs is its internal representation.

The first example was a class describing bank accounts, whebalance feature
can be implemented as a function, which adds all the deposits and subtracts all
withdrawals, or as an attribute, updated whenever necessary to reflect the current bala
To the client, this makes no difference except possibly for performance.

With inheritance, we can go further, and allow a class that inherits a routine
redefine it as an attribute.

Our old example is directly applicable. Assume an oric(ACCOUNT: class:

classACCOUNT Ifeature
balance INTEGERIs
-- Current balance

do
Result := list_of deposittotal —list_of withdrawalstotal
end

end -- classACCOUNT1

Then a descendant can choose the second implementation of our original exam
redefiningbalance as an attribute:

classACCOUNT Zinherit
ACCOUNT1
redefine balanceend
feature
balance INTEGER
-- Current balance

end -- classACCOUNT2

492 INTRODUCTION TO INHERITANCE §14.6

ACCOUNT: will likely have to redefine certain procedures, suclwithdraw and
deposi, so that on top of their other duties they upbalance, maintaining invariant the
propertybalance= list_of depositstotal —list_of withdrawalstotal.

In this example the redeclaration is a redefinition. An effecting can also turn a
deferred feature into an attribute. For example a defLISTclass may have a feature

coun: INTEGERIs
-- Number of inserted items
deferred

end
Then an array implementation may effect this feature as an attribute:
coun: INTEGER

Ifwe are asked to apply the classification that divides features into attributes and routines,
we will by convention consider a deferred feature as a routine — even though, for a

deferred feature with a result and no argument, the very notion of deferment means that
we have not yet chosen between routine and attribute implementations. The phrase
“deferred feature” is suitably vague and hence preferable to “deferred routine”.

Combined with polymorphism and dynamic binding, such redeclarations of routines
into attributes carry the Uniform Access principle to its extreme. Not only can we
implement a client’s request of the foarservicethrough either storage or computation,
without requiring the client to be aware of our choice (the basic Uniform Access idea): we
now have a situation where the same call could, in successive executions of the request
during a single session, trigger a field access in some cases and a routine call in some
others. This could for example happen with successive executions of tha.alance
call, if in the meantima is polymorphically reattached to different objects.

Not the other way around

You might expect to be able to redefine an attribute into an argumentless function. But no.
Assignment, an operation applicable to attributes, makes no sense for functions. Assume
x is an attribute of a cla:C, and a routine cC contains the instruction

a .= Sso me_expression

Were a descendant d to redefinea, then the routine — assuming it is not also
redefined — would become inapplicable, since one cannot assign to a function.

The lack of symmetry (redeclaration permitted from function to attribute but not
conversely) is unfortunate butinevitable, and not a real impediment in practice. It makes the
use of an attribute a final, non-reversible implementation choice, whereas using a function
still leaves room for later storage-based (rather than computation-based) implementations.

§14.6 REDECLARATION TECHNIQUES 493

Using the original version in a redefinition

Consider a class that redefines a routine inherited from a parent. A common scheme
the redefinition is to perform what the original version did, preceded or followed by son
other specific actions.

For example, a clasBUTTON inheriting fromWINDOW might redefine procedure
displayto indicate that to display a button is to display it as a window, then draw the bordk

classBUTTONinherit
WINDOW
redefine displayend
feature -- Output
displayis
-- Display as a button.
do
“Display as a normal window”; -- See below
draw_border
end
... Other feature...
end -- classBUTTON
wheredraw_borderis a procedure of the new class. What we ne('Display as a normal

window” is a call to the original, pre-redefinition versiordisplay, known technically as
theprecursor of draw_borde.

This case is common enough to justify a specific notation. The construct
Precursor

may be used in lieu of a feature name, but only in the body of a redefined routine. A c
to this feature, with arguments if required, is a call to the parent’s version of the routi
(the precursor).

So in the last example tI'Display as a normal windov part may be written as just
Precursor

meaning: call the version of this feature in clWINDOW. This would be illegal in any
context other than the redefinition of a routine inherited f\WINDOW, whereWINDOW
is a direct parenPrecursol is a reserved entity name, suckResul or Current, and like
them is written in italics with an upper-case first letter.

In this example the redefined routine is a procedure, and so a callPrecursor
construct is an instruction. The call would be an expression in the redefinition of
function:

494 INTRODUCTION TO INHERITANCE §14.7

some_quer(n: INTEGEF): INTEGERiIs
-- Value returned by parent version if positive, otherwise zero
do
Result :=(Precursor(n)).max(0)
end

In cases of multiple inheritance studied in the next chapter, a routine may have severeuKee_loi”gfthe o(;igfi_nald
precursors (enabling you to join several inherited routines into one). Then you will need; o >onotarecenne

22 . feature”, page 555
to remove the ambiguity by specifying the parent, {{ WINDOW}} Precurso.

Note that the use of ttPrecurso construct does not make the precursor feature a
feature of the class; only the redefined version is. (For one thing, the precursor version
might fail to maintain the new invariant.) The only effect of the construct is to facilitate
the task of the redefiner if the new job includes the old.

For any more complicated case, and in particular if you want to use both the precursor
and the redefined version as features of the class, you will rely on a technique based on
repeated inheritance, which actueduplicate: a parent feature, yielding two full-fledged
features in the heir. This will be part of the dision of repeate inheritance.

14.7 THE MEANING OF INHERITANCE

We have now seen the basic techniques of inheritance. More remains to be studied, in
particular how to deal with multiple inheritance, and the details of what happens to
assertions in the context of inheritance (the notion of subcontracting).

But first we must reflect on the fundamental concepts and understand what they
mean in the quest for software quality and an effective software development process.

The dual perspective

Nowhere perhaps does the dual role of classes as modules and types, defined when we first
encountered the notion of class, appear more clearly than in the study of inheritance. In
the module view, an heir describes an extension of the parent module; in the type view, it
describes a subtype of the parent type.

Although some aspects of inheritance belong more to the type view, most are useful
for both views, as suggested by the following approximate classification (which refers to

§14.7 THE MEANING OF INHERITANCE 495

Inheritance
mechanisms
and their role

See'ONE MECHA-

NISM, OR MORE?”

24.6, page 833

“The Open-Closed
principle”, page 57

a few facilities yet to be studied: renaming, descendant hiding, multiple and repea
inheritance). No aspect seems to belong exclusively tmodule view.

Addition of features

Redefinition Polymorphism

Renaming Dynamic binding

Deferred features,
effecting

Descendant hiding

Multiple inheritance
Repeated inheritancg

The two views reinforce each other, giving inheritance its power and flexibility. Th

'power can in fact be intimidating, prompting proposals to separate the mechanism i

two: a pure module extension facility, and a subtyping mechanism. But when we pro
further (in the chapter on the methodology of inheritance) we will find that such
separation would have many disadvantages, and bring no recognizable bene
Inheritance is a unifying principle; like many of the great unifying ideas of science,
brings together phenomena that had hitherto been treated as distinct.

The module view

From the module viewpoint, inheritance is particularly effective as a reusability techniqu

A module is a set of services offered to the outside world. Without inheritance, eve
new module must itself define all the services it offers. Of coursimplementation of
these services may rely on services provided by other modules: this is the purpose of
client relation. But there is no way to define a new module as simply adding new servic
to previously defined modules.

Inheritance gives that possibility.Blinherits fromA, all the services (features) Af
are automatically available B, without any need to define them furthB is free to add
new features for its own specific purposes. An extra degree of flexibility is provided k
redefinition, which allowB to take its pick of the implementations offeredA, keeping
some as they are while overriding others by locally more appropriate versions.

This leads to a style of software development which, instead of trying to solve eve
new problem from scratch, encourages building on previous accomplishments &
extending their results. The spirit is one of both economy — why redo what has alrea
been done? — and humility, in line with Newton’s famous remark that he could reach
high only because he stood on the shoulders of giants.

The full benefit of this approach is best understood in terms cOpen-Closed
principle introduced in an earlier chapter. (It may be worthwhile to reread thi

496 INTRODUCTION TO INHERITANCE §14.7

corresponding section now in light of the concepts just introduced.) The principle stated
that a good module structure should be both closed and open:

* Closed, because clients need the module’s services to proceed with their own
development, and once they have settled on a version of the module should not be
affected by the introduction of new services they do not need.

* Open, because there is no guarantee that we will include right from the start every
service potentially useful to some client.

This double requirement looks like a dilemma, and classical module structures offer
no clue. But inheritance solves it. A class is closed, since it may be compiled, stored in a
library, baselined, and used by client classes. But it is also open, since any new class may
use it as a parent, adding new features and redeclaring inherited features; in this process
there is no need to change the original or to disturb its clients. This property is fundamental
in applying inheritance to the construction of reusable, extendible software.

If the idea were driven to the extreme, every class would add just one feature to those of itSee*Single-routine
parents! This, of course, is not recommended. The decision to close a class should not kclasses”, page 7-.8
taken lightly; it should be based on a conscious judgment that the class as it stands alreac

provides a coherent set of services — a coherent data abstraction — to potential clients.

Also remember that the Open-Closed principle does not cover late hacking of inadequate

services. If bad judgment resulted in a poor feature specification we cannot update the

class without affecting its clients. Thanks to redefinition, however, the Open-Closed

principle remains applicable if the change is compatible with the advertized specification.

Among one of the toughest issues in designing reusable module structures wFactoring Out
necessity to take advantage of commonalities that may exist between groups of common Behav-
data abstractions — all hash tables, all sequential tables etc. By using class striore..Pag%e .
connected by inheritance, we can benefit from the logical relationships that exist between

these implementations. The diagram below is a rough and partial sketch of a possible

§14.7 THE MEANING OF INHERITANCE 497

Draft structure
for a table
library

structure for a table management library. The scheme naturally uses multiple inheritar
discussed in more detail in the nchapter.

BINARY
TREE

A

BINARY
SEARCH_TREH

LINKED_
TABLE

This inheritance diagram is only a draft although it shows inheritance links typical of such
a structure. For a systematic inheritance-based classification of tables and other
containers, se[M 1994a.

With this view we can express the reusability requirement quite concretely: the id
is to move the definition of every featuas far up in the diagram as possible, so that it
may be shared by the greatest possible number of descendant classes. Think of the pri
as thereusability gam, played on boards that represent inheritance hierarchies such as 1
one on the last figure, with tokens that represent features. He who moves the most feat
the highest, as a result of discovering higher-level abstractions, and along the way me!
the most tokens, as a result of discovering commonalities, wins.

The type view

From the type perspective, inheritance addresses both reusability and extendibility,
particular what an earlier discussion called continuity. The key is dynamic binding.

A type is a set of objects characterized (as we know from the theory of abstract d
types) by certain operationINTEGEF describes a set of numbers with arithmetic
operationsPOLYGOW, a set of objects with operatiovertices, perimete and others.

498 INTRODUCTION TO INHERITANCE §14.7

For types, inheritance represents is relation, also known ais-a, as in “every dog
is a mammal’, “every mammal is an animal”. Similarly, every rectangle is a polygon.

What does this relation mean?

« If we consider the values in each type, the relation is simply set inclusion: dogs I'instances”, page
up a subset of the set of animals; similarly, instanceRECTANGLI make up a 47<
subset of the instancesPOLYGON. (This comes from the definition of “instance”
earlier in this chapter; note that a direct instancRECTANGLEis not a direct
instance oPOLYGOND).

« If we consider the operations applicable to each type, saying that B is anA
means that every operation applicable to instancA is also applicable to instances
of B. (With redefinition, howeveB may provide its own implementation, which for
instances oB overrides the implementation givenA.)

Using this relation, you can descriis-anetworks representing many possible type
variants, such as all the variantsFIGURE. Each new version of a routine sucftrotate
anddisplay is defined in the class that describes the corresponding type variant. In the
table example, each class in the graph will provide its own implementatisearct,
inser, delete, except of course when the parent’s version is still appropriate.

A caveat about the use cis” and “is-a". Beginners — but, | hope, no one who has
read so far with even a modicum of attention — sometimes misuse inheritance to model
the instance-to-mold relation, as with a clSAN_FRANCISC inheriting fromCITY.

This is most likely a mistakeCITY is a class, which may have an instance representing
San Francisco. To avoid such mistakes, it suffices to remember that ttis-a does not

stand for x is anA” (as in “San_franciscis aCITY"), a relation between an instance and

a category, but for “everB is anA” (as in “EveryCITY is aGEOGRAPHICAL_UNI™),

a relation between two categories — two classes in software terms. Some authors prefer
to call this relation is-a-kind-of" or, like [Gore 1996, “can act as a. This is partly a

matter of taste (and partly a matter of substance, to be discussed in the chapter on
inheritance methodology); once we have learned to avoid the trivial mistake, we can
continue to use the well-accepteis” or “is-g" terminology, never forgetting that it
describes a relation between categories.

Inheritance and decentralization

With dynamic binding we can produce tldecentralized software architectures
necessary to achieve the goals of reusability and extendibility. Compare the O-O approach

§14.7 THE MEANING OF INHERITANCE 499

See€"Single
Choice”, page 6.L

— self-contained classes each providing its set of operation variants — with classi
approaches. In Pascal or Ada, you may use a record type with variants

type FIGURE=
record
“Common fields if any”
case figtype: (polygor, rectangls, triangle, circle, ...) of
polygor: (vertices LIST_OF_POINT; coun: INTEGEF);
rectangle (sidel, sidez REAL; ...);

end

to define the various forms of figures. But this means that every routine that do
something to figuresrotate and the like) must discriminate between possibilities:

casef.figure_typeof

polygor: ...
circle: ...

end

Routinessearct and others in the table case would use the same structure. T
trouble is that all these routines possess far too rknowledge about the overall system:
each must know exactly what types of figure are allowed in the system. Any addition o
new type, or change in an existing one, will affect every routine.

Ne sutor ultra crepidal, the shoemaker should not look beyond the sandal, is
software design principle: a rotation routine has no business knowing the exhaustive
of figure types. It should be content enough with the information necessary to do its jc
rotating certain kinds of figure.

This distribution of knowledge among too many routines is a major source
inflexibility in classical approaches to software design. Much of the difficulty of
modifying software may be traced to this problem. It also explains in part why softwa
projects are so difficult to keep under control, as apparently small changes have f
reaching consequences, forcing developers to reopen modules that were thought to |
been closed for good.

Object-oriented techniques deal with the problem head-on. A change in a particu
implementation of an operation will only affect the class to which the implementatio
applies. Addition of a new type variant will in many cases leave the others complete
unaffected. Decentralization is the key: classes manage their own implementations an
not meddle in each other’s affairs. Applied to humans, this would sound like Voltaire
Cultivez votre jardi, tend your own garden. Applied to modules, it is an essentia
requirement for obtaining decentralized structures that will yield gracefully to requests f
extension, modification, combination and reuse.

500 INTRODUCTION TO INHERITANCE §14.7

Representation independence

Dynamic binding also addresses one of the principal reusability issues: represer;epresentation
independence — the ability to request an operation with more than one variant, windependence”,
having to know which variant will be applied. The discussion of this notion in an e’a9¢ 84
chapter used the example of a call

present := has(x, 1)

which should use the appropriate search algorithm depending on the run-time ftorm of
With dynamic binding, we have exactly that:t is declared as a table, but may be
instantiated as any of binary search tree, closed hash table etc. (assuming all needed
classes are available), then the call

present := thas(x)

will find, at run time, the appropriate versionhas. Dynamic binding achieves what the
earlier discussion showed to be impossible with overloading and genericity: a client may
request an operation, and let the underlying language system automatically find the
appropriate implementation.

So the combination of classes, inheritance, redefinition, polymorphism and dynamic
binding provides a remarkable set of answers to the questions raised at the beginning of
this book: requirements for reusability; criteria, principles and rules of modularity.

The extension-specialization paradox

Inheritance is sometimes viewed as extension and sometimes as specialization. Although
these two interpretations appear contradictory, there is truth in both — but not from the
same perspective.

It all depends, again, on whether you look at a class as a type or a module. In the first
case, inheritance, ds, is clearly specialization; “dog” is a more specialized notion than
“animal”, and “rectangle” than “polygon”. This corresponds, as noted, to subsetinclusion:
if B is heir to A, the set of run-time objects represented B is a subset of the
corresponding set fcA.

But from the module perspective, where a class is viewed as a provider of séBvices,
implements the services (features)A plus its own.Fewel objects often allowimore
features, since it implies a higher information value; going from arbitrary animals to dogs
we can add the specific property of barking, and from arbitrary polygons to rectangles we
can add the featuidiagona. So with respect to features implemented the subsetting goes
the otherway: the features applicable to instancA are a subset of those for instanceB. of

Featuresimplemente rather than serviceofferec (to clients) because of the way
information hiding combines with inheritance: as we will 8: may hide from its clients
some of the features exported A to its own.

Inheritance, then, is specialization from the type viewpoint and extension from the
module viewpoint. This is the extension-specialization paradox: more features to apply,
hence fewer objects to apply them to.

§14.8 THE ROLE OF DEFERRED CLASSES 501

The extension-specialization paradox is one of the reasons for avoiding the te
“subclass”, which suggests “subset”. Another, already noted, is the literature’s sometin
confusing use of “subclass” to indicate direct as well as indirect inheritance. No su
problem arises for the precisely defined teheir, descendarandpropeidescendar and
their counterpartparen, ancestorandpropel ancesto.

14.8 THE ROLE OF DEFERRED CLASSES

Among the inheritance-related mechanisms addressing the problems of softw
construction presented at the beginning of this book, deferred classes are prominent.

Back to abstract data types

Loaded with assertions, deferred classes come close to representing abstract data typ
deferred class covering the notion of stack provides an excellent example. Prcputdure
has already been shown; here is a possible version for the full class.

indexing
descriptior:
"Stacks(Last-ir, First-Out dispenser structur), independently of %
%any representation choi":e
deferred class
STACKI[G]
feature -- Access
coun: INTEGERIs
-- Number of elements inserted.
deferred
end
item: Gis
-- Last element pushed.
require
not_empt: not empty
deferred
end

feature -- Status report
empt: BOOLEANis
-- Is stack empty?

do
Result :=(count= Q)
end
full: BOOLEANis
-- Is stack full?
deferred

end

502

INTRODUCTION TO INHERITANCE §14.8

feature -- Element change
put(x: G) is

-- Pushx onto top.

require
not full

deferred

ensure
not_empt: not empty
pushed_is_tc: item= x
one_mor: count=old count + 1

end

removeis
-- Pop top element.
require
not empty
deferred
ensure
not_full: not full
one_les: count=old count — 1
end
change_tog(x: T) is
-- Replace top element txy
require
not_empt: not empty
do
remove; put(x)
ensure
not_empt: not empty
new_to|: item= x
same_number_of _iter count= old count
end
wipe_outis
-- Remove all elements.
deferred
ensure
no_more_elemer: empty
end

invariant
non_negative_cou: count>=0
empty_cour: empty= (count= Q)
end

§14.8 THE ROLE OF DEFERRED CLASSES 503

The class shows how you can implement effective routines in terms of deferred on
for example,change to has been implemented asremove followed by aputl. (This
implementation may be inefficient in some representations, for example with arrays, |
effective descendants STACk may redefine the routine.)

Full specification page If you compare clasSTACK with the abstract data type specification given in the
iﬁé?';ig?g'x'm chapter on ADTs, you will find the similarities striking. Note in particular how the ADT
TYPESTOCLASSESfUNctions map to features of the class, and the PRECONDITIONS paragraph to rout

6.5, page 142 preconditions. Axioms are reflected in routine postconditions and in the class invarian

See exercisE6.8, The addition of operationchange to, coun andwipe ou is not an important

page 16:“more gjfference since they could be specified as part of the abstract data type. Also minor is

stack operations.’ - . . .
absence of an explicit equivalent of the abstract data type furnew, since creation
instructions (which may rely on creation procedures introduced by effective descendar

will take care of object creation. There remain three significant differences.

See exercisE6.9, The first is the introduction of a functicfull, accounting for implementations that
g;%ek;& “bounded il only accept a imited number of secessive insertions, for example array
' implementations. This is typical of constraints that are irrelevant at the specification le
but necessary in the design of practical systems. Note, however, that this is not an intri
difference between abstract data types and deferred classes, since we may adapt the
specification to cover the notion of bounded stack. Also, no generality is lost since so!
implementations (linked, for example) may have a versidull that always returns false.

“The imperative and The second difference, mentioned in the discussion of Design by Contract, is that
the applicative”, pageADT specification is purely applicative (functional): it only includes functions, without
352.)

side effects. A deferred class is imperative (procedural) in spite of its abstrapui, for;

example, is specified as a procedure that will modify a stack, not as a function that tal
a stack and returns a new stack.

Finally, as also noted in the earlier discussion, the assertion mechanism is |
expressive enough for some ADT axioms. Of the four stack axioms

For anyx: G, s: STACK[G]
Al e item(put(s, X)) = X
A2+ remove (put(s, X)) = s
A3+ empt (new)

A4« not empt (put(s, x))

“The expressive all butA2 have a direct equivalent in the assertions. A3 we assume that descendants’

power of assertions”,creation procedures will staensure empt.) An earlier discussion explained the reasons
page 40, and subse X

quent sectio “for this limitation, and hinted at possible ways — formal specification languages, IFL -
to remove it.

504 INTRODUCTION TO INHERITANCE §14.8

Deferred classes as partial implementations: the notion of behavior class

Not all deferred classes are as closSTACKto an abstract data type. In-between a fully
abstract class like(STACK, where all the fundamental features are deferred, and an
effective class such iFIXED_STACH, describing just one implementation of an abstract
data type, there is room for all degrees of partial ADT implementations or, said differently,
groups of possible implementations.

The review of table implementation variants, which helped us understand the rSee‘Factoring Out
partial commonality in our study of reusability issues, provides a typical example CommonBehaviors’,
. page 8}, figure on

original figure showing the relations between the variants can now be redrawn

.) . page8E.
inheritancediagram:
Variants of
the notion of
table
_____ after
forth*
item* (SEQUENTIAL
start* TABLE
has"

after after" after
forth: fortrf LINKED forth++
item item item

start" start UOE start"

The most general clasTABLE, is fully or almost fully deferred, since at that level
we may specify a few features but not provide any substantial implementation. Among the
variants isSSEQUENTIAL TABL, representing tables in which elements are inserted
sequentially. Examples of sequential tables include array, linked list and sequential file
implementations. The corresponding classes, in the lowest part of the figure, are effective.

Classes such SEQUENTIAL TABLIlare particularly interesting. The class is still
deferred, but its status is intermediate between full deferment, asTABLE, and full
effecting, as wittARRAY_TABL. It has enough information to allow implementing some
specific algorithms; for example we can implement sequential search fully:

has(x: G): BOOLEANis

-- Doesx appear in table?

do
from startuntil after or elseequal(item, x) loop

forth

end
Result :=not after

end

§14.8 THE ROLE OF DEFERRED CLASSES 505

See the table on page This function is effective, although it relies for its algorithm on deferred features. Th
88 (whichusefounc featuresstart (bring the cursor to the first positiorforth (advance the cursor by one

in lieu ofitem).

“Specifying the

position), iter (value of element at cursor positiolafter (is the cursor after the last
element?) are deferred SEQUENTIAL _TABL; each of the heirs of this class shown in
the figure effects them in a different way, corresponding to its choice of implementatio
These various effectings were given in the discussion of reusaARRAY_ TABL, for
example, can represent the cursor as an ini, so that the procedustari is implemented
asi:=1,iter ast @ and so on.

Note how important it is to include the precondition and postconditicforth, as

semantics of deferredwell as the invariant of the enclosing class, to make sure that all future effectings obse

features and

the same basic specification. These assertions appeared earlier in this chapter (in a sli

classes’, page 48 gifferent context, for a clasLIST, but directly applicable here).

“Factoring Out
Common Behav-
iors”, page 8%

This discussion shows the correspondence between classes and abstract data tyy
its full extent:

» A fully deferred class such TABLE corresponds to an ADT.

« A fully effective class such éARRAY_ TABL corresponds to an implementation of
an ADT.

» A partially deferred class such SEQUENTIAL_TABL corresponds to a family of
related implementations (or, equivalently, a partial implementation) of an ADT.

A class such aSEQUENTIAL_TABL, which captures a behavior common to
several ADT variants, may be calledbehavior clas:. Behavior classes provide some of
the fundamental design patterns of object-oriented software construction.

Don’t call us, we’ll call you

SEQUENTIAL_TABL is representative of how object technology, through the notion o
behavior class, answers the last one among the major reusability issues still open from
discussion in chapt«: Factoring out common behaviurs

Particularly interesting is the possibility for an effective routine of a behavior clas
to rely on deferred routines for its implementation, as illustratehas. This is how you
may use partially deferred classes to capture common behaviors in a set of variants.
deferred class only describes what is common; variations are left to descendants.

Several of the design examples of later chapters rely on this technique, which plz
a central role in the application of object-oriented techniques to building reusakb
software. It is particularly useful for domain-specific libraries and has been applied
many different contexts. A typical example, describe[M 1994a, is the design of the
Lex and Parse libraries, a general-purpose solution to the problem of analyzing langua
Parse, in particular, defines a general parsing scheme, which will process any input
whose structure conforms to a certain grammar (for a programming language, some ¢
format etc.). The higher-level behavior classes contain a few deferred features suct
post_actiol describing semantic actions to be executed just after a certain construct |
been parsed. To define your own semantic processing, you just effect these features.

506 INTRODUCTION TO INHERITANCE §14.8

This scheme is broadly applicable. Business applications, in particular, often follow
standard patterns — process all the day’s invoices, perform appropriate validation on a
payment request, enter new custon...|— with individual components that may vary.

In such cases we may provide a set of behavior classes with a mix of effective
features to describe the known part and deferred features to describe the variable elements.
Typically, as in the preceding example, the effective features call the deferred ones. Then
descendants can provide the effectings that satisfy their needs.

Not all the variable elements need to be deferred. If a default implementation is available,

include it in the ancestor as an effective feature, which descendants may still redefine; this
facilitates the work on the descendants, since they only need to provide new versions for
features that depart from the default. (Recall that to become effective, that is, directly

usable, a class must effall its parents’ deferred features.) Apply this technique only if

a sound default exists; if not, as wdisplay for FIGURE, the feature should be deferred.

This technique is part of a general approach that we madon't call us, we’ll call
yoL: rather than an application system that calls out reusable primitives, a general-purpose
scheme lets application developers “plant” their own variants at strategic locations.

The idea is not entirely new. IBM’s ancient and venerable database management
system, IMS, already relied on something of the sort. In more recent software, a common
structure for graphics systems (such as X for Unix) has an “event loop” which at each iteration
calls specific functions provided by each application developer. This is knowcallback
scheme.

What the O-O method offers, thanks to behavior classes, is systematic, safe support
for this technigue, through classes, inheritance, type checking, deferred classes and
features, as well as assertions that enable the developer of the fixed part to specify what
properties the variable replacements must always satisfy.

Programs with holes

With the techniques just discussed we are at the heart of the object-oriented method’s
contribution to reusability: offering not just frozen components (such as found in
subroutine libraries), but flexible solutions that provide the basic schemes and can be
adapted to suit the needs of many diverse applications.

One of the central themes of the discussion of reusability was the need to combine
this goal with adaptability — to get out of treuse or red dilemma. This is exactly the
effect of the scheme just described, for which we can coin the name “programs with
holes”. Unlike a subroutine library, where all is fixed except for the values of the actual
arguments that you can pass, programs with holes, using classes patterned after the
SEQUENTIAL_TABL model, have room for user-contributed parts.

These observations help to put in perspective the “Lego block” image often used to
discuss reusability. In a Lego set, the components are fixed; the child's creativity goes
towards arranging them into an interesting structure. This exists in software, but sounds
more like the traditional idea of subroutines. Often, software development needs to do
exactly the reverse: keep the structure, but change the components. In fact the components

§14.8 THE ROLE OF DEFERRED CLASSES 507

“Seamless develop-
ment’, page 931

may not be there at all yet; in their place you find placeholders (deferred features), use
only when you plug in your own variants.

In analogies with child games, we can go back to a younger age and think of those
playboards where toddlers have to match shapes of blocks with shapes of holes —to realize
that the square block goes into the square hole and the round block into the round hole.

You can also picture a partially deferred behavior class (or a set of such class
called a “library” or a “framework”) as having a few electrical outlets — the deferret
features — into which the application developer will plug compatible devices. Th
metaphor nicely suggests the indispensable safeguards: the assertions, which expres
requirements on acceptable pluggable devices, in the same way that an outl
specification would prescribe a range of acceptable voltages, currents and other electt
parameters.

Deferred classes for analysis and global design

Deferred classes are also a key tool for using the method not just for implementation
also atthe earliest and highest levels of system building — analysis and global design.
aim is to produce a system specification and architecture; for design, we also need
abstract description of each module, without implementation details.

The advice commonly given is to use separate notations: some analysis “method’
term that in many cases just covers a graphical notation) and a PDL (Program Des
Language, again often graphical). But this approach has many drawbacks:

* By introducing a gap between the successive steps, it poses a grave threat to soft\
guality. The necessity of translating from one formalism to another may bring i
errors and endangers the integrity of the system. Object technology, instead, off
the promise of a seamless, continuous software process.

e The multi-tiered approach is particularly detrimental to maintenance and evolutio
It is very hard to guarantee that design and implementation will remain consiste
throughout the system’s evolution.

 Finally, most existing approaches to analysis and design offer no support for t
formal specification of functional properties of modules independently of thei
implementation, in the form of assertions or a similar technique.

The last comment gives rise to tparadox of level: precise notations such as the
language of this book are sometimes dismissed as “low-level” or “implementatiol
oriented” because they externally look like programming languages, whereas thanks
assertions and such abstraction mechanisms as deferred classes they arehigherdly
leve than most of the common analysis and design approaches. Many people take a w
to realize this, so early have they been taught the myth that high-level must mean vac
that to be abstract one has to be imprecise.

The use of deferred classes for analysis and design allows us to be both abstract
precise, and to keep the same language throughout the software process. We a
conceptual gaps (“impedance mismatches”); the transition from high-level modu
descriptions to implementations can now proceed smoothly, within one formalism. B
even unimplemented operations of design modules, now represented by deferred routi
may be characterized quite precisely by preconditions, postconditions and invariants.

508 INTRODUCTION TO INHERITANCE §14.9

The notation which we have by now almost finished developing covers analysis and
design as well as implementation. The same concepts and constructs are applied at all
stages; only the level of abstraction and detail differs.

14.9 DISCUSSION

This chapter has introduced the basic concepts of inheritance. Let us now assess the merits
of some of the conventions introduced. Further comments on the inheritance mechanism
(in particular on multiple inheritance) appear in the next chapter.

Explicit redefinition

The role of theredefine subclause is to enhance readability and reliability. Compilers do
not really need it: since a class may have at most one feature of a given name, a feature
declared in a class with the same name as an ancestor’s feature can only be a redefinition
of that feature — or a mistake.

The possibility of a mistake should not be taken lightly, as a programmer may be
inheriting from a class without being aware of all the features declared in its ancestors. To
avoid this dangerous case, any redefinition must be explicitly requested. This is the aim of
theredefine subclause, which is also helpful to a reader of the class.

Accessing the precursor of a routine
You will have noted the rule on tlPrecurso (...) construct: it may only appear in the
redefined version of a routine.

This ensures that the construct serves its purpose: enabling a redefinition to rely on
the original implementation. The explicit naming of the parent avoids any ambiguity (in
particular with multiple inheritance). Allowing arbitrary routines docess arbitrary
ancestor features could make a class text very hard to understand, all the time forcing the
reader to go the text of many other classes.

Dynamic binding and efficiency

One might fear that dynamic binding, for all its power, would lead to unacceptable run-
time overhead. The danger exists, but careful language design and good implementation
techniques avert it.

The problem is that dynamic binding requires some more work to be done at run time.
Compare the usual routine call of traditional programming languages (Pascal,...)la, C

[1]

f(x,a b c..)
with the object-oriented form
(2]

x.f(a b, c..)

§14.9 DISCUSSION 509

“The Single Target
principle”, page
184.

The difference between the two was explained, in the introduction to the notion
class, as a consequence of the module-type identification. But now we know that m
than style is at stake: there is also a difference of semantics. In [1], it is known statice
— at compile time, or at worst at link time, if you use a linker to combine separate
compiled modules — what exact feature the n& denotes. With dynamic binding,
however, no such information is available staticallyf in [2]: the feature to be selected
depends on the type of the object to wtx will be attached during a particular execution.
What that type will be cannot, in the general case at least, be predicted from the text of
software; this is the source of the flexibility of the mechanism, touted earlier.

Let us think for a moment of a naive implementation. We keep at run time a copy
the class hierarchy. Each object contains information about its type — a node in tl
hierarchy. To interprex.f, the run-time environment looks at that node to see if the
corresponding class has a featf. If so, great, we have found what we need. If not, we
look at the node’s parent, and repeat the operation. We may have to go all the way to
topmost class (or the topmost classes in the case of multiple inheritance).

In a typed language we have the guarantee that somewhere along the way we will find a
suitable feature; in an untyped language such as Smalltalk we may fail to do so, and have
to terminate the execution with a “message not understood” diagnostic.

This scheme is still applied, with various optimizations, in many implementations
non-statically typed languages. It implies a considerable performance penalty. Worse, |
penalty is not predictable, andgrows with the depth of the inheritance struc, as the
algorithm may have to go back all the way to the root of the inheritance hierarchy. Tt
means introducing a direct conflict between reusability and efficiency, since workir
harder at reusability often leads to introducing more levels of inheritance. Imagine t
plight of the poor designer who, whenever tempted to add an inheritance link, must as:s
whether it is really worth the resulting performance hit. No software developer should
forced into such choices.

This approach is one of the primary sources of inefficiency in Smalltall
environments. It also explains why Smalltalk does not (in common commerci
implementations at least) support multiple inheritance, since the penalty in this case wo
be enormous, due to the need to traverse an entire graph, not just a linear chain.

Fortunately, the use of static typing avoids such unpleasantness. With the pro
type system and compiling algorithms, there is no need ever to traverse the inherita
structure at run time. Because in a statically typed O-O language the possible tyoes fi
are not arbitrary but confined to descendani’s original type, the compiler can prepare
the work of the run-time system by building arrayed data structures that contain all t
needed type information. With these data structures, the overhead of dynamic bind
becomes very smalan index computation and an array acc. Not only is this penalty
small; even more importantly, it constant (more precisely, bounded by a constant), so
that there is no need to worry about any reusability-efficiency tradeoff as discussed abc
Whether the deepest inheritance structure in your system is 2 or 20, whether you have
classes or 10,000, the maximum overhead is exactly the same. This is true for both si
and multiple inheritance.

510 INTRODUCTION TO INHERITANCE §14.9

The discovery, in 1985, of this property — that even in the presence of multiple
inheritance it was possible to implement a dynamically-bound feature call in constant
time — was the key impetus for the project that, among other things, yielded both the first
and the present editions of this book: to build a modern software development
environment, starting from the ideas brilliantly introduced by Simula 67 and extending
them to multiple inheritance (prolonged experience with Simula having shown that the
limitation to single inheritance was unacceptable, as explained in the next chapter),
reconciling them with modern principles of software engineering, and combining them
with the most directly useful results of formal approaches to software specification,
construction and verification. The design of an efficient, constant-time dynamic binding
mechanism, which may at first sight appear to be somewhat peripheral in this set of goals,
was in reality an indispensable enabler.

These observations will be surprising to anyone who has been introduced to object
technology through the lens of O-O analysis and design presentations that treat
implementation and efficiency as mundane issues to be addressed after one has solved
everything else. In the reality of industrial software development — the reality of
engineering tradeoffs — efficiency is one of the key factors that must be considered at
every step. (As noted in an earlier chapter, if you dismiss efficiency, efficiency will
dismiss you.) Object technology is much more than constant-time dynamic binding; but
without constant-time dynamic binding there can be no successful object technology.

Estimating the overhead

With the techniques described so far, it is possible to give rough figures on the overhead
of dynamic binding. The following figures are drawn from ISE’s experience, using
dynamic binding (that is to say, disabling the static binding optimization explained next).

For a procedure that does nothing — a procedure declarplis do enc — the
penalty for dynamic binding over static binding (that is to say, over the equivalent
procedure in C) is about 30%.

This is of course an upper bound, since real-life procedures do something. The price
for dynamic binding is the same for any routine call regardless of what it does; so the more
a routine does, the smaller the relative penalty. If insteegpl we use a procedure that
performs some arbitrary but typical operations, as in

p2(a, b, c: INTEGEF) is

local

X,y
do

X=ay:=b+c+l x:=x*y; p2

if x>ythenx:=x+1elsex:=x— lend
end

then the overhead goes down to about 15%. For a routine that does anything more
significant (for example by executing a loop), it can become very small.

§14.9 DISCUSSION 511

Static binding as an optimization

In some cases you need the utmost in efficiency, and even the small overhead
discussed may be undesirable. Then you will notice that the overhead is not alwz:
justified. A callx.f (a, b, c...) need not be dynamically bound when either:

S1 «f is not redeclared anywhere in the system (it has only one declaration).

S2 <x is not polymorphic, that is to say is not the target of any attachment whos
source has a different type.

In any such case — detectable by a good compiler — the code generated
x.f(a, b, c...) can be identical to what a compiler for C, Pascal, Ada or Fortran woul
generate fof (x, a, b, c...). No overhead of any kind is necessary.

ISE’s compiler, part of the environment described in the last chapter of this boo
currently applies optimizatioS1; the addition 0iS2 is planned. Sz analysis is in fact a
consequence of the type analysis mechanisms described in the chapter on typing.)

Although S1is interesting in itself, its direct benefit is limited by the relatively low
cost of dynamic binding given in the preceding statistics. The real payoff is indirect, sin
S1 enables a third optimization:

S3 «Apply automatic routine inlining when appropriate

Routine inlining means expanding the body of a routine within the text of its calle
eliminating the need for any actual call. For example, with a routine

set_a(x: SOME_TYP) is
-- Makex the new value of attribufa.
do

end

the compiler may generate, for the (saset_a(some_valu), the same code that a Pascal
compiler would generate for the assignmsra := some_valu (not permitted by our
notation, of course, since it violates information hiding). In this case there is no overhe
at all, since the generated code does not use a routine call.

Inline expansion has traditionally been viewed as an optimization the
programmers should specify. Ada includes the provision fotinline pragma (directive
to the compiler); C and C++ offer similar mechanisms. But this approach suffers fro
inherent limitations. Although for a small, stationary program a competent developer ¢
have a good idea of what should be inlined, this ceases to be true for large, evolutior
developments. In that case, a compiler with a decent inlining algorithm will beat tt
programmers’ guesses 100% of the time.

For any call to which automatic static bindirS1) is applicable, an O-O compiler
can (as in the case of ISE's) determine whether automatic routine inliS3) ig
worthwhile, based on an analysis of the space-time tradeoffs. This is one of the m

512 INTRODUCTION TO INHERITANCE §14.9

dramatic optimizations — one of the reasons why it is possible to match the efficiency of
hand-crafted C or Fortran code and sometimes, especially on large systems, exceed it.

To the efficiency advantage, which grows with the size and complexity of the
software, the automatic approach to inlining adds the advantage of safety and flexibility.
As you will have noted, inlining is semantically correct only for a routine that can be
statically bound, as in casS1 andS2. It is not only common but also consistent with the
method, in particular the Open-Closed principle, to see a developer, midway through the
development of a large system, add a redefinition of a feature which until then had only
one implementation. If that routine has been inlined manually, the result is erroneous
semantics (since dynamic binding is now required, and inlining of course means static
binding). Developers should concentrate on building correct software, not performing
optimizations that are tedious, error-prone when done manually, and automatable.

There are some other correctness requirements for inlining; in particular, it is only
applicable to non-recursive calls. When correct, inlining should only be applied when the
space-time tradeoff makes sense: the inlined routine should be small, and should be called
from only one place or a small number of places.

A final note on efficiency. Published statistics for object-oriented languages show
that somewhere between 30% and 60% of calls truly need dynamic binding, depending on
how extensively the developers use the method’s specific facilities. (In ISE’s software the
proportion is indeed around 60%.) With the optimizations just described, you will only
pay the price of dynamic binding for calls that need it. For the remaining dynamic calls,
the overhead is not only small and constant-bounded,logically necessal; in most
cases, achieving the equivalent effect without O-O mechanisms would have required the
use of conditional instructionif ... then ... orcase ... of ...), which can be more costly
than the simple array-indirection mechanism outlined above. So it is not surprising that O-
O software, processed by a good compiler, can compete with hand-produced C code.

A button by any other name: when static binding is wrong

By now the reader will have understood a key consequence of the principles of inheritance
presented in this chapter:

Dynamic Binding principle

Static binding is semantically incorrect unless its effect is identical to that of
dynamic binding.

In the callx.r, if x is declared of typA but ends up at run time attached to an object
of type B, and you have redefiner in B, calling the original version (serj) is not a

choice; it is a bug!
No doubt you had a reason for redefinr. The reason may have been optimization,
as withperimete for RECTANGLYI; but it may have been that the original versrz was

simply incorrect forB. Consider the example, sketched earlier, of a BUTTON that
inherits from a claswINDOW in a window system, because buttons are a special kind of

§14.9 DISCUSSION 513

From the definition
of class correctness

on page371.

window; the class redefines procedudisplay because displaying a button is a little
different from displaying an ordinary window (for example you must display the border
Then ifw is of typeWINDOW but dynamically attached, through polymorphism, to an
object of typeBUTTON, the callw.display must execute the button version! Using
displayynpow Would result in garbled display on the screen.

As another example, assume a video game with a data strLIST [AIRCRAFT]
— a polymorphic data structure, as we have learned to use them — and a loop |
executesitem.land on each element of the list. Each aircraft type may have a differer
version ofland, the landing procedure. Executing the default version is not an option b
a mistake. (We may of course imagine real flight control software rather than just a garr

We should not let the flexibility of the inheritance-based type system — specificall
the type conformance rule — fool us here: the ability to declare an entity at a level
abstraction WINDOW, AIRCRAF") higher than the actual type of the attached object
during one particular executioBUTTONorBOEING_747_40) is only a facility for the
engineerin of the software, at system writing time. During progrexecutiol the only
thing that matters is the objects to which we apply features; entities — names in the t
of the software — have long been forgotten. A button by any other name is still a buttc
whether the software called it a button, or for generality treated it as a window, does |
change its nature and properties.

Mathematical analysis supports and explains this reasoning. From the chapter
assertions you may remember the correctness condition for a routine:

{pre, (x,) and INV} Body, {pos; (x) and INV}

which we can simplify for the benefit of this discussion (keeping the part relative to tt
class invariant only, ignoring the arguments, and using as subscript theA of the
enclosing class) as

[A-CORRECT]

{INVA} ra {INVa}
meaning in plain English: any execution of routr from classA will preserve the
invariant of classA. Now assume that we redefir in a proper descendaB. The
corresponding property will hold if the new class is correct:

[B-CORRECT]
{INVg} rg {INVg}

514 INTRODUCTION TO INHERITANCE §14.9

As you will recall, invariants accumulate as we go down an inheritance structure: so
INVg impliesINV,, but usually not the other w around.

. , A parent
FA I, preserves the invariant &f... pa_ N .
version may fail
INV, to satisfy the
new invariant
++ ... andrg preserves the invariant &...

's
o ... butr, has no particular reason to
preserve the invariant d!
INVg = INV, and other_clauses

Remember for example hcRECTANGLI added its own clauses to the invariant cOn theACCOUNT
POLYGON. Another example, studied in the presentation of invariants, is a clexamplese€LASS
ACCOUNT lwith featureswithdrawals_lislanddeposits_lis; then, perhaps for efficiency Ill\i\gA?g:gS&i
reasons, a proper descendACCOUNTZadds an attributbalance to store an accounts

current balance at all time, with the new invariant clause given in the earlier discussion:
consistent_balanc deposits_listtotal — withdrawals_listtotal = current_balance

As a result, we may have to redefine some of the routineACCOUNT; for
example a proceduidepositthat merely used to add a list elemendeposits_lis must
now updatebalance as well. Otherwise the class is simply wrong. This is similar to
WINDOWS version of thedisplay procedure not being correct for an instancBUTTON.

Now assume static binding applied to an object of 1B, accessible through an
entity of typeA. Because the corresponding routine versrz, will usually not preserve
the needed invariant — as wideposij ~-onT1fOr an object of typeACCOUNT, or
displayynpow for an object of typeBUTTON — the result will be to produce an

inconsistent object, such as ACCOUNT:! object with an incorrecbalance field, or a
BUTTON object improperly displayed on the screen.

Such a result — an object that does not satisfy the invariant of its generating class,
that is to say, the fundamental and universal constraints on all objects of its kind — is one
of the worst events that could occur during the execution of a software system. If such a
situation can arise, we can no longer hope to predict what execution will do.

To summarizestatic binding is either an optimization or a bug. If it has the same CasesS1andS2
semantics as dynamic binding (as in caSl and S2), it is an optimization, which appeared were

. defined on pag&10.
compilers may perform. If it has a different semantics, it is a bug.

The C++ approach to binding

Given its widespread use and its influence on other languages, it is necessary to explain
how the C++ language addresses some of the issues discussed here.

§14.9 DISCUSSION 515

“PROGRAMMER-
CONTROLLED
DEALLOCA-
TION”, 9.4, page
294

The C++ convention is surprising. By default, binding is static. To be dynamicall
bound, aroutine (function or method in C++ terms) must be specially declevirtual .

Two decisions are involved here:
C1l - Making the programmer responsible for selecting static or dynamic binding.
C2 « Using static binding as the default.

Both are damaging to object-oriented software development, but there is a differer
of degreeClis arguableC2is hard to defend.

Compared to the approach of this boC1 results from a different appreciation of
which tasks should be handled by humans (software developers), and which by compu
(more precisely, compilers). This is the same debate that we encountered with autom
memory management. The C++ approach, in the C tradition, is to give the programr
full control over the details of what happens atrun time, be it object deallocation or routi
call. The spirit of object technology instead suggests relying on compilers for tasks tt
are tedious and error-prone, if algorithms are available to handle them. On a large st
and in the long run, compilers always do a better job.

Developers are responsible for the efficiency of their software, of course, but th
should direct their efforts to the area where they can make a real difference: the choic
proper software structures and algorithms. Language designers and compilers writers
responsible for the rest.

Hence the disagreement on decisC1: C++ considers that static binding, as well
as inlining, should be specified by developers; the O-O approach developed in this bo
that it is the responsibility of the compiler, which will optimize calls behind the scene:
Static binding is an optimization, not a semantic choice.

C1 has another negative consequence on the application of the method. Whene
you declare a routine you must specify a binding policy: virtual or not, that is to se
dynamic or static. This policy runs against the Open-Closed principle since it forces y
to guess from the start what will be redefinable and what will not. This is not ho
inheritance works in practice: you may have to redefine a feature in a distant descend
without having ever foreseen the need for such a redefinition in the original. With the C-
approach, if the original designer did not have enough foresight, you need to go bac}
the ancestor class to change the declarativirtual . (This assumes that you can modify
its source text. If it is not available, or you are not entitled to change it, tough luck.)

Because of all this, decisicC1 — requiring programmers to specify a binding
policy — impedes the effectiveness of the object-oriented method.

C2 — the use of static binding as the default in the absence of a special “virtue
marker — is worse. Here it is hard to find justifications for the language design. Sta
binding, as we have seen, is always the wrong choice when its semantics differs from
of dynamic binding. There can be not reason for choosing it as the default.

Making programmers rather than compilers responsible for optimization whe
things are safe (that is to say, asking them to request static binding explicitly when tf

516 INTRODUCTION TO INHERITANCE §14.9

think it is appropriate) is one thing; forcing them to write something specget the
correct semantic is quite another. When the concern for efficiency, misplaced or not,
starts to prevail over the basic requirement of correctness, something is wrong.

Even in a language that makes the programmer responsible for choosing a binding
policy (decisionC1), the default should be the reverse: instead of requiring dynamically
bound functions to be declared virtual, the language should by default use dynamic
binding and allow programmers to markstatic, or some such keyword, those features
for which they want to request the optimization — trusting them, in the C-C++ tradition,
to ascertain that it is valid.

The difference is particularly important for beginners, who naturally tend to stick
with the default. Even with less intimidating a language than C++, no one can be expected
to master all the details of inheritance right away; the responsible policy is to guarantee
the correct semantics for novices (and more generally for developers starting a new
project, who will “want to make it right before making it faster”), then provide an
optimization facility for people who need it and understand the issues.

Given the software industry’'s widespread concern for “upward compatibility”,
getting the C++ committee to change the language’s binding policy, espC2, will be
hard, but it is worth trying in light of the dangers of the current conventions.

The C++ approach has regrettably influenced other languages; for example the dynamic
binding policy of Borland’'s Delphi language, continuing earlier Pascal extensions, is
essentially that of C++. Note, however, that Java, a recent derivative of C++, has adopted
dynamic binding as its policy.

These observations call for some practical advice. What can the developer do in C++
or a language that follows its policy? The best suggestion — for developers who do not
have the option of switching to better tools, or waiting for the language to change — is to
declareall functions as virtual, hence allowing for arbitrary redeclarations in the spirit of
object-oriented software development. (Some C++ compilers unfortunately put a limit on
the number of virtuals in a system, but one may hope that such limitations will go away.)

The paradox of this advice is that it takes you back to a situation in which all calls
are implemented through dynamic binding and require a bit of extra execution time. In
other words, language conventioC1 andC?2) that are promoted as enhancing efficiency
end up, at least if one follows correctness-enhancing rules, working against performance!

Not surprisingly, C++ experts have come to advise against becoming “too much”
object-oriented. Walter Bright, author of a best-selling C++ compiler, writes

It's generally accepted that the more C[{mechanisn] you use in a cla, the [Bright 1995.

slower your code will k. Fortunately, you can do a few things to tip the scales
in your favo. First, don’t use virtual function[i.e. dynamic binding virtual
base classe[deferred classesdestructor, and the lik;; unless you need them
[...] Another source of bloat is multiple inheritan[...] For a complex class
hierarchy with only one or two virtual functic, consider removing the virtual
aspec, and maybe do the equivalent with a test and branch

§14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 517

“Modular decom-

In other words: avoid using object-oriented techniques. (The same text al

posability”, page 4) advocates grouping all the initialization coc”:to favor locality of reference — an

invitation to violate elementary principles of modular design which, as we have see
suggest that each class be responsible for taking care of its own initialization needs.)

This chapter has suggested a different approach: let the O-O software developer

on the guarantee that the semantics of calls will always be the correct one — dynal
binding. Then use a compiler sophisticated enough do generate statically bound or inli
code for those calls that have been determined, on the basis of rigorous algorithi
analysis, not to require a d ynamically bound implementation.

14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

With inheritance, you can define new classes by extension, specialization a
combination of previously defined ones.

A class inheriting from another is said to be its heir; the original is the parent. Tak
to an arbitrary number of levels (including zero), these relations yield the notion |
descendant and ancestor.

Inheritance is a key technique for both reusability and extendibility.

Fruitful use of inheritance requires redefinition (the possibility for a class to overrid
the implementation of some of its proper ancestors’ features), polymorphism (il
ability for a reference to become associated at run time with instances of differe
classes), dynamic binding (the dynamic selection of the appropriate variant of
redefined feature), type consistency (the requirement that an entity be only attact
to instances of descendant types).

From the module perspective, an heir extends the services of its parents. T
particularly serves reusability.

From the type perspective, the relation between an heir and a parent of the origi
class is this relation. This serves both reusability and extendibility.

You may redefine an argumentless function into an attribute, but not the oth
way around.

Inheritance techniques, especially dynamic binding, permit highbemuitralized
software architectures where every variant of an operation is declared within t
module that describes the corresponding data structure variant.

With atyped language it is possible to achieve dynamic binding at low run-time co:
Associated optimizations, in particular compiler-applied static binding ant
automatic in-line expansion, help O-O software execution match or surpass t
efficiency of traditional approaches.

Deferred classes contain one or more deferred (non-implemented) features. Tl
describe partial implementations of abstract data types.

518 INTRODUCTION TO INHERITANCE §14.11

« The ability of effective routines to call deferred ones provides a technique for
reconciling reusability with extendibility, through “behavior classes”.

« Deferred classes are a principal tool in the use of object-oriented methods at the
analysis and design stages.

» Assertions are applicable to deferred features, allowing deferred classes to be
precisely specified.

« When the semantics is different, dynamic binding is always the right choice; static
binding is incorrect. When they have the same abstract effect, using static binding as
the implementation is an optimization technique, best left to the compiler to detect
and apply safely, together with inlining when applicable.

14.11 BIBLIOGRAPHICAL NOTES

The concepts of (single) inheritance and dynamic binding were introduced by Simula 67,
on which references may be found in cha35. Deferred routines are also a Simula
invention, under a different name (virtual procedures) and different conventions.

The is-a relation is studied, more with a view towards artificial intelligence
applications, i [Brachman 198

A formal study of inheritance and its semantics is give[Cardelli 1984.

The double-plus graphical convention to mark redefinition comes from Nerson’s and
Waldén’s Business Object Notation for analysis and design; references in 27.pter

Some elements of the discussion of the role of deferred features con[M 1996].

The Precurso construct (similar to the Smalltalsuper construct, but with the
important difference that its use is limited to routine redefinitions) is the result of
unpublished work with Roger Browne, James McKim, Kim Waldén and Steve Tynor.

EXERCISES

E14.1 Polygons and rectangles

Complete the versions POLYGOM andRECTANGLI sketched at the beginning of this
chapter. Include the appropriate creation procedures.

E14.2 How few vertices for a polygon?

The invariant of clasPOLYGONrequires every polygon to have at least three vertices; note
that functionperimete would not work for an empty polygon. Update the definition of the
class so that it will cover the degenerate case of polygons with fewer than three vertices.

8E14.3 EXERCISES 519

“Rules on creation
procedures”, page
23¢.

E14.3 Geometrical objects with two coordinates

Write a classTWO COORI describing objects that are characterized by two real
coordinates, having among its heirs claPOINT, COMPLEX» andVECT OF. Be careful
to attach each feature to its proper level in the hierarchy.

E14.4 Inheritance without classes

This chapter has presented two views of inheritance: as a module, an heir class offers
services of its parent plus some; as a type, it embodies-a relation (every instance of
the heir is also an instance of each of the parents). The “packages” of modular but
object-oriented languages such as Ada or Modula-2 are modules but not types; inherita
in its first interpretation might still be applicable to them. Discuss how such a form ¢
inheritance could be introduced in a modular language. Be sure to consider the Op
Closed principle in your discussion.

E14.5 Non-creatable classes

It is not permitted to create an instance of a deferred class. In an earlier chapter we
another way to make a class non-creatable: include an empty creation clause. Are the
mechanisms equivalent? Can you see cases for using one rather than theHint: & (
deferred class must have at least one deferred feature.)

E14.6 Deferred classes and rapid prototyping

Deferred classes may not be instantiated. It was argued, on the other hand, that a
version of a class design might leave all the features deferred. It may be tempting
attempt the “execution” of such a design: in software development, one sometimes wist
early in the game, to execute incomplete implementations, so as to get an early hand:
experience of some aspects of the system even though other aspects have not

finalized. Discuss the pros and cons of having a “prototype” option in the compiler, whic
would allow instantiating a deferred class and executing a deferred feature (amounting
a null operation). Discuss the details of such an option.

E14.7 Table searching library (term project)
Based on the discussion of tables in this chapter and the chapter on reusability, desi

library of table classes covering various categories of table representations, such as |
tables, sequential tables, tree tables etc.

E14.8 Kinds of deferred feature

Can an attribute be deferred?

520 INTRODUCTION TO INHERITANCE §E14.9

E14.9 Complex numbers

(This exercise assumes that you have read up to at least ¢23.) An example in the «_egitimate side
discussion of module interfaces uses complex numbers with two possible representeffects: an exam-
changes in representations being carried out behind the scenes. Study whethe'€" Page 759
possible to obtain equivalent results through inheritance, by writing a COMPLEX

and its heirCARTESIAN COMPLE andPOLAR_COMPLE. .

	14 14 Introduction to inheritance
	14.1 POLYGONS AND RECTANGLES
	Polygons
	Rectangles
	Basic conventions and terminology
	Inheritance terminology
	An inheritance link

	Invariant inheritance
	Invariant inheritance rule

	Inheritance and creation
	Creation Inheritance rule

	An example hierarchy

	14.2 POLYMORPHISM
	Polymorphic attachment
	Figure type hierarchy

	What exactly happens during a polymorphic attachme...
	Polymorphic reference reattachment

	Polymorphic data structures
	A polymorphic array
	Dimensions of generalization

	14.3 TYPING FOR INHERITANCE
	Type consistency
	Feature Call rule

	Limits to polymorphism
	Definition: conformance
	Type Conformance rule

	Instances
	Definition: direct instance, instance
	Static-dynamic type consistency

	Static type, dynamic type
	Are the restrictions justified?
	Can ignorance be bliss?
	After a polymorphic
	attachment

	When you want to force a type
	Polymorphic creation

	14.4 DYNAMIC BINDING
	Using the right variant
	Redefinition and assertions
	On the implementation of dynamic binding

	14.5 DEFERRED FEATURES AND CLASSES
	Moving arbitrary figures
	The FIGURE hierarchy again

	Deferring a feature
	Effecting a feature
	Definition: redeclaration

	Deferred classes
	Definition: deferred, effective class
	Deferred class declaration rule

	Graphical conventions
	What to do with deferred classes
	Deferred Class No-Instantiation rule

	Specifying the semantics of deferred features and ...
	List with cursor
	Cursor positions

	14.6 REDECLARATION TECHNIQUES
	Redeclaring a function into an attribute
	Not the other way around
	Using the original version in a redefinition

	14.7 THE MEANING OF INHERITANCE
	The dual perspective
	Inheritance mechanisms and their role

	The module view
	Draft structure for a table library

	The type view
	Inheritance and decentralization
	Representation independence
	The extension-specialization paradox

	14.8 THE ROLE OF DEFERRED CLASSES
	Back to abstract data types
	Deferred classes as partial implementations: the n...
	Variants of the notion of table

	Don’t call us, we’ll call you
	Programs with holes
	Deferred classes for analysis and global design

	14.9 DISCUSSION
	Explicit redefinition
	Accessing the precursor of a routine
	Dynamic binding and efficiency
	Estimating the overhead
	Static binding as an optimization
	A button by any other name: when static binding is...
	Dynamic Binding principle
	A parent version may fail to satisfy the new invar...

	The C++ approach to binding

	14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	14.11 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E14.1 Polygons and rectangles
	E14.2 How few vertices for a polygon?
	E14.3 Geometrical objects with two coordinates
	E14.4 Inheritance without classes
	E14.5 Non-creatable classes
	E14.6 Deferred classes and rapid prototyping
	E14.7 Table searching library (term project)
	E14.8 Kinds of deferred feature
	E14.9 Complex numbers

