
What Would You Do With
Your Own Google?

By Steve Yegge

Issue 17 
October 2011

2  ﻿

http://hacker.postmarkapp.com
https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=happymonkeys

http://hacker.postmarkapp.com

Curator
Lim Cheng Soon

Contributors
Rahul Bijlani
Steve Yegge
Kapil Kale
Purin Phanichphant
Yann Esposito
James O’Beirne
Sean Plott

Proofreader
Emily Griffin

Printer
MagCloud

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is the print magazine
version of Hacker News — news.ycombinator.
com, a social news website wildly popular
among programmers and startup founders. The
submission guidelines state that content can
be “anything that gratifies one’s intellectual
curiosity.” Every month, we select from the top
voted articles on Hacker News and print them
in magazine format.
For more, visit hackermonthly.com.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photograph: James Duncan Davidson

http://news.ycombinator.com
http://news.ycombinator.com
http://hackermonthly.com

5  ﻿

For links to the posts on Hacker News, visit hackermonthly.com/issue-17
All articles are reprinted with permission of their original author.

Contents
FEATURES

06 You Are Not Running Out of Time
By Rahul Bijlani

13 What Would You Do With Your Own Google
By Steve Yegge

STARTUPS

20 Don’t Burn Bridges
By Kapil kale

DESIGN

22 Design Secrets for Engineers
By Purin Phanichphant

PROGRAMMING

26 Learn Vim Progressively
By Yann Esposito

32 Coding Backwards
By James O’Beirne

SPECIAL

35 Competitive Game Design: The Marginal Advantage
By Sean Plott

Photo courtesy of O'Reilly Media and
James Duncan Davidson.

http://hackermonthly.com/issue-17.html

6  FEATURES

FEATURES

By Rahul Bijlani

You Are Not Running
Out of Time
How I Learned to Stop Worrying
and Began Enjoying Infinity

Illustration by Olgg (olgg.deviantart.com)

http://olgg.deviantart.com

  7

Illustration by Olgg (olgg.deviantart.com)

Early in his political career, Julius
Caesar is said to have wept
upon reading a biography of

Alexander the Great. When asked
why, he apparently said, “Do you think
I have not just cause to weep, when
I consider that Alexander at my age
had conquered so many nations, and I
have all this time done nothing that is
memorable!”

This story was seared in my memory
when I read it in high school, because
it spoke to my own search for achieve-
ment: I had read that at seventeen, Bill
Gates had already created his first suc-
cessful business venture. At the same
age, I hadn’t even figured out where to
start. It didn’t make me weep, but it
did make me worry.

And so, incredibly, at seventeen, I
genuinely wondered:

Was I running out of time?

It seems amusing now — but back
then I was deadly serious.

The Game
You know the feeling — the feeling
of being left behind in the race for
achievement. Of falling back in “the
game.” For some people, the game is
keeping up with the Joneses: marrying
a good catch, living in a nice house,
driving the right car, having a good
job, kids that do well at school. For
others, it is enjoying life’s pleasures:
the best vacations, the most enjoyable

parties, with the most exciting partiers.
Then there are people who are forever
pursuing harmony and peace in their
lives, resolving the discordant threads
one by one. And for some the game is
living up to their objective definition of
personal development.

For most, it is a combination with a
common thread: am I moving up in the
world at an acceptable pace, or am I
running out of time? Am I maximizing
my potential?

What that quickly meant to me was
that wasting time and opportunities
were criminal, with my own potential
achievements as victims that needed
to be rescued from the assault of lost
hours and non-productivity. It meant
becoming a workaholic. Bill Gates
probably felt that way once. Looking
back at his teenage years and his own
obsessive time spent with computers,
he said,

“It was hard to tear myself away from
a machine at which I could so unam-
biguously demonstrate success.”

I thought I was on the right track.

http://olgg.deviantart.com

8  FEATURES

”

A Moving Target
Ironically, when I started to cross some
of my own personal benchmarks, I
discovered that something was very
wrong — I kept moving the goalposts.

One counter-intuitive handicap of
playing the game is that with every
step you move forward, two things
happen:

1.	You discover that it’s possible to go
further than you previously knew.

2.	The people you are left playing
with are better at the game than
people left behind. In other words,
distinguishing yourself from your
peers gets tougher as your definition
of your peer group gets upgraded.
It must have been easy for Bill
Gates to stand out at Harvard, not
so much in Silicon Valley, where he
has constantly competed with Steve
Jobs, Larry Ellison and others master
games-men.

That’s why the “acceptable pace”
aspect of moving up in the world keeps
evolving as you discover greater and
greater opportunities. When Bill Gates

made his first million, it probably
felt extraordinary to him, a landmark
achievement. How about his second?
His 20th? His 100th? How did he
know he wasn’t running out of time
to achieve his true potential when he
made his first billion? If he was mea-
suring himself on market domination,
where would he go after 95% market
share was secured?

The questions I had got crazier, but
they seemed logical progressions of
understanding the game. For example,
geneticists say that one in twelve Asian
men is descended from Genghis Khan.
How did Julius Caesar feel about
not leaving behind his empire to his
progeny? Or Alexander for not having
any children at all? Does that mean
Genghis Khan played the game better?
How does that make Bill Gates feel
about marriage and kids? Does it make
sense for him to have a harem, for
example? Would it make sense for me
to have one? And one child showered
with attention, or the risk spread over
a couple hundred?

“How did Bill Gates know he wasn’t running
out of time to achieve his true potential
when he made his first billion?

  9

If you keep asking these ques-
tions, how can you not keep moving
the goalposts? How can you not get
exhausted, overwhelmed, or anxious?

The Journey
Eventually, I came across a thought
from “Zen and the Art of Motorcycle
Maintenance.” In the story, Pirsig, a
young man, goes mountain-climbing
with some elderly monks. He struggles
throughout, and eventually gives up,
while the monks easily continue to the
peak. What is apparent is that Pirsig,
focused as he is on the peak, is over-
whelmed by the climb, and continues
to lose his desire and strength with
every step. The monks, on the other
hand, used the peak only as a guide to
mark the direction of their climb; they
were more focused on the journey and
its enjoyment, and made it to the top
with ease.

This offered a valuable insight.
Maybe Bill Gates doesn’t sit and
ponder these definitions of suc-
cess. Maybe he keeps it simple — to
maximize his fortune and have a small,
loving family — and simply enjoys
programming. Maybe Alexander
simply enjoyed battles, and Stephen
Hawking loves physics. It would appear
that they would still be active in those
pursuits regardless of the relation of
their endeavors to material success.

This would also suggest that the
game, i.e. maximizing your potential,
and what you can achieve with your
time and resources, is best played if
you enjoy the pursuit of your goals. In
other words, if you are journey-based,
rather than destination-driven. Pirsig’s
monks probably just liked walking in
the mountains, maybe they were not
as wedded to the idea of standing on a
peak as they were to enjoying nature.

“Playing the game the right way
isn’t good enough. It needs to be
played for the right reason.”

10  FEATURES

Earlier, to me the game meant maxi-
mizing your time and potential to get
somewhere. Now it means maximizing
those things to enjoy the trip. That
would mean that Bill Gates’ measure
of success is how much he enjoyed his
day, not how much code he wrote, or
how much his businesses expanded.

A revolutionary thought! The point
of my life was to enjoy it to its poten-
tial, with goals to set the direction in
which I was headed.

This was my new definition of the
game.

And it meant it was impossible to run
out of time, because every day was a
brand new opportunity to play and win.

But that still begged the question:
how do you pick your destination?
Doesn’t it keep moving, every time
you re-evaluate the meaning of suc-
cess? The monks had a fixed peak in
the mountains they were climbing,
most of us don’t have the luxury.

The Right Question
The answer to these questions
occurred to me somewhat unexpect-
edly, through the best line in an other-
wise unremarkable movie.

In Wall Street 2, right after he has
cheated his own daughter out of her
trust fund, Gordon Gekko, Holly-
wood’s favorite bad guy, is confronted
by his future son-in-law, who chastises
him for his seemingly slavish devotion
to money. Gordon hears him out, and
responds,

“You never did get it, did you? It’s
never been about the money — it’s
about the game!”

While the audience shook its head in
disapproval, a lifetime’s worth of ques-
tions were answered for me in a flash,
and I wanted to jump up and cheer. I
had the answer: Gordon was playing
the game exactly right, and that’s why
he was exactly wrong!

“If you know what you want to build and
play the game to enjoy the journey, you
are probably on your way to the good life.”

  11

He wasn’t running out of time, and
he genuinely enjoyed every day of
playing the game. He didn’t even care
about the money, which he made and
lost and made back. And yet, he was
unhappy and it was clear that some-
thing was very, very wrong.

What I realized was that playing
the game the right way isn’t good
enough. It needs to be played for the
right reason: to build something, to see
something grow. Gordon wasn’t build-
ing anything at all, not even a family,
and his emptiness showed dramatically.

The Destination
The answer to how you pick the des-
tination: by asking yourself, what do I
want to see grow? What do I want to
build?

Even Bill Gates seems to have an
opinion on this. “I’m a great believer
that any tool that enhances communi-
cation has profound effects in terms of
how people can learn from each other,
and how they can achieve the kind of

freedoms that they’re interested in.”
And sure enough, he’s been building
these tools all his life. All the money he
made doing it? He’s giving it away. And
he’s enjoying that process, too!

Einstein wanted to build a theory
that unified the physics of very large
objects, like planets and the physics of
very small objects, like atoms. Did he
complete his project, before he died?
No, but he left a legacy and a founda-
tion for generations of future scientists
to keep building on. I doubt he felt like
he had run out of time.

A couple years ago, Steve Jobs built
a phone that he wanted to see exist,
and changed the world forever. Did
he really need the money? Or the
influence? Or the acclaim? Or was
he simply trying to create something,
and enjoying the process of seeing his
vision come to life?

All of these examples suffered
numerous setbacks as well as many
opportunities to retire early in life, but
they chose to keep moving because

“A wise man once said,
“happiness is the ultimate currency.””

12  FEATURES

of what they wanted to build. If you
know what you want to build and play
the game to enjoy the journey, you
are probably on your way to the good
life. All of a sudden, the “am I run-
ning out of time?” question becomes
meaningless.

Imagine building a house; would you
really want to rush it? Imagine you
faced an interruption, perhaps a snow-
storm halted construction for a week.
Would it make sense, or even be safe
or wise to continue at the same pace
during the storm? You wouldn’t feel
bad about the delay, you’d just wait till
you could resume. Or imagine you ran
out of funds. Would you abandon the
project because it was running behind,
or would you find a way to continue
in the future? If the foundations were
poured and then you were diverted for
a year, would you consider the con-
struction to have moved backwards, or
merely paused?

Now imagine building a family, or
a skill set, or any object or business.
Is it more important to do it rapidly
and compare it to others, or to build
something that will last and bring your
vision to life?

A Recipe For Life
These questions are also why com-
parisons don’t really make any sense.
Julius Caesar was weeping for all the
wrong reasons. Alexander and he had
different visions; they were looking
to build different things in different
times. Similarly, it was meaningless for
my seventeen-year-old self to measure
myself against a very different person’s
desires at a completely different time
and place. In doing so, I was denying
my own dreams, and trying to live
someone else’s. I was also assuming I
knew what their dreams were in the
first place. Maybe all Bill Gates was
trying to do at seventeen was impress
his high school crush. Maybe Alexan-
der was trying to live up to the dreams
of his father. The reality is that nobody
will ever know!

Work, spouse, kids, and family are
not items to be checked off a list. They
are directly based on the vision of the
life you are trying to build, and settling
based on a clock is merely a guarantee
that the vision is being compromised.
On the other hand, realizing what you
want to build, as opposed to solely
playing the game, may dramatically
impact the choices you make.

  13

In fact, answering the “what do I
want to see grow” question impacts all
decisions, from what to do on a Satur-
day afternoon, to whether you should
move to a different city for your work.
It makes short-term and long-term
destinations clear, and then all that is
left is to play the game, or maximize
your potential, to enjoy the journey of
getting there. It also explains why the
Gordon Gekkos and Julius Caesars of
the world, who play the game just for
its own sake, are generally unhappy
and unsuccessful in their own eyes,
even though they appear to be doing
everything right.

A wise man once said, “happiness
is the ultimate currency.” The phrase
resonated with me, but “the game”
didn’t help me maximize the currency
that mattered most. Now however, at
thirty, I think I have the ultimate busi-
ness plan, and nobody is running out of
time any time soon. n

Rahul Bijlani brokers, owns and operates
hotels. He’s also part of a few technology start-
ups, including Spinofix and YB Intel. He still
does a little coding in his spare time.

Reprinted with permission of the original author. First appeared in hn.my/infinity (rahulbijlani.com)

http://hn.my/infinity

14  FEATURES

  15

What Would
You Do With
Your Own
Google By Steve Yegge

16  FEATURES

I’m not really a data guy. For the
last four years or so, I’ve been
working on stuff that I love.
I want you to remember this,

though — this is really important: you
don’t want to put out mediocre work,
and you don’t want to feel mediocre
about what you’re doing. Surprisingly,
we don’t always do this, though.

Right now, I work at Google, and
for the last four years at Google (I’ve
been there for six and a half total) I’ve
been working on compiler technol-
ogy, because I had this passion around
developer tools and I’ve been working
on static program analysis. So, when
you take Google’s source code and
you treat it as data, you take all of the
world’s open source code and you
treat it as data, it’s actually not a very
big data set. It’s a couple of dozen
terabytes, couple of hundred terabytes,
but it’s pretty tiny compared to the big
data sets at Google.

I’ve had scaling problems, but I’m
not really a data guy, per se. But, gosh,
I work with people who do have data
problems. I have to say, just in passing,
Google is an awesome place to work. I
went to work for Google actually, spe-
cifically, because I think that Google is
trying to change the world, and they’re
serious about it. I kind of thought this
when I went there six and a half years
ago. And after six and a half years,
Google is the only one trying to defend
net neutrality, trying to open up China,

when nobody else is — I mean that is
pretty audacious.

They haven’t always been success-
ful in their goals. They’re really trying
to change the world, but they have
big scaling problems. Sometimes it
feels like it’s their biggest problem.
But it’s funny, because scaling is sort
of a periodic problem. You need to
scale, because you’ve got a problem to
solve, and then it’s good enough for a
while, and you can focus on problem
domains. Then it becomes a problem
again as you grow, just like software
engineering scaling has been a prob-
lem kind of on and off. We’re actually
pretty good at it right now, whereas ten
or fifteen years ago, we were building
software systems that we didn’t under-
stand. So, we knew we needed to step
back and get some new abstractions.

Anyway, before I was at Google, I
was at Amazon.com, another company
that’s trying to change the world. Jeff
Bezos has “grand visions” — it’s another
company with huge scaling problems.
Now they are also awesome. It’s kind
of a different flavor of awesome than
Google. They’re pretty open about
their work environment being very
frugal, because their vision is to pass
savings on to customers, but I wasn’t
there for the work environment. I
wouldn’t have stayed there six and
a half years. They have great people
there, and they have tremendous scal-
ing problems.

  17

Scaling really is too often the big-
gest problem. Why? Because these
companies are fundamentally relational
and transactional. I know what you’re
thinking. Nobody likes relational any-
more, but they have to make it scale.
And they succeed at it. Google also has
some transactional data. Google uses
MySQL for their ads system, and it’s
really, really hard to scale, but you can
make it happen.

Again, Amazon is a company that’s
not mercenary. They’re trying to make
money. And that’s good, because
money is the fuel for innovation. But
they’re doing it with principle. The
retail thing that Amazon did was sort
of like a means to an end, just like scal-
ing is a means to an end. Now they’re
doing cloud computing. Bezos has got
big plans just like Larry and Sergey. So,
what about the rest of us? What are we
doing right now? What are we focused
on?

Well, I want to look at one of our sister
industries: Hollywood. It’s not exactly
been a banner year for them, has it? You
might have noticed all the movies suck
this year — 28 sequels and comic book
movies. Why is this? Well, we know the
reasons. It’s human nature. It’s corporate
greed, companies being mercenary,
taking advantage of consumer apathy.
If we keep paying to go see movies like
“Scream 4” and “Hangover 2” and “Trans-
former 17” and whatever, then they’ll
keep making them.

And the same thing’s going on in the
game industry. Game industry has hun-
dreds and hundreds of titles coming
out. Maybe you like video games, or
you have kids who like video games.
You have friends who like video games
and they’re always complaining that
there aren’t any good games — but
there are so many good games! There
are talented people working on them,
great animators and great cinematog-
raphers and sound people. Yet most of
the games are pretty bad. Again, it’s
because people keep paying for them,
so people keep making them.

“Hollywood calls them auteurs, but
what they really are is people with
principles who are making money. ”

18  FEATURES

Yeah, except for these guys. Holly-
wood calls them auteurs, but what they
really are is people with principles who
are making money. Either the prin-
ciples are stretching you a little bit and
making you think about philosophy
and the nature of consciousness while
you’re getting entertained, or they’re
bringing up social issues like trashing
the world in Wall-E, or they’re putting
some serious history into their game
experience like Rock Star. Whatever
it is that they’re passionate about, it
really bleeds through. It shows through
in their final product, and they’re
making everyone else look bad. They’re
also showing that you can still make
a ton of money with principle, and
Jeff Bezos and Steve Jobs fall into this
category. Anybody can have principle.

Bill Gates does today. He’s sort of
atoning for his past sins. Did he have
principle when he was at the helm at
Microsoft? No, obviously, and now he
knows well, he probably didn’t need to
be that way.

Is social networking principled?
What developer or entrepreneur is not
working on something that’s kind of
related to a social network? Seriously.
Well, it’s fun and also obviously makes
money. You can make a buck with cat
pictures.

Social networks they have a purpose,
and Facebook’s purpose is whatever
they make easiest, because that’s what
people are going to do with it. Face-
book and Facebook clones, if anybody’s
making any of those, are really good
at sharing cat pictures. Now, they can
have secondary benefits to humanity,
like for example, helping out with the
information flow into and out of the
Middle East. But that’s not what they
were designed for, so that’s not what
people are using it for, and it winds
up being crap just like Hollywood’s
movies.

So, here’s what happens over time.
As you get older, you start getting
interested in issues broader than cat
pictures. I’m not saying that you’re
not interested in socializing anymore.

“Here’s an interesting problem that we
could be working on, if we were literate:
the Human Genome Project.”

  19

Obviously, you want to hang out with
old people. But you also get interested
in why they haven’t cured heart
disease yet. As you gain wealth and if
you’re not a total mercenary, then you
start getting interested in charity and
helping people who are needy. You
start getting interested in politics and
all these other kind of hard problems,
and a lot of them interestingly are data
mining problems.

Well, the problem is, by the time
you’re old, it’s too late. What you
want is a time machine, so you can
go back and tell yourself, “Hey, man,
if you had studied some math, then
you could probably work on some of
the hard problems like signal process-
ing.” Voice recognition is an important
problem, because it’s an accessibility
thing. It’s putting blind people and
deaf people in the same position as
us. Natural language processing: same
thing. Genes, viruses, there is a bunch
of problems out there that have the
common characteristic that they’re not
just computing problems. So, they’re

a little harder, because you’ve got to
know a little bit of math, a little bit
of statistics. You don’t have to be Hal
Varian. You just have to be fluent. You
have to be literate.

Well, here’s an interesting prob-
lem that we could be working on, if
we were literate. Have you thought
about this project at all? The Human
Genome Project, what is it? The
genome sequence that they’ve got now
is the compiled binary to the source
code for the human body, for life, the
mechanics of life. If we had the source
code in our hands, that would be the
cure for cancer right there. That’d be
the cure for all the viruses — all of
them. That would keep antibiotics
ahead of bacteria. Innumerable bene-
fits. We know this. You could also hack
things, or grow your own tattoo! It will
be an inflection point in human history
— and it’s a data mining problem.

“If we just focus on scaling,
we’re going to scale up FarmVille.
It’s going to be Farm Planet.”

20  FEATURES

Now, you may already be good at
data mining. There was a dude sitting
next to me at dinner last night named
Jay who was a freaking superhero. He
is a thousand times smarter than I am.
I brought up this project, and he says,
“I’m not really a bio-informatics guy,
but you know…” and he scribbles on
the back of a napkin how you can set
this up: you get a benevolent billion-
aire to set up a treatment system in a
third-world country and start gathering
data points, so that you can analyze the
effectiveness of the treatments. What
we’re trying to do with the compiled
binary is reverse engineer the source
code by data mining it against treat-
ments. If you get that data set, then
we’re there.

He’s like, “Yeah, but I’m not really
a bio-informatics guy.” What’s he
working on? Cat pictures. Now he
was like a closet superhero. The dude
sitting next to him was wearing a cape.
I’m not making this up. All right. He
wasn’t even trying to hide his super-
hero status. You guys are superheroes,
and we’re all working on, well, crap.

Most of us anyway. Now, if we started
focusing on these problems, (I know it
sounds kind of crazy) we would actu-
ally have a chance at solving them.

If we just focus on scaling, we’re
going to scale up FarmVille. It’s going
to be Farm Planet, and I’m not saying
FarmVille doesn’t have value. What’s
needed here is pretty obvious: it’s
a culture change. We all need to be
auteurs. We need to start buckling
down now and preparing for getting
old and getting interested in medicine
and so on. Start studying our math.
Start paying attention to data science.
It’s not a specialty discipline anymore.
It’s a generalist discipline. It should be.

Even at Google, where there are a
lot of people who know a lot about
data mining, it’s still kind of the haves
and the have-nots, like me, who don’t
know it. Well, O’Reilly, amazingly
enough, seems to be actually trying to
change the world with this conven-
tion and with Strata. I mean, they’re
actually saying, “Hey, gosh, look data
mining, machine learning, data analysis,
math.” Well, okay, if we want a culture

“You’re only one step away from
solving hard problems, important
problems, world-changing problems.”

  21

change, I’ve got a challenge. I’ve got a
challenge for O’Reilly and a challenge
for us. The challenge for O’Reilly is to
publish a bunch of books on math for
programmers, because O’Reilly’s got a
formula for making information acces-
sible. Well, let’s go out on a limb. Let’s
do physics. Let’s do bio-informatics.
Why not? Let’s give them two years to
publish these things. Then in that two
year period, after they’ve published
them all, we will agree to buy them
and read them and prepare ourselves
to solve important problems five years
from now — two years from now.

Whoa, I meant two seconds. They
published them already. Bioinformatics,
PERL Computer Skills, Mastering PERL
for Bioinformatics: an O’Reilly bioin-
formatics book. A lot of these came
out just in the last two or three years.
Hey, I didn’t even know they existed,
but something’s going on here. I’m kind
of reading between the lines. I’m kind
of making some educated guesses, but
I know that these books aren’t selling.
So why are they publishing them? It’s
because Tim and his team are trying to
change the world by affecting a culture
change.

So the ball is totally in our court, and
what’s the ball doing? Well, the ball is
apparently doing iPad. This is what’s
popular right now on O’Reilly’s site.
I just took this screen shot yesterday.
Head First, that’s kind of mathy.

Obviously, O’Reilly is principled
here, because if they were just trying
to make a buck, they’d be throwing
OSCON iPad wouldn’t they? They
would, and they probably talked about
it at length. But no, they’re doing
OSCON Data.

So, why don’t we just effect a culture
change here? Yeah, I’m not saying drop
what we’re doing right now. I mean,
the world needs cat pictures. But what
if we all started studying data mining
and so on? And if you already know
that stuff really well, then shame on
you, because you’re only one step away
from solving hard problems, important
problems, world-changing problems.
You’ve just got to learn the domain
knowledge. You don’t need to learn it
overnight.

I did compiler stuff, static program
analysis at Google. I didn’t know any
of it four years ago. Nothing. I had a
compiler class in school. Now, I’m not
like Walter Bright or James Gosling,
but I know compilers pretty well. I’m
pretty proficient with them, and I can
solve the problems that I need to solve.
Same thing goes for
this.

22  FEATURES

So, here’s the funny thing. I had a
mid-life crisis instantly after writing
this. I went, “Oh God, I’m not follow-
ing my own advice.” So I dragged my
math books down from upstairs and
put them on the table here, and my
wife and I are having study hour every
day from now on.

Moreover, this is part of my mid-life
crisis, and this is going to come as a
real shock to my boss. I had just signed
up to work on a cat picture project. I
told everyone I was going to do it, too,
senior VPs and blah, blah, blah, blah.
I’m sure you can guess what it was
related to. I officially quit that job on
national TV. So, you might say that I’ve
got a little bit of skin in this game. I’m
going to learn this stuff, so that five
years from now — or three years from
now, however long it takes — when
the systems are scalable enough to
handle the Human Genome Project
(because they are, the thing practically
fits in your pocket) and all of the other
hard problems that we can solve with
data mining, I will be ready. And I
hope you are there with me. n

Steve Yegge is a Staff Software Engineer at
Google. Prior to Google he worked at Amazon.
com as a Senior Software Development Man-
ager. He earned his Computer Science degree
from the University of Washington, and has
over twenty years of experience as a software
developer, dev manager, programmer hobby-
ist and tech blogger. Steve’s current interests
include language analysis, GNU Emacs and
GNU Lilypond.

Published with permission of the original author. Originally presented at OSCON Data 2011 [hn.my/oscon].
Photo courtesy of O'Reilly Media and James Duncan Davidson.

http://hn.my/oscon

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

Published with permission of the original author. Originally presented at OSCON Data 2011 [hn.my/oscon].
Photo courtesy of O'Reilly Media and James Duncan Davidson.

http://cloudkick.com
http://hn.my/oscon

24  STARTUPS

STARTUPS

By Kapil kale

Don’t Burn Bridges

Networking in Silicon
Valley should be the
easiest thing in the
world. The Valley

thrives on a free exchange of new
ideas, so people always want to meet
other people who might have interest-
ing ideas or connections. As a result,
people I hardly know introduce me to
people they hardly know. Sometimes I
get cold-emailed.

On general principle, and since the
numbers aren’t currently overwhelm-
ing, I’ll take any introduction that
comes my way. Most of the time, I’ll
go out of my way to help those people
out. Most founders, YCombinator or
not, would do the same.

However, about half of people I’m
introduced to do something that makes
me not want to help them out. I’ve
been through enough of these intro
cycles now that I’ve started to discern
four distinct patterns. Here’s what they
are, and how to avoid them:

➊ Flaking on meetings
Last week, a kind-of acquaintance
asked me for some advice on his
fledgling startup, and wanted to see if
I’d meet with him to discuss. I offered
to have lunch with him the following
week. That was the last I heard from
him.

A 4-Step Guide to Networking in Silicon Valley

  25

Radio-silence isn’t the worst thing in
the world. I’ll still take the meeting in
a couple weeks if the founder does end
up getting back in touch. But I’ll be
far less likely to help that person, since
he’s going to have to really impress me
to make up for my current impression
that he’s a flake.

➋ Forgetting to do follow-ups
One of my VC friends introduced me
to a startup that he believed had a lot
of potential. I took a 45 minute call
with their main guy, who seemed full
of energy and excited to get things
done. I told him that they should apply
to YCombinator, and offered to men-
tion their application specifically to a
partner to make sure it got a close look,
under the condition that I could review
it first. This is the type of thing I would
have killed for before I was in YC.

Unfortunately, that founder never
sent me his application.

A better networker would have
sent me a draft the next day. Or even
politely sent an email later that night
that said “We decided not to apply.
Thanks again for the feedback.” But I
won’t ever recommend this founder
for YC again.

➌ Being transactional
Earlier this year I was introduced to
another founder working on a music
startup. Their team needed help with
their YC application, so I spent 2-3
hours helping them revise and improve
it. After I sent them a last piece of
feedback about their video, I never
heard back from them again.

When I invest time in others, I like
to hear how things go. In this case, I
felt used. I have little interest in help-
ing this founder out again. For us, we
made sure that upon launch we sent
out GiftRockets to people who helped
us out.

➍ Not writing thank you notes
One startup founder cold-emailed me
after our site launched, and asked me a
couple questions. After I responded, he
sent me a thank you email for my time.
I later took an hour-long call with him
to give startup advice. I’d be happy to
introduce him to anyone I know. And
I’ve never even met the guy.

I’m never peeved if someone doesn’t
write a thank you note, but I’m consis-
tently impressed when someone does.
Thank you notes after meetings are
rare. At GiftRocket, we took a page out
of the Wufoo book and started giving
t-shirts to the people who helped us
out. It’s great for our brand, and it lets
people know that we really appreci-
ated their time.

26  DESIGN

Everyone in the Valley is busy, and
I’m sure I’ve violated my own rules
several times. But by just being a little
bit thoughtful about your interac-
tions with the people you meet in the
startup scene, you can easily avoid
burning what might be some very
important bridges. n

Kapil is a co-founder of GiftRocket [giftrocket.
com], which was in the YCW11 class. He used
to be a management consultant, and before
that he went to Dartmouth College and got a
degree in Economics.

DESIGN

Reprinted with permission of the original author.
First appeared in hn.my/bridges (giftrocket.com)

http://giftrocket.com
http://giftrocket.com
http://hn.my/bridges

  27

DESIGN

By Purin Phanichphant

Design Secrets
for Engineers

If you are a designer like me,
you must be asked on a regular
basis to “make it look pretty.”
The request can stroke your

designer ego, making you feel like a
design rockstar with super powers
to make this world a more beautiful
place. This is especially true at startups,
where you are one of the few, maybe
the only designer there. However, it
can also be really annoying — almost
degrading at times. Thoughts like “why
the hell can’t engineers do this on their
own? It’s all common sense” always
go through my head. If only engineers
knew how to do visual design, design-
ers would have more time to focus on
cooler, more exciting problems like
future product concepts.

And if you are an engineer, you
might wonder how designers pull off
their tricks (and why they’re in such
huge demand right now). Is it genetic?

Do design schools teach them top
secret design tips? Or did they make
a deal with the devil to get designers’
eyes in exchange for their souls?

Well, I’m here to bring you some
good news: engineers don’t need to
drink unicorn blood just to be good
at visual design. I am a strong believer
that good design is a highly learnable
skill, like riding a bike, playing a piano,
or learning Spanish. If you practice
often enough, you’ll become better and
better at it, and once you’ve got the
hang of it, you’ll never go back. I can
say this because I, too, once sucked at
design. But then I learned a few tips
from my graphic design friends, and a
few years later, I could proudly say that
I was a design expert. Today, I want to
share these not-so-secret tips with you.
The first five are more specific to visual
design while the next three are geared
towards interaction design.

Bad example: this is what happens when you
try to fill in your white space with information.

28  DESIGN

➊ Line things up.

This rule is the mother of all graphic
design rules. Unless you’re recreating
the Mona Lisa on MS Paint, please line
things up. Our brains just like it better
that way. The slightly more advanced
version of lining things up is called the
grid system, which is essentially lining
more things up. Kindergarten kids can
do it and so can you.

➋ Design the white space.

When you’re in an elevator with
15 other people, it’s not so easy to
breathe…especially when someone
farts. When you design a layout or
UI, try not to jam too many elements
into a page; it increases the chance of
having one of the elements stink the
whole thing up. Leave some white
space for the eye to breathe. I often
find myself designing the space in
between elements, making sure ele-
ments aren’t too far apart or too close
together.

Good example: beautiful sites and apps usually
have underlying grid behind them.

  29

➌ Use designer fonts.

In the design world, there are good
fonts and bad fonts. Good fonts like
Gotham, Trade Gothic Bold Con-
densed or Garamond please your eyes
and make you feel like you’re having
a frosty cold mojito on the beach.
Bad fonts, on the other hand, make
us designers cringe and feel like we’ve
vomited from our eyes. Try to avoid
super default fonts like Impact, Curlz,
or Comic Sans, to name a few. If you
must use a preloaded font, Helvetica
and Georgia are two exceptions —
they’re classic and restrained enough
to be inoffensive. If you want designer
fonts that play nicely with the web,
try Typekit. Oh…and please don’t use
WordArt. Ever.

➍ Keep it consistent.

Use no more than two fonts and three
colors in your designs. And keep them
consistent throughout your sketches.
Each time something changes, our
brain has to go “whaaaa?” for a moment
before figuring things out, so let’s
give our brains a rest and keep things
consistent. Also, let’s try not to stretch
logos or images. Imagine if someone
took your face and stretched it hori-
zontally by 5%. Still happy with the
way you look?

Good example: pick a few and run with it.
Bad example: use these fonts and designers will
make fun of you.

30  DESIGN

➎ Keep visual hierarchy in check.

I don’t know about you, but when
I cook, I always do a little tasting
from time to time to make sure that
my seasoning is on track. When you
design, check yourself from time to
time. Squint your eyes every now and
then and look at the screen. What
pops out at you first? What do you see
second? Third? Walk away from the
screen, and then look at it from 10 feet
away. Believe it or not, designers and
architects do this all the time to keep
things in perspective (literally). It’s a
good way to keep you from getting lost
in little details or adding unnecessary
buttons to the screen.

➏ Set priorities and stick to them.

“Let’s put a help button there just in
case the user is curious what’s going
on. Oh…and let’s make the button
look a little more like a button. And
before I forget, can you make that tab
pop a bit more?” Sometimes, I wish
there was a robot that would bitchslap
the one asshole in the room who
keeps bringing up corner cases (cases
that apply to only one very specific
scenario). Until this bitchslap machine
is built, however, we can get by with a
list of what’s important and what isn’t,
backed by some data if possible. It will
save you time and energy, and shut that
asshole up.

Reprinted with permission of the original author.
First appeared in hn.my/secrets (pulse.me)

Good example: squint your eyes. What do
you see?

Bad example: don’t allow this to happen in
your product.

http://hn.my/secrets

  31

Reprinted with permission of the original author.
First appeared in hn.my/secrets (pulse.me)

➐ Check the Physicality of the UI.

A lot of what makes a UI successful is
how familiar it seems to users when
they first encounter it. Most users
don’t have exhaustive experience with
mobile apps, and will assume that they
follow the same rules as the real world.
When you’re making design decisions,
ask yourself what sorts of physical
analogs each element has. If the UI
was to be re-created in the real world,
would it make sense?

➑ Use Keynote.

I love Keynote. I don’t know how else I
would have come this far in life without
this magical program that lines things
up automatically and makes it easy to
make things look good. Beyond just
making slide decks, Keynote is a great
way to mock up UI flows. Do a quick
web search for “Keynote mockup tem-
plates” and you’ll find a number of great
starting points for building good-looking
prototype apps quickly and easily.

 And remember to listen to others!
It’s natural that confidence comes with
the thought that you’re right and every
one else is wrong. But just admit it:
you’re not always right.

Chances are you probably won’t
become a design supreme being over
night. It takes some practice and con-
fidence that you’ll get good at it. Ira
Glass from NPR sums it up pretty well
[hn.my/ira].

Just keep repeating “I, too, can be
a designer” — eventually you will
become one. n

Though at different times, he’s masquer-
aded as a Hollywood star, a part-time
prince, and a buddhist monk, Purin has
always been a designer at heart. He draws
inspiration from his native Thailand,
where fun, play, and lightheartedness
are a way of life. Purin’s fetish for mecha-
nisms, buttons, knobs, and displays has
led him to design a number of playful and
interactive creations. And bikes.

Best. Prototyping. Tool. Ever.WTF example: imagine your interface lived in
a little box. Try not to make impossible things
happen.

http://hn.my/secrets
http://hn.my/ira

32  PROGRAMMING

PROGRAMMING

By Yann Esposito

Learn Vim Progressively

Want to learn Vim (the
best text editor known to
human kind) the fastest

way possible. Start by learning the
minimum to survive, and then slowly
integrate all tricks.

Vim: the 6 Billion Dollar Editor

Better, Stronger, Faster.

Learn Vim and it will be your last text
editor. There is no better text editor I
know. It’s hard to learn, but incredible
to use.

I suggest you to learn it in 4 steps:

1. Survive

2. Feel comfortable

3. Feel Better, Stronger, Faster

4. Use Vim Superpowers

By the end of this journey, you’ll
become a Vim superstar.

But before we start, just a warning.
Learning Vim will be painful at first.
It will take time. It will be a lot like
playing a musical instrument. Don’t
expect to be efficient with Vim in 3
days. In fact it will certainly take at
least 2 weeks.

1st Level – Survive

1. Install Vim

2. Launch Vim

3. DO NOTHING! Read.

In a standard editor, typing on the
keyboard is enough to write something
and see it on the screen. Not this time.
Vim is in Normal mode. Let’s get in
Insert mode. Type on the letter i.

You should feel a bit better. You can
type letters like in a standard notepad.
To get back in Normal mode just tap
the ESC key.

  33

You know how to switch between
Insert and Normal mode. And now,
the list of commands you can use in
Normal mode to survive:

■■ i → Insert mode. Type ESC to return
to Normal mode.

■■ x → Delete the char under the
cursor

■■ :wq → Save and Quit (:w save, :q
quit)

■■ dd → Delete (and copy) current line

■■ p → Paste

Recommended:

■■ hjkl (highly recommended but not
mandatory) → basic cursor move
(←↓↑→).
Hint: j looks like a down arrow.

■■ :help <command> → Show help
about <command>, you can start
using :help without anything else.

Only 5 commands. This is very few
to start. Once these commands start
to become natural (may be after 1 full
day), you should go on level 2.

But before, just a little remark on
Normal mode. In standard editors, to
copy you have to use the Ctrl key
(Ctrl-c generally). In fact, when you
press Ctrl, it is as if all your keys
change meaning. With Vim in Normal
mode, it is as if your Ctrl key is always
being pressed.

A last word about notations:

■■ instead of writing Ctrl-λ, I’ll write
<C-λ>.

■■ commands starting with : must end
with <enter>. For example, when I
write :q , it means :q<enter>.

2nd Level – Feel Comfortable
You know the commands required for
survival. It’s time to learn a few more. I
suggest:

Insert mode variations

■■ a → insert after the cursor

■■ o → insert a new line after the
current one

■■ O → insert a new line before the
current one

■■ cw → replace from the cursor to
the end the word

Basic moves

■■ 0 → go to first column

■■ ^ → go to first non-blank character
of the line

■■ $ → go to the end of line

■■ g_ → go to the last non-blank
character of line

■■ /pattern → search for pattern

34  PROGRAMMING

Copy/Paste

■■ P → paste before, remember p is
paste after current position.

■■ yy → copy current line, easier but
equivalent to ddP

Undo/Redo

■■ u → undo

■■ <C-r> → redo

Load/Save/Quit/Change File (Buffer)

■■ :e <path/to/file> → open

■■ :w → save

■■ :saveas <path/to/file> → save to
<path/to/file>

■■ :x , ZZ or :wq → save and quit (:x
only save if necessary)

■■ :q! → quit without saving, also :qa!
even if there are some modified
hidden buffers.

■■ :bn (resp. :bp) → show next (resp.
previous) file (buffer)

Take the time to integrate all of these
commands. Once you are done, you
should be able to do everything you
can do on other editors. But until then,
it is a bit awkward. Follow me to the
next level and you’ll see why.

3rd Level – Better. Stronger. Faster.
Congratulation on getting this far! We
can start the interesting stuff. At level
3, we’ll only talk about commands
which are compatible with the old vi.

Better
Let’s look at how Vim could help you
to repeat yourself:

1. . → (dot) will repeat the last
command,

2. N<command> → will do the com-
mand N times.

Some examples, open a file and type:

■■ 2dd → will delete 2 lines

■■ 3p → will paste the text 3 times

■■ 100idesu [ESC] → will write “desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu desu desu desu
desu desu desu”

■■ . → Just after the last command
will write again the 100 “desu.”

■■ 3. → Will write 3 “desu” (and not
300, how clever).

  35

Stronger
Knowing how to move efficiently with
Vim is very important. Don’t skip this
section.

1. NG → Go to line N

2. gg → shortcut for 1G, go to the start
of the file

3. G → Go to last line

4. Word moves:

■■ w → go to the start of the following
word,

■■ e → go to the end of this word.

By default, words are composed of
a letter and an underscore character.
Let’s call a WORD a group of letter
separated by blank characters. If you
want to consider WORDS, then just
use uppercases:

■■ W → go to the start of the following
WORD,

■■ E → go to the end of this WORD.

Now let’s talk about very efficient
moves:

■■ % → Go to corresponding (, {, [.

■■ * (resp. #) → go to next (resp.
previous) occurrence of the word
under the cursor

Believe me, the last three commands
are gold.

Faster
Remember about the importance of vi
moves? Here is the reason. Most com-
mands can be used with the following
general format:

<start position><command><end
position>

For example : 0y$ means

■■ 0 → go to the beginning of this line

■■ y → yank from here

■■ $ → up to the end of this line

We also can do things like ye, yank
from here to the end of the word. But
also y2/foo, yank up to the second
occurrence of “foo.”

But what was true for y (yank),
is also true for d (delete), v (visual
select),gU (uppercase), gu (lowercase),
etc…

36  PROGRAMMING

4th Level – Vim Superpowers
With all the previous commands you
should feel comfortable using Vim. But
now, here are the killer features. Some
of these features were the reason I
started to use Vim.

Move on current line: 0 ^ $ g_ f F t T
, ;

■■ 0 → go to column 0

■■ ^ → go to first character on the line

■■ $ → go to the last column

■■ g_ → go to the last character on the
line

■■ fa → go to next occurrence of the
letter a on the line. , (resp. ;) will
seek for the next (resp. previous)
occurrence.

■■ t, → go just before the character ,.

■■ 3fa → search the 3rd occurrence of
a on this line.

■■ F and T → like f and t but
backward.

A useful tip is: dt" → remove every-
thing until the ".

Zone selection <action>a<object> or
<action>i<object>

These commands can only be used in
visual mode. But they are very power-
ful. Their main pattern is:

<action>a<object> and
<action>i<object>

Where “action” can be any action, for
example, d (delete), y (yank), v (select
in visual mode). And “object” can be: w
a word, W a WORD (extended word),
s a sentence, p a paragraph, and also,
natural character such as ", ',), },].

Suppose the cursor is on the first o of
(map (+) ("foo"))

■■ vi" → will select foo

■■ va" → will select "foo"

■■ vi) → will select "foo"

■■ va) → will select ("foo")

■■ v2i) → will select
map (+) ("foo")

■■ v2a) → will select
(map (+) ("foo"))

  37

Select rectangular blocks: <C-v>
Rectangular blocks are very useful for
commenting on many lines of code.
Typically: 0<C-v><C-d>I-- [ESC]

■■ ^ → go to start of the line

■■ <C-v> → Start block selection

■■ <C-d> → move down (could also be
jjj or %, etc…)

■■ I-- [ESC] → write -- to comment
on each line

Note on windows you might have
to use <C-q> instead of <C-v> if your
clipboard is not empty.

Completion: <C-n> and <C-p>
In Insert mode, just type the start of
a word, then type <C-p>, and then,
magic...

Macros : qa do something q, @a, @@
qa records your actions in the register
a. Then @a will replay the macro saved
into the register a as if you typed it. @@
is a shortcut to replay the last executed
macro.

Example, on a line containing only
the number 1, type this:

■■ qaYp<C-a>q →

qa start recording.

Yp duplicate this line.

<C-a> increment the number.

q stop recording.

■■ @a → write 2 under the 1

■■ @@ → write 3 under the 2

■■ Now do 100@@ will create a list of
increasing numbers until 103.

Visual selection: v, V, <C-v>
We saw an example with <C-v>. There
is also v and V. Once the selection is
made, you can:

■■ J → join all lines together.

■■ < (resp. >) → indent to the left
(resp. to the right).

■■ = → auto indent

Add something at the end of all visu-
ally selected lines:

■■ <C-v>

■■ go to desired line (jjj or <C-d> or
/pattern or % etc…)

■■ $ go to the end of line

■■ A , write text, ESC

38  PROGRAMMING

Splits: :split and vsplit.
Here are the main commands, but you
should look at :help split.

■■ :split → create a split (:vsplit
create a vertical split)

■■ <C-w><dir> : where dir is any of
hjkl or ←↓↑→ to change split

■■ <C-w>_ (resp. <C-w>|) : maximize
size of split (resp. vertical split)

■■ <C-w>+ (resp. <C-w>-) : Grow (resp.
shrink) split

Conclusion
That was 90% of commands I use
every day. I suggest you learn no more
than one or two new command per
day. After two to three weeks you’ll
start to feel the power of Vim in your
hands.

Learning Vim is more a matter of
training than plain memorization.
Fortunately, Vim comes with some very
good tools and an excellent manual. Run
vimtutor until you are familiar with
most basic commands. Also, you should
read this page carefully: :help usr_02.
txt.

Then, you will learn about !, folds,
registers, the plug-ins, and many other
features. Learn Vim like you’d learn
piano and all should be fine. n

Yann Esposito is the author of YPassword.
He co-founded GridPocket and is an active
web and iOS developer. He has a post Ph.D. in
Machine Learning. He has written two research
tools: dees & SEDiL.

Reprinted with permission of the original author.
First appeared in hn.my/vimp (yannesposito.com)

http://hn.my/vimp

  39

Reprinted with permission of the original author.
First appeared in hn.my/vimp (yannesposito.com)

By James O’Beirne

Coding Backwards

For a while I’ve wanted to write
some personal finance software.
Call me crazy, but I can’t find

anything currently in existence that
allows me to project my earnings and
expenses, then summarizes the net
effect over a period of time. Basically,
I want to be able to propose a budget
to myself and simulate how it will play
out.

So I sat down (as so many program-
mers have before me), ready to (almost
certainly) reinvent the wheel, and I
began to code. I wasn’t really feeling
inspired, though. A good design wasn’t
immediately clear to me, so I got
slightly frustrated and stared aimlessly
at the screen awhile.

Until I got an idea.

Quick Flashback
Last winter, I interviewed at a hedge
fund called Two Sigma in New York
City. Regrettably, I bombed the
interview, but it was a great experi-
ence nonetheless. My first technical
interviewer was a guy who looked
like he needed no less than three pots
of coffee to show any sign of human
emotion. He asked me the boilerplate
questions about design patterns and
data structures, but afterwards he
asked me to tackle a considerably dif-
ficult data-handling problem in Java. I
cracked open a terminal-based session
of vi as he shook his head and mut-
tered something about why wasn’t I
using Eclipse.

http://hn.my/vimp

40  PROGRAMMING

Then, to my surprise, he told me to
write out a bunch of class skeletons —
class names, method signatures, and attri-
butes. He wanted me to enumerate the
cast of characters that I was going to be
interacting with before I actually decided
how the interactions would go down.

I walked out of the interview know-
ing I didn’t get the gig, but I was
intrigued by this guy’s approach.

The Backwards Art of Software
Design
I reminisced about the Two Sigma
episode yesterday, as I was struggling to
get down a design for my little personal
finance Python API. I decided that I’d
do the stoic Two Sigma interviewer one
better and write out a script using the
yet unwritten API. I’d reverse-engineer
a good design by pretending I’d already
written one!

Ten minutes and a few backspaces
later, I came up with this:

from miser import *

m = Miser("jobeirne")

g = Goal(amount = 16e3, #$16,000
	 by = Date(2012, 8, 1))
 # by Aug. 1, 2012

m.attachGoal(g)

bills = [Expense(name = "MATH315
tuition", amount = 1.3e3,
 on = Date(2011,
8, 29)),

 Expense(name = "netflix",
 amount = 14.,
 on = MonthlyRe-
curring(15))] # 15th day of the
month

income = [Income(name = "phase2",
 amount = 1.5e3,
 on = MonthlyRe-
curring(7, 22))]

m.attachExpenses(bills)
m.attachIncome(income)

print(m.summary(
 fromdt = Date(2011, 8, 20),
 todt = Date(2012, 9, 1)))

  41

Skipping Steps
In a few ways, the design I came up
with coding backwards was better
than what I originally proposed. Ini-
tially, I was going to have classes like
MonthlyIncome andDailyExpense
that mandated an overly complicated
inheritance structure to avoid repeat-
ing periodicity code.

When I wrote a script in my fictional
API, I decoupled the transactions and
their frequency of occurrence into
two disparate objects without really
thinking about it; instead of my initial
design,

MonthlyExpense(name = "netflix",
 amount = 14.);

I now had

Expense(name = "netflix",
 amount = 14.,
 on = MonthlyRecurring(15))

which makes for a way more reason-
able class tree (goodbye, multiple
inheritances).

I was surprised at how satisfying
the experiment was. A better design
quickly appeared when I forced myself
to preemptively eat my own dog food.
Instead of shoehorning use-cases into
a class structure I’d already designed,
I coded backwards and the opposite
happened: a design evolved from
daydreaming about an API that I’d like
using.

Paint by Numbers
Now that I had written out an inter-
face I liked, development was simple:
I started out with skeleton classes and
then filled them out so as to match
their behavior in the example usage I
had written.

The process was straightforward,
though I had to put some thought
into how the classes would be struc-
tured internally. As I fleshed out the
classes, I noticed a few ways I could
improve upon the API I had come up
with, so I made a few minor changes
to the example usage. This iterative
back-and-forth continued throughout
development.

Snags
My experiment wasn’t without a catch;
since this method of coding backwards
is about as top-down as you can get,
I fell into the pitfall of doing a ton of
development without actually running
the code to test correctness.

This, of course, led to a long bout
of debugging at the end, which was a
slight pain, especially since I’m so used
to rapid prototyping. Maybe if I had
test-driven the filling out of the classes,
things would’ve gone down smoother.

42  SPECIAL

The project was so small that it
wasn’t a big deal, but I can see how
my approach wouldn’t have scaled to
something much larger. I’m usually a
big fan of bottom-up development,
but coding backwards put me in a
mindset that made that a little less
straightforward.

Conclusion & Buzzword Bingo
Clearly, this technique is inspired by
test-driven development, and for all
I know it may be old news to expe-
rienced programmers. Nonetheless, I
found using it to be a fun experiment
and a nice addition to my utility belt.

There is no silver bullet for develop-
ment methodology. Coding backwards,
or interface-driven development, cer-
tainly won’t solve all your problems. It
is, though, a quick and gratifying way to
help writer’s block and gain some clarity
when you sit down to write an API. n

James O’Beirne is a web developer living in
Alexandria, VA. He works at Phase2 Technol-
ogy, where he crafts robust web applications
for clients in publishing and government sec-
tors. Previously, James worked at the National
Institute of Standards and Technology devel-
oping an open-source scientific computing
framework, FiPy.

Reprinted with permission of the original author.
First appeared in hn.my/backwards (jameso.be)

SPECIAL

Competitive Game Design:
The Marginal Advantage

http://hn.my/backwards

  43

SPECIAL

By Sean Plott

Competitive Game Design:
The Marginal Advantage

I recently was involved in a Man-
cala competition, where the
entrants had to code an artificial
intelligence program that could

play Mancala. It taught me an impor-
tant lesson about competitive game
design.

Mancala is a game in which the
winner is the player who “captures”
more stones than his opponent. Thus
the winner of the competition was the
entrant whose AI program bested all
others in stone capture. One of the
coders devised a computer program
that would maximize the number
of stones captured in a given turn.
Throughout the tournament, he
steamrolled his opponents, repeatedly
winning by fifteen stone margins and
instilling fear and despair in the hearts
of other coders. However, his program

ultimately lost in the finals by 0-2, and
lost each of those games by exactly
one stone. In fact, I was shocked to
hear that the winning program had
consistently won every game it played
by exactly one stone. How could the
first program, which seemed to terror-
ize opponents, lose to another program
that could only barely squeak out a
victory each time?

The results were explained by
subtle differences in their approaches
to game play. The first player wrote
a greedy program, one that would
gobble up as many stones as possible.
The coder reasonably theorized that
maximizing the number of stones
would maximize his chances of win-
ning. However, the winning coder
displayed even greater insight into
the game: his goal was to have more

44  SPECIAL

stones after both players had taken a
turn. In a sense, after taking the lead,
he chose to maintain that lead, rather
than extend it. For example, instead
of capturing ten stones in a turn, he
would capture four, knowing all the
while that his opponent could only
capture three, and that his lead would
thus be extended by one. In a sense,
the first programmer’s AI was suc-
cessful in maximizing the number of
stones captured in each turn, it just
happened that this was always one less
than the winner.

I found this incident to be par-
ticularly intriguing, as it reflects the
nature of successful competitive
game design. I’ve been involved in the
competitive gaming community since
2001. Although my primary game is
StarCraft, I have considerable experi-
ence with WarCraft 3, CounterStrike,
Marvel vs Capcom 2, and a variety of
other games. Despite the fact that these
games function in drastically different
ways and demand completely different
skill sets, the expert players, the players
who consistently win, always share a

single commonality: they play comfort-
ably with a marginal advantage.

The marginal advantage embodies the
notion that one cannot, and should not,
try to “win big.” In a competitive setting,
the strong player knows that his best
opponents are unlikely to make many
exploitable mistakes. As a result, the
strong player knows that he must be
content to play with just the slightest
edge, an edge which is the equivalent
to the marginal advantage. More impor-
tantly, a one-sided match ultimately car-
ries as much weight as an epic struggle.

After all, the match results only in a win
or a loss; there are no “degrees” of win-
ning. Therefore, at any given point in a
game, the player must focus on making
decisions that minimize his probability
of losing the advantage, rather than on
decisions that maximize his probability
of gaining a greater advantage. In short,
it is much more important to the expert
player to not lose than it is to win big.
Consequently, a regular winner plays
to extend his lead in a very gradual, but
very consistent manner.

  45

Amateur players, on the other
hand, try risky, greedy strategies. In
CounterStrike, for example, it is not
unusual for amateurs to dash out into
crowds of enemies trying to pull off
a miraculous string of headshots in
order to eliminate the opposing team.
The majority of the time, this kind of
amateur is fragged in a nanosecond.
Expert Counterstrike players, on the
other hand, patiently and carefully pick
off enemies, knowing that such caution
and precision virtually guarantee a win.

Moreover, amateurs often have
no idea what to do with a marginal
advantage once they gain one. I have
personally watched countless games of
StarCraft in which a player gained a
massive lead but later lost the game. An
opponent moves out a large force, and
the amateur annihilates it with ease. At
this point, the amateur has a marginal
advantage: he has not yet won, but
his opponent has lost his military and
cannot apply any pressure for some
time. The amateur in this situation will

immediately try to win by launching
a counterattack and will then crumble
to a strong defense. Alternatively, the
amateur will expand excessively, over-
extending his bases to the point where
his defenses are too thinly spread.
Such decisions violate the law of the
marginal advantage, as they allow the
opponent to get back into the game.
They erroneously attempt to extend
the lead, as opposed to maintaining it.

So, what’s so special about the mar-
ginal advantage? It might seem that all
I’ve done is imply that newbie players

take unnecessary risks and experts
do not. However, just as playing for
a marginal advantage is the hallmark
of the expert player, the presence of a
potential marginal advantage in a game
is the hallmark of excellent competi-
tive game design. The Mancala tourna-
ment brought this sharply into focus
for me. Building in and allowing for a
marginal advantage leads to exciting
and dynamic play.

“Building in and allowing for
a marginal advantage leads
to exciting and dynamic play.”

46  SPECIAL

Not that providing for a marginal
advantage is the only critical element
in competitive game design. I will
concede that all reasonably designed
competitive games share three basic
traits: ambiguity of optimal play, diver-
sity of play, and allowance for skill.

First, there is no such thing as a good
competitive game that has an obvious
optimal strategy. For example, there
is no competitive tic-tac-toe gaming,
as two logical players would tie every
time. I remember playing an old real-
time strategy game called KKND,
where one of the units was clearly the
strongest unit in the game. Playing
against my brother degenerated into
a fray where we hurled masses of the
same unit at each other until one of
us got bored and stopped playing. On
the other hand, a superior game like
StarCraft presents a completely intrac-
table problem. There is no best race,
no best strategy, and certainly no best
way to win.

Second, a quality competitive game
should have a variety of techniques
that can be employed in order to win.
That is, if a player performs strategy A,
the opponent should have more than
one reasonable response as an option.
Games frequently have a system of
built-in counters. Theoretically, game
creators insert such counters to avoid
the danger of an optimal strategy.
However, these kinds of systems often
cause games to be nothing more than
a fancy multimedia version of rock-
paper-scissors: Unit A counters Unit B
counters Unit C counters Unit A. On
the other hand, excellent competitive
games, such as Marvel vs Capcom 2,
allow for huge diversity in response.
In Marvel vs Capcom 2, players can
elect three characters to form a fighting
team. With fifty-six characters from
which to choose, Marvel vs Capcom
2 offers over 25,000 combinations of
possible teams, presenting the player
with virtually unlimited options. At the
highest level of play, strong competi-
tive players can be seen using drasti-
cally different teams and styles.

Reprinted with permission of the original author. First appeared in hn.my/marginal (teamliquid.net)
Photograph by PCU (pcu-stockage.deviantart.com)

http://pcu-stockage.deviantart.com

  47

Third, a good competitive game
should test a player’s skills and mini-
mize the element of chance or luck.
Ideally, the probability of a weak player
defeating a good player should be as
close to zero as possible. For example,
in a well-designed game like WarCraft
3, it is highly unlikely that an amateur
will be able to control his units or
respond to his opponent’s tech pat-
terns as well as an experienced player.
In fact, the best way to test a player’s
skill in a game is to present the player
with more decisions. In WarCraft 3,
a player not only has to make major
decisions, such as which buildings to
make or what hero to choose, but also
has to make innumerable small deci-
sions, such as how to precisely control
each unit or time an attack. By pre-
senting a player with more decisions,
the game offers amateurs more oppor-
tunities to make mistakes and experts
more opportunities to shine.

However, against this framework
of competitive game design, we
can understand why the marginal
advantage gives a game flavor and
excitement for both the player and
observer. The marginal advantage not
only provides the player with the joy
of overcoming obstacles, of finding new
and more effective methods of win-
ning, but also allows a player to express
himself, to have his own unique style.
By exploiting the marginal advantage,
the expert player is both a problem

solver and an artist. In WarCraft 3,
StarCraft, Marvel vs Capcom2, and
CounterStrike alike, we see the indi-
viduality of the players shine through:
some play aggressively, some play
defensively; some are renowned for
their solid, steady play, others for their
unorthodox tactics. We respect the
brilliance of their expert skills; we
admire their ability to win. Yet, at the
same time, we appreciate the aesthetic
of each player’s technique, that each
player finds a solution that is so differ-
ent from the next player. If too many
decisions are clear cut, the player has
no need to discover his own marginal
advantage over the field, and the com-
petitive game collapses into redundant,
unexciting play, unappealing to master
and unappealing to watch. The bril-
liance of a competitive game is that
the designer must limit his role to be
the creator and balancer, to allow for
the potential of innovation. In this
way, each player can uncover his own
marginal advantage and become the
true pioneer of the game.

Whenever I encounter some little
hitch, or some of my orbs get out of
orbit, nothing pleases me so much as
to make the crooked straight and crush
down uneven places. n

Sean Plott, commonly known as Day[9], is
a former professional Starcraft player and a
sportscaster known for his Day[9] Daily Net-
casts at day9.tv

http://day9.tv

48  SPECIAL

http://optimizely.com/hackermonthlyB

  49

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	You Are Not Running Out of Time
	What Would You Do With Your Own Google

	STARTUP
	Don’t Burn Bridges

	DESIGN
	Design Secrets for Engineers

	PROGRAMMING
	Learn Vim Progressively
	Coding Backwards

	SPECIAL
	Competitive Game Design:
The Marginal Advantage

