',1‘"'1!'

i

I

lidinl
- ' &
", Doing'More With % @

[ XMLISCHEMAS y/
By Harish Kamath |

This article copyright Melonfire 2000-2002. All rights reserved.



http://www.melonfire.com/

Doing More With XML Schemas (part 2)

Table of Contents

ThEe ROAAANECAU. ... .. ettt ettt ettt ettt ettt e e e e et e e e

e =T=T [1Te B I TS o o] = PRSP RSPPRPEPR

TG N EXE LBV .. e e e e e ettt ettt ettt ettt ettt e,

SPeakiNgIN The ADSITACE. ......ccii i it i i i i et e i e s e oo e e e e aa s ss s st s sttt s st s s s s e s s s s s s s s s nnnnnes C

LT 12T 18 o o | :



The Road Ahead

In the first part of this article, | spent a fair amount of time explaining the difference between simple and
complex types in an XML schema, demonstrating, with examples, how to go about building both. | also
showed you how complex types can be extended to create new sub-types, and how this extensibility allows
you to add OO-like capabilities to your XML schema. Finally, | wrapped things up with a quick look at how
you can make your various schema definitions more maintainable by organizing them into separate files.

In this article, I'll be continuing the discussion of type extension, demonstrating how to derive new types by
restricting (rather than extending) existing ones, create abstract definitions and redefine existing types. Note
that you'll need to be up to speed on the material covered in the first part of this article in order to understan
the concepts discussed in this one — so if you're coming at this from scratch, take some time out to get the
basics down, and then flip the page so we can get started.

The Road Ahead Developer Shed 1



Feeling The Force

In "The Phantom Menace", when Qui—Gon Jinn first meets Anakin Skywalker on an unscheduled stop at the
Outer Rim world of Tatooine, he immediately realizes that there is something special about the boy: he is
destined to be a Jedi.

Oris he?

"The Phantom Menace" and subsequent episodes certainly resolve that question conclusively — but what dc
that have to do with XML schemas?

Quite a lot, as you'll see shortly. First, though, let's quickly revisit a segment from the first part of this article,
in which | defined a complex data type named "starWarsEntity",

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="starWarsEntity">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="species" type="xsd:string"/>
<xsd:element name="language" type="xsd:string"/>
<xsd:element name="home" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

<l—— more definitions ——>

</xsd:schema>

and then extended it to create a new "Human" sub-type.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="Human">
<xsd:complexContent>

<xsd:extension base="starWarsEntity">
<xsd:sequence>

Developer Shed )

Feeling The Force



Doing More With XML Schemas (part 2)

<xsd:element name="gender"
type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<l—-— more definitions ——>

</xsd:schema>

Let's now extend things a little further, and derive one more datatype from the "Human" complex type — we'l
call this one "Jedi", and make sure that it inherits all the characteristics of the "Human" type, together with
one additional attribute. Here's the definition:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="Jedi">
<xsd:complexContent>

<xsd:extension base="Human">
<xsd:sequence>

<xsd:element

name="midichlorian—count" type="xsd:integer"/>
</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<l—-— more definitions ——>

</xsd:schema>

In case you're wondering — midi—chlorians are microscopic symbiotic creatures that swim around in the
bloodstream of creatures in the Star Wars universe. In Star Wars lore, every Jedi possesses an unusually le
number of these creatures, which are the reason they are so receptive to the Force; in "The Phantom Mena
Qui—Gon Jinn uses this midi—chlorian count to determine Anakin's eligibility for Jedi—hood.

Here's an XML file built around this schema:

Developer Shed 2

Feeling The Force



Doing More With XML Schemas (part 2)

<?xml version="1.0" encoding="UTF-8"?>
<gallery
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<character xsi:type="Jedi">

<name>Luke Skywalker</name>
<species>Human</species>
<language>Basic</language>
<home>Tatooine</home>
<gender>Male</gender>
<midichlorian—count>9000</midichlorian—count>
</character>

</gallery>

What | just showed you was an example of deriving, by extension, one new type from another existing type,
which is itself derived from a base type. This type of extensibility is what makes XML Schemas so
powerful...and so easy to maintain.

Developer Shed A

Feeling The Force



The Next Level

Now, deriving a new datatype by extending the characteristics of an existing one is just one way of getting t
job done. The XML Schema specification also supports one other way of deriving new datatypes: by
restricting, or constraining, the characteristics of existing types.

In order to understand this, let's go back to the analogy on the previous page, and consider using the "Jedi"
datatype as the base for another datatype: "JediMaster" (according to
http://lwww.starwars.com/databank/organization/thejediorder/index.html, Jedi Masters are "those who have
shown exceptional devotion and skill in the Force.")

In other words, a "JediMaster" possesses all the characteristics of a "Jedi"...with one additional constraint: a
very high midi—chlorian count. Therefore, it is possible to define a "JediMaster" datatype simply by adding a
restriction to the definition of the "Jedi" datatype — as demonstrated below:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<l—- other definitions ——>

<xsd:complexType name="JediMaster">
<xsd:complexContent>
<xsd:restriction base="Jedi">
<xsd:sequence>

<xsd:element name="name"
type="xsd:string"/>
<xsd:element name="species"
type="xsd:string"/>
<xsd:element name="language"
type="xsd:string"/>
<xsd:element name="home"
type="xsd:string"/>
<xsd:element name="gender"
type="xsd:string"/>
<xsd:element
name="midichlorian—count" >
<xsd:simpleType>
<xsd:restriction
base="xsd:integer">

<xsd:minlInclusive value="10000" />
</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

The Next Level Developer Shed 5



Doing More With XML Schemas (part 2)

</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

Want to verify that I'm speaking the truth? Take the XML sample on the previous page, alter it to use the ne
"JediMaster" datatype, and pass it through an XML validator.

<?xml version="1.0" encoding="UTF-8"?>
<gallery
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<character xsi:type="JediMaster">

<name>Luke Skywalker</name>
<species>Human</species>
<language>Basic</language>
<home>Tatooine</home>
<gender>Male</gender>
<midichlorian—count>9000</midichlorian—count>
</character>

</gallery>

You should see an error, since the value of the <midiclorian—count> element is less than the defined minimt
value in the "JediMaster" datatype.

Now, alter the value of the <midiclorian—count> element in your XML sample, and validate it again.

<?xml version="1.0" encoding="UTF-8"?>
<gallery
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<character xsi:type="JediMaster">

<name>Luke Skywalker</name>
<species>Human</species>
<language>Basic</language>
<home>Tatooine</home>
<gender>Male</gender>
<midichlorian—count>18000</midichlorian—count>
</character>

</gallery>

This time, you should see no errors — indicating that the restriction you've imposed while deriving the new
datatype is in effect.

The Next Level Developer Shed 6



Doing More With XML Schemas (part 2)

Note also that when deriving by restriction, it is necessary to repeat the definition of all elements in the
derived complex type from my original type. As a result, all elements of type "JediMaster" will also be
acceptable as elements of type "Jedi".

The Next Level Developer Shed 7



Big Brother Is Watching...

It's also possible to control whether or not schema designers can derive new datatypes from existing one,
simply by specifying the level of extensibility allowed in the base definition. This is accomplished via the
"final" attribute, which can accept any one of three values: "restriction”, "extension” and "#all". Consider the
following example, which illustrates:

<xsd:complexType name="Human" final="#all">
<xsd:complexContent>

<xsd:extension base="starWarsEntity">
<xsd:sequence>

<xsd:element name="gender"
type="xsd:string"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

In this case, I've specified that new types may *not* be derived from this type by extending or restricting it,
via the "final" attribute. In order to verify that this works, try deriving a new type by extension and using that
derived type in a document instance — your XML validator should display an error.

This ability to control the extent to which a base type can be used for further type derivations is very
important when you're creating layered schema definitions; it can provide schema authors with an easy,
efficient way to restrict misuse or erroneous use of a type definition, especially in the case of schemas whicl
are widely used by many different applications.

You can specify a default "final" value for *all* the datatypes in a schema via the special "finalDefault"
attribute, which must be included within the outermost <xsd:schema> element. In order to illustrate, conside
the following code snippet, which allows derivation of new types from all existing definitions by restriction
only.

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
finalDefault="extension">

<l—- definitions ——>

</xsd:schema>

Developer Shed o

Big Brother Is Watching.....



Speaking In The Abstract

While on the subject of controlling the manner in which type definitions can be used, it's instructive to also
look at abstract type definitions. If a base type spawns several new sub-types, as in the example below,

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="gallery">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="character"
type="starWarsEntity" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

</xsd:element>

<l-- base definition ——>

<xsd:complexType name="starWarsEntity">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="species" type="xsd:string"/>
<xsd:element name="language" type="xsd:string"/>
<xsd:element name="home" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

<!-- derived definition ——>
<xsd:complexType name="Ewok">
<xsd:complexContent>
<xsd:extension base="starWarsEntity">
<xsd:sequence>

<xsd:element name="vehicle"
type="xsd:string"/>

<xsd:element name="society"
type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Human">
<xsd:complexContent>

<xsd:extension base="starWarsEntity">
<xsd:sequence>

<xsd:element name="gender"
type="xsd:string"/>

Developer Shed o

Speaking In The Abstract



Doing More With XML Schemas (part 2)

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<l-—and so on ——>

</xsd:schema>

schema authors can force document authors to be more precise in their usage of these types by declaring tl
base type as abstract.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<l-- base definition ——>

<xsd:complexType name="starWarsEntity" abstract="true">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="species" type="xsd:string"/>
<xsd:element name="language" type="xsd:string"/>
<xsd:element name="home" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

This requires document authors to specifically name the sub—-type whenever they use it in a document
instance. Failure to do so will result in XML validation errors. For example, while the following XML
document instance is certainly conformant to the rules laid down for the base type "starWarsEntity",

<?xml version="1.0" encoding="UTF-8"?>

<gallery
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<character>

<name>Luke Skywalker</name>
<species>Human</species>
<language>Basic</language>
<home>Tatooine</home>
</character>

</gallery>

the XML validator will still generate errors while parsing it, as "starWarsEntity" has been defined as an
abstract type. It is only when the document author specifies a type via the "type" attribute

Developer Shed 10

Speaking In The Abstract



Doing More With XML Schemas (part 2)

<?xml version="1.0" encoding="UTF-8"?>
<gallery
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<character xsi:type="Human">
<name>Luke Skywalker</name>
<species>Human</species>
<language>Basic</language>
<home>Tatooine</home>
<gender>Male</gender>

</character>

</gallery>

that validation will take place without errors.

Again, this mechanism assists in reducing the risk of errors, and in controlling the manner in which schema
definitions are used by document authors. It's also possible to declare specific elements (rather than types)
abstract — all you need is a substitution group, which you can read about at

http://www.w3.org/TR/xmlschema-0/#SubsGroups

Developer Shed 11

Speaking In The Abstract


http://www.w3.org/TR/xmlschema-0/#SubsGroups

Going Local

You'll remember, from the first article in this series, that the XML Schema specification allows you to split up
schema definitions across multiple files, and include one file within another using the <xsd:include> element
This not only helps in logically separating base and derived definitions, it also makes your code cleaner and
easier to maintain.

In case you're using a schema published by an external party, it's quite possible that you may need to make
changes to it in order to tailor it to your specific requirements. Making changes to the original schema
definitions is not always the best way to accomplish this task; sometimes, it's more logical to leave the
original schema definitions as is, and simply over-ride them with new definitions where needed.

The XML Schema specification allows you to do this via the <xsd:redefine> element, which makes it possibl
to easily redefine an existing schema definition. In order to illustrate this, let's return to the last example in th
first part of this article, in which | split up my schema definitions into "base—defs.xsd", which contained the
base definitions,

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<!-- base definitions ——>

<xsd:complexType name="starWarsEntity">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="species" type="xsd:string"/>
<xsd:element name="language" type="xsd:string"/>
<xsd:element name="home" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="gallery">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="character"
type="starWarsEntity" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

and "derived—defs.xsd", which referenced "base—defs.xsd" and contained the extensions.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

Developer Shed 12

Going Local



Doing More With XML Schemas (part 2)

<!-—include base types——>
<xsd:include schemalLocation="base—defs.xsd"></xsd:include>

<!-— derived types ——>
<xsd:complexType name="Human">
<xsd:complexContent>
<xsd:extension base="starWarsEntity">
<xsd:sequence>

<xsd:element name="gender"
type="xsd:string"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Jedi">
<xsd:complexContent>

<xsd:extension base="Human">
<xsd:sequence>

<xsd:element

name="midichlorian—count" type="xsd:integer"/>
</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="JediMaster">
<xsd:complexContent>
<xsd:restriction base="Jedi">
<xsd:sequence>

<xsd:element name="name"
type="xsd:string"/>
<xsd:element name="species"
type="xsd:string"/>
<xsd:element name="language"
type="xsd:string"/>
<xsd:element name="home"
type="xsd:string"/>
<xsd:element name="gender"
type="xsd:string"/>
<xsd:element
name="midichlorian—count">
<xsd:simpleType>
<xsd:restriction
base="xsd:integer">

<xsd:minlInclusive value="10000" />

Developer Shed

Going Local



Doing More With XML Schemas (part 2)

</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

...andsoon ...

</xsd:schema>

Finally, my XML document instance itself referenced the schema definitions in "derived—defs.xsd".

<?xml version="1.0" encoding="UTF-8"?>
<gallery xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="derived—defs.xsd">

</gallery>

Now, let's assume | wanted to redefine the new "JediMaster" type included in "derived—defs.xsd" to include
one more attribute. | could put this (re)definition in a file called "local-defs.xsd",

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<!-—include and redefine derived types——>
<xsd:redefine schemalLocation="derived—defs.xsd">

<xsd:complexType name="JediMaster">
<xsd:complexContent>

<xsd:extension base="JediMaster">
<xsd:sequence>

<xsd:element

name="weapon" type="xsd:string"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

</xsd:redefine>

</xsd:schema>

Developer Shed 14

Going Local



Doing More With XML Schemas (part 2)

and reference this new file in my XML document instance.

<?xml version="1.0" encoding="UTF-8"?>
<gallery xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="local-defs.xsd">

<character xsi:type="JediMaster">

<name>Luke Skywalker</name>
<species>Human</species>
<language>Basic</language>
<home>Tatooine</home>
<gender>Male</gender>
<midichlorian—count>38000</midichlorian—count>
<weapon>lightsaber</weapon>

</character>

...andsoon ...

</gallery>

The XML validator will now use the new definition of the "JediMaster” class when validating this document
instance, rather than the original definition in "local-defs.xsd". Other types may be redefined in a similar
manner.

This ability to selectively redefine schema elements makes it possible to easily "localize" an
externally—provided set of schema definitions to specific needs, without damaging or altering the original.

And that's about it for the moment. In the next part of this article, I'll be looking at uniqueness, keys and
references. Lotsa good stuff ahead — so make sure you tune in!

Note: All examples in this article have been tested on Linux/i586. Examples are illustrative only, and are not

meant for a production environment. Melonfire provides no warranties or support for the source code
described in this article. YMMV!

Going Local Developer Shed 15



	Table of Contents
	The Road Ahead
	Feeling The Force
	The Next Level
	Big Brother Is Watching...
	Speaking In The Abstract
	Going Local

