
34
Emulating object technology in
non-O-O environments
t for a
ne of
ould

orting
tools,
ology

tran,
ceding

ive-C,
these

l, you

e you
rting
es).

ncepts,
ining

d, if at

nd
Fortran, Cobol, Pascal, C, Basic, PL/I and even assembly language still accoun
large part of the software being written or updated today. Clearly, a project using o
these languages will not be able to draw the full benefits of object technology, as this w
require a notation such as the one we have studied in this book, and the supp
compiler, environment and libraries. But people who are required to use pre-O-O
often because of non-technical constraints, can still gain inspiration from object techn
and use some of its concepts to improve the quality of their software development.

This chapter presents the techniques of object emulation that may enable you to
approximate some of object technology. It will particularly examine the case of For
Pascal and C. (Ada and other encapsulation languages were discussed in the pre
chapter; the following one covers O-O languages such as Simula, Smalltalk, Object
C++ and Java.) This presentation will be directly applicable if you must use one of
languages. But it extends further:

• If you use another non-O-O language not on this list, such as Basic or Cobo
should not have too much trouble transposing the concepts.

• Even if you are able to use an O-O language, the following discussion can giv
a better grasp of the innovations of object technology and of the suppo
implementation techniques (which often make use, internally, of older languag

34.1 LEVELS OF LANGUAGE SUPPORT

In assessing how programming languages succeed in supporting object-oriented co
we may distinguish three broad categories (ignoring the lowest level, mostly conta
assembly languages, which does not even support a routine construct):

• The functional level comprises languages whose unit of decomposition is the routine,
a functional abstraction capturing a processing step. Data abstraction is handle
all, through definitions of data structures, either local to a routine or global.

• Languages at the encapsulation level provide a way to group a set of routines a
data declarations in a syntactical unit, called a module or package; typically each unit
can be compiled separately. This was discussed in some detail for Ada.

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.21100

hat
f
 we
phism

” is
sed on
use
s and

”)
see
such
; all
al.)

gy is
eas,
iring
object-
t of

ar cry
ne in
e will

inant
, and
ctional

See [Wegner 1987].
• Then we find object-oriented languages. This is not the place to be fussy about w
exactly it takes to deserve this label — chapter 2 defined a set of criteria, and o
course all of part C was devoted to analyzing O-O mechanisms in detail —, but
should at the very least expect some support for classes, inheritance, polymor
and dynamic binding.

For the second category, encapsulation languages, which supports a data
abstraction mechanism but no classes, inheritance, polymorphism or dynamic
binding, you will find that the literature commonly uses the term object-
based, introduced in an article by Peter Wegner. Because the English words
based and oriented do not readily evoke the conceptual difference between
encapsulation techniques and O-O languages, “object-based” is a little hard to
justify, especially to newcomers. Although either terminology is acceptable
once you have defined the conventions, I have in the end decided to stick here
to the phrases “encapsulation languages” and “object-oriented languages”,
which more clearly conjure up the conceptual difference.

While we are on the subject of terminology: the term “functional language
ambiguous since other parts of the literature apply it to a class of languages, ba
mathematical principles and often deriving directly or indirectly from Lisp, which
side-effect-free functions instead of imperative constructs such as procedure
assignments. To avoid any confusion, the present book always uses the term applicative
to denote this programming style. The word function in our use of “functional language”
is to be contrasted with object, not (as when “functional” is a synonym for “applicative
with procedure. (To make a confusing situation worse, it is quite common to
“procedural” taken to mean “not object-oriented”! There is, however, no basis for
terminology; “procedural” normally means “imperative”, as opposed to applicative
the common O-O languages, including the notation of this book, are quite procedur

A general comment on O-O emulation. In its most basic form, object technolo
“programming with abstract data types”. You can apply a rudimentary form of the id
even at the functional level, by defining a set of strict methodological guidelines requ
every data access to go through routines. This assumes that you start from an
oriented design that has defined ADTs and their features; then you will write a se
routines representing these features — put, remove, item, empty in our standard stack
example — and require all client modules to go through these routines. This is a f
from object technology proper, and can only work under the assumption that everyo
the team behaves; but, if you lack any kind of language support, it can be a start. W
call this technique the disciplinary approach.

34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL?

Pascal, introduced in 1970 by Niklaus Wirth, has been for many years the dom
language for teaching introductory programming in computing science departments
has influenced many of the subsequent language designs. Pascal is definitely a fun
language in the sense just defined.

§34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL? 1101

erent
 in an
tions),

rsively.

sing
ndard
ne or a

iables
 on the
 all the

ould
ular
ear of

do to
roach

ons on
utine,
utine,
s and
re not
la-2 or

ascal,

 even
al is

cal, in
rt any

“Linguistic Modular
Units”, page 53.
Pascal proper

How much of the object-oriented approach can you implement in Pascal?

Not much. The Pascal program structure is based on a completely diff
paradigm. A Pascal program consists of a sequence of paragraphs, appearing
immutable order: labels, constants, types, variables, routines (procedures and func
and executable instructions. The routines themselves have the same structure, recu

This simple rule facilitates one-pass compilation. But it dooms any attempt at u
O-O techniques. Consider what it takes to implement an ADT, such as the sta
example of stacks represented by arrays: a few constants such as the array size, o
few types such as the record type describing the stack implementation, a few var
such as the pointer to the stack top, and a few routines representing the operations
abstract data type. In Pascal, these elements will be scattered all over the program:
constants for various abstract data types together, all the types together and so on.

The resulting program structure is the opposite of O-O designs. Using Pascal w
contradict the Linguistic Modular Units principle, which expresses that any mod
policy you choose must be supported by the available language constructs, for f
damaging composability, decomposability and other modularity requirements.

So if we take Pascal as defined by its official standard, there is little we can
apply O-O techniques this language beyond what was called the disciplinary app
above: imposing a strict methodological rule for data accesses.

Modular extensions of Pascal

Beyond standard Pascal, many commercially available versions remove the restricti
the order of declarations and include support for some form of module beyond the ro
including separate compilation. Such modules may contain more than one ro
together with associated constants, types and routines. The resulting language
products, more flexible and powerful than Pascal, are Pascal only by name; they a
standardized, and in fact resemble more an encapsulation language such as Modu
Ada, to which the applicable discussion is that of the preceding chapter.

Object-oriented extensions of Pascal

Over the years a number of companies have offered object-oriented extensions of P
loosely known as “Object Pascal”. Two are particularly significant:

• Apple’s version, originating from a language originally called Clascal and used for
some of the software in Apple’s Macintosh and its Lisa predecessor.

• Borland’s version of Pascal, most recently adapted as the programming language for
Borland’s Delphi environment.

The preceding discussion does not really apply to such languages since —
more than with the modular extensions — their connection to the original Pasc
essentially their name, syntactic style, and statically typed approach. Borland Pas
particular, is an O-O language with exception handling. It does not, however, suppo
of the mechanisms of genericity, assertions, garbage collection and multiple inheritance.

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.31102

ng

ntific
red”
this is
goals.

nder
lease
e in

ontrol
ortran

 War,
anual

le who
retical
ses,
ains

cts.

ld of
 This
ntific
 lack

uality.
uding
entific
l
ulate
terface

es or

and to

:

Cited in [Wexelblat
1981].

The official name is
FORTRAN, although
the less obtrusive
form is commonly
used too.
34.3 FORTRAN
FORTRAN should virtually eliminate coding and debuggi

FORTRAN Preliminary Report, IBM, November 1954

The oldest surviving programming language, Fortran remains widely used for scie
computation. Shockingly perhaps for people who went on from it to such “structu
languages as Pascal, you can in fact get a little more O-O frills in Fortran, although
partly thanks to facilities that may be considered low-level and were intended for other

Some context

Fortran was initially designed, as a tool for programming the IBM 704, by an IBM team u
John Backus (later also instrumental in the description of Algol), with a first general re
in 1957. Fortran II followed, introducing subroutines. Fortran IV solidified the languag
1966 (Fortran III, 704-specific, was not widely distributed), and was standardized by ANSI.
The next revision process led to Fortran 77, actually approved in 1978, with better c
structures and some simplifications. An even longer revision yielded Fortran 90 and F
95, which have been diversely met and have not quite replaced their predecessors.

For most people with a computing science degree earned after the First World
Fortran is old hat, and they would rather be caught reading the Intel 4044 User’s M
than admit they know anything about FORMAT and arithmetic IF instructions. In reality,
however, quite a few programmed in Fortran at some stage, and many other peop
are programmers by any objective criterion, even if their business card reads “theo
physicist”, “applied mathematician”, “mechanical engineer” or even, in a few ca
“securities analyst”, use Fortran as their primary tool day in and day out. Fortran rem
in common use not only for maintaining old software but even for starting new proje

To the outsider it sometimes seems that scientific programming — the wor
Fortran — has remained aloof from much of the evolution in software engineering.
is partly true, partly not. The low level of the language, and the peculiar nature of scie
computing (software produced by people who, although scientists by training, often
formal software education), have resulted in some software of less than pristine q
But some of the best and most robust software also comes from that field, incl
advanced simulations of extremely complex processes and staggering tools for sci
visualization. Such products are no longer limited to delicate but small numerica
algorithms; like their counterparts in other application areas, they often manip
complex data structures, rely on database technology, include extensive user in
components. And, surprising as it may seem, they are still often written in Fortran.

The COMMON technique

A Fortran system is made of a main program and a number of routines (subroutin
functions). How can we provide a semblance of data abstraction?

The usual technique is to represent the data through a so-called COMMON block, a
Fortran mechanism for making data accessible to any routine that cares to want it,
implement each of the associated exported features (such as put etc. for stacks) through a
separate routine. Here for example is a sketch of a put routine for a stack of real numbers

§34.3 FORTRAN 1103

 test
n to

 that

ata of
h in a
 that

create
: you
 there
pe of
k

A C at the first
position on a line
introduces a
comment.
SUBROUTINE RPUT (X)
REAL X

C

C PUSH X ON TOP OF REAL STACK
C

COMMON /STREP/ TOP, STACK (2000)
INTEGER TOP
REAL STACK

C
TOP = TOP + 1
STACK (TOP) = X
RETURN

END

This version does not have any overflow control; clearly it should be updated to
for TOP going over the array size. (The next version will correct this.) The functio
return the top element is

INTEGER FUNCTION RITEM
C
C TOP ELEMENT OF REAL STACK
C

COMMON /STREP/ TOP, STACK (2000)
INTEGER TOP
REAL STACK

RITEM = STACK (TOP)

RETURN
END

which would similarly need to test for underflow (empty stack). REMOVE and other
features will follow the same pattern. What unites the different routines, making sure
they access the same data, is simply the name of the common block, STREP. (It is in fact
possible, in different routines, to pretend that the same common block contains d
different types and sizes if the total memory occupied somehow coincides, althoug
family-oriented book like this one it is probably preferable to avoid going into details
might not be entirely suitable for the younger members of the audience).

The limitations are obvious: this implementation describes one abstract object (one
particular stack of reals), not an abstract data type of which the software can
arbitrarily many instances at run time, as with a class. The Fortran world is very static
must dimension all the arrays (here to 2000, a number picked arbitrarily). Because
is no genericity, you should in principle declare a new set of routines for each ty
stack; hence the names RPUT and RITEM, where the R stands for Real. One can wor
around some of these problems, but not without considerable effort.

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.31104

ular
ndent
ers.

ther
ntry

y be
er than
 were

ents.
tine

7 must
tine
fine a
f the
 data

nipulate
 with a
h
 entry

lock
 allow
ts will
s.

it. The
 (stack
The multiple-entry subroutine technique

The COMMON-based technique, as you will have noted, violates the Linguistic Mod
Units principle. In a system’s modular structure, the routines are physically indepe
although conceptually related. You can all too easily update one and forget the oth

It is in fact possible to improve on this situation (without removing some of the o
limitations just listed) through a language trait legalized by Fortran 77: multiple e
points to a single routine.

This extension — which was probably introduced for different purposes, but ma
redeemed for the “good cause” — enables Fortran routines to have entry points oth
the normal routine header. Client routines may call these entry points as if they
autonomous routines, and the various entries may indeed have different argum
Calling an entry will start execution of the routine at the entry point. All entries of a rou
share the persistent data of the routine; a persistent data item, which in Fortran 7
appear in a SAVE directive, is one whose value is retained from one activation of a rou
to the next. Well, you see where we are driving: we can use this technique to de
module that encapsulates an abstract object, almost as we would in one o
encapsulation languages. In Ada, for example, we could write a package with a
structure declaration, such as a stack representation, and a set of routines that ma
these data. Here we will simulate the package with a subroutine, the data structure
set of declarations that we make persistent through a SAVE, and each Ada routine (eac
feature of the corresponding class in an O-O language) with an entry. Each such
must be followed by the corresponding instructions and a RETURN:

ENTRY (arguments)
… Instructions …
RETURN

so that the various entry-delimited blocks are disjoint: control never flows from one b
to the next. This is a restricted use of entry points, which in general are meant to
entering a routine at any point and then continuing in sequence. Also note that clien
never call the enclosing subroutine under its own name; they will only call the entrie

The main difference with the preceding COMMON-based solution is that all the
features of the underlying abstract data type now appear in the same syntactical un
second part of the facing page shows an example implementing an abstract object
of reals). The calls from a client will look like this:

LOGICAL OK
REAL X

C
OK = MAKE ()
OK = PUT (4.5)
OK = PUT (–7.88)
X = ITEM ()
OK = REMOVE ()
IF (EMPTY ()) A = B

§34.3 FORTRAN 1105

hat it
fined
Look at this text for just a second, from a distance; you could almost believe t
is the use of a class, or at least of an object, through its abstract, officially de
interface!

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.31106

A stack module
emulation in
Fortran
A Fortran routine and its entry points must be either all subroutines, or all functions. Here
since EMPTY and ITEM must be functions, all other entries are also declared as functions,
including MAKE whose result is useless.

C -- IMPLEMENTATION OF ONE
C -- ABSTRACT STACK OF REALS
C

 INTEGER FUNCTION RSTACK ()
PARAMETER (SIZE=1000)

C
C -- REPRESENTATION
C

REAL IMPL (SIZE)
INTEGER LAST
SAVE IMPL, LAST

C
C -- ENTRY POINT DECLARATIONS
C

LOGICAL MAKE
LOGICAL PUT
LOGICAL REMOVE
REAL ITEM
LOGICAL EMPTY

C
REAL X

C
C -- STACK CREATION
C

ENTRY MAKE ()
MAKE = .TRUE.
LAST = 0

RETURN
C
C -- PUSH AN ITEM
C

ENTRY PUT (X)
IF (LAST.LT. SIZE) THEN

PUT = .TRUE.
LAST = LAST + 1
IMPL (LAST) = X

ELSE
PUT = .FALSE.

END IF
RETURN

C -- REMOVE TOP ITEM
C

ENTRY REMOVE (X)
IF (LAST.NE. 0) THEN

REMOVE = .TRUE.
LAST = LAST – 1

ELSE
REMOVE = .FALSE.

END IF
RETURN

C
C -- TOP ITEM
C

ENTRY ITEM ()
IF (LAST.NE. 0) THEN

ITEM = IMPL (LAST)
ELSE

CALL ERROR
✽ ('ITEM: EMPTY STACK')

END IF
RETURN

C
C -- IS STACK EMPTY?
C

ENTRY EMPTY ()
EMPTY = (LAST.EQ. 0)

RETURN
C
END

§34.4 OBJECT-ORIENTED PROGRAMMING AND C 1107

lation
rtran.

sually
try of
ema to

t may
iable
 is no

an 77
ular
fore
rtran

an its

ed in
 in the
an be
e C so
s.

ating
ersion
. It was
n be
igh-
hine-
resses,
d as to

 the
ghties

joyed
utique
ustry,
This style of programming can be applied successfully to emulate the encapsu
techniques of Ada or Modula-2 in contexts where you have no choice but to use Fo
It suffers of course from stringent limitations:

• No internal calls are permitted: whereas routines in an object-oriented class u
rely on each other for their implementations, an entry call issued by another en
the same subroutine would be understood as an instance of recursion — anath
Fortran, and run-time disaster in many implementations.

• As noted, the mechanism is strictly static, supporting only one abstract object. I
be generalized to allow for a fixed number of objects (by transforming every var
into a one-dimensional array, and adding a dimension to every array). But there
portable support for dynamic object creation.

• In practice, it seems that some Fortran environments (two decades after Fortr
was published!) do not deal too well with multiple-entry subroutines; in partic
debuggers do not always know how to keep track of multiple entries. Be
applying this technique to a production development, check with the local Fo
guru to find out whether it is wise to rely on this facility in your environment.

• Finally, the very idea of hijacking a language mechanism for purposes other th
probable design objective raises dangers of confusion and errors.

34.4 OBJECT-ORIENTED PROGRAMMING AND C

Born in a log cabinet, C quickly rose to prominence. Although most people interest
both C and object technology have focused on the O-O extensions of C discussed
next chapter (C++, Objective-C, Java), it remains interesting to see how C itself c
made to emulate O-O concepts, if only to understand the techniques that have mad
useful as a stepping stone towards the implementation of more advanced language

Some context

C was designed at AT&T’s Bell Laboratories as a portable language for writing oper
systems. The first version of Unix had used assembly language, but a portable v
soon appeared necessary, and C was designed around 1970 to make it possible
derived from ideas found in BCPL, a language of the sixties which, like C, ca
mentioned in the same breath as “high-level”, “machine-oriented” and “portable”: h
level thanks to control structures comparable to those of Algol or Pascal; mac
oriented because you can manipulate data at the most elementary level, through add
pointers and bytes; portable because the machine-oriented concepts are so define
cover a wide variety of computer types.

C’s timing could not have been better. In the late seventies Unix became
operating system of choice for many universities, and C spread with it. Then in the ei
the microcomputer revolution burst out, and C was ready to serve as its lingua franca —
more scalable than Basic, more flexible than Pascal. At the same time Unix also en
some commercial success, and along with Unix still came C. In a few years, a bo
product became the dominant language in large segments of the computing ind
including much of where the action really was.

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.41108

ho do
mes a

ing
larly
oika,
de of
other
uce a
f the
d and
some
te of

ctive
 C++
 other

ple.
u can

pilers
tform
ation
ration

ing
volution
wn
 the
t code.

class,

, one
uage

table,
th as
hort
ay, for
 level)

[Kernighan 1978],
[Kernighan 1988].
Anyone interested in the progress of programming languages — even people w
not care too much for the language itself — has a political debt to C, and someti
technical one as well:

• Politically, C ended the fossilized situation that prevailed in the programm
language world until around 1980. No one in industry wanted to hear (particu
after the commercial failure of Algol) about anything else than the sacred tr
Fortran for science, Cobol for business and PL/I for true blue shops. Outsi
academic circles and a few R&D departments, any attempt at suggesting
solutions was met with as much enthusiasm as if it were a proposal to introd
third brand of Cola drink. C broke that mindset, making it acceptable to think o
programming language as something you choose from a reasonably broa
evolving catalog. (A few years later, C itself became so entrenched that in
circles the choices seemed to have gone from three to one, but it is the fa
successful subversives that they become the new Establishment.)

• Technically, the portability and machine-closeness of C have made it an attra
solution as a target language of compilers for higher-level languages. The first
and Objective-C implementations used this approach, and compilers for many
languages, often having no visible connection to C, have followed their exam
The advantages for the compiler writers and their users are: portability, since yo
have a single C-generating compiler for your language and use C com
(available nowadays for almost any computer architecture) to take care of pla
dependencies; efficiency, since you can rely on the extensive optimiz
techniques that have been implemented in good C compilers; and ease of integ
with ubiquitous C-based tools and components.

With time, the contradiction between the two views of C — high-level programm
language, and portable assembly language — has become more acute. Recent e
of the ANSI standard for C (first published in 1990, following the earlier version kno
as K&R from the authors of the first C book, Kernighan and Ritchie) have made
language more typed — and hence less convenient for its use as a compiler’s targe
It has even been announced that forthcoming versions will have a notion of
obscuring the separation from C++ and Java.

Although an O-O extension of C simpler than C++ and Java may be desirable
can wonder whether this evolution is the right one for C; a hybrid C-based O-O lang
will always remain a strange contraption, whereas the idea of a simple, por
universally available, efficiently compilable machine-oriented language, serving bo
a target language for high-level compilers and as a low-level tool for writing very s
routines to access operating system and machine-dependent facilities (that is to s
doing the same thing that assembly language used to do for C, only at the next
remains as useful as it ever was.

§34.4 OBJECT-ORIENTED PROGRAMMING AND C 1109

icted
nes in

iles
 file is
f the

ieves
f one
u can
.
een

Most
ng the
the

point
 data
itself,
tations,
 It is
r than
rface

s of C
sely

iently
er than

logy,
a little
view
of a
ields,
Basics

As with any other language, you can apply to C the “disciplinary” technique of restr
data access, requiring all uses of data structures to go through functions. (All routi
C are functions; procedures are viewed as functions with a “void” result type.)

Beyond this, the notion of file may serve to implement higher-level modules. F
are a C notion on the borderline between the language and the operating system. A
a compilation unit; it may contain a number of functions and some data. Some o
functions may be hidden from other files, and some made public. This ach
encapsulation: a file may contain all the elements pertaining to the implementation o
or more abstract objects, or an abstract data type. Thanks to this notion of file, yo
essentially reach the encapsulation language level in C, as if you had Ada or Modula-2
As compared to Ada, however, you will be missing genericity and the distinction betw
specification and implementation parts.

In practice, a commonly used C technique is rather averse to O-O principles.
C programs use “header files”, which describe shared data structures. Any file needi
data structures will gain access to them through an “include” directive (handled by
built-in C preprocessor) of the form

#include <header.h>

where header.h is the name of the header file (.h is the conventional suffix for such file
names). This is conceptually equivalent to copying the whole header file at the
where the directive appears, and allows the including file to access directly the
structure definitions of the header file. As a result the C tradition, if not the language
encourages client modules to access data structures through their physical represen
which clearly contradicts the principles of information hiding and data abstraction.
possible, however, to use header files in a more disciplined fashion, enforcing rathe
violating data abstraction; they can even help you go some way towards defining inte
modules in the style we studied for Ada in the preceding chapter.

Emulating objects

Beyond the encapsulation level, one of the more specialized and low-level feature
— the ability to manipulate pointers to functions — can be used to emulate fairly clo
some of the more advanced properties of a true O-O approach. Although it is suffic
delicate to suggest that its proper use is by compilers for higher-level languages rath
C programmers, it does deserve to be known.

In we take a superficial look at the notion of object as it exists in object techno
we might say that “every object has access to the operations applicable to it”. This is
naïve perhaps, but not altogether wrong conceptually. If, however, we take this
literally, we find that C directly supports the notion! It is possible for an instance
“structure type” of C (the equivalent of record types in Pascal) to contain, among its f
pointers to functions.

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.41110

e

rences
secret

int to

e

A C object with
function
references
For example, a C structure type REAL_STACK may be declared by the typ
definition

typedef struct
{

/∗ Exported features ∗/
void (∗remove) ();

void (∗put) ();
float (∗item) ();
BOOL (*empty) ();

/∗ Secret features (implementation) ∗/
int count;

float representation [MAXSIZE];
}
REAL_STACK;

The braces { } delimit the components of the structure type; float introduces real
numbers; procedures are declared as functions with a void result type; comments are
delimited by /∗ and ∗/. The other asterisks ∗ serve to de-reference pointers; the idea in
the practice of C programming is that you add enough of them until things seem to work,
and if not you can always try a & or two. If this still does not succeed, you will usually
find someone who knows what to do.

Here the last two components are an integer and an array; the others are refe
to functions. In the declaration as written, the comments about exported and
features apply to the emulated class, but everything is in fact available to clients.

Each instance of the type must be initialized so that the reference fields will po
appropriate functions. For example, if my_stack is a variable of this type and C_remove is
a stack popping function, you may assign to the remove field of the my_stack object a
reference to this function, as follows:

my_stack● remove = C_remove

In the class being emulated, feature remove has no argument. To enable th
C_remove function to access the appropriate stack object, you must declare it as

count

C_remove (…)
{

…
}

C_put (…)
{

…
}

C_item (…)
{

…
}

C_empty (…)
{

…
}

representation

put

remove
empty

item

CLASS
INSTANCE

§34.4 OBJECT-ORIENTED PROGRAMMING AND C 1111

d to

f the
s
bitive,

re the
e data
t it

 of one

e top

to go
y and

eful as
 and
a of

ances,

for
city,
d take
 have

Exercise E34.3, pag
1112.
C_remove (s)
REAL_STACK s;

{

… Implementation of remove operation …
}

so that a client may apply remove to a stack my_stack under the form

my_stack● remove (my_stack)

More generally, a routine rout which would have n arguments in the class will yield
a C function C_rout with n+1 arguments. An object-oriented routine call of the form

x● rout (arg1, arg2, …, argn)

will be emulated as

x● C_rout (x, arg1, arg2, …, argn)

Emulating classes

The preceding technique will work to a certain extent. It can even be extende
emulate inheritance.

But it is inapplicable to any serious development: as illustrated in the figure o
preceding page, it implies that every instance of every class physically contain
references to all the routines applicable to it. The space overhead would be prohi
especially with inheritance.

To bring this overhead down to an acceptable level, notice that the routines a
same for all instances of a class. So we may introduce for each class a run-tim
structure, the class descriptor, containing references to the routines; we can implemen
as a linked list or an array. The space requirements decrease dramatically: instead
pointer per routine per object, we can use one pointer per routine per class, plus one
pointer per object giving access to the class descriptor, as shown by the figure at th
of the following page.

Timewise we pay the price of an indirection: as shown in the figure, you have
through the descriptor to find the function applicable to an object. The space econom
the simplification seem well worth this penalty.

There is no secret about it: the technique just sketched is what has made C us
an implementation vehicle for object-oriented languages, starting with Objective-C
C++ in the early eighties. The ability to use function pointers, combined with the ide
grouping these pointers in a class descriptor shared by an arbitrary number of inst
yields the first step towards implementing O-O techniques.

This is only a first step, of course, and you must still find techniques
implementing inheritance (multiple inheritance in particular is not easy), generi
exceptions, assertions and dynamic binding. To explain how this can be done woul
another book. Let us, however, note one important property, deducible from what we

e

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §34.41112

-time

ial
bject
nly to
t

 to the

ulate
niques.
is, as
L and
asic

t an
lity of
level
hen the
se.

C objects
sharing a class
descriptor
seen so far. Implementing dynamic binding, regardless of the details, will require run
access to the type of each object, to find the proper variant of the feature f in a dynamically
bound call x ● f (…) (written here in O-O notation). In other words: in addition to its offic
fields, defined explicitly by the software developer through type declarations, each o
will need to carry an extra internal field, generated by the compiler and accessible o
the run-time system, indicating the type of the object. Well, with the approach jus
defined, we already have a possible implementation of this type field — as a pointer
class descriptor. This is the reason why the above figure uses the label type for such fields.

O-O C: an assessment

This discussion has shown that implementation techniques are available in C to em
object-oriented ideas. But it does not mean that programmers should use these tech
As with Fortran, the emulation does violence to the language. C’s main strength
noted, its availability as a “structured assembly language” (a successor to BCP
Wirth’s PL/360), portable, reasonably simple and efficiently interpreted. Its b
concepts are very far from those of object-oriented design.

The danger in trying to force an object-oriented peg into a C hole is to ge
inconsistent construction, impairing the software development process and the qua
the resulting products. Better use C for what it does well: small interfaces to low-
hardware or operating system facilities, and machine-generated target code; then w
time comes to apply object technology we should use a tool designed for that purpo

count

C_remove (…)
{

…
}

C_put (…)
{

…
}

C_item (…)
{

…
}C_empty (…)

{
…

}

representation

type

count

representation

type

count

representation

type

CLASS
DESCRIPTOR

put

remove
empty

item

CLASS INSTANCES

§34.5 BIBLIOGRAPHICAL NOTES 1113

on are

ted
 library
. Such
 anew

ran
ll by

he

 is a

jects
 the

o an

f this
of the

s to
34.5 BIBLIOGRAPHICAL NOTES

Techniques for writing Fortran packages based on the principles of data abstracti
described in [M 1982a]. They use routines sharing COMMON blocks, rather than
multiple-entry routines. They go further in their implementation of object-orien
concepts than the techniques described in this chapter, thanks to the use of specific
mechanisms that provides the equivalent of dynamically allocated class instances
mechanisms, however, require a significant investment, and will have to be ported
to each platform type.

I am indebted to Paul Dubois for pointing out that the multiple-entry Fort
technique, although definitely part of the standard, is not always supported we
current compilers.

[Cox 1990] (originally 1986) contains a discussion of C techniques for t
implementation of object-oriented concepts.

The basic reference on the history of classical programming languages
conference proceedings [Wexelblat 1981]; see [Knuth 1980] for the earliest efforts.

EXERCISES

E34.1 Graphics objects (for Fortran programmers)

Write a set of Fortran multiple-entry routines that implement basic graphics ob
(points, circles, polygons). For a specification of the abstractions involved and
associated operations, you may rely on the GKS graphics standard.

E34.2 Genericity (for C programmers)

How would you transform the C emulation of a “real stack” class declaration int
emulated generic declaration, easy to adapt to stacks of any type G rather than just float?

E34.3 Object-oriented programming in C (term project)

Design and implement a simple object-oriented extension of C using the ideas o
chapter. You may write either a pre-processor, translating an extended version
language into C, or a function package that does not change the language itself.

Approach the problem through three successive refinements:

• Implement first a mechanism allowing objects to carry their own reference
available routines.

• Then see how to factor routine references at the class level.

• Finally, study how to add single inheritance to the mechanism.

EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS §E34.31114

	34 34 Emulating object technology in non-O-O envir...
	34.1 LEVELS OF LANGUAGE SUPPORT
	34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL?
	Pascal proper
	Modular extensions of Pascal
	Object-oriented extensions of Pascal

	34.3 FORTRAN
	Some context
	The COMMON technique
	The multiple-entry subroutine technique
	A stack module emulation in Fortran

	34.4 OBJECT-ORIENTED PROGRAMMING AND C
	Some context
	Basics
	Emulating objects
	A C object with function references

	Emulating classes
	C objects sharing a class descriptor

	O-O C: an assessment

	34.5 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E34.1 Graphics objects (for Fortran programmers)
	E34.2 Genericity (for C programmers)
	E34.3 Object-oriented programming in C (term proje...

