

C++ Reverse Engineering Tutorial

Embarcadero Application Development Tools

i

COPYRIGHT

Under the copyright laws, this document may not be copied, photocopied, reproduced, translated,
reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written
consent of Embarcadero Technologies, Inc.

Copyright  2001 Embarcadero Technologies, Inc.

 425 S. Market Street, Suite 425

 San Francisco, CA 94105 U.S.A.

All rights reserved. Printed in the United States.

Embarcadero Technologies is a registered trademark in the United States and certain other countries of
Embarcadero Technologies, Inc. or its subsidiaries. Describe is a registered trademark, in the United
States and certain other countries, of Embarcadero Technologies, Inc. or its subsidiaries. Other product
names and trademarks are the property of their respective owners.

ii

C++ Reverse Engineering Tutorial
Table of Contents

Introduction to Reverse Engineering..1

C++ Reverse Engineering Overview ...1

Starting the Reverse Engineering Process ..2

Project Directories ..3

Adding Additional Files ..5

Include Files ..6

To Preserve C++ Macros ..7

Reference Classes ..9

Setting the Preferences..10

Comment Capture ...11

Save Settings...12

Naming the New System ..13

Reverse Engineering Process ...15

Completed Reverse Engineering Process..15

Class Diagram ...17

Class Diagram Reviewed..18

Class Diagram Attributes ...18

Implementation Diagram ..22

Round Trip Engineering ...23

Trouble Shooting ..25

Conclusion...32

iii

C++ Reverse Engineering Tutorial Describe

Introduction to Reverse Engineering
The reverse-engineered code produces a complete UML Class Diagram. All objects also have all of their
attribute information completely filled in from the source code.

The procedure outlined here can be used on any language and methodology. The best way to evaluate
Describe's reverse-engineering capabilities is by running your own code through it. Describe provides
detailed and comprehensive support for reverse-engineering source code. Both header files and body
files can be reverse-engineered.

What is Produced from Reverse Engineering

UML Class Diagram

 Classes

 Class data members and methods

 Inheritance

 Class associations

Implementation Diagram

 Files processed

 File "Include Tree"

Repository completely populated with model data extracted from source code

C++ Reverse Engineering Overview
The primary purpose of reversing C++ code is to look at the structure of the classes from an analysis and
design perspective. When you reverse C++ code using Describe a new system is created with two views,
the view describing the classes is an Class Model view and the other is the Implementation Model view.

When Describe reverses C++ classes, the information about each class attribute is complete and there is
no loss of any class information. Embedded information within the C++ class is maintained in the class
object on the diagram. In this manner, all implementation details, those details that are not supported by a
methodology, are stored for later use by code generation.

The Implementation Model is used to provide the second view that is generated when some C++ code is
reverse engineered. It is a model used to represent all the files used in a reversed system. This includes
both user and system include files. This model is used to provide support for seamless generation of C++
code from the system, minimizing adverse changes to the reversed code.

The Implementation Model represents all the files for a system in a hierarchical, left to right layout. For
example, you can have a single C++ file representing a piece of legacy code. This file might include a
single header file. That header file, however, can include quite a large number of files, one doesn’t really
know until they examine the include structure. Describe reverse engineering follows these includes and
track them completely, showing you the resultant include hierarchy on an Implementation Model view.

The Implementation Model does more than show a file hierarchy, it also holds all the non-class related
information needed to regenerate the code. For example, each file object in this model stores what
classes were generated from it enabling code generation to generate code for the classes back into the
same files.

-1-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Starting the Reverse Engineering Process
The Reverse Engineering process is outlined below.

1. Choose TOOLS->REVERSE ENGINEER from the menu. The Reverse Engineering dialog box is
displayed.

2. Make a choice from the "Language" drop down list. Your options are C++, Java or IDL. Choose C++

for this tutorial and the following information appears in the Directory List Box:
Project Directories This shows the various directories that will be

interrogated for files with extensions indicated
in the File Filter text box. You can add
directories by right-clicking the Project
Directories title or by selecting the "Add
Project Directory" button.

Additional Files Right-click this option to add any files not
found in the Project Directories tree that you
would like to reverse engineer. You can also
delete all additional files. Clicking the Add
Additional Files button also allows you to add
or delete files.

Additional Includes Add any additional directories that should be
included during the reverse engineering
process.

Macros Specify macros you would like the reverse
engineering process to recognize.

Microsoft Visual C++
Project

Add files, macros and include directories from
your MSVC projects and workspaces.

-2-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Preferences The following preferences can be set:

- Use System Includes
- Hide Class Attributes
- Hide Class Operations
- Save Intermediate Files
- Enable Comment Capture

3. Select UML from the "Methodology" drop down list. Currently UML is your only choice.
4. Check the Recurse Subdirectory option if you want added directories (both Project and Additional

Includes directories) to recurse subdirectories when creating new nodes. If a recursion is done, only
directories with files matching the filter are added.

5. Check the Display Files option if you want all the files displayed in the Project Directories tree. A
appears next to all the project directories. Click this icon to expand the tree and display all the files
in the directory.

Project Directories

 The following section on Project Directories is for information only. Because of the size of the
sample project directory we will not use a project directory, only selected files from this directory.

You can add project directories containing files to be reverse engineered by doing the following steps.
1. Right-click on the Project Directories title in the files list box and a background menu opens.

 You can also gain access to the Directory Selection dialog by by clicking the
button. Another method of adding a directory is to "drag and drop" a directory directly from the
Windows Explorer into the Project Directories tree.

-3-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

2. Choose Add Project Directory and the Directory Selection dialog box opens.

3. Select a directory and click OK. All files matching the File Filter are added. If the Recurse

Subdirectories option is selected then the selected directory and all sub-directories are searched.
The Directory Selection dialog box closes and the selected directory appears in the list box of the
Reverse Engineering dialog box.

-4-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

4. You can make the Project Directory a Reference Include Directory. To have this directory included

as a reference library only, remove the check mark from the option box to the left of the directory
path.

Adding Additional Files
You can add files not found in the Project Directory or select specific files within a Project Directory. You
can select one or multiple files for inclusion from a file selection dialog box. The files selected are added
whether or not they match the file filter.

1. Right-click on the Additional Files title in the files list box and a background menu opens.
2. Select the Add Additional Files command from the menu and the Open dialog box appears. Notice

that the types of files listed in the Files of Type text box correspond to the Language selection you
made in the Reverse Engineering dialog box.

 You can also click the button.

3. Select the following files from x:\<path>\Describe\SampleC++\cppscr and click Open. The dialog
box closes and the files you selected appear in the list box of the Reverse Engineering dialog box.
You can also "drag and drop" files directly from the Windows Explorer into the Additional Files tree.

 SmplStat.h
 SmplHist.h
 AllocRing.h

-5-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 Use the Control key to select multiple, non-adjacent files from the file list. The Shift key allows you
to select a group of adjacent files in the list.

Include Files
You can add include directories and defines for the current reverse engineering run.

1. Right-click on the Additional Include title in the files list box and a background menu opens.
2. Select the Add Additional Includes Directories command from the menu and the Directory Selection

dialog box opens.

3. Select the directory <path>/Describe/Sample++/cppscr directory and click OK. The Directory

Selection dialog box closes and the selected directory appears in the list box of the Reverse
Engineering dialog box. You can also "drag and drop" an include directory directly from the
Windows Explorer into the Additional Includes tree.

-6-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

To Preserve C++ Macros
You are able to select a small, well defined subset of C++ macro expansions for use in round trip
engineering. Simple macro instance preservation functionality in now available.

A set of default macros suitable for use with Microsoft's MFC are included. You can specify that some of
your own macros should be saved during round trip. These macros are specified by creating a text file
containing one or more macro names, for example:

MySimpleMacros.txt

MY_MACRO_1

MY_MACRO_2

To select this list for use in reverse engineering, enter a pseudo-macro into the Macros area of the
reverse engineering set-up dialog. This macro definition looks like:

 GDPRO_SIMPLE_MACRO_LIST="<full path to the macro list file>"

There are no spaces allowed in this pseudo-macro definition except for any required spaces in the path to
the macro list file. Macros selected for use in reverse engineering are only preserved if they look more or
less like those in these two examples.

Example 1 - Simple Macro
class UsesMacro

{

 // normal class member

 int x;

 // macro

 MY_MACRO_1()

};

Example 2 - Function-like Macro

-7-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

class UsesFunctionMacro

{

 // normal class member

 int x;

 // macro

 int MY_MACRO_1();

};

Parameters
The parameters for a simple macro are as follows:

1. The preceding non-whitespace non-comment character must be one of '{', '}', ';', or ')'.
2. The following non-whitespace non-comment character must be something other than ';', ':', or '{'.
The parameters for a function-like macro are as follows:

1. The macro cannot substitute for C++ tokens which separate declarations. These are curly brackets
('{' and '}') and semicolons (';').

2. If the macro takes arguments, none of the arguments can be literals (string, character, or numeric).
Examples of Acceptable Function-like Macros Include:

 INT OPERATION_NAME(TYPE1 a);

 (INT, OPERATION_NAME, and TYPE1 are macros)

 TYPE1 ATTRIBUTE_NAME;

 (TYPE1 and ATTRIBUTE_NAME are macros)

 SPECIAL_OPERATIONS(A, B);

(SPECIAL_OPERATIONS is a macro. Note that this is just like a simple macro except that it ends in a
semicolon.)

Examples of Non-acceptable Function-like Macros Include:
 int myFunction() FUNCTION_BODY

 int myAttribute SEMICOLON

 SPECIAL_OPERATIONS("special ops", 3);

 An attempt to preserve the FUNCTION_BODY or SEMICOLON macro instances results in parse
errors during reverse engineering.

 An attempt to preserve a macro which uses a C++ literal in its argument list results in either parse
errors or in these macro instances being silently dropped during reverse engineering.

 A function-like macro appears in Describe as a class attribute or operation, depending on the
similarity in appearance between the unexpanded macro and a normal C++ attribute or operation.

 Simple macro instances are not visible in the Describe class diagram. They are stored in a separate
area for use with round-trip engineering.

-8-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Predefined Macros Under Reverse Engineering
 WIN32
 _WIN32
 i386
 WINNT
 X86
 unix
 ALMOST_STDC
 _MSC_VER (set to 800)
 MFC Macros.h
 ATL Macros.h

Reference Classes

 The following section on Reference Classes is for information only. The tutorial does not contain
an example of reference classes.

Reference classes are classes that do not participate in the code generation process. They are
automatically created by reverse engineering when classes in the reverse engineered set of files have
inheritance relationships with classes that are not defined in the code that is being reverse engineered.
Reference classes complete the relationships, but do not have any content (no attributes or operations
defined), and will not have any code generated for them.

Once you have your library of reference classes, you can use them as components in creating a new
system by:

 a. opening the system with the reference classes
 b. going to the navigator
 c. clicking on the class you want to use in your new system
 d. zooming to the class
 e. then copy and paste it into your new class diagram
You can inherit or create associations to the reference class, and Describe knows not to generate the
header and body files for the reference class.

Setting a Reference Class

1. Open the class diagram in the view area
2. Select the class you want to make a reference class.
3. Right-click in the background. A background utilities menu opens.

 Make sure you click in the background of the diagram. Do not click on the class itself.

3. Select ENUMERATED VALUES->REFERENCE CLASS->TRUE from the background menu.

-9-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

4. The selected class is now a reference class. You can also toggle the reference classes back to "live"

classes by selecting ENUMERATED VALUES->REFERENCE CLASS->FALSE.

Setting the Preferences
1. Click the located to the left of Preferences title. The list expands showing the available

preferences.

-10-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Use System Includes Currently this option provides functionality only for C++ and
only on the UNIX platform.

Hide Class Attributes Hides the class attributes. These class attributes are captured
and can be accessed through the reporting function.

Hide Class Operations Hides the class operations. These class operations are
captured and can be accessed through the reporting function.

Save RE Intermediate Files The Save RE Intermediate Files option allows you to save the
preprocessed files so you can track any syntax errors in the
code.

Enable Comment Capture The reverse engineering process will capture comments from
the source code and add them to the model as class, attribute
and operation descriptions. The forward engineering process
applies the current descriptions from the model to the source
when doing code generation.

2. Click the option button to select the "Use System Includes" preference.
3. The "Hide Class Attributes", "Hide Class Operations" and "Save Intermediate Files" preferences

should not be selected.
4. Make sure the "Enable Comment Capture" is selected.
 The preferences you set are implemented when you start the reverse engineering process.

 When reverse engineering large diagrams, you should hide the class attributes and operations
because of the size of the diagram generated.

Comment Capture
The reverse engineering process will capture comments from the source code and add them to the model
as class, attribute and operation descriptions. The forward engineering process applies the current
descriptions from the model to the source when doing code generation.

 Most comments which precede or are contained by a C++ class definition are preserved.

 Most comments appear as part of a class symbol in the class diagram and can be viewed and edited
using the Describe attribute editor. Preserved comments will appear in reports and in code
generated during forward engineering.

Simple Class Comment Capture
Here is a simple class which demonstrates Describe's handling of comments.
// This comment goes into the Class Description.
class wellDocumented {

// This comment is not visible in the class diagram, but it is stored
// for use during forward engineering.

private:

 int x; // This comment goes into the attribute description
 // for int x.

-11-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 int y; // This comment goes into the attribute description.
 // for int y.

 // This comment goes into the attribute description for int z.

 int /* this embeddedcomment is lost */ z;

 // This comment goes into the operation description for wellDocumented().

 wellDocumented();

 // This comment, which is in the middle of an argument list,
 // is not preserved.

 int midOperationComment(int x, /* this embedded comment is lost */ int y);

 // This comment, and the macro instance which follows, are not visible in
 // the class diagram, but are stored for use during forward engineering.

 MY_MACRO()
};

Save Settings
Once you have set your preferences, includes, reference include libraries, and definition, you can save
these settings for future use.

1. Click the "Save Settings" button. The Save As dialog box opens.
2. Select the directory and then type the name "Tutorial" in the file name text box. The file extension is

".re" and it is the default setting in the Save as Type text box.
3. Click Save, the Save As dialog box closes and a prompt dialog box opens telling you that your file

was saved successfully.
4. Click OK to close the prompt dialog box.

Import Settings
You can also use a previously created file by clicking the Import Settings button. The Open dialog box
appears with all the available settings files shown in the list box. Select the file you want to use and click
Open. The dialog box closes and the imported settings are in effect.

-12-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Naming the New System
1. Click OK at the bottom left of the Reverse Engineering dialog box. The Reverse Engineered System

dialog box opens.

2. Type the name "RE Tutorial" for your new system. The default name is NewSystem.
3. The default location for your system is <path>\Describe\GDDatabase\systems. If you want to store

your system in another location click next to the Location text box. The Select a System Location
dialog box opens and all available system directories are listed.

4. For this tutorial we will not change the system directory. Click OK and the Select a System Location

dialog box closes.

-13-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

5. The reverse engineering system is automatically placed in a group named Default Group. We will put

the system in another group so click located next to the Group text box. The Available Groups
dialog box opens.

6. Create a new group for your reverse engineered system, by clicking . The New System
Group dialog box opens.

7. Type the name "RE_Test" in the Name text box.
8. Type the password "tutorial" in the Password text box. Reenter the same password in the Verification

text box and click OK. The New System Group dialog box closes.
9. Select the name "RE_Test" from the Available Groups list box and click OK. The Available Groups

dialog box closes and the name RE_Test appears in the Group text box.
10. Optional: In the Reverse Engineered System dialog box type the following description: "This is an

example of Reverse Engineering".
11. Enter a base directory for this system. If you click the browse button, a Search for Folder dialog box

opens. You can select your base directory from this dialog box.
12. The default name for the generated Implementation diagram is Implementation. You can edit this

name if you want.
13. The default name for the generated Class Diagram is Class Diagram. You can edit this name if you

want.

-14-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Reverse Engineering Process
1. After you have completed all the requested information in the Reverse Engineered System dialog

box click the Continue button. The REProgress dialog box opens. This displays messages of the
reverse-engineering process. The status bar across the bottom of the dialog box displays the
progress of the reverse engineering process.

 The following files are included in the reverse engineering process:
 (1) Include files found in a selected include directory
 (2) System Include files
 (3) "double quoted" include files in the source file's home directory.

 As the reverse engineering process continues, you can skip any files you don't want included. Click

 and the file that is currently being processed is skipped and a message appears in the
REProgress dialog box. We will not skip any files for the tutorial.

2. You can save the messages/error file by clicking . A Save As dialog box opens.
Select a directory for the message/error log file and give the file a name. The default name is
GDREResults.txt. Click OK and the Save As dialog box closes.

Completed Reverse Engineering Process
1. Once the reverse engineering process is complete the REProgress dialog box becomes an icon in

the lower left corner of the screen, and the class diagram opens in the design area. The generated
diagram names also appear in the System Hierarchy Window under the group and system name.

-15-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Notice that when the reverse engineering process is complete the system hierarchy tree does not
show classes, actors, packages, template classes, use cases and utility classes. To display these
objects in the window right click in the area of the opened system in the System Hierarchy Window
and the background menu opens.

2. Choose DISPLAY FILTER from the menu and the System Workspace Display Filter dialog box
opens. This dialog box displays two different objects to be filtered: Diagrams and Model Elements.

Diagrams: All the UML diagram types are listed here. Each
diagram type is represented by an icon in the
System Hierarchy Window. You can display all
diagrams or choose to just display diagrams you
are currently working with.

Model Elements: The major modeling elements that are displayed in
the System Hierarchy Window are listed here.
Each modeling element is represented by an icon
in the System Hierarchy Window. You can display
all model elements or choose to just display the
elements you are currently working with.

 You can select an individual object type to be filtered or you can select the option box next to the
heading to filter all associated types.

-16-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

3. Click the object type "Class" to be displayed and click OK. The dialog box closes and the System

Hierarchy Window is updated.

The Class Diagram
When the reverse engineering is completed, you should have a UML Object model that describes the
C++ source code you reverse engineered.

-17-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

The Class Diagram Reviewed
Let's take a closer look at some of the objects on your UML diagram.

1. When the reverse engineering process is complete, the class diagram created now appears in the
design window.

 All classes are represented on the diagram

 The classes have their class attributes and operations filled in.

 Inheritance among classes is shown via the Generalization symbols. For example, the
"SampleHistogram" is a subclass of the "SampleStatistic" class.

 UML Associations are used to represent classes that are associated with each other by
pointers or by reference.

The Class Diagram Attributes
Unlike many other reverse-engineering tools, Describe fully reads and parses ALL of your C++ code and
can therefore completely fill in the attribute editors for all objects.

1. Double-click on the "SampleStatistic" class and Source Code Control dialog box opens.

-18-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

2. Please refer to the Source Code Control Overview for information on this function. For purposes of

this tutorial click the No button to close this dialog box and to open Properties dialog box for the
SampleStatistic class.

3. Click on the Operations tab. All the class operations are filled in.

3. Click on the Attributes tab to view all the attributes.

-19-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

2. Select "maxValue" from the list in the Attributes box and then click the Edit button to view the details

of the attributes. The maxValue attribute editor dialog box opens.

-20-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 Notice that this attribute is of type "double". As you scroll through the dialog box, notice also that it is

accessible for reading and writing, indicating it was not declared to be a constant. Constants are
read-only.

3. Click OK to close the maxValue Properties dialog box.
4. Click OK once again to close the Properties Editor for SampleStatistic.
5. Double-click on the Class labeled SampleHistogram and click the Operations Tab. Select

"SampleHistogram (double lo, double hi, double)" from the list box.
6. Click the Edit button the Properties Editor for the Operation SampleHistogram opens.

-21-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 Notice the operation visibility is public and the operation type is concrete.
7. Close this dialog box by clicking OK.
8. Close the Properties dialog box for the class by clicking OK once again.

The Implementation Diagram
The reverse engineering process also automatically creates an Implementation diagram. This diagram
shows you all the files that were reverse-engineered and the dependencies among them. It displays
these files as an “include tree” showing which files include others.

This view is useful to identify which files use a particular file and also to locate circular includes among
files. This is particularly important when examining third-party class libraries and creating your own
libraries.

1. If the implementation diagram is not the current view, right click anywhere in the background of the
class diagram. The Utilities background menu opens.

2. Choose SYSTEM DIAGRAMS->IMPLEMENTATION DIAGRAMS->IMPLEMENTATION.

-22-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 The implementation diagram you created opens.

Round Trip Engineering
With Describe’s Round Trip Engineering you can incrementally develop software, starting either from a
new design or from an existing body of code.

 You can change the source code and keep design diagrams up to date, using any editor you like.

 You can change the design diagrams and keep the source code up to date.

 Describe does not use code markers, leaving your source code just as you wrote it.

 Code generation merges new design changes with existing header and body code.

 You can edit code to flesh out function implementations.

-23-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 When you add new structural components, they are synchronized with Describe through reverse
engineering

 Retains compiler directives and comments

 Use whatever source editor you wish - we do not restrict your choice of source editing tools.

 We tell you what we are doing - a report is generated with forward engineering that lets you know
exactly what changes are made, and what modules they were made in.

Source Editor Pane

The Source Editor Pane allows you to make changes directly to the code. The diagram we just created
using Reverse Engineering has read-only code so for purposes of this tutorial, we cannot make changes
using the Source Editor Pane.

The Design and Code Generation Process

Once a system has been reverse engineered, Describe can be used to iterate on the design. The
changes can encompass:

 adding new classes

 adding or removing class inheritance

 creating new class associations

 adding, changing and deleting operations and attributes
When the design iteration is complete, code generation can be run on all classes in a system or view, or
for specific selected classes.

Code generation merges the current design information for the class into the existing header and body
files for the class, if they exist. If the class has been added during the design process, code generation
creates header and body files that contain all the information defining the class captured during the
design process.

When merging the current design information into existing code, Describe does the following:

Header File: Describe replaces the existing class definition with the class definition
generated from the design information. All code outside the class definition
section will be left intact.

Body File: Describe merges the changes into the body file; adding the framework for
new functions, and deleting the definitions of old functions that are no longer
in the design.

Reporting Changes to Code

Describe produces a report during the code generation process that describes the changes made to the
old source modules. The report is called CodeGen_Report and contains the following information:

Attribute Added The attributes are added to the class definition in the header file
and attribute accessor functions are created as specified in the
design.

Attribute Deleted The attribute is not included as part of the class definition the
class definition.

-24-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

Attribute Modified The new definition of the attribute is included as part of the class
definition.

Operation Deleted The operation is not included in the generation of the header file,
and the existing operation is not copied into the new version of
the body file.

Operation Added The new operation is included as part of the class declaration in
the header file, and a stub function is added to the body file.

Operation Modified (1) The new operation signature is included as part of the class
declaration in the header file; (2) the old operation is not coped
into the new version of the body file; and (3) a stub function is
added to the new body file.

Association Added A forward reference to the associated class and the associated
class elements are added to the header file.

Inheritance Deleted The class definition no longer references the old base class in
the new header file.

Inheritance Added The reference to the new base class is added to the class
definition in the new header file.

Association Added Adds pointers
Association Deleted If not reverse engineered, associations are removed.

The code generation process also creates backup files for all source modules it generates. The original
file name is appended with an "#orig" notation.

The Reverse Engineering Process

Reverse engineering is the process of evaluating an existing body of code to capture interesting
information describing a system, and representing that information in a format useful to software
engineers and designers. Embarcadero’s reverse engineering for the C++ language processes the
source code. It then applies a sophisticated grammatical analysis to capture the elements of class
structure and definition, class inheritance, and associations between classes. The captured elements are
then rendered in an Object Model representation. This model is a graphical depiction of the class
structure, and you can gain access to all of the data elements describing the class and its operations and
attributes. Network layout logic is used to create diagrams that are clear and easy to read.

Another product of reverse engineering is the Implementation Diagram. This diagram shows the source
and header files that were processed during the reverse engineering process. The Implementation
Diagram can give invaluable information and insight into the include file dependency structure of a body
of code.

After a system has been reverse engineered, you can generate reports in a variety of formats, including
ASCII, HTML and RTF. The report set includes an Object Model Report in HTML format that permit rapid
navigation through the class structure, and is linked directly to the source.

Trouble Shooting
Here are most of the errors which Describe can output during an RE run. The listed errors are those that
you can actually do something about.

-25-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

ERRORS

The environment variable "GDBIN" is
not set.

You will need to set your environment variable ‘GDBIN’, to
point to the location of your Describe \bin directory.

Unable to access the methodology. Describe utilizes the UML.gdmeth to create your system.
This file must be in a directory that you have read
privileges to. Describe knows how to find this file because
of the GDHOME variable. Make sure that the path to
GDHOME is correct and that GDDatabase\methods,
contains the file UML.gdmeth.

Insufficient memory. As this error implies, your system has run low on memory.
You can shut down some of the other application which
may be running, in order to free some memory. If this
does not alleviate the error, you will need to either break
your system into more manageable parts, or add more
memory to your system. Another thing you may wish to
explore, is to set your swap space to a higher value.

Unable to create a temporary file for
the gdcpp project.

Check the permissions that have been set on your
GDHOME directory. They should be Read/Write.

Unable to create a temporary file for
the RE PID file.

Check the permissions that have been set on your
GDHOME directory. They should be Read/Write.

Unable to delete some temporary
files.

Check the permissions that have been set on your
GDHOME directory. They should be Read/Write.

Unable to delete the preprocessed
file.

Check the permissions that have been set on your
GDHOME directory. They should be Read/Write.

$GDBIN/gdcpp could not be found. Check to make sure that GDBIN has been defined as an
environmental variable and that it is pointing to the correct
location.

The environment variable "GDBIN" is
not defined.

Check to make sure that GDBIN has been defined as an
environment variable and that it is pointing to the correct
location.

The temporary directory could not be
found. Please set TMP or TEMP in
your environment to point to your
temporary directory.

TMP or TEMP is not set so it needs to be set.

-26-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

No file entered. Describe Reverse Engineering requires that at least one
file be specified for the RE process to continue.

WARNINGS

Source file not found for Java class It is possible that you have not specified the correct
location for this class, or you did not specify the directory
in which this class is located in your include path.

Unable to locate IDL type "..." for a
sequence association.

WRAPLINE

These are all of the errors which can be reported in GDWrapline.

Unable to process line. This is a syntax error. You need to review your code, to
ensure that it is correct. The following token at line ... of ...
is too long to fit into the 250 character limit.

String truncated at line ... of

For the last two error messages, they are caused by a
single token (word) being >250 characters long or by a
single string literal being >250 characters long. The
remedy is to shorten token. Sting truncation is safe, this is
just a warning.

CPP

Listed below are most of the errors and warnings which can be output from CPP. The bulk of these, if
they appear in RE, will also appear when the user puts the code through a C++ compiler.

Note: All CPP errors are reported under the WARNING: header in the RE output window.

ERRORS
 recursive use of macro `%s'
 invalid preprocessing directive name
 Predefined macro `%s' used inside `#if' during precompilation.
 cccp error: not in any file?!
 `defined' without an identifier
 cccp error: invalid special hash type
 `#%s' expects \"FILENAME\" or <FILENAME>"
 empty file name in `#%s'
 (1) No include path in which to find %s
 directory `%s' specified in #include
 badly punctuated parameter list in `#define'
 unterminated parameter list in `#define'
 duplicate argument name `%.*s' in `#define'
 invalid %s name
 invalid %s name `%.*s'
 `##' at start of macro definition
 `##' at end of macro definition
 `#' Operator is not followed by a macro argument name
 `#' operator should be followed by a macro argument name
 missing token-sequence in `#assert'
 empty token-sequence in `#assert'
 `defined' redefined as assertion
 empty token list in `#unassert'

-27-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 unterminated token sequence in `#assert' or `#unassert'
 invalid format `#line' directive
 `#elif' not within a conditional
 `#elif' after `#else'
 `#%s' not within a conditional
 `#else' or `#elif' after `#else'
 `#else' not within a conditional
 `#else' after `#else'
 unbalanced `#endif'
 arguments given to macro `%s'
 macro `%s' used without args
 macro `%s' used with just one arg
 macro `%s' used with only %d args
 macro `%s' used with too many (%d) args
 macro or `#include' recursion too deep
 unterminated string or character constant
 possible real start of unterminated constant
 unterminated character constant
 unterminated comment
 unterminated `#%s' conditional
 unterminated comment
 string constant runs past end of line
 (2) #error output

 Project File Errors

 (3) Can't save the project in \"...\".

 (3) Unexpected EOF writing project file.

 (3) Error writing project file.

 (3) Unexpected EOF reading project file.

 (3) Error reading project file.

Warning
 preprocessing directive not recognized within macro arg
 `/*' within comment
 invalid preprocessing directive
 using `#import' is not recommended
 VAX-C-style include specification found, use '#include <filename.h>' !
 Header file %s exists, but is not readable
 No include path in which to find %s
 missing white space after `#define %.*s'
 macro argument `%.*s' is stringified.
 macro arg `%.*s' would be stringified with -traditional.
 undefining `%s'
 `#pragma once' is obsolete
 `#pragma implementation' for `%s' appears after file is included
 `/*' within comment
 (2) #warning output
 file does not end in newline
 %s in preprocessing directive
 `#' followed by integer
 file does not end in newline
 another parameter follows `%s'
 invalid character in macro parameter name
 missing white space after `#define %.*s'
 ANSI C does not allow `#assert'
 ANSI C does not allow `#unassert'

-28-

2001 Embarcadero Technologies, Inc.

 ANSI C does not allow testing assertions

C++ Reverse Engineering Tutorial Describe

 line number out of range in `#line' directive
 garbage at end of `#line' directive
 garbage after `#undef' directive
 ANSI C does not allow `#ident'
 ANSI C does not allow `#sccs'
 pedwarn (end == limit ? "`#%s' with no argument"
 `#%s' argument starts with a digit
 garbage at end of `#%s' argument
 `#' followed by integer
 invalid preprocessing directive
 invalid preprocessing directive name
 text following `#else' violates ANSI standard
 text following `#endif' violates ANSI standard
 text following `#else' or `#endif' violates ANSI standard
 (4) `%.*s' redefined

Other
I/O error on output
1. This error can appear in RE, but not during C++ compilation, if the include paths specified in the C++

makefile are different from those entered during RE.
2. Errors and warnings which are the result of #error or #warning directives in the source code can

appear during RE if the predefined macro definitions used during RE are different from those used in
C++ compilation.

3. These project file errors won't appear in normal operation, but can show up as a result of
permissions problems, disk space restriction, or abnormally terminated RE runs.

4. This macro redefinition warning shows up frequently for Windows NT users due to our use of the
MFCMacros.h and ATLMacros.h header files. These files are used during the reverse engineering
of every source file. Frequently the source file will redefine macros which are already defined in
these headers. This is not generally a problem.

TXL

TXL errors are almost always the result of bad syntax in the source file or unexpanded macros. They all
look something like this:

TXL ERROR : (Fatal) Empty repeat in define 'repeat__member_list'

 could not be resolved with lookahead 'CArray'

TXL ERROR : Syntax error on line 6 of test.C++, at or near:

 : CArray < CPoint , >>> , <<< CPoint > export1 ; }

EXAMPLE OF OUTPUT

Here is example output from RE, demonstrating how these errors look in context. It includes errors and
warnings reported from WRAPLINE, CPP and TXL.

Preparing to Reverse Engineer 1 file:

 /users/james/C++/test.C++

Include files found during RE will be reversed after the above file has been successfully processed.

INFO:

==
INFO: Reversing file: /users/james/C++/test.C++

-29-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

ERROR: Word wrap errors in file "/users/james/C++/test.C++":

ERROR: String truncated at line 20 of /users/james/gdtmp/foo7981.gdpro.

ERROR: End word wrap errors for file: "/users/james/C++/test.C++"

WARNING: CPP warnings in file "/users/james/C++/test.C++":

WARNING: /fake/path/for/exercise/file:3: missing.h: No such file or directory

WARNING: /fake/path/for/exercise/file:7: #error This is a #error directive.

WARNING: /fake/path/for/exercise/file:10: warning: #warning This is a #warning directive.

WARNING: End CPP warnings for file: "/users/james/C++/test.C++"

ERROR: Compile/transform errors in file "/users/james/C++/test.C++":

ERROR: TXL ERROR : (Fatal) Empty repeat in define 'repeat__level_1_declaration'

ERROR: could not be resolved with lookahead 'class'

ERROR: TXL ERROR : Syntax error on line 14 of /users/james/gdtmp/test7981.gdpro.proc, at or near:

ERROR: # 1 "/users/james/C++/test.C++" class >>> class <<< { } ; void foo1

ERROR: End compile/transform errors for file: "/users/james/C++/test.C++"

INFO: Temporary files are preserved.

INFO: Preprocessed file preserved in /users/james/gdtmp/test7981.gdpro.proc.

INFO:

==

INFO: Determining what include files to reverse...

INFO: No unprocessed include files were found.

INFO: **

INFO: FINISHED PARSING. PREPARING TO LAYOUT...

INFO: **

INFO: Creating semantic relationships for the Implementation Diagram view...

INFO: Creating semantic relationships for the Class Diagram view...

INFO: Saving the system...

INFO: The system has been saved.

** Reverse engineering is complete.
** (3 warnings, 5 errors)

Summary

/users/james/C++/test.C++: 3 warnings, 5 errors

Here's the source used to generate this:

-30-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

// Trigger #error reporting.

// causes reverse engineering to skip this file.

#error This is a #error directive.

// Trigger #warning reporting.

#warning This is a #warning directive.

// Trigger syntax error from TXL with invalid C++ syntax.

class class {

};

// Trigger gdwrapline warning for string truncation.

void foo1()

{

 printf("this is a really long repetitive string this is a really long repetitive string this is a really long
repetitive string this is a really long repetitive string this is a really long repetitive string this is a really long
repetitive string this is a really long repetitive string");

}

Tips and Techniques
In what order are include
directories searched?

The include directories are searched in the order listed. Although you
cannot easily reorder entries in the GUI, you can save an RE
configuration file using the "Save Settings..." option in the RE GUI. This
creates an ASCII file with a ".re" extension. Open this in your favorite
text editor and reorder or edit with ease.

What is the syntax for
"Definitions", especially if you
need to set something to a
value. for example: #define
MYVAL 3

The syntax for "Definitions" is as follows:
 Simple Assertion
 C++ syntax : #define ASSERTION
 In Describe, enter: ASSERTION

 Simple Macro Definition
 C++ syntax : #define MYVAL 3
 In Describe, enter: MYVAL=3
 Complex Macro Definition
 A complex macro is defined as any macro whose replacement

contains parentheses or spaces.

-31-

2001 Embarcadero Technologies, Inc.

C++ Reverse Engineering Tutorial Describe

 C++ syntax : #define MYVAL(x, y) x + y
 In Describe, enter: MYVAL="x + y"

What do the numbers
"184:730" mean in the line

"WARNING: from F:\Program
Files\Describe\GDTemp\someSource.cpp184:730:" They do not appear
to be line numbers since the file does not have 730 lines in it.

184 is part of the temporary file name. 730 is a line number in that
temporary file.

Since most reverse
engineering errors occur as
the C++ code is being parsed,
Describe makes it easy to
preserve the temporary files
which are produced by the C
preprocessor, via the "Save
Intermediate Files" option in
the RE Preferences area.

Reverse engineering should now preserve all temporary files. Now,
open for example the file "F:\Program Files\
Describe\GDTemp/addpicdlg.cpp184" and go to line 730. This should
be the line indicated in the warning message.

Conclusion
This concludes our brief tour of the Describe reverse-engineering facility.

We encourage you to give us feedback as to what you like and dislike about the product, as well as any
input for additional features. You may use the e-mail feedback box located under HELP->COMMENTS.

We can also be contacted at:

WWW: http://www.embarcadero.com

E-MAIL support@embarcadero.com

Phone: (415) 834-3131, press 2 for Support

-32-

2001 Embarcadero Technologies, Inc.

	What is Produced from Reverse Engineering
	Example 1 - Simple Macro
	Example 2 - Function-like Macro
	Parameters
	Examples of Non-acceptable Function-like Macros Include:
	Predefined Macros Under Reverse Engineering

	Setting a Reference Class
	Simple Class Comment Capture
	Import Settings

	Source Editor Pane
	The Design and Code Generation Process
	Reporting Changes to Code
	The Reverse Engineering Process
	
	ERRORS
	WARNINGS
	WRAPLINE
	CPP
	ERRORS
	Project File Errors
	Warning
	Other
	TXL
	EXAMPLE OF OUTPUT
	Summary

