34

Emulating object technology In
non-0O-0 environments

Fortran, Cobol, Pascal, C, Basic, PL/I and even assembly language still account for
large part of the software being written or updated today. Clearly, a project using one ¢
these languages will not be able to draw the full benefits of object technology, as this woul
require a notation such as the one we have studied in this book, and the supportir
compiler, environment and libraries. But people who are required to use pre-O-O tools
often because of non-technical constraints, can still gain inspiration from object technolog
and use some of its concepts to improve the quality of their software development.

This chapter presents the techniquebject emulatiorthat may enable you to
approximate some of object technology. It will particularly examine the case of Fortran
Pascal and C. (Ada and other encapsulation languages were discussed in the precec
chapter; the following one covers O-O languages such as Simula, Smalltalk, Objective-C
C++ and Java.) This presentation will be directly applicable if you must use one of thes
languages. But it extends further:

« If you use another non-O-O language not on this list, such as Basic or Cobol, yo!
should not have too much trouble transposing the concepts.

e Even if you are able to use an O-O language, the following discussion can give yo
a better grasp of the innovations of object technology and of the supporting
implementation techniques (which often make use, internally, of older languages).

34.1 LEVELS OF LANGUAGE SUPPORT

In assessing how programming languages succeed in supporting object-oriented concey
we may distinguish three broad categories (ignoring the lowest level, mostly containing
assembly languages, which does not even support a routine construct):

» Thefunctional level comprises languages whose unit of decomposition i ttiae,
a functional abstraction capturing a processing step. Data abstraction is handled, if
all, through definitions of data structures, either local to a routine or global.

» Languages at thencapsulationlevel provide a way to group a set of routines and
data declarations in a syntactical unit, calledaduleor packagetypically each unit
can be compiled separately. This was discussed in some detail for Ada.

1100 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.2

« Then we fincobject-oriented languages. This is not the place to be fussy about what
exactly it takes to deserve this label — chaj2 defined a set of criteria, and of
course all of parC was devoted to analyzing O-O mechanisms in detail —, but we
should at the very least expect some support for classes, inheritance, polymorphism
and dynamic binding.

For the second category, encapsulation languages, which supports a data See [Wegner 1987
abstraction mechanism but no classes, inheritance, polymorphism or dynamic

binding, you will find that the literature commonly uses the tobject-

basec, introduced in an article by Peter Wegner. Because the English words

baset andorientec do not readily evoke the conceptual difference between

encapsulation technigues and O-O languages, “object-based” is a little hard to

justify, especially to newcomers. Although either terminology is acceptable

once you have defined the conventions, | have in the end decided to stick here

to the phrases “encapsulation languages” and “object-oriented languages”,

which more clearly conjure up the conceptual difference.

While we are on the subject of terminology: the term “functional language” is
ambiguous since other parts of the literature apply it to a class of languages, based on
mathematical principles and often deriving directly or indirectly from Lisp, which use
side-effect-free functions instead of imperative constructs such as procedures and
assignments. To avoid any confusion, the present book always uses tlapplicative
to denote this programming style. The wifunctionin our use of “functional language”
is to be contrasted wilobjec, not (as when “functional” is a synonym for “applicative”)
with procedur. (To make a confusing situation worse, it is quite common to see
“procedural” taken to mean “not object-oriented”! There is, however, no basis for such
terminology; “procedural” normally means “imperative”, as opposed to applicative; all
the common O-O languages, including the notation of this book, are quite procedural.)

A general comment on O-O emulation. In its most basic form, object technology is
“programming with abstract data types”. You can apply a rudimentary form of the ideas,
even at the functional level, by defining a set of strict methodological guidelines requiring
every data access to go through routines. This assumes that you start from an object-
orienteddesigt that has defined ADTs and their features; then you will write a set of
routines representing these featurespui, removs, item, empt in our standard stack
example — and require all client modules to go through these routines. This is a far cry
from object technology proper, and can only work under the assumption that everyone in
the team behaves; but, if you lack any kind of language support, it can be a start. We will
call this technique thdisciplinary approach.

34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL?

Pascal, introduced in 1970 by Niklaus Wirth, has been for many years the dominant
language for teaching introductory programming in computing science departments, and
has influenced many of the subsequent language designs. Pascal is definitely a functional
language in the sense just defined.

§34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL? 1101

“Linguistic Modular
Units”, page 5%

Pascal proper

How much of the object-oriented approach can you implement in Pascal?

Not much. The Pascal program structure is based on a completely differe
paradigm. A Pascal program consists of a sequence of paragraphs, appearing ir
immutable order: labels, constants, types, variables, routines (procedures and functio
and executable instructions. The routines themselves have the same structure, recursiv

This simple rule facilitates one-pass compilation. But it dooms any attempt at usit
0O-0O techniques. Consider what it takes to implement an ADT, such as the stand:
example of stacks represented by arrays: a few constants such as the array size, one
few types such as the record type describing the stack implementation, a few variak
such as the pointer to the stack top, and a few routines representing the operations or
abstract data type. In Pascal, these elements will be scattered all over the program: al
constants for various abstract data types together, all the types together and so on.

The resulting program structure is the opposite of O-O designs. Using Pascal wo
contradict the Linguistic Modular Units principle, which expresses that any modulg
policy you choose must be supported by the available language constructs, for feal
damaging composability, decomposability and other modularity requirements.

So if we take Pascal as defined by its official standard, there is little we can do
apply O-O techniques this language beyond what was called the disciplinary approe
above: imposing a strict methodological rule for data accesses.

Modular extensions of Pascal

Beyond standard Pascal, many commercially available versions remove the restrictions
the order of declarations and include support for some form of module beyond the routi
including separate compilation. Such modules may contain more than one routir
together with associated constants, types and routines. The resulting languages

products, more flexible and powerful than Pascal, are Pascal only by name; they are
standardized, and in fact resemble more an encapsulation language such as Modula-
Ada, to which the applicable discussion is that of the preceding chapter.

Object-oriented extensions of Pascal

Over the years a number of companies have offered object-oriented extensions of Pas
loosely known as “Object Pascal”. Two are particularly significant:

» Apple’s version, originating from a language originally caClasca and used for
some of the software in Apple’'s Macintosh and its Lisa predecessor.

< Borland’s version of Pascal, most recently adapted as the pnogrey language for
Borland’sDelphi environment.

The preceding discussion does not really apply to such languages since — e\
more than with the modular extensions — their connection to the original Pascal
essentially their name, syntactic style, and statically typed approach. Borland Pascal
particular, is an O-O language with exception handling. It does not, however, support &
of the mechanisms of genericity, assertions, garbage collecticmultiple inheritance.

1102 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.3

34.3 FORTRAN
FORTRAN should virtually eliminate coding and debuggicited in[wexelblat

FORTRAN Preliminary Rep, IBM, November 1954 1981.

The oldest surviving programming language, Fortran remains widely used for scieThe official name is
. ' . “ FORTRAN, although

computation. Shockingly perhaps for people who went on from it to such StrUCtL, -\ ocs obirusive

languages as Pascal, you can in fact get a little more O-O fiills in Fortran, although torm is commonly

partly thanks to facilities that may be considered low-level and were intended for other used too.

Some context

Fortran was initially designed, as a tool for programming the IBM 704, by an IBM team under
John Backus (later also instrumental in the description of Algol), with a first general release
in 1957. Fortran Il followed, introducing subroutines. Fortran IV solidified the language in
1966 (Fortran 11, 704-specific, was not widely distributed), and was standardi:ANSI.

The next revision process led to Fortran 77, actually approved in 1978, with better control
structures and some simplifications. An even longer revision yielded Fortran 90 and Fortran
95, which have been diversely met and have not quite replaced their predecessors.

For most people with a computing science degree earned after the First World War,
Fortran is old hat, and they would rather be caught reading the Intel 4044 User's Manual
than admit they know anything ab¢cFORMAT and arithmetidF instructions. In reality,
however, quite a few programmed in Fortran at some stage, and many other people who
are programmers by any objective criterion, even if their business card reads “theoretical
physicist”, “applied mathematician”, “mechanical engineer” or even, in a few cases,
“securities analyst”, use Fortran as their primary tool day in and day out. Fortran remains

in common use not only for maintaining old software but even for starting new projects.

To the outsider it sometimes seems that scientific programming — the world of
Fortran — has remained aloof from much of the evolution in software engineering. This
is partly true, partly not. The low level of the language, and the peculiar nature of scientific
computing (software produced by people who, although scientists by training, often lack
formal software education), have resulted in some software of less than pristine quality.
But some of the best and most robust software also comes from that field, including
advanced simulations of extremely complex processes and staggering tools for scientific
visualization. Such products are no londenited to delicate but small numerical
algorithms; like their counterparts in other application areas, they often manipulate
complex data structures, rely on database technology, include extensive user interface
components. And, surprising as it may seem, they are still often written in Fortran.

The COMMON technique

A Fortran system is made of a main program and a number of routines (subroutines or
functions). How can we provide a semblance of data abstraction?

The usual technique is to represent the data through a so-COMMON block, a
Fortran mechanism for making data accessible to any routine that cares to want it, and to
implement each of the associated exported features (siputetc. for stacks) through a
separate routine. Here for example is a sketchpui routine for a stack of real numbers:

§34.3 FORTRAN

1103

A C at the first
position on a line
introduces a
commer.t

SUBROUTINE RPU(X)
REAL X

@)

PUSH X ON TOP OF REAL STACK

COMMON/STREV TOF, STACK(200()
INTEGER TOP
REAL STACK

TOP=TOP + 1
STACK(TOP) = X
RETURN

END

This version does not have any overflow control; clearly it should be updated to te
for TOF going over the array size. (The next version will correct this.) The function t
return the top element is

INTEGER FUNCTION RITEM

C

C TOP ELEMENT OF REAL STACK

C
COMMONY/STREW TOF, STACK(2000)
INTEGER TOP
REAL STACK

RITEM= STACK(TOP)
RETURN
END

which would similarly need to test for underflow (empty ste REMOVE and other
features will follow the same pattern. What unites the different routines, making sure tt
they access the same data, is simply the name of the commonSTREL (It is in fact
possible, in different routines, to pretend that the same common block contains dats
different types and sizes if the total memory occupied somehow coincides, although i
family-oriented book like this one it is probably preferable to avoid going into details the
might not be entirely suitable for the younger members of the audience).

The limitations are obvious: this implementation descrone abstract objec (one
particular stack of reals), not an abstract data type of which the software can cre
arbitrarily many instances at run time, as with a class. The Fortran world is very static: y
must dimension all the arrays (here to 2000, a number picked arbitrarily). Because th
is no genericity, you should in principle declare a new set of routines for each type
stack; hence the namRPUTandRITEN, where theR stands for Real. One can work
around some of these problems, but not without considerable effort.

1104 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.3

The multiple-entry subroutine technique

The COMMON-based technique, as you will have noted, violates the Linguistic Modular
Units principle. In a system’s modular structure, the routines are physically independent
although conceptually related. You can all too easily update one and forget the others.

Itis in fact possible to improve on this situation (without removing some of the other
limitations just listed) through a language trait legalized by Fortran 77: multiple entry
points to a single routine.

This extension — which was probably introduced for different purposes, but may be
redeemed for the “good cause” — enables Fortran routines to have entry points other than
the normal routine header. Client routines may call these entry points as if they were
autonomous routines, and the various entries may indeed have different arguments.
Calling an entry will start execution of the routine atthe entry point. All entries of a routine
share the persistent data of the routine; a persistent data item, which in Fortran 77 must
appear in SAVEdirective, is one whose value is retained from one activation of a routine
to the next. Well, you see where we are driving: we can use this technique to define a
module that encapsulates an abstract object, almost as we would in one of the
encapsulation languages. In Ada, for example, we could write a package with a data
structure declaration, such as a stack representation, and a set of routines that manipulate
these data. Here we will simulate the package with a subroutine, the data structure with a
set of declarations that we make persistent throuSAVE, and each Ada routine (each
feature of the corresponding class in an O-O language) with an entry. Each such entry
must be followed by the corresponding instructions aRETURV

ENTRY(argument);

... Instructions...

RETURN
so that the various entry-delimited blocks are disjoint: control never flows from one block
to the next. This is a restricted use of entry points, which in general are meant to allow
entering a routine at any point and then continuing in sequence. Also note that clients will
never call the enclosing subroutine under its own name; they will only call the entries.

The main difference with thprecedingCOMMON-based solution is that all the
features of the underlying abstract data type now appear in the same syntactical unit. The
second part of the facing page shows an example implementing an abstract object (stack
of reals). The calls from a client will look like this:

LOGICAL OK
REAL X

OK = MAKE ()

OK = PUT (4.5)

OK = PUT (~7.88)

X = ITEM()

OK = REMOVE()
IF (EMPTY() A=B

§34.3 FORTRAN 1105

Look at this text for just a second, from a distance; you could almost believe that
is the use of a class, or at least of an object, through its abstract, officially defin
interface!

1106 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.3

A Fortran routine and its entry points must be either all subroutines, or all functions. Here
sinceEMP TYandITEM must be functions, all other entries are also declared as functions,

includingM AKE whose result useless.

C --IMPLEMENTATION OF ONE
C --ABSTRACT STACK OF REALS
C

INTEGER FUNCTION RSTAC()
PARAMETER(SIZE=1000)
C
C -- REPRESENTATION
C
REAL IMPL(SIZE)
INTEGER LAST
SAVE IMPI, LAST
C
C --ENTRY POINT DECLARATIONY
C
LOGICAL MAKE
LOGICAL PUT
LOGICAL REMOVE
REAL ITEM
LOGICAL EMPTY

REAL X

-- STACK CREATION

OO0 O

ENTRY MAKE()
MAKE = .TRUE.
LAST=0

RETURN

-- PUSH AN ITEM

OO0

ENTRY PUT(X)
IF (LAST.LT. SIZE) THEN
PUT = .TRUE.
LAST= LAST + 1
IMPL (LAST) = X
ELSE
PUT = .FALSE.
END IF
RETURN

C -- REMOVE TOP ITEM

ENTRY REMOVI(X)

IF (LAST.NE. 0) THEN
REMOVE= .TRUE.
LAST=LAST -1

ELSE
REMOVE= .FALSE.

END IF

RETURN

-- TOP ITEM

OO0

ENTRY ITEM()
IF (LAST.NE. 0) THEN
ITEM = IMPL (LAST)
ELSE
CALL ERROR
O (ITEM: EMPTY STACH)!
END IF
RETURN

C -- IS STACK EMPTY?

ENTRY EMPTY)
EMPTY= (LAST.EQ. 0)
RETURN
C
END

A stack module
emulation in
Fortran

§34.4 OBJECT-ORIENTED PROGRAMMING AND C 1107

This style of programming can be applied successfully to emulate the encapsulat
techniques of Ada or Modula-2 in contexts where you have no choice but to use Fortr
It suffers of course from stringent limitations:

* Nointernal calls are permitted: whereas routines in an object-oriented class usue
rely on each other for their implementations, an entry call issued by another entry
the same subroutine would be understood as an instance of recursion — anathern
Fortran, and run-time disaster in many implementations.

» As noted, the mechanism is strictly static, supporting only one abstract object. It m
be generalized to allow for a fixed number of objects (by transforming every variab
into a one-dimensional array, and adding a dimension to every array). But there is
portable support for dynamic object creation.

 In practice, it seems that some Fortran environments (two decades after Fortran
was published!) do not deal too well with multiple-entry subroutines; in particula
debuggers do not always know how to keep track of multiple entries. Befor
applying this technique to a production development, check with the local Fortre
guru to find out whether it is wise to rely on this facility in your environment.

 Finally, the very idea of hijacking a language mechanism for purposes other than
probable design objective raises dangers of confusio errors.

34.4 OBJECT-ORIENTED PROGRAMMING AND C

Born in a log cabinet, C quickly rose to prominence. Although most people interested
both C and object technology have focused on the O-O extensions of C discussed in
next chapter (C++, Objective-C, Java), it remains interesting to see how C itself can
made to emulate O-O concepts, if only to understand the techniques that have made
useful as a stepping stone towards the implementation of more advanced languages.

Some context

C was designed at AT&T’s Bell Laboratories as a portable language for writing operati
systems. The first version of Unix had used assembly language, but a portable vers
soon appeared necessary, and C was designed around 1970 to make it possible. It
derived from ideas found in BCPL, a language of the sixties which, like C, can
mentioned in the same breath as “high-level”, “machine-oriented” and “portable”: higkh
level thanks to control structures comparable to those of Algol or Pascal; machin
oriented because you can manipulate data at the most elementary level, through addre
pointers and bytes; portable because the machine-oriented concepts are so defined

cover a wide variety of computer types.

C’s timing could not have been better. In the late seventies Unix became tl
operating system of choice for many universities, and C spread with it. Then in the eight
the microcomputer revolution burst out, and C was ready to servelingua francei —
more scalable than Basic, more flexible than Pascal. At the same time Unix also enjoy
some commercial success, and along with Unix still came C. In a few years, a boutic
product became the dominant language in large segments of the computing indus
including much of where the action really was.

1108 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.4

Anyone interested in the progress of programming languages — even people who do
not care too much for the language itself — has a political debt to C, and sometimes a
technical one as well:

» Politically, C ended the fossilized situation that prevailed in the programming
language world until around 1980. No one in industry wanted to hear (particularly
after the commercial failure of Algol) about anything else than the sacred troika,
Fortran for science, Cobol for business and PL/I for true blue shops. Outside of
academic circles and a few R&D departments, any attempt at suggesting other
solutions was met with as much enthusiasm as if it were a proposal to introduce a
third brand of Cola drink. C broke that mindset, making it acceptable to think of the
programming language as something you choose from a reasonably broad and
evolving catalog. (A few years later, C itself became so entrenched that in some
circles the choices seemed to have gone from three to one, but it is the fate of
successful subversives that they become the new Establishment.)

e Technically, the portability and machine-closeness of C have made it an attractive
solution as a target language of compilers for higher-level languages. The first C++
and Objective-C implementations used this approach, and compilers for many other
languages, often having no visible connection to C, have followed their example.
The advantages for the compiler writers and their users are: portability, since you can
have a single C-generating compiler for your language and use C compilers
(available nowadays for almost any computer architecture) to take care of platform
dependencies; efficiency, since you can rely on the extensive optimization
techniques that have been implemented in good C compilers; and ease of integration
with ubiquitous C-based tools and components.

With time, the contradiction between the two views of C — high-level programn[Kernighan 197¢,
language, and portable assembly language — has become more acute. Recent elKernighan 198¢]
of the ANSI standard for C (first published in 1990, following the earlier version knc
asK&R from the authors of the first C book, Kernighan and Ritchie) have made tne
language more typed — and hence less convenient for its use as a compiler’s target code.

It has even been announced that forthcoming versions will have a notion of class,
obscuring the separation from C++ and Java.

Although an O-O extension of C simpler than C++ and Java may be desirable, one
can wonder whether this evolution is the right one for C; a hybrid C-based O-O language
will always remain a strange contraption, whereas the idea of a simple, portable,
universally available, efficiently compilable machine-oriented language, serving both as
a target language for high-level compilers and as a low-level tool for writing very short
routines to access operating system and machine-dependent facilities (that is to say, for
doing the same thing that assembly language used to do for C, only at the next level)
remains as useful as it ever was.

§34.4 OBJECT-ORIENTED PROGRAMMING AND C 1109

Basics

As with any other language, you can apply to C the “disciplinary” technique of restricte
data access, requiring all uses of data structures to go through functions. (All routines
C are functions; procedures are viewed as functions with a “void” result type.)

Beyond this, the notion of file may serve to implement higher-level modules. File
are a C notion on the borderline between the language and the operating system. A fil
a compilation unit; it may contain a number of functions and some data. Some of t
functions may be hidden from other files, and some made public. This achiev
encapsulation: a file may contain all the elements pertaining to the implementation of o
or more abstract objects, or an abstract data type. Thanks to this notion of file, you ¢
essentially reach thencapsulatio languagelevel in C, as if you had Ada or Modula-2.
As compared to Ada, however, you will be missing genericity and the distinction betwe
specification and implementation parts.

In practice, a commonly used C technique is rather averse to O-O principles. Mc
C programs use “header files”, which describe shared data structures. Any file needing
data structures will gaincaess to them through an “include” directive (handled by the
built-in C preprocessor) of the form

#include <heade.h>

whereheade.h is the name of the header filh is the conventional suffix for such file
names). This is conceptually equivalent to copying the whole header file at the po
where the directive appears, and allows the including file to access directly the d:
structure definitions of the header file. As a result the C tradition, if not the language itse
encourages client modules to access data structures through their physical representat
which clearly contradicts the principles of information hiding and data abstraction. It |
possible, however, to use header files in a more disciplined fashion, enforcing rather tt
violating data abstraction; they can even help you go some way towards defining interfz
modules in the style we studied for Ada in the preceding chapter.

Emulating objects

Beyond the encapsulation level, one of the more specialized and low-level features o
— the ability to manipulate pointers to functions — can be used to emulate fairly close
some of the more advanced properties of a true O-O approach. Although it is sufficien
delicate to suggest that its proper use is by compilers for higher-level languages rather t
C programmers, it does deserve to be known.

In we take a superficial look at the notion of object as it exists in object technolog
we might say that “every object has access to the operations applicable to it”. Thisis a li
naive perhaps, but not altogether wrong conceptually. If, however, we take this vie
literally, we find that C directly supports the notion! It is possible for an instance of |
“structure type” of C (the equivalent of record types in Pascal) to contain, among its fielc
pointers to functions.

1110 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.4

¢ . .
put C_remove(...) A C object with
i function
~Eempty } references
- M
- count
C_item(...)
{
o
|Ns$kﬁg§ representation

For example, a C structure tyfREAL STAC may be declared by the type
definition
typedef struct
{
/UExported featurel/
void (Lremove) ();
void (Cpui) ();
float (Litem) ();
BOOL (*empty ();
/LSecret features (implementaticl/)
int coun;
float representatiolf MAXSIZE];

}
REAL_STAC

The braces{ } delimit the components of the structure tyjfloat introduces real
numbers; procedures are declared as fiinctions wvoid result type; comments are
delimited by/[_ and[/. The other asterist__ serve to de-reference pointers; the idea in
the practice of C programming is that you add enough of them until things seem to work,
and if not you can always try&: or two. If this still does not succeed, you will usually
find someone who knows what to do.

Here the last two components are an integer and an array; the others are references
to functions. In the declaration as written, the comments about exported and secret
features apply to the emulated class, but everything is in fact available to clients.

Each instance of the type must be initialized so that the reference fields will point to
appropriate functions. For examplemy stac is a variable of this type atC_removeis
a stack popping function, you may assign to removefield of themy stac object a
reference to this function, as follows:

my_stackremove= C_remove

In the class being emulated, featiremovehas no argument. To enable the
C_remov: function to access the appropriate stack object, you must declare it as

§34.4 OBJECT-ORIENTED PROGRAMMING AND C 1111

C_remove(s)
REAL_STACK;s

... Implementation oremoveoperation...

so that a client may appremoveto a stackmy_stac under the form
my_stackremove(my_stac):

More generally, a routinrout which would haven arguments in the class will yield
a C functionC_roui with n+1 arguments. An object-oriented routine call of the form

X.rout (argq, argy, ..., argy)
will be emulated as

X.C_rout(x, argy, ardy, ..., argy,)

Emulating classes

ExerciseE34.3, page The preceding technique will work to a certain extent. It can even be extended

1112

emulate inheritance.

But it is inapplicable to any serious development: as illustrated in the figure of th
preceding page, it implies thevery instance of every class physically contains
references to all the routines applicable to it. The space overhead would be prohibiti
especially with inheritance.

To bring this overhead down to an acceptable level, notice that the routines are
same for all instances of a class. So we may introduce for each class a run-time ¢
structure, thclass descripto, containing references to the routines; we can implement i
as a linked list or an array. The space requirements decrease dramatically: instead of
pointer per routine per object, we can use one pointer per rcper clas, plusone
pointer per objec giving access to the class descriptor, as shown by the figure at the t
of the following page.

Timewise we pay the price of an indirection: as shown in the figure, you have to
through the descriptor to find the function applicable to an object. The space economy
the simplification seem well worth this penalty.

There is no secret about it: the technique just sketched is what has made C useft
an implementation vehicle for object-oriented languages, starting with Objective-C ar
C++ in the early eighties. The ability to use function pointers, combined with the idea
grouping these pointers in a class descriptor shared by an arbitrary number of instan
yields the first step towards implementing O-O techniques.

This is only a first step, of course, and you must still find techniques fo
implementing inheritance (multiple inheritance in particular is not easy), genericity
exceptions, assertions and dynamic binding. To explain how this can be done would t:
another book. Let us, however, note one important property, deducible from what we h¢

1112 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.4

put C_remove...) C ob_jects
CLASS Jremove { sharing a class
DESCRIPTOR —empty 3T descriptor
o N
/ (C_item(...)
{
R
type
type count
count
representation representation representation

seen so far. Implementing dynamic binding, regardless of the details, will require run-time
access to the type of each object, to find the proper variant of the fizin a dynamically
bound calix.f(...) (written here in O-O notation). In other words: in addition to its official
fields, defined explicitly by the software developer through type declarations, each object
will need to carry an extra internal field, generated by the compiler and accessible only to
the run-time system, indicating titype of the object. Well, with the approach just
defined, we already have a possible implementation of this type field — as a pointer to the
class descriptor. This is the reason why the above figure uses thtypefor suct fields.

0O-0O C: an assessment

This discussion has shown that implementation technigues are available in C to emulate
object-oriented ideas. But it does not mean that programmers should use these technigques.
As with Fortran, the emulation does violence to the language. C’'s main strength is, as
noted, its availability as a “structured assembly language” (a successor to BCPL and
Wirth’'s PL/360), portable, reasonably simple and efficiently interpreted. Its basic
concepts are very far from those of object-oriented design.

The danger in trying to force an object-oriented peg into a C hole is to get an
inconsistent construction, impairing the software development process and the quality of
the resulting products. Better use C for what it does well: small interfaces to low-level
hardware or operating system facilities, and machine-generated target code; then when the
time comes to apply object technology we should use a tool designed for that purpose.

§34.5 BIBLIOGRAPHICAL NOTES 1113

34.5 BIBLIOGRAPHICAL NOTES

Techniques for writing Fortran packages based on the principles of data abstraction
described in[M 1982a. They use routines sharinCOMMON blocks, rather than
multiple-entry routines. They go further in their implementation of object-orientec
concepts than the techniques described in this chapter, thanks to the use of specific lib
mechanisms that provides the equivalent of dynamically allocated class instances. S
mechanisms, however, require a significant investment, and will have to be ported an
to each platform type.

| am indebted to Paul Dubois for pointing out that the multiple-entry Fortrar
technique, although definitely part of the standard, is not always supported well |
current compilers.

[Cox 1990 (originally 1986) contains a discussion of C techniques for the
implementation of object-oriented concepts.

The basic reference on the history of classical programming languages is
conference proceedinfWexelblat 1981; see[Knuth 1980 for the earliest efforts.

EXERCISES

E34.1 Graphics objects (for Fortran programmers)

Write a set of Fortran multiple-entry routines that implement basic graphics objec
(points, circles, polygons). For a specification of the abstractions involved and tt
associated operations, you may rely on the GKS graphics standard.

E34.2 Genericity (for C programmers)

How would you transform the C emulation of a “real stack” class declaration into a
emulated generic declaration, easy to adapt to stacks of anG rather than jusfloat?

E34.3 Object-oriented programming ir C (term project)

Design and implement a simple object-oriented extension of C using the ideas of t
chapter. You may write either a pre-processor, translating an extended version of |
language into C, or a function package that does not change the language itself.

Approach the problem through three successive refinements:

< Implement first a mechanism allowing objects to carry their own references t
available routines.

* Then see how to factor routine references at the class level.

» Finally, study how to add singinheritance t themechanism.

1114 EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS 8E34.3

	34 34 Emulating object technology in non-O-O envir...
	34.1 LEVELS OF LANGUAGE SUPPORT
	34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL?
	Pascal proper
	Modular extensions of Pascal
	Object-oriented extensions of Pascal

	34.3 FORTRAN
	Some context
	The COMMON technique
	The multiple-entry subroutine technique
	A stack module emulation in Fortran

	34.4 OBJECT-ORIENTED PROGRAMMING AND C
	Some context
	Basics
	Emulating objects
	A C object with function references

	Emulating classes
	C objects sharing a class descriptor

	O-O C: an assessment

	34.5 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E34.1 Graphics objects (for Fortran programmers)
	E34.2 Genericity (for C programmers)
	E34.3 Object-oriented programming in C (term proje...

