
Epilogue, In Full Frankness 
Exposing the Language
tware
uality
ad to
ction,
lysis,

would
ation,
 that
 but may

s and
 and
ion that
e life

d
een
ings
us to
ust to
orting
mplete
a non-
lation

oked
g the
e
s this
ng.
E nthusiastically setting out to solve some of the most pressing problems of sof
engineering, this book has developed an ambitious method for developing q
systems. Since no method is possible without a supporting notation, we have h
devise, as we learned the various components of object-oriented software constru
what in the end turned out to be a complete lifecycle language for software ana
specification, design, implementation, maintenance and documentation.

Instead of reading on page one, however, the name of the language that you 
be using, you have been invited to participate with the author in developing the not
chapter after chapter, notion after notion, construct after construct. And until now
language has remained nameless. Why? The reasons were sketched in the preface
deserve some final elaboration.

First, I hope that even though you were warned that the notation already exist
is extensively documented in tens of published textbooks, hundreds of articles
thousands of Usenet messages, you earnestly accepted the pedagogical convent
you participated in its design as you were reading this book. Although this has mad
a little harder for the author — imagine: having to justify every single construct, instea
of bringing it to the people down from the top of Mount Sinai — the effort will have b
worthwhile if it has succeeded in giving you a better understanding not only of what th
are but of why they must be that way. Second, the convention has enabled 
concentrate on the method, not on notational details, making this book useful not j
people who will indeed have access to the language through one of the supp
commercial environments, but also to those readers who are required to use less co
O-O languages such as Smalltalk, C++, Ada 95, Java or Object Pascal, or even 
O-O one such as C, Fortran, Pascal or Ada, to which one can apply the emu
techniques discussed in earlier chapters.

Fiction or not, the mystery is not very hard to penetrate. Even if you have not lo
at the back cover of this book or read other works by the same author (includin
complete language description [M 1992]), just a cursory glance at some of th
bibliographical references will have revealed all there is to reveal. And books such a
one are meant to be not only read but re-read, so the surprise, if any, will not last lo



EPILOGUE, IN FULL FRANKNESS EXPOSING THE LANGUAGE1162

a few
ethod.

lone
nd

 which
antages
llege
s; and
ething
tation
ject

of our
g the
nse of
ation:
Even so, keeping the language name away from the discussion (except for 
hints that the alert reader may have noted) has enabled us to concentrate on the m
This is a little paradoxical, since one of the language’s principal claims is that, a
among O-O languages, it is also a method, avoiding the gap between concept a
expression, between analysis and design, between design and implementation,
plagues common O-O approaches and threatens to defeat some of the principal adv
of object technology. Not even the brightest-eyed Java or Smalltalk enthusiast will a
that his language of choice is a general-purpose tool for design, let alone analysi
users of popular analysis notations such as OMT know that they must move to som
else when it comes to producing the actual software. The ambition of the method-no
developed in this book is higher: to fulfill one of the main premises and promises of ob
technology, seamlessness, by serving as a faithful assistant that will accompany you
throughout the software construction process.

Literary conventions have an end, so the time has now come, at the close 
extended tour of the beauties of object-oriented software construction, after thankin
reader for patiently going along, through all these pages, with the pedagogical prete
an anonymous language, to lift the very thin veil that covered the name of our not
welcome to the world of Eiffel.


	Epilogue, In Full Frankness Exposing the Language

