22

How to find the classes

Foremost among the goals of object-oriented methodology, since the structure of O-(
software is based on decomposition into classes, is that it should give us some advice
how to find these classes. Such is the purpose of the following pages. (In some of tt
literature you will see the problem referred tofsding the objects but by now we know
better: what is at stake in our software architectures is not individual objects, but objec
types — classes.)

At first we should not expect too much. Finding classes is the central decision ir
building an object-oriented software system; as in any creative discipline, making suc
decisions right takes talent and experience, not to mention luck. Expecting to obtail
infallible recipes for finding the classes is as unrealistic as would be, for an aspiring
mathematician, expecting to obtain recipes for inventing interesting theories and provin
their theorems. Although both activities — software construction and theory constructior
— can benefit from general advice and the example of successful predecessors, both a
require creativity of the kind that cannot fully be covered by mechanical rules. If (like
many people in the industry) you still find it hard to compare the software developer to
mathematician, just think of other forms of engineering design: although it is possible tc
provide basic guidelines, no teachable step-by-step rules can guarantee good design
buildings or airplanes.

In software too, no book advice can replace your know-how and ingenuity. The
principal role of a methodological discussion is to indicate some good ideas, draw you
attention to some illuminating precedents, and alert you to some known pitfalls.

This would be true with any other software design method. In the case of objec
technology, the observation is tempered by some good news, coming to us in the form «
reuse. Because much of the necessary invention may already have been done, you
build on others’ accomplishments.

There is more good news. By starting with humble expectations but studying
carefully what works and also what does not, we will be able, little by little and against all
odds, to devise what in the end deserves to be caftegttzodfor finding the classes. One
of the key steps will be the realization that, as always in design, a selection technique
defined by two components: what to consider, and what to reject.

720 HOW TO FIND THE CLASSES§22.1

22.1 STUDYING A REQUIREMENTS DOCUMENT

To understand the problem of finding classes, it may be bestto begin by assessing a widely
publicized approach.

The nouns and the verbs

A number of publications suggest using a simple rule for obtaining the classes: starisee the biblio-
the requirements document (assuming there is one, of course, but that is another stgraphical notes
function-oriented design you would concentrate on the verbs, which correspond to a

(“do this”); in object-oriented design you underline the nouns, which describe object.. o
according to this view a sentence of the form

The elevator will close its door before it moves to another floor

would lead the function-oriented designer to detect the need for a “move” function; but as
an object-oriented designer you should see in it three object IELEVATOF, DOOR
andFLOOF, which will give classes. Voilal

Would it that life were that simple. You would bring your requirements documents
home at night, and pleObject Pursui around the dinner table. A good way to keep the
children away from the TV set, and make them revise their grammar lessons while they
help Mom and Dad in their software engineering work.

But such a simple-minded technique cannot take us very far. Human language, used
to express system requirements, is so open to nuance, personal variation and ambiguity
that it is dangerous to make any important decision on the basis of a document which may
be influenced as much by the author’s individual style as by the actual properties of the
projected software system.

Any useful result that the “underline the nouns” method would give us is obvious
anyway. Any decent O-O design for an elevator control system will include an
ELEVATOFclass. Obtaining such classes is not the difficult part. To repeat an expression
used in an earlier discussion, they are here for the picking. For the non-obvious classes a
syntactic criterion — such as nouns versus verbs in a document that is by essence open to
many possible stylistic variants — is close to useless.

Although by itself the “underline the nouns” idea would not deserve much more
consideration, we can use it further, not for its own sake but as a foil; by understanding its
limitations we can gain insights into what it truly takes to find the classes and how the
requirements document can help us in this endeavor.

Avoiding useless classes

The nouns of a requirements document will cover some classes of the final design, but will
also include many “false alarms”: concepts that shinot yield classes.

In the elevator exampdoor was a noun. Do we need a cIDOOR? Maybe, maybe
not. It is possible that the only relevant property of elevator doors for this system is that

§22.1 STUDYING A REQUIREMENTS DOCUMENT 721

Chapter21.

they may be opened and closed. Then to express the useful properties of doors it suff
to include in clasELEVATORthe query and commands

door_oper BOOLEAN,

close_doolis

ensure
not door_open
end,

open_doolis

ensure
door_open
end
In another variant of the system, however, the notion of door may be importa

enough to justify a separate class. The only resource here is the theory of abstract
types, and the only relevant question is:

Is “door” a separate data type with its own clearly identified operations, or
are all the operations on doors already covered by operations on other data
types such aELEVATOF?

Only your intuition and experience as a designer will tell you the answer. In lookin
for it, you will be aided by the requirements document, but do not expect grammatic
criteria to be of more than superficial help. Turn instead to the ADT theory, which wi
help you ask customers or future users the right questions.

We encountered a similar case in the undo-redo mechanism design. The discus:
distinguished betweecommand, such as the line insertion command in a text editor, anc
the more general notion operatior, which includes commands but also special request:
such as Undo. Both of these words figured prominently in the statement of the proble
yet onlyCOMMANL yielded a data abstraction (one of the principal classes of the desigr
whereas no class in the solution directly reflects the notion of operation. No analysis c
requirements document can suggest this striking difference of treatment.

Is a new class necessary?

Another example of a noun which may or may not give a class in the elevator exampls
floor. Here (as opposed to tdoor andoperationcases) the question is not whether the
concept is a relevant ADT: floors are definitely an important data abstraction for
elevator system. But this does not necessarily mean we should FLOOF class.

The reason is simply that the properties of floors may be entirely covered, for tl
purposes of the elevator system, by those of integers. Each floor has a floor number; t

722 HOW TO FIND THE CLASSES§22.1

if a floor (as seen by the elevator system) has no other features than those associatmany fotels have
its floor number, you may not need a sepaFLOOF class. A typical floor feature thano floor 15 so the
comes from a feature of integers is the distance between two floors, which is simpaithmetic may be a

. . bit more elaborat2
difference of their floor numbers.

If, however, floors have properties other than those of their numbers — that is to say,
according to the principles of abstract data types and object-oriented software
construction, significanoperation: not covered by those of integers — theFLOOR
class will be appropriate. For example, some floors may have special access rights
defining who can visit them; then tIFLOOF class could include a feature such as

rights: SET[JAUTHORIZATION

and the associated procedures. But even that is not certain: we might get away by
including in some other class an array

floor_rights: ARRAY[SET[AUTHORIZATION]

which simply associates a setAUTHORIZATIO! values with each floor, identified by
its number.

Another argument for having a specific clFLOOF would be to limit the available See exercisE22.1,
operations: it makes sense to subtract two floors and to compare them (throucpage 745
infix "<" function), but not to add or multiply them. Such a class may be written as ar
to INTEGEF. The designer must ask himself, however, whether this goal really justifies
adding a new class.

This discussion brings us once again to the theory of abstract data types. A class
does not just cover physical “objects” in the naive sense. It describes an abstract data type
— a set of software objects characterized by well-defined operations and formal
properties of these operations. A type of real-world objects may or may not have a
counterpart in the software in the form of a type of software objects — a class. When you
are assessing whether a certain notion should yield a class or not, only the ADT view can
provide the right criterion: do the objects of the system under discussion exhibit enough
specific operations and properties of their own, relevant to the system and not covered by
existing classes?

The qualification “relevant to the system” is crucial. The aim of systems analys‘BEYOND SOFT-
not to “model the world”. This may be a task for philosophers, but the builders of soft WARE", 6.6, page
systems could not care less, at least for their professional activity. The task of analj14"
to model that part of the world which is meaningful for the software under study or
construction. This principle is reinforced by the ADT approach (that is to say, the object-
oriented method), which holds ttobjects are only defined by what we can do with them
— what the discussion of abstract data types called the Principle of Selfishness. If an
operation or property of an object is irrelevant to the purposes of the system, then it should
not be included in the result of your analysis — however interesting it may be for other
purposes. For a census processing system, the notiPERSOI may have features
mothe andfathel; but for a payroll processing system which does not require information
about the parents, evePERSOI is an orphan.

§22.1 STUDYING A REQUIREMENTS DOCUMENT 723

If all of the operations and properties that you can identify for a type of objects a
irrelevant in this sense, or are already covered by the operations and properties
previously identified class, the conclusion is that the object type itself is irrelevant: it mu
not yield a class.

This explains why an elevator system might not inclFLOOF as a class because
(as noted above) from the point of view of the elevator system floors have no relev:
properties other than those of the associated integer numbers, whereas a Computer A
Design system designed for architects will haiFLOOF class — since in that case the
floor has several specific attributes and routines.

Missing important classes

Not only can nouns suggest notions which do not yield classes: they can also fail
suggest some notions which should definitely yield classes. There are atleastthree sou
of such accidents.

Do not forget that, as noted, the aim of this discussion is no longer to convince ourselves
of the deficiencies of the “underline the nouns” approach, whose limitations are by now
so obvious that the exercise would not be very productive. Instead, we are analyzing these
limitations as a way to gain more insight into the process of discovering classes.

The first cause of missed classes is simply due to the flexibility and ambiguity
human language — the very qualities that make it suitable for an amazingly wide range
applications, from speeches and novels to love letters, but not very reliable as a med
for accurate technical documents. Assume the requirements document for our elev:
example contains the sentence

A database record must be created every time the elevator moves frgm one
floor to anothe:

The presence of the noun “record” suggests a DATABASE_RECOF; but we
may totally miss a more important data abstraction: the notionmove between two
floors. With the above sentence in the requirements document, you will almost certail
need eMOVE class, which could be of the form

classMOVE feature
initial, final: FLOOF,; -- Or INTEGEF if no FLOORCclass
record(d: DATABASI) is ...
... Other feature...

end -- classMOVE

This will be an important class, which a grammar-based method would miss becal
of the phrasing of the above sentence. Of course if the sentence had appeared as

A database record must be created for every move of the elevator from one
floor to anothe-

724 HOW TO FIND THE CLASSES§22.1

then “move” would have been counted as a noun, and so would have yielded a class! We
see once again the dangers of putting too much trust in a natural-language document, and
the absurdity of making any serious property of a system design, especially its modular
structure, dependent on such vagaries of style and mood.

The second reason for overlooking classes is that some crucial abstractions mpanel-driven syste: n
be directly deducible from the requirements. Cases abound in the examples of thischapter2C. Undo-
It is quite possible that the requirements for a panel-driven system did not explicitly€d¢ chaptei21.
the notions of state and application; yet these are the key abstractions, which condition the
entire design. It was pointed out earlier that some external-world object types may have
no counterpart among the classes of the software; here we see the converse: classes of the
software that do not correspond to any external-world objects. Similarly, if the author of
the requirements for a text editor with undo-redo has writthe system must support line
insertion and deletic”’, we are in luck since we can spot the noinsertior anddeletior;
but the need for these facilities may just as well follow from a sentence of the form

The editor must allow its users to insert or delete a line at the cufrent
cursor positiol.

leading the naive designer to devote his attention to the trivial notions of “cursor” and
“position” while missing the command abstractions (line insertion and line deletion).

The third major cause of missed classes, shared by any method which uses the
requirements document as the basis for analysis, is that such a strategy overlooks reuse. It
is surprising to note that much of the object-oriented analysis literature takes for granted
the traditional view of software development: starting from a requirements document and
devising a solution to the specific problem that it describes. One of the major lessons of
object technology is the lack of a clear-cut distinction between problem and solution.
Existing software can and should influence new developments.

When faced with a new software project, the object-oriented software develSeeTHE CHANG-
does not accept the requirements document as the alpha and omega of wisdom al!NG NATURE OF
problem, but combines it with knowledge about previous developments and ava’sglgpé"ggils 212,
software libraries. If necessary, he will criticize the requirements document and propdse
updates and adaptations which will facilitate the construction of the system; sometimes a
minor change, or the removal of a facility which is of limited interest to the final users,
will produce a dramatic simplification by making it possible to reuse an entire body of
existing software and, as a result, to decrease the development time by months. The
corresponding abstractions are most likely to be found in the existing software, not in the
requirements document for the new project.

Classe<COMMANL andHISTORY_LO(from the undo-redo example are typical.
The way to find the right abstractions for this problem is not to rack one’s brain over the
requirements document for a text editor: either you come upon them through a process of
intellectual discovery (a “Eureka”, for which no sure recipe exists); or, if someone else has
already found the solution, you reuse his abstractions. You may of course be able to reuse
the corresponding implementation too if it is available as part of a library; this is even
better, as the whole analysis-design-implementation work has already been done for you.

§22.1 STUDYING A REQUIREMENTS DOCUMENT 725

“Pseudo-random
number generators:
a design exercise”,
page 751

Discovery and rejection

It takes two to invent anything. One makes up combinations; the other choos
recognizes what is important to him in the mass of things which the first he
imparted to him. What we call genius is much less the work of the first than tl
readiness of the second to choose from what has been laid before him.

Paul Valéry (cite in [Hadamard 194%.

Along with its straightforward lessons, this discussion has taught us a few mo
subtle consequences.

The simple lessons have been encountered several times: do not put too much t
in a requirements document; do not any trust in grammatical criteria.

A less obvious lesson has emerged from the review of “false alarms”: just as we ne
criteria for finding classes, we need criteria rejecting candidate classes — concepts
which initially appear promising but end up not justifying a class of their own. The desic
discussions of this book illustrate many such cases.

To quote just one example: a discussion, yet to come, of how best to provide for pseudo-
random number generation, starts naturally enough by considering the notion of random
number, only to dismiss it as not the appropriate data abstraction.

The O-0 analysis and design books that | have read include little discussion of tl
task. This is surprising because in the practice of advising O-O projects, especially w
relatively novice teams, | have found that eliminating bad ideas is just as important
finding good ones.

It may even be more important. Sit down with a group of users, developers a
managers trying to get started with object technology with a fresh new project a
enthusiasm fresher yet. There will be no dearth of ideas for classes (usually propose:
“objects”). The problem is to dam the torrent before it damns the project. Although sor
class ideas will probably have been missed, many more will have to be examined ¢
rejected. As in a large-scale police investigation, many leads come in, prompted
spontaneous; you must sort the useful ones from the canards.

So we must adapt and extend the question that serves as the topic for this cha
“How to find the classes” means two things: not just how to come up with candida
abstractions but also how to unmask the inadequate among them. These two tasks ar
executed one after the other; instead, they are constantly interleaved. Like a gardener
object-oriented designer must all the time nurture the good plants and weed out the bad

Class Elicitation principle

Class elicitation is a dual process: class suggestion, class rejectiop.

The rest of this chapter studies both componentse class elicitation process.

726 HOW TO FIND THE CLASSES§22.2

22.2 DANGER SIGNALS

To guide our search it is preferable to start with the rejection part. It will provide us with
a checklist of typical pitfalls, alert us to the most important criteria, and help us keep our
search for good classes focused on the most productive efforts.

Let us review a few signs that usually indicate a bad choice of class. Because ta typology of
is not a completely formalized discipline, you should not treat these siproofof abad rules”, page 6613
design; in each case one can think of some circumstances that may make the Giiyiia
decision legitimate. So what we will see is not, in the terms of a previous chapter,
“absolute negatives” (sure-fire rules for rejecting a design) but “advisory negatives”:
danger signals that alert you to the presence of a suspicious pattern, and should prompt
you to investigate further. Although in most cases they should lead you to revise the
design, you may occasionally decide in the end that it is right as it stands.

The grand mistake

Many of the danger signals discussed below point to the most common and most
damaging mistake, which is also the most obvious: designing a class that isn't.

The principle of object-oriented software construction is to build modules around
object types, not functions. This is the key to the reusability and extendibility benefits of
the approach. But beginners will often fall into the most obvious pitfall: calling “class”
something which is in fact a routine. Writing a modulclass... feature ... end does not
make it a true class; it may just be a routine in disguise.

This Grand Mistake is easy to avoid once you are conscious of the risk. The remedy
is the usual one: make sure that each class corresponds to a meaningful data abstraction.

What follows is a set of typical traits alerting you to the risk that a module which
presents itself as a candidate class, and has the syntactical trappings of a class, may be an
illegal immigrant not deserving to be granted citizenship in the O-O society of modules.

My class performsc...

In a design meeting, an architecture review, or simply an informal discussion with a
developer, you ask about the role of a certain class. The an<This class prints the
results” or “this class parses the inj’, or some other variant oThis class doe...".

The answer usually points to a design flaw. A class is not suppodo one thing
but to offer a number of services (features) on objects of a certain type. If it really does
just one thing, it is probably a case of the Grand Mistake: devising a class for what should
just be a routine of some other class.

Perhaps the mistake is not in the class itself but in the way it is being described, using
phraseology that is too operational. But you had better check.

In recent years themy class doe...” style has become widespread. A NeXT document ~ NeXT documenta-
describes classes as followTheNS TextVie class declares the programmatic interface tion for OpenSte,)
to objects that display text laid «...I"; “An NSLayoutManag¢ coordinates the layout pre-release .0.

§22.2 DANGER SIGNALS 727

“Structure inherit-
ance”, page 831

See chapte21.

and display of characte...”; “NSTextStorac is a semi-concrete subclass of
NSMutableAttributedString that manages a set of cNSLayoutManage, notifying

them of any chang...”. Even if (as is most likely the case here) the classes discussed
represent valuable data abstractions, it would be preferable to describe them less
operationally by emphasizing these abstions.

Imperative names

Assume that in a tentative design you find a class name stPARSI or PRINT — a
verb in the imperative or infinitive. It should catch your attention, as signaling again
probable case of a class that “does one thing”, and should not be a class.

Occasionally you may find that the class is right. Then its name is wrong. This is
“absolute positive” rule:

Class Name rule

A class name must always be either:
« A noun, possibly qualified.
* (Only for a deferred class describing a structural property) an adjective.

Although like any other one pertaining to style this rule is partly a matter o
convention, it helps enforce the principle that every class represents a data abstractiol

The first form, nouns, covers the vast majority of cases. A noun may be used
itself, as INTREE, or with some qualifying words, as LINKED_LIST, qualified by an
adjective, anLINE_DELETION, qualified by another noun.

The second case, adjectives, arises only for a specific structural property
classes describing an abstract structural property, as with the Kernel Library cle
COMPARABLEdescribing objects on which a certain order relation is available. Suc
classes should be deferred; their names (in English or French) will often erABLE.
They are meant to be used through inheritance to indicate that all instances of a class |
a certain property; for example in a system for keeping track of tennis rankings cle
PLAYEF might inherit fromCOMPARABLL In the taxonomy of inheritance kinds, this
scheme will be classified structure inheritanc.2

The only case that may seem to suggest an exception to the rule is command clas
as introduced in the undo-redo design pattern to cover action abstractions. But even t
you should stick to the rule: call a text editor's command cleLINE DELETION and
WORD_CHANG, notDELETE_LINEandREPLACE_WOR.D

English leaves you more flexibility in the application of this rule than many othe
languages, since its grammatical categories are more an article of faith than an observz
of fact, and almost every verb can be nouned. If you use English as the basis for the na
in your software it is fair to take advantage of this flexibility to devise shorter and simpl
names: you may call a clalMPORT where other languages might treat the equivalent a:
a verb only, forcing you to use nouns sucFIMPORTATION But do not cheat: class

728 HOW TO FIND THE CLASSES§22.2

IMPOR1should cover the abstraction “objects being imported” (nominal), not, except for
a command class, the act of importing (verbal).

Itis interesting to contrast the Class Name rule with the discussion of the “underline the
nouns” advice at the beginning of this chapter. “Underline the nouns” applied a formal
grammatical criterion to an informal natural-language text, the requirements document;
this is bound to be of dubious value. The Class Name rule, on the other hand, applies the
same criterion to formal text — tle software.

Single-routine classes

A typical symptom of the Grand Mistake is an effective class that contains only one
exported routine, possibly calling a few non-exported ones. The class is probably just a
glorified subroutine — a unit of functional rather than object-oriented decomposition.

A possible exception arises for objects that legitimately represent abstracted a(See'Small classes”,
for example a command in an interactive system, or what in a non-O-O approach wage 71.
have been represented by a routine passed as argument to another routine. But the e
given in an eatlier discussion show clearly enough that even in such cases there will usually
be several applicable features. We noted that a mathematical software object representing
a function to be integrated will not just have the feaitem (a: REAL): REAL, giving the
value of the function at poira: others may include domain of definition, minimum and
maximum over a certain interval, derivative. Even if a class does not yet have all these
features, checking that it would make sense to add them later will reinforce your conviction
that you are dealing with a genuine object abstraction.

In applying the single-routine rule, you should consider all the features of a clSeeTAXOMA-
those introduced in the class itself, and those which it inherits from its parents. It iNIA", 24.4, page
necessarily wrong for a class text to declare only one exported routine, if this is simp8,2c'
addition to a meaningful abstraction defined by its ancestors. It may, however, point to a
case oftaxomanii, an inheritance-related disease which will be studied as part of the
methodology of inheritance.

Premature classification

The mention of taxomania suggests a warning about another common mistake of novices:
starting to worry about the inheritance hierarchy too early in the process.

As inheritance is central in the object-oriented method, so is a good inheritance
structure — more accurately, a good modular structure, including both inheritance and
client relations — essential to the quality of a design. But inheritance is only relevant as a
relation among well-understood abstractions. When you are still looking for the
abstractions, itis too early to devise the inheritance hierarchy.

The only clear exception arises when you are dealing with an application domain for
which a pre-existing taxonomy is widely accepted, as in some branches of science. Then
the corresponding abstractions will emerge together with their inheritance structure.
(Before accepting the taxonomy as the basis for your software’s structure, do check that it
is indeed well recognized and stable, not just someone’s view of things.)

§22.2 DANGER SIGNALS 729

“FACILITY INHER-
ITANCE”, 24.9, page
841.

Command functions
were defined i“Func-

In other cases, you should only design the inheritance hierarchy once you have
least a first grasp of the abstractions. (The classification effort may of course lead yoL
revise your choice of abstractions, prompting an iterative process in which the tasks
class elicitation and inheritance structure design feed each other.) If, early in a des
process, you find the participants focusing on classification issues even though the cla:
are not yet well understood, they are probably putting the cart before the horse.

With novices, this may be a variant of the object-class confusion. | have seen peo
start off with inheritance hierarchies of thSAN FRANCISC andHOUSTON inherit
from CITY” kind — simply to model a situation where a single cleCITY, will have
several instances at run time.

No-command classes

Sometimes you will find a class that has no routine at all, or only provides queries (wa
to access objects) but no commands (procedures to modify objects). Such a class is
equivalent of a record in Pascal or a structure in Cobol or C. It may indicate a desi
mistake, but the mistake may be of two kinds and you will need to probe further.

First, let us examine three cases in which the classnot indicate improper design:

* It may represent objects obtained from the outside world, which the object-orient:
software cannot change. They could be data coming from a sensor in a proce
control system, packets from a packet-switching network, or C structures that the
O system is not supposed to touch.

* Some classes are meant not for direct instantiation, but for encapsulating faciliti
such as constants, used by other classes through inheritance.facility
inheritance will be studied in the discussion of inheritance methodology.

» Finally, a class may bapplicative, that is to say describe non-modifiable objects;
instead of commands to modify an object it will provide functions that produce ne
objects, usually of the same type. For example the addition operation in class
INTEGEF, REALandDOUBLE follows the lead of mathematics: it does not modify
any value but, given two valux andy, produces a third orx + y. In the abstract

tion categories”, page data type specification such functions will, like others that yield commands, &

134

See“A checklist”,
page 77)

characterized as command functions.

In all these cases the abstractions are easy to recognize, so you should have
difficulty identifying the two cases that may indeed point to a design deficiency.

Now for these suspicious cases. In the first one, the class is justified and would ne
commands; the designer has simply forgotten to provide mechanisms to modify t
corresponding objects. A simple checklist technique presented in the discussion of cl
design will help avoid such mistakes.

In the second case, most directly relevant to this discussion, the class was
justified. It is not a real data abstraction, simply some piece of passive information whi
might have been represented by a structure such as a list or array, or just by adding r
attributes to another class. This case sometimes happens when developers write a clas

730 HOW TO FIND THE CLASSES§22.2

what would have been a simple record (structure) type in Pascal, Ada or C. Not all record
types cover separate data abstractions.

You should investigate such a case carefully to try to understand whether there is
room for a legitimate class, now or in the future. If the answer is unclear, you may be better
off keeping the class anyway even if it risks being overkill. Having a class may imply
some performance overhead if it means dealing with many small objects, dynamically
created one by one and occupying more space than simple array elements; but if you do
need a class and have not introduced it early enough, the adaptation may take some effont.

We had such a false start in the history of ISE’'s compiler. A compiler for an O-O
language needs some internal way to identify each class of a system it processes; the
identification used to be an integer. This worked fine for several years, but at some point
we needed a more elaborate class identification scheme, allowing us in particular to
renumbe classes when merging several systems. The solution was to introduce a class
CLASS_IDENTIFIE, and to replace the earlier integers by instances of that class. The
conversion effort was more than we would have liked, as usually happens when you have
missed an important abstraction. IniticINTEGEF was a sufficient abstraction because

no commands were applicable to class identifiers; the need for more advanced features,
in particular renumbering commands, led to the recognition of a sepastraction.

Mixed abstractions

Another sign of an imperfect design is a class whose features relate to more than
one abstraction.

In an early release of the NeXT library, the text class also provided full visual text editing
capabilities. Users complained that the class, although useful, was too big. Large class size
was the symptom; the true problem was the merging of two abstractions (character string,
and interactively editable text); the solution was to separate the two abstractions, with a
classNSAttributedStrin defining the basic string handling mechanism and various others,
such aiNSTextVie, taking care of the user interface aspects.

Meilir Page-Jones uses the teconnascenc(defined in dictionaries as the proper[page-Jones 19¢5]
of being born and having grown together) to describe the relation that exists betwe:
features when they are closely connected, based on a criterion of simultaneous change: a
change to one will imply a change to the other. As he points out, you should minimize
connascence across class libraries; but featuresppear within a given class should all
be related to the same clearly identified abstraction.

This universal guideline deserves to be expressed as a methodological rule
(presented in “positive” form although it follows a discussion of posmistakes):

Class Consistency principle

All the features of a class must pertain to a single, well-identified abstraction.

The ideal class

This review of possible mistakes highlights, by contrast, what the ideal class will look like.
Here are some of the typical properties:

§22.3 GENERAL HEURISTICS FOR FINDING CLASSES 731

» There is a clearly associated abstraction, which can be described as a data abstra
(or as an abstract machine).

e The class name is a noun or adjective, adequately characterizing the abstraction

« The class represents a set of possible run-time objects, its instances. (Some cla
are meant to have only one instance during an execution; that is acceptable too.)

e Several queries are available to find out properties of an instance.

» Several commands are available to change the state of an instance. (In some c:
there are no commands but instead functions producing other objects of the s&
type, as with the operations on integers; that is acceptable t0o.)

« Abstract properties can be stated, informally or (preferably) formally, describing
how the results of the various queries relate to each other (this will yield tt
invariant); under what conditions features are applicable (preconditions); ho
command execution affects query results (postconditions).

This list describes a set of informal goals, not a strict rule. A legitimate class m:
have only some of the properties listed. Most of the examples that play an important r
in this book — fromLIST and QUEUE to BUFFER, ACCOUN?7, COMMANL, STATE,
INTEGEF, FIGURE, POLYGOI and many others — have them all.

22.3 GENERAL HEURISTICS FOR FINDING CLASSES

Letus now turn to the positive part of our discussion: practical heuristics for finding class

Class categories

We may first note that there are three broad categories of classes: analysis classes, d
classes and implementation classes. The division is neither absolute nor rigorous
example one could find arguments to support attaching a deferrecLIST to any one

of the three categories), but it is convenient as a general guideline.

An analysis class describes a data abstraction directly drawn from the model of
external systemPLANE in a traffic control systemPARAGRAPI in a document
processing systenPARTin an inventory control system are typical examples.

An implementation class describes a data abstraction introduced for the inter
needs of the algorithms in the software, SuCLINKED_LISTor ARRA"’

In-between, a design class describes an architectural choice. Examples inclu
COMMANLEL in the solution to the undo-redo problem, :STATE in the solution to the
problem of panel-driven systems. Like implementation classes, design classes belon
the solutior space, whereas analysis classes belong to the problem space. But like anal
classes and unlike implementation classes they describe high-level concepts.

As we study how to obtain classes in these three categories, we will find that des
classes are the most difficult to identify, because they require the kind of architectu

732 HOW TO FIND THE CLASSES§22.3

insight that sets the gifted designer apart. (That they are the most difficult to find does not
mean they are the most difficult build, a distinction that usually belongs to the
implementation classes, unless of course you come across a ready-to-be-reused
implementation library.)

External objects: finding the analysis classes

Let us start with the analysis classes, modeled after external objects.

We use software to obtain answers to certain questions about the world (as in a
program that computes the solution to a specific problem), to interact with the world (as
in a process control system), or to add things to the world (as in a text processing system).
In every case, the software must be based on some model of the aspects of the world that
are relevant to the application, such as laws of physics or biology in a scientific program,
the syntax and semantics of a computer language in a compiler, salary scales in a payroll
system, and income tax regulations in tax processing software.

To talk about the world being modeled we should avoid the term “real world”, which is SeeReality: a
misleading, both because software is no less “real” than anything else and because mancousin twice

of the non-software “worlds” of interest are artificial, as in the case of a mathematical removed”, page 2:.0
program dealing with equations and graphs. (An earlier chapter discussed this questior:

in detail.) We should talk about tlexternal worli, as distinct from the internal world of

the software that deals with it.

Any software system is based on operational mode of some aspect of the
external world. Operational because it is used to generate practical results and sometimes
to feed these results back into the world; model because any useful system must follow
from a certain interpretation of some world phenomena.

Nowhere perhaps is this view of software as inescapable as in the simulatior. See*SIMULA”,
It is no accident that the first object-oriented language, Simula 67, evolved from Sim(35-1, page 1113
a language for writing discrete-event simulations. Although Simula 67 itself is a gen:
purpose programming language, it retained the name of its predecessor and includes a set
of powerful simulation primitives. Well into the nineteen-seventies, simulation remained
the principal application area of object technology (as a look into the proceedings of the
annual Association of Simula Users conferences suffices to show). This attraction of O-O
ideas for simulation is easy to understand: to devise the structure of a software system
simulating the behavior of a set of external objects, what could be better than using
software components which directly represent those objects?

In a broad sense, of course, all software is simulation. Capitalizing on this view of
software as operational modeling, object-oriented software construction uses as its first
abstractions some types deduced from analyzing the principal types of objects, in the non-
software sense of the term, in the external world: sensors, devices, airplanes, employees,
paychecks, tax returns, paragraphs, integrable functions.

These examples, by the way, suggest only part of the picture. As Waldén and Nerson note
in their presentation of the B.O.N. method:

§22.3 GENERAL HEURISTICS FOR FINDING CLASSES 733

[Waldén 1995,
pages 182-1€3

A class representing a car is no more tangible than one that models the job
satisfaction of employe. What counts is how important the concepts are to
the enterpris, and what you can do with th.zm

Keep this comment in mind when looking for external classes: they can be quite abstract.
SENIORITY_RUL for a parliament voting system aMARKET TENDENC for a
trading system may be just as reaSENATOFandSTOCK_EXCHANG. The smile of

the Cheshire Cat has as much claim to objectness as the Cheshire Cat.

Whether material or abstract, external classes represent the abstractions
specialists of the external world, be they aerospace engineers, accountants
mathematicians, constantly use to think and talk about their domain. There is alway
good chance — although not a certainty — that such an object type will yield a use
class, because typically the domain experts will have associated significant operations
properties with it.

The key word, as usual, abstractior. Although it is desirable that analysis classes
closely match concepts from the problem domain, this is not what makes a candidate c
good. The first version of our panel-driven system dramatically showed why: there we h
a model directly patterned after some properties of the external system, but terrible fr
a software engineering viewpoint because the selected properties were low-level
subject to change. A good external class will be based on abstract concepts of the prot
domain, characterized (in the ADT way) through external features chosen because of tl
lasting value.

For the object-oriented developer such pre-existing abstractions are precious: tt
provide some of the system’s fundamental classes; and, as we may note once more
objects are here for the picking.

Finding the implementation classes

Implementation classes describe the structures that software developers use to make
systems run on a computer. Although the fashion in the software engineering literature
been, for the past fifteen years, to downplay the role of implementation, developers kn
the obvious — that implementation consumes a large part of the effort in building
system, and much of the intelligence that goes into it.

The bad news is that implementation is difficult. The good news is tha
implementation classes, although often harcbuild in the absence of good reusable
libraries, are not the most difficult elicit, thanks to the ample body of literature on the
topic. Since “Data Structures and Algorithms”, sometimes known as “CS 27, is a requir
component of computing science education, many textbooks survey the rich catalog
useful data structures that have been identified over the years. Better yet, although n
existing textbooks do not explicitly use an object-oriented approach, many natura
follow an abstract data type style, even if they do not use the phrase, to present ¢
structures; for example to introduce various forms of table such as binary search trees
hash tables you have first to state the various operations (insert an element with its |
search for an element through its key and so on) with their properties. The transition
classes is fairly straightforward.

734 HOW TO FIND THE CLASSES§22.3

Recently, some textbooks have started to go further by applying a thoroughly object-
oriented approach to the traditional CS 2 topics.

Whether or not he has gone through a Data Structures and Algorithms Course at
school, every software engineer should keep a good textbook on the topic within reach of
hand, and go back to it often. It is all too easy to waste time reinventing concepts that are
well known, implement a less-than-optimal algorithm, or choose a representation that is
not appropriate for the software’s use of a data structure — for example a one-way linked
list for a sequential structure that the algorithms must regularly traverse back and forth, or
an array for a structure that constantly grows and shrinks in unpredictable ways. Note that
here too the ADT approach reigns: the data structure and its representation follow from
the services offered to clients.

Beyond textbooks and experience, the best hope for implementation classes is
reusable libraries, as we will see at the end of this chapter.

Deferred implementation classes

Traditional data structures textbooks naturally emphasize effective (fully implemented)
classes. In practice, much of the value of a set of implementation classes, especially if they
are meant to be reusable, lies in the underlying taxonomy, as defined by an inheritance
structure that will include deferred classes. For example, various queue implementations
will be descendants of a deferred cleQUEUE describing the abstract concept of
sequential list.

“Deferred implementation class”, then, is not an oxymoron. Classes such as
QUEUE, although quite abstract, help build the taxonomies thanks to which we can keep
the many varieties of implementation structures coherent and organized, assigning to
every class a precise place in the overall scheme.

In another book[M 1994a | have described a “Linnaean” taxonomy of the
fundamental structures of computing science, which relies on deferred classes to classify
the principal kinds of data structure used in software development.

Finding the design classes

Design classes represent architectural abstractions that help produce elegant, exttAbout iterators and
software structuresSTATE, APPLICATION, COMMANE, HISTORY LIS, iterator MVC see the biblio-
classes, “controller” classes as in the Smalltalk MVC model are good examples of ¢9raphical notes
classes. We will see other seminal ideas in subsequent chapters, such as active data
structures and “handles” for platform-adaptable portable libraries.

Although, as noted, there is no sure way to find design classes, a few guidelines are
worth noting:

* Many design classes have been devised by others before. By reading boolM 1993].
articles that describe precise solutions to design problems, you will gain niuuy
fruitful ideas. For example the boObject-Oriented Applicationcontains chapters
written by the lead designers of various industrial projects who describe their

§22.4 OTHER SOURCES OF CLASSES 735

[Gamma 199%]

See"GENERALI-
ZATION”, 28.5,
page 923

See“Variation
inheritance”, page
82¢.

architectural solutions in detail, providing precious guidance to others faced wi
similar problems in telecommunications, Computer-Aided Design, artificial
intelligence and other application areas.

* The book on “design patterns” by Gamtet a. has started an effort of capturing
proven design solutions and is now being followed by several others.

* Many useful design classes describe abstractions that are better understooc
machines than as “objects” in the common (non-software) sense.

< As with implementation classes, reuse is preferable to invention. One can hope t
many of the “patterns” currently being studied will soon cease to be mere ide:
yielding instead directly usable library classes.

22.4 OTHER SOURCES OF CLASSES

A number of heuristics have proved useful in the quest for the right abstractions.

Previous developments

The advice of looking first at what is available does not just apply to library classes.
you write applications, you will accumulate classes which, if properly designed, shou
facilitate later developments.

Not all reusable software was born reusable. Often, the first version of a class
produced to meet some immediate requirement rather than for posterity. If reusability i
concern, however, it pays to devote some time, after the development, to making the c
more general and robust, improving its documentation, adding assertions. This is differ
from the construction of software meant from the start to be reusable, but no less fruit
Having evolved from components of actual systems, the resulting classes have passe
first test of reusability, namelusability: they serve at least one useful purpose.

Adaptation through inheritance

When you discover the existence of a potentially useful class, you will sometimes find tt
it does not exactly suit your present need: some adaptation may be necessary.

Unless the adaptation addresses a deficiency which should be corrected in
original as well, it is generally preferable to leave the class undisturbed, preserving
clients according to the Open-Closed principle. Instead, you may use inheritance ¢
redefinition to tune the class to your new need.

This technique, which our later taxonomy of uses of inheritance will study in deta
under the namvariation inheritanc, assumes that the new class describes a variant of tf
same abstraction as the original. If used properly (according to the guidelines of the I
discussion) it is one of the most remarkable contributions of the method, enabling you
resolve thereuse-red: dilemma: combining reusability with extendibility.

736 HOW TO FIND THE CLASSES§22.4

Evaluating candidate decompositions

Criticism is said to be easier than art; a good way to learn design is to learn to analyze
existing designs. In particular, when a certain set of classes has been proposed to solve a
certain problem, you should study them from the criteria and principles of modularity
given in chapter3: do they constitute autonomous, coherent modules, with strictly
controlled communication channels? Often, the discovery that two modules are too tightly
coupled, that a module communicates with too many others, that an argument list is too
long, will pinpoint design errors and lead to a better solution.

An important criterion was explored in the panel-driven system example: data {Chapter20.
We saw then how important it is to study, in a candidate class structure, the flow of ol
passed as arguments in successive calls. If, as with the notion of State in that examg
detect that a certain item of information is transmitted over many modules, it is almost
certainly a sign that you have missed an important data abstraction. Such an analysis,
which we applied to obtain the claSTATI, is an important source of abstractions.

It is of course preferable to find the classes right from the start; but better late than
never. After such an a posteriori class discovery, you should take the time to analyze why
the abstraction was initially missed, and to reflect on how to do better next time.

Hints from other approaches

The example of analyzing data flow in a top-down structure illustrates the general idea of
deriving class insights from concepts of hon-O-O decompositions. This will be useful in
two non-disjoint cases:

e There may already exist a non-O-O software system which does part of the job; it
may be interesting to examine it for class ideas. The same would apply if, instead of
a working system, you can use the result of an analysis or design produced with
another, older method.

* Some of the people doing the development may have had extensive experience with
other methods, and as a consequence may initially think in terms of different
concepts, some of which may be turned into class ideas.

Here are examples of this process, starting with programming languages and
continuing with analysis and design techniques.

Fortran programs usually include one or mcommon block— data areas that canon garbage common
be shared by several routines. A common block often hides one or more valuableblocks se¢‘Small
abstractions. More precisely, good Fortran programmers know that a common ["terfaces’, page 43
should only include a few variables or arrays, covering closely related concepts; there 1s a
good chance that such a block will correspond to one class. Unfortunately, this is not
universal practice, and even programmers who know better than to usgarbage
common block” mentioned at the beginning of this book tend to put too many things in
one common block. In this case you will have to examine patterns of use of each block to
discover the abstraction or abstractions that it covers.

§22.4 OTHER SOURCES OF CLASSES 737

Pascal and C programs use records, known in C as structures. (Pascal only has re
types; in C you can have structure types as well as individual structures.) A record ty
often corresponds to a class, but only if you can find operations acting specifically
instances of the type, usually (as we saw) including commands as well as queries. If |
the type may just represent some attributes of another class.

Cobol also has structures, and its Data Division helps identify important data type

In entity-relationship (ER) modeling, analysts isolate “entities” which can ofter
serve as seeds for classes.

People with a long practice of ER modeling are among those who sometimes find it
initially hard to apply object-oriented ideas effecively, because they are used to treating
the entities and relationships as being different in nature, and the “dynamic” behavior of
the system as completely separate from them. With O-O modeling both the relationships
and the behavior yield features attached to the types of objects (entities); thinking of
relations and operations as variants of the same notion, and attaching them to entities,
sometimes proves to be a little hard to swallow at first.

In dataflow design (“structured analysis and design”) there is little that can &
directly used for an object-oriented decomposition, but sometimes the “stores” (datab:
or file abstractions) can suggest an abstraction.

Files

The comment about stores suggests a more general idea, useful again if you are coming
a non-0O-0 background. Sometimes much of the intelligence of a traditional system is to
found outside of the software’s text, in the structure of the files that it manipulates.

To anyone with Unix experience, this idea will be clear: for some of the essenti
information that you need to learn, the essential documentation is the description nof
specific commands but of certain key files and their formpassw for passwords,
printcap for printer propertiestermcay or terminfc for terminal properties. One could
characterize these files as data abstractions without the abstraction: although docume
at a very concrete levelEach entry in theprintcay file describes a print and is a line
consisting of a number of fields separatec: character:. The first entry for each printer
gives the names which are known for the pri, separated by character”, etc.), they
describe important data types accessible through well-defined primitives, with sor
associated properties and usage conditions. In the transition to an object-oriented vi
such files would play a central role.

A similar observation applies to many programs, whose principal files embody sor
of the principal abstractions.

| once participated in a consulting session with the manager of a software syst
who was convinced that the system — a collection of Fortran programs — could not le
itself to object-oriented decomposition. As he was describing what the programs did,
casually mentioned a few files through which the programs communicated. | start
asking questions about these files, but initially he kept dismissing these questions
unimportant, immediately coming back to the programs. | insisted, and from h

738 HOW TO FIND THE CLASSES§22.4

explanations realized that the files described complex data structures embodying the
programs’ essential information. The lesson was clear: as soon as the relevance of these
files was recognized, they conquered the central place in the object-oriented architecture;
in an upheaval typical of object-oriented rearchitecturing, the programs, formerly the key
elements of the architecture, became mere features of the g classes.

Use cases

Ivar Jacobson has advocated relying on use cases as a way to elicit classes. A use case,
called ascenaric by some other analysis and design authors (atracein theoretical
computing science, especially the study of concurrency), is a description of

a complete course of events initiated k[user of the future systenand [of] [Jacobson 199,]

the interaction betwee[the userjand the system page 15. Jacobson
uses the term

In a telephone switching system, for example, the use case “customer-initiated, 2C%r" for users of
the future system

has the sequence of events: customer picks handset, identification gets sent to the sysiwein,
system sends dial tone, and so on. Other use cases for the system might include “caller-id
service installation” and “customer disconnection”.

Use cases are a not a good tool for finding classes. Relying on them in any significant
way raises several risks:

* Use cases emphasize orderinWhen a customer places an order over the p, hise geeordering and
credit card number is validat. Then the database is updated and a confirmatio-O development”,
number is issu€’, etc.). This is incompatible with object technology: the methpage 11 and
shuns early reliance on sequentiality propertieabse they are so fragile an;;srég‘ftt‘;]rg Sa;f(tjware
subject to change. The competent O-O analyst and designer refuses to focdevel'oper as arson-
properties of the form “The system dca, thenb”; instead, he asks the questiojst’, page 20..
“What are the operations available on instances of abstréA, and the constraints
on these operations?”. The truly fundamental sequentiality properties will emerge in
the form of high-level constraints on the operations; for example, instead of saying
that a stack supports alternating sequencepust andpog operations with never
more por than pust, we define the preconditions attached with each of these
operations, which imply the ordering property but are more abstract. Less
fundamental ordering requirements simply have no place in the analysis model as
they destroy the system’s adaptability and hence its future survival. Early emphasis
on ordering is among the worst mistakes an O-O project can make. If you rely on use
cases for analysis, this mistake is hard to avoid.

« Relying on a scenario means that you focus on how users see the system’s operation.
But the system does not exist yet. (A previous system might exist, but if it were fully
satisfactory you would not be asked to change or rewrite it.) So the system picture
that use cases will give you is based on existing processes, computerized or not. Your
task as a system builder is to come up wnew, better scenarios, not to perpetuate
antiquated modes of operation. There are enough examples around of computer
systems that slavishly mimic obsolete procedures.

§22.4 OTHER SOURCES OF CLASSES 739

» Use cases favor a functional approach, based on processes (actions). This appr
is the reverse of O-O decomposition, which focuses on data abstractions; it carrie
serious risk of reverting, under the heading of object-oriented development, to t
most traditional forms of functional design. True, you may rely on several scenari
rather than just one main program. But this is still an approach that corwhatrs
the system do as the starting point, whereas object technology conswhat it
does it t. The clash is irreconcilable.

The practical consequences are obvious. A number of teams that have embraced
cases find themselves, without realizing it, practicing top-down functional desthen (“
system must da, thenb, ..."”) and building systems that are obsolete on the day they ar
released, yet hard to change because they are tied to a specific view of what the sy:
does. | have sat, as an outside consultant, in design reviews for such projects, tryins
push for more abstraction. But it is difficult to help, because the designers are convinc
that they are doing object-oriented design; they expect the consultant to make a |
suggestions, criticize a few details and give his blessing to the overall result. The desi
that | saw were not object-oriented at all, and were bound to yield flawed systems; |
trying to convey this observation politely was about as effective as telling the group tt
the sun was not shining outside — we work from use cases, and doesn’t everyone kr
that use cases are O-O?

The risks are perhaps less severe with a very experienced object-oriented de:
team — experience being evidenced by the team’s previous production of large &
successful O-O systems, in the thousands of classes and hundreds of thousands of |
Such a group might find use cases useful as a complement to other analysis technig
But for a novice team, or one with moderate experience only, the benefits of use case
an analysis tool are so uncertain, and the risk of destroying the quality of the future syst
So great, as to recommend staying away altogether from this technique:

Use Case principle

Except with a very experienced design team (having built severed¢ssful
systems of several thousand classes each in a pure O-O language), do|notrely
on use cases as a tool for object-oriented analysis and design.

This principle does not mean that use cases are a worthless concept. They reme
potentially valuable tool but their role in object-oriented software construction has be
misunderstood. Rather than an analysis tool they validationtool. If (as you should)
you have a separate quality assurance team, it may find use cases useful as awaytoin
a proposed analysis model or tentative design for possibly missing features. The QA te
can check that the system will be able to run the typical scenarios identified by the us
(In some cases of negative answer you may find that the model will support a differe
scenario that achieves the same or better results. This is of course satisfactory.)

740 HOW TO FIND THE CLASSES§22.5

Another possible application of use cases is to the final aspects of implementation,
to make sure that the system includes routines for typical usage scenarios. Such routines
will often be of the abstract behavior kind, describing a general effective scheme relying
on deferred routines which various components of the system, and future additions to it,
may redefine in different way<gJacobson 199.indeed mentions a notion abstract use
case that mirrors the object-oriented concept of behavior class.

In these two roles as a validation mechanism and an implementation guide, use cases
can be beneficial. But in object technology they are not a useful analysis or design
mechanism. The system analysts and builders should concentrate on the abstractions, not
on particular ways of scheduling operations on these abstractions.

CRC cards

For completeness it is necessary to mention an idea that istismsequoted as ak. Beck and \. Cun-
technique to find classes. CRC carClass, Responsibilit, Collaboratior) are paper ninghan: “A Labora-
cards, 4 inches by 6 inches (10.16 centimeters by 15.24 centimeters), on which desggmkrfga}cgggp(?'
discuss potential classes in terms of their responsibilities and how they communicatis| A ‘89 pro'ceedim,s
idea has the advantage of being easy on the equipment budget (a box of cards is typages 1-3
cheaper than a workstation with CASE tools) and of fostering team interaction. Its

technical contribution to the design process — to helping sort out and characterize

valuable abstractions — is, howevunclear.

22.5 REUSE

The easiest and most productive way of finding classes is not to have to invent them
yourself, but to get them from a library, pre-written by other designers and pre-validated
by the experience of earlier reusers.

The bottom-up component

The bottom-up nature of object-oriented development should apply throughout the
software development process, starting with analysis. An approach that solely focuses on
the requirements document and user requests (as reflected for example by use cases) is
bound to lead to a one-of-a-kind system that will be expensive to build and may miss
important insights obtained by previous projects. It is part of the task of a development
team, beginning at the requirements capture phase, to look at what is already available and
see how existing classes may help with the new development — even if, in some cases,
this means adapting the original requirements.

Too often, when we talk about finding classes, we ndevisin¢ them. With the
development of object technology, the growth of quality libraries and the penetration of
reusability ideasfinding will more and more retain the dictionary’s sensecoming
across.

§22.6 THE METHOD FOR OBTAINING CLASSES 741

Class wisdom

There used to live in the province of Ood a young man who longed to know the
secret of finding classes. He had approached all the local masters, but none of
them knew.

Having attended the public penance of Yu-Ton, a former abbot of the Sacred
Order of Arrows and Bubbles, he thought that perhaps this could mean the end
of his search. Upon entering Yu’'s cell, however, he found him still trying to
understand the difference between Classes and Objects. Realizing that no
enlightenment would come from there, he left without asking any questions.

On his way home he overheard two donkey-cart pushers whispering about a
famous elder who was said to know the secret of classes. The next day he set
out to find that great Master. Many a road he walked, many a hill he climbed,
many a stream he crossed, until at last he reached the Master’s hideout. By
then he had searched for so long that he was no longer a young man; but like
all other pilgrims he had to undergo the thirty-three-month purification rite
before being permitted to meet the object of his quest.

Finally, one black winter day as the snow was savagely hitting all the
surrounding mountain peaks, he was admitted into the Master’s audience room.
With his heart beating at the pace of a boulder rolling down the bed of a dried-
up torrent, he faintly uttered his question: “Master, how can | find the
classes?”.

The old sage lowered her head and answered in a slow, quiet tone. “Go back
to where you came from. The classes were already there.”

So stunned was the questioner that it took him a few moments to notice that the
Master's attendants were already whisking her away. He barely had time to
run after the frail figure now disappearing forever. “Master”, he asked again
(almost shouting this time), “Just one more question! Please! Tell me how this
story is called!”

The old Teacher tiredly turned back her head. “Should you not already know?
It is the story f reuse.”

22.6 THE METHOD FOR OBTAINING CLASSES

Touch by touch, the ideas discussed in this chapter amount to what we may not
pretentiously call (provided we remember that a method is a way to incubate, nurtu
channel and develop invention, not a substitute for invention) the method for obtaining t
classes in object-oriented software construction.

The method recognizes that class identification requires two inextricably relate
activities: coming up with class suggestions; and weeding out the less promising amc
them. The two tables which follow summarize what we have learned about these t
activities. Only a few of the entries cover specific kinds of class, such as analysis class
the rest of the advice is applicable to all cases.

742 HOW TO FIND THE CLASSES§22.6

First, sources of clasideas:

Source of ideas What to look for Sources of
possible classes

* Classes that address needs of the applicatipn.

Existing libraries « Classes that describe concepts relevant td the
application.

» Terms that occur frequently.
_ « Terms to which the text devotes explicit
Requirements definitions.

d t i i
ocumen « Terms that are not defined precisely but taken

for granted throughout the presentation.
« (Disregard grammatical categories.)

e Important abstractions of the applicatipn
domain.
Discussions with « Specific jargon of the application domain.

customers and future .

users e Remember that classes coming from the
“external world” can describeconceptual

objects as well amaterial objects.

Documentation(such | ¢ Important abstractions of the applicatipn
as user manual) for domain.

other system(e.g. « Specific jargon of the application domain.

from competitor) in . .
om competito .) Useful design abstractions
the same domain

» Data elements that are passed as arguments
between various components of the software,
especially if they travel far.

* Shared memory areaCOMMON blocks in
Fortran).

Non-O-0 systems or * Important files.

System descriptions * DATA DlVISIONUr“tS (CObOl)

» Record types (Pascal), structures and strugture
types (C, C++), playing an important role|in
the software, in particular if they are used|by
various routines or modules (files in C).

* Entities in ER modeling.

Discussions with * Design classes having been successfully used
experienced designers in previous developments of a similar nature.

Algorithms and data |« Known data structures supporting efficignt
structure literature algorithms.

0O-0 design literature | « Applicable design patterns.

§22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 743

Then, criteria for investigating potential classes more carefully, and possib|

rejecting them:

Reasons for
rejecting a
candidate class

Danger signal Why suspicious

Class with verbal
name(infinitive or * May be a simple subroutine, not a class.
imperative)

Fully effective class
with only one * May be a simple subroutine, not a class.
exported routine

Class described as
“performing” * May not be a proper data abstraction.

something

* May be an opaque piece of information, not an
Class with no routine| ADT. Or may be an ADT, the routines having
just been missed.

Class introducing no
or very few features
(but inherits features
from parenty)

* May be a case of “taxomania”.

Class covering severall» Should be split into several classes, one |per
abstractions abstraction

22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« Identifying the classes is one of the principal tasks of object-oriented softwa

construction.

» To identify the classes is a dual process: class suggeanc class rejection. Just
as important as identifying potential class candidates is the need to eliming

unsuitable ideas.

744 HOW TO FIND THE CLASSES§22.8

e To identify the classes is to identify the relevant abstractions in the modeled domain
and the solution space.

e “Underlining the nouns in the requirements document” is not a sufficient technique
for finding the classes, since its results are too dependent on stylistic issues. It may
cause designers both to miss useful classes and to include unnecessary ones.

< A broad characterization of classes distinguishes analysis classes, tied to concepts of
the external world being modeled, design classes, describing architectural decisions,
and implementation classes, describing data structures and algorithms.

« Design classes tend to be the most difficult to invent.

* In designing external classes, remember that external objects include concepts as
well as material things.

* To decide whether a certain notion justifies defining an associated class, apply the
criteria of data abstraction.

« Implementation classes include both effective classes and their deferred
counterparts, describing abstract categories of implementation techniques.

 Inheritance provides a way to reuse previous designs while adapting them.

< A way to obtain classes is to evaluate candidate designs and look for any unrecognized
abstraction, in particular by analyzing inter-module data transmission.

« Use cases, or scenarios, may be useful as a validation tool and as a guide to finalize
an implementation, but should not be used as an analysis and design mechanism.

* The best source of classes is reusable libraries.

22.8 BIBLIOGRAPHICAL NOTES

The advice to use nouns from the requirements as a starting point for finding object Russell . Abbott in
Comn. ACM, 2¢,

was made popular k[Booch 1986, which credits the idea to an earlier article by Abbo11, Nov. 1987, pr.

Further advice appeain [Wirfs-Brock 1990. 882-89:

8§E22.1 EXERCISES 745

See'ls a new class
necessary?”, page 7:21

An article on formal specificatio[M 1985a analyzes the problems raised by
natural-language requirements documents. Working from a short natural-langua
problem description which has been used extensively in the program verificatic
literature, it identifies a large number of deficiencies and offers a taxonomy of sus
deficiencies (noise, ambiguity, contradiction, remorse, overspecification, forwar
reference); it discusses how formal specifications can remedy some of the problems.

[Waldén 199t |presents useful advice for identifying classes.

Appendix B of[Page-Jones 19¢€ lists numerous “problem symptoms” in candidate
object-oriented designs (for examplclass interface supports illegal or dangerous
behavior”), alerting designers to danger signals such as have been pointed out in
present chapter. The table, as well as the rest of Page-Jones’s book, offers suggestior
correcting design deficiencies.

[Ong 1993 describes a tool for converting non-O-O programs (essentially Fortrar
to an object-oriented form. The conversion is semi-automatic, that is to say relies on sc
manual effort. Relevant to the present chapter is the authors’ description of some of
heuristics they use for identifying potential classes through analysis of the original co
in particular by looking aCOMMONDblocks.

Simula 1 (the simulation language that led to modern versions of Simula)
described irf[Dahl 1966. See chapte35 for more Simula references.

Typical data structures books, providing a precious source of implementatic
classes, include Knuth’'s famous treatfKnuth 1968 [Knuth 1981 [Knuth 1973 and
numerous college textbooks sucl[Aho 1974 [Aho 1983.

A recent text[Gore 1996, presents fundamental data structures and algorithms in
thoroughly object-oriented way.

Sources of design classes inclfGamma 199%, presenting a number of “design
patterns” for C++, an(M 1994a, a compendium of library design techniques and

reusable classes, discussing in detail the notions of “handle class” and “iterator cla:
[Krief 1996] presents the Smalltalk MVC model.

EXERCISES

E22.1 Floors as integers

Show how to define a clasFLOOFR as heir toINTEGEF, restricting the applicable
operations.

746 HOW TO FIND THE CLASSES§E22.2

E22.2 Inspecting objects

Daniel Halbert and Patrick O’Brien discuss the following problem, arising in the design
of software development environments:

Consider the design of dénspectotr facility, used to display information about From [Halbert 1987|
an object in a debugger windc the contents of its fiel, and perhaps some slightly abridge
computed value Different kinds of inspector are needed for different object

types. For instanc; all the relevant information about a point can be displayed

at once in a simple form, while a large two-dimensional array might best be

displayed as a matrix scrollable horizontally and vertically

You should first decide where to put the behavior of the insp in the
[generating clas] of the object to be inspected or in a |, separate clas>

Answer this question by considering the pros and cons of various alternéNote: the
inheritance-related discussions of the following chapters may be i)seful.

	22 22 How to find the classes
	22.1 STUDYING A REQUIREMENTS DOCUMENT
	The nouns and the verbs
	Avoiding useless classes
	Is a new class necessary?
	Missing important classes
	Discovery and rejection
	Class Elicitation principle

	22.2 DANGER SIGNALS
	The grand mistake
	My class performsº
	Imperative names
	Class Name rule

	Single-routine classes
	Premature classification
	No-command classes
	Mixed abstractions
	Class Consistency principle

	The ideal class

	22.3 GENERAL HEURISTICS FOR FINDING CLASSES
	Class categories
	External objects: finding the analysis classes
	Finding the implementation classes
	Deferred implementation classes
	Finding the design classes

	22.4 OTHER SOURCES OF CLASSES
	Previous developments
	Adaptation through inheritance
	Evaluating candidate decompositions
	Hints from other approaches
	Files
	Use cases
	Use Case principle

	CRC cards

	22.5 REUSE
	The bottom-up component
	Class wisdom

	22.6 THE METHOD FOR OBTAINING CLASSES
	Sources of possible classes
	Reasons for rejecting a candidate class

	22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	22.8 BIBLIOGRAPHICAL NOTES

	EXERCISES
	E22.1 Floors as integers
	E22.2 Inspecting objects

