
this print for content only—size & color not accurate spine = 0.85" 448 page count

Books for professionals By professionals®

Practical Rails Social Networking Sites
Dear Reader,

Social networking web sites have become an incredibly important part of the
Internet, allowing people from every corner of the world to make friends, discuss
topics, and see cutting-edge Ajax at its best. At the same time, Rails has dramat-
ically lowered the barriers to developing complex, maintainable, and scaleable
web applications. It is now easier than ever for an individual or a small team to
build a world-class web application that pushes the boundaries of current Web
technology.

I wrote this book to show you how you can make use of the power of Rails
to build a social networking site that is tailored to your community’s needs. By
showing how to develop a real community application from scratch, I’ll explain
the tools and give you practical code and techniques that will allow you to
develop your own site. Each chapter introduces a new feature, which you can
adapt for use in your own applications.

I begin by creating a basic content management system as the foundation
for the site. After that, I’ll show you how to build a user management system,
discussion forums, blogs with user-defined themes and API access, a photo
gallery with Ajax tagging and Google Maps integration, an e-mail newsletter, a
friendship system, and a mobile-optimized version of the site.

Using the code developed in this book, you will be able to develop your own
social networking site while learning advanced Rails techniques. You also will
have the knowledge and resources to further extend the site and build a success-
ful modern social networking site of your own.

Alan Bradburne

US $44.99

Shelve in
Web Development

User level:
Intermediate–Advanced

Bradburne
Rails Social Netw

orking Sites

The eXperT’s Voice® in WeB DeVelopmenT

Practical

Rails
Social Networking Sites

 cyan
 maGenTa

 yelloW
 Black
 panTone 123 c

Alan Bradburne

Companion
eBook Available

THE APRESS ROADMAP

Beginning Rails:
From Novice to Professional

Beginning Ruby:
From Novice to Professional

Practical Rails
Social Networking Sites

Practical Ruby Gems

Pro ActiveRecord for Ruby:
Databases with
Ruby and Rails

Beginning Ruby on Rails
E-Commerce:

From Novice to Professional

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-841-2
ISBN-10: 1-59059-841-5

9 781590 598412

54499

Learn how to implement a modern
social networking web site using Rails,
from design to deployment.

Practical

Practical Rails Social
Networking Sites

■ ■ ■

Alan Bradburne

Bradburne_8415FRONT.fm Page i Thursday, May 24, 2007 7:22 AM

Practical Rails Social Networking Sites

Copyright © 2007 by Alan Bradburne

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-841-2

ISBN-10 (pbk): 1-59059-841-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Matthew Moodie, Chris Mills
Technical Reviewer: Paul Bentley
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,

Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole Flores
Copy Editor: Heather Lang
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Susan Glinert
Proofreader: Elizabeth Berry
Indexer: Becky Hornyak
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

Bradburne_8415FRONT.fm Page ii Thursday, May 24, 2007 7:22 AM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com

For Mayumi

Bradburne_8415FRONT.fm Page iii Thursday, May 24, 2007 7:22 AM

Bradburne_8415FRONT.fm Page iv Thursday, May 24, 2007 7:22 AM

v

Contents at a Glance

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Ruby, Ruby on Rails, and the RailsCoders Project 1

■CHAPTER 2 Developing a Content Management System 21

■CHAPTER 3 Adding Users and Groups . 47

■CHAPTER 4 Building a News Blog with RSS Feeds and an API 83

■CHAPTER 5 Building a Discussion Forum . 117

■CHAPTER 6 Building a Blogging Engine with Web Services Support 153

■CHAPTER 7 Building a Photo Gallery . 191

■CHAPTER 8 Sending E-mail and Building a Newsletter Mailing List 217

■CHAPTER 9 Adding Friends with XFN Details . 247

■CHAPTER 10 Adding Tags to the Photo Gallery . 277

■CHAPTER 11 Creating Mashups and Integrating with Web 2.0 301

■CHAPTER 12 Adding User-Created Themes to the Blogging Engine 329

■CHAPTER 13 Adding a Mobile Interface . 351

■CHAPTER 14 Deploying, Optimizing, and Scaling the Application 379

■INDEX . 397

Bradburne_8415FRONT.fm Page v Thursday, May 24, 2007 7:22 AM

Bradburne_8415FRONT.fm Page vi Thursday, May 24, 2007 7:22 AM

vii

Contents

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Ruby, Ruby on Rails, and the RailsCoders Project 1

The RailsCoders Project . 1

Ruby and Ruby on Rails . 2

A Brief History of Ruby . 3

What Is Ruby on Rails?. 4

Software Required to Build RailsCoders . 7
Upgrading Rails . 8

Installing Ruby, Rails, and MySQL . 8

Installing on Windows . 9

Mac OS X . 11

Linux. 12

Creating the Skeleton of the Rails Application . 14

Watching the Rails Logfiles . 16

Setting up the Database . 17

Creating the Database . 18

Configuring Rails to Use the Database . 18

Testing the Database . 19

Summary . 20

■CHAPTER 2 Developing a Content Management System 21

Specifying the Feature Requirements . 21

Rails, Routing, and REST . 21

Traditional Rails Routes . 22

RESTful Rails Routes . 22

Creating a Site Layout . 23

Designing the Pages and Page Editor . 26

The Page Model . 26

The Page Controller . 27

Bradburne_8415FRONT.fm Page vii Thursday, May 24, 2007 7:22 AM

viii ■CO N T E N T S

Creating the Page Model . 28

Migrations . 28

Creating the Model . 29

Creating the Controller . 33

Setting Up a Default Page . 41

Adding a Link from the Sidebar Menu . 41

Testing . 42

Creating the Testing Database . 42

Developing Unit Tests for the Page Model . 42

Extending the Content Management System . 44

Summary . 45

■CHAPTER 3 Adding Users and Groups . 47

Specifying the Feature Requirements . 47

Defining the User Model. 47

The Role Model and Join Table . 48

The Controllers . 49

Sessions and Cookies . 50

Creating the User Model . 51

The Session-Handling Library . 53

Creating the Controllers . 55

The Users Controller . 55

The Account Controller. 57

Creating the User Account Views . 58

The New User View . 58

The Login View . 61

The Show User View. 62

Adding Administration Views . 63

Listing All Users in the Index View . 64

Editing a User with edit.rhtml . 66

Testing . 67

Unit Testing . 67

Functional Testing . 68

Adding Roles . 72

Creating the Role Model and Join Table . 72

Checking a User’s Roles . 74

Administering Roles . 76

Testing the Roles Functionality . 79

Extending the User Management System . 81

Summary . 81

Bradburne_8415FRONT.fm Page viii Thursday, May 24, 2007 7:22 AM

■C ON TE N TS ix

■CHAPTER 4 Building a News Blog with RSS Feeds and an API 83

Specifying the Feature Requirements . 83

Textile Markup . 83

The Article Model . 84

Defining the Category Model . 85

The Editor Role . 85

The Articles Controller . 86

The Categories Controller . 86

Installing the RedCloth Gem . 86

Creating the Article and Category Models . 87

Writing the Database Migrations. 87

Defining the Relationships Among Models . 88

Defining the Validations . 89

Automatically Nullifying category_id on Deletion 89

Automatically Updating the published_at Field 89

Adding the Editor Role . 90

Creating the Articles Controller and Views . 91

Mapping the REST Resources . 91

The Articles Controller . 92

The Article Views . 98

Using the Articles Feature . 101

Testing the XML API . 101

Adding HTTP Authentication for the API . 103

Testing the API Authentication . 104

Creating the Categories’ Controller and Views . 105

The Categories Controller . 105

The Category Views . 108

Adding a Link from the Sidebar Menu . 109

Manually Testing the News Blog System . 110

Testing the News Blog . 110

Functional Tests . 112

Integration Tests . 114

Further Development of the News System . 115

Summary . 116

Bradburne_8415FRONT.fm Page ix Thursday, May 24, 2007 7:22 AM

x ■CO N T E N T S

■CHAPTER 5 Building a Discussion Forum . 117

Specifying the Discussion Forum Requirements 117

Defining the Forum Model . 118

Defining the Topic Model . 118

Defining the Post Model . 119

The Moderator Role . 119

The Forum, Topic, and Post Controllers . 119

Building the Forum . 120

Building the Forum, Topic, and Post Models 120

Checking a User’s Roles for Moderator Rights 126

Adding the Nested Resource Route Mappings 126

Modifying the Layout Template and Style Sheet 126

The Forums Controller and Views . 127

The Topics Controller and Views. 131

The Posts Controller and Views. 136

Adding a Link to the Sidebar Menu . 141

Testing the Topics and Posts . 141

Restricting Actions to Moderators. 142

Testing the Forum . 143

Creating Test Fixtures . 143

Creating the Functional Tests . 144

Further Development of the Discussion Forum . 150

Summary . 151

■CHAPTER 6 Building a Blogging Engine
with Web Services Support . 153

Specifying the Blog Engine Requirements . 153

The Entry Model . 153

The Comment Model . 154

The User Model . 154

The Entries Controller. 155

The Comments Controller . 155

The Blogs Controller . 155

Blogging APIs . 155

Building the Blogging System . 156

Generating the Blogging Scaffolding Code 156

Writing the Migrations . 158

The Models’ Relationships and Validations 160

Creating the Resource Mapping . 161

The Blog Name Helper Method . 161

Bradburne_8415FRONT.fm Page x Thursday, May 24, 2007 7:22 AM

■C ON TE N TS xi

Adding the Blog Title to the Edit User Profile Page 162

The Controllers and Views . 163

Testing the Entries Controller . 171

Creating and Testing the Comments Controller 173

Adding the Latest Blog Entries to User Profiles 177

The Blogs Controller . 178

Creating an XML-RPC Blogging Interface . 180

Action Web Service. 181

Generating the Web Service Code . 181

Defining the API Method Calls . 182

Writing the Blogging API Method Code. 184

Testing the Web Services . 186

Testing Using a Desktop Blogging Client . 186

Automated Testing of the Blogging API . 188

Further Development of the Blogging System . 189

Summary . 189

■CHAPTER 7 Building a Photo Gallery . 191

Working with Uploaded Files . 191

The attachment_fu Plug-in . 192

The Photo Gallery Requirements . 194

Defining the Photo Model. 195

The Photos Controllers . 195

Installing ImageMagick, RMagick,
and attachment_fu . 195

Installing on Windows . 196

Installing on OS X . 196

Installing on Linux. 196

Installing the attachment_fu Plug-in . 196

Building the Photo Gallery . 197

Generating the Scaffolding Code . 197

Writing the Migration . 198

Creating the Photo Model and Its Relationships 199

Mapping the Photos Resource . 200

The Photos and User Photos Controllers . 200

The Photo Views . 203

Manually Testing the Gallery . 208

Bradburne_8415FRONT.fm Page xi Thursday, May 24, 2007 7:22 AM

xii ■CO N T E N T S

Writing the Test Cases . 210

Creating the Photo Fixtures . 210

Unit Testing . 210

Functional Tests . 212

Further Development of the Photo Gallery . 215

Summary . 215

■CHAPTER 8 Sending E-mail and Building
a Newsletter Mailing List . 217

Using ActionMailer . 217

Configuring ActionMailer . 217

Specifying the E-mail Feature Requirements . 218

E-mail Notifications of New Comments . 219

E-mail Newsletters . 219

Building the New Comment Notifier . 220

Creating the Mailer . 220

Manually Testing E-mail Creation . 223

Calling the Mailer from the Comments Controller 226

Testing the Mailer from Within the Application 227

Automating the Mailer Tests . 228

Building the Newsletter Feature . 230

Installing ar_mailer. 230

Creating the Skeleton Resource . 232

Mapping the Newsletter Resource . 233

The Newsletter Model . 234

Writing the Newsletter Controller and Views 234

Creating the Newsletter Mailer . 241

Add the Newsletters to the Sidebar . 241

Testing the Newsletter Mailer . 242

Further Development of the E-mail System . 244

Summary . 244

■CHAPTER 9 Adding Friends with XFN Details . 247

Microformats and XFN . 247

The Friends Feature Requirements . 249

The Friends Resource. 249

Showing Users’ Latest Activities . 251

Bradburne_8415FRONT.fm Page xii Thursday, May 24, 2007 7:22 AM

■C ON TE N TS xiii

Building the Friends Resource . 251

Creating the Database Migrations . 251

Building the Friends Resource . 254

Updating the User’s Latest Activity . 257

The Friends Controller and Views . 258

Adding Friends Links to the Sidebar Menu 267

Styling the Friends List . 269

Testing . 272

Further Development of the Friendship Feature 274

Summary . 275

■CHAPTER 10 Adding Tags to the Photo Gallery . 277

The Gallery Tagging Requirements . 277

Tagging with Rails . 278

The acts_as_taggable_on_steroids Plug-in . 279

Building the Photo Tagging Feature . 282

Installing the acts_as_taggable_on_steroids Plug-in 282

Creating the Database Tables . 283

Updating the Models. 284

Creating the Controllers . 285

Adding the Resource Mappings . 285

Writing the Controllers and Views . 286

Adding Tags to a Photo . 290

Linking to the Tag Browser . 295

Manually Testing . 296

Further Development of the Tagging System . 298

Summary . 299

■CHAPTER 11 Creating Mashups and Integrating with Web 2.0 301

Integrating the Google Maps API . 301

The Mapping Feature Requirements . 302

Building the Mapping Feature . 303

Integrating the Flickr API . 316

The Flickr Feature Requirements . 317

Building the Flickr Integration Feature . 317

Further Development Using Mashups . 326

Summary . 327

Bradburne_8415FRONT.fm Page xiii Thursday, May 24, 2007 7:22 AM

xiv ■CO N T E N T S

■CHAPTER 12 Adding User-Created Themes
to the Blogging Engine . 329

The Blog Template Requirements . 329

Liquid Templates . 330

The Liquid API . 331

Liquid Markup . 331

Installing Liquid . 332

Building the Blog Templates Feature . 333

Creating the Liquid Drops . 333

Creating the Liquid Filters . 336

The Usertemplate Model . 337

The Usertemplates Controller . 338

The Usertemplate Views . 340

Rendering Liquid Templates . 342

Manual Testing . 343

Testing the Usertemplates Controller . 346

Further Development of the User Templates . 348

Summary . 349

■CHAPTER 13 Adding a Mobile Interface . 351

The Mobile Web . 351

The RailsCoders Mobile Site Requirements . 352

The Layout . 353

User Profiles . 354

Accounts . 354

Pages . 354

News Articles . 354

Forums . 354

Blogs . 354

Photo Gallery . 355

Developing Mobile RailsCoders . 355

Structure of the Mobile Application . 355

Creating the Mobile Layout and Style Sheet 356

The Resource Mappings . 357

The Mobile Controllers and Views. 360

Manual Testing . 375

Testing the Mobile Site . 375

Further Development of the Mobile Site . 377

Summary . 377

Bradburne_8415FRONT.fm Page xiv Thursday, May 24, 2007 7:22 AM

■C ON TE N TS xv

■CHAPTER 14 Deploying, Optimizing, and Scaling the Application 379

Deploying RailsCoders . 379

Development Mode vs. Production Mode . 379

Session Storage . 380

Choosing a Host . 381

Choosing a Web Server . 382

Automating Deployment with Capistrano and Deprec 383

Optimizing and Scaling RailsCoders . 392

Watching the Log Files . 392

Caching . 393

Benchmarking . 395

Summary . 396

■INDEX . 397

Bradburne_8415FRONT.fm Page xv Thursday, May 24, 2007 7:22 AM

Bradburne_8415FRONT.fm Page xvi Thursday, May 24, 2007 7:22 AM

xvii

About the Author

■ALAN BRADBURNE is an independent Rails developer providing consulting
services and developing applications for companies, both large and small.
Alan has over ten years’ experience in the Web and mobile industries, and
has worked for Motorola, Nextel, and Sun Microsystems. In 2002, he created
Phlog.net, one of the world’s first dedicated mobile photo blogging commu-
nities. He then went on to work with 20six, helping to develop their blogging
community software.
 Since 2005, he has been working with Rails full time, developing appli-

cations for web start-ups and enterprise clients. He has spoken at a number of events on Rails
development and has presented on agile development techniques and Rails coding.

He lives in Reading, England, with his wife, Mayumi. In his spare time, he enjoys learning
Japanese, playing the occasional game of Go, and traveling as often as possible. You can find
him online at http://alanbradburne.com.

Bradburne_8415FRONT.fm Page xvii Thursday, May 24, 2007 7:22 AM

http://alanbradburne.com

Bradburne_8415FRONT.fm Page xviii Thursday, May 24, 2007 7:22 AM

xix

About the Technical Reviewer

■PAUL BENTLEY has been writing software professionally for over a decade. He has experience in
many areas of computing, from embedded devices to 3-D graphics. He is especially proficient
in the telephony world and is experienced with both traditional computer telephony and SIP-
based solutions. He is currently working with Rails, developing web applications for corpora-
tions that want stable solutions to a variety of problems.

As an avid Go player, he tries to play every day—though he admits he still has a lot to learn
before he can even be considered an amateur. He lives with his girlfriend and daughter in
Harrogate, UK. If you feel like challenging Paul to a game of Go, he can be tracked down via
paulbentley.net.

Bradburne_8415FRONT.fm Page xix Thursday, May 24, 2007 7:22 AM

Bradburne_8415FRONT.fm Page xx Thursday, May 24, 2007 7:22 AM

xxi

Acknowledgments

This book could not have been written without the help, guidance, and support of many
people from Apress, the Ruby and Rails communities, friends, and family.

First of all, thanks to Peter Cooper for planting the seed of the idea to write this book and
putting me in touch with Apress.

I would like to thank Keir Thomas for his encouragement and guidance during the early
stages of the book. His advice and support were invaluable in my initial planning and writing.

Thanks to Kylie Johnston for being a wonderful project manager. She has been there every
step of the way supporting me and keeping things moving.

Huge thanks go to Paul Bentley, Matt Moodie, and Chris Mills for doing such a fine job
reviewing the book and providing constructive feedback.

I would also like to thank Heather Lang for her great work in copy editing the book and
everybody else at Apress involved in the creation of this book.

Many thanks to the Rails community as a whole for making this such an exciting, interesting,
and generally pleasant industry to work in. Special thanks go to Yukihiro Matsumoto and David
Heinemeier Hansson for creating Ruby and Rails respectively.

Finally, I would like to thank my family and friends for their support during the writing of
this book. Thanks go to my parents and Mayumi’s parents for their encouragement and for
putting up with my writing over Christmas and New Year. Special thanks must go to my wife,
Mayumi, for her constant support and endless patience.

Bradburne_8415FRONT.fm Page xxi Thursday, May 24, 2007 7:22 AM

Bradburne_8415FRONT.fm Page xxii Thursday, May 24, 2007 7:22 AM

xxiii

Introduction

Social networking sites have become increasingly popular and important for users of the
Internet. Many people keep in touch with friends with sites such as Facebook and MySpace,
and other sites such as LinkedIn allow people to connect and discuss topics in a business context.

Ruby on Rails has dramatically lowered the barriers to developing complex, maintainable,
and scaleable web applications. This makes it a great tool to allow developers to easily build
social sites that are tailored for the unique needs of a specific community.

I wrote this book to show you how to make use of Ruby on Rails and some of the available
plug-ins and tools to build a unique site for your own community.

Who This Book Is For
Practical Rails Social Networking Sites is for developers who want to learn how to build a real-
world web application using Ruby on Rails. This book is aimed at developers who have already
worked through some Rails tutorials and have developed an application and now wish to build
their skills and develop a social networking site using Rails.

How This Book Is Structured
Throughout the book, I will build a real-world social networking site called RailsCoders. In each
chapter, I will address a different feature of the site, specifying the requirements of the feature
and writing the code for it. You can use all of the code in the book to easily build your own social
networking site or adapt the code for each feature to meet your own requirements.

This book is designed to be a practical guide to developing a site, rather than a reference
book or a tutorial to Rails; I will point out useful resources for further information throughout
this book.

I encourage you to get involved in the RailsCoders site itself at http://railscoders.net.
You can use the forums to discuss topics from this book or create a blog to discuss your own
Rails development experiences.

Bradburne_8415FRONT.fm Page xxiii Thursday, May 24, 2007 7:22 AM

http://railscoders.net

xxiv ■IN TR O D U CT IO N

Downloading the Code
You can download a zip file containing the source code from the book from both the Apress
web site at http://apress.com and the RailsCoders site at http://railscoders.net.

Contacting the Author
You can reach Alan Bradburne by e-mail at abradburne@gmail.com or follow his blog at
http://alanbradburne.com.

Bradburne_8415FRONT.fm Page xxiv Thursday, May 24, 2007 7:22 AM

http://apress.com
http://railscoders.net
mailto:abradburne@gmail.com
http://alanbradburne.com

1

■ ■ ■

C H A P T E R 1

Ruby, Ruby on Rails, and
the RailsCoders Project

Practical Rails Social Networking Sites is for developers who wish to build real-world commu-
nity and social networking web sites using Ruby on Rails. In this book, we will develop a real-
world community web site called RailsCoders, which you can find on the web at http://
railscoders.net; the site is built on the same code that is developed in this book.

By learning how this community site was built, you can easily use the same code to
run your own online community site or adapt and develop the code to suit your own site’s
requirements.

In this chapter, I will start by discussing the high-level requirements for the RailsCoders
project. Next, I will give you some background on Ruby and Ruby on Rails and discuss some of
the features of Ruby and Rails that make using them to develop web applications very quick
and easy. I will provide instructions on how to install Ruby, Rails, and MySQL on your system
and create the database required for the project. After that, I’ll show you how to create the skel-
eton code for the application and make sure that Rails can connect to the database correctly.

You may already have installed Ruby and Rails on your machine and worked through
some tutorials, or you may be familiar with developing a project in Rails. If so, you may wish to
fast-forward through the installation section of this chapter, but you should ensure that you
have the correct versions of the software installed and check that you are using a similar setup.

The RailsCoders Project
The RailsCoders site is aimed at both new and experienced developers working with Rails. Along
with providing a general Rails developer community, it will also host a news and discussion
forum for this book itself.

The two main features of the site will be a news blog containing articles on Rails and news
about this book and a discussion forum to enable users to help each other and discuss issues
with developing Rails web applications. To help build a community rather than just a collec-
tion of forum posts, the aim is to allow users to develop their profiles on the site by letting them
to create blog posts and upload photos and allowing them to integrate profiles from other online
communities, such as Flickr.

Bradburne_8415C01.fm Page 1 Thursday, May 24, 2007 9:07 AM

http://railscoders.net
http://railscoders.net

2 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

From this goal, we can produce a high-level list of features required for the site:

• A system to allow users to create user accounts and add profiles about themselves: This
requires them to log in with a username and a password.

• A simple way for you to maintain the information pages on the site: These pages are likely
to remain static most of the time. However, when they do need updating, you don’t want
to have to go in and edit HTML pages. Therefore, a simple content management system
is required.

• A news blog: This will allow an editor of the site to create news articles and publish them.

• A discussion forum system: A forum moderator should be able to create a number of
forums in which users can create new topics. Each topic can have any number of posts.

• A blogging engine: This will allow users of the site to create their own blogs about their
projects and Rails development experiences. It should allow users to post blog entries
using desktop blogging clients as well as the web.

• A photo gallery for each user of the site: This allows users to upload their photos to their
profiles and should support showing thumbnails of each photo.

• An e-mail newsletter: The newsletter can be sent to all users of the site that opt in to
receiving e-mails from the site.

• Browser options: The site should be able to be viewed from both a desktop web browser
and from a mobile web browser on a cell phone.

Since many users will already have accounts on other online communities, the site should
be able to integrate with these communities too. The RailsCoders project contained in this
book will allow users to display their latest photos from their accounts on Flickr as well as
providing RSS feeds of the users’ blogs, enabling other community sites to access the users’
data on RailsCoders.

Since RailsCoders will hopefully become popular, we need to make sure that it can scale to
deal with a large number of simultaneous users. It also needs to be stable and secure.

Ruby and Ruby on Rails
I am sure you are eager to start developing the site (I know I am), but before we do, it is worth
spending a bit of time getting to know what Ruby and Ruby on Rails are and how they relate to
each other.

Ruby on Rails has drastically changed the way a lot of web development teams and indi-
viduals develop web applications, allowing a small team to rapidly develop stable, scalable,
maintainable applications very quickly and easily. Rails provides results that are quick without
being dirty, meaning that application development can be done very rapidly and interactively
yet also be stable and well built.

Bradburne_8415C01.fm Page 2 Thursday, May 24, 2007 9:07 AM

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 3

Understanding where this dynamic duo of language and framework came from will help you
get the most out of them and understand what makes them so productive and fun to work with.

A Brief History of Ruby
Ruby and Ruby on Rails are often mentioned in the same breath, and it is easy to think that they
are one and the same. Looking at Rails code doesn’t help much either, as it is difficult to see
where Ruby ends and Ruby on Rails begins.

Ruby is simply a programming language much like Perl, PHP, or Java. However, there are
a number of things that separate Ruby from other languages. First of all, Ruby was designed as
an object-oriented language, rather than having object-oriented features added as an after-
thought like Perl or PHP. Unlike Java or C#, Ruby is completely object oriented, meaning that
everything in Ruby is an object—there are no primitives.

Also, Ruby is a dynamic language, which basically means that programs written in Ruby
can change their structure as they are run. Ruby is dynamically typed: variables are not restricted to
a particular type (such as an integer or a string); they can change their types during the execution
of the application. This may not be unusual if you are coming from another dynamic language
such as Perl or Python, but it may be a little unusual if you are coming from a C++ or Java
background.

Ruby was conceived and developed by Yukihiro “Matz” Matsumoto and first released to
the public in 1995. It quickly gained a lot of support in its native Japan, soon beating Python in
popularity. However, it remained relatively unknown in the West. In 2000, it started to be noticed
by developers who found its unique design and efficiency appealing, but it was not until the
first release of Ruby on Rails in 2004 that it started attracting large amounts of attention (more
on this in the next section).

The one thing that really sets Ruby apart from any other language that you are likely
to have used is the philosophy behind its development. Matsumoto designed Ruby with the
primary goal of making programmers happy. It does this by reducing the amount of menial
work that you have to do as a programmer so that you can concentrate on the creative part of
solving problems. All of the design decisions behind the language have this goal in mind.

Ruby has gained a lot of respect and recognition for being intuitive and, most of all, fun.
Because of the design of the language and the fact that it allows you to quickly express your
ideas in code, a lot of developers find that they have more fun writing in Ruby.

■Note Ruby’s home on the web, http://ruby-lang.org, is a great place to learn more about it. You
can find the online collection of Ruby documentation at http://ruby-doc.org.

Bradburne_8415C01.fm Page 3 Thursday, May 24, 2007 9:07 AM

http://ruby-lang.org
http://ruby-doc.org

4 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

OTHER USES OF RUBY

Ruby is used not only for developing web applications but also for system administration tasks and tool devel-
opment. The standard libraries and increasingly extensive third-party libraries allow you to quickly develop
scripts, tools, and applications. As you spend more time developing in Ruby, you may like to try developing
other types of tools and applications with it. There are Ruby frameworks for developing desktop applications too.

For Mac OS X, a framework called RubyCocoa allows you to write desktop applications using the Apple
Cocoa framework. You can find more out more information at http://rubycocoa.sourceforge.net.

WxRuby is a framework that allows you to create desktop applications for Windows, Linux, or OS X using
the WxWidget GUI library. Visit http://wxruby.rubyforge.org for more information.

There is even a game development framework called Shattered Ruby that allows you to develop 3-D
games. Find out more at http://shatteredruby.com.

What Is Ruby on Rails?
Ruby on Rails is simply a set of libraries and tools written in Ruby to allow rapid development
of web applications. This package of tools is known as a framework.

This framework was not originally conceived as a stand-alone product; it was written as
part of a real-world application and extracted from that. This is one of the reasons that Rails has
proved to be so practical in the real world. David Heinemeier Hansson, the brain behind Ruby
on Rails, started developing the web-based project management tool Basecamp for 37signals.
37signals can be found at http://37signals.com, and you can try out Basecamp at http://
basecamphq.com.

Hansson had become frustrated with PHP and Java and had recently discovered the joy of
programming in Ruby. He convinced the founder of 37signals, Jason Fried, to take a chance
and let him develop the application in Ruby, and in the three months that it took to develop
the first version of Basecamp, Ruby on Rails was born. After Basecamp was released, Hansson
extracted the framework from the application and released it as open source.

Rails follows the design philosophy of Ruby, in that it focuses on making your life as a web
developer easy and happy. Rails has a couple of main design principles that help achieve these
goals: don’t repeat yourself (DRY) and convention over configuration.

DRY is self-explanatory. If you have defined something once, you should not have to
define it elsewhere. For instance, once you have defined the column names in a database
schema, you should not have to repeat them elsewhere in your code. This reduces the amount
of work and prevents inconsistencies in your code.

Hansson and 37signals made the decision to release the framework as open source, mainly
because they believe that opening the framework up to other users to use and contribute to will
help it rapidly grow and improve.

Bradburne_8415C01.fm Page 4 Thursday, May 24, 2007 9:07 AM

http://rubycocoa.sourceforge.net
http://wxruby.rubyforge.org
http://shatteredruby.com
http://37signals.com
http://basecamphq.com
http://basecamphq.com

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 5

■Note When you install Rails, you are installing the actual Ruby source code to Rails. It is there on your
hard drive to examine, reference, learn from, and even add to and improve. Do not be afraid to look through
the code, as you can learn a lot from it. You can also browse the source code, along with checking the bug
tracker, online at http://dev.rubyonrails.org.

Rails is simply a collection of Ruby packages, most importantly, ActiveRecord and ActionPack. They are
supported by other utility components, such as ActionMailer, ActionWebService, and ActiveSupport.

Models, Views, and Controllers

The Ruby on Rails framework implements the model-view-controller (MVC) architecture.
MVC is a set of design patterns that allows you to separate the data model, the user interface,
and the control logic of your application. Separating your code into these three layers, as follows,
allows you to work on one layer without affecting any other code:

• The model is the application-specific code that operates on your data. Any actions on
the raw data stored by your application go through this layer. If you change or add any
meaning to the data stored, it should be done in this code.

• The view is the presentation layer, where your page layouts and forms go. It controls how
the result of your application is presented to the user.

• The controller contains the control logic of your application. The code that controls the
flow of your program and what should happen when a user performs an action lives here.

The advantage of using an MVC architecture is that your code is cleanly separated into
logical sections that are easy to develop, understand, maintain, and control.

■Tip If you wish to learn more about design patterns, you can find an overview on Wikipedia at http://
en.wikipedia.org/wiki/Design_pattern_(computer_science) or see the book Design Patterns:
Elements of Reusable Object Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (Addison Wesley, 1995).

Because Rails make such architectural decisions for you, you can spend that extra time
working on your application and less time worrying about the information flows within your
system.

Exactly how you write code that fits into this architecture and what happens when you
request a page will be explained in later chapters as we develop the application.

Bradburne_8415C01.fm Page 5 Thursday, May 24, 2007 9:07 AM

http://dev.rubyonrails.org
http://en.wikipedia.org/wiki/Design_pattern_
http://en.wikipedia.org/wiki/Design_pattern_

6 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

Models: ActiveRecord

ActiveRecord is what is known as an Object/Relationship Mapping (ORM) library. An ORM
library maps the data stored in a database to a class in your application. This allows you to
access your data without having to worry about the SQL queries or even exactly how the data is
accessed. The rows in each database table become instances of an object. Although this sounds
complex, in practice, it makes working with a database incredibly simple and easy.

In a Rails application, all of the interaction with the database is performed through
ActiveRecord, so learning how to get the most from it is important. Throughout this book,
I will show you different ways of working with it and how to get the most from it.

Views and Controllers: ActionPack

ActionPack is simply a collection of libraries and tools to help you build web applications.
These provide the “view” and “controller” of the MVC stack.

The view part of ActionPack is used to create the web pages themselves. Since virtually all
of the pages in our site will be dynamic (i.e., not static HTML files), ActionPack provides a lot of
helper functions to allow us to insert the dynamic data into a page.

The controller part of ActionPack is the glue that holds your application together. The
controllers contain the code that responds to user requests through the web browser.

Metaprogramming

One of the reasons that it is sometimes difficult to tell Ruby and Ruby on Rails apart is that
Rails uses a technique called metaprogramming to create what is known as a domain-specific
language (DSL). A DSL is a programming language that is designed to solve problems in a
specific domain. In this case, web applications are the domain, and Rails is a language that
helps you describe your problem within this domain.

The ORM ActiveRecord (as described in the “Models: ActionRecord” section) provides a
DSL for accessing your data, which means that we can use commands like
find_user_by_username('alan') instead of having to go through lengthy sections of code that
connect to a database, perform a SQL query, and then process the results. As you start writing
applications using ActiveRecord finder methods, you will find it increasingly difficult to go
back to writing SQL by hand.

Ruby makes it easy to create DSLs. As your Ruby skills improve, you should find yourself
starting to think about how you can develop your application to best use the concept of DSLs.
This will lead you to extend the feature set of Rails to enable it to work better within your appli-
cation domain.

Built-in Testing

When developing web applications, testing the application often gets left to the end of the
project or not given the amount of time or respect that it deserves. Often, the reason for this is
that developing tests for the application may be difficult or time consuming.

The Rails framework comes complete with integrated automated testing tools. These tools
make it incredibly simple to write unit, functional, and integration tests. Because writing the
tests is so simple, you will find it makes sense to write the tests at the same time that you develop
your code.

Bradburne_8415C01.fm Page 6 Thursday, May 24, 2007 9:07 AM

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 7

TEST-DRIVEN DEVELOPMENT

Some development teams use a development practice known as test-driven development (TDD). This involves
writing your tests before you write your code. You then write your code to pass the tests. The test plans that
you write are incredibly important and should be the result of use cases and user stories.

If you are interested in trying out TDD, there is a lot of documentation on the web about how to get
started. The best place to start is the TDD page on the Rails wiki http://wiki.rubyonrails.org/
rails/pages/HowToDoTestDrivenDevelopmentInRails.

Software Required to Build RailsCoders
To develop a web application using Ruby on Rails, you need to install a few things installed on
your computer.

In this book, I am going to be using Ruby on Rails version 1.2 and MySQL 5.0. If you already
have these installed and configured on your system, ensure that you have the latest version of
Rails installed by following the instructions in the “Upgrading Rails” section; then skip ahead
to the section called “Creating the Skeleton of a Rails Application.”

If you do not have Rails already installed, follow the instructions in this section for your
operating system.

Ruby uses a packaging system called RubyGems for distributing tools, applications, and
extensions. Gems make it easy to install extra Rails plug-ins (small tools that extend the Rails
functionality) and other Ruby tools. In fact, the Rails developers recommend that Rails itself is
installed as a gem. Gems also make it easy to stay up to date with the updating command. You
can find more information at http://www.rubygems.org.

By their very nature, community web sites require some kind of database to store the site’s
data (such as pages, users, and forum posts). Rails can work with most open source and commer-
cial databases, but this book will use MySQL 5.0. If you are more familiar with another database,
you may prefer to use that. If you use another database, you should refer to the Rails wiki at
http://wiki.rubyonrails.org for instructions on how to configure Rails for your choice of
database server.

You will also need a text editor. You probably already have a favorite, so stick with that.
However, if you are using Windows, you may want to take a look at RadRails, a Rails integrated
development environment (IDE). On the Mac, TextMate by MacroMates is a favorite with the
Rails community and is used by most of the core Rails development team.

■Tip If you are using Windows and want to stick with the default text editor installed on your machine, make
sure that you use Wordpad rather than Notepad. However, I highly recommend that you use a more developer-
friendly editor.

Bradburne_8415C01.fm Page 7 Thursday, May 24, 2007 9:07 AM

http://wiki.rubyonrails.org
http://www.rubygems.org
http://wiki.rubyonrails.org

8 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

IDE OR TEXT EDITOR?

If you are coming from a development environment such as Visual Studio or Eclipse, you may be a little worried
about the thought of going back to just a text editor. But language-aware text editors designed especially for
programmers, such as TextMate, have most of the features that you are likely to need.

TextMate is an advanced and flexible programmer’s editor for Mac OS X by MacroMates. You can down-
load a trial version from http://macromates.com.

RadRails is an IDE based on Eclipse and is rapidly becoming a favorite in the Windows Rails community.
It is also available for Mac. You can download it from http://radrails.com.

Upgrading Rails
New releases of Rails are reasonably common. When a new version is released, updating your
system to the latest version is very simple. Just open the command window for your Rails envi-
ronment, and type the following line:

$ gem update rails --include-dependencies

■Note If you are using OS X or Linux, you will have to prefix this command with sudo to perform the action
as the root user. You will be prompted to enter your password.

This updates the version of Rails installed on your system but does not update any scripts
or JavaScript libraries within your individual applications. To update these, run the rails
railscoders command again in the directory above your application root directory. The script
will ask you if it should overwrite files that already exist. You should select “yes” only to the files
in the script and public directories, and select “no” to everything else.

Installing Ruby, Rails, and MySQL
As both Ruby and Rails are open source software and have diverse developer communities,
they have been developed to run on almost any operating system in active use today. The
applications you develop in Ruby can normally be run on any platform with no or very few
modifications (as long as you take a few precautions, particularly when performing system or
file system calls).

Many developers choose to develop their Rails applications on one platform then deploy
on another. Linux or FreeBSD are the most popular choices for running a production server
because of their stability and the fact that they are open source, and therefore free of charge.

Bradburne_8415C01.fm Page 8 Thursday, May 24, 2007 9:07 AM

http://macromates.com
http://radrails.com

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 9

Installing on Windows
There are a number of ways to install Rails onto your PC but the quickest and easiest way to get
up and running is to use Instant Rails. This consists of a package of Ruby, Rails, Apache,
MySQL, and some gems put together by Curt Hibbs.

Instant Rails is self-contained and can happily coexist with other installations of MySQL or
Apache on your PC, so don’t worry if you already have them installed.

To install Instant Rails, follow these steps:

1. Go to http://instantrails.rubyforge.org, and click the Download link.

2. From the list of downloads, right-click the latest version, and save it to your hard drive.

3. Copy the contents of the zip file to a new folder on your computer, such as C:\InstantRails.
You must make sure that there are no spaces in the folder path, so a folder on your
desktop or in your My Documents folder will not work.

4. Open the folder, and run the Instant Rails application.

5. Instant Rails will detect that it is in a new location and ask if it may regenerate your con-
figuration files. Click OK.

6. An Instant Rails window similar to the one shown in Figure 1-1 will open and automat-
ically start MySQL and Apache.

■Caution Windows may ask you if you want to unblock your web server port (port 80). Since we are just
setting up a development system rather than a live server, you should tell Windows to keep blocking this port.
Unblocking ports on your machine may be a security risk.

Figure 1-1. The Instant Rails status window

That’s it! You should spend some time exploring the Instant Rails web site at http://
instantrails.rubyforge.org to learn more about configuring Instant Rails.

Bradburne_8415C01.fm Page 9 Thursday, May 24, 2007 9:07 AM

http://instantrails.rubyforge.org
http://instantrails.rubyforge.org
http://instantrails.rubyforge.org

10 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

To work with the Rails command-line utilities and to create and work with a new applica-
tion, you need to open a console window for Instant Rails. To do this, click on the I button in
the Instant Rails window, and select Rails Applications ➤ Open Ruby Console Window, as
shown in Figure 1-2.

Figure 1-2. Opening the Ruby console window in Instant Rails

This will open a Windows command window, as shown in Figure 1-3, and change your
working directory to the rails_apps directory within the Instant Rails path. All of the commands
that you will enter in this book need to be typed into a command window opened through
Instant Rails; otherwise, the path will not be set correctly.

Figure 1-3. The Ruby console in Instant Rails

After you have created a new application (which we will cover later in the chapter), you can
start and stop your application from the Instant Rails application manager. To open this window,
click on the I button, and select Rails Applications ➤ Manage Rails Applications. This window
will be similar to the one shown in Figure 1-4.

From here you can choose which application is active. This is very useful if you are developing
multiple Rails projects.

Bradburne_8415C01.fm Page 10 Thursday, May 24, 2007 9:07 AM

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 11

Figure 1-4. The Instant Rails application manager

Mac OS X
The quickest and easiest way to get Ruby on Rails up and running on your Mac is using a tool
called Locomotive by Ryan Raaum. Locomotive is a package of Ruby, Rails, and a collection of
tools and libraries together with a front end for administering your applications.

To install Locomotive, simply do the following:

1. Head over to http://locomotive.raaum.org, and click Download Now. Select a Source-
Forge mirror to download from.

2. Open the downloaded .dmg file, and drag the Locomotive 2 folder to your Applications
directory.

3. Run the Locomotive application.

Locomotive does not come with MySQL as one of the preinstalled packages. If you do not
already have MySQL on your system, install MySQL:

1. Go to http://dev.mysql.com, and click Downloads.

2. Select MySQL Community Server, and scroll down to the “Mac OS X downloads” section.
Making sure that you choose the correct version for your Mac (i.e., PowerPC or x86/Intel),
select the Standard package to download. Ensure that you download the .dmg file rather
than a .tar file.

3. Open the downloaded .dmg file and run the mysql-standard pkg file. Follow the on-
screen instructions to install MySQL.

4. Run MySQL.prefPane to install the System Preferences panel. This will allow you to start
and stop the MySQL server from your Mac System Preferences panel. Start the server now.

Bradburne_8415C01.fm Page 11 Thursday, May 24, 2007 9:07 AM

http://locomotive.raaum.org
http://dev.mysql.com

12 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

Finally, you need to add the MySQL path to Locomotive, so that you can access the MySQL
command-line tools easily. To do this, open the Locomotive preferences window from the
menu bar. Click the Terminal icon, and add /usr/local/mysql/bin to the Additional Path(s)
field, as shown in Figure 1-5.

Figure 1-5. Adding MySQL to the Locomotive path

You can easily create new Rails applications by simply selecting the menu option Applications
➤ Create New.

This will create a new Rails application in your home directory and automatically add a
project in the Locomotive main window. If you select this application, you can then work on
this application using the tools in the Applications menu. If you select Applications ➤ Open
Terminal, Locomotive will open a terminal window that is set up with the correct paths to work
with your selected application. When entering commands provided in this book, make sure
that you do so in a terminal window opened from within Locomotive; otherwise, the correct
paths will not be set.

You can also start and stop an application using the Run and Stop buttons in the main
Locomotive window.

Linux
As with most things related to Linux, there are a multitude of ways to install Ruby and Rails,
mostly depending on your choice of distribution. I will explain how to install for Ubuntu 6.
Ubuntu is a very user-friendly Linux distribution that is available for free in both desktop and
server versions. You can download it at http://ubuntu.com.

If you wish to install on a different Linux distribution, take a look at the installation pages
on the official Rails wiki http://wiki.rubyonrails.org/rails/pages/HowtosInstallation.
There are instructions for all main Linux distributions and most of the main flavors of Unix.

Bradburne_8415C01.fm Page 12 Thursday, May 24, 2007 9:07 AM

http://ubuntu.com
http://wiki.rubyonrails.org/rails/pages/HowtosInstallation

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 13

To install with Ubuntu, first log in and open a terminal window. Then follow these
instructions:

1. Edit your /etc/apt/sources.list file, and ensure that the following lines are uncom-
mented. This allows you access to the universe packages. Unless you are logged in as root,
you will need to open this file using sudo, for example, sudo vi /etc/apt/sources.list.

deb http://us.archive.ubuntu.com/ubuntu dapper universe
deb-src http://us.archive.ubuntu.com/ubuntu dapper universe

2. Make sure your system is up to date by entering the following command:

$ sudo apt-get update

Enter your password if you are prompted to do so.

3. Install Ruby, some Ruby development libraries, and irb (interactive ruby):

$ sudo apt-get install ruby ruby1.8 ruby1.8-dev irb

Then install some extra Ruby libraries:

$ sudo apt-get install rdoc libzlib-ruby libopenssl-ruby

4. Install MySQL and the MySQL Ruby bindings with the following command:

$ sudo apt-get install mysql-server libmysql-ruby

5. Download and Install RubyGems by entering the following commands:

$ wget http://rubyforge.org/frs/download.php/11289/rubygems-0.9.0.tgz
$ tar xfvz rubygems-0.9.0.tgz
$ cd rubygems-0.9.0
$ sudo ruby setup.rb

You can now delete the RubyGems .tar file and directory.

6. You should now run the gem automatic updater, just to check that the installer itself is
up to date. You can do this by entering the following command:

$ sudo gem update --system.

7. Now install Rails itself with the following command:

$ sudo gem install rails --include-dependencies

8. Finally, install the Mongrel application server with the following command:

$ sudo gem install mongrel

That’s it! You now have Ruby and Ruby on Rails installed.

Bradburne_8415C01.fm Page 13 Thursday, May 24, 2007 9:07 AM

http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://rubyforge.org/frs/download.php/11289/rubygems-0.9.0.tgz

14 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

SOURCE CONTROL MANAGEMENT

I will not be discussing source control management (SCM) techniques in this book, but I strongly recommend
that you consider using an SCM such as CVS (Concurrent Versions System) or Subversion (SVN). Developing
using a versioning system is simply good practice and can save you a lot of stress and work if something goes
wrong and you lose or break some code.

You will find that most Rails and Ruby projects including Rails itself are developed using Subversion. You
can find out more information about Subversion at http://subversion.tigris.org.

Creating the Skeleton of the Rails Application
Now that you have Ruby and Rails installed, it is finally time to start writing our Rails applica-
tion. As I have mentioned, Rails has a lot of features to make writing a web application easier.
To create a new application, we use the rails command to generate the skeleton code for a
new Rails application. Open your Rails console window, and enter the command:

$ rails railscoders --database=mysql

■Tip If you are using Locomotive on OS X, it is preferable to use the menu option Applications ➤ Create
New rather then using the command line. This will automatically add the newly created application to the
Locomotive project window. After the application has been created, open a new terminal window for this
application using the Application ➤ Open Terminal command.

The --database=mysql switch will automatically configure our application to use MySQL.
If you are using a different database server, you can specify it using this command.

Running the command will create a directory for your application called railscoders and
inside it, create a skeleton application. The command will output a listing of all the directories
and files that it has created similar to the following:

create
create app/controllers
create app/helpers
create app/models
create app/views/layouts
...
create log/production.log
create log/development.log
create log/test.log

Bradburne_8415C01.fm Page 14 Thursday, May 24, 2007 9:07 AM

http://subversion.tigris.org

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 15

This output might seem confusing, but you don’t have to worry about most of these files
for now. Change to the application directory that you’ve just created, and take a look around:

$ cd railscoders
$ ls -p

README components/ doc/ public/ tmp/
Rakefile config/ lib/ script/ vendor/
app/ db/ log/ test/

■Note On a Windows computer, use dir instead of ls; this is the only Windows-specific command.

The important directories for now are the app directory, which contains the code for all the
models, views, and controllers, and the script directory, which contains a set of tools to help
us build and run the application.

One of these tools is server, which starts an application server for the Rails application we
are developing. Depending on the configuration of your machine, it may run WEBrick, lighttpd,
or Mongrel. Try running this script now:

$ script/server

■Note If you are running Instant Rails on Windows, you should use the Instant Rails application manager
window, as described previously. Select the check box for the railscoders application, and click the Start
with Mongrel button. If you are running Locomotive, click the Run button.

This will output information similar to the following:

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)
=> Rails application starting on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. TERM => stop. USR2 => restart. INT => stop (no restart).
** Rails signals registered. HUP => reload (without restart). It might not ➥

work well.
** Mongrel available at 0.0.0.0:3000
** Use CTRL-C to stop.

Bradburne_8415C01.fm Page 15 Thursday, May 24, 2007 9:07 AM

http://0.0.0.0:3000

16 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

■Note If you are running Locomotive and start your application with the Run button, you will not see this
output.

This command starts an application server running your new Rails application. By default,
the server is listening on port 3000.

To test that the server is running, open a web browser, and go to http://localhost:3000.
You will be presented with the Rails welcome page, similar to the one shown in Figure 1-6.

Figure 1-6. The Ruby on Rails welcome page

Ruby and Rails are now up and running correctly.

Watching the Rails Logfiles
While developing a Rails application, it is a good idea to keep an eye on the log file that is gener-
ated by Rails as it processes the requests to the server. The log files can be found in the log
directory of your Rails project.

Bradburne_8415C01.fm Page 16 Thursday, May 24, 2007 9:07 AM

http://localhost:3000

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 17

These log files display the incoming request (along with any parameters that are sent), any
SQL queries that are performed by the application, and the result of the request, for example, a
page render or a redirection. You can also add messages to the log file from your controller files
for debugging purposes using the logger object.

If you take a look in this directory now, you will see that there are number of log files.
Depending on the configuration of your computer, there may be files generated by the appli-
cation server (such as Mongrel) or web server (such as lighttpd). However, you will always
find the three main log files: development.log, test.log, and production.log. Since we are
running the server in development mode at this point in time, all requests will be logged to
the development.log file.

On Linux and OS X, you can use the following command to keep a continuous display of
the log file:

$ tail –f log/development.log

There is not a built-in tail command on Windows, but you can download a free tool from
Bare Metal Software at http://www.baremetalsoft.com/baretail.

THE RAILS DEVELOPER COMMUNITY

Now that you are running Rails, it is worth spending a few minutes becoming familiar with the Rails community
and how to keep updated with the latest news. The Ruby and Rails communities are incredibly friendly, so do
not be worried about asking questions.

The official Rails blog is at http://weblog.rubyonrails.com. The Rails core development team
maintains this blog, so the news is straight from the source.

There are number of Google Groups set up, including a Rails security list, which will alert you if there are
any important security alerts:

• rubyonrails-talk is a discussion on general Ruby on Rails topics located at http://groups.google.com/
group/rubyonrails-talk.

• rubyonrails-spinoffs is a discussion about the JavaScript libraries script.aculo.us and Prototype
used within a Rails environment and can be found at http://groups.google.com/group/
rubyonrails-spinoffs.

• rubyonrails-security provides important security announcements at http://groups.google.com/
group/rubyonrails-security.

• rubyonrails-core is a discussion list for Ruby on Rails core development and is located at http://
groups.google.com/group/rubyonrails-core.

Setting up the Database
Now that Rails is up and running, you should set up your database software and make sure that
Rails can communicate properly with it. You should also create a new database for your project
and configure Rails to use this development database.

Bradburne_8415C01.fm Page 17 Thursday, May 24, 2007 9:07 AM

http://www.baremetalsoft.com/baretail
http://weblog.rubyonrails.com
http://groups.google.com
http://groups.google.com/group
http://groups.google.com
http://groups.google.com/group/rubyonrails-core
http://groups.google.com/group/rubyonrails-core

18 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

Creating the Database
Rails applications actually expect three separate databases: one for development, one for
testing, and another for production. Of course, it’s highly unlikely that you will run the produc-
tion version on your development and testing machine (in fact, I highly recommended that
you do not!), so you do not have to worry about setting up everything right away. For now, you
just need a development database.

I will use the MySQL command-line tools. If you are happier using a graphical tool or web
interface, there are many open source and commercial tools available. However, having a good
understanding of MySQL’s command line will be a big advantage when you are trying to opti-
mize and scale your database.

Open a command-line prompt, and enter the following command:

mysqladmin -u root create railscoders_development

This will create a new database accessible by the MySQL root user. Since we are just using
a local development database that isn’t publicly accessible, logging in as the root user is fine.

■Note While accessing the database for development and testing as the root database user is OK, in a
production environment, I highly recommend making the database more secure and using a different user
name and password. I will talk about best practices for configuring your production environment in Chapter 14.

Configuring Rails to Use the Database
Now that you have a database, you need to configure your Rails application to connect to it.
Thankfully, that is a simple task. When you created the railscoders application, you will
remember that it created a whole variety of directories and files. The database configuration is
stored in the database.yml file in the config directory. Open the file in a text editor, and take a
look. The section that we are currently interested in is the section for development. It should
look like this:

development:
 adapter: mysql
 database: railscoders_development
 username: root
 password:
 host: localhost

The style of markup should be pretty self-explanatory. It is written in YAML Ain’t Markup
Language (YAML), a non-verbose, lightweight text format for storing structured data that has
been adopted by Rails for use in its configuration files. You can find more information on
YAML at http://www.yaml.org.

Bradburne_8415C01.fm Page 18 Thursday, May 24, 2007 9:07 AM

http://www.yaml.org

CH A PT E R 1 ■ R U B Y , R U B Y O N R A I L S , A N D T HE R A I L SC OD E R S P R OJ E CT 19

■Tip You can also make use of YAML to store your own data for use in your application; for example, you
could store your error or information messages in a YAML file, allowing easy editing without having to touch
your code.

You will notice that it is already configured to use MySQL (since you specified the database
system when you created the application with the rails railscoders --database=mysql
command earlier in this chapter). You will also notice that the database name is already filled
in with the correct name, in this case railscoders_development. This is another example of
Rails preferring convention over configuration—it simply uses the application name together
with development, test, or production. This saves us time and means that all Rails applications
use the same naming convention. Of course, you could call your database anything, but you
would have to edit this database configuration.

Since you are using the root user to connect to the database along with a blank password,
no changes need to be made. Of course, if you are using a different database server or have set
up a different user, you will have to change these settings.

■Note Rails only reads the database.yml configuration file when you first start up an instance of your
application. So if you make any changes, you will have to restart your server by pressing Ctrl+C and running
script/server again if you are running from the command line, clicking the Stop Server button if you are
using Instant Rails, or clicking the Restart button if you are using Locomotive.

Testing the Database
You should just do a quick test to make sure that everything is set up and that Rails can connect
to the database correctly. The simplest way to do that is to perform a migration; a migration is
simply a way of altering your database structure through Rails.

I will talk more about migrations and how to write them in Chapter 2, but for the purposes
of testing your database connection, you will just run the migrate command without any data-
base changes. This will connect to your database, find that there are no changes to be made,
and disconnect. If there are problems with the Rails application connecting to your database,
they will be reported here.

To run an empty migration, enter the following command:

$ rake db:migrate

 (in /Users/alan/Projects/rails/railscoders).

Bradburne_8415C01.fm Page 19 Thursday, May 24, 2007 9:07 AM

20 CH AP T E R 1 ■ R U B Y , R U B Y O N R A IL S , A N D TH E R A IL S CO D E R S PR O J E C T

If no errors are reported, your database connection was successful. If an error is reported,
check that your database server is running, check that the railscoders_development database
is accessible, and check the configuration of your database.yml file.

This simply verifies our configuration to ensure that everything is set up correctly. We
will start creating the database structure in Chapter 2 as well. Rails allows us to create the
database schema incrementally as we develop the application, so each chapter will create
the database schema necessary for that chapter.

Summary
In this chapter, I talked about the project to be developed throughout this book and gave a
high-level specification for the project. I also discussed where Ruby on Rails came from and
described the basic components of the framework. I showed you how to install and configure
Ruby, Ruby on Rails, and MySQL on your computer and how to check to make sure everything
is working correctly. I also described creating the skeleton code for the project using the rails
command.

In the next chapter, I will show you how to build a simple content management system for
the RailsCoders site that allows the site maintainer to create and maintain a number of pages
that can be accessed by visitors to the site.

Bradburne_8415C01.fm Page 20 Thursday, May 24, 2007 9:07 AM

21

■ ■ ■

C H A P T E R 2

Developing a Content
Management System

In this chapter, we will start building the RailsCoders site by creating a content management
system, which allows us to easily create, edit, and display pages through a web interface. Creating
the content management system will provide the beginnings of the RailsCoders site and
demonstrate how easily you can create a functional application in Rails.

To build the content management system, we will create and implement a Rails resource
called Pages, together with a model for the resource and a collection unit tests. We will also
build a layout for the site and create a style sheet that we will build on throughout the project.

Let’s get this project under way.

Specifying the Feature Requirements
Before we start coding, we should decide on the requirements of the feature we’re creating.
Almost any interactive web site will require a number of information pages that are more or
less static. They provide information about the site’s contents, as well as maybe FAQ or help
pages. These pages need to be created and maintained by an administrator but do not change
very often. The RailsCoders site definitely needs some information pages.

For the RailsCoders site, we require a series of pages giving information about the site and
what features it provides for our users. These pages need to be presented in the same style as
the rest of the site, so creating new pages should be very simple.

These pages should be easily maintainable through a web interface, since we do not want
to have to go through the process of using FTP to upload a file every time we make a small
change.

This feature, therefore, will consist of a single resource called Page, which will store all of
the details of a page that can be managed and presented by the site.

Rails, Routing, and REST
As you will recall from the discussion of MVC architecture in Chapter 1, our application is split
into three distinct parts: the models, the views, and the controllers.

The controllers are the user’s interface into the application. Whenever a user requests a
page, clicks a button, or submits a form, the request is made to a URL, which is then routed to
a method in a controller. Each controller consists of a number of methods, known as actions.

Bradburne_8415C02.fm Page 21 Thursday, April 26, 2007 5:18 AM

22 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

Each action performs a specific task and either returns a view to the user or redirects the
browser to another action. The user never accesses a model directly, only through a controller.
These actions allow the user to do things like show, create, or destroy pages.

The way that Rails knows to which method and controller to pass the request is specified
in the file config/routes.rb.

Traditional Rails Routes
The config/routes.rb file allows you to configure how a URL should be parsed. If you look in
this file now, you will see two route mappings at the bottom of the file:

map.connect ':controller/:action/:id.:format'
map.connect ':controller/:action/:id'

These are the default Rails mappings, and they allow you to call a particular controller and
action method, together with an object ID through a URL.

For instance, if you wanted to call an action called show of a controller called page with an
object ID of 4, the URL would be page/show/4.

If you wanted to request the index action of a controller, you could use page/index or
simply page/.

RESTful Rails Routes
While traditional Rails routes allow mappings to be easily set up between URLs and controllers,
using them also means that you have no standard way of accessing an object. One person
might choose to use an action called show to display an object, whereas another might use
display. However, Rails 1.2 supports a different way of specifying mappings between URLs and
controllers based on the concept of Representational State Transfer (REST).

REST describes a set of architectural principles for building a system such as the Web. By
REST principles, the Web is considered to simply be a collection of resources, and a web page
is a representation of a specific resource. By utilizing the HTTP protocol, we can perform actions
on these resources, such as getting, setting, or deleting objects. We could also provide other
representations of resources, such as in XML.

To make building REST resources easy, you can state that a controller provides access to a
resource in the Rails routes file. Doing this automatically sets up a number of mappings. You
then simply need to provide the code to implement the standard REST methods that Rails expects.

Rails uses the HTTP request methods GET, POST, PUT, and DELETE together with the URL,
meaning that the same URL can have different responses depending on which HTTP method
is used.

The Rails action methods, URLs, and HTTP methods for a pages resource are shown in
Table 2-1.

If you wish to provide other actions besides the standard actions described, you can specify
extra actions for a collection or for a member of the resource in the routes file. I will demon-
strate this later in the book.

Also, Rails allows you to respond to requests for XML responses of these actions, which we
will look at later in this book.

Bradburne_8415C02.fm Page 22 Thursday, April 26, 2007 5:18 AM

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 23

Creating a Site Layout
Before we build the content management feature, our application requires a layout. Layouts
are used by Rails to break down the page content into nonchanging layout parts and dynamic
parts. The parts of the page that never change are things like the XHTML header, a page header,
or a menu bar.

Since the RailsCoders site will contain many different sections, we want to include a sidebar
menu that lists all of the parts of the site. This will be on-screen for all pages of the site, so it can
be part of our layout. A sketch of our page layout is shown in Figure 2-1.

Figure 2-1. The RailsCoders page layout

Table 2-1. Rails REST Mappings

Rails Action URL HTTP Method Description

index /pages GET Return a collection of resources

show /pages/1 GET Return one specific resource

new /pages/new GET Return a form for creating a
new resource

create /pages POST Create a new resource

edit /pages/1;edit GET Return form for editing a resource

update /pages/1 PUT Update a resource

destroy /pages/1 DELETE Delete a resource

Bradburne_8415C02.fm Page 23 Thursday, April 26, 2007 5:18 AM

24 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

Layout files are Rails template files written in ERb. ERb is a simple templating system for
Ruby that allows Ruby code to be embedded within a text file. In this case, that text file is an
XHTML file. All layout and template files in Rails have the suffix .rhtml.

By default, Rails looks for layout files in the app/views/layouts/ directory. If a layout exists
that has the same name as the controller being requested, it will use that. This allows for each
controller to have individual layouts without any extra coding.

If that file does not exist, it will look for a layout called application.rhtml. This easily allows
for an entire site to use the same template.

Create the layout file app/views/layouts/application.rhtml now. Enter the code shown in
Listing 2-1 into this file.

Listing 2-1. The Application Layout File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>RailsCoders</title>
 <%= stylesheet_link_tag 'main' %>
 <%= javascript_include_tag :defaults %>
 <%= yield :head %>
 </head>
 <body>
 <div id="container">
 <div id="header">
 <%= image_tag 'logo.png', :alt => "RailsCoders" %>
 </div>
 <div id="sidemenu">
 <%= render :partial => 'layouts/menu' %>
 </div>
 <div id="content">
 <% if flash[:notice] -%>
 <div id="notice"><%= flash[:notice] %></div>
 <% end -%>
 <% if flash[:error] -%>
 <div id="error"><%= flash[:error] %></div>
 <% end -%>
 <%= yield %>
 </div>
 </div>
 </body>
</html>

As you will have noticed, this looks like a standard XHTML file, except with Ruby code
embedded within the <%= %> and <% %> tags. The important thing to note here is that <%= %> tags
output the result of the executed code, whereas <% %> has no output. So you can see that the if
and end statements do not output anything to the rendered HTML, whereas image_tag and
render are output to the page.

Bradburne_8415C02.fm Page 24 Thursday, April 26, 2007 5:18 AM

7b8f631a5b86d9dd8c459a933c90e961

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 25

The yield tags are used to insert the output of the relevant view.
The code stylesheet_link_tag 'main' will create a link to a CSS file called stylesheets/

main.css. Since this CSS file is static, we should create it in the directory public/.
Create the file public/stylesheets/main.css, and add the CSS in Listing 2-2.

Listing 2-2. Stylesheet for the RailsCoders Site

body {
 margin: 0;
 padding: 0;
 background: #fff;
 font-family: Arial, Helvetica, sans-serif;
}

#header {
 background: #fff url(/images/h-grad.png) repeat-x;
 height: 60px;
 margin-top: 10px;
 text-align: left;
 padding-top: 1px;
}

#container {
 width: 760px;
 min-width: 760px;
 margin: 0 auto;
 padding: 0px;
}

#sidemenu {
 font-size: 80%;
 float: left;
 width: 100px;
 padding: 0;
}

#sidemenu ul {
 list-style: none;
 margin-left: 0px;
 padding: 0;
}

a { color: #b00; }
a:hover { background-color: #b00; color: #eee; }

#content { float: right; width: 650px; }

Bradburne_8415C02.fm Page 25 Thursday, April 26, 2007 5:18 AM

26 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

th { background-color: #933; color: #fff; }
tr.odd { background-color: #fcc; }
tr.even { background-color: #ecc; }

This provides some basic styling for the site, which we will add to as our site develops. You
will notice that the layout and style sheet refer to two images: logo.png and h-grad.png. You
can download both of these files from the Apress web site.

If you look back at the application.rhtml layout file, you will notice the following state-
ment at line 16: render :partial => 'menu'. This instructs Rails to insert another template at
this point, specifically a partial. A partial is another ERb file that is a snippet of code that we
want to insert into another template. I have chosen to break out the sidebar menu into a partial
file to allow us to easily maintain the menu over time and separate the menu from the content
structure. Partials’ names have an underscore (_) for a prefix.

Now, create the partial file app/views/layouts/_menu.rhtml. Since the site is currently
empty, there’s not a lot to add apart from a link to the index page. As we build new features,
we will add them to this menu. Add the code shown in Listing 2-3.

Listing 2-3. The Sidebar Menu Partial File

 <%= link_to 'Home', '/' %>

We can now move on to building the content management feature.

Designing the Pages and Page Editor
To store the page data, the application needs a database structure to store the data, a model
definition that allows the code to access and modify that data, and a user interface to actually
allow the user to work on the content. So how does this convert into Rails code?

The Page Model
What should the Page model consist of? First of all, since each record is unique and needs to
be referenced by a unique identifier, it needs a primary key. In this case, the MySQL auto-
incrementing integer field is fine. By default, Rails expects all primary key fields to be called id.

A page needs a title, so a title field would make sense. Since we want to limit titles to a
sensible length, we are going to use a MySQL string type, rather than an unlimited-length text
type. This will limit the title field to 255 characters, which should be more than enough.

Of course, a page needs to have real content, so we need a body field. Since pages could be
very large, we are going to use a text field type. This allows an unlimited-length string to be
stored. However, it makes sense to put a sensible limit on the length of the page, though this
will be done in the Rails model code, rather than the database definition. A maximum page
length of 10,000 characters will be fine.

For the URL, the application could just use the primary key id to identify the page to show.
However, that would not be very friendly to the user and does not provide very good search
engine optimization. Therefore, I want the page to be accessible by a permalink—a few words
that describe the page and can be part of the URL. The permalink should be reasonably short,
so a string type will be fine. It will be automatically generated by the model from the title field.

Bradburne_8415C02.fm Page 26 Thursday, April 26, 2007 5:18 AM

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 27

To make the title into a URL-friendly string, we will remove any characters that are not alpha-
numeric, and spaces will be renamed to underscores.

It would be very useful to keep a record of when each page was created and when it was
last updated, and luckily Rails thoughtfully provides an automatic way of doing this. If we add
created_at and updated_at fields to our table, they are automatically detected and updated by
ActiveRecord when pages are created or updated.

Table 2-2 summarizes our database structure.

The Page Controller
To access the Page model, all requests are handled by the pages controller file. This controller
file lives, along with all other controller files, in the directory app/controllers/. When creating
a new model or controller for a Rails application, the best practice is to use a Rails generator.
Generators create all necessary files for a new model or controller.

Since we will be using Rails controllers to act as REST resources, Rails expects a number of
default actions to be defined and maps these to default URLs as discussed earlier.

Therefore, we need to implement the actions index, show, new, create, edit, update, and
destroy.

How should the page model be accessed by the user? Because we are going to use the
built-in Rails REST support, we need to use the following default action method names:

• First of all, the application needs a way to display the page on the screen for a visitor to
the site, so a show method is needed. This will take the id as a parameter.

• For the administration of the site, a number of methods are needed for listing, editing,
saving, creating, and deleting pages.

• To list the pages, the index method will be used.

• For creating a new page, there will be two methods: new and create. The new method
will show a page for entering the page details, and create will save this data.

• To edit a page, there will be two methods: edit and update. The edit page will show
the existing data, and the update method will validate and save that data.

• A method called destroy will delete a page.

Table 2-2. The Page Model Database Structure

Field Name Field Type Description

id integer The primary key

title string The title of the page

permalink string A URL-friendly version of the title

body text The body of the page

created_at datetime The date and time that the page was created

updated_at datetime The date and time that the page was last updated

Bradburne_8415C02.fm Page 27 Thursday, April 26, 2007 5:18 AM

28 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

Creating the Page Model
Before you write the model code, you are going to need to define your database schema that
will be used to store the pages. Rails makes defining your database incredibly easy using a
feature called migrations.

Migrations
Migrations are simply a way of describing the changes in your database to allow it to migrate
from one version to another, which includes setting up your initial database schema.

Rails migrations are interesting in that they are written in Ruby, rather than in SQL like a
traditional database schema. This has some advantages:

• It allows you to add conditional statements or create records as part of the migration. In
fact, you can access your full Rails application from a migration script, which allows you
to perform complex tasks.

• You can work independently of the type of database that is running. This means that if
you wish, you can develop on one type of database server, test with another, and deploy
on yet another.

A common use of migrations is to use MySQL for developing on a local machine, since it is
very simple to set up and use. Testing may be performed with a very fast, in-memory database such
as SQLite. Then in production, you might choose to use another database such as PostgreSQL,
depending on your server configuration.

IN-MEMORY TESTING WITH SQLITE

SQLite is a small, embedded database engine that provides the majority of the standard SQL features but in a
very small, self-contained library. Ruby support for SQLite is provided by a gem called sqlite-ruby, and you
can easily configure ActiveRecord to use SQLite as your database engine.

Using SQLite as a database engine to run your tests is a great way of speeding up your test cycle, but it
is a little difficult to set up. Chris Roos first pioneered the procedure, which you can read on his blog at

http://blog.seagul.co.uk/articles/2006/02/08

Geoffrey Grosenbach then created a plug-in to make this procedure incredibly simple. You can find this
plug-in at

http://nubyonrails.com/articles/2006/06/01

Using SQLite for testing allows your tests to run 30 to 50 percent faster then with MySQL or PostgreSQL.
You can find more information about SQLite at http://sqlite.org, and the SQLite-Ruby interface

documentation can be found at http://sqlite-ruby.rubyforge.org.

Bradburne_8415C02.fm Page 28 Thursday, April 26, 2007 5:18 AM

http://blog.seagul.co.uk/articles/2006/02/08
http://nubyonrails.com/articles/2006/06/01
http://sqlite.org
http://sqlite-ruby.rubyforge.org

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 29

You can create a new migration script at any time using the script/generate migration
command, but a new migration script is automatically created every time that you use the
generate script to create a new model, so I’m going to use automatically generated migration
this time.

Creating the Model
As you saw in the previous chapter, when we created a new application using the rails command,
several directories were created. Rails provides a number of utility commands within the
generated script directory to help you build your application. The generate script automatically
generates the necessary files for a new model, controller, or migration.

To create the Page model, open a command window for the application, and enter the
following command:

$ ruby script/generate model Page

This will produce output similar to the following:

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/page.rb
 create test/unit/page_test.rb
 create test/fixtures/pages.yml
 create db/migrate
 create db/migrate/001_create_pages.rb

As you can see, a number of files have been created for you. Open the generated migration
file db/migrate/001_create_pages.rb in your text editor. Each time you perform a migration,
the version number of the database is increased and stored in a database table called schema_info.
The version number is reflected by the number prefix of the migration file and automatically
incremented by the migration generator.

This file is the first migration file, describing how to migrate your database (in this case, an
empty one) to the desired state. This migration is described using the ActiveRecord DSL. This
allows you to add, alter, or remove tables and columns.

Inside the migration file, you will notice that there are two methods in the CreatePages
class: self.up and self.down. These methods are for migrating up and down, respectively. This
means that if you are at version 5 of your database, you can migrate back to version 4. The
migration script simply follows the down method for the migration script number 4.

Bradburne_8415C02.fm Page 29 Thursday, April 26, 2007 5:18 AM

30 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

ACTIVERECORD MIGRATIONS

Within migrations, you can create, drop, or rename tables; create, edit, or remove columns within a table; and
add or remove indexes.

The following database transformations are available:

• create_table(table_name, options)

• drop_table(table_name)

• rename_table(old_name, new_name)

• add_column(table_name, column_name, column_type, options)

• rename_column(table_name, old_column_name, new_column_name)

• change_column(table_name, column_name, column_type, options)

• remove_column(table_name, column_name)

• add_index(table_name, column_name, index_type, index_name)

• remove_index(table_name, index_name)

The full API reference can be found at http://api.rubyonrails.com/classes/ActiveRecord/
Migration.html.

To add the actions to get the database schema to version 1, edit the skeleton self.up
method as shown in Listing 2-4.

Listing 2-4. The Migration for the Pages Model

class CreatePages < ActiveRecord::Migration
 def self.up
 create_table :pages do |t|
 t.column :title, :string
 t.column :permalink, :string
 t.column :body, :text
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 end
 end

 def self.down
 drop_table :pages
 end
end

Bradburne_8415C02.fm Page 30 Thursday, April 26, 2007 5:18 AM

http://api.rubyonrails.com/classes/ActiveRecord

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 31

You might have noticed that the primary key id is not defined in this migration. ActiveRecord
automatically adds the id column unless you tell it not to. If you have a table that explicitly
requires there not to be an id column, you need to add the statement :id => false as part of
the create_table command.

When this migration is run, it will create a new empty table called pages. However, it would
be useful if there were at least an index page in the database, rather than leaving it empty. This
will give us a page to get started with.

To create a page as part of the migration, add the following code before the end of the
self.up method:

Page.create(:title => "RailsCoders Home",
 :permalink => "welcome-page",
 :body => "Welcome to RailsCoders")

This will create a new page record in the database. To actually run the migration and
create the table, go back to the command line and run the following command:

$ rake db:migrate

This will output the result of the migration, similar to the following:

== CreatePages: migrating ===
-- create_table(:pages)
 -> 0.0173s
== CreatePages: migrated (0.0173s) ==

RAKE

rake is a Ruby build tool that allows you to define a set of tasks to be performed in order to build or make your
application before running. However, within Rails, it is possible to do much more than just build an application—you
can develop rake tasks to manage your databases, deploy your code to your servers, or perform tests.

Since rake scripts are written in Ruby, they can take advantage of the Rails framework, and developing
tasks specific to your problem is simple.

You can see a list of all the rake scripts that are available to Rails by using the following command:

$ rake -T

If you write any new rake tasks for your application, simply create a rake file (a Ruby file with the file
suffix .rake) in the directory lib/tasks/; then, you can run them from your command line with rake <task>.

You can learn more about rake and how to write tasks at http://rake.rubyforge.org/.

You should take a look at the railscoders_development database, either using the MySQL
command line or a GUI front-end tool. You will see that the pages table has been created as
well as the default page record.

Bradburne_8415C02.fm Page 31 Thursday, April 26, 2007 5:18 AM

http://rake.rubyforge.org

32 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

■Note If you wish to downgrade to a specific version of the database, specify the desired version number
as part of the migrate command: add VERSION=<version number> to the rake db:migrate command.

Mapping the Resource

We now need to declare the page model as a REST resource. This is done in the config/
routes.rb file. The routes file allows you to define how URLs relate to your controllers and
actions. You will see that there is already a catch-all route defined at the end of the file:

map.connect ':controller/:action/:id'

To define a REST resource, add the following line before the catch-all route:

map.resources :pages

This will map the URL /pages/. . . to your pages controller but predefines a collection of
actions that are expected. You need to make sure that the correct action names are used.

Adding Validations

The database table to store the page data in is now created, but a model can (and should) do
more than just store and retrieve data.

The first thing you should do is add some validations to the model. This simply allows you
to define what each field can (and can’t) contain. Because all data that is stored in the database
has to pass through your model, you have complete control over what is allowed to be stored
or rejected. This allows you to check the validity of all data before it gets into your database.
You can specify if these validation checks should be performed every time an object is saved or
just when it is created.

If the controller attempts to save invalid data, that data will get caught by your validation
checks; any relevant errors will be added to the object; and the object will not get saved and will
return false to the controller. You can then act on the returned value by displaying the error
messages and asking the user to change the input data.

To add validations to your model, edit the app/models/page.rb file. At the moment, it is
simply a class definition inheriting from the ActiveRecord::Base class. You can add a simple
validation as follows:

class Page < ActiveRecord::Base
 validates_presence_of :title, :body
end

validates_presence_of is simply a Rails validation method that does pretty much what is
says—it checks to make sure that each of the fields are present, that is, not empty or null.

This validation is a good start, but it only checks that a user enters something in each field,
rather than checking if what they have entered is suitable.

Bradburne_8415C02.fm Page 32 Thursday, April 26, 2007 5:18 AM

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 33

Another useful check would be to ensure that the fields are a sensible length (especially since
the title field is stored in a string database type where the length is limited to 255 characters). Do
this by adding some more validations:

validates_length_of :title, :within => 3..255
validates_length_of :body, :maximum => 10000

The validates_length_of method checks for—yes, you guessed it—the length of the spec-
ified fields. I have specified a maximum length for the body field and a range for the title field.
You can also specify a minimum or exact length using the parameters :minimum and :is.

As well as allowing validations, you can also automatically perform processing on the object at
various stages of its life cycle; for instance, you could automatically encrypt a password before
it is saved in the database, or you could update another object when a record is deleted. These
hooks into the object life cycle are called callbacks. There are 20 different callbacks.

In this case, I want to autogenerate a permalink from the contents of the title field, replacing
the regular text with a URL-friendly version. I want to do this before the object is created, so I
will use the before_create callback.

There are a number of ways of writing a callback, but the simplest way is to write a method
matching the callback that you require. So in the page.rb model file, add the following callback
code inside the class definition:

def before_create
 @attributes['permalink'] =
 title.downcase.gsub(/\s+/, '_').gsub(/[^a-zA-Z0-9_]+/, '')
end

The regular expression code isn’t pretty, but it will generate clean, URL-friendly perma-
links by substituting an underscore for spaces and removing any nonalphanumeric characters.

Now, whenever a new page object is created, a permalink is generated and subsequently
saved with the other object attributes.

Creating the Controller
We will also use the Rails generate script to create the controller file. The generate controller
command takes the controller name as a parameter, along with any actions that you wish to
define for this controller. We need to specify that we want a controller called “pages” and then
list the action names necessary to work with the REST resource, as we discussed earlier. If you
need to add extra methods later, you can just add a new method in the controller and add a
view file.

Enter the following generate command:

$ ruby script/generate controller Pages index show new create edit update destroy

This will output details about created files as follows:

Bradburne_8415C02.fm Page 33 Thursday, April 26, 2007 5:18 AM

34 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

 exists app/controllers/
 exists app/helpers/
 create app/views/pages
 exists test/functional/
 create app/controllers/pages_controller.rb
 create test/functional/pages_controller_test.rb
 create app/helpers/pages_helper.rb
 create app/views/pages/index.rhtml
 create app/views/pages/show.rhtml
 create app/views/pages/new.rhtml
 create app/views/pages/create.rhtml
 create app/views/pages/edit.rhtml
 create app/views/pages/update.rhtml
 create app/views/pages/destroy.rhtml

Open the controller file app/controllers/pages_controller.rb. You will see that there are
empty method definitions for the action methods specified in the generate command.

Listing the Available Pages Using index

To start with, it would be useful to see a list of the pages. This will be shown by the index method.
This action will use ActiveRecord’s find method to retrieve the pages. If you look in the API

documentation, you will see that the find method is very flexible and allows you to specify
exactly what you want to search for and how you want to find it; it’s similar to the SQL SELECT
command, except much friendlier. In this instance, you want to find all pages, so edit the index
method in the pages_controller.rb file as shown:

def index
 @pages = Page.find(:all)
end

This defines what will happen when the index page for the page controller is called. The
command simply finds all of the page objects and stores them in the @pages variable. The @
symbol specifies an instance variable that will be accessible from the view.

The view for this action is stored in app/views/pages/index.rhtml. RHTML files are simply
HTML that includes embedded Ruby code.

Open the index.rhtml file, delete the placeholder HTML, and add the code shown in
Listing 2-5.

Listing 2-5. The Pages Index View

<h2>All Pages</h2>

 <% @pages.each do |page| %>
 <%= page.permalink %> : <%= page.title %>
 <% end %>

Bradburne_8415C02.fm Page 34 Thursday, April 26, 2007 5:18 AM

mailto:@pages.each

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 35

You will notice that is just regular HTML, but with some Ruby embedded in the <% %> and
<%= %> tags.

Now is a good time to try running this code to see what happens when you access this method.
Recall from Chapter 1 that, to run the Rails development server, you start the Rails server using
either the command script/server from a command prompt or a GUI, such as InstantRails or
Locomotive. When the server has started, open a web browser, and go to http://localhost:3000/
pages. You will see a page listing the one page in your database, the welcome-page page, as
shown in Figure 2-2.

Figure 2-2. The pages index view

However, we now want to be able to see the full page, so that should be the next action to
write. But first, we can add links to allow the pages listed in the page list to be shown.

Rails provides a helper method to write HTML links; helper methods are simply methods
that are designed to make writing views easier. To change the view to include a link to the show
action for each page, edit the index.rhtml file as shown in Listing 2-6.

Listing 2-6. The Updated Index View

 <% @pages.each do |page| %>

 <%= link_to page.permalink, page_path(page) %> : <%= page.title %>

 <% end %>

The link_to method here is a helper method. A lot of helper methods are built into Rails,
including helpers to create links, create forms, display dates, and accomplish other common
tasks that are required when writing HTML views.

You can also write your own helper methods. If you add a helper to one of the helper files
in app/helpers that corresponds to a controller file, the helper method will only be available in

Bradburne_8415C02.fm Page 35 Thursday, April 26, 2007 5:18 AM

http://localhost:3000
mailto:@pages.each

36 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

views for that controller. If you add a helper method to the app/helpers/
application_helper.rb file, it will be available to all views. Our application will make use of
both Rails built-in helpers and custom helper methods.

Displaying a Page Using the show Action

Go back to the pages_controller.rb file where an empty show action is already defined. Add the
following bold line to it:

def show
 @page = Page.find(params[:id])
end

The instance variable @page is now available to the view in show.rhtml. Open the app/views/
pages/show.rhtml file, and replace the placeholder text with the code in Listing 2-7.

Listing 2-7. The Page Show View

<h2><%= @page.title %></h2>
<p><%= @page.body %></p>

As you might expect, this displays the page and the header.
Now, in your browser, go to http://localhost:3000/pages. As you saw before, this lists the

pages in the database. If you click the welcome-page link, it will take you to http://localhost:3000/
pages/welcome-page, which displays the welcome message.

Creating Links and Permalinks

Currently, the link that the link_to method creates in the index view is to /pages/1. Because the
pages controller is defined as a REST resource, this is accessible by the shortcut page_path(page).
Notice here that we are not specifically asking for the id of the page object, we just supply the
page object as a parameter. Each ActiveRecord object inherits the method to_param, which by
default returns just the id of the object.

Since we want to include the page’s permalink in the URL of the page item, we can override
the to_param method of the page model, making it return the permalink together with the ID.
We will still use the ID to find the page, but the URL and the id parameter subsequently passed
to the controller will contain the permalink. All we have to do is use the Ruby method to_i to
convert the id parameter to an integer. This will take the first group of integers from the parameter
string. We can then use this as the id to retrieve the page object.

First, we will first override the page model’s to_param method. Open the model file, app/
models/page.rb, and add the following method within the Page class:

def to_param
 "#{id}-#{permalink}"
end

We now need to change the show action method of the page’s controller to convert this
parameter to an integer before attempting to find the page object. Open the page’s controller
file, app/controllers/pages_controller.rb, and change the show action method as follows:

Bradburne_8415C02.fm Page 36 Thursday, April 26, 2007 5:18 AM

mailto:@page.title
mailto:@page.body
http://localhost:3000/pages
http://localhost:3000

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 37

def show
 @page = Page.find(params[:id].to_i)
end

■Note Some database servers (including MySQL) will automatically do this conversion for you. However,
PostgreSQL and some others do not, so it is a good idea to add this to your controllers. You could also over-
ride an ActiveRecord method, as described at http://www.notsostupid.com/blog/2006/07/07/
urls-on-rails.

Now if you try reloading the page’s index view, http://localhost:3000/pages, you will see
that the links on the page go to /pages/1-welcome-page. Try visiting this link to make sure that
the show action still works as expected.

Adding a New Page Using new and create

To create a new page, the administrator needs to have a page in which to enter the page infor-
mation and a corresponding action that saves the data. These actions will be called new and
create respectively.

Open page_controller.rb, and edit the definition of the new action as follows:

def new
 @page = Page.new
end

This simply creates a new instance of a Page model and stores it in the variable @page. This
object isn’t stored in the database yet; it is simply created in memory.

Now edit the app/views/pages/new.rhtml file as shown in Listing 2-8.

Listing 2-8. The New Page View

<h2>Create New Page</h2>

<%= error_messages_for :page %>

<% form_for :page, :url => pages_url, :html => { :method => :post } do |f| -%>
 <p>Title:
<%= f.text_field :title, :size => 60 %></p>
 <p>Body:
<%= f.text_area :body, :rows => 20, :cols => 60 %></p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', pages_url %>
<% end -%>

There are a number of interesting methods introduced here. First of all, the
error_messages_for helper method is an easy way of showing all the errors (if there are any)
that arise from validating an object.

The form_for helper method is a way of creating an HTML form for a specific model object.
The URL to post the form to is specified simply as pages_url. The real URL is then derived from
the resource mapping that you defined in the routes.rb file earlier on.

Bradburne_8415C02.fm Page 37 Thursday, April 26, 2007 5:18 AM

http://www.notsostupid.com/blog/2006/07/07
http://localhost:3000/pages

38 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

The text_field and text_area methods create a text input field and a text input area,
respectively, and the submit_tag creates a submit button for the form.

If a user fills in the form and clicks the Save button, the form will be submitted as an HTML
POST to the page model resource URL. Because the page model is mapped as a REST resource,
the resource URL (in this case http://localhost:3000/pages) responds not just to the URL
itself, but also to the HTTP calling method—be it GET, POST, PUT, or DELETE. So if the /pages URL
is accessed with HTTP GET, the pages_controller index method will be performed. However,
through the magic of Rails routing of REST resources, if the same URL is accessed with HTTP
POST (as in the case of submitting this form), the create method will be performed. This greatly
simplifies the URL structure and makes the methods of accessing your objects very consistent,
not just within your application but also as a REST web service.

So to actually save this page data, write the following create method in
pages_controller.rb:

def create
 @page = Page.new(params[:page])
 @page.save!
 flash[:notice] = 'Page saved'
 redirect_to :action => 'index'
rescue ActiveRecord::RecordInvalid
 render :action => 'new'
end

This method creates and attempts to save an instance of the Page model, except this time
it is instantiated with the parameters from the form. These are automatically available through
the params variable. If the save fails and raises a RecordInvalid exception, it is caught by the
rescue clause. The new page is rendered again, but the validation errors will be shown by the
error_messages_for :page statement in the view.

When an attempt is made to save this object (which actually tries to create the database
record), validation is performed, along with any callbacks. If the validations and saving are
successful, true is returned.

A success notice is then stored in the flash, a temporary storage for values for the current
session. By default, when something is stored in the flash, it is available for the next page
request and cleared on the next successful request. This makes it ideal for passing error or
status messages from page to page. If you look back at the layout template app/views/layouts/
application.rhtml that we created at the beginning of this chapter, you will see that this template
will display any flash messages if they are present.

The method then redirects the browser to the index method, which lists the available
pages.

It would also be useful to add a link to the “Create new page” action on the page list view.
Edit app/views/pages/index.rhtml, and add the following line below the h2 tag:

<p><%= link_to 'Create new page', new_page_url %></p>

Now you can test adding a new page. Go to http://localhost:3000/pages in your browser.
Click the “add new page” link. This should now display the Create New Page form. To try it out,
create a new test page, giving it a title and a body, and save the page. Your page will be created,
and you will be returned to the list of pages—now including your new page. You will see that

Bradburne_8415C02.fm Page 38 Thursday, April 26, 2007 5:18 AM

http://localhost:3000/pages
mailto:@page.save
http://localhost:3000/pages

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 39

the permalink field has been created for you. Click the permalink of your new page to see it
displayed.

Editing Pages Using edit and update

The code and views for editing pages are very similar to those for creating new pages. However,
instead of creating an instance of a new empty model, you need to get an existing page from the
database. To do this, edit the pages_controller.rb:

def edit
 @page = Page.find(params[:id].to_i)
end

In the same way as in the show method, we should make sure that the id parameter is
converted to an integer before we try to search for the object.

The corresponding view is essentially identical to the view for the view action, since it
displays the same fields. However, notice that the URL that the page is submitted to now specifies
the ID of the page being edited and the :method has changed from :post to :put. This means Rails
interprets HTTP POST methods as creating a new record and HTTP PUT methods as modifying
an existing record.

Edit the file app/views/pages/edit.rhtml as shown in Listing 2-9.

Listing 2-9. The Edit Page View

<h2>Edit Page</h2>

<%= error_messages_for :page %>

<% form_for :page, :url => page_url(@page), :html => {:method=>:put} do |f| -%>
 <p>Title:
<%= f.text_field :title, :size => 60 %></p>
 <p>Body:
<%= f.text_area :body, :rows => 20, :cols => 60 %></p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', pages_url %>
<% end -%>

When this form is submitted, it is handled by the update method in pages_controller.rb.
Edit this method as follows:

def update
 @page = Page.find(params[:id].to_i)
 @page.attributes = params[:page]
 @page.save!
 flash[:notice] = "Page updated"
 redirect_to :action => 'index'
rescue
 render :action => 'edit'
end

This performs a similar action to the create method, except this time, instead of creating a
new page based on the form parameters, you are retrieving the page from the database and

Bradburne_8415C02.fm Page 39 Thursday, April 26, 2007 5:18 AM

mailto:@page.attributes
mailto:@page.save

40 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

attempting to update the attributes of this object. This will also be validated and callbacks that
are defined will be run.

Now, you just need to add a link to the edit form from the page list by updating the
index.rhtml file as shown in Listing 2-10.

Listing 2-10. The Updated Page Index View

<% @pages.each do |page| -%>

 <%= link_to page.permalink, page_path(page) %>
 [<%= link_to 'edit', edit_page_path(page) %>]
 : <%= page.title %>

<% end -%>

This adds a link to the edit page. Give it a try. You can now edit any page just by clicking on
the edit link.

Deleting a Page Using destroy

The destroy method simply finds a given record and destroys it, adding a flash notice if the
deletion was successful or an error message if it was not.

def destroy
 @page = Page.find(params[:id].to_i)
 if @page.destroy
 flash[:notice] = "Page deleted"
 else
 flash[:error] = "There was a problem deleting the page"
 end
 redirect_to :action => 'index'
end

To avert deletions by accidental mouse clicks, when you create the delete link in the index
view, you can specify a pop-up confirmation box. Edit the index.rhtml view file again, adding
a link to the destroy method as follows:

<%= link_to page.permalink, page_path(page) %>
 [<%= link_to 'edit', edit_page_url(page) %>
 | <%= link_to 'delete', page_url(page), :method => :delete,
 :confirm => 'Are you sure you wish to delete this page?' %>]
 : <%= page.title %>

The link to the destroy method is simply a normal page URL except with an HTTP DELETE
method. This is specified by the :method=>:delete parameter. The :confirm parameter specifies
the pop-up alert box.

Go ahead and try deleting a page now. Don’t delete the welcome page!

Bradburne_8415C02.fm Page 40 Thursday, April 26, 2007 5:18 AM

mailto:@pages.each
mailto:@page.destroy

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 41

Setting Up a Default Page
You will notice that if you just go to the index page of your application (i.e., http://
localhost:3000/), you are still presented with the default Rails “Welcome aboard” page.
This is because it is a static HTML page stored in the public folder of your application.

When you request a page through the browser, Rails first checks the public directory to see
if any static files are there that match the request. If so, it will send that file rather than routing
the request through your Rails application.

This feature is incredibly useful, as it allows the web server to very quickly serve static files
that your application relies on, such as JavaScript files or images, without having to process the
request in Ruby. Rails also makes use of this feature for caching pages.

To change your application so that your users will be presented with your own index page
rather than the Rails default page, you need to set up a default route for an empty request and
remove (or rename) the static index.html file.

Edit config/routes.rb, and add the default route as the first map statement:

map.index '/', :controller => 'pages',
 :action => 'show',
 :id => '1-welcome-page'

The map.index statement connects the root URL, '/', to a particular action with a specific
parameter. This particular named route is called index, and as you saw earlier, you can use a
shortcut to reference this mapping. If you wanted to redirect a user back to the index page after
performing an action, you would simply use this line:

redirect_to index_url

which is much easier to read than the equivalent command:

redirect_to '', :controller => 'pages', :action => 'show', :id => '1-welcome-page'

Another advantage is that you can change the mapping at any time just by editing the
routes.rb file, rather than trying to find every instance of the index page in your code.

Finally, delete (or rename) the static index file public/index.html; otherwise, this will
always be the default page loaded for your site!

Adding a Link from the Sidebar Menu
To make it easy to access the pages controller, we should add a link to the index action from the
sidebar menu.

Open the partial view file, app/views/layouts/_menu.rhtml, and add a link to the page’s
index action. You should also change the URL for the home link to the index_url mapping that
we just defined.

Edit the file to match the code shown in Listing 2-11.

Listing 2-11. The Updated Menu View File

 <%= link_to 'Home', index_url %>
 <%= link_to 'Edit Pages', pages_path %>

Bradburne_8415C02.fm Page 41 Thursday, April 26, 2007 5:18 AM

http://localhost:3000
http://localhost:3000

42 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

Now, reload the page, and test out the links and actions to ensure that the site is working
as expected.

Testing
You may have noticed that when you first created the application with the rails command, a
collection of directories and files was created under the test directory in the Rails application.

If you take a look at the test directory now, you’ll see there are directories for fixtures,
functional tests, integration tests, mocks, and unit tests. I will describe all of these in time, but
for testing the page model, we will make use of the unit tests.

Creating the Testing Database
Before you start testing, you need to create another database. In Chapter 1, you created a
database called railscoders_development. Now, you need another database, this time called
railscoders_test. The advantage of running our tests with a separate database is that our
development and production databases stay clean and free of any test data.

You can do this by opening a command prompt and entering the following line:

$ mysqladmin -u root create railscoders_test

Now that you have a test database, you need to create the necessary tables to make it the
same as your development database. To do this, enter the following command:

$ rake db:test:prepare

You now should have a fresh database that has the same structure as your development
database. You can now start writing some tests.

Developing Unit Tests for the Page Model
Open the test/unit/page_test.rb file. You will see that there is already a test defined—test_truth.
You need to now replace this with your own tests.

So, what do you need to test for? You defined a number of validations on the page model,
and these should be tested. If you look back at the page model, the first validation performed is
that the two fields title and body are present. This should be the first test.

Unit tests in Rails are written as assertions; an assertion is a method that states what you
expect to be true. For example, you might expect something to fail validation or you might
expect an object to be saved correctly. By covering both positive and negative tests, you can be
sure that the model is working correctly.

To check that the object is invalid if any of the attributes are missing, you can write the test
as follows:

def test_invalid_if_any_field_empty
 page = Page.new
 assert !page.valid?
 assert page.errors.invalid?(:title)
 assert page.errors.invalid?(:body)
end

Bradburne_8415C02.fm Page 42 Thursday, April 26, 2007 5:18 AM

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 43

As you can see, this will create a new page object and check a number of assertions. If any
of these assertions fail, this test will fail. The first assertion checks that the Page model is invalid
by asserting a not valid test. The next two assertions check that each of the fields is invalid.

Next, we should check that a valid page can be saved. You could write the test by specifying
all of the fields in the test code, but if you had a lot of tests, this could get quite repetitive and
awkward. To make life easier, you can specify test data as fixtures; a fixture is a set of data that
is used to create an object for testing. Unsurprisingly, these are stored in the test/fixtures
directory. If you go there now, you will see that there is already a file called pages.yml that has
a couple of placeholders for your fixture data. Fixtures are stored in YAML, the same as the
database configuration file that you looked at in Chapter 1.

Since you want to test both valid and invalid data for the page model and check that the
automatic permalink generation works, you should specify a number of fixtures as shown in
Listing 2-12, replacing the placeholders that have been automatically generated in the file.

Listing 2-12. The Page Test Fixtures File

valid_page:
 id: 1
 title: Welcome Page
 permalink: welcome-page
 body: Welcome to RailsCoders
invalid_page_short_title:
 id: 2
 title: a
 permalink: a
 body: The title is shorter than 3 character
valid_with_auto_permalink:
 id: 3
 title: Another Page, but without a permalink
 body: No permalink is given so it should be automatically generated

Now, you need to write the tests that make use of these fixtures. Go back to your
page_test.rb file. To test if you can save a valid page object, write a test_valid_fields
stest as follows:

def test_valid_fields
 page = pages(:valid_page)
 assert page.valid?
end

You can access each of the fixtures that you defined using pages(:fixure_name). In this
case, you retrieve the valid_page fixture and check that the page is valid. Now, try running your
tests again:

$ ruby test/unit/page_test.rb

Bradburne_8415C02.fm Page 43 Thursday, April 26, 2007 5:18 AM

44 CH AP T E R 2 ■ D E V E L O P IN G A C O N TE N T M AN AG E M E N T SY S T E M

The results of the tests will be shown as follows:

Loaded suite test/unit/page_test
Started
..
Finished in 0.064965 seconds.

2 tests, 4 assertions, 0 failures, 0 errors

Each of the periods in the output represents a pass. If a test fails, this will show an F, and an
E represents an error. You will be notified which test failed along with the line number where it
failed.

You can now add more cases to test for too-short titles and to test the automatic permalink
generator:

def test_invalid_short_title
 page = pages(:invalid_page_short_title)
 assert !page.valid?
end

def test_auto_permalink
 page = pages(:valid_with_auto_permalink)
 assert page.valid?
end

Again, run the tests, and make sure that they all pass. You should now have confidence in
your object model, and if you make any changes, make sure you add the relevant tests. By
keeping your tests up to date, you can add to and alter models without having to worry about
having broken something. I will explore more ways of testing your code later.

Extending the Content Management System
The content management system that we have developed could be extended in many ways
such as adding a JavaScript WYSIWYG editor, such as FCKeditor (www.fckeditor.net) or
TinyMCE (http://tinymce.moxiecode.com), to the page-creation and editing pages. These will
make creating a complex page much easier than having to write your own HTML markup.

You may also wish to improve the layout of the index view, for instance, you might put the
list of pages into a table.

Bradburne_8415C02.fm Page 44 Thursday, April 26, 2007 5:18 AM

http://www.fckeditor.net
http://tinymce.moxiecode.com

C H AP T E R 2 ■ DE V E L O PI N G A C ON TE N T M AN A G E M E N T SY S TE M 45

Summary
In this chapter, you saw how quickly and easily you can build a simple content management
system that will allow content for the RailsCoders site to be written and maintained through a
simple web interface.

To store the page content, we used ActiveRecord migrations to write a database schema.
Next, we built a model for the page data, complete with validations. We utilized callbacks to
autogenerate a search-engine-friendly permalink based on the title of the page and adapted
the model to automatically show these permalinks on all links to the pages.

We also created a test database and wrote unit tests for the page model, ensuring that the
validations and callbacks work as expected.

And we did all of this with only a handful of lines of code!
Now that the RailsCoders site has a welcome page, we can start to build on these founda-

tions and add more features.
In the next chapter, we will add users and user roles to the system, which will allow us to

add permissions to different actions. By adding permissions, we can create administrator users
who are capable of editing the site, whereas regular visitors can only view it.

Bradburne_8415C02.fm Page 45 Thursday, April 26, 2007 5:18 AM

Bradburne_8415C02.fm Page 46 Thursday, April 26, 2007 5:18 AM

47

■ ■ ■

C H A P T E R 3

Adding Users and Groups

In this chapter, we will add user accounts and a role-based group system. This will allow your
users to create accounts and log in to the site and allow you to maintain control by adding an
administrator role to regulate who can administer the site.

We will create a web interface to allow the administrator to manage the permissions of
each user, including disabling accounts.

The code for the user authentication system in this chapter has been adapted from a Rails
plug-in called restful_authentication written by Rick Olson. If you wish to find out more
about this plug-in, go to http://agilewebdevelopment.com/plugins/restful_authentication.

Specifying the Feature Requirements
To start, you will add a user account system to the site, along with an interface to allow users to
sign up, log in, and log out. You will also add an administration interface to allow the site adminis-
trators to add and remove permissions for user accounts and to disable or reset user accounts.

This will require two models and three database tables. First, we need a user model to hold
the user data itself; it will store information such as the user’s login details, e-mail address, and
so on.

We also need a model called “Role.” Our site requires users to have different permissions
so that we can have editors, moderators, and administrators along with regular users of the
site. This Role model will store what the role is called.

To link these models together and assign roles to users, we will create a join table called
roles_users. A join table is a special type of table that simply allows Rails to link two other
models together.

Defining the User Model
The User model will hold the account information. Here, we will define the information that
will be stored about the users and how a user’s input can be validated on sign-up. As you saw
in Chapter 2, the User model will, by default, use a database table called users.

Before we specify the required fields, we need to consider how we will store sensitive infor-
mation, in particular the user’s password.

The user needs to log in to the site with a password, so we will require a password field. The
simplest way to store this would be as clear text, but this raises a number of security issues.
Many people use the same password across a number of sites, so having them accessible and
stored as plain text just isn’t fair to your users and generally not a good idea.

Bradburne_8415C03.fm Page 47 Thursday, April 26, 2007 5:23 AM

http://agilewebdevelopment.com/plugins/restful_authentication

48 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

A better way of storing the passwords is using a one-way hashing algorithm. A hash is like
a digital fingerprint of data. This data could be a file, or it might just be a string.

As it happens, the commonly used hashing algorithm SHA-256 is part of the standard
Ruby libraries. By storing the hashed value of the user’s password in the database, you can
check that the user has entered the correct password by calculating the hash of the entered
password and comparing that to the hashed value stored in the database.

The hashes created by the SHA-256 hashing algorithm are 64 characters long, so the data-
base field to store the SHA-256 hash needs to be a string field capable of storing 64 characters.

Since users will enter their own passwords when signing up, we want to have the users
confirm their passwords by repeating them in a confirmation text field to catch any typos. This
will not actually be stored in the database—we will simply compare the password and password_
confirmation fields when the user creation form is submitted to ensure that the user intends
the entered password and didn’t make a mistake.

The required database fields for this users table are shown in Table 3-1.

We want to be able to view users’ profiles by specifying their usernames as well as by the
primary keys, so we should make sure that the an index on the username field is created by
the database.

The Role Model and Join Table
In order for us to assign different permissions to different users, we will create a Role model to
store the different roles of users on the site. This will not store what the role is capable of, just
the name of the role. We will define the actual capabilities or restrictions in the code. The required
fields of the roles database table are shown in Table 3-2.

Table 3-1. The Database Fields Required for the User Model

Field Name Field Type Description

id integer This will be used as the primary key.

username string A unique name that the user will use as a nickname
on the site. This should have a minimum length of
3 characters and a maximum of 64 characters.

email string Since we want the option of sending e-mails to the user
from the site, this will hold their e-mail addresses, with
a maximum length of 128 characters.

password string This will store the SHA-256 hash of the entered password.

enabled boolean If a user wants to remove his or her account, it needs to
be disabled. A Boolean enabled field will allow a user’s
account to be enabled or disabled. By default, it should
be set to true.

profile text Users will have the option of entering extra information,
up to a maximum of 1,000 characters, about themselves.

created_at datetime The date and time that the user was created.

updated_at datetime The date and time that the user was last updated.

Bradburne_8415C03.fm Page 48 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 49

We will then link the User and Role models together using a join table. A join table simply
stores the IDs of two separate models and links them together. In your model code, you need
to specify a many-to-many relationship by stating that each model has and belongs to many of
the other model. For example, in this case, the User model has and belongs to many Roles, and
the Role model has and belongs to many Users. The required fields are shown in Table 3-3.

The Controllers
Implementing this technology will require three controllers: a users controller, an account
controller, and a roles controller.

The users controller will provide the RESTful resource for the User model. This will provide the
methods to display and edit the user account.

The account controller will provide the supporting web actions that allow the user to sign
up, log in, and log out.

The roles controller will provide a RESTful resource for assigning and revoking roles from
a specific user.

The reason for separating the tasks among three controllers is to keep the REST actions
cleanly separated from the web-only methods, allowing much easier use of the site through a
REST API.

The Account Controller

The account controller needs the following methods to allow a person to join the site, log in,
and log out:

• The signup method will allow users to enter their details to become new members of the site.

• The login method will check the e-mail addresses and passwords of the users to allow
them to log in to the site.

• So users can log out of the site, a logout method will be provided.

Table 3-2. The Database Fields Required for the Role Model

Field Name Field Type Description

id integer The primary key

name string The name of the role

Table 3-3. The Database Fields Required for the Roles_Users Join Table

Field Name Field Type Description

user_id integer The ID of the user

role_id integer The ID of the role

Bradburne_8415C03.fm Page 49 Thursday, April 26, 2007 5:23 AM

50 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

The Users Controller

The users controller will provide the usual REST methods for accessing the User model. Of
course, you will want to limit use of some of these methods to only administrators. However,
that functionality will be added later in this chapter.

• All the normal REST actions are provided: index, show, new, create, edit, update, and
destroy. However, since I don’t want to actually delete a user account, the destroy
action will simply disable the user’s account by setting the enabled field to false.

• In order for users to see other users’ profiles in a pretty URL of /user/<username>, a
show_by_username method will be provided to display the profiles of users referenced by
their usernames.

• To allow an administrator to re-enable a user’s account, an enable action will be provided.

The Roles Controller

The roles controller will be a nested resource under the users controller. This means that the
controller will only be accessible when it is prefixed by a valid user in the URL. For example,
/users/4/roles will show all of the roles assigned to user 4. The URL /users/6/roles/1 with the
HTTP method of PUT (meaning that we want to update the object) would assign role ID 1 to user
ID 6.

Through this controller we want to be able to perform three actions:

• List the roles that are assigned to a specified user. This will be performed by the index action.

• Add a role to a user’s assigned roles list. This will be performed by the update action.
Both the user ID and the role ID need to be specified.

• Remove a role from a user’s assigned roles list. This will be performed by the destroy action.

Sessions and Cookies
Any web application that allows multiple people to log in and see views unique to them needs
a way of tracking a user and knowing the identity of that user. Rails applications are stateless,
meaning that each request made to the web application is independent and that the server
does not have any knowledge of the previous actions of the user.

So, to keep track of the user’s actions, you need to use sessions. A session is simply a
unique ID assigned to each user that allows our application to track which user is requesting
the page. This session ID is stored on the user’s machine as a browser cookie. The cookie is sent
along with every request to the web application, which can then be used by the application to
work out which user submitted the request.

Rails session handling is very flexible and allows you to decide how you want to store
session data: in files, a database, or an in-memory cache, such as memcached. Throughout this
book, I will use the default file-based session store. I will discuss the benefits of a database or
memcached session store and how you implement a database session store in Chapter 14.

We will also add a Ruby module for all of the session-handling code. Ruby modules are
simply a way of grouping together reusable code. In Rails, modules live in the lib directory.

Bradburne_8415C03.fm Page 50 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 51

Creating the User Model
The first step is to use the generate script to create a new model. As you saw in the previous
chapter, this will create the skeleton files that we need, along with a new migration script for
adding the database migration details.

Open a terminal window, and enter the following command:

$ ruby script/generate model User

The relevant model files are created for you. First of all, edit the database migration script
db/migrate/002_create_users.rb, and add the details of the users database table, as shown in
Listing 3-1.

Listing 3-1. The User Table Migration File

class CreatesUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :username, :string, :limit => 64, :null => false
 t.column :email, :string, :limit => 128, :null => false
 t.column :hashed_password, :string, :limit => 64
 t.column :enabled, :boolean, :default => true, :null => false
 t.column :profile, :text
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :last_login_at, :datetime
 end
 add_index :users, :username
 end

 def self.down
 drop_table :users
 end
end

Since it is a requirement to be able to search the users based on their usernames, we have
added an index for the username column to speed up the database searching.

You can now run the migration:

$ rake db:migrate

This will create the new table:

== CreateUsers: migrating ===
-- create_table(:users)
 -> 0.7473s
-- add_index(:users, :username)
 -> 0.2982s
== CreateUsers: migrated (1.0542s) ==

Bradburne_8415C03.fm Page 51 Thursday, April 26, 2007 5:23 AM

52 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

Edit the model file, user.rb. As before, we need to define the validations for the model,
matching the specification from the beginning of the chapter. Edit the file as shown in Listing 3-2.

Listing 3-2. The User Model File

require 'digest/sha2'
class User < ActiveRecord::Base
 attr_protected :hashed_password, :enabled
 attr_accessor :password

 validates_presence_of :username
 validates_presence_of :email
 validates_presence_of :password, :if => :password_required?
 validates_presence_of :password_confirmation, :if => :password_required?

 validates_confirmation_of :password, :if => :password_required?

 validates_uniqueness_of :username, :case_sensitive => false
 validates_uniqueness_of :email, :case_sensitive => false

 validates_length_of :username, :within => 3..64
 validates_length_of :email, :within => 5..128
 validates_length_of :password, :within => 4..20, :if => :password_required?
 validates_length_of :profile, :maximum => 1000

 def before_save
 self.hashed_password = User.encrypt(password) if !self.password.blank?
 end

 def password_required?
 self.hashed_password.blank? || !self.password.blank?
 end

 def self.encrypt(string)
 return Digest::SHA256.hexdigest(string)
 end
end

You will notice this is a little more complex than the Page model from Chapter 2. The
basic validations are similar, but a number of extra interesting things are going on here. The
attr_protected statement defines the model’s attributes that are to be protected. This is very
important to the security of your data, because it protects the named attributes from being set
in mass assignments, such as those usually performed when you create a new model instance
with new(attributes) or save with update_attributes(attributes). Instead, these variables
have to be set directly, which protects sensitive attributes in your model from hackers attempting
to inject data into your database.

Bradburne_8415C03.fm Page 52 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 53

The attr_accessor statement specifies the attribute password. You may have noticed that
this doesn’t actually exist as a field in the database migration. This declares that password is an
attribute of the model even though it doesn’t exist as a database field. The model will be able to
use the data from this field to create the hashed_password field. You will notice that this is done
by the before_save filter. This will simply set the hashed_password field to be a hash of the clear
password which, as stated in our specification, we can compare to the stored hashed_password
value to authenticate a user’s login credentials.

You will notice that the validation of the password confirmation and the validation of the
presence of the password and password_confirmation attributes have an extra :if parameter,
which means that the validation will only be performed under certain circumstances. In this
case, it is performed if no password is currently stored in the database, or if the user is trying to
change their password.

All that is left is to add a way of checking a user’s login credentials. Add the following method:

def self.authenticate(username, password)
 find_by_username_and_hashed_password_and_enabled(username,
 User.encrypt(password), true)
end

This defines a class method that takes the username and clear password, creates a hash of
the password, attempts to find that user in the database, and returns that user object if it is
found. Also, only users who have the enabled attribute set to true will be found, making it
simple to disable user accounts.

The Session-Handling Library
Before you can create the controllers and view to use this User model, you must have a way of
storing and accessing the session data needed to remember the user’s state across pages. Building
a module encapsulates the session handling code and makes your application more readable
and maintainable.

Create a new file called login_system.rb in the lib directory of you application, and add
the code shown in Listing 3-3.

Listing 3-3. The Login System Module

module LoginSystem
 protected

 def is_logged_in?
 @logged_in_user = User.find(session[:user]) if session[:user]
 end

 def logged_in_user
 return @logged_in_user if is_logged_in?
 end

Bradburne_8415C03.fm Page 53 Thursday, April 26, 2007 5:23 AM

54 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

 def logged_in_user=(user)
 if !user.nil?
 session[:user] = user.id
 @logged_in_user = user
 end
 end

 def self.included(base)
 base.send :helper_method, :is_logged_in?, :logged_in_user
 end
end

Before we go any further, we have to make sure that the application knows about this module.
We do this by adding a line to the app/controllers/application.rb file. Open this file, and add
the include statement shown in bold in Listing 3-4.

Listing 3-4. The Modification to the application.rb File

class ApplicationController < ActionController::Base
 # Pick a unique cookie name to distinguish our session data from others'
 session :session_key => '_railscoders_session_id'
 include LoginSystem
end

This module adds a number of methods that allow you to get and set the logged_in_user
object, as well as to find out if a user is logged in at all with the is_logged_in? method.

As you can see, setting a session variable is as simple as setting a normal Ruby variable.
The session object is reserved by Rails for this purpose. You can store any kind of Ruby object
in a session variable, but session variables work best if you just use them for storing simple
things like integers. In this case, I am simply storing the ID of the logged-in user.

If a user is logged in, the first method will retrieve their user model and store it in the vari-
able @logged_in_user. If you subsequently make reference to logged_in_user, the details of the
user have already been preloaded into the @logged_in_user variable, meaning that the applica-
tion doesn’t have to do another database lookup.

The session variable is set by the logged_in_user= method. When the user object is assigned to
logged_in_user the id of the user is placed in the session variable, and the user object is stored
in @logged_in_user.

The final method of this module makes the is_logged_in? and logged_in_user methods
available as helper method to the views of your application. This is incredibly convenient, as
you can directly use the logged_in_user object in the views or show only a section of a page if a
user is logged in.

Using these methods, handling the sessions becomes almost transparent. You will see
how to put them to use as you build the controllers.

Bradburne_8415C03.fm Page 54 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 55

Creating the Controllers
Now you can create the users and account controllers:

$ ruby script/generate controller Users index show new create edit update ➥

 destroy enable
$ ruby script/generate controller Account login authenticate logout

Since the users controller implements a RESTful resource, you need to tell Rails that it
should treat it as one. As with the pages controller, this is done in the config/routes.rb file.
Add the users resource mapping line to the routes.rb file as shown in Listing 3-5.

Listing 3-5. The Update to the Routes File

ActionController::Routing::Routes.draw do |map|
 ...
 map.resources :pages
 map.resources :users

 map.connect ':controller/:action/:id'
end

The Users Controller
Edit the app/controllers/users_controller.rb file, and edit the methods as shown in Listing 3-6.

Listing 3-6. The Users Controller File

class UsersController < ApplicationController
 def index
 @users = User.find(:all)
 end

 def show
 @user = User.find(params[:id])
 end

 def show_by_username
 @user = User.find_by_username(params[:username])
 render :action => 'show'
 end

 def new
 @user = User.new
 end

Bradburne_8415C03.fm Page 55 Thursday, April 26, 2007 5:23 AM

56 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

 def create
 @user = User.new(params[:user])
 if @user.save
 self.logged_in_user = @user
 flash[:notice] = "Your account has been created."
 redirect_to index_url
 else
 render :action => 'new'
 end
 end

 def edit
 @user = logged_in_user
 end

 def update
 @user = User.find(logged_in_user)
 if @user.update_attributes(params[:user])
 flash[:notice] = "User updated"
 redirect_to :action => 'show', :id => logged_in_user
 else
 render :action => 'edit'
 end
 end

 def destroy
 @user = User.find(params[:id])
 if @user.update_attribute(:enabled, false)
 flash[:notice] = "User disabled"
 else
 flash[:error] = "There was a problem disabling this user."
 end
 redirect_to :action => 'index'
 end

 def enable
 @user = User.find(params[:id])
 if @user.update_attribute(:enabled, true)
 flash[:notice] = "User enabled"
 else
 flash[:error] = "There was a problem enabling this user."
 end
 redirect_to :action => 'index'
 end
end

Bradburne_8415C03.fm Page 56 Thursday, April 26, 2007 5:23 AM

mailto:@user.save
mailto:@user.update_attributes
mailto:@user.update_attribute(:enabled
mailto:@user.update_attribute(:enabled

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 57

This adds methods that are very similar to those in the page controller, except with a few
changes specific to handling users. Since we want to be able to display a user’s profile by spec-
ifying the username as the reference, we’ve added a show_by_username method. You can link
this to a nice-looking URL by adding a suitable mapping toward the end of your routes.rb file
as follows:

 ...
 map.show_user '/user/:username',
 :controller => 'users',
 :action => 'show_by_username'

 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

Looking back in the controller file, you will notice that when a user creates an account, that
user is automatically logged in using the new session handler by self.logged_in_user = @user.
This calls the session-handling method logged_in_user= with the newly created user.

Now, if you need to find out who the currently logged in user is, simply use the logged_in_user
object.

Because this controller follows the Rails REST conventions, the actions create, update, and
destroy are protected from accidentally being called from an HTTP GET request. They must be
called with an HTTP method of POST, PUT, and DELETE respectively. However, the new action
enable isn’t automatically protected in this way, since Rails doesn’t know that this method
needs protection from being accidentally called.

To declare to Rails that the enable method must only be called by an HTTP PUT method,
you must alter the existing users mapping in the routes.rb file:

map.resources :users, :member => { :enable => :put }

This tells Rails that the users controller contains an extra action called enable that can only
be called by an HTTP PUT method. If a user or a search bot tries to GET the URL /users/<id>;enable,
it will not have any effect on the user object. It will only be affected if the request is made with PUT.

The Account Controller
The account controller provides actions for logging in and logging out. Since you are not creating a
REST resource but simply providing actions for the web site, these do not have to be constrained to
the REST actions. These actions can be called using the URL format /<controller>/<action>/
<id>.

Edit the app/controllers/accounts_controller.rb file as shown in Listing 3-7.

Listing 3-7. The Account Controller File

class AccountController < ApplicationController
 def authenticate
 self.logged_in_user = User.authenticate(params[:user][:username],
 params[:user][:password])

Bradburne_8415C03.fm Page 57 Thursday, April 26, 2007 5:23 AM

58 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

 if is_logged_in?
 redirect_to index_url
 else
 flash[:error] = "I'm sorry; either your username or password was incorrect."
 redirect_to :action => 'login'
 end
 end

 def logout
 if request.post?
 reset_session
 flash[:notice] = "You have been logged out."
 end
 redirect_to index_url
 end
end

The login view does not require an action in the controller, since it is simply an HTML
form—nothing needs to be done by the controller, because the login.rhtml view will simply be
rendered.

When the user submits the login form, it is sent to the authenticate action. The authenticate
method then attempts to find the user. The authenticate method in the User model takes the
username and password as parameters and will return the found user object or nil if no user
matches the values passed. This result is assigned to self.logged_in_user, which, as you saw
in the create method in the Users controller, will pass the user to the session-handling code
and store the user’s ID in the session.

This is checked by testing the is_logged_in? method, redirecting the users to the index
page if they are logged in or adding a flash message and redirecting to the login view if not.

FLASH MESSAGES

Flash is a way of passing objects between actions. In this chapter, it is used to pass a text message of a noti-
fication or error to the next action and show the result of the previous action.

However, any object that you put into flash will be available to the next action. If you need to retain a flash
beyond the next action, you can use flash.keep to keep it alive for another action.

Creating the User Account Views
We now need to create the view that corresponds to the actions we have created for the users
and account controllers.

The New User View
We’ll start off with the page where a user can sign up. As with the new page form created in the
previous chapter, this is a form built using the Rails form_for helper.

Bradburne_8415C03.fm Page 58 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 59

Edit the file app/views/users/new.rhtml, and enter the view shown in Listing 3-8.

Listing 3-8. The New User View

<h2>Signup</h2>

<%= error_messages_for :user %>

<% form_for :user, :url => users_path do |f| -%>
 <p>Username:
<%= f.text_field :username, :size => 40 %></p>
 <p>Email:
<%= f.text_field :email, :size => 60 %></p>
 <p>Password:
<%= f.password_field :password, :size => 60 %></p>
 <p>Password Confirmation:

 <%= f.password_field :password_confirmation, :size => 60 %></p>
 <p>Profile:
<%= f.text_area :profile, :rows => 6, :cols => 60 %></p>
 <%= submit_tag 'Sign Up' %>
<% end -%>

You will notice that this provides both the password and the password_confirmation
parameters. If you think back on the User model, you should remember that neither of these
fields actually exists in the database. Both are virtual attributes, meaning that they appear to be
regular attributes from the controller’s viewpoint, but their values are used either as part of the
validation (as in the case of the password_confirmation) or to derive the value to be stored.

When the user submits information, the controller tries to create and save a new user
object. If it fails because the input fails validation, the same view is shown again, but with the
validation errors passed through. If the validation succeeds and the new User model is saved,
the user is logged in and redirected to the index page. This could obviously be any page on the
site—you may wish to create a welcome page for new members.

Before we take a look at this in the browser, we should add some links to the sidebar to
make it easy for us to get to the signup and login screens.

Open the sidebar menu partial file, app/views/layouts/_menu.rhtml, and update the file as
shown in Listing 3-9. This uses the user authentication module to check if the user is logged in
or not. If not, login and signup links are shown. If a user is logged in, the username is shown in the
sidebar along with a logout link.

Listing 3-9. The Updated Sidebar Menu Partial File

 <%= link_to 'Home', index_url %>
 <%= link_to 'Edit Pages', pages_path %>

 <hr size="1" width="90%" align="left"/>

 <% if is_logged_in? %>
 Logged in as: <i><%= logged_in_user.username %></i>
 <%= link_to 'Logout', {:controller => 'account', :action => 'logout'},
 :method => :post %>

Bradburne_8415C03.fm Page 59 Thursday, April 26, 2007 5:23 AM

60 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

 <% else %>
 <%= link_to 'Signup', :controller => 'users', :action => 'new' %>
 <%= link_to 'Login', :controller => 'account', :action => 'login' %>
 <% end %>

Now we can take a look at the user signup screen and try creating a new user. Make sure
that your Rails application server is running, and go to http://localhost:3000/ in your browser.

Clicking the Signup link in the sidebar menu will show the user creation form shown in
Figure 3-1.

Figure 3-1. The user signup form

Try creating a new user and making sure that the flash message is shown, confirming the
action you have just taken and that username is shown in the sidebar.

Log out of the site using the logout link in the sidebar—you will be returned to the home
page, but the sidebar will change to show that you are not logged in any more, and you have the
options of signing up or logging in.

Bradburne_8415C03.fm Page 60 Thursday, April 26, 2007 5:23 AM

http://localhost:3000

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 61

You should also check the validations; for instance, try creating a user with an empty e-mail
address or entering an incorrect password confirmation. The errors will be caught by the vali-
dation statements in the User model, and you will be sent back to the signup page with the
error messages displayed.

Since we have not created the login page yet, we will do that now.

The Login View
Now that your users can create accounts, they need to be able to log in to the site. Open the
app/views/account/login.rhtml file, and enter the code in Listing 3-10.

Listing 3-10. The Login View

<h2>Login</h2>

<% form_for :user, :url => {:action => 'authenticate'} do |f| -%>
 <p>Username:
<%= f.text_field :username, :size => 30 %></p>
 <p>Password:
<%= f.password_field :password, :size => 30 %></p>
 <%= submit_tag 'Login' %>
<% end %>

This simply accepts the user’s username and password and then posts the info to the
authenticate action.

■Note You may wish to change the code in Listing 3-10 to let the site authenticate users based on their
e-mail addresses and passwords. Change the login, create views, and adapt the User model to your needs.

We can now try logging into the site using the previously created user. Make sure that the
application server is running, and go to the site’s homepage, http://localhost:3000, in the
browser.

Click the Login link in the sidebar menu. You will now see the login form. Try entering an
incorrect username or password to make sure that this is caught by the authentication checker,
as shown in Figure 3-2.

Now try entering a correct username and password. You will be logged in and redirected
to the home page, but the sidebar menu will show your username and a logout link.

Bradburne_8415C03.fm Page 61 Thursday, April 26, 2007 5:23 AM

http://localhost:3000

62 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

Figure 3-2. The login screen showing an error message

The Show User View
Next is the page that will display the profile of a given user. The show method in the users controller
allows just that, but we also added the show_by_username method to allow searching based on
the username rather than the user ID. The view code for both of these methods is the same.
Edit the file app/views/users/show.rhtml, and enter the code in Listing 3-11.

Listing 3-11. The User Show View File

<h2>User: <%= @user.username %></h2>

<p>Member since <%= @user.created_at.to_s(:long) %></p>
<p><%= @user.profile %></p>

Listing 3-11 displays the username, when the user was created, and the user’s profile. The
created_at time and date are formatted using one of the Rails built-in date formatters. A number of
date formats are built in, or you can create your own. The built-in formats include :db (a data-
base-friendly timestamp), :short, and :long.

ADDING YOUR OWN DATE FORMATS

If you would like to display dates and times in a format different from one of the built-in Rails formats, you
can easily define your own date display formats. All you have to do is add a data format string to the
Time::DATE_FORMATS hash and use the to_s(format) method of the Time class.

You can take a look at the existing formats by opening a Rails console and displaying the DATE_FORMATS
hash:

Bradburne_8415C03.fm Page 62 Thursday, April 26, 2007 5:23 AM

mailto:@user.username
mailto:@user.created_at.to_s(:long
mailto:@user.profile

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 63

>> Time::DATE_FORMATS
=> {:short=>"%d %b %H:%M", :rfc822=>"%a, %d %b %Y %H:%M:%S %z", :long=>"%B %d,
 %Y %H:%M", :db=>"%Y-%m-%d %H:%M:%S"}

You can add your own format to these as follows:

>> Time::DATE_FORMATS[:time] = "%H:%M:%S"
=> "%H:%M:%S"

You can now call the to_s method with the format of :time as follows:

>> Time.now.to_s(:time)
=> "18:54:28"

To use this format anywhere in your application, add this new format declaration at the end of your
config/environment.rb file.

You can also try viewing the profile of any user by going to either the show method speci-
fying the user’s ID (for example http://localhost:3000/users/2) or by using the show_by_
username method that is mapped to the /user/<username> URL, for instance, http://
localhost:3000/user/alan.

The profile view is shown in Figure 3-3.

Figure 3-3. The user show page

Adding Administration Views
So far, we have concentrated on user-centric views. We need to add a few more views for
administering users on the site.

Bradburne_8415C03.fm Page 63 Thursday, April 26, 2007 5:23 AM

http://localhost:3000/users/2
http://localhost:3000/user/alan
http://localhost:3000/user/alan

64 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

Listing All Users in the Index View
The index action will list all of the users in the system. Later in this chapter, we will make this
accessible by only the administrators of the site. It will list all of the usernames and allow an
administrator to enable or disable an account.

To display a user information table, the markup of the actual user information lines will be
in a partial file, similar to one we used to separate the menu sidebar from the layout—except
this time, we will pass a collection of objects to the partial, and it will render the partial for each
object in the collection.

Open app/views/users/index.rhtml, and enter the code shown in Listing 3-12.

Listing 3-12. The Users Index View

<h2>All users</h2>

<table id="users">
 <tr>
 <th>Username</th>
 <th>Email</th>
 <th>Enabled?</th>
 <th>Roles</th>
 </tr>
 <%= render :partial => 'user', :collection => @users %>
</table>

The collection of objects called @users is told to render through a partial file called
_user.rhtml. As you saw with the sidebar, partial files are identified by prefixing an underscore
to the partial name.

So create a file called app/views/users/_user.rhtml, and add the code in Listing 3-13.

Listing 3-13. The User Partial View

<tr class="<%= cycle('odd', 'even') -%>">
 <td><%= user.username -%></td>
 <td><%= user.email -%></td>
 <td><%= user.enabled ? 'yes' : 'no' -%>
 <% unless user == logged_in_user -%>
 <% if user.enabled -%>
 [<%= link_to('disable', user_url(user.id), :method => :delete) %>]
 <% else -%>
 [<%= link_to('enable', enable_user_url(user.id), :method => :put) %>]
 <% end -%>
 <% end -%>
 </td>
</tr>

Bradburne_8415C03.fm Page 64 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 65

This partial will be used to render the entire collection of user objects in the collection
@users. It will display a disable or enable link, depending on the current state of that user’s
enabled flag.

The view also prevents users from disabling their own accounts by checking that the user
rendered is not the currently logged in user. When this page is only accessible by the adminis-
trator, this will ensure that the administrator cannot accidentally disable the administrator
account.

Before we take a look at the user index view, we should make it accessible from the sidebar
menu and add some styling to the CSS file to make the table easier to read.

Open the sidebar menu file, app/views/layouts/_menu.rhtml, and add a link to the index
action of the users controller for logged in users, along with a link to edit your own profile, as
shown in Listing 3-14.

Listing 3-14. Modification to the Sidebar Menu

 ...
 <% if is_logged_in? %>
 Logged in as: <i><%= logged_in_user.username %></i>
 <%= link_to 'My Profile',
 edit_user_path(logged_in_user) %>
 <%= link_to 'Administer Users', users_path %>
 <%= link_to 'Logout', {:controller => 'account', :action => 'logout'},
 :method => :post %>
 <% else %>
 <%= link_to 'Signup', :controller => 'users', :action => 'new' %>
 <%= link_to 'Login', :controller => 'account', :action => 'login' %>
 <% end %>

Now open the application’s CSS file, public/stylesheets/main.css, and add the following
CSS to the end of the file:

/* User table styling */
table#users { width: 100%;}
table#users th { font-size: 95%; }
table#users td { font-size: 90%; }

Go to the site in your browser, and log in via the sidebar Login link. Click the Administer
Users link in the sidebar menu to display the list of users registered on the system, as shown in
Figure 3-4. You can try disabling and re-enabling some users.

Before you can try editing your profile, we need to add the edit user view.

Bradburne_8415C03.fm Page 65 Thursday, April 26, 2007 5:23 AM

66 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

Figure 3-4. The users index view allowing users to be enabled and disabled

Editing a User with edit.rhtml
To allow users to change their details, an edit form is needed. This will be somewhat similar to
the new user form, except that users will not be allowed to change their usernames. The users
will be allowed to change their passwords if they enter new passwords and password confirma-
tions. If they leave both of these fields blank, the password validation will not be used because
of the condition that we set in the User model.

Edit the app/views/users/edit.rhtml file as shown in Listing 3-15.

Listing 3-15. The User Edit View File

<h2>Edit your account</h2>

<p><%= link_to 'Show my profile', user_path(@user) %></p>

<%= error_messages_for :user %>

<% form_for :user,
 :url => user_url(@user),
 :html => { :method => :put } do |f| -%>
 <p>Email:
<%= f.text_field :email, :size => 60 %></p>
 <p>Password:
<%= f.password_field :password, :size => 60 %></p>
 <p>Password Confirmation:

 <%= f.password_field :password_confirmation, :size => 60 %></p>
 <p>Profile:
<%= f.text_area :profile, :rows => 6, :cols => 60 %></p>
 <%= submit_tag 'Save' %>
<% end -%>

The form is submitted with the HTTP PUT method. Since this is a Rails resource, this request
will automatically be routed to the update method.

Bradburne_8415C03.fm Page 66 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 67

Now try logging into the site and editing your profile to change both your profile and your
password. If you don’t enter anything into the password or password confirmation boxes,
your password will not be changed.

If you want to change your password, you have to enter your new choice of password into
both the password and password confirmation boxes.

Testing
Of course, manually clicking around to test that the application is doing what you expect is
useful, but it will not catch more subtle problems. Writing tests is vital to ensuring that your
code performs exactly as expected.

Unit Testing
As with the page tests that were written in the previous chapter, the test cases should attempt
both positive and negative tests.

First of all, create a user fixture in test/fixtures/users.yml; in this case, create a regular
valid user:

valid_user:
 id: 1
 username: joe
 email: joe@example.com
 hashed_password: 5994471abb01112afcc18159f6cc74b4f511b99806da59b3caf5a9c173cacfc5
 # clear password = 12345
 profile: Just a regular Joe
 created_at: <%= 1.days.ago.to_s(:db) %>

You can now use this user to test for validation, like trying to create another user with a
duplicate username or e-mail address. You will notice that in the fixture, we are using a Rails
view helper to enter the created_at field.

Now create a test to ensure that creating a new user works OK. Edit test/unit/user_test.rb,
and add a test as shown in Listing 3-16.

Listing 3-16. The User Unit Test File

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 fixtures :users

 def test_create_valid_user
 user = User.new(:username => 'fred', :email => 'fred@example.com',
 :password => 'abc123', :password_confirmation => 'abc123',
 :profile => 'A regular guy')
 assert user.save
 end
end

Bradburne_8415C03.fm Page 67 Thursday, April 26, 2007 5:23 AM

mailto:joe@example.com
mailto:fred@example.com

68 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

Before we run this test, we have to bring the test database schema up to date. Enter the
rake command:

$ rake db:test:prepare

Now try running this test from the command prompt with the following command:

$ ruby test/unit/user_test.rb

Loaded suite test/unit/user_test
Started
.
Finished in 0.188329 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

You can also use the rake helper tasks to either run all of your unit tests or just the tests that
you have recently updated; or if you are using Subversion as a version repository, you can test
any changes you have made since you last checked in your code. To see all of the available rake
test helpers, type rake -T.

Now try adding a test to attempt creating a user with the same username as the user
fixture:

def test_invalid_duplicate_username
 user = User.new(:username => 'joe', :email => 'fred@example.com',
 :password => 'abc123', :password_confirmation => 'abc123',
 :profile => 'A regular guy')
 assert !user.save
end

When you try running this test, it should fail, since the validations in your model prevent
duplicate users. We could expand these unit tests to ensure that the other validations are working
as expected, such as attempting to create a user with a duplicate e-mail address, an empty e-mail
field, incorrect password confirmation, and so on.

Functional Testing
So far, we have added only unit tests. These tests prove that the model is working as expected,
but they don’t test the actual usage of the web site. To test that the site works as you expect,
you need to add functional tests. Functional tests allow you to test the actions of a particular
controller and ensure that it responds correctly. Functional tests perform actions as if they
came from a user’s interaction with a browser.

Testing users_controller

To test the login system’s functionality, you need to add tests to the test/functional/
users_controller_test.rb file.

Bradburne_8415C03.fm Page 68 Thursday, April 26, 2007 5:23 AM

mailto:fred@example.com

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 69

Once you have opened this file, you will notice that a setup method is defined; it is run
before a test is performed and creates an instance of the controller under test, along with
request and response instances. The request and response objects allow Ruby to perform the
tests without actually having to start up a web server or a browser: the request instance acts like
a browser, and the response instance acts as the server.

Add a simple test to check that the signup page is returned correctly, as shown in Listing 3-17.

Listing 3-17. The Users Controller Functional Test File

require File.dirname(__FILE__) + '/../test_helper'
require 'users_controller'

Re-raise errors caught by the controller.
class UsersController; def rescue_action(e) raise e end; end

class UsersControllerTest < Test::Unit::TestCase
 def setup
 @controller = UsersController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_signup_page
 get :new
 assert_response :success
 end
end

This test simulates an HTTP GET of the new action and checks that a page is successfully
returned.

You can now run the users_controller functional tests with the following command:

$ ruby test/functional/users_controller_test.rb

This will produce a normal test output detailing the status of the test result.

Loaded suite test/functional/users_controller_test
Started
.
Finished in 0.24553 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Now you need to add some more functional tests to ensure that the act of creating a user
works as expected. Add the following test:

Bradburne_8415C03.fm Page 69 Thursday, April 26, 2007 5:23 AM

70 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

def test_valid_signup_and_redirect
 post :create, :user => {:username => 'fred',
 :email => 'fred@example.com',
 :password => 'abc123',
 :password_confirmation => 'abc123',
 :profile => 'A regular guy'}
 assert_response :redirect
end

This test posts a new user signup to the create action and checks to make sure that the
response given is an HTTP redirect. In this case, it will redirect the user to the index page. If the
signup had failed with a validation error, the response would have been a success—it would
return a page rather than redirecting the user to the page containing the signup page again and
showing the validation error messages. You can also check the contents of the instance vari-
able created in the action. In this case, you can test the errors related to this object and ensure
that the errors are related to the test being performed.

Now, add the following test:

def test_invalid_signup_dupe_username
 post :create, :user => {:username => 'joe',
 :email => 'fred@example.com',
 :password => 'abc123',
 :password_confirmation => 'abc123',
 :profile => 'A regular guy'}
 assert assigns(:user).errors.on(:username)
 assert_response :success
 assert_template 'users/new'
end

This test will attempt to create another user with a duplicate username as the user fixture.
The first assertion checks the instance variable user to make sure that there is an error raised
on the username attribute.

The assert_response checks that the action returns a page, and the assert_template
checks to make sure that the correct view template is being rendered; in this case, the new user
page is rendered again.

Run the tests again. This time, try running all of the tests you have written so far with the
following command:

$ rake test

All of the tests should pass as expected. You may now wish to add some more tests to check
that other validation errors are caught correctly.

Testing account_controller

When you are happy that the signup procedure is tested thoroughly, you need to test the
account controller to make sure that the login procedures work as expected.

Bradburne_8415C03.fm Page 70 Thursday, April 26, 2007 5:23 AM

mailto:fred@example.com
mailto:fred@example.com

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 71

Edit the test/functional/account_controller_test.rb file, and add the positive test
shown in Listing 3-18.

Listing 3-18. The Account Controller Functional Test File

require File.dirname(__FILE__) + '/../test_helper'
require 'account_controller'

Re-raise errors caught by the controller.
class AccountController; def rescue_action(e) raise e end; end

class AccountControllerTest < Test::Unit::TestCase
 fixtures :users

 def setup
 @controller = AccountController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_valid_login_and_redirect
 post :authenticate, :user => {:username => 'joe', :password => '12345'}
 assert session[:user]
 assert_response :redirect
 end
end

This test will attempt to log in with the user specified in the fixture using the correct user-
name and password. The test then checks to make sure that a session variable is set and that an
HTTP redirect is sent to the user. In this case, the user is redirected to the index page.

Now you should try the following negative test to make sure that attempting to log in with
an incorrect username and password combination will fail:

def test_invalid_login
 post :authenticate, :user => {:username => 'joe', :password => 'abc'}
 assert !session[:user]
 assert_response :redirect
 assert_redirected_to :action => 'login'
 assert flash.has_key?(:error)
end

When this test is executed, the code attempts a login that we know will fail. The test then
checks to make sure that there is no session variable called user set. The response is checked to
make sure that users are redirected and that they are redirected to the correct page.

A test also makes sure that the flash error message is set. If any of these assertions fail, the
test will fail.

Bradburne_8415C03.fm Page 71 Thursday, April 26, 2007 5:23 AM

72 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

You should also check that when a user logs out, their session is destroyed correctly. A
test_logout method could be written like this:

def test_logout
 post :authenticate, :user => {:username => 'joe', :password => '12345'}
 assert session[:user]
 post :logout
 assert !session[:user]
 assert_response :redirect
end

When the test is executed, this code logs a user in as before and checks to make sure that
the session variable is set. Next, the test attempts to log out by making a POST to the logout
action. If this is successful, the user’s session will be cleared, and the user will be redirected to
the index page. The test checks for this.

Again, you should add as many tests as you can to ensure that all aspects of the controllers
are tested. The more tests that you have, the more confident you can be of your application
being reliable.

Adding Roles
At the moment, all actions are available to all users. Obviously, this is unsuitable for a produc-
tion site. We need to add some permissions to the actions so that only administrators are able
to create and edit pages and view and disable user accounts.

This could be achieved in a number of ways, but the most flexible solution is to add the
concept of roles. By adding user roles such as administrator or moderator, you can allow
particular users access to different controllers or actions on the site. For example, you might
want to allow trusted users to have moderation rights for forums or an editor to be able to
update pages.

Creating the Role Model and Join Table
The first step is to create a Role model:

$ ruby script/generate model Role

Next, edit the migration script, db/migrate/03_create_roles.rb, to create the required
database field for the roles table, as shown in Listing 3-19.

Listing 3-19. The Roles Table Migration File

class CreateRoles < ActiveRecord::Migration
 def self.up
 create_table :roles do |t|
 t.column :name, :string
 end
 Role.create(:name => 'Administrator')
 end

Bradburne_8415C03.fm Page 72 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 73

 def self.down
 drop_table :roles
 end
end

This creates a new database table called roles and an administrator role.
Now the application needs a way to associate the roles with users. There are two ways of

doing this in Rails: has_and_belongs_to_many associations (commonly referred to as HABTM),
or has_many :through associations. HABTM suits our needs best here.

We need to specify that each user can have many different roles and that roles can belong
to many different users, so, in the app/models/user.rb file, add the has_and_belongs_to_many
line as follows:

require 'digest/sha2'
class User < ActiveRecord::Base
 attr_protected :hashed_password, :enabled
 attr_accessor :password
 ...
 has_and_belongs_to_many :roles

 def before_save
 ...

In the app/models/role.rb file, add the reciprocal HABTM statement:

class Role < ActiveRecord::Base
 has_and_belongs_to_many :users
end

Next, we need to create the roles_users join table as discussed in the specification. Create
a new database migration using the following line:

$ ruby script/generate migration CreateRolesUsersJoin

Edit the migration file db/migrate/04_create_roles_users_join.rb, and enter the code
shown in Listing 3-20.

Listing 3-20. The roles_users Table Migration File

class CreateRolesUsersJoin < ActiveRecord::Migration
 def self.up
 create_table :roles_users, :id => false do |t|
 t.column :role_id, :integer, :null => false
 t.column :user_id, :integer, :null => false
 end

Bradburne_8415C03.fm Page 73 Thursday, April 26, 2007 5:23 AM

74 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

 admin_user = User.create(:username => 'Admin',
 :email => 'admin@railscoders.net',
 :profile => 'Site Administrator',
 :password => 'admin', :password_confirmation => 'admin')
 admin_role = Role.find_by_name('Administrator')
 admin_user.roles << admin_role
 end

 def self.down
 drop_table :roles_users
 User.find_by_username('Admin').destroy
 end
end

This creates a simple database join table called roles_users. Because you have already
specified that the two models are related with the HABTM statements, Rails will automatically
use a table named after the two models.

The migration also creates a new user called Admin. The administrator role that was created
by the previous migration is then assigned to the new Admin user.

We have also added a statement to the self.down method of the migration file. The down
method is executed whenever the database is migrated to an earlier version of the schema.
This method has to reverse any actions that have been taken in the up method. Since we have
created a user called “Admin” as part of the up method, we need to make sure that we destroy
this user if the down method is executed.

Now, run the migrations using rake db:migrate, and check your database to ensure that
the new user is created and that a new record is created in the roles_users table.

Checking a User’s Roles
Now that the application has more than one type of user, the application needs a way to check the
roles of a user, and we need a way to specify which actions are to be restricted to administrators.

Add the following simple method to the User class in the app/models/user.rb model file:

def has_role?(rolename)
 self.roles.find_by_name(rolename) ? true : false
end

This method gives us an easy way of checking if a user object instance has a particular role
or not. Check if a user has been given the administrator role with
user.has_role?('Administrator').

Now we need to use this to develop a way to add checks for specific actions. The Rails
before_filter statement easily allows you to run a method either before all actions in a controller
or specific actions. First, add the following methods to the LoginSystem module defined in the
lib/login_system.rb file:

Bradburne_8415C03.fm Page 74 Thursday, April 26, 2007 5:23 AM

mailto:admin@railscoders.net

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 75

def check_role(role)
 unless is_logged_in? && @logged_in_user.has_role?(role)
 flash[:error] = "You do not have the permission to do that."
 redirect_to :controller => 'account', :action => 'login'
 end
end

def check_administrator_role
 check_role('Administrator')
end

Now edit the app/controllers/users_controller.rb file by adding the before_filter at
the top of the class:

class UsersController < ApplicationController
 before_filter :check_administrator_role,
 :only => [:index, :destroy, :enable]
 ...

If one of the specified actions is requested, the check_administrator_role method will be
called. If this returns false, a flash message is set; the user is redirected to the login page; and
execution of the rest of the code is halted.

We should add this check to the pages controller from the previous chapter, so that users
without the administration role cannot create and edit pages in the content management
system. Open app/controllers/pages_controller.rb, and add the following check:

class PagesController < ApplicationController
 before_filter :check_administrator_role, :except => :show
 ...

Notice that this time we are specifying the actions to leave unprotected using :except. If
you don’t specify any actions, all actions in this controller will be protected.

It would also be useful to be able to protect certain actions from users who are not logged
in and redirect them to the login page with a message asking them to log in.

To allow us to check for this, add the following method to the lib/login_system.rb file:

def login_required
 unless is_logged_in?
 flash[:error] = "You must be logged in to do that."
 redirect_to :controller => 'account', :action => 'login'
 end
end

We can now use this by adding the appropriate before_filter to app/controllers/
users_controller.rb as follows:

Bradburne_8415C03.fm Page 75 Thursday, April 26, 2007 5:23 AM

mailto:@logged_in_user.has_role?

76 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

class UsersController < ApplicationController
 before_filter :check_administrator_role,
 :only => [:index, :destroy, :enable_toggle]
 before_filter :login_required, :only => [:edit, :update]

 def index
 ...

Now try going to a protected page such as http://localhost:3000/users/1;edit while
logged out. You will be redirected to the login page and shown a message asking you to log in.

Administering Roles
Now that users can have different roles, the application needs a way of administering these
roles and allowing an administrator to assign or revoke roles from users.

As we defined in the specification, we will build a controller called roles_controller that
is a nested resource—the roles controller can only be accessed with a specified user ID.

To configure this nested resource mapping, edit your config/routes.rb file as follows:

map.resources :users, :member => { :enable => :put } do |users|
 users.resources :roles
end

You can now access the roles resource using the URL /users/<user_id>/roles. We now
need to create a new controller called app/controllers/roles_controller.rb. Create this file,
and enter the code in Listing 3-21 to this file.

Listing 3-21. The Roles Controller File

class RolesController < ApplicationController
 before_filter :check_administrator_role

 def index
 @user = User.find(params[:user_id])
 @all_roles = Role.find(:all)
 end

 def update
 @user = User.find(params[:user_id])
 @role = Role.find(params[:id])
 unless @user.has_role?(@role.name)
 @user.roles << @role
 end
 redirect_to :action => 'index'
 end

Bradburne_8415C03.fm Page 76 Thursday, April 26, 2007 5:23 AM

http://localhost:3000/users/1
mailto:@user.has_role?(@role.name
mailto:@user.roles

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 77

 def destroy
 @user = User.find(params[:user_id])
 @role = Role.find(params[:id])
 if @user.has_role?(@role.name)
 @user.roles.delete(@role)
 end
 redirect_to :action => 'index'
 end
end

When accessed, because of the nested route mapping, the URL parameters will contain a
user_id parameter. This parameter can now be used to create or destroy roles for this user.
The index view will list of the assigned and available roles. You first need to create the views
directory for this controller: app/views/roles. Then create the file app/views/roles/index.rhtml,
and edit it as shown in Listing 3-22.

Listing 3-22. The Roles Index View

<h1>Roles for <%= @user.username %></h1>

<h2>Roles assigned:</h2>
<%= render :partial => 'role', :collection => @user.roles %>

<h2>Roles available:</h2>
<%= render :partial => 'role', :collection => (@all_roles - @user.roles) %>

You will see that this creates two lists, one showing the roles that this user has been assigned
and another showing the possible roles that could be assigned to this user. You now need to
create the partial view for the role, app/views/roles/_role.rhtml:

 <%= role.name %>
 [<% if @user.has_role?(role.name) %>
 <%= link_to 'remove role',
 role_url(:id => role.id, :user_id => @user.id),
 :method => :delete %>
 <% else %>
 <%= link_to 'assign role',
 role_url(:id => role.id, :user_id => @user.id),
 :method => :put %>
 <% end %>]

This uses the has_role? method of the User model to check if the user already has the role,
in which case it shows a remove role link; if not, it shows an add role link.

Because the controller is a REST resource, you do not have to link to the actual methods;
instead, you use the HTTP DELETE or PUT method to route to the correct request. The DELETE
method will remove the role from the specified use; the PUT method will call the update action
and add the role to the user.

Bradburne_8415C03.fm Page 77 Thursday, April 26, 2007 5:23 AM

mailto:@user.has_role?(@role.name
mailto:@user.roles.delete(@role
mailto:@user.username
mailto:@user.roles
mailto:@user.roles
mailto:@user.has_role?
mailto:@user.id
mailto:@user.id

78 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

When the roles are changed for the user, that user is redirected to the list of all roles, which
shows the newly updated info.

Since there is currently only one role in the system, there will only be the one role available
to assign or revoke. It is also now possible to remove the administrator role from the Admin
user. You could add a test to make sure that it is not possible to remove the administration
rights of all of the administrators by checking the number of users using
Role.find_by_name('Administrator').users.count. If this is equal to 1, you could prevent the
delete action from continuing.

To make life easier for the administrator, you should add a link to the roles manager in the
user partial file for the index page, app/views/users/_user.rhtml, by adding an extra column to
the table:

<tr class="<%= cycle('odd', 'even') %>">
 <td><%= user.username %></td>
 ...
 <% end %>
 </td>
 <td>[<%= link_to 'edit permissions', roles_url(user) %>]</td>
</tr>

We also need to modify the sidebar menu to move the Administer Users link so that it is
only shown for the administrator user.

Open the sidebar partial file, app/views/layouts/_menu.rhtml, create a new section that is
only shown for the Admin user, and move the Edit Pages and Administer Users links to this
section, as shown in Listing 3-23.

Listing 3-23. The Updated Sidebar Menu Partial File

 <%= link_to 'Home', index_url %>
 <hr size="1" width="90%" align="left"/>

 <% if is_logged_in? %>
 Logged in as: <i><%= logged_in_user.username %></i>
 <%= link_to 'My Profile', edit_user_path(logged_in_user) %>
 <%= link_to 'Logout', {:controller => 'account', :action => 'logout'},
 :method => :post %>
 <% else %>
 <%= link_to 'Signup', :controller => 'users', :action => 'new' %>
 <%= link_to 'Login', :controller => 'account', :action => 'login' %>
 <% end %>

 <% if logged_in_user and logged_in_user.has_role?('administrator') %>
 <hr size="1" width="90%" align="left"/>
 Admin Options
 <%= link_to 'Administer Users', users_path %>
 <%= link_to 'Edit Pages', pages_path %>
 <% end %>

Bradburne_8415C03.fm Page 78 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 79

Try using this in your browser. Open your browser to the application’s home page, and log
in as the Admin user. The sidebar will now show two administrator only options, Administer
Users and Edit Pages. Click on the Administer Users link, and click the Edit Permissions link of
a user other than the Admin user.

As shown in Figure 3-5, this will show the only currently available role, Administrator, as
being available but not assigned to this user. You can click the Assign Role link to make this
user an administrator of the site.

We will be adding more roles to the site in Chapters 4 and 5.

Figure 3-5. Assigning Roles to a User

Testing the Roles Functionality
As usual, you should spend some time planning the test cases to make sure that the roles func-
tionality works as planned.

Before we write the tests, make sure that the test database, railscoders_test, is updated
with the latest schema. Do this with the following command:

$ rake db:test:prepare

Previously, we used functional tests to test the individual actions in the controllers. However,
now we want to test actions across multiple controllers. To do this, Rails has another type of
testing baked right in called integration testing. This allows you to build stories that describe a
series of actions that might be performed by a typical user.

Integration tests are created in the test/integration directory. Create a new integration
test file called test/integration/login_stories_test.rb, and enter the code in Listing 3-24.

Bradburne_8415C03.fm Page 79 Thursday, April 26, 2007 5:23 AM

80 CH AP T E R 3 ■ AD D IN G U SE R S A N D G R O U P S

Listing 3-24. The Login Stories Integration Test File

require "#{File.dirname(__FILE__)}/../test_helper"

class LoginStoriesTest < ActionController::IntegrationTest
 fixtures :users, :pages

 def test_valid_login
 get edit_user_url(1)
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template 'account/login'

 go_to_login

 login :user => {:username => 'joe', :password => '12345'}

 get edit_user_url(1)
 assert_response :success
 assert_template 'users/edit'
 end

 private

 def go_to_login
 get 'account/login'
 assert_response :success
 assert_template 'account/login'
 end

 def login(options)
 post 'account/authenticate', options
 assert_response :redirect
 end
end

Here, we have defined a simple DSL for logging into the system. The go_to_login and
login methods can be reused throughout this integration test.

In this simple integration test, an attempt is made to get the edit user page, a page that
cannot be viewed by a logged-out user. A check is made to ensure that the user is redirected to
the login page. Then the user is logged into the site, and another attempt is made to get the edit
user page. Since a user is now logged in, the page is successfully returned.

You can build any number of integration tests to test typical user actions through your site.
Integration tests specifically test the flow of control throughout the site, ensuring that your
controllers interact correctly.

Bradburne_8415C03.fm Page 80 Thursday, April 26, 2007 5:23 AM

C H AP TE R 3 ■ AD D I N G U SE R S AN D G R OU P S 81

You should try adding some more integration tests for other actions. You could check that
only the Admin user has access to the index, disable, and enable user account actions. You
should also test assigning and revoking the administrator role to another user.

Extending the User Management System
This user management system provides the basic features required, but you may wish to develop
the system further.

At the moment, there is no facility to deal with users that have forgotten their passwords.
You could add a feature to allow users to reset their passwords by sending a reset-password
link for their accounts to their registered e-mail addresses.

You may also wish to consider integrating OpenID into the user accounts system, allowing
users to log in with their existing OpenID identity. OpenID is an open, decentralized system
allowing people to sign on to multiple web sites using the same identity. For more information,
go to http://openid.net. If you are interested in it, there is a Rails plug-in that allows you to
easily integrate with OpenID servers. See http://identity.eastmedia.com/identity/show/
Consumer+Plugin for more details.

Summary
In this chapter, we have added a user management system and a role management system. The
user accounts system allows new users to the site to quickly sign up for accounts, while providing
validation checks on the users’ names and e-mail addresses and ensuring that the users enter
known passwords by forcing them to confirm their passwords.

Existing users of the site can now log in and edit their accounts. This allows them to modify
their profile messages and change their passwords. Again, the password change forces the
users to confirm their passwords before saving.

We also developed a role management system that allows you to partition off certain
aspects of the site to users with specific privileges. We created the first role on the site, called
administrator. This superuser has the power to disable and re-enable user accounts and to
assign or revoke roles for users. As we add other roles to the system, such as moderator privileges,
role management will become more important.

In the next chapter, you will add another role to the system as well as content creators and
editors to contribute and maintain news stories.

Bradburne_8415C03.fm Page 81 Thursday, April 26, 2007 5:23 AM

http://openid.net
http://identity.eastmedia.com/identity/show

Bradburne_8415C03.fm Page 82 Thursday, April 26, 2007 5:23 AM

83

■ ■ ■

C H A P T E R 4

Building a News Blog with
RSS Feeds and an API

In Chapter 2, we set up a system to allow an administrator to edit single pages. While this is
helpful and allows you to set up the basic pages of a site, it would be much more interesting to
have up-to-date news items showing on the front page, along with an archive of the news articles.
Of course, it is up to you to actually add the news items, but doing so will help keep the site fresh.

In this chapter, we will examine how we can build a rolling news list to be shown as the
site’s front page. This will be extended to provide RSS and Atom feeds of the news, along with
providing an API to the news feature. The RSS and Atom feeds will allow users to subscribe to
the news feed with an RSS newsreader and be automatically notified when a new article is posted.

Specifying the Feature Requirements
As always, the first step is understanding the feature, specifically what you require the feature
to do, what the interfaces to the feature will be, and how the design should be implemented.

The basic functionality of the News module will be to allow administrator users or editors
to create news stories to be shown on the site. They can then be checked and edited by other
Admin users or editors before going live on the site.

I also want to allow the editors to be able to add markup without having to write HTML in
the articles. This could be done using a WYSIWYG editor, but I want to use a textual markup
system called Textile.

A category can be set for each article. These categories can be created and maintained
through a web interface. This will be useful to allow you to separate articles about new features,
events, downtime or maintenance issues, or just general news about what’s going on at your site.

A new role will be created to allow creation and editing of articles. This will allow the site
administrator to give permission to certain users to create and edit articles without giving them
access to editing other parts of the site.

Textile Markup
Textile is a lightweight markup language originally developed by Dean Allen. It is billed as a
“humane web text generator,” meaning that rather than having to mark up your documents in
HTML tags, with Textile you can use simple text shorthand to change and add styles, create lists
and tables, insert links, and automatically convert special characters to HTML-safe entities.

Bradburne_8415C04.fm Page 83 Thursday, April 26, 2007 5:28 AM

84 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

For example, to add the HTML class to a word or phrase, simply surround it with
asterisks *like so*. To underline a word, use the underscore character. For a full list of the syntax
along with examples, see http://hobix.com/textile/.

The Ruby port of Textile is called RedCloth and is easily installed as a Ruby gem.
To display the rendered XHTML on a page instead of the Textile version, you simply use

the helper method called textilize in your views.
A similar markup system called Markdown is also implemented by the RedCloth gem. You

can find out more about Markdown at http://daringfireball.net/projects/markdown/.

The Article Model
The individual news articles will use a model called Article. The necessary fields to implement
its functionality are shown in Table 4-1.

Since we want to record which user created the article by storing the user’s id, the User
model needs to be updated to specify that each user can have many articles.

Table 4-1. The Database Fields Required for the Articles Model

Field Name Field Type Description

id integer The primary key.

user_id integer The id of the user who created the article. This will link the
article to the User model.

title string The title of the article.

synopsis text A short synopsis of the article that will be shown in a list
of articles. This should not be too long but will probably
be longer than 255 characters, so a text field type with
maximum length of 1,000 characters should be used.

body text The text of the article itself. Articles may be very long, so if
a maximum article length is defined, it should be high. I will
use a maximum length of 20,000 characters.

published boolean Articles can be saved and edited before being published on
the site, so this states whether or not the article is published.
This will default to false.

created_at datetime The date and time the article was created.

updated_at datetime The date and time that the article was last updated.

published_at datetime The date and time that the article was published. Since it is
possible to create an article as a draft and then publish it
later, the creation date might not be the same time as the
article’s publication date. Therefore, this field will be updated
whenever the article is saved and the published field is set
to true.

category_id integer This specifies a category for this article. This will link to the
Category model, which is described in the next section.

Bradburne_8415C04.fm Page 84 Thursday, April 26, 2007 5:28 AM

http://hobix.com/textile
http://daringfireball.net/projects/markdown

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 85

Defining the Category Model
Each article can belong to only one category. To do this, there needs to be a model for the
categories.

The Category model consists of the fields specified in Table 4-2.

In this case, each story can belong to only one category, so a one-to-many relationship
needs to be defined—each category can have many articles. In order to store this relationship,
you need to ensure that a category_id field is part of the Article database table and that a
belongs_to relationship is set in the Article model. Figure 4-1 shows the relationships among
the article, category, and user models.

Figure 4-1. Entity relationship diagram for the Article and Category models

The Editor Role
Since the task of writing and editing news articles may be done by a user who does not need to
have full administrator privileges, we should create a new role called “editor.” A user will need
to have this permission in order to create new or edit existing articles on the site.

This will involve creating a new permission in the database and adding methods to check
that the currently logged-in user has the editor role as one of their permissions.

Table 4-2. The Database Fields Required for the Category Model

Field Name Field Type Description

id integer The primary key

name string The name of the category, which should have a limit of
80 characters

Bradburne_8415C04.fm Page 85 Thursday, April 26, 2007 5:28 AM

86 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

The Articles Controller
This controller will provide the normal REST create, read, update, and delete (CRUD) actions.
The new, create, edit, update, and destroy actions are needed for the user who has the editor
permission.

Since articles can belong to a category, the code should be designed to allow browsing of
articles that are in a specific category. Since the articles are effectively children of a category,
they should be accessible by URLs such as /categories/2/articles, which returns all of the
articles with category ID 2.

We should also add a simple index view for the editors that shows a full list of all articles,
published and draft. It should also show links for an editor to quickly add a new article or edit
an existing one.

The Categories Controller
The categories controller will provide the usual CRUD actions for the Category model, allowing
a user with the relevant permissions to add or edit categories. If an editor user tries to delete a
category that has articles, the application should delete the category and reset the category_id
of any related articles to null rather than deleting them. You might wish to change this behavior
so that the delete fails and the user is informed that the category cannot be deleted until all of
the articles in that category are changed to a different category.

If a user invokes the index action of the categories controller, a list of all categories together
with the number of articles in each category is shown. Clicking a category will take the user to
the list of articles within that category. Therefore, the show action of the categories controller
simply redirects to the index action of the articles controller with the category’s id as a parameter.

In addition to the regular CRUD actions, we need to create a new action that allows an
editor user to view the categories together with links to create, edit, and delete categories. To
do this, we will define an extra collection method in the resource mapping of the category resource.

Installing the RedCloth Gem
Before we can use the Textile markup system from within Rails, we need to install the
RedCloth gem.

■Note If you are using Locomotive with OS X, this gem is already installed, so you can skip this section.
Don’t worry though; attempting to reinstall it will not cause any problems.

To install RedCloth, open a command window, and enter the following command:

$ gem install redcloth

To check that the gem is installed, you can list the details of an installed gem on your
system using the following command:

$ gem list redcloth

Bradburne_8415C04.fm Page 86 Thursday, April 26, 2007 5:28 AM

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 87

*** LOCAL GEMS ***

RedCloth (3.0.3)
 RedCloth is a module for using Textile and Markdown in Ruby. Textile
 and Markdown are text formats. A very simple text format. Another
 stab at making readable text that can be converted to HTML.

You can list all gems installed on your machine using the following command:

$ gem list

Creating the Article and Category Models
Now that we know the requirements and what needs to be developed, we can start developing
the code. Both the Article and Category models are very straightforward.

Writing the Database Migrations
First of all, create the Article model using the script/generate tool:

$ ruby script/generate model Article

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/article.rb
 create test/unit/article_test.rb
 create test/fixtures/articles.yml
 exists db/migrate
 create db/migrate/005_create_articles.rb

Within the migration script db/migrate/005_create_articles.rb, edit the self.up method
as follows:

def self.up
 create_table :articles do |t|
 t.column :user_id, :integer
 t.column :title, :string
 t.column :synopsis, :text, :limit => 1000
 t.column :body, :text, :limit => 20000
 t.column :published, :boolean, :default => false
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :published_at, :datetime
 t.column :category_id, :integer
 end
end

Bradburne_8415C04.fm Page 87 Thursday, April 26, 2007 5:28 AM

88 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

There should not be any surprises here. Now, you should create the Category model:

$ ruby script/generate model Category

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/category.rb
 create test/unit/category_test.rb
 create test/fixtures/categories.yml
 exists db/migrate
 create db/migrate/006_create_categories.rb

Edit the self.up and self.down methods of the migration script, db/migrate/
006_create_categories.rb, to add the necessary fields and a default category for new articles:

def self.up
 create_table :categories do |t|
 t.column :name, :string
 end
 news_category = Category.create(:name => 'Site News')
 change_column :articles, :category_id, :integer, :default => news_category
end

def self.down
 change_column :articles, :category_id, :integer, :default => 0
 drop_table :categories
end

The default category is set by changing the table created in the create_articles migration
using the change_column transformation. If the database is rolled back and the down method is
executed, this column is reset so that it does not reference a nonexistent category.

Defining the Relationships Among Models
Now, you need to define the relationships among the users, articles, and categories. As specified
earlier, each article belongs to a user (the user who created it), and consequently, each user can
have many articles. Edit the app/models/user.rb file by adding the following relationship
inside the User class:

has_many :articles

In the app/models/article.rb file, add the reciprocal relationships inside the Article
class:

belongs_to :user

Now you can simply refer to the articles belonging to a user with user.articles and,
conversely, refer to the author of an article using article.user.

Bradburne_8415C04.fm Page 88 Thursday, April 26, 2007 5:28 AM

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 89

You need to do the same with the article-category relationship. Still editing the app/models/
article.rb file, add the following relationship statement:

belongs_to :category

Finally, add the following relationship to the app/models/category.rb file:

has_many :articles

Defining the Validations
Now is a good time to add the basic validations to your models. Go back to the app/models/
article.rb file, and add the following validations to match the specification described earlier
in this chapter:

validates_presence_of :title
validates_presence_of :synopsis
validates_presence_of :body
validates_presence_of :title
validates_length_of :title, :maximum => 255
validates_length_of :synopsis, :maximum => 1000
validates_length_of :body, :maximum => 20000

Add the following validation to the app/models/category.rb model file:

validates_length_of :name, :maximum => 80

As you saw earlier with the validations for the Page and User models, these validations will
be performed whenever an attempt is made to save the model.

Automatically Nullifying category_id on Deletion
Our specification states that if a category is deleted, any articles that are assigned to that cate-
gory need to have their category_id reset to null. Rails provides a very easy way of doing this.
In the model definition, when a has_many relationship is defined, you can instruct Rails what to
do to dependent records on a deletion.

We can either delete or nullify dependent records. Since we want to set any dependent
articles to have a null category, we use the nullify option. Edit the app/models/category.rb
model file again to change the has_many :articles line to the following:

has_many :articles, :dependent => :nullify

If you wanted Rails to automatically delete the articles if a category is deleted, you would
use :dependent => :destroy instead.

Automatically Updating the published_at Field
In the Article model, the published_at field is used to record the time and date that the article
was actually published to the site rather than the time that it was created. This is important
because the news blog is shown in reverse chronological order—if the blog was ordered using

Bradburne_8415C04.fm Page 89 Thursday, April 26, 2007 5:28 AM

90 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

the created_at field, a news item written as a draft and published later would be shown before
a newly created news item that was published immediately.

We will use a before_save callback to ensure that the published_at field is updated auto-
matically whenever the article is saved and that the published attribute is set to true.

Add this callback to the app/models/article.rb file:

before_save :update_published_at

def update_published_at
 self.published_at = Time.now if published == true
end

Adding the Editor Role
Before we work on the controllers, we should create a migration to add the new editor role to
the database. We do not need to alter the structure of the database, but we can use a migration
to add a new field to the Roles table.

Create a new migration file using the generate script:

$ ruby script/generate migration AddEditorRole

 exists db/migrate
 create db/migrate/007_add_editor_role.rb

Open the generated migration script, and edit the self.up method to create the field and
the self.down method to remove it. Making sure that the self.down method returns the data-
base to the same state as before the migration ensures that you can always roll back the database.
As part of the migration, we should also add the editor role to our existing Admin user.

Edit the file as show in Listing 4-1.

Listing 4-1. Migration to Add the Editor Role

class AddEditorRole < ActiveRecord::Migration
 def self.up
 editor_role = Role.create(:name => 'Editor')
 admin_user = User.find_by_username('Admin')
 admin_user.roles << editor_role
 end

 def self.down
 editor_role = Role.find_by_name('Editor')
 admin_user = User.find_by_username('Admin')
 admin_user.roles.delete(editor_role)
 editor_role.destroy
 end
end

Bradburne_8415C04.fm Page 90 Thursday, April 26, 2007 5:28 AM

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 91

Go ahead and run the rake migration task to create the article and category tables, and add
the new editor role.

$ rake db:migrate

== CreateArticles: migrating ==
-- create_table(:articles)
 -> 0.1043s
== CreateArticles: migrated (0.1083s) ===

== CreateCategories: migrating ==
-- create_table(:categories)
 -> 0.0066s
== CreateCategories: migrated (0.0118s) =======================================

== AddEditorRole: migrating ===
== AddEditorRole: migrated (0.1621s) ==

You should take a look at the contents of your database using either MySQL’s command
line or a graphical interface. You will notice that, along with the new tables, the editor role has
been added to the Admin user in the roles_users table.

Now that the models are finished, we need to add the controllers.

Creating the Articles Controller and Views
We can now create the article and category controllers along with the relevant views. We also
need to add the mapping of the routes to the controllers, since they are implementing a REST
resource.

Mapping the REST Resources
Before we write the code for the controllers and design the views, we should add the mapping
to the routes. This will allow us to easily access the controllers as REST resources.

Edit the config/routes.rb file, adding the following mappings:

map.resources :articles, :collection => {:admin => :get}

map.resources :categories, :collection => {:admin => :get} do |categories|
 categories.resources :articles, :name_prefix => 'category_'
end

This provides two ways of accessing the articles, either by the /articles URL or by speci-
fying a specific category, such as /categories/1/articles. To stop the two named routes from
clashing, I have specified a different name prefix for the articles when referenced with a cate-
gory. By adding the name prefix of category_ in the controllers and views, the route shortcuts
in Table 4-3 become available.

Bradburne_8415C04.fm Page 91 Thursday, April 26, 2007 5:28 AM

92 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

You will notice that an extra method called admin is defined in the resource mapping
of the categories and articles resources. This is defined with the parameter :collection =>
{:admin => :get}. This specifies that this is a method that applies to a collection of categories
(in the same way as the index action) as opposed to a member (as in the case of the show or edit
actions). It also specifies that the admin action responds to an HTTP GET request. This will auto-
matically add the shortcut admin_categories_path to the list of available shortcuts for the
categories resource and admin_articles_path for the articles resource. These can be accessed
directly with the URLs /categories;admin and /articles;admin.

The Articles Controller
Create the articles controller using the Rails generate command:

$ ruby script/generate controller Articles index show new create edit update ➥

destroy admin

 exists app/controllers/
 exists app/helpers/
 create app/views/articles
 exists test/functional/
 create app/controllers/articles_controller.rb
 create test/functional/articles_controller_test.rb
 create app/helpers/articles_helper.rb
 create app/views/articles/index.rhtml
 create app/views/articles/show.rhtml
 create app/views/articles/new.rhtml
 create app/views/articles/create.rhtml
 create app/views/articles/edit.rhtml
 create app/views/articles/update.rhtml
 create app/views/articles/destroy.rhtml
 create app/views/articles/admin.rhtml

The articles controller will follow the same pattern as our pages and users controllers but
with some enhancements.

Table 4-3. REST Routes Added When a Name Prefix Is Specified

Route Shortcut URL Path

category_articles_path(category_id) /categories/category_id/articles

category_article_path(category_id, article_id) /categories/category_id/articles/
article_id

category_new_article_path(category_id) /categories/category_id/articles/new

category_edit_article_path(category_id, article_id) /categories/category_id/articles/
article_id;edit

Bradburne_8415C04.fm Page 92 Thursday, April 26, 2007 5:28 AM

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 93

Edit the app/controllers/articles_controller.rb file’s index method:

def index
 if params[:category_id]
 @articles_pages, @articles = paginate(:articles,
 :include => :user,
 :order => 'published_at DESC',
 :conditions => "category_id=#{params[:category_id].to_i} AND published=true")
 else
 @articles = Article.find_all_by_published(true)
 @articles_pages, @articles = paginate(:articles,
 :include => :user,
 :order => 'published_at DESC',
 :conditions => "published = true")
 end
 respond_to do |wants|
 wants.html
 wants.xml { render :xml => @articles.to_xml }
 wants.rss { render :action => 'rss.rxml', :layout => false }
 wants.atom { render :action => 'atom.rxml', :layout => false }
 end
end

Pagination

The first thing to notice is that rather than using a regular find to get a collection of articles, this
method uses the paginate helper. The paginate helper allows you to easily paginate a large number
of items, automatically creating page links and returning information such as the total number of
items and number of pages of items.

The paginator in the index action returns just the articles that have the published attribute
set to true. The paginator is instructed to order them by the published_at date and will supply
the default ten items per page. This can be overridden if you wish by changing the parameters
of the paginate commands. By specifying a :limit parameter you can change the number of
items shown on a page.

The helper returns the specified collection of articles, along with an instance of the
Paginator class. From this class instance, you can retrieve information about the current page
and the size of the pagination collection. This will be used to create the links to the other pages
of the collection.

The paginate method also specifies an :include parameter of :user. This instructs
ActiveRecord to automatically retrieve any User models that are referenced by the Article
objects found. It does this by constructing a SQL statement joining the tables and performs just
one SQL query to retrieve both tables. If the :include parameter were not used, the database
would have to be queried whenever the code tries to reference the user specified in an Article
instance. If you have a number of different users who have created articles, this would result in
a number of database queries rather than just one, as when :include is used. Since we know
that whenever we display an article the user’s name will be shown, it makes sense to include
this now.

Bradburne_8415C04.fm Page 93 Thursday, April 26, 2007 5:28 AM

mailto:@articles.to_xml

94 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

Returning XML Data

The index method uses the Rails REST web service support to automatically return XML data
if the client requests XML rather than HTML. The request for XML can be specified either by
the client’s HTTP Accept header or by simply adding .xml to the end of the URL. In this case,
http://localhost:3000/articles.xml would return the list of articles in XML rather than rendering
the HTML layout.

This provides the beginnings of an API with very little work. Adding this API support to
all of our methods means that our site becomes truly open and that it can interface with and
respond to other applications or web sites. You can write desktop or web applications that can
easily interface with the site, and other Rails sites can simply use Rail’s ActiveResource module
to access the site without any extra coding at all.

RSS and Atom Feeds

Along with providing XML output, the index method also responds to requests for RSS or Atom
results. However, the XML for these formats is not already defined in Rails, so we need to specify it
in an .rxml file. RXML files are similar to the RHTML files that make up all of the other view
files, except they define an XML structure instead of HTML.

To make it easier to produce XML documents, Rails employs a Ruby library called Builder.
This library provides a simple way of creating valid XML files using just Ruby code without
having to check that all of your XML is valid and formed correctly. Also, it is a lot easier to read
an RXML file than an ERb file of XML markup and embedded Ruby code.

To build the RSS feed, create an RXML file, app/views/articles/rss.rxml, and add the
code in Listing 4-2.

Listing 4-2. The rss.rxml File, Specifying an RSS Feed of Articles

xml.instruct!

xml.rss "version" => "2.0", "xmlns:dc" => "http://purl.org/dc/elements/1.1/" do
 xml.channel do

 xml.title "News Feed "
 xml.link articles_url
 xml.pubDate CGI.rfc1123_date @articles.first.published_at if @articles.any?
 xml.description "News about the RailsCoders"

 @articles.each do |article|
 xml.item do
 xml.title article.title
 xml.link article_url(article)
 xml.description article.body
 xml.pubDate CGI.rfc1123_date article.published_at
 xml.guid article_url(article)
 xml.author "#{article.user.email} (#{article.user.username})"
 end

Bradburne_8415C04.fm Page 94 Thursday, April 26, 2007 5:28 AM

http://localhost:3000/articles.xml
http://purl.org/dc/elements/1.1
mailto:@articles.first.published_at
mailto:@articles.any?

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 95

 end

 end
end

You will notice that this looks rather less complex than an XML file scattered with Ruby
code to insert the necessary data. The Builder library allows you to simply use Ruby to iterate
through a collection, creating the XML output as we go.

The Ruby CGI library provides a method to format dates to the RFC1123 style expected in
RSS feeds.

Along with an RSS output, we can add the Atom feed output too. Create the file app/views/
atom.rxml, and add the code in Listing 4-3.

Listing 4-3. The atom.rxml File, Specifying an Atom Feed of Articles

xml.instruct!

xml.feed "xmlns" => "http://www.w3.org/2005/Atom" do

 xml.title "RailsCoders News"
 xml.link "rel" => "self", "href" => articles_url
 xml.link "rel" => "alternate", "href" => articles_url
 xml.id articles_url
 if @articles.any?
 xml.updated @articles.first.updated_at.strftime "%Y-%m-%dT%H:%M:%SZ"
 end
 xml.author { xml.name "RailsCoders Site" }

 @articles.each do |article|
 xml.article do
 xml.title article.title
 xml.link "rel" => "alternate", "href" => article_url(article)
 xml.id article_url(article)
 xml.updated article.updated_at.strftime "%Y-%m-%dT%H:%M:%SZ"
 xml.author { xml.name article.user.username }
 xml.summary article.synopsis
 xml.content "type" => "html" do
 xml.text! textilize(article.body)
 end
 end
 end

end

This works in the same way as the RSS feed, except with different formatting. It is up to you
to decide if you want to provide an RSS or Atom feed or both. Most, if not all, newsreaders can
parse both RSS and Atom feeds, so for the remainder of the book I will work only with RSS feeds.
However, if you prefer Atom, you can use that instead.

Bradburne_8415C04.fm Page 95 Thursday, April 26, 2007 5:28 AM

http://www.w3.org/2005/Atom
mailto:@articles.any?
mailto:@articles.first.updated_at.strftime
mailto:@articles.each

96 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

Now that we have an RSS feed for the list of articles, we need to publicize the feed. To do
this, we need to add an extra XHTML tag to the <head> section of our web page, specifying that
there is an alternate version of the page available as an RSS XML feed. Since the feed is available
at exactly the same URL (but accessed by using a different MIME type), this tag would be as follows:

<link href="http://localhost:3000/articles" rel="alternate" title="RSS"
 type="application/rss+xml" />

Rails handily provides a helper function to automatically create this link tag,
auto_discovery_link_tag. By adding this to an ERb file, the relevant link tag is generated.

We only want this tag to be generated for the article’s index view. However, we need to place
this link into the <head> section of the page. If you look back at the application.rhtml layout file,
you will notice that within the <head> section, there is a yield :head statement. This allows us
to insert extra data at this point by specifying the extra data within a content_for :head block
in a view file.

Open the app/views/articles/index.rhtml file. At the top of the file, insert the following code:

<% content_for :head do %>
 <%= auto_discovery_link_tag %>
<% end %>

Now, whenever this page is rendered, the link generated by the auto_discovery_link_tag
helper will be inserted into the <head> tag of the layout template. Try it now—reload the page
http://localhost:3000/articles, and view the source of the page. You will see the extra link
tag at the expected position in the page source. If you are using Firefox or Safari, you will notice
that there is an option for subscribing to or viewing the feed in the browser’s location bar, normally
shown as an orange feed icon or as an RSS icon.

You can use this technique to insert data at other parts of a layout template. You may wish
to add extra sidebar menu options for particular pages, for instance. You may also wish to add
a text or graphic link to the RSS feed to the sidebar too.

The Remaining Article Controller Actions

We should now go back to the app/controllers/articles_controller.rb file and edit the rest
of the methods:

def show
 if is_logged_in? && @logged_in_user.has_role?('Editor')
 @article = Article.find(params[:id])
 else
 @article = Article.find_by_id_and_published(params[:id], true)
 end
 respond_to do |wants|
 wants.html
 wants.xml { render :xml => @article.to_xml }
 end
end

Bradburne_8415C04.fm Page 96 Thursday, April 26, 2007 5:28 AM

http://localhost:3000/articles
http://localhost:3000/articles
mailto:@logged_in_user.has_role?
mailto:@article.to_xml

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 97

def new
 @article = Article.new
end

def create
 @article = Article.create(params[:article])
 @logged_in_user.articles << @article
 respond_to do |wants|
 wants.html { redirect_to admin_articles_url }
 wants.xml { render :xml => @article.to_xml }
 end
end

def edit
 @article = Article.find(params[:id])
end

def update
 @article = Article.find(params[:id])
 @article.update_attributes(params[:article])
 respond_to do |wants|
 wants.html { redirect_to admin_articles_url }
 wants.xml { render :xml => @article.to_xml }
 end
end

def destroy
 @article = Article.find(params[:id])
 @article.destroy
 respond_to do |wants|
 wants.html { redirect_to admin_articles_url }
 wants.xml { render :nothing => true }
 end
end

def admin
 @articles_pages, @articles = paginate(:articles, :order => 'published_at DESC')
end

At the moment, all of the actions are open to any user, logged in or not. To secure them
so that only the editors can perform the create, edit, and destroy actions, we need to add a
before_filter to check for the editor role at the top of the articles_controller.rb file:

class ArticlesController < ApplicationController
 before_filter :check_editor_role, :except => [:index, :show]
 ...

Bradburne_8415C04.fm Page 97 Thursday, April 26, 2007 5:28 AM

mailto:@logged_in_user.articles
mailto:@article.to_xml
mailto:@article.update_attributes
mailto:@article.to_xml
mailto:@article.destroy

98 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

Of course, we now need to write the check_editor_role method inside our lib/
login_system.rb file. It is a good idea to put the method after the check_administrator_role
method to keep the file tidy and easy to maintain:

def check_editor_role
 check_role('Editor')
end

The Article Views
All that’s left for the articles now is to write the views to go along with the action methods. Edit
the file app/views/articles/index.rhtml, replacing the generated view with the ERb in Listing 4-4.

Listing 4-4. View for the Articles Index Action

<% content_for :head do %>
 <%= auto_discovery_link_tag %>
<% end %>

<h2>News Articles</h2>

<% if @articles_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @articles_pages, :params => params %>
 </p>
<% end %>

<% @articles.each do |article| %>
 <div class="article">
 <h3><%= article.title %></h3>
 <% if article.category %>
 <p class="category">
 Category: '<%= link_to article.category.name,
 category_articles_path(article.category) %>'
 </p>
 <% end %>

 <p>
 <%= article.created_at.to_s(:short) %> by <%= article.user.username %>

 <%= article.synopsis %>

 <%= link_to 'Read the full article', article_url(article) %>
 </p>
 </div>
<% end %>

You will notice that this view uses the pagination_links helper method to automatically
display the links to each of the pages of articles, if there is more than one page. Any parameters

Bradburne_8415C04.fm Page 98 Thursday, April 26, 2007 5:28 AM

mailto:@articles_pages.page_count
mailto:@articles.each

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 99

that are currently set are passed on to the pagination links, allowing you to add, filter, or sort
parameters in the view later.

There is also a link to view each article in full, which is a link to the article’s controller show
action.

If a category is set, a link to the articles of that category is shown along with each article title.

The Show Article View

Now we can write the show article view. Edit app/views/articles/show.rhtml to display the full
article by adding the view code in Listing 4-5.

Listing 4-5. The Show Article View

<h2><%= @article.title %></h2>

<% if @article.category %>
 <p class="category">
 Category: '<%= link_to @article.category.name,
 category_articles_path(@article.category) %>'
 </p>
<% end %>

<p>
 <%= @article.created_at.to_s(:short) %>

 <%= textilize(@article.body) %>

</p>
<p><%= link_to 'Back to article list', articles_url %></p>

This will also display the category and a link to the list of articles for that category if one is
set for this article.

The New Article View

Now add the form to create a new article in app/views/articles/new.rhtml. Edit this file by
adding the view code in Listing 4-6.

Listing 4-6. The New Article View

<h2>Create Article</h2>
<% form_for :article,
 :url => articles_url,
 :html => { :method => :post } do |f| -%>
 <p>Title:
<%= f.text_field :title, :size => 60 %></p>
 <p>Synopsis:
<%= f.text_area :synopsis, :rows => 4, :cols => 60 %></p>
 <p>Body:
<%= f.text_area :body, :rows => 20, :cols => 60 %></p>
 <p>Category:

 <%= f.collection_select :category_id, Category.find(:all), :id, :name %></p>
 <p>Published? <%= f.check_box :published %></p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', articles_url %>
<% end -%>

Bradburne_8415C04.fm Page 99 Thursday, April 26, 2007 5:28 AM

mailto:@article.title
mailto:@article.category
mailto:@article.category.name
mailto:path(@article.category
mailto:@article.created_at.to_s(:short
mailto:textilize(@article.body

100 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

The Edit Article View

The form to edit an article is very similar, except it is submitted to a different URL using HTTP
PUT rather than POST. Add the code in Listing 4-7 to app/views/articles/edit.rhtml.

Listing 4-7. The Edit Article View

<h2>Edit Article</h2>
<% form_for :article,
 :url => article_url(@article),
 :html => { :method => :put } do |f| -%>
 <p>Title:
<%= f.text_field :title, :size => 60 %></p>
 <p>Synopsis:
<%= f.text_area :synopsis, :rows => 4, :cols => 60 %></p>
 <p>Body:
<%= f.text_area :body, :rows => 20, :cols => 60 %></p>
 <p>Category:

 <%= f.collection_select :category_id,
 Category.find(:all), :id, :name, :include_blank => true %></p>
 <p>Published? <%= f.check_box :published %></p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', articles_url %>
<% end -%>

Note that this form has to specify that it sends its information using the HTTP PUT method
to ensure that the update action will process it.

The helper collection_select is used to automatically create a drop-down select box from
a list of categories. Since it is possible for an article to have a null category_id, the option
:include_blank is set to true to instruct collection_select to include a blank option in the list.

The Articles Admin View

The admin view for the articles is similar to the index view, except that it includes a link to the
Article resource create action.

Listing 4-8. The Articles Admin View

<h2>Edit Articles</h2>

<p><%= link_to 'Create New Article', new_article_path %></p>

<% if @articles_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @articles_pages, :params => params %>
 </p>
<% end %>

Bradburne_8415C04.fm Page 100 Thursday, April 26, 2007 5:28 AM

mailto:@articles_pages.page_count

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 101

<% @articles.each do |article| %>

 <%= link_to article.title, article_url(article) %>
 [<%= link_to 'Edit', edit_article_path(article) %>]
 [<%= link_to 'Delete', article_path(article), :method => :delete,
 :confirm => 'Are you sure you wish to delete this article?' %>]

<% end %>

Using the Articles Feature
You can now start the Rails server and try creating, viewing, and editing a few articles. Since
this can be performed only by a user with the editor role, you should make sure that you log in
as the Admin user.

To create a new article, go to http://localhost:3000/articles/new, and enter some data.
Try entering text marked up with Textile in the body of the article. Make sure you click the
“published” check box to ensure that the article is viewable.

View the complete list of articles at http://localhost:3000/articles. If you create more
than twenty articles, the pagination links will be shown.

Testing the XML API
You should now try requesting XML output for the actions that support it. As I mentioned
earlier, you can do this either by appending .xml to the URL or by specifying that you require
XML in the HTTP Accept header. Try requesting the XML for the list of articles through your
browser by entering the URL http://localhost:3000/articles.xml. If you are using Internet
Explorer or Firefox, the XML will be shown in the browser itself.

In order to investigate how this could be used by another application by requesting and
sending XML, try accessing the articles through the command line. In real-world use, applica-
tions would construct XML programmatically, but the easiest way for us to test the XML API is
to use the cURL utility.

■Note cURL is a handy open source tool for accessing anything that has a URL, such as web pages, files
stored on a server, or REST resources. You can download it and read more about it at http://curl.haxx.se.

You can specify HTTP headers in cURL using the –H switch. Enter the command:

$ curl –H 'Accept: application/xml' http://localhost:3000/articles

Bradburne_8415C04.fm Page 101 Thursday, April 26, 2007 5:28 AM

mailto:@articles.each
http://localhost:3000/articles/new
http://localhost:3000/articles
http://localhost:3000/articles.xml
http://curl.haxx.se
http://localhost:3000/articles

102 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

<?xml version="1.0" encoding="UTF-8"?>
<articles>
 <article>
 <body>anybody listening?</body>
 <category-id type="integer"></category-id>
 <created-at type="datetime">2006-11-07T16:17:52+00:00</created-at>
 <id type="integer">1</id>
 <published type="boolean">true</published>
 <published-at type="datetime">2006-11-08T16:17:52+00:00</published-at>
 <synopsis>another article</synopsis>
 <title>Hello world</title>
 <updated-at type="datetime">2006-11-08T16:17:52+00:00</updated-at>
 <user-id type="integer">1</user-id>
 </article>
 <article>
 <body>Welcome to the RailsCoders community.</body>
 <category-id type="integer"></category-id>
 <created-at type="datetime">2006-11-07T22:22:27+00:00</created-at>
 <id type="integer">2</id>
 <published type="boolean">true</published>
 <published-at type="datetime">2006-11-08T18:02:39+00:00</published-at>
 <synopsis>abc</synopsis>
 <title>testing</title>
 <updated-at type="datetime">2006-11-08T18:02:39+00:00</updated-at>
 <user-id type="integer">1</user-id>
 </article>
</articles>

You can also request a single article using the URL for an individual article:

$ curl –H 'Accept: application/xml' http://localhost:3000/articles/1

<?xml version="1.0" encoding="UTF-8"?>
<article>
 <body>anybody listening?</body>
 <category-id type="integer"></category-id>
 <created-at type="datetime">2006-11-07T16:17:52+00:00</created-at>
 <id type="integer">1</id>
 <published type="boolean">true</published>
 <published-at type="datetime">2006-11-08T16:17:52+00:00</published-at>
 <synopsis>another article</synopsis>
 <title>Hello world</title>
 <updated-at type="datetime">2006-11-08T16:17:52+00:00</updated-at>
 <user-id type="integer">1</user-id>
</article>

Bradburne_8415C04.fm Page 102 Thursday, April 26, 2007 5:28 AM

http://localhost:3000/articles/1

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 103

Adding HTTP Authentication for the API
While providing a simple XML API works great for accessing the public actions, to perform the
create, edit, or destroy actions, you must be logged in to the site as an editor. However, if you
are using the API programmatically, as demonstrated with the curl command-line tool, you
cannot deal with being redirected to a login page. An API should be able to send the authenti-
cation details together with the request.

To solve this, we can use HTTP’s own built-in authentication methods that use the HTTP
headers to pass the login details. You will no doubt have seen this in action on some web sites;
it is commonly used to protect directories of files on web servers. We can also use the same
method to allow an API call to perform authentication, allowing the actions that require a user
to be logged in to be called programmatically.

A little bit of work is required to integrate this method into our existing login system, but
once we do, our site can easily be accessed either via the Web or via API calls without any other
code being changed.

Go back to the lib/login_system.rb that we created in the previous chapter, and add the
following method to retrieve the login credentials from the HTTP headers if they are present.
This private method should be added as the last method in the file:

private
 def get_http_auth_data
 username, password = nil, nil
 auth_headers = ['X-HTTP_AUTHORIZATION', 'Authorization', 'HTTP_AUTHORIZATION',
 'REDIRECT_REDIRECT_X_http_AUTHORIZATION']
 auth_header = auth_headers.detect { |key| request.env[key] }
 auth_data = request.env[auth_header].to_s.split

 if auth_data && auth_data[0] == 'Basic'
 username, password = Base64.decode64(auth_data[1]).split(':')[0..1]
 end
 return [username, password]
 end

Because various web servers pass the HTTP authentication headers to Rails in differing
ways, this method checks a number of types of headers and if it finds one, it extracts the user-
name and password and returns them both in an array.

Now that we have an easy way of checking the HTTP authentication data, we can change
the is_logged_in? method to check the session variable for web logins and HTTP authentica-
tion for API calls. To do this, change the is_logged_in? method in the lib/login_system.rb file
to the following:

def is_logged_in?
 username, password = get_http_auth_data
 @logged_in_user = User.find(session[:user]) if session[:user]
 @logged_in_user = User.authenticate(username, password) if username && password
 @logged_in_user ? @logged_in_user : false
end

Bradburne_8415C04.fm Page 103 Thursday, April 26, 2007 5:28 AM

104 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

Also, the login_required and check_role methods should be changed to correctly respond
with HTTP status messages, rather than sending a web page back:

def login_required
 unless is_logged_in?
 respond_to do |wants|
 wants.html do
 flash[:error] = "You must be logged in to do that."
 redirect_to :controller => 'account', :action => 'login'
 end
 wants.xml do
 headers["Status"] = "Unauthorized"
 headers["WWW-Authenticate"] = %(Basic realm="Web Password")
 render :text => "Could't authenticate you",
 :status => '401 Unauthorized',
 :layout => false
 end
 end
 end
end

def check_role(role)
 unless is_logged_in? && @logged_in_user.has_role?(role)
 respond_to do |wants|
 wants.html do
 flash[:error] = "You do not have the permission to do that."
 redirect_to :controller => 'account', :action => 'login'
 end
 wants.xml do
 headers['Status'] = 'Unauthorized'
 headers['WWW-Authenticate'] = %(Basic realm="Password")
 render :text => "Insuffient permission",
 :status => '401 Unauthorized',
 :layout => false
 end
 end
 end
end

Testing the API Authentication
You can test this out by using curl again. The curl -u switch allows you to specify a username
and password to be sent as login credentials. Since only certain methods are protected by pass-
words, you will need to try accessing one of those actions.

Bradburne_8415C04.fm Page 104 Thursday, April 26, 2007 5:28 AM

mailto:@logged_in_user.has_role?

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 105

Because curl allows us to send an HTTP POST request, we can try adding a new article
using only the API method and curl. This emulates how another application would talk to your
site. To do this, you are going to have to write a curl command that sends XML data in an HTTP
POST request to your site.

We have to tell the server that we are sending XML, so another HTTP header, Content-Type, is
used to specify this.

Carefully enter the following curl command:

$ curl -u admin:admin -H 'Accept: application/xml' ➥

-H 'Content-Type: application/xml' -d '<article><title>testing</title> ➥

<synopsis>this is a test</synopsis><body>This is really a test</body> ➥

<category_id>1</category_id><published>true</published></article>' ➥

http://localhost:3000/articles

You will notice that the username and password are being sent, along with the required
HTTP headers. Since we are specifying data to be sent with the -d switch, curl automatically
sends the request as an HTTP POST, rather than an HTTP GET, request.

We send the request to the articles controller, and in return, we get the new article in XML
format, similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<article>
 <body>This is really a test</body>
 <category-id type="integer">1</category-id>
 <created-at type="datetime">2006-11-09T03:23:38+00:00</created-at>
 <id type="integer">5</id>
 <published type="boolean">false</published>
 <published-at type="datetime"></published-at>
 <synopsis>this is a test</synopsis>
 <title>testing</title>
 <updated-at type="datetime">2006-11-09T03:23:38+00:00</updated-at>
 <user-id type="integer"></user-id>
</article>

Creating the Categories’ Controller and Views
We should now create the controller and views for the categories. The categories controller
again follows the basic CRUD pattern following the REST principles. It will look similar to the
articles controller.

The Categories Controller
First of all, generate the skeleton controller using the generate script:

$ ruby script/generate controller Categories index show new create edit ➥

update destroy admin

Bradburne_8415C04.fm Page 105 Thursday, April 26, 2007 5:28 AM

http://localhost:3000/articles

106 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

 exists app/controllers/
 exists app/helpers/
 create app/views/categories
 exists test/functional/
 create app/controllers/categories_controller.rb
 create test/functional/categories_controller_test.rb
 create app/helpers/categories_helper.rb
 create app/views/categories/index.rhtml
 create app/views/categories/show.rhtml
 create app/views/categories/new.rhtml
 create app/views/categories/create.rhtml
 create app/views/categories/edit.rhtml
 create app/views/categories/update.rhtml
 create app/views/categories/destroy.rhtml
 create app/views/categories/admin.rhtml

Now open the app/controllers/categories_controller.rb file, and edit the class as shown in
Listing 4-9:

Listing 4-9. The Categories Controller File

class CategoriesController < ApplicationController
 before_filter :check_editor_role, :except => [:index, :show]

 def index
 @categories = Category.find(:all)
 respond_to do |wants|
 wants.html
 wants.xml { render :xml => @categories.to_xml }
 end
 end

 def show
 @category = Category.find(params[:id])
 respond_to do |wants|
 wants.html { redirect_to category_articles_url(:category_id => @category.id) }
 wants.xml { render :xml => @category.to_xml }
 end
 end

 def new
 @category = Category.new
 end

Bradburne_8415C04.fm Page 106 Thursday, April 26, 2007 5:28 AM

mailto:@categories.to_xml
mailto:@category.id
mailto:@category.to_xml

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 107

 def create
 @category = Category.create(params[:category])
 respond_to do |wants|
 wants.html { redirect_to admin_categories_url }
 wants.xml { render :xml => @category.to_xml }
 end
 end

 def edit
 @category = Category.find(params[:id])
 end

 def update
 @category = Category.find(params[:id])
 @category.update_attributes(params[:category])
 respond_to do |wants|
 wants.html { redirect_to admin_categories_url }
 wants.xml { render :xml => @category.to_xml }
 end
 end

 def destroy
 @category = Category.find(params[:id])
 @category.find(params[:id]).destroy
 respond_to do |wants|
 wants.html { redirect_to admin_categories_url }
 wants.xml { render :nothing => true }
 end
 end

 def admin
 @categories = Category.find(:all)
 respond_to do |wants|
 wants.html
 wants.xml { render :xml => @categories.to_xml }
 end
 end
end

This controller limits everything except the index and show actions from being accessed by
anyone except a user with the editor role. All of the categories will be returned. As before, XML
will be returned if the client requests it. Since numerous categories are unlikely, there is no
need to add pagination.

If the user requests to view a specific category, the browser is redirected to show all of the
articles in that category.

The admin action provides the same information as the index action, except it uses a view
that provides links to allow an administrator to create new categories or edit existing ones.

Bradburne_8415C04.fm Page 107 Thursday, April 26, 2007 5:28 AM

mailto:@category.to_xml
mailto:@category.update_attributes
mailto:@category.to_xml
mailto:@category.find
mailto:@categories.to_xml

108 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

The Category Views
Since users are going to be redirected to the articles if they try to view an individual category,
we only need to write views for the index, new, and edit actions.

The Category Index View

Edit the app/views/categories/index.rhtml file, adding the code shown in Listing 4-10.

Listing 4-10. The Categories Index View

<h2>Categories</h2>

<% @categories.each do |category| %>

 <%= link_to category.name, category_articles_url(:category_id => category) %>

<% end %>

This will show a list of the available categories and a link to a view of the articles in that
category.

The New Category View

Now edit the app/views/categories/new.rhtml file as shown in Listing 4-11.

Listing 4-11. The Category Create View

<h2>Create a New Category</h2>
<%= error_messages_for :category %>
<% form_for(:category, :url => categories_path) do |f| -%>
 <p>Name:
<%= f.text_field :name, :size => 60 %></p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', admin_categories_url %>
<% end %>

This simply provides a form to create a new category.

The Edit Category View

The app/views/categories/edit.rhtml file is very similar and is shown in Listing 4-12.

Listing 4-12. The Category Edit View

<h2>Edit a Category</h2>
<%= error_messages_for :category %>
<% form_for(:category,
 :url => category_path(@category),
 :html => {:method => :put}) do |f| -%>
 <p>Name:
<%= f.text_field :name, :size => 60 %></p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', admin_categories_url %>
<% end %>

Bradburne_8415C04.fm Page 108 Thursday, April 26, 2007 5:28 AM

mailto:@categories.each

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 109

The Admin View

The admin view of the categories, providing links to allow an administrator to create new catego-
ries or edit existing ones is shown in Listing 4-13. Edit the file app/views/categories/admin.rhtml
by adding the code shown.

Listing 4-13. The Admin View of Categories

<h2>Edit Categories</h2>

<p><%= link_to 'Create New Category', new_category_path %></p>

<% @categories.each do |category| %>

 <%= link_to category.name, category_articles_url(:category_id => category) %>
 [<%= link_to 'Edit', edit_category_path(category) %>]
 [<%= link_to 'Delete', category_path(category), :method => :delete,
 :confirm => 'Are you sure you wish to delete this category?' %>]

<% end %>

Adding a Link from the Sidebar Menu
To make it easy to access the news articles, we should add a link to the menu sidebar. Open the
partial view file app/views/layouts/_menu.rhtml, and add a link to the news index action as follows:

 <%= link_to 'Home', index_url %>
 <%= link_to 'News', articles_path %>

 <hr size="1" width="90%" align="left"/>

 <% if is_logged_in? %>
 ...

We should also add a link to allow editors to easily create a new news article and edit the
categories. Add the following to the end of the _menu.rhtml file:

<% if is_logged_in? and logged_in_user.has_role?('editor') %>
 <hr size="1" width="90%" align="left" />
 Editor Options
 <%= link_to 'News Articles', admin_articles_path %>
 <%= link_to 'News Categories', admin_categories_path %>
<% end %>

Bradburne_8415C04.fm Page 109 Thursday, April 26, 2007 5:28 AM

mailto:@categories.each

110 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

Manually Testing the News Blog System
We can now run through the whole news blog feature and check that it works as expected.
Make sure that the Rails application server is running, and go to the application homepage,
http://localhost:3000/. Now log in as the Admin user. The sidebar menu will show the new
administration links, News Articles and News Categories.

First, try creating a new news category. Click the News Categories link. Since we created a
default category called Site News in the migration, this will be shown. Try creating a new cate-
gory, renaming it, and deleting it to make sure that it works as expected.

Next, we can try creating a new news article. Click the News Articles link, which will show
us a list of current articles. Since there are no articles yet, it will be empty. Click the Create a
New Article link at the top of the page, and enter an article, making sure to check the “published”
box. When you save this, you will be returned to the list of articles, now showing your newly
created article.

If you view this article, you will see how the article is displayed along with the category. If
you then click the category, you will see all articles within that category. You should try creating
a number of articles with an assortment of categories to check that this category viewing works
correctly.

Testing the News Blog
It is now time to write some tests. We have previously added unit tests, functional tests, and
integration tests. Here, I am just going to concentrate on functional and integration tests.

As before, you should expand these tests to add a collection of unit, functional, and inte-
gration tests to cover all the features that you have added.

Before we can perform functional tests on actions that require administrator or editor
roles, we need to add those roles and users with those roles to the existing set of fixtures that we
have defined.

Add the administrator and editor roles to the test/fixtures/roles.yml file:

admin:
 id: 1
 name: Administrator
editor:
 id: 2
 name: Editor

Edit the test/fixtures/users.yml file, adding the following two users to the existing
fixture:

admin_user:
 id: 2
 username: admin
 email: admin@example.com
 hashed_password: 5994471abb01112afcc18159f6cc74b4f511b99806da59b3caf5a9c173cacfc5
 created_at: <%= 1.days.ago.to_s(:db) %>

Bradburne_8415C04.fm Page 110 Thursday, April 26, 2007 5:28 AM

http://localhost:3000
mailto:admin@example.com

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 111

editor_user:
 id: 3
 username: editor
 email: editor@example.com
 hashed_password: 5994471abb01112afcc18159f6cc74b4f511b99806da59b3caf5a9c173cacfc5
 created_at: <%= 1.days.ago.to_s(:db) %>

The hashed_password fields are equal to a clear text password of 12345.
Now, we need to create a new fixtures file, test/fixtures/roles_users.yml, to store the

relationships among the users and roles, giving the relevant roles to the right users.

admin:
 role_id: 1
 user_id: 2
editor:
 role_id: 2
 user_id: 3

We also need to create fixtures for the categories and articles. First, define two category
fixtures: one the default Site News and another for Rails News.

To do this, open the categories fixtures file, app/test/fixtures/categories.yml, and add
the following YAML:

site_news:
 id: 1
 name: Site News
gossip:
 id: 2
 name: Rails News

We need to create some articles within these categories. We will create two article fixtures,
one in each category. Open the article fixtures file, app/test/fixtures/articles.yml, and add
the following fixtures:

good_news:
 id: 1
 user_id: 1
 title: Exciting news
 synopsis: New Feature.
 body: We have added a new features for you to enjoy.
 published: true
 created_at: <%= Time.now.to_s :db %>
 updated_at: <%= Time.now.to_s :db %>
 published_at: <%= Time.now.to_s :db %>
 category_id: 1

Bradburne_8415C04.fm Page 111 Thursday, April 26, 2007 5:28 AM

mailto:editor@example.com
news:id:
news:id:
news:id:
news:id:

112 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

some_gossip:
 id: 2
 user_id: 1
 title: Rails Updated
 synopsis: A new update to Rails was released
 body: Time to update, folks!
 published: true
 created_at: <%= Time.now.to_s :db %>
 updated_at: <%= Time.now.to_s :db %>
 published_at: <%= Time.now.to_s :db %>
 category_id: 2

We can now use these fixtures to write functional and integration tests.

Functional Tests
Whenever you use a generator to create a controller, Rails creates a skeleton functional test file
for this controller. Open the test file test/functional/articles_controller_test.rb, delete
the automatically generated test_truth test, and add the real tests shown in Listing 4-14.

Note that, by default, the generated test class only loads the fixtures for the model relevant
to the controller being tested (specified by the line fixtures :articles). Since we want to test
using not just the article fixtures but also the users and roles, we need to specify the additional
fixtures that need to be loaded into the database before running these tests. The new fixtures
line at line 7 loads the articles, users, roles, and roles_users fixtures.

Listing 4-14. The Functional Tests for the Articles Controller

require File.dirname(__FILE__) + '/../test_helper'
require 'articles_controller'

class ArticlesController; def rescue_action(e) raise e end; end

class ArticlesControllerTest < Test::Unit::TestCase
 fixtures :articles, :users, :roles, :roles_users

 def setup
 @controller = ArticlesController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_index
 get :index
 assert_response :success
 assert_not_nil assigns(:articles)
 end

Bradburne_8415C04.fm Page 112 Thursday, April 26, 2007 5:28 AM

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 113

 def test_index_as_xml
 @request.env['HTTP_ACCEPT'] = 'application/xml'
 get :index
 assert_response :success
 assert_not_nil assigns(:articles)
 end

 def test_show
 get :show, :id => 1
 assert_response :success
 assert_not_nil assigns(:article)
 end

 def test_create_article_with_http_auth_and_xml
 old_count = Article.count
 @request.env['HTTP_ACCEPT'] = 'application/xml'
 @request.env['Authorization'] = 'Basic ' + Base64::b64encode('editor:12345')

 post :create, :article => { :title => 'New article', :synopsis => 'Just a test',
 :body => 'Nothing to see here', :published => true }

 assert_response :success
 assert_equal old_count + 1, Article.count
 assert_not_nil assigns(:article)
 end

 def test_rest_routing
 with_options :controller => 'articles' do |test|
 test.assert_routing 'articles', :action => 'index'
 test.assert_routing 'articles/1', :action => 'show', :id => '1'
 end
 end
end

There are a number of interesting tests performed here. In the test test_index, we are
performing an HTTP GET request on the index action and checking that a page is successfully
returned with the correct information by performing the assert_not_nil check on the assigns
object. Whenever you perform a request in a functional test, any instance variables that are set
in the code are passed back to the test as assigns. So by performing this test, we are checking
that @articles has data in it after the method has been called.

The test_index_as_xml test performs the same test, except it requests the data in XML by
adding the relevant HTTP header.

The test_show test simply performs a similar test to test_index, except that it requests one
specific article. Again, both a successful page return is checked for along with a test to make
sure that @article is not nil.

Bradburne_8415C04.fm Page 113 Thursday, April 26, 2007 5:28 AM

mailto:@request.env
mailto:@request.env
mailto:@request.env

114 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

test_create_article_with_http_auth_and_xml tests the create article method, but it does
so by using the newly added HTTP authentication. In order to do this, we have to construct a
valid authentication header by encoding the username and password in base 64 and prefixing
it with the type of HTTP authentication we are using, namely Basic.

Next, the test performs a POST request containing a new article and checks to make sure the
request was a success. The number of articles in the database before and after the create action
are compared to make sure that an article was successfully added to the database.

Finally, we perform a test to make sure that the REST mappings are set up and that the
correct actions are performed when a REST URL is requested.

You can keep adding tests to cover other cases such as editing or deleting an article, along
with negative tests to make sure that a nonauthenticated user cannot perform destructive actions.

Before you try running your tests, you will have to get the structure of your test database
up to date. Run the rake task to rebuild the test database from the new schema by entering:

$ rake db:test:prepare

(in /Users/alan/Projects/rails/railscoders)

You can now try running your tests by either running all the functional tests with the
command rake test:functionals or by invoking just this test file with the following command:

$ ruby test/functional/articles_controller_test.rb

Loaded suite test/functional/articles_controller_test
Started
ZWRpdG9yOjEyMzQ1
.....
Finished in 3.333111 seconds.

5 tests, 15 assertions, 0 failures, 0 errors

Categories should be tested in a similar way to ensure that only administrators or editors
can create categories and that the correct list of articles is returned when a category is specified.

Integration Tests
As you have previously seen, integration tests are designed for when you need to test across
multiple controllers. Since the articles feature utilizes the articles and categories controllers,
there are a number of things we can test.

The categories resource is used in conjunction with the articles resource when a reader
wants to look at all of the articles in just one category. To do this, they access a version of the
articles resource nested beneath the categories resource.

We will now create the integration test to test these controllers using the fixtures created
earlier. Create the file app/test/integration/articles_stories_test.rb, and add the code
shown in Listing 4-15.

Bradburne_8415C04.fm Page 114 Thursday, April 26, 2007 5:28 AM

CH AP T E R 4 ■ B U I L D I N G A N E WS B L O G W IT H R SS F E E D S A N D AN AP I 115

Listing 4-15. The Articles Integration Test

require "#{File.dirname(__FILE__)}/../test_helper"

class ArticlesStoriesTest < ActionController::IntegrationTest
 fixtures :users, :articles, :categories

 def test_view_all_articles
 get articles_url
 assert_response :success
 assert_template 'articles/index'
 assert_equal assigns['articles'].length, 2
 end

 def test_view_one_category
 get category_articles_url(:category_id => 1)
 assert_response :success
 assert_template 'articles/index'
 assert_equal assigns['articles'].length, 1
 end
end

As you can see, this contains two tests. The test_view_all_articles test checks that when
the articles resource is accessed without specifying a category, all of the articles are returned.
The test_view_one_category test requests the article’s index action through the categories
resource, specifying category number 1. Since in our fixtures we created one article within
category 1, we know that one category will be returned. This is checked with the assert_equal
statement.

Try running these tests now:

$ ruby test/integration/articles_stories_test.rb

Loaded suite test/integration/articles_stories_test
Started
..
Finished in 1.75416 seconds.

2 tests, 6 assertions, 0 failures, 0 errors

We can see that these tests pass successfully. You may wish to expand these integration
tests further to incorporate creating, editing, and deleting articles and categories to make sure
that the code meets our specifications.

Further Development of the News System
This news article feature could be extended in many ways. At the moment, only one category
can be set per article. You may wish to think about how you could change the feature to allow

Bradburne_8415C04.fm Page 115 Thursday, April 26, 2007 5:28 AM

116 CH AP T E R 4 ■ B U I L D I N G A N E W S B L O G W IT H R SS FE E D S A N D AN AP I

multiple categories to be set for a new article. This would involve changing the relationship
between articles and categories to be a one-to-many relationship.

You may also wish to improve the administration interface, allowing the editor of the
article to preview the article easily before publishing. You may also wish to add a field in the
Article model to allow the editors to create notes about the article, viewable only by other
administrators or editors.

If you wish, you can go back to the page management system developed in Chapter 2 and
add an API to that; Rails makes it so simple to add API functionality that it is as easy to add it as
not to.

Summary
In this chapter, we added a rolling news blog that we can use to keep our users informed of
developments at the site as well as keeping the site fresh and up to date. We created RSS feeds
of the news articles to allow users to subscribe to the news feeds using their RSS aggregators.
We also added an administration interface, allowing editors to create and edit articles. These
editors do not have full administrator privileges, just the facility to create and edit news articles.

We looked at how this news blog system can then be extended to provide a full API to the
feature. We also looked at how you can test the API through functional testing.

Through the Rails module ActiveRecord, it is very simple to integrate any other Rails sites
with your site, which will allow your community to extend beyond the boundaries of your web site.

In the next chapter, we will build a discussion forum. This is often the center of a community
site, so we want to make it as easy to use as possible.

Bradburne_8415C04.fm Page 116 Thursday, April 26, 2007 5:28 AM

117

■ ■ ■

C H A P T E R 5

Building a Discussion Forum

In this chapter, we will look at how we can build a discussion forum for our community site.
This will allow our users to discuss various aspects of Ruby and Rails development. We will also
use the forum to talk about this book and allow users to discuss the code or sites that they have
developed using this book.

The premise of the forum is that an administrator user will create a number of forums.
Within each of these forums, users can create topics. Each topic then has any number of posts
within it about that topic. There are already a number of open source forum implementations
on the Web, of which the PHP-based phpBB and PunBB are the most popular. We can easily
build similar functionality in Rails very quickly and have it fully integrated into our site.

To build this functionality, we will use the Rails generator script to create basic controllers,
models, views, and tests for the relevant resources and adapt this scaffolding code to our needs.
Then I will show how you can easily develop this scaffolding code to support nested resources.

Specifying the Discussion Forum Requirements
Before we dive into the code, we should establish the structure and design of the discussion
forum. The application will allow for a moderator user to create a number of forums along with
a description of the forum. This will allow for forums to be set up for different conversations
on different topics. Within each forum, any logged-in user can create a new topic, which will
consist of a number of posts.

This tells us that we are going to need three models: Forum, Topic, and Post. A forum can
have many topics, and a topic, many posts.

For these models, we are going to make use of counter caches. A counter cache does exactly
what it says—it keeps a cache of a counter. For instance, we’ll display the number of topics in
a given forum. While performing a count of the number of topics in a forum is not an especially
taxing database query, if the application has to show the number of topics for each forum, an
extra database query has to be done for each forum. Implementing a counter cache is trivial
in Rails and can save your application making unnecessary database queries. While the Rails
community generally advocates optimizing only when necessary, if you know you will need to
show this counter, it is worth adding it now. We will use counter caches for the topics-per-forum
counter and the posts-per-topic counter.

Since the topic counter is on a per-forum basis, including it necessitates an extra field
in the forums database table. Keeping with the Rails conventions, this field should be called
topics_count. You are free to rename this to something else, but you have to specify the field

Bradburne_8415C05.fm Page 117 Thursday, April 26, 2007 5:31 AM

118 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

name in the belongs_to statement in the model when you set up the counter cache. However,
it is much easier if you stick to conventions and use topics_count.

Defining the Forum Model
The Forum model will consist of simply a name and a description. Forums can be created,
edited, and deleted only by a moderator or administrator.

Since we are using a counter cache to store the number of topics per forum, a topics_count
field is added to each row. Table 5-1 shows the complete structure of the Forum model’s database.

Defining the Topic Model
The Topic model has the topic name along with the user_id of the user who created the topic.
Any logged-in user can create a new topic, but only moderators can edit or delete topics. Deleting
a topic will delete all of the posts within that topic.

Since we need a counter cache to store the number of posts per topic, a posts_count field
has been added. The Topic model’s database structure is show in Table 5-2.

Table 5-1. The Forum Model Database Structure

Field Name Field Type Description

id integer The primary key

name string The forum name

description text Description of the forum

created_at datetime The date and time that the forum was created

updated_at datetime The date and time that the forum was last edited

topics_count integer The topic counter cache

Table 5-2. The Topic Model Database Structure

Field Name Field Type Description

id integer The primary key

forum_id integer The id of the forum that this topic belongs to

user_id integer The id of the user who created the topic

name string The subject of the topic

created_at datetime The date and time that the topic was created

updated_at datetime The date and time that the topic was last updated

posts_count integer The posts counter cache

Bradburne_8415C05.fm Page 118 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 119

Defining the Post Model
Each post has a body, a text field containing the body of the post, and the user_id of the user
who created the post. Any logged-in user can create a post; only moderators can edit or delete.
Table 5-3 shows the Post model’s database structure.

Figure 5-1 shows the relationships among the Forum, Topic, and Post models.

Figure 5-1. Entity relationship diagram for the Forum, Topic, and Post models

The Moderator Role
Since the task of moderating a busy discussion forum is too much for one administrator to
handle, we will create a new user role to allow other nonadministrative users to be given the
right to edit or remove forum posts. This user role will be called “moderator.”

Since we built the role management system in Chapter 3, it will be very simple for the site
administrator to assign this role to trusted users who can actively monitor and moderate the
forums.

The Forum, Topic, and Post Controllers
The forum, topic, and post controllers will all be standard REST-style controllers. However,
since each topic belongs to a particular forum, and each post belongs to a particular topic,
these resources need to be nested.

Table 5-3. The Post Model Database Structure

Field Name Field Type Description

id integer The primary key

topic_id integer The id of the topic that this post belongs to

user_id integer The id of the user who created this post

body text The body of the post

created_at datetime The date and time that the post was created

updated_at datetime The date and time that the post was last edited

Bradburne_8415C05.fm Page 119 Thursday, April 26, 2007 5:31 AM

120 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

The topics resource will be nested beneath a forum resource, assessable via URLs such as
/forums/1/topics and /forums/1/topics/2.

The posts resource will be nested beneath a topic resource and, in turn, a forum resource.
Therefore, the posts resource is assessable via URLs such as /forums/1/topics/2/posts and
/forums/1/topics/2/posts/3.

Building the Forum
In the previous chapters, we used the generate script to create skeleton controllers and models
and then wrote all the code ourselves. In this chapter, we are going to use the scaffold_resource
generator. This automatically generates a controller, a model, and views for a given resource
name. The generated code implements the basic CRUD functions of a REST resource. Doing
this gives us a basic skeleton of a controller, speeding up our development process.

Building the Forum, Topic, and Post Models
The forums consist of three models: Forum, Topic, and Post. A forum has many topics, which
in turn have many posts. In addition to this, each topic and each post belong to the user who
created them.

To create these models, we are going to use the scaffold_resource generator to build the
scaffolding code for the forum resources and edit the generated code to fit our needs. First, let’s
create the forum resource:

$ ruby script/generate scaffold_resource Forum

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/forums
 exists test/functional/
 exists test/unit/
 create app/views/forums/index.rhtml
 create app/views/forums/show.rhtml
 create app/views/forums/new.rhtml
 create app/views/forums/edit.rhtml
 create app/views/layouts/forums.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/forum.rb
 create app/controllers/forums_controller.rb
 create test/functional/forums_controller_test.rb
 create app/helpers/forums_helper.rb
 create test/unit/forum_test.rb
 create test/fixtures/forums.yml
 exists db/migrate
 create db/migrate/008_create_forums.rb
 route map.resources :forums

Bradburne_8415C05.fm Page 120 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 121

Next, we’ll create the Topic model:

$ ruby script/generate scaffold_resource Topic

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/topics
...
 create db/migrate/009_create_topics.rb
 route map.resources :topics

and finally, the Post model:

$ ruby script/generate scaffold_resource Post

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/posts
...
 create db/migrate/010_create_posts.rb
 route map.resources :posts

Model Relationships

Before working on the migration scripts, we should work on the model files to make sure that
we have the necessary database fields to support the relationships among the models.

First, open the model file forum.rb, and add the relationship statements as shown in
Listing 5-1.

Listing 5-1. The Forum Model File

class Forum < ActiveRecord::Base
 has_many :topics, :dependent => :delete_all
 has_many :posts, :through => :topics
end

This model uses a relationship that you might not have encountered before—has_many
:through. This specifies an intermediate object that sits between one object and another. In
this case, it allows us to access all of the posts in a forum, irrespective of the topic.

You will also notice that the has_many :topics statement includes an extra parameter that
states what should happen to dependent objects should this object be deleted. In this case, we
want all dependents of this object to be deleted, meaning that if you delete a forum, all the
topics in that forum will be deleted.

Add the relationships for the topic.rb model as shown in Listing 5-2.

Bradburne_8415C05.fm Page 121 Thursday, April 26, 2007 5:31 AM

122 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

Listing 5-2. The Topic Model File

class Topic < ActiveRecord::Base
 belongs_to :forum, :counter_cache => true
 belongs_to :user
 has_many :posts, :dependent => :delete_all
end

You will notice that here we are setting up the counter cache described earlier.
This model also declares that all dependents should be deleted in the case of this object

being deleted, in the same way as the forum deletes the dependent topics if it is deleted. Now,
if a forum is deleted, all of the topics and all the posts within those topics will be deleted, keeping
the database clean.

Finally, add the relationships for the post.rb model as shown in Listing 5-3.

Listing 5-3. The Post Model File

class Post < ActiveRecord::Base
 belongs_to :topic, :counter_cache => true
 belongs_to :user, :counter_cache => true
end

There should be no surprises here. Again, this model uses a counter cache, this time for the
number of posts in a given topic. This means that a posts_count integer field needs to be added
to the topics database table.

This also adds a counter cache to the User model. This will allow the application to easily
display and cache the number of posts made in the forum by a particular user.

Model Validations

Since we are already working on the models, we should add some basic validations to them.
The Forum model has two attributes that we should validate: name and description. The

name field must be filled in; having a forum with an empty name is not helpful. We will also set
a maximum of 255 characters for this field, enabling us to use a database string type rather
than a text type. The forum names should be a short title, not a lengthy description.

The description field obviously needs to be longer but should still be kept within sensible
limits. Also, some sites may decide not to fill in the description field; the name may be enough.
Therefore, we do not have to test for the presence of this field.

To perform these validations, add the following to the forum.rb model file:

validates_presence_of :name
validates_length_of :name, :maximum => 255
validates_length_of :description, :maximum => 1000

For the Topic model, there is only one field that we need to validate—the name field. Since
this is intended to be a simple description of the topic in discussion, it makes sense to keep this
reasonably short. We will use a database string type, so we should validate that the text entered is
255 characters or less.

Also, we want each topic to have a name; having a blank topic name isn’t useful to anyone
visiting the site, so we will check that the field is not empty.

Bradburne_8415C05.fm Page 122 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 123

Edit the topic.rb model file, and add the following validations:

validates_presence_of :name
validates_length_of :name, :maximum => 255

The Post model also has only one field that is entered by a user and needs to be validated:
the body field.

Since this is the actual meat of the discussion, we don’t want to limit the size of the post too
much. However, it is a good idea to place some limit on the size, albeit a high one. Again, we
don’t want this field to be empty.

Add the validations to the post.rb model file:

validates_presence_of :body
validates_length_of :body, :maximum => 10000

Migration Scripts

We can now build the migration scripts for these models. Edit the self.up method in the
008_create_forums.rb file to simply create the necessary fields as follows:

def self.up
 create_table :forums do |t|
 t.column :name, :string
 t.column :description, :text
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :topics_count, :integer, :null => false, :default => 0
 end
end

The 009_create_topics.rb migration file adds the necessary files along with adding a data-
base index for this forum_id field. This will speed up the database queries for retrieving the list
of topics in a given forum. Edit the self.up method as shown:

def self.up
 create_table :topics do |t|
 t.column :forum_id, :integer
 t.column :user_id, :integer
 t.column :name, :string
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :posts_count, :integer, :null => false, :default => 0
 end
 add_index :topics, :forum_id
end

Edit the self.up method in the 010_create_posts.rb file to add the fields necessary for the
posts table. Again, this creates a database index to speed up the database queries.

Bradburne_8415C05.fm Page 123 Thursday, April 26, 2007 5:31 AM

124 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

def self.up
 create_table :posts do |t|
 t.column :topic_id, :integer
 t.column :user_id, :integer
 t.column :body, :text
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 end
 add_index :posts, :topic_id
end

We also want to cache the number of posts by a given user. To do this, the users table will
need to be modified and a posts_count integer field added to it; create a migration for this:

$ ruby script/generate migration AddUserPostsCount

 exists db/migrate
 create db/migrate/011_add_user_posts_count.rb

Edit the migration file to add the necessary up and down methods to add or remove the
column as shown in Listing 5-4.

Listing 5-4. Migration to Add a Posts Counter Cache to the Users Model

class AddUserPostsCount < ActiveRecord::Migration
 def self.up
 add_column :users, :posts_count, :integer, :null => false, :default => 0
 end

 def self.down
 remove_column :users, :posts_count
 end
end

Before you run the migrations, we should create the new role called Moderator, and add
this role to the roles of the Admin user. Of course, you can add the role to any other users that
you wish to give forum moderator permissions.

Create a new migration script with the following command:

$ ruby script/generate migration AddModeratorRole

 exists db/migrate
 create db/migrate/012_add_moderator_role.rb

Edit the generator migration script as shown in Listing 5-5.

Bradburne_8415C05.fm Page 124 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 125

Listing 5-5. Migration to Add the Moderator Role

class AddModeratorRole < ActiveRecord::Migration
 def self.up
 moderator_role = Role.create(:name => 'Moderator')
 admin_user = User.find_by_username('Admin')
 admin_user.roles << moderator_role
 end

 def self.down
 moderator_role = Role.find_by_name('Moderator')
 admin_user = User.find_by_username('Admin')
 admin_user.roles.delete(moderator_role)
 moderator_role.destroy
 end
end

As in the previous chapter, this simply creates a new role, finds the existing user with the
username Admin, and adds the new role to this user’s list of roles.

You should now run these migrations, creating the database tables necessary for the forum:

$ rake db:migrate

(in /Users/alan/Projects/rails/railscoders)
== CreateForums: migrating ==
-- create_table(:forums)
 -> 0.0105s
== CreateForums: migrated (0.0112s) ===

== CreateTopics: migrating ==
-- create_table(:topics)
 -> 0.4358s
-- add_index(:topics, :forum_id)
 -> 0.2001s
== CreateTopics: migrated (0.6372s) ===

== CreatePosts: migrating ===
-- create_table(:posts)
 -> 0.0743s
-- add_index(:posts, :topic_id)
 -> 0.0178s
== CreatePosts: migrated (0.0934s) ==

== AddUserPostsCount: migrating ===
-- add_column(:users, :posts_count, :integer, {:default=>0, :null=>false})
 -> 0.1475s
== AddUserPostsCount: migrated (0.1481s) ======================================

Bradburne_8415C05.fm Page 125 Thursday, April 26, 2007 5:31 AM

126 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

== AddModeratorRole: migrating ==
== AddModeratorRole: migrated (0.2128s) =======================================

Checking a User’s Roles for Moderator Rights
First of all, we should add code to allow us to easily check if a user has moderator access, in the
same way as we did for the administrator and editor roles.

Open the lib/login_system.rb module, and add the check_moderator_role method before
the private methods:

def check_moderator_role
 check_role('Moderator')
end

This allows you to simply add before_filter :check_moderator_role for any controllers or
actions that should be protected from unauthorized users.

Adding the Nested Resource Route Mappings
Before we work on the code, we should add the URL mappings to the config/routes.rb file.

You will notice that the generation script added basic resource mappings for forums,
topics, and posts. However, for the forums, we are going to use nested routes: posts belong to
a topic, and topics belong to a forum. Remove the following automatically generated resource
mappings from the routes file:

map.resources :topics
map.resources :forums
map.resources :posts

Replace them with the nested routes for the resources:

map.resources :forums do |forum|
 forum.resources :topics do |topic|
 topic.resources :posts
 end
end

This tells Rails the structure of the resources in relation to their URLs. This means that you
cannot reference a post simply with /post/<id>; it must be accessed with /forum/<forum_id>/
topics/<topic_id>/posts/<post_id>.

Modifying the Layout Template and Style Sheet
By modifying the default templates and adding some simple markup to our style sheet, we can
improve the look of our forum and make the pages much easier to read and follow. The styles can
be changed and improved later, but adding some sensible defaults makes our lives a little easier.

Bradburne_8415C05.fm Page 126 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 127

Removing the Generated Layouts

Take a look in the /app/views/layouts directory. You will notice that the generate command
has created layout files called forums.rhtml, posts.rhtml, and topics.rhtml, corresponding to
the resources that were scaffolded.

Rails will automatically use a layout file matching the name of the controller if one is present.
Since we are using a common layout file for our application, you should remove these files,
leaving just the application.rhtml layout file that you created.

Adding CSS for the Forum Tables

All of the forums data is displayed using HTML tables. We can greatly improve the look of the
default tables by adding some table styling to our CSS file.

Open the public/stylesheets/main.css file, and add the styles for the forum tables:

/* Forum styling */

table#forums { width: 100%; background-color: #fff; border: 1px solid #c33; }
table#forums td.name { width: 60% }
table#forums td.topic { width: 20%; text-align: center; }

table#topics { width: 100%; background-color: #fff; border: 1px solid #000; }
table#topics td.name { width: 60% }
table#topics td.reply { width: 20%; text-align: center; }
table#topics td.author { width: 20%; text-align: center; }

table#posts { width: 100%; background-color: #fff; border: 1px solid #000; }
table#posts td.author { width: 20%; vertical-align: top; }
table#posts td.body { width: 80% }

.forumname { font-size: 1.1em; }

.forumdescription { font-size: 0.7em; padding-top: 0.4em; }

The Forums Controller and Views
Now it is time to work on the action methods. Because the controllers were created with the
scaffold_resource generation script, they are already prepopulated with code to provide basic
REST services. If you open the controllers and take a look at the generated code, you will see
that it is similar to the code that you wrote for all of the existing REST resource controller files.
We can now use this as a basis for our forum.

The top level of the forum feature, the forums resource, does not require many changes.
Most of the actions already work as we want them with the generated code. However, there are
a few changes that should be made and the views need to be modified to suit our needs.

The Forum Index Action

The generated index action method for the forums controller just retrieves all of the forum
objects. Since we want to display all of the forums on the forum index page, we do not have
to change this.

Bradburne_8415C05.fm Page 127 Thursday, April 26, 2007 5:31 AM

128 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

The Forum Index Page

Open the generated app/views/forums/index.rhtml. While this provides a simple table of
the forum data, we want to improve on this, adding extra information and formatting. Also,
we do not want the Create New Forum, Edit Forum, or Delete Forum links being available to
nonmoderator users.

The new index.rhtml is shown in Listing 5-6.

Listing 5-6. The Forum Index View

<h2>Forums</h2>

<% if is_logged_in? and logged_in_user.has_role?('Moderator') %>
 <p><%= link_to 'Create New Forum', new_forum_path -%></p>
<% end %>

<table id="forums">
 <tr>
 <th class="name">Forum name</th>
 <th class="topic">Topics</th>
 </tr>
 <% @forums.each do |forum| -%>
 <tr class="<%= cycle('odd', 'even') %>">
 <td class="name">
 <div class="forumname">
 <%= link_to forum.name, topics_path(:forum_id => forum) -%>
 </div>

 <div class="forumdescription">
 <%= forum.description -%>
 </div>

 <% if is_logged_in? and logged_in_user.has_role?('Moderator') -%>

 <small>
 <%= link_to 'edit', edit_forum_path(forum) %>
 <%= link_to 'delete', forum_path(forum), :method => :delete,
 :confirm => 'Are you sure? This will delete this entire forum.' -%>
 </small>
 <% end -%>
 </td>
 <td class="topic"><%= forum.topics_count %></td>
 </tr>
 <% end -%>
</table>

This view makes the table view a little more interesting by adding classes to the table cells,
allowing us to use CSS to style the table. The class of the table row uses the cycle helper to alternate

Bradburne_8415C05.fm Page 128 Thursday, April 26, 2007 5:31 AM

mailto:@forums.each

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 129

between rows with the classes odd and even, allowing us to style alternating table rows with
different colors or backgrounds to make the table a little easier to read.

The Create New Forum, Edit Forum, and Delete Forum links are shown only for users with
moderator permissions by using the has_role method of the user object. The view also shows
the number of topics within each forum using the topics_count counter cache attribute that is
defined in the model.

The Show Action

In our design, the topics are subsets of a forum, and posts are subsets of a topic. This means
that if you request a forum, the list of topics should be returned rather than just the details of
the forum. Using the generated response would just display the name and description of a
forum, rather than the topics within that forum. To show the topics, we can just forward the
request of one particular forum to the topics path for that forum. The URL /forums/4 would be
forwarded to /forums/4/topics.

We should do the same for any requests for a specific topic, forwarding the request to the
list of posts for that topic. The URL /forums/4/topics/3 becomes /forums/4/topics/3/posts.

Open app/controllers/forums_controller.rb. To forward the show request as described
previously, change the show method as follows:

def show
 redirect_to topics_path(:forum_id => params[:id])
end

Since this means that the app/views/forums/show.rhtml view file will not be used, you can
delete this file.

Creating a New Forum

When a moderator creates a new forum, we should redirect the moderator back to the list of
forums rather than going to the topic list view that will be empty. To do this, alter the create
method in the forums_controller.rb file, and change the redirect on a successful create action:

def create
 ...
 if @forum.save
 flash[:notice] = 'Forum was successfully created.'
 format.html { redirect_to forums_path }
 format.xml { head :created, :location => forum_path(@forum) }
 else
 ...
end

The Forum New and Edit Pages

Both the new.rhtml and edit.rhtml pages can be viewed only by moderator users, and both of
the pages contain almost the same form. We can place the common parts of the form into a
partial and include that partial in both the new and edit pages.

Bradburne_8415C05.fm Page 129 Thursday, April 26, 2007 5:31 AM

mailto:@forum.save

130 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

To do this, first create a new partial file app/views/forums/_form.rhtml, and add the inner
code for a form:

<p>Forum Name:
<%= f.text_field :name, :size => 40 -%></p>
<p>Description:
<%= f.text_area :description, :rows => 4, :cols => 60 -%></p>

Next, edit the app/views/forums/new.rhtml file, add the code to create the form, and render
the form partial by creating a form_for block and passing the form object to the partial. The
new.rhtml page is shown in Listing 5-7.

Listing 5-7. The Forum New View

<h2>New forum</h2>
<%= error_messages_for :forum %>
<% form_for(:forum, :url => forums_path) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} -%>
 <%= submit_tag "Create" %>
<% end %>
<%= link_to 'Back', forums_path %>

The edit.rhtml page is almost the same, using the same way of including the form partial,
except the form_for block that is created must use HTTP PUT. This is how Rails differentiates
this as an object edit action rather than a create action. The new edit view is shown in Listing 5-8.

Listing 5-8. The Forum Edit View

<h2>Edit forum</h2>
<%= error_messages_for :forum %>
<% form_for(:forum,
 :url => forum_path(@forum),
 :html => { :method => :put }) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} -%>
 <%= submit_tag "Update" %>
<% end %>
<%= link_to 'Show', forum_path(@forum) %> |
<%= link_to 'Back', forums_path %>

Creating forms using partials can save you a lot of time if you have large forms. Keeping the
form in a separate file also means that if the form is changed, you only have to change one file
rather than two.

The Delete Forum Action

If the moderator chooses to delete an entire forum, the destroy action is invoked. Since the
generated action does just this, we can leave it exactly as it is.

Bradburne_8415C05.fm Page 130 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 131

Manually Testing the Forums Controller

You can now start the Rails server and try creating a new forum. Of course, you will have to log
in as the Admin user to see the create, edit, and delete links. Remember that in the migrations
we gave the Admin user the moderator role.

After you have logged in as Admin, go to http://localhost:3000/forums/new. Try creating
a new forum and saving it. You will be returned to the list of available forums, as shown in
Figure 5-2.

Figure 5-2. The forum index action showing the list of available forums

The Topics Controller and Views
We now need to develop the next level of the forum data—the topics. As we stated in the specifica-
tions, each topic belongs to a specific Forum object. When a forum is selected, the topics in this
forum are listed, and new topics can be created by users of the site.

The Topic Index Action

The generated topics index action currently just retrieves all topics. Since we want to see topics
only for a given forum, we need to change this behavior. Also, since the number of topics is
likely to be large, we should paginate the topic list. To do this, we will use the Rails paginator
helper as we did in Chapter 4.

Bradburne_8415C05.fm Page 131 Thursday, April 26, 2007 5:31 AM

http://localhost:3000/forums/new

132 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

Open the topics controller file, app/controllers/topics_controller.rb, and change the
index action as follows:

def index
 @forum = Forum.find(params[:forum_id])
 @topics_pages, @topics = paginate(:topics,
 :include => :user,
 :conditions => ['forum_id = ?', @forum],
 :order => 'topics.updated_at DESC')

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @topics.to_xml }
 end
end

As you can see, this first retrieves the forum object and uses the paginate helper to create
@topics_pages and @topics, which will be passed to the view.

The Topic Index Page

The topic index is a list of topics for a given forum. This is similar in structure and markup to
the forum index, except that obviously the table columns are different. The option to create a
new topic is available to all logged-in users, not just moderators. If a user isn’t logged in, a link
to the login page is shown instead of the Create New Topic link.

Each topic in the table should also show edit and delete links for moderator users. The delete
link should ask for the moderator to confirm that he or she wishes to delete the entire topic.

The app/views/topics/index.rhtml page should be edited as shown in Listing 5-9.

Listing 5-9. The Topic Index View

<h2>Forum : <%= @forum.name -%></h2>

<h3>Topics</h3>

<p>
<% if is_logged_in? -%>
 <%= link_to 'Post New Topic', new_topic_path(:forum_id => @forum) -%>
<% else -%>
 <%= link_to 'Login to post a new topic', :controller => 'account',
 :action => 'login' -%>
<% end -%>
</p>

<% if @topics_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @topics_pages, :params => params %>
 </p>
<% end %>

Bradburne_8415C05.fm Page 132 Thursday, April 26, 2007 5:31 AM

mailto:@topics.to_xml
mailto:@forum.name
mailto:@topics_pages.page_count

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 133

<table id="topics">
 <tr>
 <th class="name">Topics</th>
 <th class="reply">Posts</th>
 <th class="author">Author</th>
 </tr>
 <% @topics.each do |topic| -%>
 <tr class="<%= cycle('odd', 'even') %>">
 <td class="name">
 <%= link_to topic.name, posts_path(:forum_id => @forum,
 :topic_id => topic) -%>
 <% if is_logged_in? and logged_in_user.has_role?('moderator') -%>

 <small>
 <%= link_to 'delete', topic_path(:forum_id => @forum, :id => topic),
 :method => :delete,
 :confirm => 'Are you sure? This will delete this entire topic.' -%>
 <%= link_to 'edit', edit_topic_path(:forum_id => @forum, :id => topic) -%>
 </small>
 <% end -%>
 </td>
 <td class="reply"><%= topic.posts_count %></td>
 <td class="author"><%= link_to topic.user.username,
 user_path(:id => topic.user) %></td>
 </tr>
 <% end -%>
</table>

<% if @topics_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @topics_pages, :params => params %>
 </p>
<% end %>

As you can see, each topic is linked to the show action for a given topic. The posts_count
cache is used to display the number of posts without having to perform another database
query.

Creating a New Topic

All logged-in users are allowed to create new topics. In our forum, a topic cannot exist without
any posts belonging to it. Therefore, we must change the behavior of the topics’ create action,
so that creating a new topic creates a first post too. This stops empty topics appearing on the
site and improves the usability—when the users create new topics, it’s almost certain that they
will want to create posts about those topics.

Take a look at the existing new and create actions in the topics_controller.rb file. At the
moment, they simply create a new topic without specifying a forum that the topic belongs to,
and obviously, create does not create a post for the topic.

Bradburne_8415C05.fm Page 133 Thursday, April 26, 2007 5:31 AM

mailto:@topics.each
mailto:@topics_pages.page_count

134 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

Change the new method to instantiate a post object as well as a topic object:

def new
 @topic = Topic.new
 @post = Post.new
end

The view file for this method needs to allow the user to enter a topic name and a message.
Edit the app/views/topics/new.rhtml file as shown in Listing 5-10.

Listing 5-10. The New Topic View

<h2>New Topic</h2>
<% form_for :topic, :url => topics_path do |f| -%>
 <p>Subject:
<%= f.text_field :name, :size => 40 -%></p>
 <p>First Post:
<%= text_area :post, :body, :rows => 8, :cols => 60 -%></p>
 <%= submit_tag 'Save' %>
<% end -%>

You will notice that the post body field is specified using a regular text_area helper, rather
than the form block f. Even though the form is a new topic form and will be posted to the topic
controller, we can still add fields for other objects.

Now take a look at the following create method that this form will be posted to. As discussed,
this method creates not only a new topic but also a new post belonging to this topic. We also
need to make sure that the topic is created with the relevant forum_id filled in from the parameter
passed to the action via the URL.

def create
 @topic = Topic.new(:name => params[:topic][:name],
 :forum_id => params[:forum_id],
 :user_id => logged_in_user.id)
 @topic.save!
 @post = Post.new(:body => params[:post][:body],
 :topic_id => @topic.id,
 :user_id => logged_in_user.id)
 @post.save!
 respond_to do |format|
 format.html { redirect_to posts_path(:topic_id => @topic,
 :forum_id => @topic.forum.id) }
 format.xml { head :created, :location => topic_path(:id => @topic,
 :forum_id => @topic.forum.id) }
 end
rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.html { render :action => 'new' }
 format.xml { render :xml => @post.errors.to_xml }
 end
end

Bradburne_8415C05.fm Page 134 Thursday, April 26, 2007 5:31 AM

mailto:@topic.save
mailto:@topic.id
mailto:@post.save
mailto:@topic.forum.id
mailto:@topic.forum.id
mailto:@post.errors.to_xml

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 135

As you can see, the topic and post are both created with the user_id of the logged-in user
and the relevant forum and topic ids. If either of the objects is reported as invalid by ActiveRecord,
this will be caught by the rescue exception handler, and the new view will be re-rendered with
the appropriate error messages, or an XML error message will be returned.

If there is no problem, the user is either redirected to the list of posts for this new topic or
the relevant XML response is sent.

Editing a Topic

Editing a topic can be performed only by a moderator user and allows only the topic name to
be changed. The generated code is almost what we need; we just need to change a few things
for it to work exactly as we want.

First of all, edit the topics_controller.rb file to change the redirection on a successful
topic update. Because we are using nested routes, we need to include the forum id as part of
the redirection and change it to show the list of posts, as follows:

def update
 @topic = Topic.find(params[:id])

 respond_to do |format|
 if @topic.update_attributes(params[:topic])
 flash[:notice] = 'Topic was successfully updated.'
 format.html { redirect_to posts_path(:topic_id => @topic,
 :forum_id => @topic.forum) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @topic.errors.to_xml }
 end
 end
end

We also need to edit the app/views/topics/edit.rhtml topic view file to add the field that
we want to allow to be edited. Also, the URL that the edit form posts to needs to be amended to
include the forum id along with the topic id that is being edited. Edit the form section of the file
to match the following:

<h1>Editing topic</h1>

<%= error_messages_for :topic %>

<% form_for(:topic, :url => topic_path(:id => @topic, :forum_id => @topic.forum),
 :html => { :method => :put }) do |f| %>
 <p>Subject:
<%= f.text_field :name, :size => 40 -%></p>
 <p>
 <%= submit_tag "Update" %>
 </p>
<% end %>

Bradburne_8415C05.fm Page 135 Thursday, April 26, 2007 5:31 AM

mailto:@topic.update_attributes
mailto:@topic.forum
mailto:@topic.errors.to_xml
mailto:@topic.forum

136 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

Deleting a Topic

The autogenerated destroy action simply destroys a given topic. We could just destroy the topic,
which would automatically delete all the posts within this topic because of the dependency
delete_all statement in the Topic model. However, since we are using a counter cache to keep
track of the number of posts by a given user, we need to delete each post in turn. This isn’t the
most efficient method, but since deleting a topic is something that is going to be performed
seldom and only by a moderator, it is acceptable.

Also, currently the method redirects to topics_path but does not specify the forum id. We
need to change this and add the forum_id parameter to the redirection, as follows:

def destroy
 @topic = Topic.find(params[:id])
 @topic.posts.each { |post| post.destroy }
 @topic.destroy

 respond_to do |format|
 format.html { redirect_to topics_path(
 :forum_id => params[:forum_id]) }
 format.xml { head :ok }
 end
end

The Topic Show Action

We should also edit the show action to redirect the browser to the index action of the posts
controller. Edit the show action of the topics_controller file as follows:

def show
 redirect_to posts_path(:forum_id => params[:forum_id], :topic_id => params[:id])
end

The Posts Controller and Views
All that is left is to adapt the posts controller code to work with the forum and topics.

The Posts Index Page

The posts index method lists all of the posts in a given topic. This requires us to change the
index action to find the current topic and then retrieve all the posts within this topic, along with
paginating the posts. We will use the default value of ten posts per page.

Edit the app/controllers/posts_controller.rb file, changing the index action as follows:

def index
 @topic = Topic.find(params[:topic_id], :include => :forum)
 @posts_pages, @posts = paginate(:posts,
 :include => :user,
 :conditions => ['topic_id = ?', @topic])

Bradburne_8415C05.fm Page 136 Thursday, April 26, 2007 5:31 AM

mailto:@topic.posts.each
mailto:@topic.destroy

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 137

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @posts.to_xml }
 end
end

Because of the extra find parameter :include => :user, ActiveRecord automatically joins
the posts and users tables in one SQL query. Since we would otherwise have to perform a query
to display the username of each post author, this greatly reduces the amount of database
requests needed.

The posts index.rhtml file is again similar to the previous controllers’ index files. We just
want to display each post along with the author’s username, the date they joined the site, and
the number of posts that user has made.

Edit app/views/posts/index.rhtml, replacing the autogenerated view with the view code
shown in Listing 5-11.

Listing 5-11. The Posts Index View

<h2><%= @topic.name -%></h2>

<h3>
 <%= link_to 'Forums', forums_path -%> >
 <%= link_to @topic.forum.name, forum_path(@topic.forum) -%> >
 <%= @topic.name -%>
</h3>

<p>
<% if is_logged_in? -%>
 <%= link_to 'Post Reply', new_post_path(:forum_id => @topic.forum,
 :topic_id => @topic) -%>
<% else -%>
 <%= link_to 'Login to post a reply', :controller => 'account',
 :action => 'login' -%>
<% end -%>
</p>

<% if @posts_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @posts_pages, :params => params %>
 </p>
<% end %>

<table id="posts">
 <tr>
 <th class="author">Author</th>
 <th class="post">Message</th>
 </tr>
 <% @posts.each do |post| -%>

Bradburne_8415C05.fm Page 137 Thursday, April 26, 2007 5:31 AM

mailto:@posts.to_xml
mailto:@topic.name
mailto:@topic.forum.name
mailto:path(@topic.forum
mailto:@topic.name
mailto:@topic.forum
mailto:@posts_pages.page_count
mailto:@posts.each

138 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

 <tr class="<%= cycle('odd', 'even') %>">
 <td class="author">
 <%= link_to post.user.username, user_path(post.user) -%>

 <small>
 Member since <%= post.user.created_at.to_s(:short) %>

 <%= pluralize(post.user.posts_count, 'post') -%>
 </small>
 <% if is_logged_in? and logged_in_user.has_role?('Moderator') -%>

 <small>
 <%= link_to 'Edit', edit_post_path(:id => post,
 :topic_id => @topic, :forum_id => @topic.forum) -%>

 <%= link_to 'Delete', post_path(:id => post, :topic_id => @topic,
 :forum_id => @topic.forum), :method => :delete,
 :confirm => 'Are you sure you wish to delete this post?' -%>
 </small>
 <% end -%>
 </td>
 <td class="post"><%= textilize(post.body) -%></td>
 </tr>
 <% end -%>
</table>

<% if @posts_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @posts_pages, :params => params %>
 </p>
<% end %>

Creating a New Post

Creating a new post that is simply a reply to an existing topic is similar to the previous create
topic method, except that we retrieve a topic and then add a new post to it. Again, we need to
make sure that the currently logged-in user’s id is saved with the post.

We also need to change the redirection targets, showing the list of posts for the current
topic and forum on a successful post create. The XML response to post creation is simply the
new post data, not the list of topics, so this can be left unchanged.

Open the app/controllers/posts_controller.rb file, and edit the create method as
follows:

def create
 @topic = Topic.find(params[:topic_id])
 @post = Post.new(:body => params[:post][:body],
 :topic_id => @topic.id,
 :user_id => logged_in_user.id)

Bradburne_8415C05.fm Page 138 Thursday, April 26, 2007 5:31 AM

mailto:@topic.forum
mailto:@topic.forum
mailto:@posts_pages.page_count
mailto:@topic.id

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 139

 respond_to do |format|
 if @post.save
 flash[:notice] = 'Post was successfully created.'
 format.html { redirect_to posts_path(:forum_id => @topic.forum_id,
 :topic_id => @topic) }
 format.xml { head :created, :location => post_path(@post) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @post.errors.to_xml }
 end
 end
end

The view for the Create New Post action is a very simple form with a text_area for the post
body. The form is sent to the posts_path with the relevant forum_id and topic_id.

Edit app/views/posts/new.rhtml to replace the generated form with the code in Listing 5-12.

Listing 5-12. The New Post View

<h2>New Post</h2>
<%= error_messages_for :post -%>

<h3>Topic: <%= @topic.name %></h3>

<% form_for :post, :url => posts_path(:forum_id => @topic.forum,
 :topic_id => @topic) do |f| -%>
 <p>Message:
<%= f.text_area :body, :rows => 8, :cols => 60 -%></p>
 <%= submit_tag 'Save' -%> or
 <%= link_to 'Cancel', topics_path(:id => @topic, :forum_id => @topic.forum) -%>
<% end -%>

Since this form expects the current topic object to be available as @topic, we need to edit
the new method in posts_controller.rb to retrieve the specified topic:

def new
 @topic = Topic.find(params[:topic_id], :include => :forum)
 @post = Post.new
end

By including the forum in the Topic.find method, we save an extra query to the database
when the new post form uses the forum variable.

Editing a Post

The edit post form is very similar to the new post form. We need to change posts_controller.rb
to also include the topic and forum data when it retrieves the post to be edited, reducing the
number of database queries.

Change the edit method as follows:

Bradburne_8415C05.fm Page 139 Thursday, April 26, 2007 5:31 AM

mailto:@post.save
mailto:@topic.forum_id
mailto:@post.errors.to_xml
mailto:@topic.name
mailto:@topic.forum
mailto:@topic.forum

140 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

def edit
 @post = Post.find(params[:id], :include => { :topic => :forum })
end

The post edit view is similar to the new post form, except that the post URL is different, as
it’s sending the data as an HTTP PUT to the individual post URL. Edit the view at app/views/
posts/edit.rhtml by replacing the generated form with the code in Listing 5-13.

Listing 5-13. The Edit Post View

<h2>Edit Post</h2>
<%= error_messages_for :post -%>
<h3>Topic: <%= @post.topic.name %></h3>
<% form_for :post, :url => post_path(:id => @post, :topic_id => @post.topic,
 :forum_id => @post.topic.forum),
 :html => {:method => :put} do |f| -%>
 <p>Message:
<%= f.text_area :body, :rows => 8, :cols => 60 -%></p>
 <%= submit_tag 'Save' -%> or
 <%= link_to 'Cancel', topics_path(:id => @post.topic,
 :forum_id => @post.topic.forum) -%>
<% end -%>

The update method of the controller needs to be changed to include the forum id and
topic id for the redirect to the list of posts.

Edit the update method of the posts_controller.rb file:

def update
 @post = Post.find(params[:id])

 respond_to do |format|
 if @post.update_attributes(params[:post])
 flash[:notice] = 'Post was successfully updated.'
 format.html { redirect_to posts_path(
 :forum_id => params[:forum_id],
 :topic_id => params[:topic_id]) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @post.errors.to_xml }
 end
 end
end

Bradburne_8415C05.fm Page 140 Thursday, April 26, 2007 5:31 AM

mailto:@post.topic.name
mailto:@post.topic
mailto:@post.topic.forum
mailto:@post.topic
mailto:@post.topic.forum
mailto:@post.update_attributes
mailto:@post.errors.to_xml

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 141

Deleting a Post

The destroy action for a post does exactly what we need; it simply destroys a given post. However,
we still need to change the redirection path to include the forum_id and topic_id.

Edit the successful redirection for the destroy method of posts_controller.rb:

def destroy
 @post = Post.find(params[:id])
 @post.destroy

 respond_to do |format|
 format.html { redirect_to posts_path(:forum_id => params[:forum_id],
 :topic_id => params[:topic_id]) }
 format.xml { head :ok }
 end
end

Adding a Link to the Sidebar Menu
We should also add a direct link to the forums from the RailsCoders sidebar menu. Open the
menu partial file, app/views/layouts/_menu.rhtml, and add the forum link as follows:

 <%= link_to 'Home', index_url %>
 <%= link_to 'News', articles_path %>
 <%= link_to 'Forums', forums_path %>

 <hr size="1" width="90%" align="left"/>

 <% if is_logged_in? %>
 ...

Testing the Topics and Posts
You can now try manually testing the forum with your browser. Go to the forums index at
http://localhost:3000/forums or by clicking the Forums link in the sidebar menu. You can
now click the forum that you created earlier to see the list of topics. Obviously, this list is empty
at the moment, so you should try creating a new topic and making sure that a new topic is created
with a first post.

After creating the topic, you will be redirected to the list of posts within this topic. Try replying
to this topic to make sure that you can add new posts to a topic.

The result of creating a new topic and adding another post is shown in Figure 5-3.

Bradburne_8415C05.fm Page 141 Thursday, April 26, 2007 5:31 AM

mailto:@post.destroy
http://localhost:3000/forums

142 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

Figure 5-3. The posts index action, showing the list of posts for a topic

Restricting Actions to Moderators
At the moment, all users can perform all the actions, including destructive ones, because even
if the links aren’t shown on the page, users can still access the destructive actions by entering
the correct URL. Obviously, this is not good, so we should add a before filter to make sure that
only moderator users can create, edit, and delete forums.

Add the before filter at the top of the forums_controller.rb, specifying that regular users
can run only the index and show methods:

class ForumsController < ApplicationController
 before_filter :check_moderator_role, :except => [:index, :show]
 ...

For the topics controller, we should ensure that a user is logged in to create a new topic
and that only moderators can edit or destroy topics. Add the following before filters to the
topics_controller.rb file:

class TopicsController < ApplicationController
 before_filter :check_moderator_role,
 :only => [:destroy, :edit, :update]
 before_filter :login_required, :except => [:index, :show]
 ...

Bradburne_8415C05.fm Page 142 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 143

The same permissions should be used for creating, editing, and destroying posts. Add the
before filters to posts_controller.rb:

class PostsController < ApplicationController
 before_filter :check_moderator_role,
 :only => [:destroy, :edit, :update]
 before_filter :login_required, :except => [:index, :show]

 # GET /posts
 # GET /posts.xml
 def index
 ...

Testing the Forum
The scaffold_resource generator also creates a selection of functional tests for you. If you
take a look in the tests/functional/ directory, you will see forums_controller_test.rb,
topics_controller_test.rb, and posts_controller_test.rb. These would be fine for testing a
simple resource, but since we have made these actions require an authenticated user and
created nested resources, the default tests will not work.

Before you write any tests, make sure that your test database structure is up to date. Run
the following command to load the latest version of your schema into the test database:

$ rake db:test:prepare

(in /Users/alan/Projects/rails/railscoders)

Creating Test Fixtures
Before we adapt these tests to suit our code, we should first create some fixtures. We also need
to add the moderator role to the roles fixtures along with a user who has that role.

Open test/fixtures/roles.yml, and add the moderator role to the end of the file:

moderator:
 id: 3
 name: Moderator

Next, open the users fixtures file, test/fixtures/users.yml, and add a moderator user:

moderator_user:
 id: 4
 username: moderator
 email: moderator@example.com
 hashed_password: 5994471abb01112afcc18159f6cc74b4f511b99806da59b3caf5a9c173cacfc5
 created_at: <%= 1.days.ago.to_s(:db) %>

Bradburne_8415C05.fm Page 143 Thursday, April 26, 2007 5:31 AM

mailto:moderator@example.com

144 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

Add the moderator role to the moderator user’s permissions by adding the following to
test/fixtures/roles_users.yml:

moderator:
 role_id: 3
 user_id: 4

We will now create valid fixtures for the forum, topic, and post tests. In the test/fixtures/
forums.yml file, add the following fixture:

valid_forum:
 id: 1
 name: Forum 1
 description: Just a test forum

Add the following valid topic fixture to test/fixtures/topics.yml:

valid_topic:
 id: 1
 forum_id: 1
 user_id: 1
 name: we have a forum
 created_at: <%= 1.days.ago.to_s(:db) %>

Then add a post fixture to test/fixtures/posts.yml:

valid_post:
 id: 1
 topic_id: 1
 user_id: 1
 body: we have a forum
 created_at: <%= 1.days.ago.to_s(:db) %>

Creating the Functional Tests
If you take a look at the functional tests, you will see that they test all of the actions in each of
the controller files. Since our application requires a moderator to be logged in to create or edit
forums and topics and a regular user to create posts, we need to add code to our tests to handle
basic authentication within a functional test.

When a user is logged in, we simply assign the user’s id to a session variable and give the
user a cookie with a reference to that session variable. Since this session variable is stored on
the server, not on the client, we can simply set the relevant session variable within our functional
tests to simulate a user being logged in. This is done by setting @request.session[:user] to the
id of the user we wish to be logged in.

Since we’re always looking for ways to make our code easier to read and understand, we
can put this in the test_helper.rb file, allowing us to easily simulate the user login procedure
for any test.

Open the test/test_helper.rb file. Add a helper function called login_as toward the end
of the file, where the comments direct you to insert your helper methods:

Bradburne_8415C05.fm Page 144 Thursday, April 26, 2007 5:31 AM

mailto:@request.session[:user

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 145

 # Add more helper methods to be used by all tests here...
 def login_as(user)
 @request.session[:user] = users(user).id
 end
end

Whenever you use this in a functional test, you need to make sure that the users fixtures
are loaded for that functional test file.

The Forums Functional Tests

Now take a look at the forums_controller_test.rb functional test file. The test_should_get_index
test should work fine without any changes since it does not require a user to be logged in and it
is the top level of our resource hierarchy and does not require any other parameters.

In order for the test_should_get_new test to work, we need to use the login_as function,
since only moderators can access the new forum page.

Before we can use the login_as function, we have to ensure that the users, roles, and
roles_users fixtures are loaded and available to the tests in this file. Near the top of the class,
add the necessary fixtures to the forums fixtures already there:

class ForumsControllerTest < Test::Unit::TestCase
 fixtures :forums, :users, :roles, :roles_users

Now you can use the login_as method as follows:

def test_should_get_new
 login_as(:moderator_user)
 get :new
 assert_response :success
end

The login_as method identifies the moderator user by the fixture name of the user we
require.

Add the same login_as(:moderator_user) statement at the top of all of the actions that
require a moderator user to be logged in: test_should_create_forum, test_should_get_edit,
test_should_update_forum, and test_should_destroy_forum.

We also need to update some of the tests to submit valid data. The test test_should_
create_forum needs to create a valid new forum for the assertions to be valid. Also, on the
successful creation of a new forum, the user is returned to the forum’s index action, rather than
the single forum view in the generated test. Edit the test as follows:

def test_should_create_forum
 login_as(:moderator_user)
 old_count = Forum.count
 post :create, :forum => { :name => 'testing',
 :description => 'just a test'}
 assert_equal old_count+1, Forum.count
 assert_redirected_to forums_path
end

Bradburne_8415C05.fm Page 145 Thursday, April 26, 2007 5:31 AM

mailto:@request.session[:user

146 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

The test test_should_show_forum also needs to be changed to expect a different response.
Our application performs a redirection to the list of topics when a user requests to view a
particular forum, so we need to change the assertion. Change the test_should_show_forum test
to the following:

def test_should_show_forum
 get :show, :id => 1
 assert_redirected_to :controller => 'topics', :action => 'index',
 :forum_id => 1
end

This now tests to make sure that the user is redirected to the list of topics.
The submitted data in test_should_update_forum also needs to be changed to send valid

data to the controller. Edit the test by changing the data submitted by the put command as follows:

def test_should_update_forum
 login_as(:moderator_user)
 put :update, :id => 1, :forum => { :name => 'testing', :description => 'a test'}
 assert_redirected_to forum_path(assigns(:forum))
end

Now try running these tests. From the command line, run just the functional tests for the
forums controller:

$ ruby test/functional/forums_controller_test.rb

Loaded suite test/functional/forums_controller_test
Started
.......
Finished in 0.712121 seconds.

7 tests, 14 assertions, 0 failures, 0 errors

The Topics Functional Tests

You have to make sure that all the required fixtures are loaded and available for the tests to
work. This time, we have to add the fixtures for the forums too.

All of the tests need to be altered since each action in the topic controller requires the
forum id to be specified. We also need to add the login_as(:moderator_user) statement where
it is required.

Open the topics controller’s functional tests, test/functional/
topics_controller_test.rb, and edit as shown in Listing 5-14.

Bradburne_8415C05.fm Page 146 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 147

Listing 5-14. The Topics Controller Functional Tests

require File.dirname(__FILE__) + '/../test_helper'
require 'topics_controller'

Re-raise errors caught by the controller.
class TopicsController; def rescue_action(e) raise e end; end

class TopicsControllerTest < Test::Unit::TestCase
 fixtures :topics, :forums, :users, :roles, :roles_users

 def setup
 @controller = TopicsController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_get_index
 get :index, {:forum_id => 1}
 assert_response :success
 assert assigns(:topics)
 end

 def test_should_get_new
 login_as(:moderator_user)
 get :new, {:forum_id => 1}
 assert_response :success
 end

 def test_should_create_topic
 login_as(:moderator_user)
 old_count = Topic.count
 post :create, {:forum_id => 1,
 :topic => { :name => 'a test topic' },
 :post => { :body => 'and the message'} }
 assert_equal old_count+1, Topic.count
 assert_redirected_to posts_path(:forum_id => 1, :topic_id => assigns(:topic))
 end

 def test_should_show_topic
 get :show, { :id => 1, :forum_id => 1 }
 assert_redirected_to :controller => 'posts', :action => 'index',
 :forum_id => 1, :topic_id => 1
 assert_redirected_to posts_path(:forum_id => 1, :topic_id => 1)
 end

Bradburne_8415C05.fm Page 147 Thursday, April 26, 2007 5:31 AM

148 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

 def test_should_get_edit
 login_as(:moderator_user)
 get :edit, { :id => 1, :forum_id => 1 }
 assert_response :success
 end

 def test_should_update_topic
 login_as(:moderator_user)
 put :update, {:id => 1, :forum_id => 1, :topic => { :name => 'a test' } }
 assert_redirected_to :controller => 'posts', :action => 'index',
 :forum_id => 1, :topic_id => 1
 end

 def test_should_destroy_topic
 login_as(:moderator_user)
 old_count = Topic.count
 delete :destroy, { :id => 1, :forum_id => 1 }
 assert_equal old_count-1, Topic.count
 assert_redirected_to topics_path(:forum_id => 1)
 end
end

The tests test_should_get_index, test_should_get_new, and test_should_get_edit simply
require the forum id to be added to the page request.

The test_should_show_topic, test_should_update_topic, and test_should_destroy_topic
tests also need the forum id added to the request, but these expect different redirections than
the generated tests.

If you think back to the Create New Topic page, you will remember that the create action
expects not only a topic name but also the body of a post, which will become the first post in
that topic. The test to create a new topic needs to make sure that a post is sent along with the
topic and forum_id, as you can see from test_should_create_topic in Listing 5-14.

You should now run the tests and make sure that all the tests pass as expected:

$ ruby test/functional/topics_controller_test.rb

Loaded suite test/functional/topics_controller_test
Started
.......
Finished in 1.970497 seconds.

7 tests, 14 assertions, 0 failures, 0 errors

The Posts Controller Functional Tests

In order to perform functional tests on the posts controller, we have to make changes similar to
those we made to the topics controller, since the posts resource is nested beneath the topic and
forum resources. You cannot specify a post without giving the topic id and forum id.

Bradburne_8415C05.fm Page 148 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 149

Open the posts functional tests file, test/functional/posts_controller_test.rb. For these
tests, we will add the required fixtures as for the previous functional tests, this time adding the
posts fixtures.

Creating a new post requires a valid user to be logged in but does not require moderator
privileges. To do this, we can use the user fixture :valid_user.

Edit the generated tests to match Listing 5-15. These tests use the necessary forum and
topic ids, along with logging in the required user.

Listing 5-15. The Posts Controller Functional Tests

require File.dirname(__FILE__) + '/../test_helper'
require 'posts_controller'

Re-raise errors caught by the controller.
class PostsController; def rescue_action(e) raise e end; end

class PostsControllerTest < Test::Unit::TestCase
 fixtures :posts, :topics, :forums, :users, :roles, :roles_users

 def setup
 @controller = PostsController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_get_index
 get :index, {:forum_id => 1, :topic_id => 1}
 assert_response :success
 assert assigns(:posts)
 end

 def test_should_get_new
 login_as(:valid_user)
 get :new, {:forum_id => 1, :topic_id => 1}
 assert_response :success
 end

 def test_should_create_post
 login_as(:valid_user)
 old_count = Post.count
 post :create, {:forum_id => 1, :topic_id => 1,
 :post => { :body => 'test message' } }
 assert_equal old_count+1, Post.count
 assert_redirected_to posts_path(:forum_id => 1, :topic_id => 1)
 end

Bradburne_8415C05.fm Page 149 Thursday, April 26, 2007 5:31 AM

150 CH AP T E R 5 ■ B U I L D I N G A D IS CU S S I ON FO R U M

 def test_should_show_post
 get :show, {:id => 1, :forum_id => 1, :topic_id => 1}
 assert_response :success
 end

 def test_should_get_edit
 login_as(:moderator_user)
 get :edit, :id => 1
 assert_response :success
 end

 def test_should_update_post
 login_as(:moderator_user)
 put :update, {:forum_id => 1, :topic_id => 1, :id => 1,
 :post => { :body => 'test message'} }
 assert_redirected_to posts_path(:forum_id => 1, :topic_id => 1)
 end

 def test_should_destroy_post
 login_as(:moderator_user)
 old_count = Post.count
 delete :destroy, :id => 1, :forum_id => 1, :topic_id => 1
 assert_equal old_count-1, Post.count
 assert_redirected_to posts_path(:forum_id => 1, :topic_id => 1)
 end
end

Run the tests to ensure that they work as expected:

$ ruby test/functional/posts_controller_test.rb

Loaded suite test/functional/posts_controller_test
Started
.......
Finished in 2.144483 seconds.

7 tests, 13 assertions, 0 failures, 0 errors

Further Development of the Discussion Forum
The code in this chapter provides a working discussion forum, but you may wish to adapt it or
extend it for your own needs.

If you take a look at the application logs while using the forum, you will notice that the
check to see if the user is a moderator is performed for each line of the table. This involves
performing two database queries. However, the result of this test is obviously going to be the
same for each row of the table. Therefore, you could check to see if the user is a moderator at

Bradburne_8415C05.fm Page 150 Thursday, April 26, 2007 5:31 AM

CH A PT E R 5 ■ B U I L D I N G A D IS CU S S I O N F OR U M 151

the top of the view file and store it in a variable. You could then reference the result throughout
the view without querying the database.

You should also think about how you could add more tests to the functional tests, especially
adding negative tests to ensure that a user who is not logged in cannot post a new message and
that nonmoderator users cannot edit or delete topics and forums.

Since forums are targets for spammers, depending on your site, you may wish to think about
adding a security feature called CAPTCHA. This ensures that the person posting a message is a
real user, not a computer program, but requires the user to type the letters shown in a distorted
image. Since it is somewhat difficult for a computer to interpret the image, it can catch a large
portion of automated spam bots.

■Note There is a handy Rails plug-in called validates_captcha that allows you to easily add CAPTCHAs
to your site. You can get the plug-in and read the documentation at http://dev.2750flesk.com/
validates_captcha.

You may also wish to build extra moderation tools, such as allowing your moderators to
quickly check the latest posts without having to look at each forum and topic in turn.

Some users may wish to subscribe to an RSS feed of a forum or topic; you could adapt the RSS
code from the previous chapter to provide an RSS XML response to the forum and topic models.

Summary
In this chapter, we built a discussion forum with multiple forums for different types of discus-
sion and moderation features allowing moderators to remove or edit posts.

To build this, we used the Rails scaffold_resource feature and then used the generated
scaffolding code to build the forums. We looked at how the forums, topics, and posts resources
can be nested and how they are related using the ActiveRecord belongs_to and has_many rela-
tionships. We also looked at how counter caches can be used to speed up your database queries.

In the next chapter, we will add user-created blogs to the system, allowing all of your users
to create their own blogs and create personalized templates for their blog pages using the liquid
templates plug-in.

Bradburne_8415C05.fm Page 151 Thursday, April 26, 2007 5:31 AM

http://dev.2750flesk.com

Bradburne_8415C05.fm Page 152 Thursday, April 26, 2007 5:31 AM

153

■ ■ ■

C H A P T E R 6

Building a Blogging Engine
with Web Services Support

In this chapter, we will build a blogging service for the site, allowing each user to create a blog
(a reverse chronological list of journal entries). Each blog entry allows comments to be left by
other members of the community. In the future, this could be extended to allow guest visitors
to the site to leave comments, too.

A large number of bloggers use desktop blogging tools rather than an in-browser form,
making the writing and editing of blog posts easier and faster than a web application. These
desktop blogging clients use one of a number of established blog APIs. Our blog service will
implement some of the features of these APIs, making it possible to use a desktop application
to add blog entries.

Specifying the Blog Engine Requirements
The blogging system will allow each user to create a number of blog entries and each entry can
have a number of comments. We will create two models, Entry and Comment.

Attributes common to an entire blog, such as its name and whether commenting should
be enabled, will belong to the User model. A user’s profile should show the three latest blog
entries that a user has made, along with a direct link to the user’s blog.

The Entry Model
Each blog entry will belong to a user, with each entry consisting of a title and the body text.
There will be a flag defining whether the post has been published or if it is just a draft. The
creation and last-update time of the entry will also be stored.

As we saw with the forum feature, we can use a counter cache to keep a record of how
many objects belong to another object. In this case, since we know that each entry object can
have many comments, we will use a counter cache to keep track of how many comments there
are for each entry.

The database fields necessary for the entry model are shown in Table 6-1.

Bradburne_8415C06.fm Page 153 Saturday, May 19, 2007 6:55 AM

154 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

The Comment Model
The Comment model simply holds the details of the comments left for each blog entry. Since
we only allow registered users of the site to leave comments, we simply store the user_id of the
user who left the comment along with details of the comment including which entry the comment
refers to, the body text, and when it was created.

The fields required for this model are shown in Table 6-2.

The User Model
We also need to update the User model to add a number of fields to support the blogging
features. Users can set titles for their blogs and enable or disable commenting on their blogs.
Also, we will add a counter cache to keep track of the number of entries that a user has created
in the blog. The additional fields required for the existing user model are shown in Table 6-3.

Table 6-1. The Database Fields Required for the Entry Model

Field Name Field Type Description

id integer The primary key

user_id integer The id of the user to whom the entry belongs

title string The title of the blog entry

body text The body text of the blog entry

comments_count integer The counter cache of the number of comments for
this entry

created_at datetime The date and time this entry was created

updated_at datetime The date and time this entry was last updated

Table 6-2. The Database Fields Required for the Comment Model

Field Name Field Type Description

id integer The primary key

entry_id integer The id of the entry that this comment belongs to

user_id integer The id of the user who created this comment

body text The body text of the comment

created_at datetime The date and time that this comment was created

Bradburne_8415C06.fm Page 154 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 155

The Entries Controller
The entries controller provides access to the user’s blog. Since each collection of entries belongs to
a specific user, this will be nested within the users resource via URLs such as /users/8/entries
and /users/8/entries/12.

We will, therefore, use a standard REST-style controller. The index method will provide the
standard blog view, and the show method will display a specific entry along with all comments
left for that entry.

The new, create, edit, update, and destroy methods will only be accessible by the owner of
the blog, allowing that user to maintain and post to the personal blog.

We will only implement the HTML-accessible version for the moment. We will not provide
a REST XML interface, since we will be creating an API using one of the standardized blogging APIs.

The Comments Controller
Since the entries controller’s show method will display all of the comments for a specified entry,
and we do not have a requirement to just show one specific comment, we do not have to imple-
ment the index or show methods.

Also, we do not have any support to allow users to edit their comments, so we do not need
the edit or update methods.

The new comment form will be displayed on the entry show view, so we do not require a
new method, but we do require a create method to actually save a new comment.

We must also implement the destroy method to allow the owner of a blog to delete any
comments if he or she wishes.

The Blogs Controller
To provide an entry portal to the blogs hosted by RailsCoders, we will create a blogs controller.
This will implement just one method, index. This method will list the ten most recently
updated blogs.

Blogging APIs
While it would be much simpler for us to define a new API for our blogging system using the
RESTful resources, there are a number of established APIs used for posting to blogs; for example,
Blogger, MetaWeblog, Movable Type, LiveJournal, and the Atom API. Some of these APIs have
been around since the first blogging communities started.

Table 6-3. The Additional Database Fields Required for the User Model

Field Name Field Type Description

entries_count integer The counter cache of the number of entries created by
this user.

blog_title string The title of the user’s blog.

enable_comments boolean Are blog comments enabled or not?

Bradburne_8415C06.fm Page 155 Saturday, May 19, 2007 6:55 AM

156 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

The Blogger API was the first standardized API but is lacking in many features, so it has
been mostly replaced by a combination of the MetaWeblog and Movable Type APIs. These
three APIs are generally complementary, and each provides a set of method calls to add certain
extra features. All three are implemented as XML-RPC (XML-Remote Procedure Call protocol)
web services.

Since these APIs have been around for a number of years and are very well established, we
should not define our own REST API; we’ll choose, instead, to implement one or more of the
existing APIs to allow existing blogging tools to work with our site’s blogs.

Our site will implement a subset of the Blogger API, providing the basics of creating,
editing, and publishing blog entries to the site. To do this, we will use part of Rails known as
the ActiveWebService. These libraries enable us to create or use SOAP or XML-RPC web services.

Building the Blogging System
We can use the generate script to build scaffolding code for the resources required for the blog
entries and comments. We will then build our blogging system on top of the generated code.

Before we add web service support, we should build the standard feature to be accessed
through the web or via our own REST API. This is not too different from the other resources that
we have built using resource scaffolding.

Generating the Blogging Scaffolding Code
Open a terminal window for your application, and run the generation script for each resource.

For the Entry resource, run the following:

$ ruby script/generate scaffold_resource Entry

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/entries
 exists test/functional/
 exists test/unit/
 create app/views/entries/index.rhtml
 create app/views/entries/show.rhtml
 create app/views/entries/new.rhtml
 create app/views/entries/edit.rhtml
 create app/views/layouts/entries.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/entry.rb
 create app/controllers/entries_controller.rb
 create test/functional/entries_controller_test.rb
 create app/helpers/entries_helper.rb
 create test/unit/entry_test.rb
 create test/fixtures/entries.yml
 exists db/migrate
 create db/migrate/013_create_entries.rb
 route map.resources :entries

Bradburne_8415C06.fm Page 156 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 157

For the comments resource, run this one:

$ ruby script/generate scaffold_resource Comment

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/comments
 exists test/functional/
 exists test/unit/
 create app/views/comments/index.rhtml
 create app/views/comments/show.rhtml
 create app/views/comments/new.rhtml
 create app/views/comments/edit.rhtml
 create app/views/layouts/comments.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/comment.rb
 create app/controllers/comments_controller.rb
 create test/functional/comments_controller_test.rb
 create app/helpers/comments_helper.rb
 create test/unit/comment_test.rb
 create test/fixtures/comments.yml
 exists db/migrate
 create db/migrate/014_create_comments.rb
 route map.resources :comments

We also need to add a migration to add the blog-specific settings— the blog title, a counter
cache field for the number of entries, and a flag to set whether the user allows comments—to the
User model.

Create a new migration to create these attributes in the User table:

$ ruby script/generate migration AddBlogSettingsToUser

 exists db/migrate
 create db/migrate/015_add_blog_settings_to_user.rb

We can also create the files for the blogs controller:

$ ruby script/generate controller Blogs

 exists app/controllers/
 exists app/helpers/
 create app/views/blogs
 exists test/functional/
 create app/controllers/blogs_controller.rb
 create test/functional/blogs_controller_test.rb
 create app/helpers/blogs_helper.rb

Bradburne_8415C06.fm Page 157 Saturday, May 19, 2007 6:55 AM

158 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Writing the Migrations
We can now write the database migrations to match the specification defined earlier.

The Entries Table

To edit the entries table, open db/migrate/013_create_entries.rb, and change the up method
as shown in Listing 6-1.

Listing 6-1. The Migration File to Create the Entries Table

class CreateEntries < ActiveRecord::Migration
 def self.up
 create_table :entries do |t|
 t.column :user_id, :integer
 t.column :title, :string
 t.column :body, :text
 t.column :comments_count, :integer, :null => false, :default => 0
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 end
 add_index :entries, :user_id
 end

 def self.down
 drop_table :entries
 end
end

This provides the database fields necessary according to the feature specification. Since
we will be accessing blog entries for a specific user, it is a good idea to create a database index
for this table on the user_id field. This will speed up the database queries when retrieving a
user’s blog entries.

The Comments Table

The comments table is defined in db/migrate/014_create_comments.rb. Edit this file as shown in
Listing 6-2.

Listing 6-2. The Migration File to Create the Comments Table

class CreateComments < ActiveRecord::Migration
 def self.up
 create_table :comments do |t|
 t.column :entry_id, :integer
 t.column :user_id, :integer
 t.column :guest_name, :string
 t.column :guest_email, :string
 t.column :guest_url, :string

Bradburne_8415C06.fm Page 158 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 159

 t.column :body, :text
 t.column :created_at, :datetime
 end
 add_index :comments, :entry_id
 end

 def self.down
 drop_table :comments
 end
end

Again, this migration adds an index, this time on the entry_id column. Comments will
always be tied to a particular entry, so this will help speed up the database queries for retrieving
comments.

The Blog Settings Migration

The settings for the blog will be stored within the User model. These columns are added through
the migration db/migrate/015_add_blog_settings_to_user.rb. Open the migration file, and
replace the generated code with the up and down migrations shown in Listing 6-3.

Listing 6-3. The Migration to Add the Necessary Fields to the User Table

class AddBlogSettingsToUser < ActiveRecord::Migration
 def self.up
 add_column :users, :entries_count, :integer, :null => false, :default => 0
 add_column :users, :blog_title, :string
 add_column :users, :enable_comments, :boolean, :default => true
 end

 def self.down
 remove_column :users, :entries_count
 remove_column :users, :blog_title
 remove_column :users, :enable_comments
 end
end

You can now run the database migration, creating the necessary tables, indexes, and addi-
tional columns by entering the following command:

$ rake db:migrate

== CreateEntries: migrating ===
-- create_table(:entries)
 -> 0.0041s
-- add_index(:entries, :user_id)
 -> 0.1199s
== CreateEntries: migrated (0.1243s) ==

Bradburne_8415C06.fm Page 159 Saturday, May 19, 2007 6:55 AM

160 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

== CreateComments: migrating ==
-- create_table(:comments)
 -> 0.0044s
-- add_index(:comments, :entry_id)
 -> 0.0087s
== CreateComments: migrated (0.0134s) ===

== AddBlogSettingsToUser: migrating ===
-- add_column(:users, :entries_count, :integer, {:default=>0, :null=>false})
 -> 0.0079s
-- add_column(:users, :blog_title, :string)
 -> 0.0088s
-- add_column(:users, :enable_comments, :boolean)
 -> 0.0085s
== AddBlogSettingsToUser: migrated (0.0257s) ==================================

The Models’ Relationships and Validations
We now need to define the relationships and validations for each of the new models that we
have created.

First of all, add the following has_many relationships to the list of relationships already
present in the app/models/user.rb model file:

class User < ActiveRecord::Base
 ...
 has_and_belongs_to_many :roles
 has_many :articles
 has_many :entries
 has_many :comments
 ...

Now add the reciprocal relationship and the comments relationship to the app/models/
entry.rb file. We can also add the validations for the title and body attributes.

class Entry < ActiveRecord::Base
 belongs_to :user, :counter_cache => true
 has_many :comments
 validates_length_of :title, :maximum => 255
 validates_length_of :body, :maximum => 10000
end

This also declares that the number of entries per user should use a counter cache.
Edit the Comment model at app/models/comment.rb, and add the relationships with the

Entry and User models, along with a validation on the length of the body attribute:

Bradburne_8415C06.fm Page 160 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 161

class Comment < ActiveRecord::Base
 belongs_to :entry, :counter_cache => true
 belongs_to :user
 validates_length_of :body, :maximum => 1000
end

Creating the Resource Mapping
We now need to add the resource URL mappings to the routes configuration. Edit the config/
routes.rb file. You will need to delete the automatically generated map.resource statements for
entries and comments and add new mappings for both entries and comments nested under the
users resource. We also need to add the mapping for the blogs resource at the root level. These
changes are shown in Listing 6-4.

Listing 6-4. The Mappings for the Entries, Comments, and Blogs Resources

...
map.resources :pages
map.resources :blogs

map.resources :users, :member => { :enable => :put } do |users|
 users.resources :permissions
 users.resources :entries do |entry|
 entry.resources :comments
 end
end
...

The Blog Name Helper Method
In the migration, we defined a new field for the user model for the title or name of the blog.
When a new user signs up, this value is going to be null, so we need to make sure that we can
provide a default value to the entry views.

The simplest way to do this is to create a helper method. Since this will normally only be
used by the entry views, this should be placed in the app/helpers/entries_helper.rb file. If you
wanted the helper method to be available to all views, you should place the method in the
application_helper.rb file.

Open the entries_helper.rb file, and add a helper method called blog_title as shown in
Listing 6-5.

Listing 6-5. The Entries Helper File

module EntriesHelper
 def blog_title(user)
 user.blog_title ||= user.username
 end
end

Bradburne_8415C06.fm Page 161 Saturday, May 19, 2007 6:55 AM

162 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

This method takes a user object as a parameter and returns either the blog_title field
from the database, if it is not null, or the user’s username, if the blog_title field is null. The ||=
in the method is simply a shorthand way of specifying this.

Adding the Blog Title to the Edit User Profile Page
To allow users to change the titles of their blogs, we need to add the blog title attribute to the
edit user profile page.

Open the existing user profile, and edit the page app/views/users/edit.rhtml by adding
the blog title field, as shown in Listing 6-6.

Listing 6-6. Adding the Blog Title to the Edit User Profile Page

<h2>Edit your account</h2>

<p><%= link_to 'Show my profile', user_path(@user) %></p>

<%= error_messages_for :user %>

<% form_for :user,
 :url => user_url(@user),
 :html => { :method => :put } do |f| -%>
 <p>Email:
<%= f.text_field :email, :size => 60 %></p>
 <p>Password:
<%= f.password_field :password, :size => 60 %></p>
 <p>Password Confirmation:

 <%= f.password_field :password_confirmation, :size => 60 %></p>
 <p>Blog Title:
<%= f.text_field :blog_title, :size => 60 %></p>
 <p>Profile:
<%= f.text_area :profile, :rows => 6, :cols => 60 %></p>
 <%= submit_tag 'Save' %>
<% end -%>

We can try this out now by editing a user profile and ensuring that the new title is saved
correctly.

Open a browser, and log into the application as a regular user. Click the My Profile link in
the sidebar menu, and enter a title for your blog in the relevant field, as shown in Figure 6-1.

Save the changes to your profile, and check that the attribute has been changed in the
database, either by checking the database using SQL, a database GUI tool, or the Rails console,
as follows:

$ ruby script/console

Loading development environment.

Bradburne_8415C06.fm Page 162 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 163

>> User.find_by_username('alan').blog_title

=> "Alan's Rails Projects Blog"

Figure 6-1. Editing your blog title

The Controllers and Views
Before we start thinking about the web services or custom templates, we should first build the
controller code and some basic views that allow us to use the blog functionality and test that
everything is working correctly. When we are happy with this, we can move on to building the
web services feature.

Removing the Generated Layouts

First, delete the automatically generated layout templates. As you saw in the previous chapter,
they allow you to define a different layout for each controller. Since we want to use the stan-
dard layout file for the whole site, delete the entries.rhtml and comments.rhtml files in app/
views/layouts/.

Bradburne_8415C06.fm Page 163 Saturday, May 19, 2007 6:55 AM

164 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

The Entries Controller

The entries controller is a simple nested resource. When viewing a blog, we want to be able to
view any user’s blog index action and any show action, showing the entries of the user specified
in the URL. However, when a user creates a new blog entry, it should be saved as belonging to
the logged-in user, irrespective of the user id parameter.

We need to restrict all methods except index and show to logged-in users only. The code
created by the scaffold_resource generator is a good starting point. Alter the app/controllers/
entries_controller.rb file as shown in Listing 6-7, creating, showing, and editing entries based
on the user id and entry id. The index method uses the built-in Rails paginator, showing ten entries
at a time.

Listing 6-7. The Entries Controller File

class EntriesController < ApplicationController
 before_filter :login_required, :except => [:index, :show]

 def index
 @user = User.find(params[:user_id])
 @entry_pages = Paginator.new(self, @user.entries_count, 10, params[:page])
 @entries = @user.entries.find(:all, :order => 'created_at DESC',
 :limit => @entry_pages.items_per_page,
 :offset => @entry_pages.current.offset)
 end

 def show
 @entry = Entry.find_by_id_and_user_id(params[:id],
 params[:user_id],
 :include => [:user, [:comments => :user]])
 end

 def new
 @entry = Entry.new
 end

 def edit
 @entry = @logged_in_user.entries.find(params[:id])
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end

 def create
 @entry = Entry.new(params[:entry])

Bradburne_8415C06.fm Page 164 Saturday, May 19, 2007 6:55 AM

mailto:@user.entries_count
mailto:@user.entries.find(:all
mailto:@entry_pages.items_per_page
mailto:@entry_pages.current.offset
mailto:@logged_in_user.entries.find

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 165

 if logged_in_user.entries << @entry
 flash[:notice] = 'Entry was successfully created.'
 redirect_to entry_path(:user_id => logged_in_user,
 :id => @entry)
 else
 render :action => "new"
 end
 end

 def update
 @entry = @logged_in_user.entries.find(params[:id])

 if @entry.update_attributes(params[:entry])
 flash[:notice] = 'Entry was successfully updated.'
 redirect_to entry_path(logged_in_user.id, @entry)
 else
 render :action => "edit"
 end
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end

 def destroy
 @entry = @logged_in_user.entries.find(params[:id])
 @entry.destroy

 redirect_to entries_path
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end
end

If you look in the show method, you will see that I have specified a number of models within
the :include parameter. This tells ActiveRecord that I will need to access the user that belongs
to the entry, along with all of the comments and the user models that belong to these comments.
This will generate a complex SQL query that retrieves all of the related models at once.

You should take a look at the Rails development log that the SQL generated if you want to
understand the SQL query that ActiveRecord generates. Try comparing this with a query that
does not use the include statement to see the database access that would be made otherwise.

The New Entry View

When a user creates a new blog entry, we simply want to offer a very simple form to allow entry
of the title and the body text.

Open app/views/entries/new.rhtml, and modify the generated view as shown in Listing 6-8.

Bradburne_8415C06.fm Page 165 Saturday, May 19, 2007 6:55 AM

mailto:@logged_in_user.entries.find
mailto:@entry.update_attributes
mailto:@logged_in_user.entries.find
mailto:@entry.destroy

166 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Listing 6-8. The New Blog Entry View File

<h1>New Blog Entry</h1>

<%= error_messages_for :entry %>

<% form_for(:entry, :url => entries_path) do |f| %>
 <p>Title:
<%= f.text_field :title, :size => 40 -%></p>
 <p>Blog Entry:
<%= f.text_area :body, :rows => 10, :cols => 60 -%></p>
 <p><%= submit_tag "Create" %></p>
<% end %>

<%= link_to 'Back', entries_path %>

Before we can take a look at this, we should create the show view, which the controller redirects
the user to after creating a blog entry.

The Entries Show View

The show method should show just the one entry and list all of the comments, along with the
user who left each comment, the time and date it was left, and the body text.

We will also include the new comment form on this page. It allows a visitor to the blog to
quickly add a comment without having to navigate to another page.

Open the show action view at app/views/entries/show.rhtml, and edit it as shown in
Listing 6-9.

Listing 6-9. The Show Blog Entry View File

<h1>
 <%= link_to blog_title(@entry.user), entries_path(:user_id => @entry.user) %>
</h1>

<h2><%= @entry.title %></h2>

<p><%= textilize(@entry.body) %></p>

<h3>Comments</h3>
<% @entry.comments.each do |comment| -%>
 <div class="comment">
 <p class="commentfrom">At <%= comment.created_at.to_s(:short) %>,
 <%= comment.user.username %> said:</p>
 <p class="commentbody"><%=h comment.body %></p>
 </div>
<% end -%>

Bradburne_8415C06.fm Page 166 Saturday, May 19, 2007 6:55 AM

mailto:title(@entry.user
mailto:@entry.user
mailto:@entry.title
mailto:textilize(@entry.body
mailto:@entry.comments.each

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 167

<h3>Leave a comment</h3>
<%= error_messages_for :comment %>
<% form_for(:comment, :url => comments_path(:user_id => @entry.user,
 :entry_id => @entry)) do |f| -%>
 <p><%= f.text_area :body, :rows => 4, :cols => 40 %></p>
 <p><%= submit_tag 'Save Comment' -%></p>
<% end -%>

Since we have not yet created the comments controller, we cannot actually add comments
to the entry, but we can try out the entry creation. Adding a link to the sidebar menu directing
users to the entry creation page will make it quick and easy for users to add blog entries. We will
also add a link to the blogs controller, which we will develop later in this chapter.

Open the sidebar menu partial view file, app/views/layouts/_menu.rhtml, and add the link
to the section shown only to logged-in users and the link to the blogs controller as shown in
Listing 6-10.

Listing 6-10. The Create New Blog Post Link in the Menu Partial File

 <%= link_to 'Home', index_url %>
 <%= link_to 'News', articles_path %>
 <%= link_to 'Forums', forums_path %>
 <%= link_to 'Blogs', blogs_path %>

 <hr size="1" width="90%" align="left"/>

 <% if is_logged_in? %>
 Logged in as: <i><%= logged_in_user.username -%></i>
 <%= link_to 'My Profile', edit_user_path(logged_in_user) -%>

 <%= link_to 'New Blog Post', new_entry_path(
 :user_id => logged_in_user) -%>

 <%= link_to 'Logout', {:controller => 'account', :action => 'logout'},
 :method => :post %>
 <% else %>
 <%= link_to 'Signup', :controller => 'users', :action => 'new' %>
 <%= link_to 'Login', :controller => 'account', :action => 'login' %>
 <% end %>
 ...

Bradburne_8415C06.fm Page 167 Saturday, May 19, 2007 6:55 AM

mailto:@entry.user

168 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Now, we’ll try creating a blog entry using this link and ensure that it displays correctly with
the show method.

Make sure that you application is running and log into the site as a regular user. Click the
New Blog Post link in the sidebar menu. You will be prompted to create a new blog post, as
shown in Figure 6-2.

Figure 6-2. Creating a new blog post

Enter the content of a new blog post, remembering that you can use Textile markup to add
markup to the entry. For instance, you can markup using *bold text*, _italicized text_, or add
links like "this":http://railscoders.net.

Saving the entry will redirect you to the show method, displaying the new blog entry along
with a comment entry box, as shown in Figure 6-3.

We can now add the views for the other methods in the entries controller.

Bradburne_8415C06.fm Page 168 Saturday, May 19, 2007 6:55 AM

http://railscoders.net

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 169

Figure 6-3. A blog entry

The Entries Index View

The index action simply finds the latest ten entries for the specified user (or ten entries with an
offset if a page number is specified). So for the index page, we simply want to cycle through the
entries, showing the title, the body of the entry, and the number of comments that have been
left. We also need to provide links to view the comments and to edit or delete the entry if the
user that is logged in is viewing their own blog.

Open app/views/entries/index.rhtml, and edit it as shown in Listing 6-11.

Listing 6-11. The Entries Index View

<h1><%= link_to blog_title(@user), entries_path(:user_id => @user.id) %></h1>

<% @entries.each do |entry| -%>
 <div class="blogentry">
 <h2><%= link_to entry.title,
 entry_path(:user_id => entry.user, :id => entry) %></h2>

Bradburne_8415C06.fm Page 169 Saturday, May 19, 2007 6:55 AM

mailto:@user.id
mailto:@entries.each

170 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

 <% if is_logged_in? and logged_in_user.id == @user.id -%>
 <div clas="blogoptions">
 <%= link_to 'Edit', edit_entry_path(:user_id => entry.user, :id => entry) %>
 <%= link_to 'Destroy', entry_path(:user_id => entry.user, :id => entry),
 :confirm => 'Are you sure?', :method => :delete %>
 </div>
 <% end -%>

 <div class="blogentrybody">
 <%= textilize(entry.body) %>
 </div>

 <div class="blognumcomments">
 <p><%= link_to pluralize(entry.comments_count, 'comment'),
 entry_path(:user_id => entry.user, :id => entry) -%></p>
 </div>
 </div>
<% end -%>

<% if @entry_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @entry_pages, :params => params %>
 </p>
<% end %>

For each entry, the number of comments for that entry is also shown. This uses the pluralize
helper to automatically display the plural form of the word “comment” if there is more than
one comment. The number of comments is cached in the comments_count attribute of the entry’s
database record, saving us a large number of database queries. This is linked to the show
method of the entry, as this method displays the list of comments for that entry.

Obviously, since we haven’t written the comments controller yet, there is no way to add
comments to an entry.

The pagination links are shown if there is more than one page of articles.
You can now take a look at the index view by clicking on the title of the blog on the show

entry page. You should try adding a few extra articles to check that all of the entries are shown
correctly, along with pagination when needed.

The Edit Entry View

Editing an entry is almost identical to the new entry view except that the form is posted with
different parameters and with an HTTP PUT rather than a POST.

Open app/views/entries/edit.rhtml, and edit as shown in Listing 6-12.

Bradburne_8415C06.fm Page 170 Saturday, May 19, 2007 6:55 AM

mailto:@user.id
mailto:@entry_pages.page_count

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 171

Listing 6-12. The Entry Edit View File

<h1>Editing entry</h1>

<%= error_messages_for :entry %>

<% form_for(:entry,
 :url => entry_path(:user_id => logged_in_user.id, :id => @entry),
 :html => { :method => :put }) do |f| %>
 <p>Title:
<%= f.text_field :title, :size => 40 -%></p>
 <p>Blog Entry:
<%= f.text_area :body, :rows => 10, :cols => 60 -%></p>
 <p><%= submit_tag "Save" %> or <%= link_to 'cancel', entries_path %></p>
<% end %>

You can now try editing an existing blog entry by clicking on the edit link from the index
and altering the entry. Click Save Comment to save the updated entry, and check that the
content has changed on the show entry page.

Testing the Entries Controller
At this point, we can automate the testing of the entries controller. As before, we should create
a fixture to test with. Open test/fixtures/entries.yml, remove the generated empty fixtures,
and add the following entry fixture:

valid_entry:
 id: 1
 user_id: 1
 title: first post
 body: blah blah
 created_at: <%= 1.days.ago.to_s(:db) %>
 updated_at: <%= 1.days.ago.to_s(:db) %>

We simulate a login by a user where necessary to perform the relevant tests. Open test/
functional/entries_controller_test.rb, and replace it with the code in Listing 6-13.

Listing 6-13. The Entries Controller Functional Tests File

require File.dirname(__FILE__) + '/../test_helper'
require 'entries_controller'

Re-raise errors caught by the controller.
class EntriesController; def rescue_action(e) raise e end; end

class EntriesControllerTest < Test::Unit::TestCase
 fixtures :entries, :users

Bradburne_8415C06.fm Page 171 Saturday, May 19, 2007 6:55 AM

172 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

 def setup
 @controller = EntriesController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_get_index
 get :index, {:user_id => 1}
 assert_response :success
 assert assigns(:entries)
 end

 def test_should_get_new
 login_as(:valid_user)
 get :new, {:user_id => 1}
 assert_response :success
 end

 def test_should_create_entry
 login_as(:valid_user)
 old_count = Entry.count
 post :create, :entry => {:title => 'test entry', :body => 'a blog entry'}
 assert_equal old_count+1, Entry.count
 assert_redirected_to entry_path(:user_id => 1, :id => assigns(:entry))
 end

 def test_should_show_entry
 get :show, {:user_id => 1, :id => 1}
 assert_response :success
 end

 def test_should_get_edit
 login_as(:valid_user)
 get :edit, {:user_id => 1, :id => 1}
 assert_response :success
 end

 def test_should_update_entry
 login_as(:valid_user)
 put :update, {:user_id => 1, :id => 1,
 :entry => {:title => 'test entry', :body => 'a blog entry'} }
 assert_redirected_to entry_path(:user_id => 1, :id => 1)
 end

Bradburne_8415C06.fm Page 172 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 173

 def test_should_destroy_entry
 login_as(:valid_user)
 old_count = Entry.count
 delete :destroy, {:user_id => 1, :id => 1}
 assert_equal old_count-1, Entry.count
 assert_redirected_to entries_path
 end
end

Before running these tests, bring the test database schema up to date with the following
command:

$ rake db:test:prepare

Now, run the functional tests:

$ ruby test/functional/entries_controller_test.rb

Loaded suite test/functional/entries_controller_test
Started
.......
Finished in 0.829253 seconds.

7 tests, 13 assertions, 0 failures, 0 errors

Great, our tests pass! You should consider adding some negative tests to make sure that
users cannot edit or delete another user’s blog entries.

Now that we have the blog entries working, we can add code to save and manage
comments for the entries.

Creating and Testing the Comments Controller
If you look back at our specification and how we want the comments feature to work, it is actually
very straightforward. We need to create a comment only on submission of the new comment
form, which we have already added to the show entry view.

Adding the Comments Controller

We do not need to edit existing comments, so the edit and update methods are not necessary.
Also, since we show all of the comments on the entry view page, we do not need to implement
the index method. We should keep the destroy method and allow only the owner of the entry
to delete a comment.

Therefore, we only really need to implement the create and destroy methods. Open the
comments controller, app/controllers/comments_controller.rb, and edit the generated
controller as shown in Listing 6-14.

Bradburne_8415C06.fm Page 173 Saturday, May 19, 2007 6:55 AM

174 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Listing 6-14. The Comments Controller File

class CommentsController < ApplicationController
 before_filter :login_required

 def create
 @entry = Entry.find_by_user_id_and_id(params[:user_id],
 params[:entry_id])
 @comment = Comment.new(:user_id => @logged_in_user.id,
 :body => params[:comment][:body])

 if @entry.comments << @comment
 flash[:notice] = 'Comment was successfully created.'
 redirect_to entries_path(:user_id => @entry.user,
 :entry_id => @entry)
 else
 render :controller => 'entries', :action => 'show',
 :user_id => @entry.user, :entry_id => @entry
 end
 end

 def destroy
 @entry = Entry.find_by_user_id_and_id(@logged_in_user.id,
 params[:entry_id],
 :include => :user)
 @comment = @entry.comments.find(params[:id])
 @comment.destroy

 redirect_to entry_path(:user_id => @entry.user.id,
 :id => @entry.id)
 end
end

Since both of these methods redirect or show a view from the entries controller as a response,
we do not need to create or edit any views for the comments controller.

However, we should add a link to the comment’s delete action from the show entry page.
This will enable blog owners to easily delete any comments they do not wish to be shown on
their blogs.

Bradburne_8415C06.fm Page 174 Saturday, May 19, 2007 6:55 AM

mailto:@logged_in_user.id
mailto:@entry.comments
mailto:@entry.user
mailto:@entry.user
mailto:id(@logged_in_user.id
mailto:@entry.comments.find
mailto:@comment.destroy
mailto:@entry.user.id
mailto:@entry.id

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 175

Go back to app/views/entries/show.rhtml, and add the bold code in Listing 6-15 to the
view file. The Delete this Comment link will only be shown if the user viewing the entry is the
owner of the blog. Even if you did try to delete a comment that didn’t belong to your blog, you
couldn’t, because the comments controller’s destroy method only allows you to delete comments
that belong to your blog.

Listing 6-15. Modification to the Entry Show View to Add the Delete Link

<h3>Comments</h3>
<% @entry.comments.each do |comment| -%>
 <div class="comment">
 <p class="commentfrom">At <%= comment.created_at.to_s(:short) %>,
 <%= comment.user.username %> said:</p>
 <% if is_logged_in? and logged_in_user.id == @entry.user.id -%>
 <p class="commentdelete">
 <%= link_to 'Delete this comment',
 comment_path(
 :user_id => @entry.user,
 :entry_id => @entry.id,
 :id => comment.id),
 :confirm => 'Are you sure?',
 :method => :delete -%>
 </p>
 <% end -%>
 <p class="commentbody"><%=h comment.body %></p>
 </div>
<% end -%>

Now, when the entry page is displayed for the owner of the blog, a Delete link is shown by
each comment.

Try this out by creating a new comment in your blog. Open a blog entry from the index
view by clicking either the entry title or the “0 comments” link.

On the entry view page, leave a comment in the text box, and click the Save Comment
button. The comment will be saved and the article redisplayed along with the new comment.

Click the blog title to return to the blog index view. The number of comments shown along
with the list of blog entries will now show that a comment has been left on the relevant entry,
as shown in Figure 6-4.

Bradburne_8415C06.fm Page 175 Saturday, May 19, 2007 6:55 AM

mailto:@entry.comments.each
mailto:@entry.user.id
mailto:@entry.user
mailto:@entry.id

176 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Figure 6-4. The blog entries index view

Testing the Comments Controller

As before, try using the feature through your browser, adding comments both as yourself and
as other users. Next, try deleting comments from your blog.

To automate this testing, add a comment fixture to the file test/fixtures/comments.yml:

valid_comment:
 id: 1
 entry_id: 1
 user_id: 2
 body: a quick comment
 created_at: <%= 1.days.ago.to_s(:db) %>

Create the functional tests as in the previous chapters. This time, we only have to build
tests for the index, create, and destroy actions. Open test/functionals/comments_controller_
test.rb, and replace the generated code with the required functional tests as shown in Listing 6-16.

Listing 6-16. The Comments Functional Tests

require File.dirname(__FILE__) + '/../test_helper'
require 'comments_controller'

Re-raise errors caught by the controller.
class CommentsController; def rescue_action(e) raise e end; end

class CommentsControllerTest < Test::Unit::TestCase
 fixtures :comments, :users, :entries

Bradburne_8415C06.fm Page 176 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 177

 def setup
 @controller = CommentsController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_create_comment
 login_as(:valid_user)
 old_count = Comment.count
 post :create,{:user_id => 1, :entry_id => 1,
 :comment => {:body => 'that is great'}}
 assert_equal old_count+1, Comment.count
 assert_redirected_to entry_path(:user_id => 1, :id => 1)
 end

 def test_should_destroy_comment
 login_as(:valid_user)
 old_count = Comment.count
 delete :destroy, :user_id => 1, :entry_id => 1, :id => 1
 assert_equal old_count-1, Comment.count
 assert_redirected_to entry_path(:user_id => 1, :id => 1)
 end
end

Now, run your functional tests along with all of the functional tests for the application
using the rake command:

$ rake test:functionals

Started
...ZWRpdG9yOjEyMzQ1
...
Finished in 1.388685 seconds.

49 tests, 102 assertions, 0 failures, 0 errors

This should give you some confidence that everything is still working as expected in the
application and that nothing has been broken with our new code.

Adding the Latest Blog Entries to User Profiles
We can now add code to show the last three entries to a user’s blog on the profile page. To do
this, we simply need to update the show method of the users controller to retrieve the latest
entries and add code to display them in the profile view.

Open the file app/controllers/users_controller.rb, and modify the show method as follows:

Bradburne_8415C06.fm Page 177 Saturday, May 19, 2007 6:55 AM

178 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

def show
 @user = User.find(params[:id])
 @entries = @user.entries.find(:all, :limit => 3,
 :order => 'created_at DESC')
end

To display these on the profile along with a link to the user’s blog page, open the corre-
sponding view file, app/views/users/show.rhtml, and add the necessary view code as follows:

<h2><%= @user.username %></h2>
<p>Member since <%= @user.created_at.to_s(:long) %></p>
<p><%= @user.profile %></p>

<h3>Blog Entries</h3>
<ul id="entries">
 <% for entry in @entries %>

 <%= link_to entry.title,
 entry_path(:user_id => @user, :id => entry) %>

 <% end %>

<p>
 <%= link_to "See all of #{@user.username}'s blog",
 entries_path(:user_id => @user) %>
</p>

Now log into the application, and take a look at your profile page by clicking the My Profile
link followed by “Show my profile”. The last three blogs posts are now shown on your profile
page.

The Blogs Controller
We now need to create the blogs controller, giving us a portal into the blogs hosted by the site.
We will retrieve the ten most recent blog entries and show links to view the blogs, along with
the name of the blog author, the title of the latest blog entry, and when the entry was posted.

Open the generated blogs controller file, app/controllers/blogs_controller.rb, and
replace the generated code with that shown in Listing 6-17.

Bradburne_8415C06.fm Page 178 Saturday, May 19, 2007 6:55 AM

mailto:@user.entries.find(:all
mailto:@user.username
mailto:@user.created_at.to_s(:long
mailto:@user.profile

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 179

Listing 6-17. The Blogs Controller File

class BlogsController < ApplicationController
 def index
 @entry_pages = Paginator.new(self, Entry.count, 10, params[:page])
 @entries = Entry.find(:all,
 :limit => @entry_pages.items_per_page,
 :offset => @entry_pages.current.offset,
 :order => 'entries.created_at DESC',
 :include => :user)
 end
end

This retrieves the ten latest entries using the Rails paginator, allowing us to use the pagina-
tion links to navigate through the entries.

Next, create the index view file, app/views/blogs/index.rhtml, and enter the code in
Listing 6-18.

Listing 6-18. The Blogs Index View File

<h2>Recently updated blogs</h2>

<% @entries.each do |entry| %>
 <p>
 <%= link_to entry.user.username, entries_url(:user_id => entry.user) %>

 '<%= entry.title %>' was posted <%= time_ago_in_words(entry.created_at) %> ago
 </p>
<% end %>

<% if @entry_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @entry_pages, :params => params %>
 </p>
<% end %>

Now take a look at this view in the application. Click the Blogs link in the sidebar to see the
list of the latest blog entries, as shown in Figure 6-5.

Bradburne_8415C06.fm Page 179 Saturday, May 19, 2007 6:55 AM

mailto:@entry_pages.items_per_page
mailto:@entry_pages.current.offset
mailto:@entries.each
mailto:@entry_pages.page_count

180 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Figure 6-5. The blogs index view

Creating an XML-RPC Blogging Interface
As discussed in the specification, we need to create a number of API methods to allow other
existing applications to interface with our blogging system. The methods that we need to
implement in order to provide basic blogging support are shown in Table 6-4.

Table 6-4. The Blogger API Methods

Method Description

blogger.getUsersBlogs(appkey,
username, password)

Returns information about the blogs this
user is able to publish to; necessary for some
blogging clients

blogger.getUserInfo(appkey,
username, password)

Returns information about a specific user

blogger.getPost(appkey, postid,
username password)

Returns the content of a specific blog post

blogger.getRecentPosts(appkey, blogid,
username, password, number_of_posts)

Returns a list of the most recent blog posts
in a particular blog

blogger.newPost(appkey, blogid, username,
password, content, publish)

Creates a new post on a particular blog

blogger.editPost(appkey, postid, username,
password, content, publish)

Changes the content of a blog post

Bradburne_8415C06.fm Page 180 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 181

Some of these parameters do not apply directly to our blogging feature, but we can adapt
them to make sure that our API responds in an applicable manner. For example, in our system,
each user can have only one blog, but the Blogger API makes it possible for one user to have
many different blogs with the same username and password. We will use the user’s id value as
the blog id to prevent duplicates.

Also, as part of the API calls, the Blogger API needs you to send an attribute called appkey.
This is normally a unique string for each application that wants to use the API; it helps the
service keep track of users of the system. However, we will ignore this value.

Action Web Service
Action Web Service (AWS) provides Rails with support for SOAP and XML-RPC web services,
allowing you to easily implement web services as part of your application. To allow you to
implement multiple APIs in your application, different methods of dispatching the web service
request are possible within Rails. The method you chose depends on the nature of the API that
you are implementing.

■Note In future releases of Rails, Action Web Service will be removed from the Rails core codebase and be
made available as a plug-in.

Since the Blogger API is just one of the possible blogging APIs in common use, and it is
commonly used in conjunction with the other blogging APIs, the method names are prefixed
with the name of the service, as in blogger.newPost. The MetaWeblog API methods are named
using the MetaWeblog service name, as in metaWeblog.newMediaObject. These multiple APIs
are always accessed through a common endpoint.

The various Rails dispatching methods allow you to use either multiple endpoint URLs
for each API or one endpoint that can delegate different API methods to various controllers.
Specifically, the AWS layered dispatch method allows multiple APIs to use one endpoint, indi-
cating the name of the API as a prefix to the method name, providing the facilities we need to
correctly implement the Blogger API.

Generating the Web Service Code
When creating an XML-RPC or SOAP web service in Rails, there is a generator available to help
you get started. In a terminal window, enter the following command from the application’s
root directory:

$ ruby script/generate web_service Backend

 exists app/apis/
 exists app/controllers/
 exists test/functional/
 create app/apis/backend_api.rb
 create app/controllers/backend_controller.rb
 create test/functional/backend_api_test.rb

Bradburne_8415C06.fm Page 181 Saturday, May 19, 2007 6:55 AM

182 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

As you can see, this generates a number of files for you, allowing you to start to build your
own web service.

Defining the API Method Calls
In the app/apis/ directory, we define the API calls that can be made to our application. The
generator script created an API definition file called app/apis/backend_api.rb. But since we
will be using the layered dispatch method, we need an API definition file to correspond to
blogger_api rather than the generated backend_api. Therefore, you can delete the app/apis/
backend_api.rb file.

Within the API definition files, we define the API calls that can be made, along with the
parameters that they expect and what they return.

In the case of the getUsersBlogs call, we need to return a struct containing data about the
user and the blog. This struct is simply an XML data structure. Since we need to tell Rails that
we will be returning this particular data structure, we need to define it within our application.

Create a new directory called app/apis/blogger_structs, and within it, create a new file
called blog.rb to define the blog struct that we need to return. In app/apis/blogger_structs/
blog.rb, add the following struct definition:

module BloggerStructs
 class Blog < ActionWebService::Struct
 member :url, :string
 member :blogId, :string
 member :blogName, :string
 end
end

Next, create the definition of a user struct by creating the file app/apis/blogger_structs/
user.rb and adding the following definition:

module BloggerStructs
 class User < ActionWebService::Struct
 member :userId, :string
 member :username, :string
 member :email, :string
 member :url, :string
 end
end

Create a blog post struct definition, app/apis/blogger_structs/post.rb, and add the
following:

module BloggerStructs
 class Post < ActionWebService::Struct
 member :userId, :string
 member :postId, :string
 member :dateCreated, :string
 member :content, :string
 end
end

Bradburne_8415C06.fm Page 182 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 183

We now need to define the API methods themselves. Create the file app/apis/blogger_api.rb,
and add the code shown in Listing 6-19.

Listing 6-19. The Blogger API Definition File

class BloggerAPI < ActionWebService::API::Base
 inflect_names false

 api_method :getUsersBlogs,
 :expects => [{:appkey => :string}, {:username => :string},
 {:password => :string}],
 :returns => [[BloggerStructs::Blog]]

 api_method :getUserInfo,
 :expects => [{:appkey => :string}, {:username => :string},
 {:password => :string}],
 :returns => [BloggerStructs::User]

 api_method :getPost,
 :expects => [{:appkey => :string}, {:postid => :string},
 {:username => :string}, {:password => :string}],
 :returns => [BloggerStructs::Post]

 api_method :getRecentPosts,
 :expects => [{:appkey => :string}, {:blogid => :string},
 {:username => :string}, {:password => :string},
 {:numberOfPosts => :integer}],
 :returns => [[BloggerStructs::Post]]

 api_method :newPost,
 :expects => [{:appkey => :string}, {:blogid => :string},
 {:username => :string}, {:password => :string},
 {:content => :string}, {:publish => :boolean}],
 :returns => [:int]

 api_method :editPost,
 :expects => [{:appkey => :string}, {:postid => :string},
 {:username => :string}, {:password => :string},
 {:content => :string}, {:publish => :boolean}],
 :returns => [:boolean]
end

The inflect_names false statement means that the Rails Inflector is turned off for the
method names of this interface and will not try to change the method names from their camel
case naming.

For each API method, we simply define the parameters that we expect and the parameters
that we will return, including structs. For example, in the case of getUsersBlogs, we are returning
the blog struct that we have defined.

Bradburne_8415C06.fm Page 183 Saturday, May 19, 2007 6:55 AM

184 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Writing the Blogging API Method Code
When an API method is called, it is handled by the app/controllers/backend_controller.rb
file. Since we are using layered dispatching, this is where we declare which web services we are
implementing and which dispatch method we are using.

Open the app/controllers/backend_controller.rb file, and edit it as shown in Listing 6-20.

Listing 6-20. The Backend Controller File

class BackendController < ApplicationController
 web_service_scaffold 'invoke'
 web_service_dispatching_mode :layered
 web_service :blogger, BloggerService.new
end

This states that the web services prefixed with blogger. will be handled by the BloggerService.
You will notice that, at the top of the file, I have used the statement web_service_scaffold.

This is a handy scaffolding tool in Rails that allows us to easily test our new web service using a
web browser. This creates an action called invoke that gives us a simple web interface to run
our API calls.

The BloggerService class that this back-end controller passes the blogger requests to is
created in the controllers’ directory, app/controllers/blogger_service.rb. Create this file,
shown in Listing 6-21, to actually implement the web service API methods.

Listing 6-21. The Blogger Web Service File

class BloggerService < ActionWebService::Base
 web_service_api BloggerAPI

 def getUsersBlogs(appkey, username, password)
 if @user = User.authenticate(username, password)
 [BloggerStructs::Blog.new(
 :url => "http://localhost:3000/users/#{@user.id}/entries",
 :blogId => @user.id,
 :blogName => @user.blog_title ||= @user.username
)]
 end
 end

 def getPost(appkey, postid, username, password)
 if @user = User.authenticate(username, password)
 entry = @user.entries.find(postid)
 BloggerStructs::Post.new(
 :userId => @user.id,
 :postId => entry.id,
 :dateCreated => entry.created_at.to_s(:db),
 :content => [entry.body]
)
 end
 end

Bradburne_8415C06.fm Page 184 Saturday, May 19, 2007 6:55 AM

http://localhost:3000/users/#{@user.id}/entries
mailto:@user.id
mailto:@user.blog_title
mailto:@user.username
mailto:@user.entries.find
mailto:@user.id

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 185

 def getRecentPosts(appkey, blogid, username, password, numberofposts)
 if @user = User.authenticate(username, password)
 @user.entries.find(:all,
 :order => 'created_at DESC',
 :limit => numberofposts).collect do |entry|
 BloggerStructs::Post.new(
 :userId => entry.user_id,
 :postId => entry.id,
 :dateCreated => entry.created_at.to_s(:db),
 :content => entry.body
)
 end
 end
 end

 def getUserInfo(appkey, username, password)
 if @user = User.authenticate(username, password)
 BloggerStructs::User.new(
 :userId => @user.id,
 :username => @user.username,
 :url => "http://localhost:3000/users/#{@user.id}/entries"
)
 end
 end

 def newPost(appkey, blogid, username, password, content, publish)
 if @user = User.authenticate(username, password)
 entry = Entry.new
 entry.title = "New entry"
 entry.body = content.to_s
 entry.user = @user
 entry.save
 return entry.id
 end
 end

 def editPost(appkey, postid, username, password, content, publish)
 if @user = User.authenticate(username, password)
 entry = @user.entries.find(postid)
 entry.body = content
 entry.save
 return true
 end
 end
end

Bradburne_8415C06.fm Page 185 Saturday, May 19, 2007 6:55 AM

mailto:@user.entries.find(:all
mailto:@user.id
mailto:@user.username
http://localhost:3000/users/#{@user.id}/entries
mailto:@user.entries.find

186 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

If you look at the code for each API method, you will see that each method tests to make
sure that the login credentials specified are correct and then performs the actions, returning
the data specified in the Blogger API documentation.

Testing the Web Services
We can perform manual testing of these web services using the web service scaffolding feature.
You will need to restart your Rails server before this will work, however.

Open your browser, and go to http://localhost:3000/backend/invoke. You will see a list
of the available API methods, as shown in Figure 6-6.

Figure 6-6. The ActionWebService test scaffold page

Click the getUsersBlogs method, fill in the parameters on the form, and submit the form to
make the API call using the XML-RPC protocol. As I mentioned earlier, we’ll ignore the appkey
variable, so you can leave this blank. This will simulate an API call, and you will be shown the
XML that would be sent to perform the call and the XML that the server returns.

Try testing the other method calls to make sure that they perform as expected.

Testing Using a Desktop Blogging Client
We should also manually test using a desktop blogging client. I am going to use Ecto, a
fully featured blogging client application available for Windows and Mac. Go to http://
ecto.kung-foo.tv/ to download a trial version. I will be using the Mac version, but the
Windows version works in the same way.

Ensure that the Rails application is running, and start Ecto. If you have not run Ecto before,
you will be prompted to create a new profile. Enter the address of your weblog as http://
localhost:3000/users/<your user id>/entries, and click Next.

You will be prompted to enter the type of API that your blog uses along with the Access
Point or Endpoint, which is the URL that the XML-RPC API is available at.

Bradburne_8415C06.fm Page 186 Saturday, May 19, 2007 6:55 AM

http://localhost:3000/backend/invoke
http://ecto.kung-foo.tv
http://ecto.kung-foo.tv
http://localhost:3000/users
http://localhost:3000/users

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 187

Select Other as the System type and Blogger as the API type. Enter the XML-RPC endpoint
of http://localhost:3000/backend/api in the Access Point field, and click Next. The api method
of the back-end controller is automatically made available by Rails.

You will now be prompted to enter your username and password for the account on
RailsCoders. Enter the username and password that corresponds to the user id that you entered
as the blog URL, and click Next.

Enter a name for this blog profile, which can be anything you like. I have used “RailsCoders
Blog.” When you save this profile, Ecto will retrieve the most recent blog posts for the specified
user and show them, as in Figure 6-7.

Figure 6-7. The Ecto entries window

Now try creating an entry using the Ecto New Post window. Click the New icon in the Ecto
toolbar; enter the content of a new blog post; and click the Publish icon. This will create a new
blog post in the RailsCoders application and update the list of blog entries in the Ecto main
window.

You can also try editing an entry to ensure that the content on the server is updated by
sending an entry edit call.

Since XML-RPC is the normal protocol used for the Blogger API, we have just used the
XML-RPC endpoint, that is, the /api method of the back-end controller. If we were to need
SOAP access to a web service that we built, it would be available by appending /service.wsdl
to the controller. Therefore, the Blogger API would be available at http://localhost:3000/
backend/service.wsdl. This URL provides an XML document that gives details of all of the
methods available and the parameters that they expect and return.

It is also very easy to call another application’s web service from Rails’s using the
ActionWebService tools. The Rails API documentation provides details of how this is done.

Bradburne_8415C06.fm Page 187 Saturday, May 19, 2007 6:55 AM

http://localhost:3000/backend/api
http://localhost:3000

188 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

Automated Testing of the Blogging API
We can now automate the API testing. Since we are testing the functionality of a controller, the
automated tests will be functional ones. The generate command created the skeleton of the
functional test that we need. Open this file, test/functional/backend_api_test.rb, and modify it
as shown in Listing 6-22.

Listing 6-22. The Back-end Functional Tests

require File.dirname(__FILE__) + '/../test_helper'
require 'backend_controller'

class BackendController; def rescue_action(e) raise e end; end

class BackendControllerApiTest < Test::Unit::TestCase
 fixtures :users, :entries

 def setup
 @controller = BackendController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_get_users_blogs
 blogs = invoke_layered :blogger, :getUsersBlogs, '', 'joe', '12345'
 assert_equal '1', blogs[0]['blogId']
 end

 def test_get_post
 entry = invoke_layered :blogger, :getPost, '', '1', 'joe', '12345'
 assert_equal '1', entry['postId']
 end

 def test_get_recent_posts
 entries = invoke_layered :blogger, :getRecentPosts, '', '1', 'joe', '12345', '1'
 assert_equal 1, entries.size
 assert_equal '1', entries[0]['postId']
 end

 def test_new_post
 blogs = invoke_layered :blogger, :getUsersBlogs, '', 'joe', '12345'
 new_post = invoke_layered :blogger, :newPost, '', blogs[0]['blogId'],
 'joe', '12345', 'New Post', true
 assert new_post.is_a?(Integer)
 end

Bradburne_8415C06.fm Page 188 Saturday, May 19, 2007 6:55 AM

C H AP TE R 6 ■ B U IL D I N G A B L OG G I N G E N G I N E W I TH W E B S E R V I CE S S U PP O R T 189

 def test_new_and_edit_post
 blogs = invoke_layered :blogger, :getUsersBlogs, '', 'joe', '12345'
 new_post = invoke_layered :blogger, :newPost, '', blogs[0]['blogId'],
 'joe', '12345','New Post', true
 result = invoke_layered :blogger, :editPost, '', new_post, 'joe', '12345',
 'Edited Post', true
 assert_equal true, result
 end
end

To test the API methods through the layered dispatch process, we use the invoke_layered
command and pass in the service name, the method name, and the method parameters. We
can then perform assertions on the data returned to make sure that the API is working as expected.
Run these tests with the following command:

$ ruby test/functional/backend_api_test.rb

Loaded suite test/functional/backend_api_test
Started
.....
Finished in 0.247508 seconds.

5 tests, 6 assertions, 0 failures, 0 errors

You could expand these tests and add negative tests to make sure that we cover all eventu-
alities and perform extra assertions to make sure that the methods are working exactly as they
should.

Further Development of the Blogging System
This blogging system could easily be developed further. Since a user might want to draft arti-
cles before publishing them, we could add a draft flag, similar to the one in the Article model
developed in Chapter 4. The Blogger API supports this flag, so it would be easy to integrate.

You could also look at developing other API interfaces. The Blogger API is reasonably
limited in what external applications can do, but the MetaWeblog API provides more possibil-
ities for development. Since the web services controller with layered dispatching allows for
overlapping APIs, it is simple to add other web services to the same endpoint.

Summary
In this chapter, we developed a blogging engine for the users of the RailsCoders site, allowing
them to create entries and allowing visitors to easily add comments to blog entries. Blog owners
can edit their blogs and have the capability to remove comments. We also added users’ latest
entries to their profile pages along with links to their blogs.

Bradburne_8415C06.fm Page 189 Saturday, May 19, 2007 6:55 AM

190 CH AP T E R 6 ■ B U I L D I N G A B L O G G IN G E N G I N E WI T H WE B SE R V IC E S SU P P OR T

We have implemented the Blogger API over XML-RPC, allowing existing third-party appli-
cations to talk directly to our application to create and edit entries. We demonstrated this using
the Ecto desktop blogging client.

In the next chapter, we implement file uploading to the server. This will allow users to send
their own files, such as images, to the server. We will build a simple photo gallery for the site
using the file upload feature.

Bradburne_8415C06.fm Page 190 Saturday, May 19, 2007 6:55 AM

191

■ ■ ■

C H A P T E R 7

Building a Photo Gallery

In this chapter, we will build an online photo gallery, allowing users to upload their photos
from their PCs to their profiles on RailsCoders. While this is a nice way for us to encourage our
users to get involved on the site and to make it more personal, it could also become the basis
for a community built around photo sharing such as Flickr, Fotolog, or Phlog.

Working with files uploaded by users can be a little tricky and time-consuming, so we will
use the attachment_fu plug-in to make our lives a little easier and enable us to work with files
without having to perform manual file management.

Since we want to make it easy for visitors to browse photos, the site should show thumb-
nailed versions of the photos, so we will look at how you can resize images using ImageMagick
and the RMagick plug-in.

Working with Uploaded Files
Before we start defining our feature, there are a number of issues that we need to consider
when dealing with files uploaded by users.

First, there is the issue of file size. Image files from a digital camera can easily be 2MB or
3MB in size. While this isn’t a problem if you are only dealing with a small number of files, if you
have thousands of users who upload hundreds of photographs each, you will need to have either
a very generous hosting provider or a dedicated server with a large amount of online storage.
This also has an effect on the bandwidth that the site will consume. Almost certainly, however
you end up hosting your site—with a shared host, a virtual private server (VPS), or a dedicated
machine at a colocation—you will have an allocated amount of upload and download band-
width. If you start hosting gigabytes of images, you will quickly burn through your allocated
bandwidth and end up paying your hosting provider high rates for extra bandwidth.

Also, there are some security concerns. If you allow users to upload any file, store it, and
allow others to download it without checking the file size or file type to make sure it is a valid
image, it is possible that some malicious users will take advantage of your generous nature to
store other types of files, or worse still, attempt to hack or break your site by uploading illegal
or malicious files.

While Rails provides a number of useful methods for dealing with files uploaded from a
web form, they are reasonably basic, so we have to manually deal with all of the necessary
actions: handling the uploaded file, examining the file to make sure it is an image, processing
the image to create the thumbnails, and storing the image.

Bradburne_8415C07.fm Page 191 Friday, April 27, 2007 7:41 AM

192 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

Since working with uploaded files is a pretty common task, as you might expect, a number
of Rails developers have produced plug-ins and gems to simplify the task of working with files
uploaded by users.

The most popular plug-ins for this are file_column, acts_as_attachment, and attachment_fu.
We are going to use attachment_fu.

attachment_fu is a rewrite of acts_as_attachment that is written in a more modular way to
make extending it much easier. Both acts_as_attachment and attachment_fu are written by
Rick Olson, a member of the Rails core development team.

ALTERNATIVE METHODS OF WORKING WITH UPLOADS

Although attachment_fu provides us with very simple and easy ways of working with uploaded files, you
may wish to perform some actions outside of the scope of the plug-in. The Rails wiki provides details on how
to work with uploaded files at http://wiki.rubyonrails.org/rails/pages/HowtoUploadFiles.

The file_column plug-in was the first popular plug-in to attempt to simplify the uploading process and
is still used by some developers. You can read more about this plug-in at http://www.kanthak.net/
opensource/file_column.

Development of the acts_as_attachment plug-in has now been abandoned in favor of attachment_fu.

The attachment_fu Plug-in
The attachment_fu plug-in automatically recognizes file types and can be configured to auto-
matically create different sizes of thumbnails for images. You can also configure several methods of
storing the uploaded data. By default, it stores uploaded files in the database, but you can easily
change it to store data in the file system or in Amazon Web Service’s Simple Storage Service
(AWS S3 or just S3). Because of the modular nature of the plug-in, it is easy to add different
storage mechanisms if you have different requirements.

THE AMAZON SIMPLE STORAGE SERVICE

AWS S3 is a web service provided by Amazon.com that allows you to store any data files in a personal data
“bucket” on Amazon’s servers.

You can upload any type of file to the service using a simple API. You can set permissions on the
uploaded files, allowing them to be downloaded by either anyone who knows the URL or only users or appli-
cations providing a password.

Amazon charges for the amount of data stored and the amount of upload and download bandwidth used,
but it is very cheap compared to the cost of traditional hosting. File serving is also very fast and reliable because the
file is stored on Amazon’s distributed file servers.

To find out more, visit http:/aws.amazon.com/s3.
Marcel Molina Jr. has developed a library to make it easy to use S3 in Rails. You can find more information

at http://amazon.rubyforge.org.

Bradburne_8415C07.fm Page 192 Friday, April 27, 2007 7:41 AM

http://wiki.rubyonrails.org/rails/pages/HowtoUploadFiles
http://www.kanthak.net
http://amazon.rubyforge.org

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 193

To use attachment_fu, simply add a has_attachment statement in the model that you wish
to use to store file uploads. You can specify options for the storage mechanism, the size of
thumbnails (if required), and constraints on the files that can be uploaded (such as restricting
to files below a certain size or only allowing certain file types).

You must also ensure that the database fields shown in Table 7-1 are added to the model
that you are using with file uploads.

If you choose to use the database to store the uploaded files, you will also require another
database table called db_files. The required database fields for this table are shown in Table 7-2.

Using the database as a storage system has a number of advantages and disadvantages.
If we use the database, every file that is requested will have to be retrieved from the database
and sent by the Rails application server. This has the advantage of allowing us to create a finely
grained permissions system, if need be—we could restrict downloads to specific users or users
with certain permissions. However, this would be rather slow. A traditional web server such as
Apache or lighttpd can serve a binary file faster and with a much lower CPU load than a Rails
application server. To speed this up, we could develop a way to cache these files and a method
of instructing the web server to serve a file from a cache.

Also, you can easily scale a database across multiple servers and automatically fail over to
a backup if a machine fails.

Table 7-1. Additional Database Fields Required by Models Using the attachment_fu Plug-in

Field Name Field Type Description

content_type string The MIME type of the uploaded file.

filename string The original file name of the uploaded file.

size integer The size of the uploaded file in bytes.

parent_id integer If file is a thumbnail, the id of the parent file.

thumbnail string If file is a thumbnail, the name of the size of thumbnail
as specified in the has_attachment statement (e.g., thumb
or tiny).

width integer If file is an image, the width in pixels.

height integer If file is an image, the height in pixels.

db_file_id integer If the database is used to store the uploaded files, this is
the id of the file’s object; otherwise, it’s optional.

Table 7-2. Database Fields Required for the db_files Table

Field Name Field Type Description

id integer Primary key and id of the file

data binary Data of the uploaded file

Bradburne_8415C07.fm Page 193 Friday, April 27, 2007 7:41 AM

194 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

Using the file system is obviously the simplest and fastest method. The uploaded files will
automatically be stored in the public/ directory, meaning that in a production environment,
they are served directly by the web server. This is very quick, as it means that serving a file does
not require processing by the Rails application server. However, you have no dynamic control
over who has access to the files; they are all available to all visitors to the site.

To upload a file, you must create a web form with the form multipart option set to true.
This enables a form POST request to be sent with file attachments. Next, you add a file_field
tag to your form with the attribute name of uploaded_data. When you submit a form with this tag,
attachment_fu will do the rest of the work.

attachment_fu adds a number of class methods, including a number of callbacks, meaning
that you can perform extra processing on uploaded files at different points during the uploading
process.

A number of instance methods are also added to any models specified as having attach-
ments. These instance methods allow us to work with the uploaded file, process the file if it is
an image, and fetch information about the file and how it can be retrieved.

The Photo Gallery Requirements
From a user’s perspective, the gallery feature should allow each user of the site to upload image
files from his or her computer to the RailsCoders site. The latest photos from a user will then be
displayed on the profile page with a link to view more photos. This link will then take the visitor
to a gallery page, showing all of the user’s photos with the latest photo first. These photos will
be thumbnailed versions of the uploaded photos, so clicking them will show the full-size version
of the photo.

We also want to be able to view all photos on the site, irrespective of the user.
So that our server doesn’t explode by trying to host hundreds of gigabytes of other people’s

images, we are going to resize all incoming photos to 640×480 pixels. This will keep the file size
reasonably small. If the photo gallery proves to be a success and we wish to store larger photos
or the original files, we can revisit this later.

Along with storing the 640×480 versions, we need to be able to show the photos as thumb-
nails. Having made a quick sketch of how the page will be laid out, we calculate that 160×120 pixels
should be a good size for our thumbnails. Also, since we will develop a mobile version of our
site in Chapter 13, we want a smaller thumbnail to show on a cell phone screen. An image with
a width of 50 pixels should look fine on a 2-inch screen.

To show the latest photos and order the gallery in reverse chronological order, we need to
record the upload date and time. As usual, we can use the automatically updated attribute
created_at.

Along with the upload time, we want to allow the user to enter a title and a description for
each photo. Both of these fields will be optional.

Since we are going to use the attachment_fu plug-in, recall that we need to define a storage
mechanism for the files. The plug-in currently supports storing in the database, the file system,
or S3. Since we do not require the features of using the database, we are going to use the file
system. If the site grows quickly and we need to store a significant amount of data, we could
easily move the data over to S3. We can deal with this scaling issue if and when it happens.

Bradburne_8415C07.fm Page 194 Friday, April 27, 2007 7:41 AM

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 195

Defining the Photo Model
As we have already discussed, we need to add certain fields to the Photo model to use the
attachment_fu plug-in. In addition to these, we require the fields specified in Table 7-3.

The Photos Controllers
Since we want to be able to display the photos from a specific user or for the entire site, we will
create two controllers:

• To view all photos on the site, we will create a controller that will be accessed at the root
level, that is, /photos. This resource only needs to implement the index action, since the
show, new, create, edit, update, and delete actions need to be accessed via a nested resource.

• To view photos belonging to a specific user and to allow the photo owners to edit their
photos, we will create a nested resource called user_photos. This will be accessed via
URLs such as /users/1/photos and /users/1/photos/2. This controller will provide the
usual REST CRUD actions. As we only want logged-in users to upload files or edit the
attributes of an existing image, the new, create, edit, update, and destroy actions should
require a user to be logged in.

Installing ImageMagick, RMagick,
and attachment_fu
To be able to process the images to create thumbnails, we need two libraries installed: namely
ImageMagick and RMagick. ImageMagick is an open source set of general-purpose image
processing libraries. These libraries can be used by other applications or via command-line
tools. If you use Linux, you may have come across the convert command, which is part of
ImageMagick, for resizing images. You can find out more about ImageMagick at http://
www.imagemagick.org.

RMagick is a Ruby interface to the ImageMagick libraries. Using RMagick, you can easily
resize, crop, and rotate images, along with applying special effects such as blur and sharpen
and producing composite images. To learn more about RMagick, visit http://rmagick.
rubyforge.org, or you can read the online documentation at http://www.simplesystems.org/
RMagick/doc/index.html.

Table 7-3. The Database Fields Required for the Photo Model

Field Name Field Type Description

id integer The primary key

title string The title of the photo

body text A longer description of the photo

created_at datetime The date and time the photo was uploaded

Bradburne_8415C07.fm Page 195 Friday, April 27, 2007 7:41 AM

http://www.imagemagick.org
http://www.imagemagick.org
http://rmagick
http://www.simplesystems.org

196 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

Installing on Windows
If you are running Instant Rails on Windows, the easiest method of installing ImageMagick and
RMagick is to install the Windows binary version of RMagick, which includes the necessary
ImageMagick libraries.

Go to the RMagick RubyForge page at http://rubyforge.org/projects/rmagick, and click
the download link for the rmagick-win32 binary gem. From there, select the latest zip file of the
binary RMagick gem, such as RMagick 1.14.1 binary gem for Ruby 1.8.5.

When the zip file has downloaded, unzip the file into a temporary directory and carefully
follow the instructions in the included README.html file, ensuring that you uninstall any earlier
versions of RMagick that you may have installed before you begin.

You first need to install ImageMagick using the installer file included in the package. After
that, install the included gem using the command line by changing to the directory created
when you unzipped the RMagick package and entering the following command:

$ gem install rmagick --local

Once that is installed, you need to restart Instant Rails for it to pick up the changes.

Installing on OS X
If you are running Locomotive on OS X, there is a ready-made bundle containing ImageMagick
and the RMagick plug-in available on the Locomotive site. Go to the Locomotive bundles down-
load page at http://locomotive.raaum.org/bundles/index.html, and download the RMagick
bundle. Uncompress the bundle, and copy the contents into the Locomotive/Bundles/ folder
where you have installed Locomotive.

Restart Locomotive, and select your Rails application in the main Locomotive window.
Click the information icon at the top of the window, and select the RMagick bundle from the
Web Framework options. You can close this window and start your application. You now have
the RMagick plug-in installed.

Installing on Linux
To install on Ubuntu Linux, first install the ImageMagick libraries using the command:

$ sudo apt-get install libmagick9-dev

Next, install the RMagick gem using the following command:

$ sudo gem install rmagick

You are now ready to work with the RMagick libraries in your Rails application.

Installing the attachment_fu Plug-in
To install the attachment_fu plug-in, enter the following command:

$ ruby script/plugin install \
http://svn.techno-weenie.net/projects/plugins/attachment_fu/

Bradburne_8415C07.fm Page 196 Friday, April 27, 2007 7:41 AM

http://rubyforge.org/projects/rmagick
http://locomotive.raaum.org/bundles/index.html
http://svn.techno-weenie.net/projects/plugins/attachment_fu

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 197

+ ./attachment_fu/README
+ ./attachment_fu/Rakefile
+ ./attachment_fu/amazon_s3.yml.tpl
+ ./attachment_fu/init.rb
+ ./attachment_fu/install.rb
...
+ ./attachment_fu/test/test_helper.rb
+ ./attachment_fu/test/validation_test.rb
attachment-fu
=====================

This copies the latest version of the plug-in into the vendor/plugins/ directory of your
application’s root directory.

Building the Photo Gallery
Now that we understand the requirements of the photo gallery and have installed the necessary
libraries and plug-in, we can begin to develop the code.

Generating the Scaffolding Code
As in previous chapters, we are going to use the scaffold_resource generator to produce
scaffolding code for the resource.

$ ruby script/generate scaffold_resource Photo

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/photos
 exists test/functional/
 exists test/unit/
 create app/views/photos/index.rhtml
 create app/views/photos/show.rhtml
 create app/views/photos/new.rhtml
 create app/views/photos/edit.rhtml
 create app/views/layouts/photos.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/photo.rb
 create app/controllers/photos_controller.rb
 create test/functional/photos_controller_test.rb
 create app/helpers/photos_helper.rb
 create test/unit/photo_test.rb
 create test/fixtures/photos.yml
 exists db/migrate
 create db/migrate/016_create_photos.rb
 route map.resources :photos

Bradburne_8415C07.fm Page 197 Friday, April 27, 2007 7:41 AM

198 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

Since we do not need this photo resource to implement any actions other than the index
action, delete the following files:

app/views/photos/show.rhtml
app/views/photos/new.rhtml
app/views/photos/edit.rhtml

We will simply create the necessary view file for the user_photo resource. We do not require
a separate model for creating the user_photo resource, as it simply uses the Photo model created
with the previous generator.

Writing the Migration
As I discussed earlier, any models that are to be used to store attachments require certain data-
base columns to be added.

Along with these, we need to store the id of the user to whom the image belongs, the time
and date when the image is uploaded, and a title specified by the user.

Edit the create database migration file db/migrate/016_create_photos.rb to match the
migration shown in Listing 7-1.

Listing 7-1. Migration Script for the Photos Table

class CreatePhotos < ActiveRecord::Migration
 def self.up
 create_table :photos do |t|
 t.column :user_id, :integer
 t.column :title, :string
 t.column :body, :text
 t.column :created_at, :datetime

 # the following columns are required for attachment_fu
 t.column :content_type, :string, :limit => 100
 t.column :filename, :string, :limit => 255
 t.column :path, :string, :limit => 255
 t.column :parent_id, :integer
 t.column :thumbnail, :string, :limit => 255
 t.column :size, :integer
 t.column :width, :integer
 t.column :height, :integer
 end
 add_column :users, :photos_count, :integer
 end

 def self.down
 drop_table :photos
 remove_column :users, :photos_count
 end
end

Bradburne_8415C07.fm Page 198 Friday, April 27, 2007 7:41 AM

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 199

We can now run the migration to add the photos table to the database. To do this, enter the
following command:

$ rake db:migrate

(in /Users/alan/Documents/Projects/Rails/railscoders)
== CreatePhotos: migrating ==
-- create_table(:photos)
 -> 0.6035s
== CreatePhotos: migrated (0.6232s) ===

Creating the Photo Model and Its Relationships
In the Photo model file, we need to specify that this model is going to store uploaded files. This
is also where we configure how the files will be stored, what thumbnails we want to create, and
any constraints we want to place on the uploaded files.

We also need to add the user-photo relationship to the User model.

Create the Photo Model

Open the Photos model file app/models/photos.rb, and edit it as shown in Listing 7-2.

Listing 7-2. The Photo Model

class Photo < ActiveRecord::Base
 has_attachment :storage => :file_system,
 :resize_to => '640x480',
 :thumbnails => { :thumb => '160x120', :tiny => '50>' },
 :max_size => 5.megabytes,
 :content_type => :image,
 :processor => 'Rmagick'
 validates_as_attachment
 belongs_to :user
end

This specifies that the model will have attached uploaded files. As defined in the specifica-
tion, we will resize all uploaded photos to fit within 640×480 pixels.

We will also create two thumbnails, one named thumb, which will be 160×120 pixels, and
one named tiny, which has been specified as 50> (this means that the image will be resized
with the width set to 50 pixels while keeping the aspect ratio of the original image). You can also
specify image dimensions as an array, such as ['640', '480'].

The has_attachment statement also specifies that only file types that are images will be
accepted and that the maximum size of an uploaded file will be 5MB.

The model also uses a new validation introduced by the plug-in, validates_as_
attachment. This ensures that the attachment meets the requirements of being a file: having a
size, a content type, and a file name.

The relationship with the User model is also stated.

Bradburne_8415C07.fm Page 199 Friday, April 27, 2007 7:41 AM

200 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

Adding the Users Relationship

Since we have specified that each photo will belong to a user, we need to add the reciprocal
relationship to the User model.

Open the User model file app/models/user.rb, and add the has_many relationship as shown:

require 'digest/sha2'
class User < ActiveRecord::Base
 ...
 has_many :comments
 has_many :photos

 def before_save
 ...

Mapping the Photos Resource
We now need to create the mapping of the photos resources.

The photos resource is created at the root level. The user_photos resource must be nested
below the users resource, since we will access all photos by specifying both the user and the
photo id.

Edit the config/routes.rb file by adding the photos resource mapping nested within the
users resource as follows:

map.resources :photos
map.resources :users, :member => { :enable => :put } do |users|
 users.resources :roles
 users.resources :entries do |entries|
 entries.resources :comments
 end
 users.resources :photos, :name_prefix => 'user_',
 :controller => 'user_photos'
end

This nested mapping allows us to access the user_photos_controller via URLs such as
/users/1/photos. To use the path shortcuts in the controllers and views, we have specified that
we will use the name prefix of user_, meaning that we can use shortcuts such as
user_photos_path(:user_id => 1) or user_edit_photo_path(:user_id => 1, :id => 2).

The Photos and User Photos Controllers
We can now work on the photos controller and the user photos controller.

The photos_controller file only needs to implement the index action. Edit the generated
file app/controllers/photos_controller.rb as shown in Listing 7-3.

Bradburne_8415C07.fm Page 200 Friday, April 27, 2007 7:41 AM

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 201

Listing 7-3. The Photos Controller File

class PhotosController < ApplicationController
 def index
 photos_count = Photo.count(:conditions => 'thumbnail IS NULL')
 @photo_pages = Paginator.new(self, photos_count, 9, params[:page])
 @photos = Photo.find(:all,
 :conditions => 'thumbnail IS NULL',
 :order => 'created_at DESC',
 :limit => @photo_pages.items_per_page,
 :offset => @photo_pages.current.offset)
 end
end

 Now, let’s move on to the user_photos controller. Create the file app/controllers/
user_photos_controller.rb file, and add the code shown in Listing 7-4.

Listing 7-4. The User Photos Controller File

class UserPhotosController < ApplicationController
 before_filter :login_required, :except => [:index, :show]

 def index
 @user = User.find(params[:user_id])
 @photo_pages = Paginator.new(self, @user.photos.count, 9, params[:page])
 @photos = @user.photos.find(:all, :order => 'created_at DESC',
 :limit => @photo_pages.items_per_page,
 :offset => @photo_pages.current.offset)
 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @photos.to_xml }
 end
 end

 def show
 @photo = Photo.find_by_user_id_and_id(params[:user_id],
 params[:id],
 :include => :user)

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @photo.to_xml }
 end
 end

 def new
 @photo = Photo.new
 end

Bradburne_8415C07.fm Page 201 Friday, April 27, 2007 7:41 AM

mailto:@photo_pages.items_per_page
mailto:@photo_pages.current.offset
mailto:@user.photos.count
mailto:@user.photos.find(:all
mailto:@photo_pages.items_per_page
mailto:@photo_pages.current.offset
mailto:@photos.to_xml
mailto:@photo.to_xml

202 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

 def edit
 @photo = @logged_in_user.photos.find(params[:id])
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end

 def create
 @photo = Photo.new(params[:photo])

 respond_to do |format|
 if @logged_in_user.photos << @photo
 flash[:notice] = 'Photo was successfully created.'
 format.html { redirect_to(user_photos_path(:user_id=>@logged_in_user.id)) }
 format.xml { head :created,
 :location => user_photo_path(:user_id => @photo.user_id, :id => @photo)}
 else
 format.html { render :action => 'new' }
 format.xml { render :xml => @photo.errors.to_xml }
 end
 end
 rescue ActiveRecord::RecordInvalid
 render :action => 'new'
 end

 def update
 @photo = @logged_in_user.photos.find(params[:id])

 respond_to do |format|
 if @photo.update_attributes(params[:photo])
 flash[:notice] = 'Photo was successfully updated.'
 format.html { redirect_to user_photo_path(:user_id => @logged_in_user,
 :id => @photo) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @photo.errors.to_xml }
 end
 end
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end

 def destroy
 @photo = @logged_in_user.photos.find(params[:id])
 @photo.destroy

Bradburne_8415C07.fm Page 202 Friday, April 27, 2007 7:41 AM

mailto:@logged_in_user.photos.find
mailto:@logged_in_user.photos
mailto:@photo.user_id
mailto:@photo.errors.to_xml
mailto:@logged_in_user.photos.find
mailto:@photo.update_attributes
mailto:@photo.errors.to_xml
mailto:@logged_in_user.photos.find
mailto:@photo.destroy

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 203

 respond_to do |format|
 format.html { redirect_to user_photos_path }
 format.xml { head :ok }
 end
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end

end

You should find that most of the code is familiar from the previous controllers that we have
developed. You will see that the index actions in both controllers make use of the paginator
helper that we used in the entries controller.

The show action uses the :include option to preload the user object that is associated with
the specified photo, saving us one database query.

Notice that the create action, which receives the file posted from the web form, is very
simple; all of the file handling is performed by the plug-in. The action instantiates a new Photo
model from the form parameters and saves this model by associating it with the logged-in user.
As long as the file field in the web form is called uploaded_data, the file will automatically be
validated as specified in the model, the image resized, and the thumbnails created and saved.

The Photo Views
We can now create the corresponding views for the photos and user photos controllers. But
before we do, we should remove the generated layout file of the photos resource, since we want to
use the standard application.rhtml layout file. Delete this file, app/views/layouts/photos.rhtml.

The New Photo View

We should create the view for the new action. Create the file and directory app/views/user_photos/
new.rhtml, and replace the generated view with the view in Listing 7-5.

Listing 7-5. View File for the New Photo Action

<h2>Upload a new photo</h2>

<%= error_messages_for :photo %>

<% form_for(:photo,
 :url => user_photos_path(:user_id => @logged_in_user),
 :html => { :multipart => true }) do |f| %>
 <p>Select a photo to upload</p>
 <p>Title:
<%= f.text_field 'title' %></p>
 <p>Description:
<%= f.text_area 'body', :rows => 6, :cols => 40 %></p>
 <p>Photo:
<%= f.file_field 'uploaded_data' %></p>
 <p>
 <%= submit_tag 'Upload Photo' %> or
 <%= link_to 'cancel', user_photos_path(@logged_in_user) %>
 </p>
<% end %>

Bradburne_8415C07.fm Page 203 Friday, April 27, 2007 7:41 AM

204 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

This is similar to a regular form, except that because we are uploading a file from the form,
we have to add statement :multipart => true to the form_for method. Without this, the file
attachment will not be received by the controller.

■Note Whenever you build a form that performs a file upload, you must specify :multipart => true in
the form tag.

The Edit Photo View

The edit view is similar to the new view, except that there is no file form tag; just the title and
description are editable. The thumbnail of the image is also shown on the page. Create the
app/views/user_photos/edit.rhtml file now, and enter the view code in Listing 7-6.

Listing 7-6. View File for the Edit Photo Action

<h2>Edit photo details</h2>

<%= link_to image_tag(@photo.public_filename('thumb')),
 user_photo_path(:user_id => @photo.user, :id => @photo) %>

<%= error_messages_for :photo %>

<% form_for(:photo,
 :url => user_photo_path(:user_id => @photo.user, :id => @photo),
 :html => { :method => :put }) do |f| %>
 <p>Title:
<%= f.text_field 'title' %></p>
 <p>Description:
<%= f.text_area 'body', :rows => 6, :cols => 40 %></p>
 <p><%= submit_tag "Save" %> or <%= link_to 'cancel', user_photos_path %></p>
<% end %>

The Index Views

Since the index views for both controllers are very similar and both the pagination links and the
thumbnailed photos use the same code, we can use partials to allow us to reuse code.

Create the user photos index view, app/views/user_photos/index.rhtml, and enter the
view code in Listing 7-7.

Listing 7-7. View File for the User Photos Index Action

<h2><%= @user.username %>'s Photos</h2>

<% if is_logged_in? && logged_in_user == @user %>
 <p><%= link_to 'Upload a new photo', new_user_photo_path %></p>
<% end %>

Bradburne_8415C07.fm Page 204 Friday, April 27, 2007 7:41 AM

mailto:tag(@photo.public_filename
mailto:@photo.user
mailto:@photo.user
mailto:@user.username

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 205

<%= render :partial => 'photo/page_links' %>

<ul id="photos">
 <%= render :partial => 'photo/photo', :collection => @photos %>

<%= render :partial => 'photo/page_links' %>

You will notice that this uses two partial views. The page_links partial contains the pagi-
nation links for the current page and the photo partial displays a thumbnail of an image. We will
put both partials in the app/view/photos directory. Create this partial view file, app/views/
photos/_page_links.rhtml, and add the following code:

<% if @photo_pages.page_count > 1 %>

 <% if @photo_pages.current.previous %>
 <%= link_to '« Previous', :page => @photo_pages.current.previous %>
 <% end %>

 <%= pagination_links @photo_pages, :params => params %>

 <% if @photo_pages.current.next %>
 <%= link_to 'Next »', { :page => @photo_pages.current.next } %>
 <% end %>

 <% end %>

This uses the pagination_links helper method to produce the numeric pagination links. It
also adds Next and Previous links to the next and previous pages if they are available. The next
and previous page numbers are available using current.next and current.previous as shown.

The photo partial is a thumbnail of each photo, which is a link to the show action of that photo.
Create this partial file now, app/views/photos/_photo.rhtml, and add the following view code:

 <%= link_to image_tag(photo.public_filename('thumb')),
 user_photo_path(:user_id => photo.user, :id => photo) %>

To display a thumbnail of each photo, we use the instance method public_filename,
provided by the attachment_fu plug-in. This returns the path and file name of the requested file
object as accessible from a URL. In this case, we are requesting the version of the file that has
been saved with the thumbnail value of 'thumb'. As you will recall, this was specified in the
has_attachment statement in the model – the 'thumb' thumbnail is a photo of size 160×120.

We can now easily create the view for the photos controller’s index action using the same
partials. Edit the file app/views/photos/index.rhtml by adding the view code shown in Listing 7-8.

Bradburne_8415C07.fm Page 205 Friday, April 27, 2007 7:41 AM

mailto:@photo_pages.page_count
mailto:@photo_pages.current.previous
mailto:@photo_pages.current.previous
mailto:@photo_pages.current.next
mailto:@photo_pages.current.next

206 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

Listing 7-8. View File for the Photos Index Action

<h2>All Photos</h2>

<%= render :partial => 'page_links' %>

<ul id="photos">
 <%= render :partial => 'photo', :collection => @photos %>

<%= render :partial => 'page_links' %>

The Show Photo View

The only remaining view is the show action to display one individual photo with the title, body,
time and date it was uploaded, and owner of the photo. We should also include a link back to
see all of the photos of the user to whom the photo belongs.

We also need to allow the owner of the photo to edit and delete the photo, so we should
add these options but show them only if the user viewing the page is logged in as the owner of
the photo.

Create the show view file, app/views/user_photos/show.rhtml, and enter the view in
Listing 7-9.

Listing 7-9. View File for the Photo Show Action

<h3>
 <%= link_to "#{@photo.user.username}'s Photos",
 user_photos_path(:user_id => @photo.user) %>
</h3>
<h2><%=h @photo.title %></h2>
<p><%=h @photo.body %>

<% if is_logged_in? && @photo.user_id == logged_in_user.id %>
 <p>
 <%= link_to 'Edit', user_edit_photo_path(:user_id=>@photo.user, :id=>@photo) %>,
 <%= link_to 'Delete', user_photo_path(:user_id => @photo.user, :id => @photo),
 :confirm => 'Are you sure?',
 :method => :delete %>
 </p>
<% end %>

<%= image_tag @photo.public_filename, :id => 'photo' %>

This uses the image_tag Rails helper to display the image by requesting the public_filename of
the photo object, as in the index view. This time, we do not specify a thumbnail size, so we use
the path to the parent file—in our case, the resized version of the uploaded file. If no resize was
requested, or the uploaded file is not an image, this would be the public path to the original file.

Bradburne_8415C07.fm Page 206 Friday, April 27, 2007 7:41 AM

mailto:@photo.user
mailto:@photo.title
mailto:@photo.body
mailto:@photo.user_id
mailto:@photo.user
mailto:@photo.public_filename

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 207

Adding Links to the Gallery and New Photo Pages

To make uploading photos to the gallery easy for users, we should add a link to the logged-in
users section of the sidebar menu. We should also add a link to the gallery showing all the
uploaded photos.

Edit the sidebar menu partial, app/views/layouts/_menu.rhmtl. Add the links to the
photos resource and new_photo_path for the logged-in user as shown below:

 ...
 <%= link_to 'Blogs', blogs_path %>
 <%= link_to 'Photos', photos_path %>

 <hr size="1" width="90%" align="left"/>

 <% if is_logged_in? %>
 Logged in as: <i><%= logged_in_user.username -%></i>
 <%= link_to 'My Profile', edit_user_path(logged_in_user) -%>

 <%= link_to 'New Blog Post', new_entry_path(
 :user_id => logged_in_user) -%>

 <%= link_to 'Upload Photo',
 user_new_photo_path(:user_id => logged_in_user) -%>
 <%= link_to 'Logout', {:controller => 'account', :action => 'logout'},
 :method => :post %>
 ...

Adding the Latest Photos to a User’s Profile

On a user’s profile page, along with a link to a user’s gallery, we can show a few of the latest
photos from that user. To do this, we need to add a find statement to the show action in the
users controller file.

Edit the app/controllers/users_controller.rb file by adding the call to retrieve the latest
three photos of the user to the show action as follows:

def show
 @user = User.find(params[:id])
 @entries = @user.entries.find(:all, :limit => 3, :order => 'created_at DESC')
 @photos = @user.photos.find(:all, :limit => 3,
 :order => 'created_at DESC')
end

We now need to add the corresponding view code to the show view file. Add the following
code to the end of the app/views/users/show.rhtml file:

Bradburne_8415C07.fm Page 207 Friday, April 27, 2007 7:41 AM

mailto:@user.entries.find(:all
mailto:@user.photos.find(:all

208 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

<h3>Photos</h3>
<ul id="photos">
 <%= render :partial => 'photos/photo', :collection => @photos %>

<p>
 <%= link_to "See all of #{@user.username}'s photos",
 user_photos_path(:user_id => @user) %>
</p>

This reuses the partial view created for the index action.

Styling for the Gallery

We should also add some simple styling to the gallery to put a small border around the images
and to show the photos in a grid format. Add the following CSS to the end of the public/
stylesheets/main.css file:

/* Photo gallery styling */

#photos ul { list-style: none; }

#photos li { display: inline; }

#photos li a img {
 margin: 10px;
 padding: 5px;
 background: #000;
}

#photo {
 margin-bottom: 20px;
 padding: 5px;
 background: #000;
}

Manually Testing the Gallery
We can now try running through the gallery manually to make sure everything works as expected.
Make sure the Rails application server is running and log in to the application as a valid user via
the page http://localhost:3000/login.

Click the Upload Photo link from the sidebar menu. From this upload page, enter a title
and description, and select an image file from your computer to upload. Then click the Upload
Photo button. The photo will be uploaded, and you will be forwarded to the gallery page for the
logged-in user. Try uploading a number of photos to check that the pagination works. This is
shown in Figure 7-1.

Bradburne_8415C07.fm Page 208 Friday, April 27, 2007 7:41 AM

http://localhost:3000/login

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 209

Figure 7-1. The gallery index view for a user

If you look in the public/photos/ directory of your application, you will see a number of
directories called 1, 4, 7, and so on. Each directory corresponds to a photo object’s parent id. In
our application, each parent has a resized original file and two thumbnails. If you look within
one of these photo object directories, you will see a file with the original file name of the uploaded
file and two files with the suffixes _thumb and _tiny.

Try clicking a photo and editing the title and description. Try deleting a photo. This will
delete the database rows corresponding to the photo and the files within the public/photos/
directory. This is automatically performed by the attachment_fu plug-in, using a callback.

You should also try logging in as a different user and uploading some more photos. If you
then look at the photos index action at http://localhost:3000/photos, you will see all of the
photos uploaded by both users.

Bradburne_8415C07.fm Page 209 Friday, April 27, 2007 7:41 AM

http://localhost:3000/photos

210 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

Writing the Test Cases
Although we have manually checked that the gallery works, we should also write a collection of
tests so that we can make sure that we have covered all possibilities and have more confidence
in our code when it goes into production.

We should perform unit and functional testing, but since our gallery does not interact with
any other controllers, we do not need to perform any integration testing.

Creating the Photo Fixtures
First of all, create some database fixtures for the Photo model. Open the file test/fixtures/
photos.yml. Remove the fixture placeholders, and enter the following fixtures:

parent_photo:
 id: 1
 user_id: 1
 title: a test photo
 body: just a test
 content_type: image/jpeg
 filename: testimage.jpg
 size: 1000
 width: 640
 height: 480
 created_at: <%= 1.days.ago.to_s(:db) %>
thumb_photo:
 id: 2
 parent_id: 1
 width: 160
 height: 120
 filename: testimage_thumb.jpg
 thumbnail: thumb
 created_at: <%= 1.days.ago.to_s(:db) %>
tiny_photo:
 id: 3
 parent_id: 1
 width: 80
 height: 80
 filename: testimage_tiny.jpg
 thumbnail: tiny
 created_at: <%= 1.days.ago.to_s(:db) %>

Unit Testing
We should add some unit tests to test the operation of the Photo model to make sure that we
can create new photos by uploading a file and that destroying a photo deletes all thumbnail
database records along with deleting all the image files.

Open the photos unit test file, test/unit/photo_test.rb, and delete the generated
test_truth test. Add the tests as shown in Listing 7-10.

Bradburne_8415C07.fm Page 210 Friday, April 27, 2007 7:41 AM

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 211

Listing 7-10. Unit Tests for the Photo Model

require File.dirname(__FILE__) + '/../test_helper'

class PhotoTest < Test::Unit::TestCase
 fixtures :photos, :users

 def test_should_upload_photo_and_create_thumbnails
 photo_object = upload_file 'rails.png', users(:valid_user)
 assert_file_exists photo_object.id, "rails.png"
 assert_file_exists photo_object.id, "rails_thumb.png"
 assert_file_exists photo_object.id, "rails_tiny.png"
 end

 def test_should_delete_db_row_and_files
 photo_object = upload_file 'rails.png', users(:valid_user)
 photo_count = Photo.count

 assert_file_exists photo_object.id, "rails.png"
 Photo.destroy(photo_object.id)

 assert_equal photo_count-3, Photo.count
 assert_file_does_not_exist photo_object.id, "rails.png"
 assert_file_does_not_exist photo_object.id, "rails_thumb.png"
 assert_file_does_not_exist photo_object.id, "rails_tiny.png"
 end

 protected
 def upload_file(image_file, user)
 image_file = File.join(RAILS_ROOT, 'public', 'images', image_file)
 photo = user.photos.create(:filename => image_file,
 :content_type => 'image/png',
 :temp_path => image_file)
 assert_valid photo
 photo
 end

 def assert_file_exists(photo_id, image_file)
 file = File.join(RAILS_ROOT, 'public', 'photos',
 "#{photo_id}", "#{image_file}")
 assert File.file?(file), "File not found: #{image_file}"
 end

 def assert_file_does_not_exist(photo_id, image_file)
 file = File.join(RAILS_ROOT, 'public', 'photos',
 "#{photo_id}", "#{image_file}")
 assert !File.file?(file)
 end
end

Bradburne_8415C07.fm Page 211 Friday, April 27, 2007 7:41 AM

212 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

For these tests, I am going to test uploading the Rails logo, rails.png, which can be found
in the public/images/ directory of any generated application.

To upload files, I have added a number of helper methods. The upload_file method takes
the file name of an image within the public/images/ directory and a user object as parameters
and creates a new photo object belonging to that user. Since we are not performing an upload
through a browser, we have to manually supply the filename and content_type attributes. This
method returns the new photo object.

The assert_file_exists and assert_file_does_not_exist methods simply check for the
presence (or not) of a photo file.

The unit test test_should_upload_photo_and_create_thumbnails performs a file upload
using the helper and checks that the file has been uploaded and the two thumbnails, thumb and
tiny, have been created.

The test test_should_delete_db_row_and_files again performs a file upload but destroys
the object using the destroy method. This will perform any callbacks that are related to the
Photo model and, therefore, it should delete the files. The test checks that the three database
rows, relating to the parent and the two thumbnails, are deleted. It then checks that the three
files have been deleted from the file system.

Before we can run the tests, we have to update the test database to include the changes
made for the Photo model. Enter the following command:

$ rake db:test:prepare

Now try running the units tests by entering the following command:

$ ruby test/unit/photo_test.rb

Loaded suite test/unit/photo_test
Started
..
Finished in 1.389494 seconds.

2 tests, 10 assertions, 0 failures, 0 errors

This proves to us that the model is working correctly and that the correct files are being
created and deleted.

Functional Tests
For our functional tests, we should attempt to log in as a valid user and perform all of the valid
actions to confirm that they are completed correctly and that the resulting pages or redirec-
tions are successful.

Create the functional test file test/functional/user_photos_controller_test.rb, and
replace the generated tests with the code in Listing 7-11.

Bradburne_8415C07.fm Page 212 Friday, April 27, 2007 7:41 AM

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 213

Listing 7-11. Functional Tests for the Photos Controller

require File.dirname(__FILE__) + '/../test_helper'
require 'user_photos_controller'

Re-raise errors caught by the controller.
class UserPhotosController; def rescue_action(e) raise e end; end

class UserPhotosControllerTest < Test::Unit::TestCase
 fixtures :photos, :users

 def setup
 @controller = PhotosController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_get_index
 get :index, {:user_id => 1}
 assert_response :success
 assert assigns(:photos)
 end

 def test_should_get_new
 login_as(:valid_user)
 get :new, {:user_id => 1}
 assert_response :success
 end

 def test_should_create_photo
 login_as(:valid_user)
 old_count = Photo.count
 image_file = File.join(RAILS_ROOT, 'public', 'images', 'rails.png')

 post :create, :photo => {:title => 'test photo',
 :body => 'a test image',
 :temp_path => image_file,
 :content_type => 'image/png',
 :filename => 'rails.png'}

 assert_equal old_count+3, Photo.count
 assert_redirected_to user_photos_path(:user_id => 1)
 end

 def test_should_show_photo
 get :show, {:user_id => 1, :id => 1}
 assert_response :success
 end

Bradburne_8415C07.fm Page 213 Friday, April 27, 2007 7:41 AM

214 CH AP T E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y

 def test_should_get_edit
 login_as(:valid_user)
 get :edit, {:user_id => 1, :id => 1}
 assert_response :success
 end

 def test_should_update_photo
 login_as(:valid_user)

 # upload a test image
 image_file = File.join(RAILS_ROOT, 'public', 'images', 'rails.png')
 post :create,
 :photo => {:title => 'test photo',
 :body => 'a test image',
 :temp_path => image_file,
 :content_type => 'image/png',
 :filename => 'rails.png'}

 put :update, {:user_id => assigns['photo'].user_id, :id => assigns['photo'].id,
 :photo => {:body => 'this has been edited' }}
 assert_redirected_to user_photo_path(:user_id => assigns['photo'].user_id,
 :id => assigns['photo'].id)
 end

 def test_should_destroy_photo
 login_as(:valid_user)

 # upload a test image
 image_file = File.join(RAILS_ROOT, 'public', 'images', 'rails.png')
 post :create,
 :photo => {:title => 'test photo',
 :body => 'a test image',
 :temp_path => image_file,
 :content_type => 'image/png',
 :filename => 'rails.png'}

 old_count = Photo.count
 delete :destroy, {:user_id => assigns['photo'].user_id,
 :id => assigns['photo'].id}
 assert_equal old_count-3, Photo.count
 assert_redirected_to user_photos_path
 end
end

Bradburne_8415C07.fm Page 214 Friday, April 27, 2007 7:41 AM

CH A PT E R 7 ■ B U I L D I N G A P H OT O G AL L E R Y 215

These functional tests should look familiar from previous chapters. We have modified
them to work with our controller. To test the create action, we are using the same technique
as the unit test.

You should run the functional tests by entering the following command:

$ ruby test/functional/user_photos_controller_test.rb

Loaded suite test/functional/user_photos_controller_test
Started
.......
Finished in 1.217765 seconds.

7 tests, 13 assertions, 0 failures, 0 errors

This shows that our controller is working as expected.

Further Development of the Photo Gallery
While the gallery we have developed is pretty simple, it can be very easily expanded and devel-
oped further. You may wish to try experimenting with different storage mechanisms, especially
S3, as it provides a simple way for you to offer a very fast, large, and reliable file hosting system.

Depending on your community, you may also wish to offer hosting of other types of files.
Using the attachment_fu plug-in, you can easily test for different file types if necessary.

In Chapter 4, we added an RSS feed of the RailsCoders news blog. Using a similar technique,
you could easily add RSS feeds of each user’s photo gallery or a feed of all photos posted to the
site. Also, you may wish to consider allowing users to add comments to other’s photos.

Summary
In this chapter, we created a photo gallery for users of the RailsCoders site. Users can upload
any photos to their galleries, where photos will be displayed in a thumbnail view. To do this, we
made use of the attachment_fu plug-in to automatically handle file management, image resizing,
and thumbnail creation.

We also discussed how to configure attachment_fu to use different file storage mechanisms
and the benefits of each method.

In the next chapter, we will implement an e-mail newsletter for our users, along with e-mail
notifications of blog comments.

Bradburne_8415C07.fm Page 215 Friday, April 27, 2007 7:41 AM

Bradburne_8415C07.fm Page 216 Friday, April 27, 2007 7:41 AM

217

■ ■ ■

C H A P T E R 8

Sending E-mail and Building
a Newsletter Mailing List

In this chapter, we will add functionality to allow the RailsCoders site to send e-mail to our
users. There are many instances where it is useful to be able to automatically send e-mails
directly to users, such as sending a welcome mail when they sign up or mail to allow them to
reset their passwords. In this chapter, we will create an automated mailer that will inform users
when someone has left a new comment in their blogs, which will allow the blog’s owner to
quickly reply to the comment.

We will also build an e-mail newsletter feature. Instead of a being an automated mailer,
this feature will allow the administrator of the site to easily create and send newsletters or
notices to all users of the site.

Using ActionMailer
The Rails framework includes a module called ActionMailer. As you will guess by its name, it is
designed to allow you to easily send and receive e-mails from a Rails application. It can send
mails using either a Simple Mail Transfer Protocol (SMTP) server or a local sendmail applica-
tion. ActionMailer uses ERb templates in the same way as the web templates we have used to
build the web site.

To send e-mails from Rails, you need to create a type of model called a mailer. Mailers are
special types of models that inherit from the ActionMailer::Base class. You can create methods
within this model that are used to set items such as the recipient and the subject, along with
variables in the e-mail templates that you have created. You can also add attachments or create
multipart e-mails. These model files are placed in the usual model directory, app/models/.

The e-mail templates for the mailer methods you create are placed in the views directory
corresponding to the model name. For example, if your mailer model is called notifier, the
e-mail templates for this are placed in the directory app/views/notifier/.

Configuring ActionMailer
Before you send e-mails using ActionMailer, you will have to configure your application to
work with either an SMTP server or a local sendmail application. This is done in the Rails configu-
ration files in the config/ directory.

Bradburne_8415C08.fm Page 217 Saturday, May 19, 2007 6:56 AM

218 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

We have talked before about the fact that Rails has three modes for running an application:
development, test, and production. Since it is likely that the mail server settings will be different
for an application running on your local development machine or remotely on a server, you
can specify different ActionMailer configurations for each of the Rails run modes.

Within the config/ directory, there is another directory called environments/. This has
three configuration files, one for each mode: development.rb, test.rb, and production.rb.

The test mode is already set up not to actually deliver mails but to collect them in an array
that is accessible by the test methods.

If you look at the config/environments/test.rb file, you will see that this is set by the
following line:

config.action_mailer.delivery_method = :test

If you are using Linux or OS X, you may wish to use the sendmail application to send e-mails
from your local machine. This requires very little configuration and is convenient for develop-
ment mode.

To configure ActionMailer to use sendmail, edit the relevant configuration file, for example,
config/environments/development.rb, by adding the following line:

config.action_mailer.delivery_method = :sendmail

For most purposes, configuring ActionMailer to use an SMTP sever is the best method.
However, you will need to know the settings of your SMTP server. Most ISPs and hosting
companies provide you with an SMTP server.

To configure your application to use SMTP, add the following line to the relevant environ-
ment configuration file, such as config/environments/development.rb:

config.action_mailer.delivery_method = :smtp

You also need to provide the details of the SMTP server. This is done in the config/
environment.rb file. At the end of this file, add the following code, and replace the address,
user_name, and password with your own settings:

ActionMailer::Base.smtp_settings = {
 :address => 'smtp.yourserver.com', # default: localhost
 :port => '25', # default: 25
 :authentication => :plain, # :plain, :login or :cram_md5
 :user_name => 'user',
 :password => 'pass'
}

Specifying the E-mail Feature Requirements
For many aspects of our application, sending e-mails to our users would be very useful, such as
sending a welcome e-mail when they sign up or allowing them to receive recent news articles
as e-mails.

Bradburne_8415C08.fm Page 218 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 219

In this chapter, we will add a facility so that new comments left on users’ blogs are auto-
matically sent to them as e-mails. Also, we want to be able to send an occasional newsletter to
all users of the site.

E-mail Notifications of New Comments
When a new comment is left in response to a post on a user’s blog, we want to notify the owner
of the blog that someone has commented and provide a link to allow the user to easily see the
comment. We can do this by adding code to the specific action where this event happens, that
is, the comments controller’s create action.

ActionMailer allows us to create e-mails based on an e-mail template, so we can write a
generic e-mail that will be personalized for each outgoing e-mail with the user and comment
details.

We want the mail to have both plain text and HTML parts, meaning that the mail will display
as only plain text on text-based e-mail applications and as an HTML e-mail in applications that
support it.

The e-mail should contain a link to the entry that has been commented on, allowing the
user to quickly go to the entry and respond.

E-mail Newsletters
We want to be able to send a message to all registered users of the site. This could be used for
newsletters or to notify users of upgrades or new features.

To respect your users’ privacy, you should consider adding a user-settable option for whether
they should receive bulk e-mails or not. In this chapter, we will not implement this, but it should be
considered for a live site.

Sending an e-mail message to many users at once can put a strain on your server if you are
running a local sendmail process. SMTP servers are generally limited to accept only a limited
number of messages within a given time frame. This may be as little as a hundred e-mails per
hour, depending on your SMTP server provider. Because we want to send a personalized e-mail
message to each user, we cannot just specify a list of recipients on a BCC list.

Therefore, we need to work out a way of sending a large number of e-mails without over-
loading our system. Unsurprisingly, this problem has already been solved and built into a plug-in
called ar_mailer. ar_mailer was developed by Eric Hodel, and you can find the documentation
at http://dev.robotcoop.com/Tools/ar_mailer.

ar_mailer utilizes a database table to store all the to-be-sent e-mails, which are subsequently
processed by a separate script, ar_sendmail. When the ar_sendmail script is executed, it will
process each of the messages waiting to be sent in the database table, sending them with the
SMTP settings set up for ActionMailer.

In order to allow newsletters to be created, stored, and edited before sending, we will also
create a resource for the newsletters that we send to users. This model simply needs to store the
e-mail subject, body text, and the time and date that it was created. The model should also
store whether the newsletter has been sent or not and if so, the date and time that it was sent.

This database structure is shown in Table 8-1.

Bradburne_8415C08.fm Page 219 Saturday, May 19, 2007 6:56 AM

http://dev.robotcoop.com/Tools/ar_mailer

220 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

Along with the normal REST actions, the controller for the newsletter resource also needs
to have an action that actually sends the newsletter out to the users. We will call this action
sendmails.

■Caution Be careful when naming your actions, as you cannot use certain method names that are
reserved by the system. For instance, you cannot use the name send for an action in a Rails controller.

Building the New Comment Notifier
To allow us to send e-mails on a specific event, we will have to create a Rails mailer together
with the relevant views for this mailer.

We also need to call this mailer when a specific event occurs. We will do this from an
existing controller.

Creating the Mailer
To create a Mailer model, we will use the Rails generate script. This will create a skeleton model,
views directory, and test code.

Enter the following command:

$ ruby script/generate mailer Notifier

 exists app/models/
 create app/views/ notifier
 exists test/unit/
 create test/fixtures/ notifier
 create app/models/notifier.rb
 create test/unit/notifier_test.rb

If you open the Mailer model file, app/models/notifier.rb, you will notice that this class
definition inherits from the ActionMailer class. Now, edit this file as shown in Listing 8-1.

Table 8-1. The Newsletter Database Structure

Field Name Field Type Description

id integer The primary key

subject string The e-mail subject line

body text The body of the e-mail

sent boolean Whether this newsletter has been sent or not

created_at datetime The date and time that the newsletter was created

Bradburne_8415C08.fm Page 220 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 221

Listing 8-1. The Notifier Mailer Model

class Notifier < ActionMailer::Base
 def new_comment_notification(comment)
 blog_owner = comment.entry.user
 recipients blog_owner.email_with_username

 from "RailsCoders <system@railscoders.net>"
 subject "A new comment has been left on your blog"
 body :comment => comment,
 :blog_owner => blog_owner,
 :blog_owner_url => "http://railscoders.net/users/#{blog_owner.id}",
 :blog_entry_url =>
 "http://railscoders.net/users/#{blog_owner.id}/entries/#{comment.entry.id}"
 end
end

You will notice that the new_comment_notification method specifies the e-mail address of
recipients, the e-mail address that the mail is to be sent from, and a subject for the message,
and it passes an instance variable comment to the template. You can specify any number of variables
here, which are all passed to the template and can be used in your e-mail.

For the recipient’s e-mail address, we have used email_with_username. However, at the
moment, no such attribute exists for the model. When specifying an e-mail address, you can
use a friendly name and specify the e-mail address within < and >, as we did with the from address.
To produce an e-mail address for a user, we will add a method called email_with_username to
the User model.

To do this, open the User model file, app/models/user.rb. Add the following method near
to the end of the file but within the User class:

...
 def email_with_username
 "#{username} <#{email}>"
 end
end

This will now return the user’s username and e-mail in the desired format.
In the new_comment_notification method, you will notice that we create an instance vari-

able called @blog_entry_url in the variables that are passed to the template. This is simply a
string consisting of the URL of the entry. Notice here that we have to manually specify the site’s
hostname, railscoders.net, because when a mailer is executed, it has no knowledge about the
request. A normal action method responds to an HTTP request, specifying the URL of the site
along with the request. However, when a mailer is called from a controller, it does not have any
context about the incoming request, so we have to specify the details ourselves.

We now need to create the view template that corresponds to the mailer method
new_comment_notification. Create the file app/views/notifier/
new_comment_notification.rhtml, and enter the e-mail template shown in Listing 8-2.

Bradburne_8415C08.fm Page 221 Saturday, May 19, 2007 6:56 AM

mailto:system@railscoders.net
http://railscoders.net/users/#
http://railscoders.net/users/#

222 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

Listing 8-2. The Comment Notification E-mail Template

Hi <%= @blog_owner.username %>,

A new comment has been left on your blog at RailsCoders.net.

The comment was left by '<%= @comment.user.username %>' at ➥

<%= @comment.created_at.to_s(:short) %>.

To read the comment, go to <%= @blog_entry_url %>.

Cheers,
The RailsCoders Team

As you can see, this uses the instance variables set by the new_comment_notification
method within the e-mail.

However, this e-mail seems a little old school, being only a plain text e-mail. Since there is
a link to the blog entry with the new comment supplied in the e-mail, it would be nice to send
the e-mail as an HTML e-mail.

Thankfully, ActionMailer allows us to easily create multipart e-mails, delivering an e-mail
with a plain text part and an HTML part. E-mail readers are smart enough to know which parts
they should display, depending on their configuration.

To do this, all we have to do is provide templates with certain names. Rails will automatically
look for template names for the particular method with a content type specified before the .rhtml
suffix. Therefore, files ending in .text.plain.rhtml, .text.html.rhtml, or .text.xml.rhtml will be
rendered and attached to the e-mail as separate parts with the appropriate content type. A file
ending in .text.html.rhtml will be sent with the content type of text/html.

Since the e-mail template we have already written is in plain text, rename that as new_comment_
notification.text.plain.rhtml, keeping it within the same directory.

We can now create a HTML version of the same e-mail. Create the file app/views/notifier/
new_comment_notification.text.html.rhtml, and enter the view shown in Listing 8-3.

Listing 8-3. The HTML New Comment Notification E-mail Template

<%= image_tag "http://railscoders.net/images/logo.png", :alt => "RailsCoders" %>

<p>Hi <%= @blog_owner.username %>,</p>

<p>A new comment has been left on your blog at RailsCoders.</p>

<p>The comment was left by <%= link_to @comment.user.username,
@blog_owner_url %> at <%= @comment.created_at.to_s(:short) %>.</p>

<p>To read the comment, go to <%= link_to @blog_entry_url, @blog_entry_url %></p>

<p>Cheers,

The RailsCoders Team</p>

Bradburne_8415C08.fm Page 222 Saturday, May 19, 2007 6:56 AM

mailto:@blog_owner.username
mailto:@comment.user.username
mailto:@comment.created_at.to_s(:short
http://railscoders.net/images/logo.png
mailto:@blog_owner.username
mailto:@comment.user.username
mailto:@comment.created_at.to_s(:short
http://railscoders.net

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 223

Now we have made the e-mail a little more interesting by adding links to the comment
author’s profile and the entry for which the comment was made, along with including our logo.

Manually Testing E-mail Creation
Before we integrate the comment notification feature into our system, we can test it out manu-
ally, to check that the expected mail is composed by our notifier and templates. To do this, we
are going to use the interactive features of Ruby, specifically the Rails console.

The Rails console allows you to interactively use your application using Ruby and Rails
commands. This allows you to investigate inside your system rather than just using the web
interface and looking at logs.

To start the Rails console, open a terminal window, and enter the following command:

$ ruby script/console

Loading development environment.
>>

The >> is a prompt for you to enter commands. Here, you can now run any Ruby or Rails
commands and immediately see the result. You can also inspect and debug your code.

For instance, if you wanted to check that the new email_with_username method that we
added to the User model earlier is working, try the following:

>> adminuser = User.find_by_username('admin')

#<User:0x33ea584 @attributes={"last_login_at"=>nil, "updated_at"=>"2007-01-10
05:55:00", "profile"=>"Site Administrator", "hashed_password"=>"8c6976e5b5410
415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918", "entries_count"=>"0",
"username"=>"Admin", "enable_comments"=>nil, "blog_title"=>nil, "enabled"=>"1",
"id"=>"1", "posts_count"=>"3", "created_at"=>"2006-12-11 23:52:23",
"email"=>"admin@example.com"}>

You can see from the result that Rails has executed the code that we entered. You can now
use this instance of the User model, adminuser, as you would in your Rails code. For instance,
to test the email_with_username method, enter the following:

>> adminuser.email_with_username

"Admin <admin@railscoders.net>"

This is exactly what we expected and wanted—the username together with the e-mail
address enclosed in < and >.

We can now use this same method to manually test the e-mail creation. It is also a good
idea to use this in conjunction with monitoring the Rails log files. When you enter a command,

Bradburne_8415C08.fm Page 223 Saturday, May 19, 2007 6:56 AM

mailto:admin@example.com
mailto:admin@railscoders.net

224 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

the log files will show any SQL queries that are executed and also the content of any e-mails
that are generated by the system.

■Tip By default, Rails will attempt to deliver e-mails created in the development mode. If you wish to
change this, add config.action_mailer.delivery_method = :test to your development mode
configuration file, config/environments/development.rb.

To invoke a method in a mailer class, you simply prefix deliver_ to the method name
and call that as a class method of the mailer class. For example, to invoke the new_comment_
notification method and deliver the e-mail, you would use Notifier.deliver_new_comment_
notification(comment), where comment is the comment object of the new comment that has
been left on the blog.

We can try this now. First, make sure that you have a blog entry added for one of your users
and that this blog entry has a comment added to it. For this example, I have an entry with id of
1, which has a comment with the comment id of 1.

To create an instance of this comment object, use the find command as follows:

>> comment = Comment.find(1)

#<Comment:0x3403430 @attributes={"updated_at"=>"2007-01-03 16:55:26",
"entry_id"=>"1", "body"=>"a comment!", "id"=>"1", "user_id"=>"2",
"created_at"=>"2007-01-03 16:55:26"}>

As you can see from the console output, we have successfully retrieved the comment object.
If you look at the development.log file, you will see the SQL query that was performed:

Comment Columns (0.135616) SHOW FIELDS FROM comments
Comment Load (0.043175) SELECT * FROM comments WHERE (comments.id = 1)

You can now invoke the deliver_new_comment_notification method, creating and sending
the e-mail to the blog owner:

>> mail = Notifier.deliver_new_comment_notification(comment)

#<TMail::Mail port=#<TMail::StringPort:id=0x19db598>
bodyport=#<TMail::StringPort:id=0x19da030>>

If you take a look at the development.log file now, you will see the entire e-mail, complete
with the plain text and HTML parts:

Bradburne_8415C08.fm Page 224 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 225

Sent mail:
From: system@railscoders.net
To: Alan <abradburne@gmail.com>
Subject: A new comment has been left on your blog
Mime-Version: 1.0
Content-Type: multipart/alternative; boundary=mimepart_45bfd0d45013b_18d7118ba0152

--mimepart_45bfd0d45013b_18d7118ba0152
Content-Type: plain/text; charset=utf-8
Content-Transfer-Encoding: Quoted-printable
Content-Disposition: inline

Hi Alan,

A new comment has been left on your blog at RailsCoders.net.

The comment was left by 'Alan' at 03 Jan 16:55.

To read the comment, go to http://railscoders.net/users/2/entries/1

--mimepart_45bfd0d45013b_18d7118ba0152
Content-Type: plain/html; charset=utf-8
Content-Transfer-Encoding: Quoted-printable
Content-Disposition: inline

<p>Hi Alan,</p>

<p>A new comment has been left on your blog at RailsCoders.</p>

<p>The comment was left by Alan on
03 Jan 16:55.

To read the comment, go to
http://railscoders.net/users/2/entries/1

Cheers,
<p>The RailsCoders Team</p>

--mimepart_45bfd0d45013b_18d7118ba0152--

This has created a new object called mail. You can also interrogate the mail object that you
just created in the Rails console.

Bradburne_8415C08.fm Page 225 Saturday, May 19, 2007 6:56 AM

mailto:system@railscoders.net
mailto:abradburne@gmail.com
http://railscoders.net/users/2/entries/1
http://railscoders.net/images/logo.png
http://railscoders.net/users/2
http://railscoders.net/users/2/entries/1
http://railscoders.net/users/2/entries/1</a
http://railscoders.net

226 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

■Tip The Rails mailer uses a Ruby library called TMail to work with e-mails. You can find the TMail docu-
mentation at http://i.loveruby.net/en/projects/tmail/doc.

For example, to look at the addressee of the e-mail, type the following command:

>> mail.to

=> ["abradburne@gmail.com"]

Or to view the entire e-mail header, use this:

>> mail.header

{"message-id"=>#<TMail::MessageIdHeader "<45c1c6b631951_18d7118ba045@alans-
computer.local.tmail>">, "mime-version"=>#<TMail::MimeVersionHeader "1.0">,
"from"=>#<TMail::AddressHeader "system@railscoders.net">, "content-
type"=>#<TMail::ContentTypeHeader "multipart/alternative">,
"date"=>#<TMail::DateTimeHeader "Thu, 04 Jan 2007 10:53:42 +0000">,
"subject"=>#<TMail::UnstructuredHeader "A new comment has been left on your blog">,
"to"=>#<TMail::AddressHeader "\"Alan\" <abradburne@gmail.com>">}

To display the body of the text-only part of the e-mail, use this:

>> mail.parts.first.body

=> "Hi Alan,\n\nA new comment has been left on your blog at RailsCoders.net.\n\n
The comment was left by 'Alan' at 03 Jan 16:55.\n\nTo read the comment, go to
http://railscoders.net/users/2/entries/1"

Now that we can see that the e-mail created by our notifier method looks correct, we can
integrate it with the necessary controller.

Calling the Mailer from the Comments Controller
This e-mail will be sent when a new comment is added to a blog. As you will remember from
Chapter 6, new comments are created by the create action of the comments controller.

Open the comments controller, app/controllers/comments_controller.rb, and take a
look at the create action. For reference, this is shown in Listing 8-4.

Bradburne_8415C08.fm Page 226 Saturday, May 19, 2007 6:56 AM

http://i.loveruby.net/en/projects/tmail/doc
mailto:abradburne@gmail.com
mailto:18d7118ba045@alans-computer.local.tmail
mailto:18d7118ba045@alans-computer.local.tmail
mailto:18d7118ba045@alans-computer.local.tmail
mailto:system@railscoders.net
mailto:abradburne@gmail.com
http://railscoders.net/users/2/entries/1

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 227

Listing 8-4. The Comments Controller Create Action

def create
 @entry = Entry.find_by_user_id_and_id(params[:user_id],
 params[:entry_id])
 @comment = Comment.new(:user_id => @logged_in_user.id,
 :body => params[:comment][:body])

 if @entry.comments << @comment
 flash[:notice] = 'Comment was successfully created.'
 redirect_to entry_path(:user_id => @entry.user,
 :id => @entry)
 else
 render :controller => 'entries', :action => 'show',
 :user_id => @entry.user, :entry_id => @entry
 end
end

We need to invoke the deliver_new_comment_notification method when we know that a
comment has been successfully created and associated with an entry. Therefore, we need to
add the invocation within the when-true execution path of the if statement, where the comment
has successfully been saved and added to an entry.

Add the mailer delivery method as follows:

...
if @entry.comments << @comment
flash[:notice] = 'Comment was successfully created.'
Notifier.deliver_new_comment_notification(@comment)
redirect_to entry_path(:user_id => @entry.user, :id => @entry)
else
...

We can now try running this from within the application.

Testing the Mailer from Within the Application
Make sure that the Rails application server is running and that you are logged into the site as a
regular user. Now, visit a blog on the site that already has a blog entry, and click the comments
link beneath the entry to create a new comment.

You should watch the development log file, using either the command tail –f log/
development.log if you are using OS X or Linux or a tail application if you are using Windows.

Create a new comment for this entry, and click save. The comment will be created, and
your browser will be directed to the blog index view.

Take a look at your development log file. Scroll back to the beginning of the processing for
this request, marked by the following line:

Bradburne_8415C08.fm Page 227 Saturday, May 19, 2007 6:56 AM

mailto:@logged_in_user.id
mailto:@entry.comments
mailto:@entry.user
mailto:@entry.user
mailto:@entry.comments
mailto:@entry.user

228 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

Processing CommentsController#create (for 127.0.0.1 at 2007-01-04 12:42:26) [POST]

Beneath this, you will see all of the SQL queries that were performed for this request,
including the INSERT statement used to create the comment and the UPDATE statement that
associates the comment with the entry.

After these, you will see the mail that was created and sent to the owner of the blog entry.

Automating the Mailer Tests
Of course, while manually testing the mailer is useful, we should write automated test cases
too. We should develop both unit tests and functional tests.

The unit test cases will test the mailer on its own. We will use the fixtures that we have
already created to make a new comment notification e-mail, which we will then test using
some simple assertions that look for specific patterns in the created mail, such as the correct
URL to the entry and the correct username of the comment poster.

The functional test cases will test that the right e-mail is sent at the right time. In our appli-
cation, the new comment notification e-mail will be sent when a new comment is saved, so this
is what we need to check.

Unit Tests

When you used the generate command to create a mailer, Rails also creates the skeleton file for
your mailer. This is placed with the other unit tests in the test/unit/ directory. Open the test/
unit/notifier.rb file now.

You will notice that this is similar to a normal unit test file, except that along with setting a
few variables and including an ActionMailer class, a setup method and two private methods,
read_fixture and encode, are provided.

Our unit test should simply retrieve one of our comment fixtures and create a new notifi-
cation message based on that. We can then test that the dynamic text within that e-mail is
correct by performing several assertions.

To add the test, edit the notifier.rb file as shown in Listing 8-5.

Listing 8-5. Unit Test for the Comment Notification

require File.dirname(__FILE__) + '/../test_helper'

class NotifierTest < Test::Unit::TestCase
 FIXTURES_PATH = File.dirname(__FILE__) + '/../fixtures'
 CHARSET = "utf-8"
 fixtures :entries, :comments, :users

 include ActionMailer::Quoting

Bradburne_8415C08.fm Page 228 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 229

 def setup
 ActionMailer::Base.delivery_method = :test
 ActionMailer::Base.perform_deliveries = true
 ActionMailer::Base.deliveries = []

 @expected = TMail::Mail.new
 @expected.set_content_type "text", "plain", { "charset" => CHARSET }
 @expected.mime_version = '1.0'
 end

 def test_comment_notify
 comment = Comment.find(1)
 response = Notifier.create_new_comment_notification(comment)
 assert_equal "A new comment has been left on your blog", response.subject
 assert_match /Hi #{comment.entry.user.username}/, response.body
 assert_match /The comment was left by '#{comment.user.username}' at ➥

#{comment.created_at.to_s(:short)}/, response.body
 assert_match /go to http:\/\/railscoders.net\/users\/1\/entries\/1/,
 response.body
 end

 private
 def read_fixture(action)
 IO.readlines("#{FIXTURES_PATH}/notifier/#{action}")
 end

 def encode(subject)
 quoted_printable(subject, CHARSET)
 end
end

You should now run this unit test as follows:

$ ruby test/unit/notifier_test.rb

Loaded suite test/unit/notifier_test
Started
.
Finished in 0.253968 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

Functional Tests

To ensure that mail is sent at the right time, we should write functional tests to initiate sending
a comment notification e-mail.

Bradburne_8415C08.fm Page 229 Saturday, May 19, 2007 6:56 AM

mailto:@expected.set_content_type
mailto:@expected.mime_version

230 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

Since this is handled by the comments controller, we will add this functional test
to the comments functional test file that we already created. Open test/functional/
comments_controller_test.rb now. Add the following test to the end of this file, before the last
end statement:

def test_send_notify_email
 num_deliveries = ActionMailer::Base.deliveries.size

 login_as(:valid_user)
 post :create,{:user_id => 1, :entry_id => 1,
 :comment => {:body => 'that is great'}}

 assert_equal num_deliveries + 1, ActionMailer::Base.deliveries.size
end

This test simply checks the number of e-mails to be delivered before and after a comment
is created. After a new comment is created, there should be one extra message.

Run the comments controller functional tests again to check that this test passes:

$ ruby test/functional/comments_controller_test.rb

Loaded suite test/functional/comments_controller_test
Started
....
Finished in 0.313221 seconds.

4 tests, 9 assertions, 0 failures, 0 errors

Building the Newsletter Feature
The newsletter feature is a little more complex than the comment notification. First of all, we
need some way of storing the newsletter. Since a newsletter is going to be different every time,
we need a little more than just an ERb mail template.

Installing ar_mailer
As discussed earlier, we are going to use the Ruby gem ar_mailer to make it easier for us to send
mail to a large number of users at the same time.

If we decide to use ar_mailer, we need to change the delivery method for the system.
Rather than using the SMTP or sendmail settings shown at the beginning of the chapter, we tell
ActionMailer to use ActiveRecord as the delivery method.

First of all, install the gem using the following command:

Bradburne_8415C08.fm Page 230 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 231

$ gem install ar_mailer

Successfully installed ar_mailer-1.1.0
Installing ri documentation for ar_mailer-1.1.0...
Installing RDoc documentation for ar_mailer-1.1.0...

■Note On Linux or OS X, you may need to prefix the gem install command with sudo.

The ar_mailer gem utilizes a database table to store all of the messages that it needs to
send. We need to create a migration to add the necessary table to our database.

Create a new migration with the following command:

$ ruby script/generate model Email

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/email.rb
 create test/unit/email_test.rb
 create test/fixtures/emails.yml
 exists db/migrate
 create db/migrate/017_create_emails.rb

Edit the migration file db/migrate/017_create_emails.rb as shown in Listing 8-6. This will
create a new table called emails to store the e-mails waiting to be sent.

Listing 8-6. The ar_mailer Migration Script

class CreateEmails < ActiveRecord::Migration
 def self.up
 create_table :emails do |t|
 t.column :from, :string
 t.column :to, :string
 t.column :last_send_attempt, :integer, :default => 0
 t.column :mail, :text
 end
 end

 def self.down
 drop_table :emails
 end
end

Bradburne_8415C08.fm Page 231 Saturday, May 19, 2007 6:56 AM

232 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

To use the ar_mailer code to deliver e-mails, we need to change the Notifier class to
inherit from ActionMailer::ARMailer instead of ActionMailer::Base. Open the notifier, app/
models/notifier.rb, and change the class definition line as follows:

class Notifier < ActionMailer::ARMailer
 def new_comment_notification(comment)
 blog_owner = comment.entry.user
 ...

We also need to change the delivery method in the Rails configuration files to deliver e-mails
using ActiveRecord. We will change the delivery method for the development mode, since we
are only working in development mode here. You should also make the same changes in the
production.rb file if you are going to use ar_mailer in a production environment.

Open the Rails configuration file, config/environments/development.rb, and change the
delivery method as follows:

config.action_mailer.delivery_method = :activerecord

Finally, we need to make sure that the correct paths are set for the ar_mailer to be loaded
by Rails. Edit the file config/environment.rb by adding the following line to the end of the file:

require 'action_mailer/ar_mailer'

Creating the Skeleton Resource
To allow easy creation and editing of the newsletters, we will create a new resource, called
newsletters, which is only accessible by the Admin user.

We will use the scaffold_resource generator to create the resource and modify the generated
code to meet our requirements. We can add the attribute names and their database table types
to the command, and they will be automatically added to the migration script:

$ ruby script/generate scaffold_resource Newsletter

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/newsletters
 exists test/functional/
 exists test/unit/
 create app/views/newsletters/index.rhtml
 create app/views/newsletters/show.rhtml
 create app/views/newsletters/new.rhtml
 create app/views/newsletters/edit.rhtml
 create app/views/layouts/newsletters.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/newsletters.rb
 create app/controllers/newsletters_controller.rb
 create test/functional/newsletters_controller_test.rb
 create app/helpers/newsletters_helper.rb

Bradburne_8415C08.fm Page 232 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 233

 create test/unit/newsletters_test.rb
 create test/fixtures/newsletters.yml
 exists db/migrate
 create db/migrate/018_create_newsletters.rb
 route map.resources :newsletters

We can now update the migration file to add the database columns detailed in the specifica-
tion. Alter the migration file, db/migrations/018_create_newsletters.rb, as shown in Listing 8-7.

Listing 8-7. The Migration File for the Newsletter

class CreateNewsletters < ActiveRecord::Migration
 def self.up
 create_table :newsletters do |t|
 t.column :subject, :string
 t.column :body, :text
 t.column :sent, :boolean, :null => false, :default => false
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 end
 end

 def self.down
 drop_table :newsletters
 end
end

Now, run the migration:

$ rake db:migrate

(in /Users/alan/Documents/Projects/Rails/railscoders)
== AddArMailerTable: migrating ==
-- create_table(:emails)
 -> 0.1708s
== AddArMailerTable: migrated (0.1709s) =======================================

== CreateNewsletters: migrating ===
-- create_table(:newsletters)
 -> 0.0045s
== CreateNewsletters: migrated (0.0047s) ======================================

Mapping the Newsletter Resource
The newsletter resource is not nested under any other resources, so a simple top-level mapping,
as created by the generate script, is fine.

Bradburne_8415C08.fm Page 233 Saturday, May 19, 2007 6:56 AM

234 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

However, we have specified that we need an extra action for the newsletter resource,
called sendmails. This will initiate the sending of a specific newsletter to all users. We need to
declare this in the routes.rb file.

Since we want this action to be available only to members of the newsletter resource, we
declare it with the parameter :member. If we wanted to declare an action that was available to a
collection of newsletter resources as a whole, we would use the parameter :collection.

Open the config/routes.rb file now. You will see that the generate script has already created
the line map.resources :newsletters. Modify this to include the sendmails action as follows:

map.resources :newsletters, :member => { :sendmails => :put }

This specifies that the sendmails action can only be accessed via an HTTP PUT request. This
will ensure that the send action is not accidentally initiated by a web accelerator application.

The Newsletter Model
The Newsletter model needs to have the validations added to it. Since the newsletters are not
related to any other models, there are no relationships to define.

Because the Newsletter model is very simple, the only two fields that are entered by a user,
and therefore, the only two that require validating are the message subject and body. We should
also use the validates_presence_of validation to test that neither field is left blank.

Open the newsletter model file, app/models/newsletter.rb, and add the validations shown
in Listing 8-8.

Listing 8-8. The Newsletter Model

class Newsletter < ActiveRecord::Base
 validates_presence_of :subject, :body
 validates_length_of :subject, :maximum => 255
 validates_length_of :body, :maximum => 10000
end

Writing the Newsletter Controller and Views
The newsletter controller is a simple resource, allowing an administrator user to create and
edit newsletters, which can then be sent by clicking a button on the newsletter show screen.

The scaffolding code produced by the generator gives us a useful starting point, but we
need to adapt it to our application. For simplicity, we will just implement a web version of the
controller. If you wish to allow this to be accessed via an XML API, you can add the functionality as
we have in earlier chapters.

Open the controller, app/controllers/newsletters_controller.rb, and edit it as shown in
Listing 8-9.

Bradburne_8415C08.fm Page 234 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 235

Listing 8-9. The Newsletters Controller

class NewslettersController < ApplicationController
 before_filter :check_administrator_role

 # GET /newsletters
 def index
 @newsletters = Newsletter.find(:all)
 end

 # GET /newsletters/1
 def show
 @newsletter = Newsletter.find(params[:id])
 end

 # GET /newsletters/new
 def new
 @newsletter = Newsletter.new
 end

 # GET /newsletters/1;edit
 def edit
 @newsletter = Newsletter.find_by_id_and_sent(params[:id], false)
 end

 # POST /newsletters
 def create
 @newsletter = Newsletter.new(params[:newsletter])

 if @newsletter.save
 flash[:notice] = 'Newsletter was successfully created.'
 redirect_to newsletter_path(@newsletter)
 else
 render :action => "new"
 end
 end

 # PUT /newsletters/1
 def update
 @newsletter = Newsletter.find_by_id_and_sent(params[:id], false)

 if @newsletter.update_attributes(params[:newsletter])
 flash[:notice] = 'Newsletter was successfully updated.'
 redirect_to newsletter_path(@newsletter)
 else
 render :action => "edit"
 end
 end

Bradburne_8415C08.fm Page 235 Saturday, May 19, 2007 6:56 AM

mailto:@newsletter.save
mailto:@newsletter.update_attributes

236 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

 # DELETE /newsletters/1
 def destroy
 @newsletter = Newsletter.find_by_id_and_sent(params[:id], false)
 @newsletter.destroy

 redirect_to newsletters_path
 end

 # PUT /newsletters/1;send
 def sendmails
 newsletter = Newsletter.find_by_id_and_sent(params[:id], false)
 users = User.find(:all)
 users.each do |user|
 Notifier.deliver_newsletter(user, newsletter)
 end
 newsletter.update_attribute('sent', true)
 redirect_to newsletters_path
 end

end

We need to make sure that only administrator users can access this controller, so we will
protect it using the before filter check_administrator_role.

The Index Action and View

The index action method simply returns all newsletters. This is fine, but we have modified the
action method to order the newsletters by the last update time, showing the most recently
updated item first.

For the view, we want to show the list of newsletters including the subjects, whether or not
the newsletters have been sent, the times they were created and updated, along with links to
show, edit, or delete newsletters. However, since we do not want an administrator user to edit
an already sent newsletter, we should only show these links for newsletters that have not been
sent. The sent Boolean field tells us if it has been sent or not. However, this will display true or
false, whereas it would be more user friendly to display “yes” or “no.” To do this, we will create
a helper method to convert true to the string 'yes' and false to the string 'no'. Since this method
might be useful for other views, not just the newsletter views, we will create it in the applica-
tionwide helper file, app/helpers/application_helper.rb.

Open this file now, and edit it as shown in Listing 8-10.

Listing 8-10. The Applicationwide Helper File

module ApplicationHelper

 def yes_no(bool)
 if bool == true
 "yes"

Bradburne_8415C08.fm Page 236 Saturday, May 19, 2007 6:56 AM

mailto:@newsletter.destroy

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 237

 else
 "no"
 end
 end
end

Now, open the index view file, app/views/newsletters/index.rhtml, and enter the view
shown in Listing 8-11.

Listing 8-11. The Newsletter Index View

<h1>Listing newsletters</h1>

<%= link_to 'Create new newsletter', new_newsletter_path %>

<table>
 <tr>
 <th>Subject</th>
 <th>Sent</th>
 <th>Created at</th>
 <th>Updated at</th>
 </tr>

<% for newsletter in @newsletters %>
 <tr>
 <td><%=h newsletter.subject %></td>
 <td><%= yes_no(newsletter.sent) %></td>
 <td><%=h newsletter.created_at %></td>
 <td><%=h newsletter.updated_at %></td>
 <% if !newsletter.sent %>
 <td><%= link_to 'Show', newsletter_path(newsletter) %></td>
 <td><%= link_to 'Edit', edit_newsletter_path(newsletter) %></td>
 <td><%= link_to 'Destroy', newsletter_path(newsletter),
 :confirm => 'Are you sure?', :method => :delete %></td>
 <% end %>
 </tr>
<% end %>
</table>

Notice that we are using the yes_no helper method to show if the newsletter has been sent
or not.

The Show Action

The show action should just display one newsletter, along with links to allow the user to edit the
newsletter, initiate the sendmails action, or go back to the list of newsletters. If the newsletter
has already been sent, the edit and sendmails links should not be shown.

Bradburne_8415C08.fm Page 237 Saturday, May 19, 2007 6:56 AM

238 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

Open the show view, app/views/newsletters/show.rhtml, and enter the code as shown in
Listing 8-12.

Listing 8-12. The Newsletter Show View

<h2>Newsletter</h2>

<p>
 Subject: <%=h @newsletter.subject %>
</p>

<p>
 Created at: <%=h @newsletter.created_at %>
</p>

<p>
 Updated at: <%=h @newsletter.updated_at %>
</p>

<p>
 Sent: <%= yes_no(@newsletter.sent) %>
</p>

<p>
 Body:

 <%=h @newsletter.body %>
</p>

<% if !@newsletter.sent %>
 <%= link_to 'Edit', edit_newsletter_path(@newsletter) %> |
 <%= link_to 'Send', sendmails_newsletter_path(@newsletter),
 :method => :put,
 :confirm => 'Are you sure you wish to send this newsletter?' %> |
<% end %>
<%= link_to 'Back', newsletters_path %>

Notice that we are using the yes_no helper method again.

The New Action

The new newsletter view should simply display a form for allowing an administrator user to
write a new newsletter. Since the body of the newsletter will be parsed as an ERb template,
the Admin user can enter embedded Ruby commands in the same was as any regular e-mail
template. We should make the Admin user who is creating the e-mail aware of any objects that
can be used in the e-mail, so we have added a note at the bottom of the form.

Bradburne_8415C08.fm Page 238 Saturday, May 19, 2007 6:56 AM

mailto:@newsletter.subject
mailto:@newsletter.created_at
mailto:@newsletter.updated_at
mailto:no(@newsletter.sent
mailto:@newsletter.body
mailto:!@newsletter.sent

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 239

The page submits the form to the newsletters_path URL, which will be processed by the
create action, as usual.

Open the new newsletter view app/views/newsletters/new.rhtml, and add the code
shown in Listing 8-13.

Listing 8-13. The New Newsletter View

<h2>Create New Newsletter</h2>

<%= error_messages_for :newsletter %>

<% form_for(:newsletter, :url => newsletters_path) do |f| %>
 <p>
 Subject

 <%= f.text_field :subject, :size => 70 %>
 </p>

 <p>
 Body

 <%= f.text_area :body, :cols => 70, :rows => 25 %>

 You can access the user model with @user.

 e.g. <%= @user.username %> or <%= @user.email %>
 </p>

 <p>
 <%= submit_tag "Save draft" %> or <%= link_to 'Cancel', newsletters_path %>
 </p>
<% end %>

The Create Action

If you look at the create action in the controller, we have not made any changes from the
version created by the generator. It simply creates a new newsletter object using the parameter
passed by the form, if the parameters are valid. If not, the new view is shown again, together
with any error messages.

The Edit Action

The edit action simply loads a specific newsletter and displays it in a form to allow the Admin
user to edit it. However, since we do not allow editing of newsletters that have already been
sent, the controller action has been modified to find newsletters based on an id and the sent
field, where the sent field must be false.

The edit view is similar to the new newsletter view. Open the view file, app/views/newsletters/
edit.rhtml, and edit as shown in Listing 8-14.

Bradburne_8415C08.fm Page 239 Saturday, May 19, 2007 6:56 AM

mailto:@user.username
mailto:@user.email

240 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

Listing 8-14. The Newsletter Edit View

<h1>Edit Newsletter</h1>

<%= error_messages_for :newsletter %>

<% form_for(:newsletter,
 :url => newsletter_path(@newsletter),
 :html => { :method => :put }) do |f| %>
 <p>
 Subject

 <%= f.text_field :subject, :size => 70 %>
 </p>

 <p>
 Body

 <%= f.text_area :body, :cols => 70, :rows => 25 %>

 You can access the user model with @user.

 e.g. <%= @user.username %> or <%= @user.email %>
 </p>

 <p>
 <%= submit_tag "Save draft" %> or <%= link_to 'Cancel', newsletters_path %>
 </p>
<% end %>

The Update Action

The generated controller update action has also been modified to save updates only to newslet-
ters where the sent field is false.

The Destroy Action

Like the edit and update actions, the destroy method has also been modified so that it is
impossible for an administrator user to delete a newsletter that has already been sent.

The Sendmails Action

When the user initiates the sendmails action, the method retrieves all of the users of the site
and cycles through them, sending a message to each one in turn. The mail is sent by calling the
deliver_newsletter method of the Notifier class. Recall from earlier that this means we need
to create the method newsletter in our Notifier class, which we will do next.

After sending all of the mails, the sendmails action also updates the Newsletter object,
setting the sent flag to true.

Bradburne_8415C08.fm Page 240 Saturday, May 19, 2007 6:56 AM

mailto:@user.username
mailto:@user.email

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 241

Creating the Newsletter Mailer
We now need to add the mailer method that the newsletter controller will use to send the
messages to the users. We will add it to the existing Notifier mailer class.

Open the notifier mailer, app/models/notifier.rb. After the new_comment_notification
method but before the closing end statement, add the method shown in Listing 8-15.

Listing 8-15. The Newsletter Mailer Method

def newsletter(user, newsletter)
 recipients user.email
 from "RailsCoders <system@railscoders.net>"
 subject newsletter.subject
 body :body => newsletter.body, :user => user
end

We also need to add some simple mailer templates. Since we want to send just a text version of
the mail, we will just create the template with the content type text/plain.

Create the file app/views/notifier/newsletter.text.plain.rhtml, and edit it as shown in
Listing 8-16.

Listing 8-16. The Plain Text Newsletter Template

RailsCoders Newsletter

<%= render :inline => @body %>

Add the Newsletters to the Sidebar
Now let’s add a link to the newsletter resource index action to the sidebar menu. We need to
add this to the section that is only shown to administrator users.

Open the sidebar menu partial view file, app/views/layouts/_menu.rhtml, and add the
following link:

...
<% if logged_in_user and logged_in_user.has_role?('administrator') %>
 <hr size="1" width="90%" align="left"/>
 Admin Options
 <%= link_to 'Admin Permissions', users_path %>
 <%= link_to 'Edit Pages', pages_path %>
 <%= link_to 'Newsletters', newsletters_path %>
<% end %>
...

We also need to remember to delete the layout file created by the Rails generator script,
app/views/layouts/newsletter.rhtml. Do this now.

Bradburne_8415C08.fm Page 241 Saturday, May 19, 2007 6:56 AM

mailto:system@railscoders.net

242 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

Testing the Newsletter Mailer
We can now try creating a newsletter to make sure that our newsletter feature works and see
the effect of using ar_mailer. Open your browser, and go to the application’s home page at
http://localhost:3000/. Log in as the Admin user, and click the Newsletters link in the Admin
section of the sidebar.

At the moment, since you haven’t created any newsletters, the newsletter list is empty.
Click the Create New Newsletter link. You will be presented with the newsletter creation screen,
shown in Figure 8-1. Here, you can enter a subject for the mailing together with the body of the
message. As reminded by the on-screen note, we can use the User model within the mail. So in
your test message, try using this.

For instance, you might wish to start the message with a personalized greeting by entering
a message such as:

Hello <%= @user.username %>!

As you know from the ERb templates that you have created for Rails view files, this will
insert the username into the mailing.

Now save this newsletter by clicking the Save draft button. You will be redirected to the
show action, displaying the new newsletter. Now click the Send link, and confirm that you wish
to send the mail by clicking OK on the pop-up dialog. The sendmails action will then be
invoked, and you will be returned to the list of newsletters.

Because we are using ar_mailer, this mail will not immediately be sent. It has been placed
in a queue by ar_mailer, and we can take a look at the queue to find out what messages are
waiting to be sent.

Open a command window. We will use the ar_mailer command ar_sendmail to inspect
the queue. Enter the following command:

$ ar_sendmail --mailq

You will see a list of the messages waiting to be sent, one for each of the registered users on
your site. It will look similar to the following:

-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
 1 713 Unknown system@railscoders.net
 abradburne@gmail.com

 2 722 Unknown system@railscoders.net
 abradburne+fred@gmail.com

 3 716 Unknown system@railscoders.net
 abradburne+joe@gmail.com

This shows the sender, recipient, and size of each message.

Bradburne_8415C08.fm Page 242 Saturday, May 19, 2007 6:56 AM

http://localhost:3000
mailto:@user.username
mailto:system@railscoders.net
mailto:abradburne@gmail.com
mailto:system@railscoders.net
mailto:fred@gmail.com
mailto:system@railscoders.net
mailto:joe@gmail.com

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 243

Figure 8-1. The Create New Newsletter screen

If you manually take a look at the emails table in your database, you can check to see the
contents of each e-mail. If we look at the mail field for record 3, we can see the full mail that will
be sent:

From: RailsCoders <system@railscoders.net>
To: abradburne+joe@gmail.com
Subject: Latest News
Mime-Version: 1.0
Content-Type: multipart/alternative; boundary=mimepart_45c7aa0d6fd36_4d9719659f64c5

--mimepart_45c7aa0d6fd36_4d9719659f64c5
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: Quoted-printable
Content-Disposition: inline

Bradburne_8415C08.fm Page 243 Saturday, May 19, 2007 6:56 AM

mailto:system@railscoders.net
mailto:joe@gmail.com

244 CH AP T E R 8 ■ SE N D IN G E - M A I L A N D B U IL D I N G A N E W S L E TT E R M A I L I N G L IS T

RailsCoders Newsletter

Howdy Joe!

--mimepart_45c7aa0d6fd36_4d9719659f64c5--

As you can see, the embedded Ruby code to insert the user’s name has been parsed and
the correct text, in this case “Joe,” has been inserted into the mail.

In order to actually send the mail, you should check that your SMTP server is correctly
configured in the config/environment.rb file and run the following command:

$ ar_sendmail

■Note ar_mailer requires that you specify your SMTP login username using the parameter :user rather
than :user_name. You should add this to your SMTP config in the environment.rb file.

ar_mailer will then process all of the messages in the emails database table, sending them
via your SMTP server.

Depending on the configuration of your SMTP server, you can adjust how many e-mails
ar_mailer will send in a batch by adding the switch --batch-size <batch-size>.

Obviously, you do not want to have to run ar_sendmail by hand every time that your appli-
cation creates an e-mail, so you can configure ar_sendmail to run as a daemon, or you could
add it to a scheduler, such as cron.

Further Development of the E-mail System
Since some of your users will not want to have e-mail notifications or newsletters delivered to
their inboxes, it would be a good idea to add a preference that can be set by users allowing
them to turn e-mail notifications on or off.

Also, there are many other parts of the site that could benefit from having e-mail notifica-
tions added. As mentioned previously, you may wish to send users welcome messages when
they join the site, or you could add a system for them to reset their passwords where the reset
link is sent to their registered e-mail addresses.

You could also add an interface to make it easy for the administrator to send e-mails to
specific users of the site, without having to look up their e-mail addresses.

Summary
In this chapter, we added e-mail functionality to the RailsCoders site, allowing the site to respond
to events with e-mails and allowing personalized mass e-mails to be sent to all registered users
of the site at once.

We developed an e-mail notifier using ActionMailer to automatically send e-mails trig-
gered by a specific event, in our case when a blog comment is created. In order to allow us to

Bradburne_8415C08.fm Page 244 Saturday, May 19, 2007 6:56 AM

C HA P TE R 8 ■ S E N D I N G E - M A I L AN D B U I L D IN G A N E W SL E T TE R M A I L I N G L I ST 245

send many e-mails at once, we also used the Ruby gem ar_mailer to queue all outgoing e-mails
in a database table, freeing the application from having to wait for a remote SMTP server. The
database table is then processed by a separate application, ar_sendmail.

In the next chapter, we will allow each user to add a number of friends to his or her profile.
This will allow users to easily check on their friends’ blogs, photos, and forum posts. We will
also look at how we can display these friendships using the XFN microformat.

Bradburne_8415C08.fm Page 245 Saturday, May 19, 2007 6:56 AM

Bradburne_8415C08.fm Page 246 Saturday, May 19, 2007 6:56 AM

247

■ ■ ■

C H A P T E R 9

Adding Friends
with XFN Details

In this chapter, we will add friends to user profiles. This will allow users to add other users to a
friends list. This friends list can then be viewed by any user, but most importantly, it will allow
you to keep up to date with your friends by displaying your friends’ latest activities on the site.
Since we don’t want to cause privacy concerns, this will be limited to showing only simple
information about particular actions, such as if they have uploaded a new photo or posted a
new entry to a blog.

When adding a friend to the friends list, you will be able to set attributes specifying the
type of relationship you have with the user. These attributes will then be rendered as part of the
friends list, allowing users, browsers, and other applications to understand the relationships of
users.

Microformats and XFN
When displaying a link to a user, either a friend or yourself, we can add extra information about
your relationship to this user with a microformat called XHTML Friends Network (XFN).

Microformats are simple, open data formats that allow you to add semantic information to
XHTML documents and allow users and applications to extract meaning from that page based
on the markup. Microformats build on existing standards rather than trying to develop a whole
new markup system. They are designed to address small, specific uses or sections of markup,
such as contact details or calendar entries. By default, they do not change the way the page is
shown in your browser, but the extra information that they provide makes it very easy for soft-
ware to understand the data on your page. However, it is possible to enhance the rendered
page using CSS or JavaScript, which we will do later in this chapter.

You can find out a lot more information about what microformats are, what microformats
have been defined, and how you apply them at http://microformats.org.

XFN is simply a type of microformat that allows you to embed information about your
relationships into the rel attribute of an HTML or XHTML anchor tag, adding a human element
into the link rather than just a pointer to a URL.

For instance, if you link to my profile on RailsCoders, are my friend, and have met me, you
would specify the rel attribute as follows:

Alan

Bradburne_8415C09.fm Page 247 Saturday, May 19, 2007 6:58 AM

http://microformats.org
http://railscoders.net/users/2

248 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

This information can then be displayed alongside the links using CSS, or it could be used
by other applications to map your friendships with other users on both RailsCoders and other
social networking sites. Since the markup is very simple and easily understood by both humans
and applications, it is very simple for new applications to be developed using this information.

Within the rel attribute you can specify a number of types of relationship, separated
by spaces.

• Friendships: You can specify at most one of these:

• contact: Someone you know how to get in touch with

• acquaintance: Someone you have exchanged greetings with

• friend: Someone who you call a friend

• Physical

• met: Someone you have met in person.

• Professional: You can specify neither, either, or both of these:

• co-worker: Someone you work with or who works at the same organization as you

• colleague: Someone who works in the same field as you

• Geographical: You can specify at most one of these:

• co-resident: Someone who lives at the same address as you

• neighbor: Someone who lives near you

• Family: You can specify at most one of these:

• child: Your child

• parent: One of your parents

• sibling: A brother or sister

• spouse: Someone you are married to

• kin: Another relative

• Romantic: You can specify as many of these as you wish:

• muse: Someone who brings you inspiration

• crush: Someone you have a crush on

• date: Someone you are dating

• sweetheart: Someone you are intimate with and committed to

• Identity

• me: Yourself!

Bradburne_8415C09.fm Page 248 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 249

Because the rel attribute is just part of the normal anchor tag, it is very simple to imple-
ment and is transparent to the user. However, it can be used to style the rendered page using
CSS or JavaScript if you wish.

XFN was developed by Matthew Mullenweg, Eric Meyer, and Tantek Çelik. The full XFN
specification, background to its development, and more information can be found at its home
page at http://www.gmpg.org/xfn.

The Friends Feature Requirements
The RailsCoders friends feature requires two parts:

• First, we need a way to create and modify our friends list. We will do this by creating a
new resource called friends. Since each user has a unique friends list, this resource
should be nested beneath the users controller.

• We also need to add code to store the last action and the date and time of that action
with each user. This is so that the friends list can easily show a list of your friends’ latest
actions. If the index action had to query each of the tables to look for what action a user
performed last, the query could take a very long time, especially if it had to do this for a
large number of users.

The Friends Resource
We will create a new resource called friends. Since each user has a unique friends list, this
resource should be nested beneath the users controller, accessible through URLs like /users/
4/friends and /users/4/friends/9.

This resource should provide a number of functions through the regular CRUD interface.
The index method should allow us to view a list of all of our friends, showing both their names
and a link to their profiles, and also our relationships with those users according to the XFN
specification. This page should also show when a friend was last active on RailsCoders and the
latest activity performed, such as posting on a forum or uploading a photo.

The link to the profile will display a friend page view, the show action of the friends resource.
This redirects to the user profile view, showing the user’s latest blog posts and photos but also
providing the facility to edit the relationship to the user.

The new and edit actions of the friends resource allow you to set the friendship attributes
according to the XFN specification. The new friendship page will be accessible by a link on a
user’s profile page. Since we need to be able to specify the id of this user to create a friendship
with them, the id of the person you wish to add as a friend will be passed as a URL parameter.

As you would expect, the destroy action will remove a friendship.
In order to store the friendships and the information about the relationships among users,

we are going to use a join model called Friendship. Join models are exactly what you would
think—they are models that join two other database tables together, while treating the relation-
ship as a real model.

In the early releases of Rails, join tables (rather than models) would be specified in the
related models as has_and_belongs_to_many (often referred to as HABTM by Rails developers).
This would then use a table to store the ids of the two objects being joined. It was possible to
add extra attributes to this association. However, this was not the most elegant of Rail’s features,

Bradburne_8415C09.fm Page 249 Saturday, May 19, 2007 6:58 AM

http://www.gmpg.org/xfn

250 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

and it treated those attributes as just some extra attributes to an association, rather than treating
the relationship and the relationship’s attributes as a real model.

Rails 1.1 added the concept of join models. This significantly improved the has_and_belongs_
to_many concept, making it possible to join multiple models together using another model. For
instance, rather than just linking users together using a friends_users table (where friends was
specified as just being a type of user model), we create a join model called Friendship. This
model is then a first-class citizen of Rails, being able to use all of the features of Rails models.
This model uses a database table called, of course, friendships.

Since we want to be able to store not only the ids of the two user objects that are friends
but the details of their relationship, we will add attributes to the Friendship model for each of
the XFN relationship values.

Some of the XFN relationship values are mutually exclusive; for instance, you cannot be a
child and a parent of the same person. Since all access to the friendship object is performed
through the Friendship model, we will use the model to validate and control what values can
be set. In the database, we will just use Boolean values for each of the XFN values. All of the xfn_
fields will default to false.

The friendships database table schema is shown in Table 9-1.

Table 9-1. The Friendships Database Schema

Field Name Field Type Description

user_id integer The ID of the owner and creator of this friendship

friend_id integer The user to whom this friendship refers

xfn_friend boolean Refers to the XFN friend attribute

xfn_acquaintance boolean Refers to the XFN acquaintance attribute

xfn_contact boolean Refers to the XFN contact attribute

xfn_met boolean Refers to the XFN met attribute

xfn_coworker boolean Refers to the XFN co-worker attribute

xfn_colleague boolean Refers to the XFN colleage attribute

xfn_coresident boolean Refers to the XFN co-resident attribute

xfn_neighbor boolean Refers to the XFN neighbor attribute

xfn_child boolean Refers to the XFN child attribute

xfn_parent boolean Refers to the XFN parent attribute

xfn_sibling boolean Refers to the XFN sibling attribute

xfn_spouse boolean Refers to the XFN spouse attribute

xfn_kin boolean Refers to the XFN kin attribute

xfn_muse boolean Refers to the XFN muse attribute

xfn_crush boolean Refers to the XFN crush attribute

xfn_date boolean Refers to the XFN date attribute

xfn_sweetheart boolean Refers to the XFN sweetheart attribute

Bradburne_8415C09.fm Page 250 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 251

Showing Users’ Latest Activities
To easily show what your friend’s latest update is, we will keep a record of the last activity
performed by each user. We can decide what activities get recorded by selectively choosing
what to store and when to store it.

We can easily store and update this information by adding a few columns to the users
database table and creating callback methods for the models that we wish to be able to update
these columns. For instance, we would add an after_save callback for the forum’s Post model,
which updates the User model and stores the date and time and a string such as “Created
Forum Post” in the User model.

We will add callbacks like this to the forum’s Post model, the Photo model, and the blog’s
Entry model.

To store these details, we will add the fields shown in Table 9-2 to the users database table.

Building the Friends Resource
To build the friends feature, we have to create the necessary database migrations, and develop
the Friendship join model and friends resource controller and views. We then need to update
the models that will update the user’s latest activity fields, the forum’s Post model, the Photo
model, and the blog’s Entry model. This information will then be added to the friend view page.

Creating the Database Migrations
First of all, we will create the required join model called Friendship. Do this using the Rails
generator script:

$ ruby script/generate model Friendship

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/friendship.rb
 create test/unit/friendship_test.rb
 create test/fixtures/friendships.yml
 exists db/migrate
 create db/migrate/019_create_friendships.rb

Now, we need to edit the generated migration file and create the friendships database
table as specified earlier. Open the file db/migrate/019_create_friendships.rb, and enter the

Table 9-2. The Additional Fields for the users Table

Field Name Field Type Description

last_activity string A description of the last activity performed by the user

last_activity_at datetime The time and date that this activity was performed

Bradburne_8415C09.fm Page 251 Saturday, May 19, 2007 6:58 AM

252 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

migration as shown in Listing 9-1. This migration also creates an index based on the user_id
and the friend_id.

Listing 9-1. The friendships Table Database Migration

class CreateFriendships < ActiveRecord::Migration
 def self.up
 create_table :friendships do |t|
 t.column :user_id, :integer, :null => false
 t.column :friend_id, :integer, :null => false

 t.column :xfn_friend, :boolean, :default => false, :null => false
 t.column :xfn_acquaintance, :boolean, :default => false, :null => false
 t.column :xfn_contact, :boolean, :default => false, :null => false

 t.column :xfn_met, :boolean, :default => false, :null => false

 t.column :xfn_coworker, :boolean, :default => false, :null => false
 t.column :xfn_colleague, :boolean, :default => false, :null => false

 t.column :xfn_coresident, :boolean, :default => false, :null => false
 t.column :xfn_neighbor, :boolean, :default => false, :null => false

 t.column :xfn_child, :boolean, :default => false, :null => false
 t.column :xfn_parent, :boolean, :default => false, :null => false
 t.column :xfn_sibling, :boolean, :default => false, :null => false
 t.column :xfn_spouse, :boolean, :default => false, :null => false
 t.column :xfn_kin, :boolean, :default => false, :null => false

 t.column :xfn_muse, :boolean, :default => false, :null => false
 t.column :xfn_crush, :boolean, :default => false, :null => false
 t.column :xfn_date, :boolean, :default => false, :null => false
 t.column :xfn_sweetheart, :boolean, :default => false, :null => false
 end

 add_index :friendships, [:user_id, :friend_id]
 end

 def self.down
 drop_table :friendships
 end
end

Bradburne_8415C09.fm Page 252 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 253

Before we run the migration, we can create the migration file to add the necessary columns to
the users database table. Create a new migration using the generate script:

$ ruby script/generate migration AddUsersLatestActivity

 exists db/migrate
 create db/migrate/020_add_users_latest_activity.rb

Now edit the generated migration script, db/migrate/020_add_users_latest_activity.rb,
as shown in Listing 9-2.

Listing 9-2. The Migration to Add Last Activity to the users Table

class AddUsersLatestActivity < ActiveRecord::Migration
 def self.up
 add_column :users, :last_activity, :string
 add_column :users, :last_activity_at, :datetime
 end

 def self.down
 remove_column :users, :last_activity
 remove_column :users, :last_activity_at
 end
end

We can now run the database migration task:

$ rake db:migrate

== CreateFriendships: migrating ===
-- create_table(:friendships)
 -> 0.0276s
-- add_index(:friendships, [:user_id, :friend_id], {:index_type=>:unique})
 -> 0.0195s
== CreateFriendships: migrated (0.0474s) ======================================

== AddUsersLatestActivity: migrating ==
-- add_column(:users, :last_activity, :string)
 -> 0.3621s
-- add_column(:users, :last_activity_at, :datetime)
 -> 0.0849s
== AddUsersLatestActivity: migrated (0.4474s) =================================

Bradburne_8415C09.fm Page 253 Saturday, May 19, 2007 6:58 AM

254 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

Building the Friends Resource
Create the friends resource controller file using the generator script:

$ ruby script/generate controller Friends

 exists app/controllers/
 exists app/helpers/
 create app/views/friends
 exists test/functional/
 create app/controllers/friends_controller.rb
 create test/functional/friends_controller_test.rb
 create app/helpers/friends_helper.rb

We now need to add the friends resource mapping. Open the file config/routes.rb, and
add the friends resource nested within the users resource, as shown in Listing 9-3.

Listing 9-3. The Friends Resource Mapping in the routes.rb File

...
map.resources :users, :member => { :enable => :put } do |users|
 users.resources :roles
 users.resources :entries do |entries|
 entries.resources :comments
 end
 users.resources :friends
 ...

We now need to define the self-referential many-to-many relationship between users and
other users (which will be known as friends), via the join model called Friendship.

Open the existing User model file, app/models/user.rb. We need to add two has_many
statements: one stating that a user will have many friendships and the other stating that the
user will have many friends using Friendships as a join model and that friends are actually
instances of the User model.

Do this by adding the highlighted lines in Listing 9-4 to the existing relationship statements in
the user model file.

Listing 9-4. The Modifications to the User Model File

...
has_many :comments
has_many :photos, :extend => TagCountsExtension

has_many :friendships
has_many :friends, :through => :friendships, :class_name => 'User'

def before_save
 ...

Bradburne_8415C09.fm Page 254 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 255

We now need to define the Friendship model. As we have stated in the User model, this
belongs to two instances of the User model: one known as user, the other as friend. Therefore,
we need to add the two belongs_to statements shown in Listing 9-5. Because the class name
and database foreign key cannot be inferred from the model name in the case of the Friend
model, we have to state the class name and foreign key explicitly. Open the Friendship model
file app/models/friendship.rb, and edit as shown in Listing 9-5.

Listing 9-5. The Friendship Model File

class Friendship < ActiveRecord::Base
 belongs_to :user
 belongs_to :friend, :class_name => 'User', :foreign_key => 'friend_id'
end

We can now create and edit friendships for each user, with a friend of a user being directly
accessible through user.friends or via the Friendship model, for instance, user.friendships[0].
friend. Of course, by accessing the Friendship model, you also have access to the XFN attributes,
such as user.friendships[0].xfn_met.

■Note If you wish, you can try using this through the Rails interactive console.

Before we move onto building the corresponding controller, we should look more at the
Friendship model. When we discussed XFN, we mentioned that some of the XFN attributes are
mutually exclusive; for instance, you obviously cannot be a child and a parent of one person.

We need to improve our existing Friendship model to make it easier to set and retrieve the
mutually exclusive attributes of the model. We will create three new accessors to the Friendship
model, one for each of the groups of mutually exclusive attributes. To provide these accessors,
we will write both attribute reader methods and attribute writer methods. Open the Friendship
model file, app/models/friendship.rb, and update it as shown in Listing 9-6.

Listing 9-6. The Updated Friendship Model File

class Friendship < ActiveRecord::Base
 belongs_to :user
 belongs_to :friend, :class_name => 'User', :foreign_key => 'friend_id'

 def xfn_friendship=(friendship_type)
 self.xfn_friend = false
 self.xfn_acquaintance = false
 self.xfn_contact = false

 case friendship_type
 when 'xfn_friend' : self.xfn_friend = true
 when 'xfn_acquaintance' : self.xfn_acquaintance = true
 when 'xfn_contact' : self.xfn_contact = true
 end
 end

Bradburne_8415C09.fm Page 255 Saturday, May 19, 2007 6:58 AM

256 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

 def xfn_friendship
 return 'xfn_friend' if self.xfn_friend == true
 return 'xfn_acquaintance' if self.xfn_acquaintance == true
 return 'xfn_contact' if self.xfn_contact == true
 false
 end

 def xfn_geographical=(geo_type)
 self.xfn_coresident = false
 self.xfn_neighbor = false

 case geo_type
 when 'xfn_coresident' : self.xfn_coresident = true
 when 'xfn_neighbor' : self.xfn_neighbor = true
 end
 end

 def xfn_geographical
 return 'xfn_coresident' if self.xfn_coresident
 return 'xfn_neighbor' if self.xfn_neighbor
 false
 end

 def xfn_family=(family_type)
 self.xfn_child = false
 self.xfn_parent = false
 self.xfn_sibling = false
 self.xfn_spouse = false
 self.xfn_kin = false

 case family_type
 when 'xfn_child' : self.xfn_child = true
 when 'xfn_parent' : self.xfn_parent = true
 when 'xfn_sibling' : self.xfn_sibling = true
 when 'xfn_spouse' : self.xfn_spouse = true
 when 'xfn_kin' : self.xfn_kin = true
 end
 end

 def xfn_family
 return 'xfn_child' if self.xfn_child
 return 'xfn_parent' if self.xfn_parent
 return 'xfn_sibling' if self.xfn_sibling
 return 'xfn_spouse' if self.xfn_spouse
 return 'xfn_kin' if self.xfn_kin
 false
 end
end

Bradburne_8415C09.fm Page 256 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 257

As you can see, this adds the attribute accessory methods xfn_friendship, xfn_geographical,
and xfn_family. You can now set the XFN friendship type by calling the instance method
xfn_friendship, for instance:

@user.friendships[0].xfn_friendship = 'xfn_contact'

Requesting the attribute xfn_friendship will return a string stating which of the XFN
friendships attributes is set to true. For example:

@user.friendships[0].xfn_friendship

=> "xfn_contact"

This behavior is exactly what is required by the Rails radio_button helper. HTML radio
buttons allow us to group a number of options together and allow only one of those options
to be selected. By using the new accessor methods that we have just created, we can create a
group of radio buttons for the friendships, geographical, and family accessors.

Updating the User’s Latest Activity
In order to show each friend’s latest activity on the friend’s page, we will add after_save call-
backs to the Post, Entry, and Photo models. Using after_save rather than before_save means
that the User model will only be updated when the object has been successfully saved.

Open the forum’s Post model, app/models/post.rb, and add the after_save callback method
within the Post class, as shown in Listing 9-7.

Listing 9-7. The Modifications to the Post Model

 ...
 validates_length_of :body, :maximum => 10000

 def after_save
 self.user.update_attribute(:last_activity, "Posted in the forum")
 self.user.update_attribute(:last_activity_at, Time.now)
 end
end

Now add a similar callback to the blog’s Entry model, app/models/entry.rb, as shown in
Listing 9-8.

Listing 9-8. The Modifications to the Entry Model

 ...
 validates_length_of :body, :maximum => 10000

 def after_save
 self.user.update_attribute(:last_activity, "Wrote a blog entry")
 self.user.update_attribute(:last_activity_at, Time.now)
 end
end

Bradburne_8415C09.fm Page 257 Saturday, May 19, 2007 6:58 AM

mailto:@user.friendships
mailto:@user.friendships

258 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

Finally, add the after_save callback shown in Listing 9-9 to the Photo model, app/models/
photo.rb.

Listing 9-9. The Modifications to the Photo Model

 ...
 validates_as_attachment

 def after_save
 if self.user
 self.user.update_attribute(:last_activity, "Uploaded a photo")
 self.user.update_attribute(:last_activity_at, Time.now)
 end
 end
end

These callbacks specify the user to update simply by using the object self.user. We then
update the attributes with the appropriate text and the current time and date. The Photo model
checks to see if the user_id is set for this particular object, since three photo objects are created
for each upload, one for each size, and the thumbnailed objects do not have a user_id set.

If you wish, you can try logging in to the site, creating new blog entries or forum posts or
uploading some photos, and checking the users table of the database to see the changes to the
last_activity and the last_activity_at columns.

The Friends Controller and Views
We can now build the friends resource controller file to allow a user to create, modify, and view
friends through the web interface.

Open the generated controller file, app/controllers/friends_controller.rb, and enter
the code shown in Listing 9-10.

Listing 9-10. The Friends Controller File

class FriendsController < ApplicationController
 before_filter :login_required, :except => [:index, :show]

 def index
 @user = User.find(params[:user_id], :include => [:friendships => :friend])
 end

 def show
 redirect_to user_path(params[:id])
 end

Bradburne_8415C09.fm Page 258 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 259

 def new
 @user = User.find(logged_in_user)
 @friend = User.find(params[:friend_id])
 unless @user.friends.include?(@friend)
 @friendship = @user.friendships.new(:friend_id => @friend.id)
 else
 redirect_to friend_path(:user_id => logged_in_user, :id => @friend)
 end
 end

 def edit
 @user = User.find(logged_in_user)
 @friendship = @user.friendships.find_by_friend_id(params[:id])
 @friend = @friendship.friend if @friendship
 if !@friendship
 redirect_to friend_path(:user_id => logged_in_user, :id => params[:id])
 end
 end

 def create
 @user = User.find(logged_in_user)
 params[:friendship][:friend_id] = params[:friend_id]
 @friendship = @user.friendships.create(params[:friendship])
 redirect_to friends_path(:user_id => logged_in_user)
 rescue ActiveRecord::RecordInvalid
 render :action => 'new'
 end

 def update
 @user = User.find(logged_in_user)
 @friendship = @user.friendships.find_by_friend_id(params[:id])
 @friendship.update_attributes(params[:friendship])
 redirect_to friends_path(:user_id => logged_in_user)
 rescue ActiveRecord::RecordInvalid
 render :action => 'edit'
 end

 def destroy
 @user = User.find(params[:user_id])
 @friendship = @user.friendships.find_by_friend_id(params[:id]).destroy
 redirect_to friends_path(:user_id => logged_in_user)
 end
end

First, let’s take a look at the index method and create a view.

Bradburne_8415C09.fm Page 259 Saturday, May 19, 2007 6:58 AM

mailto:@user.friends.include?(@friend
mailto:@user.friendships.new(:friend_id
mailto:@friend.id
mailto:@user.friendships.find_by_friend_id
mailto:@friendship.friend
mailto:@user.friendships.create
mailto:@user.friendships.find_by_friend_id
mailto:@friendship.update_attributes
mailto:@user.friendships.find_by_friend_id

260 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

The Index View

The index action method simply retrieves all of the friendships and friends for the specified
user id. This then needs to be presented in a table, allowing the viewer to see the list of friends,
along with the last activities (if any) and links to their profiles. However, we should show a
slightly different view if the user is viewing his or her own friends list, adding a link to the edit
page to allow the user to modify the friendship attributes for this particular friend or to remove
that friend from the list.

To do this, we will use one index view but two partials. One partial, _friendship.rhtml, will
simply show the view-only table row. The other, _friendship_with_edit.rhtml, will add a
column to that table row with a link to edit the user.

The index view checks to see if the user is logged in and, if so, if that user is viewing his or
her own friends page. Depending on this, the relevant partial file will be rendered. Doing this
check in the index view rather than the partial view means that the conditional statement is
only performed once, rather than for each user in the friends list.

First, create the index view file, app/views/friends/index.rhtml, and enter the code shown in
Listing 9-11.

Listing 9-11. The Friends Index View File

<h2><%= @user.username %>'s Friends</h2>

<table>
 <% if is_logged_in? and logged_in_user == @user %>
 <%= render :partial => 'friendship_with_edit', :collection=>@user.friendships %>
 <% else %>
 <%= render :partial => 'friendship', :collection => @user.friendships %>
 <% end %>
</table>

Now, create the partial view without the edit link, app/views/friends/_friendship.rhtml,
and enter the view code in Listing 9-12.

Listing 9-12. The friendship Partial View

<tr class="<%= cycle('odd', 'even') %>">
 <td id="friendname">
 <%= link_to friendship.friend.username,
 user_path(friendship.friend),
 :class => 'xfnRelationship',
 :rel => xfn_rel_tag(@user, friendship),
 :id => "friend-#{friendship.friend.id}" %>
 </td>
 <td id="activity">
 <% if friendship.friend.last_activity_at %>
 <%= friendship.friend.last_activity %>
 <%= time_ago_in_words(friendship.friend.last_activity_at) %> ago
 <% end %>
 </td>
</tr>

Bradburne_8415C09.fm Page 260 Saturday, May 19, 2007 6:58 AM

mailto:@user.username
mailto:@user.friendships

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 261

The app/views/friends/_friendship_with_edit.rhtml partial file is very similar; you’re
just adding an extra column. Open this file now, and enter the code in Listing 9-13.

Listing 9-13. The friendship_with_edit Partial View

<tr class="<%= cycle('odd', 'even') %>">
 <td id="friendname">
 <%= link_to friendship_with_edit.friend.username,
 user_path(friendship_with_edit.friend),
 :class => 'xfnRelationship',
 :rel => xfn_rel_tag(@user, friendship_with_edit),
 :id => "friend-#{friendship_with_edit.friend.id}" %>
 </td>
 <td id="activity">
 <% if friendship_with_edit.friend.last_activity_at %>
 <%= friendship_with_edit.friend.last_activity %>
 <%= time_ago_in_words(friendship_with_edit.friend.last_activity_at) %> ago
 <% end %>
 </td>
 <td id="editfriendship">
 [<%= link_to 'edit friendship',
 edit_friend_url(:user_id => @user,
 :id => friendship_with_edit.friend) %>]
 </td>
</tr>

If you look at the link to the friend in both of these partials, you will see that the HTML rel
tag of the link is set using :rel => xfn_rel_tag(@user, friendship). As we talked about in the
introduction to XFN, the rel tag is used to define the attributes on the HTML page. We need to
define a way of converting our XFN data stored in the database to an XFN rel tag, and we will
write a Rails helper called xfn_rel_tag() to do this.

Since we may want use this helper across multiple resources, we will add it to the app/
helpers/application_helper.rb file. Open this now, and add the helper method shown in
Listing 9-14 within the module ApplicationHelper.

Listing 9-14. The xfn_rel_tag Helper Method

def xfn_rel_tag(user, friendship)
 rel_tag = []
 if user.id == friendship.friend.id
 # identity
 rel_tag << 'me'
 else
 # friendship
 rel_tag << 'friend' if friendship.xfn_friend
 rel_tag << 'acquaintance' if friendship.xfn_acquaintance
 rel_tag << 'contact' if friendship.xfn_contact

Bradburne_8415C09.fm Page 261 Saturday, May 19, 2007 6:58 AM

262 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

 # physical
 rel_tag << 'met' if friendship.xfn_met

 # professional
 rel_tag << 'co-worker' if friendship.xfn_coworker
 rel_tag << 'colleague' if friendship.xfn_colleague

 # geographical
 rel_tag << 'co-resident' if friendship.xfn_coresident
 rel_tag << 'neighbor' if friendship.xfn_neighbor

 # family
 rel_tag << 'child' if friendship.xfn_child
 rel_tag << 'parent' if friendship.xfn_parent
 rel_tag << 'sibling' if friendship.xfn_sibling
 rel_tag << 'spouse' if friendship.xfn_spouse
 rel_tag << 'kin' if friendship.xfn_kin

 # romantic
 rel_tag << 'muse' if friendship.xfn_muse
 rel_tag << 'crush' if friendship.xfn_crush
 rel_tag << 'date' if friendship.xfn_date
 rel_tag << 'sweetheart' if friendship.xfn_sweetheart
 end
 rel_tag.join(' ')
end

This helper method first checks to see if the user object id and the friend_id of the
friendship object passed to it are the same; if so, the friend shown is yourself, and the XFN rel
tag will simply be 'me'. Otherwise, the method creates an empty array and populates it with the
relevant XFN attribute keywords based on the friendship object passed to it. These array
values are joined together, separated by spaces, and the string is automatically returned. The
string is then used to specify the rel tag of the friend link.

Before we can take a look at this in the browser, we need to add some friendships to our
user. You could do this manually using the Rails console if you want to, but we will just build
the view for the new action so that we can do it via the browser.

The New View

The friends new view has to provide an interface to easily allow a user to define the XFN rela-
tionship attributes for a new friend and post this to the friends controller.

We will build the interface using a combination of HTML radio buttons for the attributes
that consist of groups of mutually exclusive characteristics and HTML check boxes for attributes
that can be set independently of any other values.

Bradburne_8415C09.fm Page 262 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 263

Create and open the file app/views/friends/new.rhtml, and enter the view code in Listing 9-15.

Listing 9-15. The New Friendship View File

<h2>Add a new friend</h2>

<%= error_messages_for :friendship %>

<% form_for(:friendship,
 :url => friends_path(:user_id => @logged_in_user,
 :friend_id => @friend),
 :html => { :multipart => true }) do |f| %>
 <p>
 Define your relationship with <%= @friend.username %>
 </p>

 <p>
 Friendship

 <%= f.radio_button :xfn_friendship, :xfn_contact %> Contact
 <%= f.radio_button :xfn_friendship, :xfn_acquaintance %> Acquaintance
 <%= f.radio_button :xfn_friendship, :xfn_friend %> Friend
 <%= f.radio_button :xfn_friendship, false %> None
 </p>

 <p>
 Physical

 <%= f.check_box :xfn_met %> Met
 </p>

 <p>
 Professional

 <%= f.check_box :xfn_coworker %> Co-worker
 <%= f.check_box :xfn_colleague %> Colleague
 </p>

 <p>
 Geographical

 <%= f.radio_button :xfn_geographical, :xfn_coresident %> Co-resident
 <%= f.radio_button :xfn_geographical, :xfn_neighbor %> Neighbor
 <%= f.radio_button :xfn_geographical, false %> None
 </p>

 <p>

Bradburne_8415C09.fm Page 263 Saturday, May 19, 2007 6:58 AM

mailto:@friend.username

264 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

 Family

 <%= f.radio_button :xfn_family, :xfn_child %> Child
 <%= f.radio_button :xfn_family, :xfn_parent %> Parent
 <%= f.radio_button :xfn_family, :xfn_sibling %> Sibling
 <%= f.radio_button :xfn_family, :xfn_spouse %> Spouse
 <%= f.radio_button :xfn_family, :xfn_kin %> Kin
 <%= f.radio_button :xfn_family, false %> None
 </p>

 <p>
 Romantic

 <%= f.check_box :xfn_muse %> Muse
 <%= f.check_box :xfn_crush %> Crush
 <%= f.check_box :xfn_date %> Date
 <%= f.check_box :xfn_sweetheart %> Sweetheart
 </p>

 <%= f.hidden_field :friend_id %>
 <p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', user_path(@friend) %>
 </p>
<% end %>

If we take a look at this page in the browser, we can see how this comes together. Make
sure that you are logged in to the site and that there are at least two user accounts created. I will
use user ids 1 and 2, and I will log in as user 1 (the Admin user). Go to http://localhost:3000/
users/1/friends/new?friend_id=2 . This will open the “Add a new friend” page shown in
Figure 9-1.

Set some relationship attributes for this user; for instance; assume that this person is a
friend who the user has met and a neighbor. Then click Save.

This will create a new friendship object for the Admin user and redirect you to the friends
index page for your user account, displaying the newly created friendship, as shown in Figure 9-2.
If this friend has performed another action after you have added the callback that updates the
last_activity attribute, the last activity performed will be shown. In testing, you should log in
as the other user and carry out some actions such as posting in the forum or adding a blog entry
to check that the callback is working correctly.

If you log out of the site and go back to the friends index page for the Admin user, you will
see the same page, except that the edit link will not be present.

Now take a look at the source HTML of the index page (using the menu option View ➤
View Source in Safari, View ➤ Page Source in Firefox, and View ➤ Source option in Internet
Explorer). If you look at the HTML code for the table around line 59, you will see the link to the
friend including the XFN details in the rel attribute as follows:

<td id="friendname">
 Alan
</td>

Bradburne_8415C09.fm Page 264 Saturday, May 19, 2007 6:58 AM

http://localhost:3000

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 265

Figure 9-1. The Add a new friend page

Figure 9-2. The friends index page

Bradburne_8415C09.fm Page 265 Saturday, May 19, 2007 6:58 AM

266 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

As you can see, the rel attribute is exactly as expected, showing the XFN attributes that
have been set for this friendship.

Since the view for the edit action will be very similar to the new view, we can simply create
that now.

The Edit View

Create the edit action view, app/views/friends/edit.rhtml, and add the code from Listing 9-16.

Listing 9-16. The Friendship Edit View

<h2>Edit a friend</h2>

<%= error_messages_for :friendship %>

<% form_for(:friendship,
 :url => friend_path(:user_id => @logged_in_user,
 :friend_id => @friend),
 :html => { :multipart => true, :method => :put }) do |f| %>
 <p>
 Define your relationship with <%= @friend.username %>
 </p>

 <p>
 Friendship

 <%= f.radio_button :xfn_friendship, :xfn_contact %> Contact
 <%= f.radio_button :xfn_friendship, :xfn_acquaintance %> Acquaintance
 <%= f.radio_button :xfn_friendship, :xfn_friend %> Friend
 <%= f.radio_button :xfn_friendship, false %> None
 </p>

 <p>
 Physical

 <%= f.check_box :xfn_met %> Met
 </p>

 <p>
 Professional

 <%= f.check_box :xfn_coworker %> Co-worker
 <%= f.check_box :xfn_colleague %> Colleague
 </p>

 <p>
 Geographical

 <%= f.radio_button :xfn_geographical, :xfn_coresident %> Co-resident
 <%= f.radio_button :xfn_geographical, :xfn_neighbor %> Neighbor
 <%= f.radio_button :xfn_geographical, false %> None
 </p>

Bradburne_8415C09.fm Page 266 Saturday, May 19, 2007 6:58 AM

mailto:@friend.username

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 267

 <p>
 Family

 <%= f.radio_button :xfn_family, :xfn_child %> Child
 <%= f.radio_button :xfn_family, :xfn_parent %> Parent
 <%= f.radio_button :xfn_family, :xfn_sibling %> Sibling
 <%= f.radio_button :xfn_family, :xfn_spouse %> Spouse
 <%= f.radio_button :xfn_family, :xfn_kin %> Kin
 <%= f.radio_button :xfn_family, false %> None
 </p>

 <p>
 Romantic

 <%= f.check_box :xfn_muse %> Muse
 <%= f.check_box :xfn_crush %> Crush
 <%= f.check_box :xfn_date %> Date
 <%= f.check_box :xfn_sweetheart %> Sweetheart
 </p>

 <p>
 <%= submit_tag 'Save' %> or <%= link_to 'cancel', user_path(@friend) %>
 </p>
 <p>
 <%= link_to 'Delete this friendship',
 friend_path(:user_id => @logged_in_user, :id => @friend),
 :method => :delete %>
 </p>

<% end %>

As you will notice, the main form part of this page is identical to the new view, so you could
move the form body to a partial view and include the partial in the new and edit pages.

The edit form submits the form with the HTTP method set to PUT, so the update action will
be invoked rather then the new action.

We have also added a deletion link at the bottom of the page to allow a user to delete the
relationship and remove the friend from the list.

You can now try clicking the “edit relationship” link on the friends index page, modifying
the relationship, and saving it. Check the changed attributes by viewing the page source and
checking the database attributes for the relevant friendship object.

Adding Friends Links to the Sidebar Menu
We should add a link to your personal friends list on the sidebar menu. Open the existing
sidebar menu partial, app/views/layouts/_menu.rhtml, and edit as shown in Listing 9-17.

Bradburne_8415C09.fm Page 267 Saturday, May 19, 2007 6:58 AM

268 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

Listing 9-17. The Updated Menu Partial File

 ...
 <hr size="1" width="90%" align="left"/>

 <% if is_logged_in? %>
 Logged in as: <i><%= logged_in_user.username -%></i>
 <%= link_to 'My Profile', edit_user_path(logged_in_user) -%>

 <%= link_to 'My Friends', friends_path(:user_id => logged_in_user) %>

 <%= link_to 'My Photos', user_photos_path(:user_id => logged_in_user) -%>

 <%= link_to 'Upload Photo',
 user_new_photo_path(:user_id => logged_in_user) -%>
 <%= link_to 'New Blog Post', new_entry_path(
 :user_id => logged_in_user) -%>

 <%= link_to 'Logout', {:controller => 'account', :action => 'logout'},
 :method => :post %>
 <% else %>
 ...

We also want to make it very simple for someone to add a user as a friend, so we should
add a link to each user profile page. This link will take you directly to the friendship creation
page.

Open the user profile view page, app/views/users/show.rhtml. Add the link to the page as
shown in Listing 9-18.

Listing 9-18. The Update to the User View File

...
 <%= render :partial => 'photos/photo', :collection => @photos %>

<p>
 <% if is_logged_in? and @user.id != logged_in_user.id %>
 <% if logged_in_user.friends.include?(@user) %>
 <%= @user.username %> is your friend
 <% else %>
 <%= link_to "Add #{@user.username} as a friend",
 new_friend_path(:user_id => logged_in_user,
 :friend_id=>@user) %>
 <% end %>

 <% end %>

Bradburne_8415C09.fm Page 268 Saturday, May 19, 2007 6:58 AM

mailto:@user.id
mailto:@user.username

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 269

 <%= link_to "See all of #{@user.username}'s photos",
 user_photos_path(:user_id => @user) %>
</p>

This will only show the add friend link if you are logged in and the other user is neither you
nor already in your friends list. If you are logged in and the user is already on your friends list,
the page displays a message stating that this member is already your friend.

Now try visiting some profiles on the site to check that this works under the right conditions.

Styling the Friends List
At the moment, the friends list is simply shown as a list of names. The XFN metadata is present
in the source of the page and can be easily understood if you look at the source, but the relationship
is not directly shown to the user. We could display these attributes as an extra text column, but
it would be better to use the existing data in the rel attribute to change the rendered page.

Thankfully, CSS allows us to style elements of a page based on the rel attribute. However,
note that this is does not work on Internet Explorer 6, but it does work fine on Firefox, Safari,
Opera, and newer versions of Internet Explorer.

To style an element based on the rel attribute, we use CSS attribute selectors. For
instance, to style a link that has the word met in the rel attribute, we would use the following
selector:

a[rel~="met"]

We can then specify any CSS attributes to set for this selector, including adding images to
the style.

A set of icons has been designed by Wolfgang Bartelme and Chris Messina to represent a
number of the XFN attributes. These icons are shown in Figure 9-3 and can be downloaded
from Messina’s site at http://www.factorycity.net/projects/microformats-icons. A number
of extra icons have been added by Jon Galloway, and they have been included in the set shown.
You can download all of these from the RailsCoders site.

A repository of icons representing these and other microformat icons is kept at http://
microformats.org/wiki/icons.

Figure 9-3. Icons representing the XFN attributes

Bradburne_8415C09.fm Page 269 Saturday, May 19, 2007 6:58 AM

http://www.factorycity.net/projects/microformats-icons
http://microformats.org/wiki/icons
http://microformats.org/wiki/icons

270 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

In the friends list, we want to show the relevant icon next to each friend’s name. The CSS
to do this was written by Steve Harman (http://stevenharman.net) and adapted for the
RailsCoders site.

First of all, download the XFN icons set from the Apress or the RailsCoders site and place
the icon files into the public/images/ directory.

Next, open the application’s style sheet, public/stylesheets/main.css, and add the CSS in
Listing 9-19 to the end of the current CSS file.

Listing 9-19. The CSS to Display the XFN Icons

/* XFN Styling */
a.xfnRelationship {
 padding-right: 26px;
 background: url(/images/xfn-small.png) no-repeat right;
}

a.xfnRelationship[rel~="colleague"],
a.xfnRelationship[rel~="co-worker"] {
 padding-right: 21px;
 background: url(/images/xfn-colleague.png) no-repeat right;
}

a.xfnRelationship[rel~="colleague"][rel~="met"],
a.xfnRelationship[rel~="co-worker"][rel~="met"] {
 padding-right: 26px;
 background: url(/images/xfn-colleague-met.png) no-repeat right;
}

a.xfnRelationship[rel~="friend"] {
 padding-right: 21px;
 background: url(/images/xfn-friend.png) no-repeat right;
}

a.xfnRelationship[rel~="friend"][rel~="met"] {
 padding-right: 26px;
 background: url(/images/xfn-friend-met.png) no-repeat right;
}

a.xfnRelationship[rel~="sweetheart"] {
 padding-right: 21px;
 background: url(/images/xfn-sweetheart.png) no-repeat right;
}

a.xfnRelationship[rel~="sweetheart"][rel~="met"] {
 padding-right: 26px;
 background: url(/images/xfn-sweetheart-met.png) no-repeat right;
}

Bradburne_8415C09.fm Page 270 Saturday, May 19, 2007 6:58 AM

http://stevenharman.net

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 271

a.xfnRelationship[rel~="child"] {
 padding-right: 21px;
 background: url(/images/xfn-child.png) no-repeat right;
}

a.xfnRelationship[rel~="parent"] {
 padding-right: 21px;
 background: url(/images/xfn-parent.png) no-repeat right;
}

a.xfnRelationship[rel~="spouse"] {
 padding-right: 21px;
 background: url(/images/xfn-spouse.png) no-repeat right;
}

a.xfnRelationship[rel~="me"] {
 padding-right: 21px;
 background: url(/images/xfn-me.png) no-repeat right;
}

Now, go back to your friends view, and reload the page to refresh the CSS. The relevant
XFN icon will be shown alongside each username, as shown in Figure 9-4.

Figure 9-4. Friends list showing the XFN icons

Bradburne_8415C09.fm Page 271 Saturday, May 19, 2007 6:58 AM

272 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

Testing
We should write some functional tests for the friendship feature to ensure that it works as
expected and so that we can continue to easily test the feature when we have made
modifications.

First, create a simple fixtures file for the Friendship model called test/fixtures/
friendships.yml. Enter the fixture shown in Listing 9-20, where user id 2 is a friend of user id
1, with the xfn_met attribute set to true. All of the other attributes will default to false.

Listing 9-20. The Friendship Fixtures File

valid_friendship:
 id: 1
 user_id: 1
 friend_id: 2
 xfn_met: true

Open the generated friends functional test file, test/functional/friends_controller_
test.rb, and enter the code in Listing 9-21.

Listing 9-21. The Friends Controller Functional Test File

require File.dirname(__FILE__) + '/../test_helper'
require 'friends_controller'

Re-raise errors caught by the controller.
class FriendsController; def rescue_action(e) raise e end; end

class FriendsControllerTest < Test::Unit::TestCase
 fixtures :friendships, :users, :roles, :roles_users

 def setup
 @controller = FriendsController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_get_index
 get :index, {:user_id => 1}
 assert_response :success
 assert assigns(:user)
 end

 def test_should_get_new
 login_as(:valid_user)
 get :new, {:user_id => 1, :friend_id => 3}
 assert_response :success
 end

Bradburne_8415C09.fm Page 272 Saturday, May 19, 2007 6:58 AM

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 273

 def test_should_create_friendship
 login_as(:valid_user)
 old_count = Friendship.count
 post :create, {:user_id => 1, :friend_id => 3, :friendship =>{:xfn_met => true}}
 assert_equal old_count + 1, Friendship.count
 assert_redirected_to friends_path(:user_id => 1)
 end

 def test_should_get_edit
 login_as(:valid_user)
 get :edit, :user_id => 1, :id => 2
 assert_response :success
 end

 def test_should_update_friendship
 login_as(:valid_user)

 get :index, {:user_id => 1}
 assert_select "a#friend-2[rel~=crush]", false

 put :update, {:user_id => 1, :id => 2, :friendship => { :xfn_crush => true} }
 assert_redirected_to friends_path(:user_id => 1)

 get :index, {:user_id => 1}
 assert_response :success
 assert_select "a#friend-2[rel~=crush]", true
 end

 def test_should_destroy_friendship
 login_as(:valid_user)
 old_count = Friendship.count
 delete :destroy, :user_id => 1, :id => 2
 assert_equal old_count - 1, Friendship.count
 assert_redirected_to friends_path(:user_id => 1)
 end
end

These functional tests perform the basic functions of the friends controller, ensuring that
friends are listed, added, modified, and deleted as expected.

If you take a look at the test test_should_update_friendship, you will notice that this uses
assert_select to check the rel attribute for a specific word. With assert_select, you can use
CSS selectors to specify one particular element of a page, checking for particular content. In
this case, we check for the XFN crush keyword in the rel attribute of the friend with the user id
of 2. Since we have a unique id for each link, we can easily test the individual elements on the
page. Before the update, it does not have the crush attribute set as set in the fixtures file. We
then perform an update and recheck for the crush attribute, which we now expect to be set.

Bradburne_8415C09.fm Page 273 Saturday, May 19, 2007 6:58 AM

274 CH AP T E R 9 ■ AD D IN G FR IE N DS W IT H X FN DE TA IL S

You can find a useful cheat sheet for assert_select at http://blog.labnotes.org/2006/09/04/
assert_select-cheat-sheet and a tutorial on CSS selectors at http://css.maxdesign.com.au/
selectutorial.

Before we run the tests, we need to make sure that the test database schema is up to date.
Run the db:test:prepare rake task:

$ rake db:test:prepare

Now, run the functional tests:

$ ruby test/functional/friends_controller_test.rb

Loaded suite test/functional/friends_controller_test
Started
......
Finished in 0.473295 seconds.

6 tests, 16 assertions, 0 failures, 0 errors

You may wish to expand these tests to cover all of the XFN attributes and to add negative
tests to ensure that users cannot modify other user’s friendships.

Further Development of the Friendship Feature
There are a few ways you may wish to develop the friendship feature further:

• You could add a method to view the reciprocal friendships, that is, the people who have
added you as a friend. You could also add notifications to let you know when someone
new adds you to a friends list.

• You could also expand on the friends’ list view idea, showing the latest uploaded photos
of your friends or providing links to the latest entries of forum posts.

• It would also be possible to expand the list to provide details of friends of friends,
allowing you to see who you are connected to through your network of friends.

• At the moment, you can add a friend without their permission, but you may wish to
modify the feature to provide a system where the friend you are adding has to approve
your friendship, in a similar way to sites like MySpace or LinkedIn.

• You may also wish to make use of the XFN data to enhance blog or forum posts to allow
users to link to their friends, automatically adding the relevant rel attribute and displaying
the XFN icons.

Bradburne_8415C09.fm Page 274 Saturday, May 19, 2007 6:58 AM

http://blog.labnotes.org/2006/09/04
http://css.maxdesign.com.au

CH AP T E R 9 ■ A DD IN G F R IE N DS W IT H X FN DE TA IL S 275

Summary
In this chapter, we have added a friendship system, allowing users to easily add other users to
their friends list. From this list, users can quickly see the latest activities of their friends, so that
they know if any friends have posted new photos or added entries to their blogs. This makes it
easy for users to keep up to date with their friends’ activities.

The friendships are enhanced by adding metadata based on the XFN microformat specifi-
cation. This allows users and applications to easily understand the relationships among other
users and their friends.

In the next chapter, we will add tags to the photo gallery we created in Chapter 7. This will
allow users to tag their photos with keywords, making the galleries easily searchable or allow
users to browse photos based on keywords.

Bradburne_8415C09.fm Page 275 Saturday, May 19, 2007 6:58 AM

Bradburne_8415C09.fm Page 276 Saturday, May 19, 2007 6:58 AM

277

■ ■ ■

C H A P T E R 1 0

Adding Tags to
the Photo Gallery

In this chapter, we will extend the photo gallery to support tagging. Tags are simply keywords
that are used to describe a particular object. Tagging has become hugely popular for social web
applications and is a very useful way of categorizing items that makes it very easy for users to
search and browse objects. Some of the most successful web sites that use tagging are Flickr.com,
del.icio.us, and Amazon.com.

Along with being an incredibly useful way to allow searching of objects on the site, they
also make for a fun browsing experience. Tag clouds are often shown, displaying the most
popular tags as the largest, so you can quickly see the most popular topics. Tag clouds make
a great starting point to allow people to discover new photos on your site.

To implement the tagging functionality, we are going to make use of a Rails plug-in. We
will also use a Rails feature called Remote JavaScript (RJS) templates to implement Ajax effects,
allowing the tag list to be dynamically updated on the photo edit page.

The Gallery Tagging Requirements
We will add tags to the RailsCoders photo galleries. Each photo on the site can be assigned a
number of tags by the owner of the photo. Users can then browse the photo galleries using
tag clouds.

Users of the site can view a tag cloud for all of the photos on the site or for one specific user.
Clicking a tag within the tag cloud will show a paginated series of photos for that particular tag,
again either showing all photos on the site with that tag or just those belonging to a specific user.

We will also need to add a way of adding tags to a photo. Since this can be performed only
by the owner of a photo, we can simply add this to the photo edit page. We could implement
this using just a standard text entry box, but to make it easier for the user to add and delete tags,
we will implement it using an Ajax-based interface. This means that we will be able to add and
delete tags from a tag list without having to reload the entire page; we can just update the specific
part of the current page that has changed.

Bradburne_8415C10.fm Page 277 Tuesday, May 15, 2007 4:38 AM

278 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

AJAX

Ajax (Asynchronous JavaScript and XML) is a technique that allows web applications to change only the rele-
vant part of a web page, rather than forcing the browser to reload the entire page. This can greatly improve
the usability of a web application if used properly. It also makes the application feel more responsive, since
only a small amount of data is exchanged between the browser and web server.

The term Ajax was coined by Jesse James Garrett in 2005, but the technology has been around since
1998 when Microsoft released Internet Explorer 5, which included a technology called XMLHttpRequest. This
allowed JavaScript on a web page to talk to the server in the background without having to reload a web page.

You could write your own JavaScript to make this happen, but Rails ships with the JavaScript libraries
Prototype and script.aculo.us, which make it incredibly simple to implement Ajax features in your application
in just a few lines of code.

Basically, a JavaScript action is tied to an event on your web page, such as a link or a button. When this
event is triggered by the user, the JavaScript code is executed, which, in turn, sends a request to your appli-
cation server. However, it does this asynchronously, allowing the user to continue using the page. The Rails
application server sends back a snippet of JavaScript code, which updates a specific part of the current web
page. The id and class tags in your XHTML code allow you to reference specific items or sections of the page.

To allow two ways to view the tag data—one for all users and one for a specific user—we
will create two controllers.

To view tags by all users, the controller will be accessed by URLs such as /tags and /tags/
puppy. We will create this to act as a normal REST resource, but we will not create a corresponding
Tag model as we have with the other resources we have built; the retrieved tags are from the
Photo model.

To view tags that only belong to one user, the controller will be accessed by URLs such as
/users/1/tags and /users/1/tags/puppy. This will also act as a REST resource, but this time,
it’s nested beneath the users resource. We will create a second controller for this. We could
handle both types of request with one controller, but we would require conditional statements
to retrieve the correct data and render different views depending on the request. That would
just complicate our code and make it harder for us to maintain and extend in the future.

We also need to add a way for a user to add and remove tags from a photo. Since tags are
only accessible through the Photo model, this should be performed as an action of the photo
controller. Therefore, we will add two methods to the existing user_photo_controller file:
add_tag and remove_tag.

Tagging with Rails
Implementing our own tagging system from scratch would require some pretty complex SQL
queries and take a significant amount of time to build and test properly. However, the Rails
community has built a number of Rails extensions implementing tagging functionality. Which
library you decide to use depends on your needs, since each library has different advantages.

Bradburne_8415C10.fm Page 278 Tuesday, May 15, 2007 4:38 AM

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 279

The currently available libraries follow:

• acts_as_taggable gem: This was the first tagging library for Rails but is starting to show
its age, and it is currently only available for Rails 1.1. However, it may still be useful if
you are working with older Rails code. You can find out more at http://rubyforge.org/
projects/taggable.

• acts_as_taggable plug-in: This plug-in was developed by David Heinemeier Hansson,
the original creator of Rails. It was developed as a demonstration of the Rails has_many
:through feature rather than a library intended for production use. Therefore, it is not
fully featured and is not in active development. However, many people have modified it and
are using it, even though the plug-in itself has not been updated. You can find out more
information at http://wiki.rubyonrails.com/rails/pages/ActsAsTaggablePluginHowto.

• acts_as_taggable_on_steroids plug-in: This library is based on the acts_as_taggable
plug-in but has been extended by Jonathan Viney to add tests, better tag assignment,
and a feature to automatically perform tag cloud calculations. You can find more
information about this plug-in at http://www.agilewebdevelopment.com/plugins/
acts_as_taggable_on_steroids.

• has_many_polymorphs ActiveRecord plug-in: This is not a straightforward tagging plug-in;
it basically allows you to define self-referential polymorphic associations in your
models. It was developed by Evan Weaver and can be easily adapted to provide tagging
facilities. You can find more information on how to use it to develop tagging features at
http://blog.evanweaver.com/articles/2006/06/02/has_many_polymorphs.

For the RailsCoders site, we are going to use the acts_as_taggable_on_steroids plug-in.
Currently, this is the most fully featured and easiest to use tagging library, providing us with a
very simple way to add and edit tags and perform searches based on tags. It can also provide us
with tag counts so that we can easily produce tag clouds.

The acts_as_taggable_on_steroids Plug-in
The acts_as_taggable_on_steroids plug-in, though based on the original acts_as_taggable
plug-in, has been extended with improved tag assignment methods and tag cloud calculations.
This makes it ideal for using on RailsCoders.

The plug-in also comes with a number of tests, meaning that you can easily test the plug-
in’s functionality to ensure it is working as you expect.

The library uses a Rails feature that allows you to relate two models through a third model.
You do this by using the has_many statement and specifying a join model. For instance, with our
tagging system, we will join the Photo model and the Tag model together using a join model
called Tagging. We would specify that the photo has many tags, but to access these, the request
must go through the Tagging model. The statement has_many :tags, :through => :taggings
would tell ActiveRecord to do this. In turn, each tag has many taggings, meaning that you can
find which objects have been tagged with a specific tag.

It also uses another interesting feature of ActiveRecord—polymorphic associations. This
means that the join association is not limited to one particular model, it can be associated with
any model, since the model name is stored in the join model itself.

Bradburne_8415C10.fm Page 279 Tuesday, May 15, 2007 4:38 AM

http://rubyforge.org
http://wiki.rubyonrails.com/rails/pages/ActsAsTaggablePluginHowto
http://www.agilewebdevelopment.com/plugins
http://blog.evanweaver.com/articles/2006/06/02/has_many_polymorphs

280 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

To do this, we need to add a database column specifying the model type. The Tagging join
model and the Tag model are defined within the acts_as_taggable_on_steroids plug-in, but
we still have to create the database tables for the plug-in to be able to work. The plug-in requires
two tables: one to store the tag names and one to store the relationships of the tags with other
models.

The database table for the Tag model is shown in Table 10-1.

The database table for the Tagging model is shown in Table 10-2. We will never access this
table directly; it is only used to associate one model with another. However, since it is a real
model and not just a database table, we can add extra attributes or callbacks.

Because we are using polymorphic associations, this table includes the column
taggable_type to store the model name as well as taggable_id to store the associated model ID.

To use the tagging library with a particular model, you simply add the statement acts_
as_taggable to a model class definition. Doing this adds a number of instance and class
methods to the model, which are used to add tags to an object and to find objects that are
tagged with particular tags.

To add tags to an object or list the tags that have been assigned to an object, you use the
methods tag_list and tag_list=. These allow you to access a comma-separated list of the
object’s tags.

For example, if you have a photo object called @photo, you would assign tags with the
following command:

@photo.tag_list = "puppy,dog,cute"
@photo.save

Table 10-1. The Tags Table

Field Name Field Type Description

id integer The primary key

name string The tag name

Table 10-2. The Tagging Database Table

Field Name Field Type Description

id integer The primary key

tag_id integer The id of the tag

taggable_id integer The id of the taggable object

taggable_type string The model name of the taggable object

created_at datetime The time and date that this tagging was created

Bradburne_8415C10.fm Page 280 Tuesday, May 15, 2007 4:38 AM

mailto:@photo.tag_list
mailto:@photo.tag_list

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 281

After you have saved the tagged object, you can access the tags for that object either with
the tag_list instance method or by accessing the tag objects that belong to the object:

@photo.tags_list

=> "puppy, dog, cute"

@photo.tags

=> [#<Tag:0x3136034 @attributes={"name"=>"puppy", "id"=>"4"}>,
#<Tag:0x313600c @attributes={"name"=>"dog", "id"=>"5"}>,
#<Tag:0x3135fe4 @attributes={"name"=>"cute", "id"=>"6"}>]

In order to find objects that are tagged with a particular tag, we use the class method
find_tagged_with, for instance:

@photos = Photo.find_tagged_with('puppy')

If you want to find objects with any one of multiple tags, you can just specify them as a list
separated by commas:

@photos = Photo.find_tagged_with('puppy, dog')

To find objects that have all of the listed tags, use the :match_all parameter:

@photos = Photo.find_tagged_with('puppy, dog', :match_all => true)

You can also use regular find options such as :order, :limit, and :offset as part of the
find_tagged_with method.

The plug-in also has a useful method that allows us to easily create tag clouds. A tag cloud
is simply a list of tags, but the size of each tag is proportional to its popularity. In order to
produce a tag cloud, we need to know the frequency of each tag’s use. The plug-in provides an
instance method tag_counts for the tagged model. It will return an array of hashes containing
the tag name, ID, and the number of times that this tag has been used, for instance:

Photos.tag_counts

=> [#<Tag:0x30a2014 @attributes={"name"=>"puppy", "id"=>"4", "count"=>"1"}>,
#<Tag:0x30a1fec @attributes={"name"=>"dog", "id"=>"5", "count"=>"2"}>,
#<Tag:0x30a1fc4 @attributes={"name"=>"cute", "id"=>"6", "count"=>"4"}>]

If you wish to use this to find the frequency of use for tags belonging to a specific user, you
must extend the has_many association of the user to the photos like this:

class User < ActiveRecord::Base
 has_many :photos, :extend => TagCountsExtension
end

Bradburne_8415C10.fm Page 281 Tuesday, May 15, 2007 4:38 AM

mailto:@photo.tags_list
mailto:@photo.tags=
mailto:@photo.tags=

282 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

You can then use the tag_count method for a specific user, for example:

User.find(1).photos.tag_counts

=> [#<Tag:0x30671bc @attributes={"name"=>"puppy", "id"=>"4", "count"=>"1"}>,
#<Tag:0x3067194 @attributes={"name"=>"dog", "id"=>"5", "count"=>"1"}>,
#<Tag:0x306716c @attributes={"name"=>"cute", "id"=>"6", "count"=>"2"}>]

TagCountsExtension should only be used on associations where you have declared the
model to use acts_as_taggable.

Building the Photo Tagging Feature
We will need to update the Photo model to declare that it will use acts_as_taggable. We also
need to extend the User model to use the TagCountsExtension.

We need to create two controllers. One will be accessed from the root path; we will call this
simply tags_controller. The other will be nested beneath the user resource; we will call this
user_tags_controller. We then need to create the relevant mappings for these controllers in
the routes file.

However, first we need to install the acts_as_taggable_on_steroids plug-in.

Installing the acts_as_taggable_on_steroids Plug-in
The acts_as_taggable_on_steroids plug-in is distributed simply as a Rails plug-in. To install
the plug-in, use the normal Rails plugin script. Enter the following command:

$ ruby script/plugin install ➥

 http://svn.viney.net.nz/things/rails/plugins/acts_as_taggable_on_steroids

+ ./acts_as_taggable_on_steroids/CHANGELOG
+ ./acts_as_taggable_on_steroids/MIT-LICENSE
+ ./acts_as_taggable_on_steroids/README
+ ./acts_as_taggable_on_steroids/Rakefile
+ ./acts_as_taggable_on_steroids/init.rb
+ ./acts_as_taggable_on_steroids/lib/acts_as_taggable.rb
+ ./acts_as_taggable_on_steroids/lib/tag.rb
+ ./acts_as_taggable_on_steroids/lib/tag_counts_extension.rb
+ ./acts_as_taggable_on_steroids/lib/tagging.rb
+ ./acts_as_taggable_on_steroids/test/abstract_unit.rb
+ ./acts_as_taggable_on_steroids/test/acts_as_taggable_test.rb
+ ./acts_as_taggable_on_steroids/test/database.yml
+ ./acts_as_taggable_on_steroids/test/fixtures/photo.rb
+ ./acts_as_taggable_on_steroids/test/fixtures/photos.yml
+ ./acts_as_taggable_on_steroids/test/fixtures/post.rb
+ ./acts_as_taggable_on_steroids/test/fixtures/posts.yml
+ ./acts_as_taggable_on_steroids/test/fixtures/taggings.yml

Bradburne_8415C10.fm Page 282 Tuesday, May 15, 2007 4:38 AM

http://svn.viney.net.nz/things/rails/plugins/acts_as_taggable_on_steroids

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 283

+ ./acts_as_taggable_on_steroids/test/fixtures/tags.yml
+ ./acts_as_taggable_on_steroids/test/fixtures/user.rb
+ ./acts_as_taggable_on_steroids/test/fixtures/users.yml
+ ./acts_as_taggable_on_steroids/test/schema.rb
+ ./acts_as_taggable_on_steroids/test/tag_test.rb
+ ./acts_as_taggable_on_steroids/test/tagging_test.rb

Creating the Database Tables
To create the database tables needed by the tagging plug-in, we will create a migration and add
the changes to the database to that.

Create the migration file using the Rails generator script:

$ ruby script/generate migration AddTaggingSupport

 exists db/migrate
 create db/migrate/021_add_tagging_support.rb

Now, open the migration file db/migrate/021_add_tagging_support.rb, and add the migration
code shown in Listing 10-1.

Listing 10-1. The Migration to Add Tagging Support

class AddTaggingSupport < ActiveRecord::Migration
 def self.up
 create_table :tags, :force => true do |t|
 t.column :name, :string
 end

 create_table :taggings, :force => true do |t|
 t.column :tag_id, :integer
 t.column :taggable_id, :integer
 t.column :taggable_type, :string
 t.column :created_at, :datetime
 end

 add_index :tags, :name
 add_index :taggings, [:tag_id, :taggable_id, :taggable_type]
 end

 def self.down
 drop_table :tags
 drop_table :taggings
 end
end

Bradburne_8415C10.fm Page 283 Tuesday, May 15, 2007 4:38 AM

284 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

This will create the necessary tables, along with instructing the database to create indexes
based on the tags.name field and the taggings.tag_id, taggable_id, and taggable_type fields.
Since all database queries will be based on these fields rather than the primary key, it makes
sense to add these indexes now.

Next, run the migrate command to perform these changes to the database:

$ rake db:migrate

== AddTaggingSupport: migrating ===
-- create_table(:tags, {:force=>true})
 -> 0.1125s
-- create_table(:taggings, {:force=>true})
 -> 0.0070s
-- add_index(:tags, :name)
 -> 0.0157s
-- add_index(:taggings, [:tag_id, :taggable_id, :taggable_type])
 -> 0.0079s
== AddTaggingSupport: migrated (0.1240s) ======================================

Updating the Models
As we have discussed, we need to update both the Photo and User models. Open the Photo model
file, app/models/photo.rb, and add the statement acts_as_taggable as shown in Listing 10-2.

Listing 10-2. The Modification to the Photo Model

class Photo < ActiveRecord::Base
 acts_as_taggable
 belongs_to :user
 ...

We now need to update the user file’s relationship with the Photo model, adding the
TagCountsExtension. Open the User model file, app/models/user.rb. Now modify the photo
relationship as shown in Listing 10-3.

Listing 10-3. The Modification to the User Model

require 'digest/sha2'
class User < ActiveRecord::Base
 attr_protected :hashed_password, :enabled
 attr_accessor :password
 ...
 has_many :usertemplates
 has_many :comments
 has_many :photos, :extend => TagCountsExtension
 ...

Bradburne_8415C10.fm Page 284 Tuesday, May 15, 2007 4:38 AM

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 285

Creating the Controllers
As we discussed in the requirements, we will create a controller for each different way of
accessing the tags:

• To view all tags, via URLs such as /tags and /tags/tree, we will create and use a controller
called tags_controller.rb.

• To view tags belonging to a specific user, via URLs such as /user/1/tags and /user/1/
tags/tree, we will use a controller called user_tags_controller.rb.

We should create these controllers and add the relevant mappings to the routes file now.
Create tags_controller.rb with the Rails generate command:

$ ruby script/generate controller Tags

 exists app/controllers/
 exists app/helpers/
 create app/views/tags
 exists test/functional/
 create app/controllers/tags_controller.rb
 create test/functional/tags_controller_test.rb
 create app/helpers/tags_helper.rb

Next, create user_tags_controller.rb:

$ ruby script/generate controller UserTags

 exists app/controllers/
 exists app/helpers/
 create app/views/user_tags
 exists test/functional/
 create app/controllers/user_tags_controller.rb
 create test/functional/user_tags_controller_test.rb
 create app/helpers/user_tags_helper.rb

Adding the Resource Mappings
We now need to map the URLs to the specific controllers in the routes file. Open the file
config/routes.rb. Add the tags mapping, and modify the existing users mapping to add the
nested tags. We can also add the new methods, add_tag and remove_tag, for the existing
user_photos resource mapping. The add_tag method uses HTTP PUT, while the remove_tag
method uses HTTP DELETE.

Edit the routes file as shown in Listing 10-4, adding the bold lines.

Bradburne_8415C10.fm Page 285 Tuesday, May 15, 2007 4:38 AM

286 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

Listing 10-4. Updates to the Route Mappings File

map.resources :photos
map.resources :tags

map.resources :users, :member => { :enable => :put } do |users|
 users.resources :permissions
 users.resources :entries do |entries|
 entries.resources :comments
 end
 users.resources :tags, :name_prefix => 'user_',
 :controller => 'user_tags'
 users.resources :photos, :name_prefix => 'user_',
 :controller => 'user_photos',
 :member => { :add_tag => :put,
 :remove_tag => :delete }
end

Writing the Controllers and Views
We can now write the code to actually perform the actions set up in the mappings.

The Tags Controller

The tag_controller.rb index method displays all of the tags that have been added to photos on
the site, regardless of user. Since we want to display this as a tag cloud, we should retrieve the
tags using the tag_counts method.

The show method will show all of the photos that match a particular tag. This is done simply
with the method find_tagged_with.

Since it is not possible for a user to create, update, or delete tags through this resource,
only as an update to a photo, we only have to create the index and show methods.

Open the app/controllers/tag_controller.rb file, and edit it as shown in Listing 10-5.

Listing 10-5. The Tag Controller File

class TagsController < ApplicationController

 def index
 @tags = Photo.tag_counts(:order => 'name')
 end

 def show
 @photos = Photo.find_tagged_with(params[:id])
 end

end

For the tag index action, we have requested that the tags be ordered alphabetically using
the tag name. We now need to create the views for the index and show actions.

Bradburne_8415C10.fm Page 286 Tuesday, May 15, 2007 4:38 AM

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 287

The Tag Index View

To create the tag cloud for the tag index view, we will create a helper method that takes the
array of tags with usage counts and return a series of CSS class names that we can add to the
displayed tags. The class names are assigned based on how common a tag is in relation to the
other tags. This code is based on a Rails helper developed by Tom Fakes. You can find the orig-
inal code at http://blog.craz8.com/articles/2005/10/28/acts_as_taggable-is-a-cool-
piece-of-code.

First of all, we should add the tag_cloud helper to a helper file. Since we will use this helper
from both the tags_controller and the user_tags_controller files, we should add the tag_cloud
helper to the applicationwide helper file.

Open app/helpers/application_helper.rb, and add the new tag_cloud helper to the
ApplicationHelper module as shown in Listing 10-6.

Listing 10-6. The Tag Cloud Helper

Methods added to this helper will be available to all templates in
the application.
module ApplicationHelper
 def yes_no(bool)
 ...
 end

 def tag_cloud(tags, classes)
 max, min = 0, 0
 tags.each do |tag|
 max = tag.count if tag.count > max
 min = tag.count if tag.count < min
 end

 divisor = ((max - min) / classes.size) + 1

 tags.each do |tag|
 yield tag.name, classes[(tag.count - min) / divisor]
 end
 end
end

We can now create the index view file, app/views/tags/index.rhtml. Create this file, open
it, and enter the code in Listing 10-7.

Listing 10-7. The Tags Index View

<h2>Most Popular Tags</h2>

<% tag_cloud @tags, %w(tag1 tag2 tag3 tag4 tag5) do |name, css_class| %>
 <%= link_to name, tag_path(name), :class => css_class %>
<% end %>

Bradburne_8415C10.fm Page 287 Tuesday, May 15, 2007 4:38 AM

http://blog.craz8.com/articles/2005/10/28/acts_as_taggable-is-a-cool-piece-of-code
http://blog.craz8.com/articles/2005/10/28/acts_as_taggable-is-a-cool-piece-of-code
http://blog.craz8.com/articles/2005/10/28/acts_as_taggable-is-a-cool-piece-of-code

288 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

This passes the @tags array (which includes the count attribute) and an array of CSS class
names to the tag_cloud helper. %w() is simply a quick way to create an array from a list of words
in Ruby.

We use the returned data from the helper in a Ruby block, taking the name and calculated
CSS class name and using them to generate a link. This links to the show action of the tag resource.

We now need to create the definitions of the CSS classes that the tag_cloud helper uses.
Since we want the size of the text to be proportional to the tag’s popularity, we will just set the
font-size attribute for each of the classes.

Open the style sheet for the application, public/stylesheets/main.css, and add the CSS
code shown in Listing 10-8 to the end of the file.

Listing 10-8. The CSS Style Sheet for the Tag Cloud

/* Tag cloud styling */
.tag1 { font-size: 100%; }
.tag2 { font-size: 120%; }
.tag3 { font-size: 140%; }
.tag4 { font-size: 160%; }
.tag5 { font-size: 170%; }
.tag6 { font-size: 180%; }

The Tag Show View

To create the view for the show action, we simply have to render the partial view that has already
been created for the regular photo gallery. Create the show view file, app/views/tags/show.rhtml,
and add the code in Listing 10-9.

Listing 10-9. The Tags Show View File

<h2>Photos Tagged: <%=h params[:id] %></h2>

<ul id="photos">
 <%= render :partial => 'photos/photo', :collection => @photos %>

The User Tags Controller

The user_tags_controller is used in a similar way to tags_controller, except that it only shows
tags and photos for a specific user. Like tags_controller, this controller also needs only the
index and show actions, since tags are never edited through this controller.

Open the generated controller, app/controller/user_tags_controller.rb, and edit it as
shown in Listing 10-10.

Bradburne_8415C10.fm Page 288 Tuesday, May 15, 2007 4:38 AM

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 289

Listing 10-10. The User Tags Controller File

class UserTagsController < ApplicationController

 def index
 @user = User.find(params[:user_id])
 @tags = @user.photos.tag_counts(:order => 'name')
 end

 def show
 @user = User.find(params[:user_id])
 @photos = @user.photos.find_tagged_with(params[:id])
 end

end

You will notice that this is almost the same as the tags_controller, except that we first
retrieve the user specified in the URL and then search for tags or photos with a specific tag
within the scope of that user. This also means that the view files will also be very similar.

The User Tags Index View

We will use the same tag_cloud helper method as the tags_controller index view. Create the
file app/views/user_tags/index.rhtml, and add the view code in Listing 10-11.

Listing 10-11. The User Tags Index View

<h2><%= @user.username %>'s Most Popular Tags</h2>

<p><%= link_to "Show all user's tags", tags_path %></p>

<% tag_cloud @tags, %w(tag1 tag2 tag3 tag4 tag5) do |name, css_class| %>
 <%= link_to name, tag_path(name), :class => css_class %>
<% end %>

Since we have retrieved the specified user’s details, we can use that to display the user’s
name as the title of the page. We have also added a link to go to the root-level tag view, showing
all of the tags on the site.

The User Tags Show View

This view, showing the user’s photos tagged with a specific word, also makes use of the existing
thumbnail partial view that we wrote for the photo gallery. Create the file app/views/
user_tags/show.rhtml, and enter the code shown in Listing 10-12.

Bradburne_8415C10.fm Page 289 Tuesday, May 15, 2007 4:38 AM

mailto:@user.photos.tag_counts(:order
mailto:@user.photos.find_tagged_with
mailto:@user.username

290 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

Listing 10-12. The User Tags Show View

<h2><%= @user.username %>'s Photos Tagged: <%=h params[:id] %></h2>

<p>
 <%= link_to "Show all photos tagged with #{h(params[:id])}", tag_path(h(params[:id])) %>
</p>

<ul id="photos">
 <%= render :partial => 'photos/photo', :collection => @photos %>

Along with showing all the photos in the specified user’s gallery tagged with the requested
word, we have also included a link to show all photos on the site tagged with this word.

Adding Tags to a Photo
We need to develop the controller methods and interface to allow users to add tags to their photos.

In the routes file, we added mappings for two extra methods for the user_photo resource.
Take another look at the mapping in the routes.rb file:

users.resources :photos, :name_prefix => 'user_', :controller => 'user_photos',
 :member => { :add_tag => :put, :remove_tag => :delete }

This adds the actions add_tag and remove_tag to the nested resource, which is accessible
through the URLs /user/1/photos/2;add_tag and /user/1/photos/2;remove_tag. We can use
the shortcuts user_add_tag_photo_path and user_remove_tag_photo_path to access these in
views and controllers. We also need to make sure that we specify the correct HTTP method to
access these: PUT for add_tag and DELETE for remove_tag.

Allowing the User to Add Tags to a Photo

First of all, we will develop the code necessary to add tags to a photo object. We will just add
this to the existing user_photos_controller file. Open the file app/controllers/
user_photos_controller.rb. Within the UserPhotosController class, create the new action
method shown in Listing 10-13.

Listing 10-13. The add_tag Method

def add_tag
 @photo = @logged_in_user.photos.find(params[:id])
 @photo.tag_list += ',' + params[:tag][:name]
 @photo.save
 @new_tag = @photo.reload.tags.last
end

The add_tag method is very simple. First, it retrieves the photo to which a tag is being
added. This is found using the user_id of the currently logged-in user and the id parameter
given in the URL.

Bradburne_8415C10.fm Page 290 Tuesday, May 15, 2007 4:38 AM

mailto:@user.username
mailto:@logged_in_user.photos.find
mailto:@photo.tag_list
mailto:@photo.save
mailto:@photo.reload.tags.last

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 291

As you will recall, we add tags to an object by specifying them as a comma-separated list in
a string. Since we don’t want to remove the tags that are already given for the tag, we just add
the new tag, prefixed by a comma, to the end of the string. We then save the photo object.

Finally, we retrieve this new tag as a Tag model. This allows the view to access this new tag
as it would any other tag, rather than having to deal with it as just a string.

Normally, we would then automatically render an HTML view or redirect to a different
action. We could simply redirect to the edit action, which would reload the entire edit page in
the user’s browser. However, we are going to use Ajax techniques to update just the existing list
of tags on the edit page.

To do this, we need to display the list of tags and add the form to enter a tag onto the photo
edit page.

Edit the file app/views/user_photos/edit.rhtml as shown in Listing 10-14.

Listing 10-14. The Updated user_photos Edit File

<h2>Editing photo</h2>

<%= error_messages_for :photo %>

<%= link_to image_tag(@photo.public_filename('thumb')),
 user_photo_path(:user_id => @photo.user, :id => @photo) %>

<h3>Tags</h3>
<ul id="taglist">
 <%= render :partial => 'edit_tag', :collection => @photo.tags %>

<% remote_form_for(:tag,
 :url => user_add_tag_photo_path(:id => @photo),
 :method => :put,
 :complete => "Field.clear('tag-name')") do |f| %>
 <%= f.text_field :name, :id => 'tag-name' %>
 <%= submit_tag 'Add Tag' %>
<% end %>

<% form_for(:photo,
 :url => user_photo_path(:user_id => @photo.user, :id => @photo),
 :html => { :method => :put }) do |f| %>
 <p>Title:
<%= f.text_field 'title' %></p>
 <p>Description:
<%= f.text_area 'body', :rows => 6, :cols => 40 %></p>
 <p><%= submit_tag "Save" %> or <%= link_to 'cancel', user_photos_path %></p>
<% end %>

Here, we have added a list of the tags using the render :partial command, so we need to
write this partial view. Create the file app/views/user_photos/_edit_tag.rhtml, and enter the
partial view code in Listing 10-15. Since we will not use this partial in the photos controller, we
should place it in the user_photos view directory.

Bradburne_8415C10.fm Page 291 Tuesday, May 15, 2007 4:38 AM

mailto:tag(@photo.public_filename
mailto:@photo.user
mailto:@photo.tags
mailto:@photo.user

292 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

Listing 10-15. The edit_tag Partial View

<li id="tag-<%= edit_tag.id %>">
 <%= edit_tag.name %>

Note that we are adding the id of the tag to the id attribute of the tag. Although the
class and id attributes of HTML objects are often used just for styling using CSS, we can also
use them to find a specific part of the document. In this case, we will use this to allow us to
delete a tag from the tag list by specifying exactly which page element we wish to remove.

We are using a Rails helper method remote_form_for to create the form where a user enters
a new tag. This works in a similar way to the form_for helper that we have used in all of our new
and edit views so far, except remote_form_for uses XMLHttpRequest to submit the form in the
background rather than as a regular HTTP POST, which would force a page reload. This is achieved
using a JavaScript library, which collects the form elements then submits them to our applica-
tion. You can then process this in exactly the same way as you would a regular HTTP request.
As you can see in the add_tag method, we still use params[:tag][:name] to access the form
parameters.

The remote_form_for helper takes the same parameters as the form_for helper, so we still
specify the destination URL and HTTP method. But we can also use special callbacks to perform
JavaScript actions on the page. These callbacks are shown in Table 10-3.

We are using the :complete callback to clear the tag name form field. This allows the user
to enter a number of tags quickly, without having to manually clear the form field first.

So now that we have a form that can call the add_tag action in the background, we need to
define what gets returned to the browser.

We have already seen how Rails can easily respond to different types of requests with the
respond_to statement. This time, we will respond only to JavaScript requests.

The response that we want to send to the browser is a piece of JavaScript code that will
instruct the browser to add the new tag to the end of the existing tag list. If we were sending an
HTML page, we would write an .rhtml file. However, since we want to send JavaScript, Rails
uses a different type of file to allow us to define a JavaScript response. These files are called
Remote JavaScript (RJS) files.

Table 10-3. The Ajax Callbacks

Callback Called When

:loading The remote document is being loaded by the browser.

:loaded The browser has finished loading the remote document.

:interactive The user can interact, even if the document has not finished loading.

:success The remote document has loaded and has a success HTTP Status code.

:failure The remote document has loaded but does not have a success HTTP Status code.

:complete The remote document has been completely loaded.

Bradburne_8415C10.fm Page 292 Tuesday, May 15, 2007 4:38 AM

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 293

RJS files work in a very similar way to an .rhtml or .rxml view file—you simply create a file
with the same name as the action that you are responding to but with the suffix of .rjs.

Since our action method is called add_tag, create the corresponding RJS file, app/views/
user_photos/add_tag.rjs. Enter the RJS code shown in Listing 10-16 to this file.

Listing 10-16. The add_tag RJS File

page.insert_html :bottom, 'taglist', { :partial => 'edit_tag',
 :locals => {:edit_tag => @new_tag} }
page.visual_effect :highlight, "tag-#{@new_tag.id}", :duration => 2

RJS files allow us to change data that is currently on the page. In this instance, we insert a
new instance of the edit_tag partial at the bottom of the page element tag list. We need to set
the new tag object, @new_tag, as a local variable to the partial.

We then call the visual effect method, telling it to highlight the newly created tag for a
period of 2 seconds.

If we wanted to support browsers that were not capable of processing JavaScript, we could
use the respond_to statement. If we wanted to support both JavaScript and HTML responses,
we would add the following lines:

format.html
format.js

This renders the relevant template based on how the request was received.

RJS TEMPLATES

RJS template files are simply snippets of Ruby code that use a DSL to generate JavaScript code that is then
sent to the requesting browser.

RJS relies on the Prototype and script.aculo.us JavaScript libraries that are shipped with Rails and should
be included as part of the application layout with the tag <%= javascript_include_tag :defaults %>.

When you write an RJS file, you have access to an object called page, which is simply an instance of the
Rails JavaScriptGenerator class. All the desired responses are made as method calls to the page object.

You can call a large number of available methods that allow you to change, remove, or add content to the
page; make sections draggable; produce alert boxes; hide or display page elements; and so on.

To find out more about RJS, there is a very useful list of resources at the Ruby Inside blog http://
www.rubyinside.com/16-rjs-resources-and-tutorials-for-rails-programmers-5.html.

For a more advanced reference to RJS templates, the e-book RJS Templates for Rails by Cody Fauser
(O’Reilly, 2006) is a worthwhile purchase.

Before we try this out, we should add the delete_tag method and update the partial to
allow us to easily delete tags.

Removing a Tag from a Photo Object

To give the users the option of removing a tag from one of their photo objects, we have to write
the action method to remove the particular tag, write the response (in this case another RJS
file), and add an option to the user interface to allow the users to perform this action easily.

Bradburne_8415C10.fm Page 293 Tuesday, May 15, 2007 4:38 AM

http://www.rubyinside.com/16-rjs-resources-and-tutorials-for-rails-programmers-5.html
http://www.rubyinside.com/16-rjs-resources-and-tutorials-for-rails-programmers-5.html

294 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

Since we are using a partial to list the tags on the edit photo page, we can simply update
this partial to show a delete link next to each tag.

Reopen this partial view file, app/views/user_photo/_edit_tag.rhtml, and edit it as shown
in Listing 10-17 to add the delete link.

Listing 10-17. Updated edit_tag Partial View

<li id="tag-<%= edit_tag.id %>">
 <%= edit_tag.name %>
 <small>
 [<%= link_to_remote 'delete',
 :url => user_remove_tag_photo_path(:id => @photo.id,
 :tag_id => edit_tag.id),
 :method => :delete %>]
 </small>

This uses the Rails helper method link_to_remote. This works in the same way as the
remote_form_for helper, making the remote request in the background without making the
browser reload the whole page. This time, we have to specify the method to be DELETE, since we
have specified in the routes file that the remove_tag action can only be accessed by the DELETE
method. If you wished to perform other JavaScript actions before or after the link_to_remote
method, you could also add the Ajax callbacks mentioned earlier. However, we do not require
any callbacks to be executed.

We now need to write the remove_tag action method itself and the corresponding RJS file.
Open the file app/controllers/user_photos_controller.rb, and add the remove_tag method
shown in Listing 10-18 after the add_tag method but before the closing end statement.

Listing 10-18. The remove_tag Action Method

def remove_tag
 @photo = @logged_in_user.photos.find(params[:id])
 @tag_to_delete = @photo.tags.find(params[:tag_id])

 if @tag_to_delete
 @photo.tags.delete(@tag_to_delete)
 else
 render :nothing => true
 end
end

The method first retrieves the photo being modified. Since it only searches the photos
within the scope of the @logged_in_user, it is impossible for someone who is not logged in as
the photo owner to modify the photo’s tags.

We then search the tags set for this photo for the tag specified in the request parameters.
Only if this tag exists for this photo do we attempt to delete the tag and respond with the RJS file.

Bradburne_8415C10.fm Page 294 Tuesday, May 15, 2007 4:38 AM

mailto:@photo.id
mailto:@logged_in_user.photos.find
mailto:@photo.tags.find
mailto:@photo.tags.delete(@tag_to_delete

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 295

To delete the tag, we simply need to remove it from the tags associated with this photo.
Since we already have the @tag_to_delete object, we simply call the delete method on
@photo.tags to remove the specified tag object.

We now need to write the RJS template to define the response to this request. Create the
file app/views/user_photos/remove_tag.rjs, and add the RJS code in Listing 10-19.

Listing 10-19. The remove_tag RJS Template

page.remove "tag-#{@tag_to_delete.id}"
page.visual_effect :highlight, 'taglist', :duration => 2

This RJS file simply removes the page element with the id of the tag that we are deleting.
Since our page renders each tag with the tag object id prefixed with tag-, we can specify exactly
which item in the list we wish to remove.

We then highlight the entire tag list for 2 seconds to show the user that the list has changed.

Linking to the Tag Browser
Finally, we should add some links to make it quick and easy for a visitor to browse the site
using tags.

We should add a link to the menu sidebar, linking to the root-level tag index view, and we
should also show all of the tags for a particular photo on the photo show page. We can also add
a link to show users’ tags from their profile pages.

Adding Tags to the Sidebar Menu

Open the sidebar menu partial file, app/views/layouts/_menu.rhtml, and add a link to the
tags_controller index view as shown in Listing 10-20.

Listing 10-20. Adding the Tag Index Link to the Sidebar Menu

...
<%= link_to 'Blogs', all_blogs_path %>
<%= link_to 'Photos', photos_path %>
<%= link_to 'Photo Tags', tags_path %>

<hr size="1" width="90%" align="left"/>
...

Adding Tag Links to the Photo Show View

When a user views a particular photo, this is shown by the view app/views/user_photos/
show.rhtml. Open this file now. Beneath the photo title and description, we will show the list
of tags for this photo.

We could simply use the tag_list method, which would render a string listing all of the
tags for this photo separated by commas. While this is fine, it would be much more useful to
render each tag as a link, linking to the user_tags controller’s show action. We will do this by
cycling through the tags and creating a link for each tag.

Bradburne_8415C10.fm Page 295 Tuesday, May 15, 2007 4:38 AM

mailto:@photo.tags

296 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

Modify the file by adding the code as shown in Listing 10-21.

Listing 10-21. The Updated user_photos Show View

.. .
<p><%=h @photo.body %></p>

<p>Tags:
 <% @photo.tags.each do |tag| %>
 <%= link_to tag.name, user_tag_path(@photo.user, tag.name)%>
 <% end %>
</p>

<% if is_logged_in? && @photo.user_id == logged_in_user.id %>
...

Adding a Link on the Users Profile Page

Finally, we should add a link to the user’s tag index page on their individual profile. Open the
user profile’s show view, app/views/users/show.rhtml, and add a link to the bottom of the page
as shown in Listing 10-22.

Listing 10-22. The Updated User Show View

...
<p>
 <%= link_to "See all of #{@user.username}'s photos",
 user_photos_path(:user_id => @user) %>
</p>
<p>
 <%= link_to "#{@user.username}'s Tags",
 user_tags_path(:user_id => @user) %>
</p>

Now that all of the pieces are in place, we can run through the feature and manually test
the functions.

Manually Testing
Fire up your browser, and go to the application home page, http://localhost:3000/. Log in to
the site as one of the users you have created. Now, go to your photos page. If you have not
uploaded any photos as this user, you should upload a few now.

View one of these photos by clicking on the photo itself. Since this photo belongs to you,
the “edit” and “delete” links will be shown on this page. Click the “edit” link. This will show
your photo along with edit boxes for the title and description, and a new text box allowing you
to enter a tag.

Bradburne_8415C10.fm Page 296 Tuesday, May 15, 2007 4:38 AM

mailto:@photo.body
mailto:@photo.tags.each
mailto:path(@photo.user
mailto:@photo.user_id
http://localhost:3000

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 297

Enter a tag that describes the picture, and press Return/Enter or click the Add Tag button.
This new tag will appear in the tag list above the tag text entry box, as shown in Figure 10-1, and
be highlighted briefly.

Figure 10-1. The “Editing photo” screen with the tag entry box

Do this with a number of photos, using the same tag and new tags. This will give us an
interesting tag cloud view.

Next, click the Photo Tags link in the sidebar menu to display all of the tags added on the
site with their popularity shown by the size of the font, as shown in Figure 10-2.

Now try clicking one of the tags to show all of the photos for that particular tag. You will
notice that the tag being viewed is simply given as part of the URL.

Log out of the site and log in as a different user. Try adding some tags to photos owned by
this other user, and take a look at the tag views for both the previous user and this new user—
you will see that the tag clouds are unique for each user, as expected.

Bradburne_8415C10.fm Page 297 Tuesday, May 15, 2007 4:38 AM

298 C H A P T E R 1 0 ■ AD D I N G T AG S T O T H E P H O T O G A L L E R Y

Figure 10-2. The photos tag cloud

Further Development of the Tagging System
This tagging feature can be extended further in a number of ways:

• Right now, the tag index action shows all tags. This is fine for a small site with a limited
number of tags, but it will soon become excessive on a large-scale site. You could limit
the number of tags shown by the index action to a hundred or so of the most popular
tags, which should be about a page full of tags.

• Also, the pages showing all photos with a specific tag are not paginated. You should
consider paginating them if you anticipate a large number of photos.

• When showing photos that are tagged with a keyword, you could retrieve other tags used
to tag the same photos. This would produce a related tags list, allowing the users to browse
the photo galleries easily.

• You could also show a list of users who have most frequently used a particular tag.

• You may also wish to add tags to other objects on the site, such as blog entries.

Bradburne_8415C10.fm Page 298 Tuesday, May 15, 2007 4:38 AM

C H A P T E R 1 0 ■ A D D I N G T A G S T O T H E P H O T O G A L L E R Y 299

Summary
In this chapter, we have added a complete tagging system to the photo gallery. We used the
acts_as_taggable_on_steroids plug-in to add tagging features to the Photo model and devel-
oped an interface for the user.

This involved developing an Ajax-based system to allow the tags to be added and deleted
dynamically from the photo edit page. This used the remote_form_for and remote_link_to
helpers and RJS templates to send the data and dynamically construct JavaScript from the
Ruby RJS file.

We also created a tag cloud of all the tags on the site, allowing users to quickly see which
tags are the most popular.

In the next chapter, we will look at how we can integrate with other web applications, in
particular Google Maps and Flickr, by using their public APIs.

Bradburne_8415C10.fm Page 299 Tuesday, May 15, 2007 4:38 AM

Bradburne_8415C10.fm Page 300 Tuesday, May 15, 2007 4:38 AM

301

■ ■ ■

C H A P T E R 1 1

Creating Mashups and
Integrating with Web 2.0

In this chapter, we will integrate RailsCoders with some other web applications, creating what
has become known as a mashup, which is simply using parts of existing web applications to
build something new.

Many web applications now offer public APIs for free, meaning that it is very simple to
retrieve or save data on the site using an application. Google has APIs for many of their appli-
cations, including Google Base, Search, Maps, Calendar, and Mail. Flickr offers access to virtually
all the features of the web site through REST, XML-RPC, or SOAP interfaces. Amazon has many
innovative APIs including access to product search and historical price data. These are only a
few examples of the types of APIs available on the web. For an extensive list of sites that offer
APIs, visit http://www.programmableweb.com/apilist. If you have a favorite web application, it
is highly likely that they offer some form of API.

Unfortunately, since the requirements of each site differ, most APIs are implemented in
different ways, either using SOAP, XML-RPC, or REST, but most Web 2.0 sites are moving
toward REST architectures to offer very simple and lightweight interfaces to their data.

For the RailsCoders site, we will integrate with two of the most popular applications for
creating mashups: Google Maps and Flickr. We will use Google Maps to allow users to add
physical location data to their uploaded photographs. We will use the Flickr API to allow users
to add their Flickr IDs to their profiles. User profile pages will then be able to show the users’
latest Flickr photos along with their RailsCoders photos.

Integrating the Google Maps API
Google launched their mapping service early in 2005, and it quickly became a hugely popular
service. Before Google Maps, all free online mapping services were rather awkward and only
offered basic manipulation and search tools, but Google Maps opened up the possibilities of
embedding interactive, scrollable maps to your own site. Google released a simple API to
Google Maps in June 2005 and has continued to extend and improve its features. The API offers
extensive control over how you want the map to look and allows you to add markers and infor-
mation to it.

To display a map, we will use the Google Maps API. This API makes it easy to embed maps
or satellite images on another web page. You can set the center point of the map, along with the

Bradburne_8415C11.fm Page 301 Thursday, May 24, 2007 4:49 AM

http://www.programmableweb.com/apilist

302 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

zoom level, making it easy to show exactly the map you require. We will also make use of the
marker feature, which enables us to create marker points on the displayed map.

■Note Full documentation for the Google Maps API is available at http://www.google.com/apis/
maps/documentation.

The Google Maps API is very straightforward to use, but a number of useful Rails plug-ins
have been created that act as a wrapper around it, allowing us to use syntax and commands
familiar to us from Rails as an interface to the features of the API. This makes it even easier to
create maps and add markers.

We are going to use a plug-in called YM4R/GM, an acronym for Yellow Maps For Rails
using Google Maps. YM4R/GM is part of the YM4R collection of mapping tools for Ruby devel-
oped by Guilhem Vellut. You can find more information about the YM4R tools at http://
thepochisuperstarmegashow.com/projects/#ym4r and http://rubyforge.org/projects/ym4r/.

The Google Maps API is a JavaScript API so you would normally need to use it by writing
JavaScript, but as mentioned, we will be using the YM4R/GM plug-in. This acts as a wrapper
around the JavaScript API, making it very easy to use Ruby to create and configure the map and
any map markers.

Of course, if we need to add extra JavaScript code to perform actions outside of the scope
of the plug-in, we can easily do that too.

■Note The documentation for YM4R/GM is available online at http://
www.thepochisuperstarmegashow.com/ProjectsDoc/ym4r_gm-doc/.

The Mapping Feature Requirements
As part of the photo albums feature, we want to be able to store geographical coordinates for
each picture if they are available and show the actual location of the photograph on a map on
the photo’s show page.

Obviously, the latitude and longitude of each photo will not always be available—not
everyone carries a GPS around with them at all times. Therefore, we will add an embedded
map to the photo’s edit page, allowing the user to drag and zoom in on the map to select a point
on the map to set the longitude and latitude.

To store the geographical location, we need to extend the Photo model, adding fields to
store the location data and also a preference setting, which will be set if the user wants this
location to be shown on the photo page. The required fields are shown in Table 11-1. As usual,
we will add these through a database migration.

We then need to update the user_photos edit page, adding these fields to the list of editable
fields. The Photo model file does not need to be changed.

Bradburne_8415C11.fm Page 302 Thursday, May 24, 2007 4:49 AM

http://www.google.com/apis
http://thepochisuperstarmegashow.com/projects/#ym4r
http://thepochisuperstarmegashow.com/projects/#ym4r
http://rubyforge.org/projects/ym4r
http://www.thepochisuperstarmegashow.com/ProjectsDoc/ym4r_gm-doc
http://www.thepochisuperstarmegashow.com/ProjectsDoc/ym4r_gm-doc

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 303

Building the Mapping Feature
Now that we know the requirements of the RailsCoders mapping feature and the tools we will
use to develop it, we can begin to implement the feature.

Getting a Google Maps API Key

Before we get started, we first need to obtain a Google Maps API key. This key is necessary if we
want to use Google Maps on a production site. Google allows you to use the API for free as long
as you agree to Google’s terms and conditions. These are not restrictive, but there is a limit on
the number of geocode queries (but not map requests) you can perform, and you must agree
to make your application freely available. If you wish to use Google Maps in an enterprise envi-
ronment, you can sign up for Google Maps for Enterprise. By requesting a key from Google, they
can keep track of your requests to Google Maps to ensure that you are keeping within these limits.

To obtain a key from Google, simply go to http://www.google.com/apis/maps/signup.html,
and enter the details of your site. You will receive a long string of characters that is the key you
will need to use.

Installing the YM4R/GM Plug-in

We will use the Rails plug-in script to install the YM4R/GM plug-in. However, we need to install
the Subversion source control software in order to access the repository where this plug-in is
stored.

For Windows, download the Subversion client software from http://
subversion.tigris.org/servlets/ProjectDocumentList?folderID=91. Download the file
called svn-1.4.3-setup.exe, and run the installation program. You will then need to restart
InstantRails and your console window to pick up the new path settings.

On Ubuntu Linux, simply enter the following command:

$ sudo apt-get install subversion

If you are running Mac OS X, download an installation package from http://
www.codingmonkeys.de/mbo/articles/2007/01/25/subversion-1-4-3. Run the installation
package, and follow the on-screen prompts.

Now that you have Subversion installed, install YM4R by entering the following command:

Table 11-1. The Extra Fields Required by the Photo Model for Mapping Data

Field Name Field Type Description

geo_lat float The latitude of the photo’s location

geo_long float The longitude of the photo’s location

show_geo boolean A user-settable option to determine if the location data is displayed
to others, with a default of true

Bradburne_8415C11.fm Page 303 Thursday, May 24, 2007 4:49 AM

http://www.google.com/apis/maps/signup.html
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://www.codingmonkeys.de/mbo/articles/2007/01/25/subversion-1-4-3
http://www.codingmonkeys.de/mbo/articles/2007/01/25/subversion-1-4-3

304 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

$ ruby script/plugin install ➥

svn://rubyforge.org/var/svn/ym4r/Plugins/GM/trunk/ym4r_gm

A [...]/railscoders/vendor/plugins/ym4r_gm
A [...]/railscoders/vendor/plugins/ym4r_gm/test
A [...]/railscoders/vendor/plugins/ym4r_gm/test/gm_test.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/rakefile.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/init.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/tasks
A [...]/railscoders/vendor/plugins/ym4r_gm/tasks/gm_tasks.rake
A [...]/railscoders/vendor/plugins/ym4r_gm/javascript
A [...]/railscoders/vendor/plugins/ym4r_gm/javascript/geoRssOverlay.js
A [...]/railscoders/vendor/plugins/ym4r_gm/javascript/clusterer.js
A [...]/railscoders/vendor/plugins/ym4r_gm/javascript/ym4r-gm.js
A [...]/railscoders/vendor/plugins/ym4r_gm/javascript/wms-gs.js
A [...]/railscoders/vendor/plugins/ym4r_gm/javascript/markerGroup.js
A [...]/railscoders/vendor/plugins/ym4r_gm/lib
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/ym4r_gm.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/map.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/geocoding.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/helper.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/control.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/overlay.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/key.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/point.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/mapping.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/lib/gm_plugin/layer.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/gmaps_api_key.yml.sample
A [...]/railscoders/vendor/plugins/ym4r_gm/install.rb
A [...]/railscoders/vendor/plugins/ym4r_gm/README
Exported revision 86.

As part of the plug-in installation procedure, the necessary JavaScript files are copied to
the public/javascripts/ directory of your application and a configuration file for the Google
Maps API, config/gmaps_api_key.yml, is created and placed inside the config/ directory. Open
this file now.

You should obtain an API key for http://localhost, which you should insert into the file
for the development and test modes and a key for the domain of your own site for the production
mode. Enter these into the config/gmaps_api_key.yml as shown in Listing 11-1, replacing
railscoders.net with your own domain name.

Bradburne_8415C11.fm Page 304 Thursday, May 24, 2007 4:49 AM

svn://rubyforge.org/var/svn/ym4r/Plugins/GM/trunk/ym4r_gm
http://localhost

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 305

Listing 11-1. The gmaps_api_key.rb Configuration File

Fill here the Google Maps API keys for your application
In this sample:
For development and test, we have only one possible host (localhost:3000), so
there is only a single key associated with the mode.
In production, the app can be accessed through 2 different hosts:
thepochisuperstarmegashow.com and exmaple.com. There then needs a 2-key hash.
If you deployed to one host, only the API key would be needed (as in development
and test).

development:
 <API_key_for_localhost>

test:
 <API_key_for_localhost>

production:
 railscoders.net: <API_key_for_railscoders.net>

Adding the Geographical Fields to the Photo Schema

Before we can make use of the YM4R/GM plug-in to start displaying maps, we need to add
location data to some photos to give us data to work with.

First, we need to create a migration file to add the necessary fields to the existing Photo
model. Create a new migration file with the following command:

$ ruby script/generate migration AddGeoToPhotos

 exists db/migrate
 create db/migrate/022add_geo_to_photos.rb

Next, edit this generated migration file, db/migrate/022_add_geo_to_photos.rb. Update
this file as shown in Listing 11-2. Note that the down method removes the fields created by the
up method, ensuring that the database migration can be rolled back.

Listing 11-2. Migration File to Add Geographical Coordinates to the Photo Model

class AddGeoToPhotos < ActiveRecord::Migration
 def self.up
 add_column :photos, :geo_lat, :float
 add_column :photos, :geo_long, :float
 add_column :photos, :show_geo, :boolean, :default => true, :null => false
 end

Bradburne_8415C11.fm Page 305 Thursday, May 24, 2007 4:49 AM

306 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

 def self.down
 remove_column :photos, :geo_lat
 remove_column :photos, :geo_long
 remove_column :photos, :show_geo
 end
end

Now execute this migration:

$ rake db:migrate

== AddGeoToPhotos: migrating ==
-- add_column(:photos, :geo_lat, :float)
 -> 0.0113s
-- add_column(:photos, :geo_long, :float)
 -> 0.0333s
-- add_column(:photos, :show_geo, :boolean, {:null=>false, :default=>true})
 -> 0.0116s
== AddGeoToPhotos: migrated (0.0567s) ===

You may wish to check your database to make sure that the fields have been created
correctly.

Adding the Geographical Fields to the Photo Edit and New Pages

We will now add these newly created fields to the photo edit page. Since this is accessed by
user_photos_controller.rb, the file we need to edit is app/views/user_photos/edit.rhtml.

For the moment, we will just add simple text fields to the edit page, allowing the user to
enter the latitude and longitude coordinates by hand. When we have added that and have the
map displaying the location on the photo show page, we will then add a map to the edit page.

Open the file app/views/user_photos/edit.rhtml, and edit the form fields at the end of the
file, as shown in Listing 11-3.

Listing 11-3. Modifications to the user_photos Edit Page

...
<% form_for(:photo,
 :url => user_photo_path(:user_id => @photo.user, :id => @photo),
 :html => { :method => :put }) do |f| %>
 <p>Title:
<%= f.text_field 'title' %></p>
 <p>Description:
<%= f.text_area 'body', :rows => 6, :cols => 40 %></p>
 <p>Latitude: <%= f.text_field 'geo_lat', :size => '8' %></p>
 <p>Longitude: <%= f.text_field 'geo_long', :size => '8' %></p>
 <p>Display Location Data? <%= f.check_box 'show_geo' %></p>
 <p><%= submit_tag "Save" %> or <%= link_to 'cancel', user_photos_path %></p>
<% end %>

Bradburne_8415C11.fm Page 306 Thursday, May 24, 2007 4:49 AM

mailto:@photo.user

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 307

Since these fields are just part of the model, we do not have to alter the controller file—the
fields will automatically be saved when the edit form is submitted.

We should also add these fields to the photo upload form so that a user can enter the loca-
tion data at the same time as uploading a new photo. Open the photo upload form, app/views/
user_photos/new.rhtml, and add the new fields as shown in Listing 11-4.

Listing 11-4. Modifications to the user_photos New Page

<h2>Upload a new photo</h2>

<%= error_messages_for :photo %>

<% form_for(:photo,
 :url => user_photos_path(:user_id => @logged_in_user),
 :html => { :multipart => true }) do |f| %>
 <p>Select a photo to upload</p>
 <p>Title:
<%= f.text_field :title %></p>
 <p>Description:
<%= f.text_area :body, :rows => 6, :cols => 40 %></p>
 <p>Latitude: <%= f.text_field 'geo_lat', :size => '8' %></p>
 <p>Longitude: <%= f.text_field 'geo_long', :size => '8' %></p>
 <p>Display Location Data? <%= f.check_box 'show_geo' %></p>
 <p>Photo:
<%= f.file_field 'uploaded_data' %></p>
 <p>
 <%= submit_tag 'Upload Photo' %> or
 <%= link_to 'cancel', user_photos_path(@logged_in_user) %>
 </p>
<% end %>

Try adding location data now. If you don’t know the latitude and longitude of any photos,
just use the demonstration fields shown, or use Google Maps to find the latitude and longitude
of the location where your photo was taken.

Log in to the site with a regular user, and select Upload Photo from the sidebar menu. Select
a new photo to upload, and fill in the fields including the location data, as shown in Figure 11-1.

Now click the Upload Photo button to upload the photo to the site. The photo will be
uploaded as expected. Of course, the location data will not yet be shown, as we haven’t added
this functionality to the site, but you should now try editing this photo to see that the latitude
and longitude data has been added.

Bradburne_8415C11.fm Page 307 Thursday, May 24, 2007 4:49 AM

308 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

Figure 11-1. Uploading a new photo with location data

Displaying the Location Data as a Map

Now that we have a photo with location data, we can show it as a point on a map on the photo
show page. To do this, we will use the YM4R/GM plug-in that we installed earlier. This involves
three stages:

1. Edit the controller to create a new GMap object. This object is provided by the plug-in
and is essentially a wrapper around the Google Maps JavaScript API.

2. Set various parameters of the GMap object, such as the center point of the map and the
zoom level.

3. Embed the map on the view page by calling the to_html method of the GMap object.

Using the GMap method control_init, we can set the buttons that are shown overlaid on the
map. The options :small_map, :large_map, :small_zoom, :scale, :map_type, and :overview_map
are available.

We will center the map at the photo’s coordinates and set a default zoom level using the
method center_zoom_init. We can also add markers to the map. We need to create an instance

Bradburne_8415C11.fm Page 308 Thursday, May 24, 2007 4:49 AM

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 309

of the GMarker object with the latitude and longitude of our photo, together with an optional
title (shown when hovering the mouse over the marker) and informational window (shown
after the user clicks on the marker). This marker is then added to the map as an overlay using
the call @map.overlay_init method.

Open the app/controllers/user_photos_controller.rb file, and edit the show action method
as shown in Listing 11-5.

Listing 11-5. Update to the Show Action of user_photos_controller

def show
 @photo = Photo.find_by_user_id_and_id(params[:user_id],
 params[:id],
 :include => :user)

 if @photo.show_geo && (@photo.geo_lat && @photo.geo_long)
 @map = GMap.new("map_div_id")
 @map.control_init(:map_type => false, :small_zoom => true)
 @map.center_zoom_init([@photo.geo_lat, @photo.geo_long], 8)

 marker = GMarker.new([@photo.geo_lat, @photo.geo_long],
 :title => @photo.title,
 :info_window => @photo.body)
 @map.overlay_init(marker)
 end

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @photo.to_xml }
 end
end

You will notice that if the show_geo field is set to false or if either the geo_lat or geo_long
field is empty, the @map object is not instantiated.

We can now create the map view using the methods provided by the plug-in. To display
the map, we call the method @map.to_html. @map.div outputs the XHMTL <div> tags, which
have been configured. You can pass in :width and :height to this method, allowing you to set
the size of the map on the page.

We also need to make sure that the Google Maps JavaScript libraries are loaded by the
user’s browser by adding the helper method GMap.header to the <head> section of the page. You
will remember that we can add extra code to the page’s <head> by specifying content_for :head
within our page view.

In the map section of the page, we have also used link_to_function helpers to display
links that allow the user to hide and show the map; link_to_function allows you to specify a
piece of JavaScript that will be executed when the link is clicked. In this case, each link simply
calls Element.hide and Element.show with the respective ids of the map and the Show Map link.

Open the photo show page, app/views/user_photos/show.rhtml, and modify the file as
shown in Listing 11-6.

Bradburne_8415C11.fm Page 309 Thursday, May 24, 2007 4:49 AM

mailto:@map.overlay_init
mailto:@photo.show_geo
mailto:(@photo.geo_lat
mailto:@photo.geo_long
mailto:@map.control_init(:map_type
mailto:@map.center_zoom_init([@photo.geo_lat
mailto:@photo.geo_long
mailto:new([@photo.geo_lat
mailto:@photo.geo_long
mailto:@photo.title
mailto:@photo.body
mailto:@map.overlay_init
mailto:@photo.to_xml
mailto:@map.to_html
mailto:@map.div

310 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

Listing 11-6. The Updated user_photos Show File

<% content_for :head do %>
 <%= GMap.header %>
<% end %>

<h3>
 <%= link_to "#{@photo.user.username}'s Photos",
 user_photos_path(:user_id => @photo.user) %>
</h3>
<h2><%=h @photo.title %></h2>
<p><%=h @photo.body %></p>

<% if @photo.tags.any? %>
 <p>Tags:
 <% @photo.tags.each do |tag| %>
 <%= link_to tag.name, user_tag_path(@photo.user, tag.name)%>
 <% end %>
 </p>
<% end %>

<% if is_logged_in? && @photo.user_id == logged_in_user.id %>
 <p>
 <%= link_to 'Edit', user_edit_photo_path(:user_id => @photo.user, :id=>@photo) %>,
 <%= link_to 'Delete', user_photo_path(:user_id => @photo.user, :id => @photo),
 :confirm => 'Are you sure?',
 :method => :delete %>
 </p>
<% end %>

<% if @map %>
 <div id="gmap">
 <%= link_to_function 'Hide Map',
 "Element.hide('gmap'); Element.show('showmaplink')" %>
 <%= @map.to_html %>
 <%= @map.div(:width => 650, :height => 200) %>

 </div>
 <%= link_to_function 'Show Map',
 "Element.show('gmap'); Element.hide('showmaplink')",
 :id => 'showmaplink',
 :style => 'display:none' %>
<% end %>

<%= image_tag @photo.public_filename, :id => 'photo' %>

You can now take a look at the photo page in your browser. The location that was set in the
geo_lat and geo_long fields will now be displayed in the embedded map, as shown in Figure 11-2.

Bradburne_8415C11.fm Page 310 Thursday, May 24, 2007 4:49 AM

mailto:@photo.user
mailto:@photo.title
mailto:@photo.body
mailto:@photo.tags.any?
mailto:@photo.tags.each
mailto:path(@photo.user
mailto:@photo.user_id
mailto:@photo.user
mailto:@photo.user
mailto:@map.to_html
mailto:@map.div(:width
mailto:@photo.public_filename

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 311

Figure 11-2. The photo show page with embedded Google map

Try moving the map around by clicking and dragging it. You can zoom in and out with the
plus (+) and minus (–) buttons. You can hide the map with the Hide Map link and redisplay it
with the Show Map link.

You should also try editing the latitude and longitude coordinates of the photo and reloading
the photo page. The map will center on the new location of the photo.

Try deselecting the Display Location Data? check box on the edit page—the photo show
page will not show any embedded map at all.

Bradburne_8415C11.fm Page 311 Thursday, May 24, 2007 4:49 AM

312 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

Selecting the Location Using the Map

As I mentioned earlier, asking the user to manually enter latitude and longitude coordinates is
inconvenient and cumbersome. There are a number of ways that we could make it easier for a
user to enter location data.

One method would be to let the user enter a real-world street address. This could be achieved
by using the Google Maps Geocoder. A geocoder accepts an address and returns the coordi-
nates of that point. This would be very useful, but requires the user to know the actual address.
If photos have been taken on vacation or away from home, which is very likely, then the user
might not know the address of the location where the photo was taken.

A much more intuitive method is to allow the user to simply move the map to the location
that the photo was taken and click the point on the map. This is what we will implement.

To do this, we will have to add code to the edit action method to create a GMap object for
the edit page, add the code to display this GMap object on the edit page, and write some JavaScript
to add an event listener to the map, which will allow us to dynamically modify the page when
the map is clicked.

First, edit the app/controllers/user_photos_controller.rb file. Modify the existing edit
method as shown in Listing 11-7.

Listing 11-7. Modification to the user_photos_controller Edit Method

def edit
 @photo = @logged_in_user.photos.find(params[:id])

 @map = GMap.new("map_div_id")
 @map.control_init(:large_map => true)
 if @photo.geo_lat && @photo.geo_long
 @map.center_zoom_init([@photo.geo_lat, @photo.geo_long], 8)

 marker = GMarker.new([@photo.geo_lat, @photo.geo_long],
 :title => @photo.title, :info_window => @photo.body)
 @map.overlay_init(marker)
 else
 @map.center_zoom_init([25,0], 1)
 end

 @map.record_init @map.on_click(
 "function (overlay, point) { updateLocation(point); }")

rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
end

This method now instantiates a GMap object and sets the control buttons as before. If there
are existing longitude and latitude coordinates for the @photo object, the map is centered on
this point, and a marker is created. If no coordinates are set, a world map is shown.

Bradburne_8415C11.fm Page 312 Thursday, May 24, 2007 4:49 AM

mailto:@logged_in_user.photos.find
mailto:@map.control_init(:large_map
mailto:@photo.geo_lat
mailto:@photo.geo_long
mailto:@map.center_zoom_init([@photo.geo_lat
mailto:@photo.geo_long
mailto:new([@photo.geo_lat
mailto:@photo.geo_long
mailto:@photo.title
mailto:@photo.body
mailto:@map.overlay_init
mailto:@map.center_zoom_init
mailto:@map.record_init
mailto:@map.on_click

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 313

We next create an on_click event for the @map object that calls a JavaScript function called
updateLocation with the point that was clicked as a parameter. We will create this JavaScript
function in a moment.

This event is given as a parameter to the @map.record_init method call—this outputs the
given JavaScript in the load JavaScript function, meaning that it will be executed when the map
is loaded.

To add a new JavaScript function to our application, we can simply add it to the file
public/javascripts/application.js. This file is automatically loaded whenever you include
the javascript_include_tag :defaults command in your application layout file, which we
have already done when we created the app/views/layouts/application.rhtml file in Chapter 2.

Open the public/javascripts/application.js file, and add the function shown in
Listing 11-8 to the end of this file.

Listing 11-8. The application.js File

function updateLocation(point) {
 document.getElementById('photo_geo_lat').value = point.y;
 document.getElementById('photo_geo_long').value = point.x;
 map.clearOverlays();
 map.addOverlay(new GMarker(new GLatLng(point.y, point.x)));
}

When this function is called, the function sets the value of the geo_lat and geo_long form
fields on the page using the document.getElementById function. Then it clears the map’s existing
overlays (which would be a marker if the map already had coordinates set) and creates a new
overlay, which consists of a marker at the point clicked on the map.

Finally, we have to actually add the map to the edit photo page. Open the file app/views/
user_photos/edit.rhtml, and edit as shown in Listing 11-9.

Listing 11-9. Modifications to the user_photos Edit Page

<% content_for :head do %>
 <%= GMap.header %>
<% end %>

<h2>Edit photo details</h2>

<%= error_messages_for :photo %>

<%= link_to image_tag(@photo.public_filename('thumb')),
 user_photo_path(:user_id => @photo.user, :id => @photo) %>

<h3>Tags</h3>
<ul id="taglist">
 <%= render :partial => 'edit_tag', :collection => @photo.tags %>

Bradburne_8415C11.fm Page 313 Thursday, May 24, 2007 4:49 AM

mailto:@map.record_init
mailto:tag(@photo.public_filename
mailto:@photo.user
mailto:@photo.tags

314 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

<% remote_form_for(:tag,
 :url => user_add_tag_photo_path(:id => @photo),
 :method => :put,
 :complete => "Field.clear('tag-name')") do |f| %>
 <%= f.text_field :name, :id => 'tag-name' %>
 <%= submit_tag 'Add Tag' %>
<% end %>

<% form_for(:photo,
 :url => user_photo_path(:user_id => @photo.user, :id => @photo),
 :html => { :method => :put }) do |f| %>
 <p>Title:
<%= f.text_field 'title' %></p>
 <p>Description:
<%= f.text_area 'body', :rows => 6, :cols => 40 %></p>
 <p>Latitude: <%= f.text_field 'geo_lat', :size => '8' %></p>
 <p>Longitude: <%= f.text_field 'geo_long', :size => '8' %></p>
 <p>Display Location Data? <%= f.check_box 'show_geo' %></p>

 <div id="gmap">
 <%= @map.to_html %>
 <%= @map.div(:width => 650, :height => 300) %>
 </div>

 <p><%= submit_tag "Save" %> or <%= link_to 'cancel', user_photos_path %></p>
<% end %>

As you can see, we need to include the necessary mapping JavaScript with the GMaps.header
statement. We add the map to the bottom of the form in the same way as we embedded a map
on the photo show page.

Before we try this out, we should add the same functionality to the new method, allowing a
user to set the location when uploading a photo.

Edit the app/controllers/user_photos_controller.rb file again by modifying the new method
as shown in Listing 11-10.

Listing 11-10. Update to the new Method of the user_photos_controller File

def new
 @photo = Photo.new

 @map = GMap.new("map_div_id")
 @map.control_init(:large_map => true)
 @map.center_zoom_init([25,0], 1)
 @map.record_init @map.on_click(
 "function (overlay, point) { updateLocation(point); }")
end

Since there is no possibility of a new photo having an existing set of location coordinates,
we just create a new map showing the world view without a marker.

Now update the new view by editing app/views/user_photos/new.rhtml as shown in
Listing 11-11.

Bradburne_8415C11.fm Page 314 Thursday, May 24, 2007 4:49 AM

mailto:@photo.user
mailto:@map.to_html
mailto:@map.div(:width
mailto:@map.control_init(:large_map
mailto:@map.center_zoom_init
mailto:@map.record_init
mailto:@map.on_click

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 315

Listing 11-11. Update to the user_photos New View

<% content_for :head do %>
 <%= GMap.header %>
<% end %>

<h2>Upload a new photo</h2>

<%= error_messages_for :photo %>

<% form_for(:photo,
 :url => user_photos_path(:user_id => @logged_in_user),
 :html => { :multipart => true }) do |f| %>
 <p>Select a photo to upload</p>
 <p>Title:
<%= f.text_field :title %></p>
 <p>Description:
<%= f.text_area :body, :rows => 6, :cols => 40 %></p>
 <p>Latitude: <%= f.text_field 'geo_lat', :size => '8' %></p>
 <p>Longitude: <%= f.text_field 'geo_long', :size => '8' %></p>
 <p>Display Location Data? <%= f.check_box 'show_geo' %></p>
 <p>Photo:
<%= f.file_field 'uploaded_data' %></p>

 <div id="gmap">
 <%= @map.to_html %>
 <%= @map.div(:width => 650, :height => 300) %>
 </div>

 <p>
 <%= submit_tag 'Upload Photo' %> or
 <%= link_to 'cancel', user_photos_path(@logged_in_user) %>
 </p>
<% end %>

We can try using this now. Log in to the site, and try uploading a new photo. On the photo
upload screen, there will now be a world map, as shown in Figure 11-3.

Select a photo to upload, and add a title and description for the photo. Now, instead of
manually entering latitude and longitude values, zoom in on a location using the map, and
scroll until you find the location where the photo was taken. Next, simply click the location on
the map once. The latitude and longitude values will automatically be filled in with the coordi-
nates of the location that you have clicked.

Now, click the Upload Photo button to upload the new photo with the specified coordinates.
You will be taken to the thumbnail page showing all of your photos. Click the photo that you
have just uploaded to show the photo in full along with the embedded Google map pinpointing
the photo’s location.

Try editing another photo to test the edit photo page. Use the Google map to select a
different location, updating the values of the photo’s latitude and longitude attributes. Save
this photo, and reopen the photo by clicking it. Make sure that this now points to the newly
saved location on the map.

Bradburne_8415C11.fm Page 315 Thursday, May 24, 2007 4:49 AM

mailto:@map.to_html
mailto:@map.div(:width

316 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

Figure 11-3. The photo upload page with embedded Google map

Integrating the Flickr API
Flickr is a very popular online photo-sharing site. It was originally developed by Ludicorp and
released in February 2004 but has since been acquired by Yahoo! Flickr allows members to easily
upload photos and tag them with metadata, in a similar way to our RailsCoders photo gallery.

Flickr has hundreds of millions of photographs online and many users have already invested a
lot of time creating an archive of their photographs there, so we should allow our users to link
to their existing Flickr galleries.

Flickr provides a very complete API available for noncommercial use. The complete Flickr
API documentation is available online at http://www.flickr.com/services/api.

Bradburne_8415C11.fm Page 316 Thursday, May 24, 2007 4:49 AM

http://www.flickr.com/services/api

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 317

There are a number of libraries written for Rails that act as wrappers around the Flickr API,
but since the API is incredibly easy to use, we will just build our own code to interface to Flickr.

If you don’t already have a Flickr account, it would be a good idea to get one now so that
you can follow along. To register for Flickr, you simply use an existing Yahoo! account or register a
new account at Yahoo! if you don’t already have one. Then go to http://flickr.com, and sign
in to Flickr with your Yahoo! account details. You will be prompted to enter a username to use
on Flickr. All Flickr usernames are unique. Once you log in, you will be able to upload photos
to Flickr using either the web site or a number of desktop uploading tools.

The Flickr Feature Requirements
Since it is highly likely that many of our users will already have accounts on Flickr.com with a
large number of photos stored there, we want to allow users to add their Flickr usernames to
their profiles. When someone views a user profile, it will display a number of the latest photos
uploaded to Flickr, along with a link to the user’s Flickr home page.

To do this, we will have to store the user’s Flickr username as part of the user details. However,
when accessing Flickr via the API, you do not use the username of a member as the user key.
Instead, Flickr assigns an nsid to each user, which is a unique ID similar to 35237095947@N01.

Since this ID will not be known by users, we will have to use the API to retrieve the nsids by
searching for usernames and storing both the nsids and the Flickr usernames in our database.

The required database fields are shown in Table 11-2 and will be added to our existing
database with a migration script.

To allow users to enter their Flickr usernames, we will add a text field to the user profile
edit page. We will then add a method call to the user’s before_save callback, which retrieves the
nsid from Flickr if the flickr_username field is not left blank and saves this nsid as part of the
User model.

To obtain a user’s latest photos, we can simply request an RSS feed of this Flickr member’s
photos. Since a Flickr feed then belongs to a user, we will simply add a method to the User
model to retrieve and return the Flickr RSS feed for a user.

We will extend the show method of the users controller to assign this feed to an instance
variable that can then be shown in the user’s profile.

Building the Flickr Integration Feature
We can now go ahead and start building the Flickr integration feature. Similar to the Google
Maps API, use of the Flickr API requires an API key, so we will have to obtain an API key first.

Table 11-2. Extra Fields Required for the Users Table

Field name Field type Description

flickr_username string The Flickr username of the member

flickr_id string The Flickr nsid of the member

Bradburne_8415C11.fm Page 317 Thursday, May 24, 2007 4:49 AM

http://flickr.com

318 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

Obtaining a Flickr API Key

To make use of the Flickr API, we need to obtain a key from Flickr. Keys are free for noncom-
mercial use. If the key is for commercial use, you can apply in the same way, but your request
will be reviewed by Flickr before being assigned.

First, log in to your Flickr account using your Yahoo! login details. Then go to http://
www.flickr.com/services/api/keys/apply. Make sure your name and e-mail address are correct,
and select if your key is for noncommercial or commercial use. Enter a brief description of your
site in the box provided; check the boxes to indicate that you agree with their conditions of use;
then click Apply.

You will be provided with a key and asked to fill in the API Key Authentication Setup form.
We will not need to provide user authentication for members, since we will just be working
with read-only methods, but if you wanted to work with read-write API methods to allow the
user to edit and post to a Flickr account, you would need to configure Flickr authentication.

Since we don’t want to have to enter this key into our code every time we want to make a
call to Flickr, it is best to define it as a constant in your config/environment.rb file. Open this
now, and define the constant FLICKR_API_KEY at the end of this file as follows:

FLICKR_API_KEY = "<insert_your_key>"

Note that any changes to the environment.rb file require the application server to be
restarted before they are picked up.

Creating the Flickr User Database Fields

We now need to add the two fields to the users database table as defined in the specification.
Create a migration script using the following command:

$ ruby script/generate migration AddFlickrUserFields

 exists db/migrate
 create db/migrate/023add_flickr_user_fields.rb

Now edit this file, db/migrate/023add_flickr_user_fields.rb, as shown in Listing 11-12.

Listing 11-12. Migration Script to Add the Flickr User Details

class AddFlickrUserFields < ActiveRecord::Migration
 def self.up
 add_column :users, :flickr_username, :string
 add_column :users, :flickr_id, :string
 end

 def self.down
 remove_column :users, :flickr_username
 remove_column :users, :flickr_id
 end
end

Bradburne_8415C11.fm Page 318 Thursday, May 24, 2007 4:49 AM

http://www.flickr.com/services/api/keys/apply
http://www.flickr.com/services/api/keys/apply

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 319

Execute the migration script to add the fields to the database:

$ rake db:migrate

== AddFlickrUserFields: migrating ===
-- add_column(:users, :flickr_username, :string)
 -> 0.0445s
-- add_column(:users, :flickr_id, :string)
 -> 0.0251s
== AddFlickrUserFields: migrated (0.0701s) ====================================

We can now add support for these to the User model and views.

Adding the Flickr Username to the Edit User View

To allow the users to enter their Flickr usernames to their profiles, we simply need to add an
extra field to the user edit view. Open this file, app/views/users/edit.rhtml, and add the extra
text entry field as shown in Listing 11-13.

Listing 11-13. Adding the Flickr Username to the User Edit View

<h2>Edit your account</h2>

<p><%= link_to 'Show my profile', user_path(@user) %></p>

<%= error_messages_for :user %>

<% form_for :user,
 :url => user_url(@user),
 :html => { :method => :put } do |f| -%>
 <p>Email:
<%= f.text_field :email, :size => 60 %></p>
 <p>Flickr Username:

 <%= f.text_field :flickr_username, :size => 60 %>
 </p>
 <p>Password:
<%= f.password_field :password, :size => 60 %></p>
 <p>Password Confirmation:

 <%= f.password_field :password_confirmation, :size => 60 %></p>
 <p>Profile:
<%= f.text_area :profile, :rows => 6, :cols => 60 %></p>
 <%= submit_tag 'Save' %>
<% end -%>

This field will now be submitted when the form is saved.

Bradburne_8415C11.fm Page 319 Thursday, May 24, 2007 4:49 AM

320 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

Retrieving the User’s Flickr nsid

As we discussed before, to specify a user in the Flickr API methods, we need to use the user’s
nsid, a unique ID for each Flickr user.

In order to obtain this field, we will use the Flickr API call flickr.people.findByUsername.
If you take a look at the documentation for this method at http://www.flickr.com/services/
api/flickr.people.findByUsername.html, you will see that we need to supply the arguments
api_key and username, and the call will return an XML response including the nsid that we require.

To make an API call to Flickr, we have a choice among three ways of making a request:
REST, XML-RPC, and SOAP. As we have seen when adding an API to the RailsCoders applica-
tion, REST is by far the simplest way of calling a remote method, as you just submit your query
as a URL. The specification on how to make a REST API call to Flickr is at http://www.flickr.com/
services/api/request.rest.html—submit your query in the following format:

http://api.flickr.com/services/rest/?method=flickr.test.echo&name=value

So, to perform the query to retrieve the user details for the Flickr member with the user-
name railscoders, the REST query would be as follows:

http://api.flickr.com/services/rest/?method=flickr.people.findByUsername& ➥

username=railscoders&api_key=abcd

Obviously, insert your own Flickr API key in place of abcd. This would receive the following
response:

<rsp stat="ok">
 <user id="7611484@N08" nsid="7611484@N08">
 <username>railscoders</username>
 </user>
</rsp>

Ruby comes with a built-in XML parser called REXML, so we can easily extract the nsid
from this XML to obtain the nsid for the user.

Since we only want to retrieve this when the User model is saved and the flickr_username
attribute is not empty, we will also update our before_save callback.

We can add the code to perform this request to our User model now. Open the User model
file, app/models/user.rb, and edit as shown in Listing 11-14, updating the callback and adding
the get_flickr_id method.

We need to add a check for the flickr_username attribute within the callback, since we
already have migrations that create users before this attribute is added. If we attempt a migra-
tion from an empty database, this callback would cause the previous migrations to fail, as we
would be attempting to access an attribute that did not exists. Adding the has_attribute?
check ensures that the callback will not try to access the flickr_username and flickr_id unless
the attributes have been added to the user table.

Bradburne_8415C11.fm Page 320 Thursday, May 24, 2007 4:49 AM

http://www.flickr.com/services
http://www.flickr.com
http://api.flickr.com/services/rest/?method=flickr.test.echo&name=value
http://api.flickr.com/services/rest/?method=flickr.people.findByUsername&

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 321

Listing 11-14. Updates to the User Model File

class User < ActiveRecord::Base
 ...
 def before_save
 self.hashed_password = User.encrypt(password) if !password.blank?
 if self.has_attribute?('flickr_username') && !self.flickr_username.blank?
 self.flickr_id = self.get_flickr_id
 end
end

 ...
 def get_flickr_id
 # build the flickr request
 flickr_request = "http://api.flickr.com/services/rest/?"
 flickr_request += "method=flickr.people.findByUsername"
 flickr_request += "&username=#{self.flickr_username}"
 flickr_request += "&api_key=#{FLICKR_API_KEY}"

 # perform the API call
 response = ""
 open(flickr_request) do |s|
 response = s.read
 end

 # parse the result
 xml_response = REXML::Document.new(response)
 if xml_response.root.attributes["stat"] == 'ok'
 xml_response.root.elements["user"].attributes["nsid"]
 else
 nil
 end
 end

end

If you take a look at the get_flickr_id method, you will see that performing an API call via
REST is incredibly simple. First of all, we build the REST request URL, and we open it using the
open command. We can then read the output of this into the response string. This performs an
HTTP GET to the URL that we specified.

Since the response is in an XML string, we use REXML to create a new XML object from the
raw text sent back from Flickr; REXML allows us to dig into the XML to retrieve specific data. In
this case, we just check the stat attribute of the <rsp> tag. If this is equal to ok, the query was
successful, and we extract the nsid and return it to the calling method. If the query failed, we
return nil.

Bradburne_8415C11.fm Page 321 Thursday, May 24, 2007 4:49 AM

http://api.flickr.com/services/rest/?

322 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

If you now take a look at the before_save callback, you will see that in addition to the existing
password hashing, we now check the flickr_username attribute. If this is not blank, the call-
back sets the flickr_id attribute using the get_flickr_id method that we just created.

We can try using this now to check that it works correctly. Open your browser, and log in
as a regular user. Click the profile link in the sidebar menu to edit your user profile, enter your
Flickr username into the relevant form field, and click Save.

Your user details will be saved and a call made to Flickr to retrieve the nsid of your Flickr
account. Check your database to make sure that the flick_id field of your account has been
updated.

Now that we can obtain each user’s Flickr nsid, we can retrieve that user’s latest photos
from Flickr.

Displaying a User’s Latest Flickr Photos

To obtain a list of a user’s latest photographs on Flickr, we simply request an RSS feed of that
user’s photographs. You can request feeds for one or many users, or you can search for photos
with certain tags. Details of the feeds available are at http://www.flickr.com/services/feeds.

Since we want to get details of only particular photos, we need to look at the public photo
feeds, which are detailed at http://www.flickr.com/services/feeds/docs/photos_public. This
also shows the list of formats in which the feeds are available. Ruby comes with an RSS parser
already built in, so it is easiest for us to use an RSS feed. If we use the RSS 2.0 feed with enclo-
sures, the feed will include a URL for each photo along with the photo description and title.

Using this information, we can request the photo feed for the Flickr user railscoders using
the following URL:

http://api.flickr.com/services/feeds/photos_public.gne?id=7611484@N08& ➥

format=rss_200_enc

This will respond with an RSS feed similar to the following:

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0"
 xmlns:media="http://search.yahoo.com/mrss/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 >
 <channel>
 <title>railscoders' Photos</title>
 <link>http://www.flickr.com/photos/railscoders/</link>
 <description>A feed of railscoders' Photos</description>
 <pubDate>Wed, 28 Mar 2007 07:47:15 -0800</pubDate>
 <lastBuildDate>Wed, 28 Mar 2007 07:47:15 -0800</lastBuildDate>
 <generator>http://www.flickr.com/</generator>
 

Bradburne_8415C11.fm Page 322 Thursday, May 24, 2007 4:49 AM

http://www.flickr.com/services/feeds
http://www.flickr.com/services/feeds/docs/photos_public
http://api.flickr.com/services/feeds/photos_public.gne?id=7611484@N08&
http://search.yahoo.com/mrss
http://purl.org/dc/elements/1.1
http://www.flickr.com/photos/railscoders/</link
http://www.flickr.com/</generator
http://farm1.static.flickr.com/151/buddyicons/7611484@N08.jpg?
http://www.flickr.com/photos/railscoders/</link

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 323

 <item>
 <title>CIMG1068</title>
 <link>http://www.flickr.com/photos/railscoders/437601124/</link>
 <description><p><a href="http://www.flickr.com/people/
railscoders/">railscoders posted a photo:</p>
<p><a href="http://www.flickr.com/photos/railscoders/437601124/"
title="CIMG1068"><img
src="http://farm1.static.flickr.com/148/437601124_005d91dc1c_m.jpg"
width="240" height="180" alt="CIMG1068"
style="border: 1px solid #ddd;" /></p>
<p>This brought me here</p></description>
 <pubDate>Wed, 28 Mar 2007 07:33:04 -0800</pubDate>
 <dc:date.Taken>2006-12-30T16:39:00-08:00</dc:date.Taken>
 <author>nobody@flickr.com (railscoders)</author>
 <guid isPermaLink="false">tag:flickr.com,2004:/photo/437601124</guid>

 <enclosure url="http://farm1.static.flickr.com/148/437601124_b10bdf4af7_o.jpg"
 type="image/jpeg" />
 <media:content
url="http://farm1.static.flickr.com/148/437601124_b10bdf4af7_o.jpg"
 type="image/jpeg"
 height="2112"
 width="2816"/>
 <media:title>CIMG1068</media:title>
 <media:text type="html"><p>railscoders
posted a photo:</p>
<p><a href="http://www.flickr.com/photos/railscoders/437601124/"
title="CIMG1068"><img
src="http://farm1.static.flickr.com/148/437601124_005d91dc1c_m.jpg"
width="240" height="180" alt="CIMG1068"
style="border: 1px solid #ddd;" /></p>
<p>This brought me here</p></media:text>
 <media:thumbnail
url="http://farm1.static.flickr.com/148/437601124_005d91dc1c_s.jpg" height="75"
 width="75" />
 <media:credit role="photographer">railscoders</media:credit>
 <media:category scheme="urn:flickr:tags">japan plane airplane</media:category>
 </item>
 </channel>
</rss>

As you can see, there is a lot of information contained here about the photos, but the infor-
mation we are interested in is the image enclosure:

<enclosure url="http://farm1.static.flickr.com/148/437601124_b10bdf4af7_o.jpg"
type="image/jpeg" />

Bradburne_8415C11.fm Page 323 Thursday, May 24, 2007 4:49 AM

http://www.flickr.com/photos/railscoders/437601124/</link
http://www.flickr.com/people
http://www.flickr.com/photos/railscoders/437601124/"
http://farm1.static.flickr.com/148/437601124_005d91dc1c_m.jpg"
mailto:nobody@flickr.com
http://farm1.static.flickr.com/148/437601124_b10bdf4af7_o.jpg
http://farm1.static.flickr.com/148/437601124_b10bdf4af7_o.jpg
http://www.flickr.com/people/railscoders/">
http://www.flickr.com/photos/railscoders/437601124/"
http://farm1.static.flickr.com/148/437601124_005d91dc1c_m.jpg"
http://farm1.static.flickr.com/148/437601124_005d91dc1c_s.jpg
http://farm1.static.flickr.com/148/437601124_b10bdf4af7_o.jpg

324 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

This is a direct line to the original version of the uploaded image. However, we want to
display thumbnails on our profile page, not huge, many-megapixel images. Thankfully, it is
very easy to obtain different versions of this image. If you look at the end of this image URL, you
will notice that it ends in _o.jpg. The o means that this is the original image. If we replace o with
t (for “thumbnail”), we can access a thumbnail version of this image.

■Tip You can also use l for “large,” m for “medium,” and s for “square” to access different sizes of the
same image.

Looking again at the RSS feed sent back by Flickr, we can see that each item has a link to
the photo page on Flickr. We will use this as a link for each photo shown.

Now that we know how to retrieve an RSS feed, we can add the code to do this to our User
model. Open the file app/models/user.rb, and edit it as shown in Listing 11-15, adding the
flickr_feed method to the end of the file before the final end statement. We also need to add
the line require 'rss/2.0' to the top of the file as shown, to make sure that we can access the
Ruby RSS parsing library.

Listing 11-15. The Modifications to the User Model File

require 'digest/sha2'
require 'rss/2.0'

class User < ActiveRecord::Base
 ...
 def flickr_feed
 flickr_request = "http://api.flickr.com/services/feeds/photos_public.gne?"
 flickr_request += "id=#{self.flickr_id}"
 flickr_request += "&format=rss_200_enc"

 rss_content = ""
 open(flickr_request) do |s|
 rss_content = s.read
 end
 return RSS::Parser.parse(rss_content, false)
 end

end

This method simply constructs the RSS feed URL as a string then uses the open command
to do an HTTP GET of this URL. The resulting string of the RSS feed is then parsed using the
Ruby RSS Parser and the returned to the calling method.

We can now use this flickr_feed method to show the latest photos on the profile page.
Open the users controller file, app/controllers/users_controller.rb, and edit the existing
show method as shown in Listing 11-16.

Bradburne_8415C11.fm Page 324 Thursday, May 24, 2007 4:49 AM

http://api.flickr.com/services/feeds/photos_public.gne?

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 325

Listing 11-16. Update to the Users Controller Show Method

def show
 @user = User.find(params[:id])
 @entries = @user.entries.find(:all, :limit => 3, :order => 'created_at DESC')
 @photos = @user.photos.find(:all, :limit => 3, :order => 'created_at DESC')
 @flickr_feed = @user.flickr_feed if @user.flickr_id
end

If the user has a flickr_id set, the controller retrieves the feed of the photos for this user
from Flickr, and this feed is made available to the view.

Now, open the corresponding view file, app/views/users/show.rhtml. Add the code in
Listing 11-17 to the end of this file.

Listing 11-17. Addition to the User Show View to Display the Flickr Photos

...
<% if @flickr_feed %>
<h3>Flickr Photos</h3>
<p>
 <ul id="photos">
 <% @flickr_feed.items.values_at(0..3).each do |item| %>
 <% if !item.nil? %>

 <%= link_to image_tag(item.enclosure.url.gsub('_o.jpg', '_t.jpg')),
 item.link %>

 <% end %>
 <% end %>

 <%= link_to "See more", @flickr_feed.channel.link %>
<p>
<% end %>

This first checks to see if the instance variable @flickr_feed is set. If the feed is available,
the first four items in the feed are displayed. For each item shown, we select the direct link to
the photo with item.enclosure.url and use the string gsub method to replace _o.jpg with
_t.jpg, enabling us to display the thumbnail versions of the images. We also add a link to the
user’s Flickr home page using the channel.link attribute of the feed.

Try using this now. Log in to the application, make sure that your Flickr username is set
correctly in your profile, and view your user profile page. At the bottom of the page, a section is
added displaying the latest four photos that you have uploaded to Flickr, along with a link to
your page on Flickr, as shown in Figure 11-4.

Try clicking one of the Flickr thumbnails to go directly to the respective photo on Flickr,
and use the “See more” link to go to your Flickr page.

Bradburne_8415C11.fm Page 325 Thursday, May 24, 2007 4:49 AM

mailto:@user.entries.find(:all
mailto:@user.photos.find(:all
mailto:@user.flickr_feed
mailto:@user.flickr_id
mailto:@flickr_feed.items.values_at
mailto:@flickr_feed.channel.link

326 CH AP T E R 1 1 ■ C R E AT IN G M A SH U P S A N D IN TE G R AT IN G W IT H WE B 2 . 0

Figure 11-4. The user profile page showing the latest Flickr photos

Further Development Using Mashups
The possibilities opened up by integrating our application with other sites are endless. Hundreds
of web applications now offer extensive APIs, and we can easily integrate with them and extend
our application in many different ways.

You may wish to build on the simple mashup that we created here to extend the mapping
feature. It would be easy to search for other photos that have been marked as being in the
surrounding area and add them as markers on to the map, allowing users to see other photos
taken in the area.

Bradburne_8415C11.fm Page 326 Thursday, May 24, 2007 4:49 AM

CH A PT E R 1 1 ■ C R E A T I N G M A SH U P S AN D I N T E G R AT I N G W IT H W E B 2 . 0 327

Since Flickr allows such extensive integration with its site, you may wish to make more use
of it, allowing users to send their photos directly from the RailsCoders photo gallery to their
Flickr account.

Take a look at some of the other APIs listed on http://www.programmableweb.com to get
some ideas of the types of data available and to see some great examples of mashups.

Summary
In this chapter, we integrated our site with Google Maps and Flickr. Doing this allowed us to
embed maps in our photo gallery and include the latest photos from users on their profiles.

To embed Google Maps to our site, we used the YM4R/GM plug-in, which provides a
simple Ruby interface to the Google Maps JavaScript API. We wrote a simple JavaScript function to
allow users to set the real-world location of their photos by dragging and clicking on a map.

We used the Flickr API via REST to retrieve a user’s Flickr ID by specifying the Flickr user-
name. We next used that username to obtain an RSS feed of the user’s photos, which was parsed
and used to display the latest four photos on the RailsCoders user profile page.

In the next chapter, we will go back to our blogging system and extend it to allow users to
create their own unique layout and styles to personalize their blog.

Bradburne_8415C11.fm Page 327 Thursday, May 24, 2007 4:49 AM

http://www.programmableweb.com

Bradburne_8415C11.fm Page 328 Thursday, May 24, 2007 4:49 AM

329

■ ■ ■

C H A P T E R 1 2

Adding User-Created Themes
to the Blogging Engine

In Chapter 6, we added blogs to RailsCoders that allows users of the site to create their own
blogs. Currently, all blogs on RailsCoders look similar to other pages on the site; there is no way
for a user to personalize the look of a blog. This would be a desirable feature, because most
bloggers wish to personalize their blogs, either by using or adapting an existing template or
creating their own design from scratch.

It is possible to allow users to create their own ERb templates, which could be stored in the
database or just as files that are rendered when someone views the blogs. However, since we
know that ERb allows any Ruby code to be embedded within it, including code that accesses
the server’s file system, this would be a very bad idea. Malicious users could easily hack the site
and cause a lot of problems.

To solve this problem, we will use a templating plug-in for Rails called Liquid, which allows
us to have user-editable templates that only have access to objects that you have specified and
disallows embedded Ruby code within the templates.

The Blog Template Requirements
To add user-definable templates to the existing blogging system, we will need to modify the
existing entries controller and create a new controller to allow users to edit their templates. We
will call this controller usertemplates_controller.

We also need to add a model that will store the templates created by users. We will call this
model Usertemplate.

■Caution We are using a model called “Usertemplate” rather than “Template,” because “Template” is a
reserved word in Rails. If you try to create a model or controller called “Template,” you will simply end up with
a lot of slightly confusing errors.

We require a database table called usertemplates to store the actual templates created by
each user.

Bradburne_8415C12.fm Page 329 Tuesday, May 15, 2007 4:49 AM

330 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

Each user can have a number of templates, so each usertemplate object belongs to a user,
requiring a user id field. A name field is needed to define what type of template it actually is. This
is so we can allow different templates for different blog pages, such as the standard blog entry
list and the entry show page, showing one particular entry along with all comments for that
entry. A template body field is required to hold the actual template itself. We will limit the body
field to 10,000 characters.

The database fields necessary for this usertemplates table are shown in Table 12-1.

For the user’s blog pages, the templates that we will allow the user to define are blog_index, the
main blog page listing the latest blog posts of a particular user, and blog_entry, a page for viewing
a single blog entry that shows the blog entry along with any comments that have been left about
this entry.

When a user creates a new account on RailsCoders, they will not have defined any templates,
so when rendering the blog views, we will check if the user has defined any templates. If no
templates exist for the user or if the body field is empty, we will render the default RailsCoders
entries templates.

The usertemplates controller will allow our users to edit the body of their templates. It will
follow the same structure as our other controllers, but we will not allow the user to create a new
template—only to edit the blog_index and blog_entry templates. Also, they will not be allowed
to delete a template. When the user visits the index method of the usertemplates controller, we
will check to make sure that the templates blog_index and blog_entry exist in the database for
the particular user. If not, we will create the objects with empty body fields, allowing them to
edit them.

Therefore, we must implement the methods index, edit, and update for the usertemplates
controller.

Liquid Templates
As I mentioned, we will be using a Rails plug-in called Liquid to render the templates. Liquid
was developed by Tobias Lütke, and you can find the Liquid Templates home page at http://
home.leetsoft.com/liquid.

Liquid allows users to create their own templates but prevents them from running inse-
cure code on your server. It also allows you to store templates in a database. Since all of our
users’ data is stored within a database, this makes it very easy for us to extend our database and
store their personalized templates in a database too.

Table 12-1. The usertemplates Database Schema

Field Name Field Type Description

id integer The primary key

name string The name of the template

body text The actual body of the template

Bradburne_8415C12.fm Page 330 Tuesday, May 15, 2007 4:49 AM

http://home.leetsoft.com/liquid
http://home.leetsoft.com/liquid

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 331

Liquid is in active development, so it is a good idea to keep an eye on and contribute to the
Google Group at http://groups.google.com/group/liquid-templates and the wiki accessible
from the Liquid home page.

The Liquid API
Using Liquid is very simple. The simplest method of rendering a template is to instantiate a
Liquid Template object and call the parse method with your template as a parameter. You can
then render this object as HTML by calling the render method and passing in the necessary
variables.

For example, you could parse a very simple template like this:

@template = Liquid::Template.parse("Hello {{user}}, it is now {{time}}.")

You could then render this using the given variables as follows:

@template.render('name' => 'Freddy', 'time' => Time.now.to_s)

The template we parsed only has access to the variables passed to it by the render method.
However, if we pass a user object to the render method rather than just a string, the template
would have access to all of the methods of the user object, including potentially dangerous
methods. This then creates a similar problem when allowing the user to write ERb templates.
To solve this, Liquid allows us to create drops. Liquid drops act as a wrapper around a regular
Ruby object, allowing you to provide a user with just the attributes of an object that you define.
They also allow you to add extra functionality to templates by creating extra accessible methods in
a drop. We will create a number of drops, allowing our users to access safe versions of the User,
Entry, and Comment models.

Liquid also allows us to create filters. Liquid filters are simply Ruby methods that allow you
to provide text filters to the template author. They take one parameter, perform some action,
and return a string to be entered into the rendered template. Liquid provides a number of built-in
filters, such as upcase, downcase, strip_html, and a date reformatter. After you have installed the
Liquid plug-in, look at its source at vendor/plugins/liquid/lib/liquid/standardfilters.rb to
see the provided filters. It is very simple to add new filters to meet the specific requirements of
your application.

Liquid Markup
Liquid templates use two types of markup, similar to the ERb templates we have created for the
rest of the application. In Liquid, output is surrounded by {{ and }}, while tags, which control
the logic in the template, are surrounded by {% and %}.

For example, to output a user’s name, we might use markup like the following:

Hello {{ user.username }}

As we mentioned previously, we can add filters to outputs, modifying the output to match
our requirements. We can also chain filters together using | (the pipe character). Some examples
of filters to modify the given output follow:

Bradburne_8415C12.fm Page 331 Tuesday, May 15, 2007 4:49 AM

http://groups.google.com/group/liquid-templates
mailto:@template.render

332 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

Hello {{ user.username | upcase }}
The time is now {{ now | date "%Y %h" }}
Visit {{ 'my blog ' | link_to 'http://alanbradburne.com', 'Alan's Blog' }}

Here’s what they do:

• The first example takes the username of the user object and passes it through a filter
called upcase, which simply makes the username uppercase.

• The next example formats the current time into a format specified by the date filter.

• The third example creates a link using the link_to filter. This takes a URL and an alt
attribute, adding the relevant link to the string that is passed into the filter.

We need to have some way of adding logic to the template to control what is output to the
browser. We do this using Liquid’s tags. There are a number of built-in tags, including comment,
if/else, for, and ifchanged. These act in similar ways to the statements you are used to in Ruby.
For example, to iterate through elements of an array using the for loop, you would do the following:

{% for entry in entries %}
 {{ entry.title }}

{% endfor %}

Within a for loop, there are a number of helper variables available, such as forloop.first,
forloop.last, and forloop.length. These can be very useful when designing templates, because
they allow you to add special styling to items in tables or lists, depending on their position.

Conditional statements are performed like this:

{% if user %}
 {{ user.username }}
{% else %}
 No user selected
{% endif %}

For a full list of markup with examples, go to the Liquid project wiki at http://
home.leetsoft.com/liquid/wiki/DesignerHowTo.

As you can see, Liquid gives the user the tools to create complex templates while
preventing direct access to the internals of the Rails application.

Installing Liquid
Liquid is installed as a Rails plug-in. Simply open a terminal window, and from the applica-
tion’s directory, install with the following command:

$ ruby script/plugin install svn://home.leetsoft.com/liquid/trunk/liquid/

A /Users/alan/Rails/railscoders/vendor/plugins/liquid
A /Users/alan/Rails/railscoders/vendor/plugins/liquid/test
A /Users/alan/Rails/railscoders/vendor/plugins/liquid/test/include_tag_test.rb
A /Users/alan/Rails/railscoders/vendor/plugins/liquid/test/test_helper.rb

Bradburne_8415C12.fm Page 332 Tuesday, May 15, 2007 4:49 AM

http://alanbradburne.com
http://home.leetsoft.com/liquid/wiki/DesignerHowTo
http://home.leetsoft.com/liquid/wiki/DesignerHowTo
svn://home.leetsoft.com/liquid/trunk/liquid

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 333

A /Users/alan/Rails/railscoders/vendor/plugins/liquid/test/helper.rb
...
A /Users/alan/Rails/railscoders/vendor/plugins/liquid/example/server/templates/
products.liquid
A /Users/alan /Rails/railscoders/vendor/plugins/liquid/example/server/templates/
index.liquid
A /Users/alan/Rails/railscoders/vendor/plugins/liquid/README
Exported revision 144.

We can now access the Liquid methods from any controller.

Building the Blog Templates Feature
Now that we know what the feature must do and have Liquid installed, we can begin building
the templating feature.

Creating the Liquid Drops
We are going to place the Liquid drop files that we write in the directory app/drops/. Create this
directory now.

In order for Rails to know to look in this directory, we need to add it to the Rails configura-
tion. We will also add the directory that we will use to store the Liquid filters that we will write
in the next section. Open the config/environment.rb file, and find the config.load_paths
statement at line 23. The line will be commented out with an example directory as a parameter.
Uncomment the line, and replace the example path with the drops directory and the filters
directory (we will create these directories in a moment), as follows:

...
Rails::Initializer.run do |config|
 ...
 # Add additional load paths for your own custom dirs
 config.load_paths += %W(#{RAILS_ROOT}/app/drops ➥

#{RAILS_ROOT}/app/filters)
 ...

We now need to create the drops themselves. First of all, create the user drop file, app/
drops/user_drop.rb. Enter the code shown in Listing 12-1.

Listing 12-1. The User Drop File

class UserDrop < Liquid::Drop
 def initialize(user)
 @user = user
 end

Bradburne_8415C12.fm Page 333 Tuesday, May 15, 2007 4:49 AM

334 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

 def username
 @user[:username]
 end

 def email
 @user[:email]
 end

 def profile
 @user[:profile]
 end

 def blog_title
 @user[:blog_title]
 end
end

This class lists the only data that is available to a Liquid template when it is passed a user
object. Other attributes, such as hashed_password, are not accessible, only the username, email,
profile, and blog_title. If you wish to give your users access to other attributes of the User
model, you would just add them as extra methods here.

The initialize method is executed when the UserDrop object is instantiated and the other
methods simply return the relevant data.

In order for this Liquid drop to be accessible to the template, we also have to add a method
called to_liquid to the User model. This method simply instantiates the UserDrop object and
passes it to the Liquid render method.

Open the User model file, app/models/user.rb, and add the to_liquid method at the end
of the file as follows:

require 'digest/sha2'
require 'rss/2.0'

class User < ActiveRecord::Base
 ...
 def to_liquid
 UserDrop.new(self)
 end
end

We now need to create the drops for the Entry and Comment models. Create the entry
drop file, app/drops/entry_drop.rb, and add the code in Listing 12-2.

Listing 12-2. The Entry Drop File

class EntryDrop < Liquid::Drop
 def initialize(entry)
 @entry = entry
 end

Bradburne_8415C12.fm Page 334 Tuesday, May 15, 2007 4:49 AM

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 335

 def title
 @entry[:title]
 end

 def body
 @entry[:body]
 end

 def comments_count
 @entry[:comments_count]
 end

 def permalink
 "/users/#{@entry.user.id}/entries/#{@entry.id}"
 end

 def comment_post_url
 "/users/#{@entry.user.id}/entries/#{@entry.id}/comments"
 end
end

Note that we have added a drop called permalink. This allows the user writing the template
to easily access the URL of the entry by simply referring to an entry attribute called permalink.
The drop called comment_post_path returns the path that a new comment should be posted to.
This will be used on the entry view page to allow users to create new comments.

Now add the to_liquid method to the Entry model. Open the file app/models/entry.rb,
and add the method as follows:

class Entry < ActiveRecord::Base
 ...
 def to_liquid
 EntryDrop.new(self)
 end
end

Finally, create the comment drop file, app/drops/comment_drop.rb, and add the code in
Listing 12-3.

Listing 12-3. The Comment Drop File

class CommentDrop < Liquid::Drop
 def initialize(comment)
 @comment = comment
 end

 def author
 @comment.user.username
 end

Bradburne_8415C12.fm Page 335 Tuesday, May 15, 2007 4:49 AM

mailto:@comment.user.username

336 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

 def body
 @comment[:body]
 end

 def created_at
 @comment[:created_at]
 end
end

In this drop file, the author method provides the user with the attribute author. This is not
a direct attribute of the Comment model, but we can access it and return it to the template as
if it were.

Now, open the app/models/comment.rb file, and add the following to_liquid method:

class Comment < ActiveRecord::Base
 belongs_to :entry, :counter_cache => true
 belongs_to :user
 validates_length_of :body, :maximum => 1000

 def to_liquid
 CommentDrop.new(self)
 end
end

Creating the Liquid Filters
Since our users can write blog entries using the Textile markup system, we need to add a Liquid
filter allowing the templates to have access to a textilize method. To do this, we need to create a
Liquid filter.

We will also create a filter called link_to_entry, which will allow the user to easily link to
an individual entry by just specifying the entry object and the filter.

Create the directory for the Liquid filters that we specified in the config/environment.rb
file, app/filters/. Next, create a filter file called app/filters/text_filters.rb, and enter the
code in Listing 12-4.

Listing 12-4. The Liquid Text Filters File

module TextFilters
 include ActionView::Helpers::TagHelper

 def textilize(input)
 RedCloth.new(input).to_html
 end

 def link_to_entry(entry)
 content_tag :a, entry['title'], :href => entry['permalink']
 end
end

Bradburne_8415C12.fm Page 336 Tuesday, May 15, 2007 4:49 AM

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 337

The textilize filter simply converts the input text, which is marked up with Textile, into
HTML using RedCloth, the Ruby package for processing Textile markup.

The link_to_entry filter takes an entry object as input and builds an <a> tag with a link to
the entry’s permalink and the entry title as the link text. In order to use the Rails helper method
content_tag, we have to include the ActionView code at the beginning of the file.

We can now create the usertemplate model, controller, and views.

The Usertemplate Model
Generate the skeleton code for the Usertemplate model using the Rails generate script:

$ ruby script/generate model Usertemplate

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/usertemplate.rb
 create test/unit/usertemplate_test.rb
 create test/fixtures/usertemplates.yml
 exists db/migrate
 create db/migrate/024_create_usertemplates.rb

Edit the generated migration file, and add the fields as defined in the specification. Also,
add an index on the user_id and name fields, since that is how we will be retrieving the templates
from the database. Open the migration file db/migrate/024_create_usertemplates.rb, and edit
it as shown in Listing 12-5.

Listing 12-5. The Usertemplates Migration File

class CreateUsertemplates < ActiveRecord::Migration
 def self.up
 create_table :usertemplates do |t|
 t.column :user_id, :integer
 t.column :name, :string
 t.column :body, :text
 end
 add_index :usertemplates, [:user_id, :name]
 end

 def self.down
 drop_table :usertemplates
 end
end

Now, execute this migration using the following command:

$ rake db:migrate

Bradburne_8415C12.fm Page 337 Tuesday, May 15, 2007 4:49 AM

338 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

== CreateUsertemplates: migrating ===
-- create_table(:usertemplates)
 -> 0.0281s
-- add_index(:usertemplates, [:user_id, :name])
 -> 0.0322s
== CreateUsertemplates: migrated (0.0607s) ====================================

We next need to edit the Usertemplate model file and add the relationship with the User
model and a validation. Open the file app/models/usertemplates.rb, and edit it as shown in
Listing 12-6.

Listing 12-6. The Usertemplate Model File

class Usertemplate < ActiveRecord::Base
 belongs_to :user

 validates_length_of :body, :maximum => 10000
end

We also need to add the reciprocal relationship to the User model. Open the app/models/
user.rb file, and add the has_many relationship as follows:

require 'digest/sha2'
require 'rss/2.0'

class User < ActiveRecord::Base
 ...
 has_many :friendships
 has_many :friends, :through => :friendships, :class_name => 'User'
 has_many :usertemplates

 def before_save
 ...

The Usertemplates Controller
We will now create the controller that allows a user to edit the user templates for an account.
We will use the generate script to create the usertemplates controller:

$ ruby script/generate controller Usertemplates

 exists app/controllers/
 exists app/helpers/
 create app/views/usertemplates
 exists test/functional/
 create app/controllers/usertemplates_controller.rb
 create test/functional/usertemplates_controller_test.rb
 create app/helpers/usertemplates_helper.rb

Bradburne_8415C12.fm Page 338 Tuesday, May 15, 2007 4:49 AM

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 339

Since this will act as a REST resource, we need to add the resource definition line to the
routes file. Open config/routes.rb, and add the map.resources line as follows:

ActionController::Routing::Routes.draw do |map|
 ...
 map.resources :photos
 map.resources :tags
 map.resources :usertemplates

 map.resources :users, :member => { :enable => :put } do |users|
 ...

We should add a link to the controller in the sidebar menu too. Open the file app/views/
layouts/_menu.rhtml, and add the link to the usertemplates controller in the section only
shown to logged-in users, as follows:

...
<% if is_logged_in? %>
 Logged in as: <i><%= logged_in_user.username -%></i>
 <%= link_to 'My Profile', edit_user_path(logged_in_user) -%>
 <%= link_to 'My Friends', friends_path(:user_id => logged_in_user) -%>
 <%= link_to 'My Photos', user_photos_path(:user_id => logged_in_user) -%>

 <%= link_to 'Upload Photo', user_new_photo_path(:user_id => logged_in_user) -%>

 <%= link_to 'New Blog Post', new_entry_path(:user_id => logged_in_user) -%>

 <%= link_to 'Blog Templates', usertemplates_path -%>

 <%= link_to 'Logout', {:controller => 'account', :action => 'logout'},
 :method => :post %>

<% else %>

Now, open the generated controller file, app/controllers/usertemplates_controller.rb,
and enter the code in Listing 12-7.

Listing 12-7. The Usertemplates Controller File

class UsertemplatesController < ApplicationController
 before_filter :login_required

 def index
 @usertemplates = @logged_in_user.usertemplates.find(:all)

 if @usertemplates.empty?
 @logged_in_user.usertemplates << Usertemplate.new(:name => 'blog_index',
 :body => '')

Bradburne_8415C12.fm Page 339 Tuesday, May 15, 2007 4:49 AM

mailto:@logged_in_user.usertemplates.find(:all
mailto:@usertemplates.empty?
mailto:@logged_in_user.usertemplates

340 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

 @logged_in_user.usertemplates << Usertemplate.new(:name => 'blog_entry',
 :body => '')
 @usertemplates = @logged_in_user.usertemplates.find(:all)
 end
 end

 def edit
 @usertemplate = @logged_in_user.usertemplates.find(params[:id])
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end

 def update
 @usertemplate = @logged_in_user.usertemplates.find(params[:id])

 if @usertemplate.update_attributes(params[:usertemplate])
 flash[:notice] = 'Template was successfully updated.'
 redirect_to usertemplates_path
 end
 rescue ActiveRecord::RecordNotFound
 redirect_to :action => 'index'
 end
end

The code in this file does a number of things:

• before_filter ensures that the methods in this file are accessible only by logged-in
users and that the object @logged_in_user is available.

• When the index action is executed, the program checks to see if the two user templates
blog_index and blog_entry exist for the logged-in user. If they do not, they are created.

• The edit action simply retrieves the usertemplate object with the specified id, as long as
it belongs to the logged-in user.

• update saves the updated user template.

Next, we need to create the view for this controller.

The Usertemplate Views
First, we’ll create the index view. Create the file app/views/usertemplates/index.rhtml, and
enter the view code in Listing 12-8.

Bradburne_8415C12.fm Page 340 Tuesday, May 15, 2007 4:49 AM

mailto:@logged_in_user.usertemplates
mailto:@logged_in_user.usertemplates.find(:all
mailto:@logged_in_user.usertemplates.find
mailto:@logged_in_user.usertemplates.find
mailto:@usertemplate.update_attributes

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 341

Listing 12-8. The Usertemplate Index View

<h1>Your Blog Templates</h1>

<table>
 <tr>
 <th>Template Name</th>
 <th>Description</th>
 </tr>
 <tr>
 <td><%= link_to 'blog_index', edit_usertemplate_path(
 @usertemplates.find {|ut| ut.name == 'blog_index'}) -%></td>
 <td>The main template for your blog</td>
 </tr>
 <tr>
 <td><%= link_to 'blog_entry', edit_usertemplate_path(
 @usertemplates.find {|ut| ut.name == 'blog_entry'}) -%></td>
 <td>The template for viewing one entry</td>
 </tr>
</table>

This presents the user with the list of editable templates. We have used the Ruby find method
within the link_to statement to display the id corresponding to the particular template.

Clicking the template name takes the user to the edit page for that template. Create this
view file now, app/views/usertemplates/edit.rhtml, and enter the code in Listing 12-9.

Listing 12-9. The Usertemplate Edit View

<h2>Editing <%= @usertemplate.name %></h2>

<%= error_messages_for :usertemplate %>

<% form_for(:usertemplate,
 :url => usertemplate_path(@usertemplate),
 :html => { :method => :put }) do |f| %>
 <p><%= f.text_area :body, :rows => 25, :cols => 80 %>
 <p>
 <%= submit_tag "Save" %> or <%= link_to 'cancel', usertemplates_path %>
 </p>
<% end %>

Now that our users can edit their user templates, we need to modify the entries controller
to render the users’ blogs with these templates if they exist.

Bradburne_8415C12.fm Page 341 Tuesday, May 15, 2007 4:49 AM

mailto:@usertemplate.name

342 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

Rendering Liquid Templates
Open app/controllers/entries_controller.rb, and take a look at the existing index and show
methods.

Currently, we just render the index and show view files as normal. We now want to be able
to render a Liquid user template if the user has specified one. If a user does not have any user
templates defined, we should still render the regular .rhtml view.

Modify the index and show methods as shown in Listing 12-10.

Listing 12-10. The Updated Entries Controller File

def index
 @user = User.find(params[:user_id], :include => :usertemplates)
 @entry_pages = Paginator.new(self, @user.entries_count, 10, params[:page])
 @entries = @user.entries.find(:all, :order => 'created_at DESC',
 :limit => @entry_pages.items_per_page,
 :offset => @entry_pages.current.offset)

 @usertemplate = @user.usertemplates.find_by_name('blog_index')
 if @usertemplate and @usertemplate.body.any?
 @page = Liquid::Template.parse(@usertemplate.body)
 render :text => @page.render({'user' => @user, 'entries' => @entries},
 [TextFilters])
 end
end

def show
 @user = User.find(params[:user_id], :include => :usertemplates)
 @entry = Entry.find_by_id_and_user_id(params[:id],
 params[:user_id],
 :include => [:comments => :user])

 @usertemplate = @user.usertemplates.find_by_name('blog_entry')
 if @usertemplate and @usertemplate.body.any?
 @page = Liquid::Template.parse(@usertemplate.body)
 render :text => @page.render({'user' => @user,
 'entry' => @entry, 'comments' => @entry.comments},
 [TextFilters])
 end
end

We now have a condition in each of the methods that parses and renders a user’s blog_index
template if one is available. If there is no matching usertemplate, Rails automatically renders
the normal view file.

When rendering a Liquid user template, we pass the Liquid drops for the user, entry, and
comment objects along with the TextFilters module that we created earlier.

We can now finally try creating a new template for our blog.

Bradburne_8415C12.fm Page 342 Tuesday, May 15, 2007 4:49 AM

mailto:@user.entries_count
mailto:@user.entries.find(:all
mailto:@entry_pages.items_per_page
mailto:@entry_pages.current.offset
mailto:@user.usertemplates.find_by_name
mailto:@usertemplate.body.any?
mailto:parse(@usertemplate.body
mailto:@page.render
mailto:@user.usertemplates.find_by_name
mailto:@usertemplate.body.any?
mailto:parse(@usertemplate.body
mailto:@page.render
mailto:@entry.comments

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 343

Manual Testing
You will have to restart the Rails application server to pick up changes to the environment.rb
file. Do this and log in to the RailsCoders application as a regular user.

First of all, try viewing your blog by going to your profile and clicking on the “See all of your
blog” link to view your blog. Since you have not created a new template yet, it will be rendered
using the normal Rails view files.

In the sidebar menu, there is now a Blog Templates link. Click this to view the user templates
available for you to edit, as shown in Figure 12-1. Since this is the first time that you have attempted
to edit your user templates, the controller will have to create the empty templates and save
them before showing this page.

Figure 12-1. The usertemplates index view

Click the blog_index template link to edit the Liquid template for the blog index page.
We now need to create a blog template from scratch using the Liquid drop objects and the

Liquid filters that we have been passed.

■Tip It would be a good idea to include details of the Liquid drop objects and Liquid filters available as a
help page for your users.

A very simple blog_index template is shown in Listing 12-11. Enter this into the text box on
the edit template page and save the template.

Bradburne_8415C12.fm Page 343 Tuesday, May 15, 2007 4:49 AM

344 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

Listing 12-11. A Sample blog_index User Template

<html>
<head>
 <title>{{ user.blog_title }}</title>
 <style>
<!--
body { background: #111; color: #eee; font-family:arial,sans-serif; }
a { color: #c66; }
-->
 </style>
</head>

<body>
 <h1>{{ user.blog_title }}</h1>

 {% for entry in entries %}
 <h2>{{ entry | link_to_entry }}</h2>
 {{ entry.body | textilize }}
 {% endfor %}
</body>
</html>

We can now take a look at your main blog page to see the new template in action. Go to
your blog via your profile page or the Blogs sidebar link. The page shown will now be in a style
that’s totally different from the rest of the site, as shown in Figure 12-2.

Figure 12-2. The main blog view with the new user template

Bradburne_8415C12.fm Page 344 Tuesday, May 15, 2007 4:49 AM

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 345

If you click an entry title, the entry view page will still be in the regular style of the RailsCoders
site, since we haven’t defined a user template for blog_entry yet. Go back to your Blog Templates
page, and click the blog_entry link. Listing 12-12 shows a simple page that lists all of the comments
for an entry along with a new comment form.

Listing 12-12. A Sample blog_entry User Template

<html>
<head>
 <title>{{ user.blog_title }} - {{ entry.title }}</title>
 <style>
<!--
body { background: #111; color: #eee; font-family:arial,sans-serif; }
a { color: #c66; }
-->
 </style>
</head>

<body>
<h1>{{ user.blog_title }}</h1>
<h2>{{ entry.title }}</h2>
{{ entry.body | textilize }}

{% for comment in comments %}
<p>
 {{ comment.author }} said:

 {{ comment.body }}
</p>
{% endfor %}
<form action="{{ entry.comment_post_path }}" method="post">
 <p>
 <textarea cols="40" id="comment_body" name="comment[body]" rows="4"></textarea>

 <input name="commit" type="submit" value="Save Comment" />
 </p>
</form>
</body>
</html>

This page simply shows the selected entry and lists all of the comments for the entry. The
page also includes a basic form to allow users to add new comments. We use the comment_
post_path filter to return the post path for the form.

Save this template, and go back to view your blog. Click an entry title to view a specific
entry. The page will now be in the same style as the main blog page, as shown in Figure 12-3.

Make sure that the comment form path is working correctly by entering a new comment
and clicking Save Comment.

Bradburne_8415C12.fm Page 345 Tuesday, May 15, 2007 4:49 AM

346 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

Figure 12-3. The blog entry view with the new user template

Now that you can see that the templating feature is working correctly, you may wish to
design some better templates or create more filters to provide more features to the template
authors.

Testing the Usertemplates Controller
We should automate the tests for the usertemplates controller using the functional test system.
First of all, create usertemplates fixtures, adding three user templates, two belonging to the
user id 1, as specified in the user fixtures, the other belonging to user id 2.

The test/fixtures/usertemplates.yml file follows:

valid_blog_index_for_joe:
 id: 1
 user_id: 1
 name: blog_index
 body: a template
valid_blog_entry_for_joe:
 id: 2
 user_id: 1
 name: blog_entry
 body: a template
valid_blog_index_for_admin:
 id: 3

Bradburne_8415C12.fm Page 346 Tuesday, May 15, 2007 4:49 AM

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 347

 user_id: 2
 name: blog_index
 body: my template

Now edit the functional test file for the usertemplates controller, test/functional/
usertemplates_controller_test.rb. The full test file is shown in Listing 12-13. You will see that
the login_as helper simulates a user logging into the application. The index, edit, and update
methods are the only ones that need to be tested.

We have also included two extra tests that log in as user id 1, but try to edit and update
user templates that belong to user id 2. The expected result is to not allow editing of another
user’s templates, so user 1 is redirected to the index page.

Listing 12-13. The User Templates Functional Test File

require File.dirname(__FILE__) + '/../test_helper'
require 'usertemplates_controller'

Re-raise errors caught by the controller.
class UsertemplateController; def rescue_action(e) raise e end; end

class UsertemplateControllerTest < Test::Unit::TestCase
 fixtures :usertemplates, :users

 def setup
 @controller = UsertemplatesController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_get_index
 login_as(:valid_user)
 get :index
 assert_response :success
 assert assigns(:usertemplates)
 end

 def test_should_get_edit
 login_as(:valid_user)
 get :edit, :id => 1
 assert_response :success
 end

 def test_should_update_usertemplate
 login_as(:valid_user)
 put :update, :id => 1, :usertemplate => { :body => 'a different template'}
 assert_redirected_to usertemplates_path
 end

Bradburne_8415C12.fm Page 347 Tuesday, May 15, 2007 4:49 AM

348 C H A P T E R 1 2 ■ AD D I N G U S E R - C R E A T E D T H E M E S T O T H E B LO G G I N G E N G I N E

 def test_should_fail_get_edit_for_other_user
 login_as(:valid_user)
 get :edit, :id => 3
 assert_response :redirect
 assert_redirected_to :action => 'index'
 end

 def test_should_fail_update_for_other_user
 login_as(:valid_user)
 put :update, :id => 3, :usertemplate => { :body => 'a different template'}
 assert_response :redirect
 assert_redirected_to :action => 'index'
 end
end

Before you run these functional tests, you need to bring the test database up to date by
opening a terminal window and entering the following command:

$ rake db:test:prepare

Now, run the tests with the following command:

$ ruby test/functional/usertemplates_controller_test.rb

Loaded suite test/functional/usertemplates_controller_test
Started
.....
Finished in 0.889032 seconds.

5 tests, 9 assertions, 0 failures, 0 errors

Further Development of the User Templates
This feature could be developed further in many ways:

• Since developing a whole template from scratch is pretty difficult, you may wish to
provide your users with a number of sample templates that they can copy into the
blog_index and blog_entry templates and edit to their liking.

• You will likely wish to add more filters and possibly extend the drops further, providing
more tools to help your users build templates.

Bradburne_8415C12.fm Page 348 Tuesday, May 15, 2007 4:49 AM

C H A P T E R 1 2 ■ A D D I N G U S E R - C R E A T E D T H E M E S T O T H E B L O G G I N G E N G I N E 349

• At the moment, the CSS for the user templates is simply embedded within the user template
body itself, but you may wish to create another template called blog_css, separating the
CSS from the template bodies. This would allow the blog_index and blog_entry templates
to access a common CSS file.

• You may wish to make even more use of Liquid. Since it provides a very solid templating
framework that protects your application’s code, it would be possible to template your
whole application in this way. This would allow other people to completely restyle the
application without breaking the functionality of the site.

Summary
In this chapter, we added support for user-defined themes for the blogging feature of RailsCoders.
This utilized the Liquid templating plug-in to give our users the freedom to completely redesign
their blogs from scratch, while protecting our application from malicious code.

We created a new model called Usertemplate to store the user-designed templates. To
support these templates, we created a number of drops, versions of objects that only have access
to the methods or attributes of a model that we define. We can also extend drops to provide useful
attributes for the creation of templates. We also created some custom Liquid filters, allowing the
user template to access Textile markup and provide links to individual entries.

In the next chapter, we will look at how you can create a version of your site that is optimized
for small-screen devices, such as mobile phones and PDAs.

Bradburne_8415C12.fm Page 349 Tuesday, May 15, 2007 4:49 AM

Bradburne_8415C12.fm Page 350 Tuesday, May 15, 2007 4:49 AM

351

■ ■ ■

C H A P T E R 1 3

Adding a Mobile Interface

We now have a fully functioning social networking community site. But currently it is only
available to users while they are sitting at their desktop or laptop computers. And, in many
countries in the world, more people access the Web from a mobile phone than from PCs. In
this chapter, we will develop an alternate interface to our application, allowing the site to be
used on mobile phones or other small-screen devices, such as PDAs or smartphones. This will
allow our users to keep in touch with their contacts on the site at any time, even when they are
away from their computers.

The Mobile Web
Some smartphones have the capability to display full XHTML web pages, but the majority of
phones cannot load regular web pages. In order to allow browsing on devices with limited
screen size, memory, and input methods, special versions of XHTML have been developed:
XHTML Basic and XHTML Mobile Profile (XHTML MP).

XHTML Basic, as you might guess by the name, is a subset of XHTML designed for devices
that cannot support the full set of XHTML features. XHTML MP is a superset of XHTML Basic
that supports some extra tags from standard XHTML but is not supported by as many mobile
browsers. Since we want as many users as possible to be able to use our site, we should ensure
that our site validates as XHTML Basic.

Almost every mobile phone that can be purchased today is capable of displaying pages
delivered in XHTML Basic. Older phones will not be able to, as they may use an older mobile
markup system, Wireless Markup Language (WML). However, we can almost guarantee that
any tech-savvy user of our site who wishes to use a mobile version of our application will have
a reasonably modern phone, so we can focus on the modern standard.

Since XHTML Basic and XHTML MP are subsets of XHTML, we can simply use a regular
XHTML-compatible browser to view and test our mobile site. Of course, nothing beats testing
on a real device to check that everything is working exactly right, but since there are far too
many models of mobile phones in the world to physically test on, we will just rely on our trusty
web browser.

XHTML Basic allows us to use CSS to add styling to our site, so we are not stuck with text-
only pages. However, CSS support is not consistent across phones—some support more CSS
attributes than others.

Bradburne_8415C13.fm Page 351 Tuesday, May 15, 2007 4:53 AM

352 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

While the markup language and technical constraints are important, there are equally
important issues in the design of applications to be used on resource-limited devices. Web
pages that are displayed and used on a mobile phone using a small screen and simple keypad
have very different requirements than a page on a desktop or laptop computer.

Some of the issues to consider follow:

• A mobile user is likely to have a slow Net connection, so it is a good idea to keep the
number of images on a mobile site to a minimum and make sure that any images that
are used are very small—a couple of kilobytes at most—and that they are the correct
dimensions for a small screen. Loading a 640×480-pixel image into a phone isn’t very
practical.

• Since a mobile device has a limited screen size, the amount of text rendered on a page is
quite small. Displaying a page with a huge amount of text isn’t a good idea.

• The user’s interaction with the site will be quite different. It is more likely that a mobile
user will use the site primarily to view pages and rarely enter text, so the interface should
be optimized towards this.

• Navigation on your mobile site should be made as simple and quick as possible. Having
a navigation list on every screen and using the HTML accesskey attribute to allow a user
to quickly and easily access a page is good practice.

All of these issues should be carefully considered while designing a mobile-focused web
application. In order to help developers understand the constraints and produce useable
mobile web applications, the World Wide Web Consortium (W3C) has set up a special group,
the W3C Mobile Web Initiative (MWI). Their web page can be found at http://www.w3.org/
Mobile.

The W3C Mobile Web Best Practices Working Group is part of the W3C MWI; their task is
to investigate and recommend best practices for mobile application developers. They can be
found at http://www.w3.org/2005/MWI/BPWG and have released a very useful document called
“Mobile Web Best Practices: Basic Guidelines.” This document recommends best practices for
designing mobile web pages and can be found at http://www.w3.org/TR/mobile-bp. I highly
recommend referring to this document and taking note of its recommendations if you are
developing any kind of mobile web application.

The RailsCoders Mobile Site Requirements
Keeping in mind the recommended best practices for mobile web development, we can start to
think about what information we want to show on our mobile RailsCoders site and how we can
best optimize the user interface.

The mobile version of RailsCoders should contain exactly the same information and work with
the same data model as the full Web version. Only the interface to the data should change.

The mobile site will be accessible using the URL http://railscoders.net/mobile/. It is
also a good idea to provide a redirection from the URL http://m.railscoders.net, making it
easier to enter into a mobile keypad. This redirection would be set up by the web server rules,
rather than in Rails.

Bradburne_8415C13.fm Page 352 Tuesday, May 15, 2007 4:53 AM

http://www.w3.org
http://www.w3.org/2005/MWI/BPWG
http://www.w3.org/TR/mobile-bp
http://railscoders.net/mobile
http://m.railscoders.net

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 353

Since it is unlikely that the site will need to be administered using a mobile device, we will
not develop an administration interface accessible from the mobile site.

The Layout
The main layout for the mobile site should be consistent throughout the site, in the same way
as the full version. We should use the same color scheme and logo to maintain our site’s identity,
although we should create a smaller, mobile-optimized logo to make sure that the site loads
quickly.

Each page should have a navigation section, linking to each part of the site. To make switching
sections quick for users, accesskey shortcuts should be assigned to each option and be consis-
tent on each page. To enable quick access to the main content of the page, the navigation section
should be placed at the bottom of the page. Figure 13-1 shows the RailsCoders mobile page layout.

Figure 13-1. The layout of the mobile RailsCoders site

We will use a Rails layout file in the same way as the full XHTML version. This will allow us to
use exactly the same markup for the template and then insert the required content for each page.

Bradburne_8415C13.fm Page 353 Tuesday, May 15, 2007 4:53 AM

354 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

User Profiles
Since the user’s profile page is a central point for a user, we should provide the user’s profile in
a similar way to on the Web, showing the username and profile text. We should also show the
titles of the user’s latest blogs along with tiny versions of the latest photos uploaded.

Accounts
Since we want to allow our users to log in on the mobile site, we need to provide a mobile
version of the login page.

Pages
The pages are essential in providing information about the site, so we need to provide views to
allow them to be shown.

News Articles
The news articles should be available to viewers of the mobile site. Since the news articles may
be quite large, the index view should display only the title and category of the news article. Also,
to make the page smaller and easier to navigate, we will only show five articles at a time. Clicking
the title of an article will display the entire article.

Forums
The RailsCoders forums are a central part of the site, so they must be available on the mobile
version. However, to make them easily navigable, we will need to simplify the way the pages are
laid out. Currently, the pages are rendered using tables, but on the mobile site, we will just use
a list.

• For the forum list, we will just show the name of the forum and link to the topic list.
We will not show the count of the number of topics.

• The topics list will list only the topics, not the number of posts or the creator of the topic.
We will add a link to the page for creating new topics.

• The list of posts within a topic will show the author’s name before the topic. We will
provide a link to allow users to reply to a topic.

We will support creation of new topics and posts from the mobile device. While it is unlikely
that a user will enter a large amount of text on a phone keypad, it could be useful for requesting
information while away from the main computer.

Blogs
The user’s individual blogs should be accessible from the mobile site. However, since the screen
size is much smaller, we will show only the titles of the entries in the index view. To view the
entire entry, the user must click the title. The pagination links will allow a reader to read more
articles, which will be displayed along the following lines:

Bradburne_8415C13.fm Page 354 Tuesday, May 15, 2007 4:53 AM

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 355

• The blog feature allows users to write their own templates to display their blog pages as
they wish. Since they haven’t created a mobile-specific site, we cannot guarantee that it
will display properly on a mobile browser. To solve this, we will ignore any user-generated
blog templates and display blog entries on a standard template.

• Since a blog entry may be very long, the standard blog view should show a truncated
version of each entry, containing only the first 500 characters. If it is truncated, there
should be a link to the full version of the blog post.

• Each entry should also show the number of comments for the post. This will link to the
full entry view, displaying all of the comments.

• The blogs controller will show the title and creator’s username of the five most recently
added entries on the site.

We will not provide support to allow a user to create a new blog entry or for others to add
comments via the mobile web site, since it is unlikely that users will want to enter a large amount
of text from their phone keypads.

Photo Gallery
When we developed the gallery feature, we anticipated the mobile version by creating a smaller
thumbnail called tiny. We will use this for the gallery view, allowing us to show a number of
photos at a time on the screen. Each photo will have a corresponding link to a page showing the
thumb version of the photo.

Developing Mobile RailsCoders
The mobile version of RailsCoders should use as much of the existing code as possible. Because
Ruby is object oriented, this is a very simple process. To create the mobile version, we will
simply create new Rails controllers that inherit from the existing controllers. These new mobile
controllers can then override any controller methods that need to change.

Structure of the Mobile Application
If we place these new controllers in a directory within the existing controllers directory, Rails
will automatically expect their corresponding views to also be within a subdirectory of the
existing views directory. This means that we can create a whole new set of view files that work
either with exactly the same controller code, if we do not override the action code, or with our
modified controller code, if we override any methods. Therefore, we only have to write code for
actions where the controller behavior is different from the existing code.

Controllers in any subdirectories of the controllers directory will automatically be accessible
by prefixing the controller name with the name of the subdirectory. For instance, a controller called
controllers/mobile/pages_controller.rb will be accessible at http://localhost:3000/mobile/
pages. These controllers must specify their subdirectory in the namespaces of their classes, so the
pages controller within the mobile directory is defined using class Mobile::PagesController.

All of these mobile controllers will be defined as resources to Rails, meaning that they will
follow the same convention in using the standard Rails resource URLs and action method names.

Bradburne_8415C13.fm Page 355 Tuesday, May 15, 2007 4:53 AM

http://localhost:3000/mobile

356 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

Creating the Mobile Layout and Style Sheet
The mobile layout file is similar in structure to the existing application.rhtml layout file, but
we need to update it with the correct DOCTYPE and CSS file. We can also change the markup if we
need to.

Create the file app/views/layouts/mobile.rhtml, and add the markup in Listing 13-1.

Listing 13-1. The Mobile Layout File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
<html>
 <head>
 <title>RailsCoders</title>
 <%= stylesheet_link_tag 'mobile' %>
 <%= yield :head %>
 </head>
 <body>
 <div id="container">
 <div id="header">
 <h1>RailsCoders</h1>
 </div>
 <div id="content">
 <% if flash[:notice] -%>
 <div id="notice"><%= flash[:notice] %></div>
 <% end -%>
 <% if flash[:error] -%>
 <div id="error"><%= flash[:error] %></div>
 <% end -%>
 <%= yield %>
 </div>
 <div id="menu">
 <%= render :partial => 'shared/mobilemenu' %>
 </div>
 </div>
 </body>
</html>

To go along with this, we need to add the navigation partial view referenced by this, the
mobilemenu file. Create the file app/views/shared/_mobilemenu.rhtml, and add the code in
Listing 13-2.

Bradburne_8415C13.fm Page 356 Tuesday, May 15, 2007 4:53 AM

http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 357

Listing 13-2. The mobilemenu Partial View

 0 <%= link_to 'Home', mobile_index_url, :accesskey => '0' %>
 1 <%= link_to 'News', mobile_articles_path, :accesskey => '1' %>
 2 <%= link_to 'Forums', mobile_forums_path, :accesskey => '2' %>
 3 <%= link_to 'Blogs', mobile_blogs_path, :accesskey => '3' %>
 4 <%= link_to 'Photos', mobile_photos_path, :accesskey => '4' %>

 <% if is_logged_in? %>
 <%= link_to 'Logout', mobile_logout_path %>
 <% else %>
 <%= link_to 'Login', mobile_login_path %>
 <% end %>

You will notice that the links point to resource shortcuts starting with mobile_. These are
links to a different version of the resource. We will set up these new resource mappings in the
next section.

Also, each of the main areas of the site now has an accesskey set. This links one of the
numeric keys on the mobile handset to a particular area, allowing the user to quickly navigate
the site. For instance, to return the home page from any page on the site, all they have to do is
hold down the 0 key.

We should also create a mobile CSS file. Create the file public/stylesheets/mobile.css,
and add the CSS shown in Listing 13-3. Not all mobile browsers support all CSS attributes, so
we need to keep our mobile CSS simple.

Listing 13-3. The Mobile CSS File

a { color: #b00; }
a:hover { background-color: #b00; color: #eee; }

#menu ul {
 background-color: #fcc;
 border-top: 1px solid #666;
 list-style: none;
 padding: 0px;
}

The Resource Mappings
In the mobile navigation menu, we created links to mobile versions of the resources, such as
mobile_articles_path, mobile_forums_path. We need to create the mappings for these resources
in the routes file.

Open the config/routes.rb file, and create a new section for the mobile routes below the
regular route definitions but before the closing end statement. The resource mappings for our
mobile resources are shown in Listing 13-4.

Bradburne_8415C13.fm Page 357 Tuesday, May 15, 2007 4:53 AM

358 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

Listing 13-4. Mobile Resource Mappings in the routes.rb File

Mobile Routes

map.resources :pages,
 :controller => 'mobile/pages',
 :path_prefix => '/mobile',
 :name_prefix => 'mobile_'

map.resources :articles,
 :controller => 'mobile/articles',
 :path_prefix => '/mobile',
 :name_prefix => 'mobile_'

map.resources :blogs,
 :controller => 'mobile/blogs',
 :path_prefix => '/mobile',
 :name_prefix => 'mobile_'

map.resources :photos,
 :controller => 'mobile/photos',
 :path_prefix => '/mobile',
 :name_prefix => 'mobile_'

map.resources :categories,
 :controller => 'mobile/categories',
 :path_prefix => '/mobile',
 :name_prefix => 'mobile_' do |categories|
 categories.resources :articles,
 :controller => 'mobile/articles',
 :name_prefix => 'mobile_category_'
end

map.resources :users,
 :controller => 'mobile/users',
 :path_prefix => '/mobile',
 :name_prefix => 'mobile_' do |users|
 users.resources :photos,
 :controller => 'mobile/user_photos',
 :name_prefix => 'mobile_user_'
 users.resources :entries,
 :controller => 'mobile/entries',
 :name_prefix => 'mobile_'
end

Bradburne_8415C13.fm Page 358 Tuesday, May 15, 2007 4:53 AM

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 359

map.resources :forums,
 :controller => 'mobile/forums',
 :path_prefix => '/mobile',
 :name_prefix => 'mobile_' do |forums|
 forums.resources :topics,
 :controller => 'mobile/topics',
 :name_prefix => 'mobile_' do |topics|
 topics.resources :posts,
 :controller => 'mobile/posts',
 :name_prefix => 'mobile_'
 end
end

map.mobile_index '/mobile', :controller => 'mobile/pages',
 :action => 'show',
 :id => "1"

map.mobile_show_user '/mobile/user/:username', :controller => 'mobile/users',
 :action => 'show_by_username'
map.mobile_all_blogs '/mobile/blogs', :controller => 'mobile/blogs',
 :action => 'index'
map.mobile_all_photos '/mobile/photos', :controller => 'mobile/photos',
 :action => 'index'
map.mobile_login '/mobile/login', :controller => 'mobile/account',
 :action => 'login'
map.mobile_logout '/mobile/logout', :controller => 'mobile/account',
 :action => 'logout'

These resource mappings are similar to the regular mappings, but they specify a different
controller, URL path, and name prefix to use when referring to the resource by a shortcut such
as mobile_pages_path.

These resources are distinct from the regular resources, since they point to a different
controller and use a different name.

As before, we have nested resources for the articles when accessed with a category and for
the forum topics and posts. These work in exactly the same way as the regular mappings, except
using the new controllers. Notice, however, that the mobile nested mappings do not specify
the path_prefix attribute. This should only be done for the top-level resource. Since you will
only specify the nested resource together with the higher level resource, the higher level requires
the path_prefix of /mobile, not the nested resource.

We have also added a mobile_index mapping, allowing us to set a default page for the URL
http://railscoders.net/mobile/.

The mobile_all_blogs and mobile_all_photos mappings link to the index actions within
the relevant controllers, in the same way as their regular controllers do.

Bradburne_8415C13.fm Page 359 Tuesday, May 15, 2007 4:53 AM

http://railscoders.net/mobile

360 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

The Mobile Controllers and Views
We can now create the mobile versions of the controllers.

Inside your app/controllers/ directory, create a new directory called mobile. Within this
directory, we will create a new controller for the mobile version of each resource. Next, inside
the directory app/views/, create another new directory, also called mobile. Within this directory, we
will create the mobile views for the corresponding controllers.

The Pages Resource

Create a new file called app/controllers/mobile/pages_controller.rb. Within this, we need to
create a controller that inherits from the existing pages controller. We then need to override the
default layout, specifying out new mobile layout file.

For the action methods, the only nonadministrative action accessible for the pages controller
is the show action. Since we want this to work in exactly the same way as the regular version, we
do not have to override the show method.

The complete mobile pages_controller.rb file is shown in Listing 13-5.

Listing 13-5. The Mobile Pages Controller File

class Mobile::PagesController < PagesController
 layout 'mobile'
end

To go along with this, we need to create the corresponding mobile views for this controller.
Since we only need to support the show action, we only need to create this one view.

First, create a new subdirectory of the app/views/mobile/ directory called pages. Next,
create the file app/views/mobile/pages/show.rhtml. This file must simply display the title and
the body of the page. The full page view file is shown in Listing 13-6.

Listing 13-6. The Mobile Pages Show Action

<h2><%= @page.title %></h2>
<p><%= @page.body %></p>

You can now take a look at this mobile view using your regular browser. Go to http://
localhost:3000/mobile/pages/1. The welcome page will be shown using the new mobile
layout and templates.

The Articles Resource

The specification for the mobile articles controller calls for a slight change from the regular
controller. The index action for the normal articles controller paginates the list of articles to
show ten articles at once. Because of the small screen size of a mobile device, we want to change
this to show only five articles at one time.

Because this controller can be called either directly or nested within a category, we need to
check for the presence of a category_id parameter in the request. If the parameter is present, we
need to return only articles within that category. If it is not present, we retrieve articles irrespective
of the category. Also, only articles that have their published attribute set to true should be shown.

Bradburne_8415C13.fm Page 360 Tuesday, May 15, 2007 4:53 AM

mailto:@page.title
mailto:@page.body
http://localhost:3000/mobile/pages/1
http://localhost:3000/mobile/pages/1

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 361

The only other nonadministrative action is the show action. The current controller action
method can be used unchanged, since all the method does is retrieve the article and display it.

Create the new controller file, app/controllers/mobile/articles_controller.rb. Add the
code shown in Listing 13-7.

Listing 13-7. The Mobile Articles Controller

class Mobile::ArticlesController < ArticlesController
 layout 'mobile'

 def index
 if params[:category_id]
 @articles_pages, @articles = paginate :articles,
 :include => :user,
 :per_page => 5,
 :order => 'published_at DESC',
 :conditions => "category_id = #{params[:category_id].to_i} AND
 published = true"
 else
 @articles = Article.find_all_by_published(true)
 @articles_pages, @articles = paginate :articles,
 :include => :user,
 :per_page => 5,
 :order => 'published_at DESC',
 :conditions => "published = true"
 end
 end
end

This controller again overrides the layout, specifying the mobile layout. The inherited
index method is overridden with similar code to the parent articles controller but with a limit
of five articles per page instead of ten.

We now need to create the views for the index and show methods. But first, create the directory
for the mobile articles views, app/views/mobile/articles/.

Create the index view app/views/mobile/articles/index.rhtml, and enter the view code
in Listing 13-8.

Listing 13-8. The Mobile Articles Index View

<h2>News Articles</h2>

<% if @articles_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @articles_pages, :params => params %>
 </p>
<% end %>

Bradburne_8415C13.fm Page 361 Tuesday, May 15, 2007 4:53 AM

mailto:@articles_pages.page_count

362 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

<% @articles.each do |article| %>
 <div class="article">
 <h3><%= article.title %></h3>
 <% if article.category %>
 <p class="category">
 Category: '<%= link_to article.category.name,
 mobile_category_articles_path(article.category) %>'
 </p>
 <% end %>

 <p>
 <%= article.created_at.to_s(:short) %> by <%= article.user.username %>

 <%= link_to 'Read the full article', mobile_article_url(article) %>
 </p>
 </div>
<% end %>

<% if @articles_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @articles_pages, :params => params %>
 </p>
<% end %>

This includes the pagination links at the top and bottom of the page to make it easy for a
user to navigate the pages.

As defined in the feature specification, the index view does not show the full article or
synopsis, only the title, the category, the author, and a link to the full article.

Now create the show action view, app/views/mobile/articles/show.rhtml. This page shows
the title and the full body of the article. Add the code in Listing 13-9.

Listing 13-9. The Mobile Articles Show View

<h2><%= @article.title %></h2>
<p>
 <%= @article.created_at.to_s(:short) %>

 <%= textilize(@article.body) %>

</p>
<p><%= link_to 'Back to article list', mobile_articles_url %></p>

The Forums, Topics, and Posts Resources

The mobile forum feature consists of the forums, topics, and posts controllers. The mobile
views need to be simplified compared to the Web versions, but should display most of the same
information.

As with the previous mobile controllers, we need to focus only on the nonadministrative
actions, as administration of the forums is not necessary for the mobile views.

First of all, we should create the forums controller. Create the file app/controllers/mobile/
forums_controller.rb, and add the code in Listing 13-10.

Bradburne_8415C13.fm Page 362 Tuesday, May 15, 2007 4:53 AM

mailto:@articles.each
mailto:@articles_pages.page_count
mailto:@article.title
mailto:@article.created_at.to_s(:short
mailto:textilize(@article.body

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 363

Listing 13-10. The Mobile Forums Controller

class Mobile::ForumsController < ForumsController
 layout 'mobile'

 def show
 redirect_to mobile_topics_path(:forum_id => params[:forum_id])
 end
end

We do not have to override the index action, as the current version is fine. The show action
simply redirects to the topics controller. Since we need to redirect to a different shortcut, we
need to override the current method.

Since the index action is the only one that displays anything, we only have to write this
one view for the forums controller. Create the app/views/mobile/forums/ directory and the
file app/views/mobile/forums/index.rhtml. Add the simplified forums index view shown in
Listing 13-11.

Listing 13-11. The Mobile Forum Index View

<h2>Forums</h2>

<% @forums.each do |forum| -%>
 <div class="forumname">
 <%= link_to forum.name, mobile_topics_path(:forum_id => forum) -%>
 </div>
 <div class="forumdescription">
 <%= forum.description -%>
 </div>
<% end -%>

In the topics controller, since we want to allow mobile users to create new messages in the
forum, the actions that we need to look at are the index, show, new, and create actions. The
current index action just returns a paginated list of topics with ten topics per page, so that is
fine. However, we should override the show method in the same way as we did for the forums
controller, redirecting to the mobile version of the posts resource.

The new action does not require changing, as it simply shows the form for entering a new
topic. But the create action needs to be overridden to redirect to the mobile version of the
posts controller.

Create the controller file app/controllers/mobile/topics_controller.rb, and add the
code shown in Listing 13-12.

Bradburne_8415C13.fm Page 363 Tuesday, May 15, 2007 4:53 AM

mailto:@forums.each

364 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

Listing 13-12. The Mobile Topics Controller

class Mobile::TopicsController < TopicsController
 layout 'mobile'

 def show
 redirect_to mobile_posts_path(:forum_id => params[:forum_id],
 :topic_id => params[:id])
 end

 def create
 @topic = Topic.new(:name => params[:topic][:name],
 :forum_id => params[:forum_id],
 :user_id => logged_in_user.id)
 @topic.save!
 @post = Post.new(:body => params[:post][:body],
 :topic_id => @topic.id,
 :user_id => logged_in_user.id)
 @post.save!

 redirect_to mobile_posts_path(:topic_id => @topic, :forum_id => @topic.forum)
 end

end

To store the topics’ mobile views, create the directory app/views/mobile/topics/.
The index view for the topics controller should just display the name of the topic with a

link back to the topics list and the list of topics, along with the pagination links. Also, if the user
is logged in, there should also be a link to the new action, allowing the user to create a new topic.
Create the file app/views/mobile/topics/index.rhtml, and enter the code shown in Listing 13-13.

Listing 13-13. The Mobile Topics Index View

<h2>Forum : <%= @forum.name -%></h2>

<h3>Topics</h3>

<p>
<% if is_logged_in? -%>
 <%= link_to 'Post New Topic', mobile_new_topic_path(:forum_id => @forum) -%>
<% else -%>
 <%= link_to 'Login to post a new topic', mobile_login_url -%>
<% end -%>
</p>

Bradburne_8415C13.fm Page 364 Tuesday, May 15, 2007 4:53 AM

mailto:@topic.save
mailto:@topic.id
mailto:@post.save
mailto:@topic.forum
mailto:@forum.name

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 365

<% if @topics_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @topics_pages, :params => params %>
 </p>
<% end %>

<% @topics.each do |topic| -%>
 <%= link_to topic.name,
 mobile_posts_path(:forum_id => @forum, :topic_id => topic) -%>
 (<%= pluralize(topic.posts_count, 'post') -%>)
<% end -%>

<% if @topics_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @topics_pages, :params => params %>
 </p>
<% end %>

We also need to create the view for the new action. This should just be a simple form that
submits to the mobile topics controller. Create the file app/views/mobile/topics/new.rhtml,
and enter the code from Listing 13-14.

Listing 13-14. The Mobile Topics New View

<h2>New Topic</h2>

<%= error_messages_for :topic -%>
<%= error_messages_for :post -%>

<% form_for :topic, :url => mobile_topics_path do |f| -%>
 <p>Subject:<%= f.text_field :name -%></p>
 <p>Message:<%= text_area :post, :body -%></p>
 <%= submit_tag 'Save' %> or
 <%= link_to 'cancel', mobile_topics_path(:forum_id => params[:forum_id]) %>
<% end -%>

The mobile posts controller is similar to the topics controller, in that it requires the index,
new, and create actions to be available. The index and show actions do not need to be changed
from their regular version, but the create controller should be overridden to redirect to the
mobile posts index action after creating the new post.

Create the file app/controllers/posts_controller.rb, and add the code shown in
Listing 13-15.

Bradburne_8415C13.fm Page 365 Tuesday, May 15, 2007 4:53 AM

mailto:@topics_pages.page_count
mailto:@topics.each
mailto:@topics_pages.page_count

366 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

Listing 13-15. The Mobile Post Controller

class Mobile::PostsController < PostsController
 layout 'mobile'

 def create
 @topic = Topic.find(params[:topic_id])
 @post = Post.new(:body => params[:post][:body],
 :topic_id => @topic.id,
 :user_id => logged_in_user.id)

 if @post.save
 flash[:notice] = 'Post was successfully created.'
 redirect_to mobile_posts_path(:forum_id => @topic.forum_id,
 :topic_id => @topic)
 else
 render :action => "new"
 end
 end
end

Create the directory for the mobile posts views, app/views/mobile/posts/. The create
action does not require a view file, as it just redirects after creating the post. The index view
should present a list of posts within a topic, together with the pagination links if necessary, and
a link to create a new post within this topic if the user is logged in.

Create the file app/views/mobile/posts/index.rhtml, and add the code in Listing 13-16.

Listing 13-16. The Mobile Posts Index View

<h2><%= @topic.name -%></h2>

<h3>
 <%= link_to 'Forums', mobile_forums_path -%> >
 <%= link_to @topic.forum.name, mobile_topics_path(:forum_id => @topic.forum) -%> >
 <%= @topic.name -%>
</h3>

<p>
<% if is_logged_in? -%>
 <%= link_to 'Post Reply', mobile_new_post_path(:forum_id => @topic.forum,
 :topic_id => @topic) -%>
<% else -%>
 <%= link_to 'Login to post a new topic', mobile_login_url -%>
<% end -%>
</p>

Bradburne_8415C13.fm Page 366 Tuesday, May 15, 2007 4:53 AM

mailto:@topic.id
mailto:@post.save
mailto:@topic.forum_id
mailto:@topic.name
mailto:@topic.forum.name
mailto:@topic.forum
mailto:@topic.name
mailto:@topic.forum

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 367

<% if @posts_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @posts_pages, :params => params %>
 </p>
<% end %>

<% @posts.each do |post| -%>
 <p>
 <%= link_to post.user.username, mobile_user_path(post.user) -%> said:

 <%= textilize(post.body) -%>
 </p>
<% end -%>

<% if @posts_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @posts_pages, :params => params %>
 </p>
<% end %>

The new post view is a simple form to accept a new forum post and send it to the mobile
post controller. Create the file app/views/mobile/posts/new.rhtml, and enter the code from
Listing 13-17.

Listing 13-17. The Mobile Posts New View

<h2>New Post</h2>

<%= error_messages_for :post -%>

<h3>Topic: <%= @topic.name %></h3>
<% form_for :post, :url => mobile_posts_path(:topic_id => @topic,
 :forum_id => @topic.forum) do |f| -%>
 <p>Message:
<%= f.text_area :body -%></p>
 <%= submit_tag 'Save' -%> or
 <%= link_to 'Cancel',
 mobile_topics_path(:id => @topic, :forum_id => @topic.forum) -%>
<% end -%>

The Users Resource

We will not support creating a new user via the mobile site, but we do want to provide access to
the profile of each user, meaning that we need to provide support for the show action. Since we
are not supporting an administration interface on the mobile version of RailsCoders, we do not
need to create a view for the index action, showing all of the users.

The current controller’s show action simply retrieves a User model and renders the show view.
Since this is exactly what we need for the mobile view, we do not need to override the method.

Create the mobile users controller file, app/controllers/mobile/users_controller.rb,
and enter the code from Listing 13-18.

Bradburne_8415C13.fm Page 367 Tuesday, May 15, 2007 4:53 AM

mailto:@posts_pages.page_count
mailto:@posts.each
mailto:@posts_pages.page_count
mailto:@topic.name
mailto:@topic.forum
mailto:@topic.forum

368 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

Listing 13-18. The Mobile Users Controller

class Mobile::UsersController < UsersController
 layout 'mobile'
end

The show view needs to display the selected user’s profile, along with that user’s latest
activity on the site, such as the latest blog entries and photographs, as with the full, Web profile
page.

Create the directory for the mobile user views, app/views/mobile/users, and create the
show view file, app/views/mobile/users/show.rhtml. Add the view code shown in Listing 13-19
to this file.

Listing 13-19. The Mobile User Show View

<h2><%= @user.username %></h2>
<p><%=h @user.profile %></p>

<h3>Blog Entries</h3>
<ul id="entries">
<% @entries.each do |entry| %>
 <%= link_to entry.title, mobile_entry_path(:user_id => @user, :id => entry) %>
<% end %>

<p>
 <%= link_to "See all of #{@user.username}'s blog",
 mobile_entries_path(:user_id => @user) %>
</p>

<h3>Photos</h3>
<ul id="photos">
<% @photos.each do |photo| -%>

 <%= link_to image_tag(photo.public_filename('tiny')),
 mobile_photo_path(:user_id => photo.user, :id => photo) %>

<% end %>

<p>
 <%= link_to "See all of #{@user.username}'s photos",
 mobile_photos_path(:user_id => @user) %>
</p>

The Entries Resource

For the users’ blogs, we need to produce an interface to the entries resource. Since the entries
show action displays any comments for the blog entry and we do not need to accept new comments

Bradburne_8415C13.fm Page 368 Tuesday, May 15, 2007 4:53 AM

mailto:@user.username
mailto:@user.profile
mailto:@entries.each
mailto:@photos.each

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 369

from the mobile interface, we do not need to provide a separate interface to the comments
resource.

Since we also will not support creating new blog entries on the mobile site, we need to
consider only the index and show actions for the mobile entries controller. The current entries
controller’s index action returns ten items per page. As discussed in the specifications, we will
just show the titles of the five most recent blog entries on the index page. Since the existing
entries controller index action renders pages using a Liquid usertemplate if the user has defined
one, we need to override it so that the entries views are always rendered using the default style.

The show action also needs to be overridden to show the individual entries without any
styling. Create the mobile entries controller, app/controllers/mobile/entries_controller.rb,
and add the code shown in Listing 13-20.

Listing 13-20. The Mobile Entries Controller File

class Mobile::EntriesController < EntriesController
 layout 'mobile'
 def index
 @user = User.find(params[:user_id], :include => :usertemplates)
 @entry_pages = Paginator.new(self, @user.entries_count, 5, params[:page])
 @entries = @user.entries.find(:all, :order => 'created_at DESC',
 :limit => @entry_pages.items_per_page,
 :offset => @entry_pages.current.offset)
 end

 def show
 @user = User.find(params[:user_id], :include => :usertemplates)
 @entry = Entry.find_by_id_and_user_id(params[:id],
 params[:user_id],
 :include => [:comments => :user])
 end
end

Now create the directory for the mobile entries views, app/views/mobile/entries/. As
discussed, the index view will just show the titles of the entries, linking to the show action.
Create the index view file, app/views/mobile/entries/index.rhtml, and enter the code in
Listing 13-21.

Listing 13-21. The Mobile Entries Index View

<h2><%= @user.username %>'s blog</h2>

<% if @entry_pages.page_count > 1 %>
 <p>
 <% if @entry_pages.current.previous %>
 <%= link_to '« Previous', :page => @entry_pages.current.previous %>
 <% end %>

Bradburne_8415C13.fm Page 369 Tuesday, May 15, 2007 4:53 AM

mailto:@user.entries_count
mailto:@user.entries.find(:all
mailto:@entry_pages.items_per_page
mailto:@entry_pages.current.offset
mailto:@user.username
mailto:@entry_pages.page_count
mailto:@entry_pages.current.previous
mailto:@entry_pages.current.previous

370 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

 <% if @entry_pages.current.next %>
 <%= link_to 'Next »', :page => @entry_pages.current.next %>
 <% end %>
 </p>
<% end %>

<% @entries.each do |entry| -%>

 <%= link_to entry.title, mobile_entry_path(:user_id => @user, :id => entry) -%>
 (<%= entry.created_at.to_s(:short) %>)

<% end -%>

<% if @entry_pages.page_count > 1 %>
 <p>
 <% if @entry_pages.current.previous %>
 <%= link_to '« Previous', :page => @entry_pages.current.previous %>
 <% end %>
 <% if @entry_pages.current.next %>
 <%= link_to 'Next »', :page => @entry_pages.current.next %>
 <% end %>
 </p>
<% end %>

The show view is very simple; it just displays the title and body of the entry. Create the view
file app/views/mobile/entries/show.rhtml, and add the code in Listing 13-22.

Listing 13-22. The Mobile Entries Show View

<h2>
 <%= link_to "#{@user.username}'s blog",
 mobile_entries_path(:user_id => @user.id) %>
</h2>
<h3><%=h @entry.title %></h3>
<p><%= textilize(@entry.body) %></p>

The Blogs Resource

To view the most recently created posts by any users, rather than by one specific user, we’ll use
the blogs controller.

Since we only need to show a list of the titles of the posts and the usernames of the authors,
we only need to create an index view. The existing blogs controller already retrieves the correct
variables, so all we need to do is add a mobile blogs controller that inherits from the existing
blogs controller and then create a corresponding mobile index view.

Create a mobile blogs controller, app/controllers/mobile/blogs_controller.rb, and
enter the code in Listing 13-23.

Bradburne_8415C13.fm Page 370 Tuesday, May 15, 2007 4:53 AM

mailto:@entry_pages.current.next
mailto:@entry_pages.current.next
mailto:@entries.each
mailto:@entry_pages.page_count
mailto:@entry_pages.current.previous
mailto:@entry_pages.current.previous
mailto:@entry_pages.current.next
mailto:@entry_pages.current.next
mailto:@user.id
mailto:@entry.title
mailto:textilize(@entry.body

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 371

Listing 13-23. The Mobile Blogs Controller

class Mobile::BlogsController < BlogsController
 layout 'mobile'
end

Now create a directory for the mobile blogs view, app/views/mobile/blogs/. Within this
directory, create the index view, app/views/mobile/blogs/index.rhtml, and enter the view
code in Listing 13-24.

Listing 13-24. The Mobile Blogs Index View File

<h2>Recently updated blogs</h2>

<% @entries.each do |entry| %>
 <p>
 <%= link_to entry.user.username,
 mobile_entries_url(:user_id => entry.user) %>

 '<%=h entry.title %>' was posted <%= time_ago_in_words(entry.created_at) %> ago
 </p>
<% end %>

<% if @entry_pages.page_count > 1 %>
 <p class="pagination">Pages:
 <%= pagination_links @entry_pages, :params => params %>
 </p>
<% end %>

The Photos Resource

To view the latest photos on the site that have been uploaded by all users, we need to create a
mobile photos resource. The photos resource only implements one action, index.

We do not need to override the existing actions, since the existing code retrieves the data
we require—nine photos from a specific user. Although the Web view displays the nine photos
in a 3×3 grid, we will just display them in a list for the mobile view.

Create the mobile photos controller file, app/controllers/mobile/photos.rb, and enter
the code in Listing 13-25.

Listing 13-25. The Mobile Photos Controller File

class Mobile::PhotosController < PhotosController
 layout 'mobile'
end

For the index view, we simply want to show a list of the images together with links to view
a larger version. As discussed in the specifications, we will use the thumbnails called tiny for
this index view.

Create the necessary directory and view the file for the index view, app/views/mobile/
photos/index.rhtml, and enter the code in Listing 13-26.

Bradburne_8415C13.fm Page 371 Tuesday, May 15, 2007 4:53 AM

mailto:@entries.each
mailto:@entry_pages.page_count

372 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

Listing 13-26. The Mobile Photos Index View File

<h2>All Photos</h2>

<% if @photo_pages.page_count > 1 %>
 <p class="pagination">
 <% if @photo_pages.current.previous %>
 <%= link_to '« Previous', :page => @photo_pages.current.previous %>
 <% end %>
 <% if @photo_pages.current.next %>
 <%= link_to 'Next »', :page => @photo_pages.current.next %>
 <% end %>
 </p>
<% end %>

<ul id="photos">
 <% @photos.each do |photo| -%>
 <li id="photo-<%= photo.id %>">
 <%= link_to image_tag(photo.public_filename('tiny')),
 mobile_user_photo_path(:user_id => photo.user, :id => photo) %>

 <% end %>

The user_photos Resource

To view photos by a specific user, we use the user_photos resource. This needs to support the
index and show actions. Since we will not support uploading or editing of photos from the
mobile site, we do not need the new, create, edit, update, or destroy actions.

We do not need to override any existing methods; the regular index and show actions
perform exactly as we require.

Create the file app/controllers/mobile/user_photos_controller.rb, and enter the code in
Listing 13-27.

Listing 13-27. The Mobile Photos Controller File

class Mobile::UserPhotosController < UserPhotosController
 layout 'mobile'
end

Now create the directory for the mobile photo views, app/views/mobile/user_photos/.
Create the index view file, app/views/mobile/user_photos/index.rhtml, and add the view code
in Listing 13-28. As with the index view from the mobile photos resource, we will show the
thumbnail using the tiny size.

Bradburne_8415C13.fm Page 372 Tuesday, May 15, 2007 4:53 AM

mailto:@photo_pages.page_count
mailto:@photo_pages.current.previous
mailto:@photo_pages.current.previous
mailto:@photo_pages.current.next
mailto:@photo_pages.current.next
mailto:@photos.each

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 373

Listing 13-28. The Mobile user_photos Index View

<h2><%= @user.username %>'s Photos</h2>

<% if @photo_pages.page_count > 1 %>
 <p class="pagination">
 <% if @photo_pages.current.previous %>
 <%= link_to '« Previous', :page => @photo_pages.current.previous %>
 <% end %>
 <% if @photo_pages.current.next %>
 <%= link_to 'Next »', :page => @photo_pages.current.next %>
 <% end %>
 </p>
<% end %>

<ul id="photos">
 <% @photos.each do |photo| -%>
 <li id="photo-<%= photo.id %>">
 <%= link_to image_tag(photo.public_filename('tiny')),
 mobile_user_photo_path(:user_id => photo.user, :id => photo) %>

 <% end %>

The show view is very simple, showing just the photo, the body, and the title. In this view,
the thumbnail size called thumb will be used to show a large version of the photo. Create the file
app/views/mobile/user_photos/show.rhtml, and add the code in Listing 13-29.

Listing 13-29. The Mobile user_photos Show View

<h3>
 <%= link_to "#{@photo.user.username}'s Photos",
 mobile_user_photos_path(:user_id => @photo.user) %>
</h3>
<h2><%=h @photo.title %></h2>

<%= image_tag @photo.public_filename('thumb'), :id => 'photo' %>

<p><%=h @photo.body %></p>

The Account Login Page

Finally, we need to create the mobile account controller and login page. The mobile account
controller performs the same actions as the regular controller, but we need to override both
the authenticate and logout methods, as we need to change the redirections to point to the
mobile URLs.

Also, we need to change the logout method to accept a regular HTTP GET, instead of a POST,
request. For the regular controller, we require the logout request to be a POST request, which

Bradburne_8415C13.fm Page 373 Tuesday, May 15, 2007 4:53 AM

mailto:@user.username
mailto:@photo_pages.page_count
mailto:@photo_pages.current.previous
mailto:@photo_pages.current.previous
mailto:@photo_pages.current.next
mailto:@photo_pages.current.next
mailto:@photos.each
mailto:@photo.user
mailto:@photo.title
mailto:@photo.public_filename
mailto:@photo.body

374 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

makes sure that web accelerator applications, such as Google Web Accelerator, do not log out
a user while trying to preload a page and accidentally cause the session to be destroyed.

However, to make a text link perform a request as an HTTP POST, Rails uses JavaScript.
Many phones support a form of JavaScript, but we cannot guarantee that it is supported. Since
applications such as the Google Web Accelerator will not be running on a mobile phone, we
can safely allow a GET request to the logout URL to log out a user.

Create the mobile account controller, app/controllers/mobile/account_controller.rb,
and enter the code in Listing 13-30.

Listing 13-30. The Mobile Account Controller File

class Mobile::AccountController < AccountController
 layout 'mobile'

 def authenticate
 self.logged_in_user = User.authenticate(params[:user][:username],
 params[:user][:password])
 if is_logged_in?
 flash[:notice] = "You have successfully logged in."
 redirect_to mobile_index_url
 else
 flash[:error] = "I'm sorry, either your email or password was incorrect."
 redirect_to :action => 'login'
 end
 end

 def logout
 reset_session
 flash[:notice] = "You have been logged out."
 redirect_to mobile_index_url
 end
end

We have to create only one mobile view file, the login form. This is simply a form accepting
the username and password of a user who submits the form to the mobile account controller.

Create the mobile account views directory, app/views/mobile/account/, and the login
form view, app/views/mobile/account/login.rhtml. Now enter the code in Listing 13-31.

Listing 13-31. The Mobile Account Login View

<h2>Login</h2>

<% form_for :user, :url => {:action => 'authenticate'} do |f| -%>
 <p>Username:<%= f.text_field :username %></p>
 <p>Password:<%= f.password_field :password %></p>
 <%= submit_tag 'Login' %>
<% end %>

Bradburne_8415C13.fm Page 374 Tuesday, May 15, 2007 4:53 AM

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 375

Manual Testing
We can now try using the mobile site. Since we cannot easily access the local web server running
on your machine from a mobile device, we will use a standard desktop web browser that supports
XHTML Basic to test the site. Firefox or Opera are good choices for this.

Make sure that your Rails application is running, and go to the mobile home page,
http://localhost:3000/mobile/. You will see the page shown in Figure 13-2.

Figure 13-2. The mobile home page

■Note If you wish, you could create a unique page for this mobile home page and set it as the default
mobile_index page in the routes.rb file.

Now try using the mobile interface to look around your site, checking that the views work
as expected.

Try logging in and using the forum interface to create a new topic and to reply to an existing
post; make sure that the items are created and that the redirections correctly go back to the
mobile view.

Testing the Mobile Site
Since our mobile site uses much of the same code as our regular site, we should take this into
account while deciding what we need to test:

• We have not altered or added to the models in any way, so we do not have to add any
specific unit tests for the mobile site.

• The existing controllers have not been changed, so we do not need to change our existing
functional and integration tests.

Bradburne_8415C13.fm Page 375 Tuesday, May 15, 2007 4:53 AM

http://localhost:3000/mobile

376 C H A P T E R 1 3 ■ AD D I N G A M O B I L E I N T E R F A C E

• The main focus of the code for our mobile site has been in sending different views and
redirecting to different pages where necessary. For this, we should consider doing inte-
gration testing.

To investigate how we can use integration tests to check the behavior of our mobile appli-
cation, we will test the login function. So, if an attempt to log in fails, the user is redirected to
the login page, but if the login is successful, the user is directed to a page shown by the mobile
pages resource.

Create a new integration test file, test/integration/mobile_login_stories_test.rb, and
enter the test code in Listing 13-32.

Listing 13-32. The Mobile Login Integration Tests

require "#{File.dirname(__FILE__)}/../test_helper"

class LoginStoriesTest < ActionController::IntegrationTest
 fixtures :users, :pages

 def test_valid_mobile_login
 get 'mobile/login'
 assert_response :success
 assert_template 'mobile/account/login'

 post 'mobile/account/authenticate',
 :user => {:username => 'joe', :password => '12345'}
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template 'mobile/pages/show'
 end

 def test_invalid_mobile_login
 get 'mobile/login'
 assert_response :success
 assert_template 'mobile/account/login'

 post 'mobile/account/authenticate',
 :user => {:username => 'joe', :password => 'wrong'}
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template 'mobile/account/login'
 end
end

Bradburne_8415C13.fm Page 376 Tuesday, May 15, 2007 4:53 AM

C H AP T E R 1 3 ■ A D D I N G A M O B I L E I N T E R F A C E 377

As you can see, these tests check that the correct mobile template is being used to show the
login page and the show action of the pages controller.

Try running these tests now:

$ ruby test/integration/mobile_login_stories_test.rb

Loaded suite test/integration/mobile_login_stories_test
Started
..
Finished in 1.288459 seconds.

2 tests, 10 assertions, 0 failures, 0 errors

We could follow this with a number of stories for each of the controllers in which we have
overridden a method to make sure that the correct responses are given to each action.

Further Development of the Mobile Site
There are many ways in which you may wish to develop this mobile interface further. At the
moment, it provides a basic interface to viewing the site, along with an option to add posts to
the discussion forum.

You may wish to allow users to create blog posts or add comments to a blog entry while on
the move. Since we have already added an interface to add posts to the forum, you can see that
it is easy to add input forms to the blog feature.

You may also want to add an administration interface to allow yourself access to certain
administrative functions through a mobile device. This may be useful for forum moderators,
allowing them to perform their role through a PDA or mobile device.

Summary
In this chapter, we created a new interface to the RailsCoders site, allowing it to be used on a
small-screen device, such as a mobile phone. To do this, we reused existing model and controller
code, overriding controller methods when necessary.

We created a new set of views for the mobile site by simplifying the views and making the
site easy to navigate on a small screen with a limited keypad.

In the final chapter, we will examine how you can release your web application to the
world. We will look at how to deploy your application onto a server and how you can start to
monitor and optimize your application.

Bradburne_8415C13.fm Page 377 Tuesday, May 15, 2007 4:53 AM

Bradburne_8415C13.fm Page 378 Tuesday, May 15, 2007 4:53 AM

379

■ ■ ■

C H A P T E R 1 4

Deploying, Optimizing, and
Scaling the Application

In this chapter, we will look at how you can take your application live by deploying it on a
production server and how you can monitor, optimize, and scale your application as it starts to
grow. As you might expect, there are a number of tools available for Rails that help automate
the deployment procedure. The most important tool that we will be using for deployment tasks
is Capistrano.

Optimizing your application for dealing with heavy loads and a large number of users is
highly dependent on your specific application and requirements. Optimizing Rails applica-
tions is a constant area of research within the Rails community, and methods for getting the
most out of your system and strategies for scaling are continually evolving. In this chapter, I
will describe some of the best practices and options available at the moment and how to get
involved and stay on top of new optimization techniques.

Since Rails uses a share-nothing architecture, where each request is unique and does not
rely on any state to be maintained on a specific server, scaling Rails can simply be a matter of
providing more servers to process the requests.

Deploying RailsCoders
Deploying your application, that is making it live can be a daunting task, and running your
application in production mode may uncover some problems with your application. Therefore,
I recommend that, during development, you regularly deploy your code to a server. This way,
you can check both your deployment process and your application code.

Development Mode vs. Production Mode
Until now, we have been using our application in development mode. This means that Rails
does not try to cache or optimize the running of your application, so any changes you make to
the code are always visible in your running application. This is a great help while we are devel-
oping, but it is not necessary when your application is deployed in a production environment.

When you run your application in production mode, Rails attempts to process the requests
as fast as possible by caching model information from the database schemas and by not reloading
classes after every request, which speeds up request processing. Production mode also uses a

Bradburne_8415C14.fm Page 379 Thursday, May 17, 2007 8:08 PM

380 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

different database configuration from your test and development modes, so you do not have to
worry about corrupting your live database during development and testing.

Session Storage
During development, we have been using the default method of storing session IDs, that is, the
file system, also known as PStore. If you look within the tmp/sessions/ directory of your appli-
cation, you will see a number of files corresponding to the sessions created when you logged in
to the application.

In production, it is not a good idea to use the file system for session storage. While it works
well for very small systems and development, it requires a lot of housekeeping to keep the number
of session files low, since performance degrades as the number of session files increases. This
method cannot scale well above a single server, since the session files would need to be accessible
to all servers. Also, using files can sometimes cause file-locking issues with Mongrel. To solve
this, there are many different methods you may use to store your sessions data. We will look at
some of these now.

ActiveRecordStore

The simplest method is known as ActiveRecordStore; it’s built into Rails and uses the database
to store all the session data. There are even some predefined rake tasks to create a migration
that adds the necessary database table and to perform maintenance tasks.

You will still need to delete old sessions from the database, but this can easily be done with
a cron job and the provided rake tasks.

■Tip cron is a tool found on Unix systems that allows you to run commands on a given schedule. You can
find an introduction to cron at http://www.linuxhelp.net/guides/cron.

SqlSessionStore

As an alternative to the built-in database session store, Stefan Kaes, the author of the Rails
Express blog, has created a plug-in called SqlSessionStore. This works in a similar way to the
ActiveRecordStore but uses optimized SQL queries and is, therefore, faster.

The Rails Express blog at http://railsexpress.de has more information about
SqlSessionStore as well as other great advice about getting the best performance from your
Rails application.

Memcached

A very fast and scalable, but more complicated to configure, solution is memcached. memcached is
a general purpose memory-based caching system that simply stores a very large hash table in
memory. It can be distributed across a number of servers and can, therefore, provide a large
and very fast cache for sessions. It was originally developed by Danga Interactive to provide
caching for LiveJournal.

Bradburne_8415C14.fm Page 380 Thursday, May 17, 2007 8:08 PM

http://www.linuxhelp.net/guides/cron
http://railsexpress.de

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 381

You can find out more information about configuring Rails to use memcached at http://
nubyonrails.com/articles/2006/08/17/memcached-basics-for-rails.

Setting Up ActiveRecordStore

Since ActiveRecordStore is simple to configure and built into Rails, we will use this as our
session store.

In order to change the RailsCoders application to use ActiveRecordStore rather than the
default PStore, enter the following rake command:

$ rake db:sessions:create

 exists db/migrate
 create db/migrate/026_add_sessions.rb

You now need to perform the migration:

$ rake db:migrate

== AddSessions: migrating ===
-- create_table(:sessions)
 -> 0.1202s
-- add_index(:sessions, :session_id)
 -> 0.2011s
-- add_index(:sessions, :updated_at)
 -> 0.1880s
== AddSessions: migrated (0.5105s) ==

Next, you need to tell Rails to use the database as the session store. This is done in your
environment.rb file. Open this file, config/environment.rb, and uncomment the following line:

config.action_controller.session_store = :active_record_store

Once you have restarted your application server, your application will use ActiveRecordStore
as the session store.

Choosing a Host
Choosing a hosting provider comes down to a number of options. The first choice you will have
to make is whether to go for shared hosting, where you will share a server with other people, or
some kind of private server. This may be either a virtual private server (VPS) or a dedicated
machine.

Bradburne_8415C14.fm Page 381 Thursday, May 17, 2007 8:08 PM

http://nubyonrails.com/articles/2006/08/17/memcached-basics-for-rails
http://nubyonrails.com/articles/2006/08/17/memcached-basics-for-rails

382 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

VPS VS. DEDICATED SERVER

A VPS appears to you as a dedicated server, in that you have a unique IP address, you have root user access
to the box, and it is up to you to configure and maintain the box. However, a number of VPS instances can be
run on the same physical machine.

This means that you are sharing resources such as the CPU, hard drives, and network bandwidth with
other users on the same machine. With a dedicated server, you have a complete machine dedicated to you. In
practice, because of the burstable nature of web sites, you will not notice performance problems unless your
site becomes very popular. When it does, you can easily move to a dedicated server.

Using a VPS is a very good way to get started hosting your application. You will gain experience configuring and
maintaining a server, and when your site becomes busy enough to justify a move to a dedicated machine (or
to more than one), the procedure is exactly the same as a VPS.

Shared Hosting

If you choose to use a shared host, make sure that it supports Rails, as many do not. If Rails is
supported, it is highly likely that the host will provide information about how to configure and
deploy your application on its servers. Since shared hosts have different configurations, it is
very difficult to give instructions here, and you should follow your provider’s instructions to
ensure that your application works in that hosting environment.

VPS or Dedicated Server Hosting

When deploying your application on a VPS or dedicated server, you have many options for the
configuration of your production environment. While the choice of operating system is totally
up to you, you will find that using a Unix-based server will make deployment, monitoring, and
maintenance of your application much easier. At the moment, trying to find help with a Rails
production environment using Windows is going to be very difficult. Therefore, I highly recom-
mend using a Unix-based OS such as Linux or FreeBSD.

Since we have used Ubuntu as our Linux development platform, I will describe deployment
tasks using Ubuntu. However, the deployment process will be similar on other Unix-based
operating systems.

Choosing a Web Server
Throughout the development of our application, we have been using Mongrel to serve all pages
and resources to the browser. When you run a Rails production site, you will want to manage
the serving of pages slightly differently. While you could just have Mongrel receive and process
all requests, there are many ways to improve on this.

First of all, you will want to run more than one Mongrel process at a time. When Mongrel
processes a request, for part of the time that it’s processing, it is blocked from accepting any
new requests, since Rails is not thread-safe. Therefore, having more than one Mongrel process
available to handle incoming requests means that requests are not being queued up, waiting
for the process to become available. The optimum number of Mongrel processes to run depends
on many factors, including the amount of memory in your server, how your application is
written, and how much caching is used. For a great guide on how to choose the optimum

Bradburne_8415C14.fm Page 382 Thursday, May 17, 2007 8:08 PM

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 383

number of Mongrel processes to run, read the article by Zed Shaw, the creator of Mongrel, at
http://mongrel.rubyforge.org/docs/how_many_mongrels.html.

Also, although Mongrel is great at serving up dynamically created Rails pages, it is not the
fastest tool for serving static content such as images—a standard web server can do this much
faster. Therefore, we will use a web server to capture incoming requests. Depending on the
request, it will either be forwarded to an instance of Mongrel or, if it is a request for a static file,
served directly by the web server.

The web server should also act as a load balancer, allowing us to distribute requests across
a number of Mongrel instances. These instances may be on the same machine, or they could
even be on multiple machines.

There are a large number of web servers and load balancers to choose from. Some of the
most popular follow:

• Apache (http://httpd.apache.org) is currently the most famous and widely used web
server on the Internet. It is an open source project and is very powerful and flexible, but
it is also resource hungry. Therefore, it may not be the best choice for a shared environ-
ment or memory-constrained VPS.

• lighttpd (http://lighttpd.net) is another open source web server, and it has a very light
memory footprint. It is very fast and efficient and a great choice for serving Rails applica-
tions. At the time of this writing, there are problems with the mod_proxy implementation,
making it currently unsuitable for use in conjunction with Mongrel. However, the soft-
ware is under constant development, and I highly recommend that you read the project’s
blog for the latest updates.

• LiteSpeed (http://litespeedtech.com) is a closed source web server that has very good
support for Rails. There is a free version available, but for high-traffic websites, you will
need to purchase a license.

• Nginx (http://nginx.net), pronounced engine-x, is a very fast, very lightweight open
source web server that provides load balancing and incredibly fast static file serving.

The best method of configuring a production Rails environment with a web server and
load balancer is constantly under debate. Also, the choice of web server may be outside of your
control if you are in a corporate environment. Then too, you may simply have a personal pref-
erence. To find out more about the various configuration methods, it is a good idea to get
involved in the Rails deployment group at Google Groups: http://groups.google.com/group/
rubyonrails-deployment/.

I will demonstrate deploying the application using Apache, since it is the most common
web server in use at the moment.

Automating Deployment with Capistrano and Deprec
To help us automate our application deployment tasks, we are going to use a couple of utilities,
Capistrano and Deprec.

Capistrano (formerly known as SwitchTower) was developed by Jamis Buck, one of the
Rails core development team. It is a tool that allows you to write deployment recipes, which
are instructions on how and where your application should be deployed. In the most simple
scenario, a deployment recipe will be just the location of your source code together with the

Bradburne_8415C14.fm Page 383 Thursday, May 17, 2007 8:08 PM

http://mongrel.rubyforge.org/docs/how_many_mongrels.html
http://httpd.apache.org
http://lighttpd.net
http://litespeedtech.com
http://nginx.net
http://groups.google.com/group

384 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

addresses of your production server and database server. However, if you have a more complex
configuration, you can write recipes that perform multiple tasks on multiple servers, such as
performing backups, creating links, and restarting application servers. This is similar in concept to
the tools Ant and make.

■Note The full manual for Capistrano can be found online at http://manuals.rubyonrails.com/
read/book/17.

Deprec, short for Deployment Recipes, was written by Mike Bailey and is a collection of
Capistrano recipes that allow you to set up a production server with the minimum amount of
effort. The Deprec home page can be found at http://deprec.rubyforge.org.

The version of Deprec that we will be using (1.3.1) will automatically install and configure
an Ubuntu 6.06 server with Rails, Apache, Subversion, and MySQL. At the time of this writing,
Deprec only works on Linux or Mac OS X. There are documented workarounds for Windows
available at http://brainassembly.blogspot.com/2007/02/deploying-rails-from-windows.html,
but future releases of Deprec are likely to work with Windows.

■Note Deprec is currently being very actively developed, so I highly recommend that you check the Deprec
home page to find out the latest developments and changes to the software.

Preparing Your Server

In order to use Deprec, your server will need to be running Ubuntu 6.06.1 Desktop or Server
Edition. You do not need to install Rails on the machine manually; Deprec will do this for you.

■Note You may wish to practice deploying your application with a local machine running Ubuntu Desktop
Edition, or you may wish to rent a remote VPS.

Capistrano and Deprec communicate with your servers using Secure Shell (SSH), but
Ubuntu does not come with an SSH server installed by default, so you will need to install the
SSH server software yourself.

Do this by opening a terminal window on the Ubuntu server and entering the following
command:

$ sudo apt-get install openssh-server

On both Ubuntu Desktop and Server, you should create a user on the machine that you
will use to deploy the application. You may find it useful to create a user specifically for deploy-
ment. For instance, to create a user called deploy on the server, use the following command:

Bradburne_8415C14.fm Page 384 Thursday, May 17, 2007 8:08 PM

http://manuals.rubyonrails.com
http://deprec.rubyforge.org
http://brainassembly.blogspot.com/2007/02/deploying-rails-from-windows.html

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 385

$ sudo useradd --create-home --groups admin deploy

Set a password for this user using the following command:

$ sudo passwd deploy

To make your life easier, creating a personal SSH key will allow you to log in and deploy to
your server without constantly entering your password. If you already have an SSH key, skip
this step. If not, from your home directory on your development machine, enter the following
command:

$ ssh-keygen -t rsa

This will create two files, id_rsa and id_rsa.pub, in a directory called .ssh within your
home directory.

Installing Capistrano and Deprec

You now need to install Capistrano to your local development machine. Capistrano is distrib-
uted as a Ruby gem, so you simply install it with the following command:

$ gem install capistrano --include-dependencies

Successfully installed capistrano-1.4.1

Deprec is also distributed as a Ruby gem. Install it with the following command:

$ gem install deprec --include-dependencies

Successfully installed deprec-1.3.1

Configuring Your Application for Capistrano and Deprec

Before you create a deployment recipe, you need to set up Capistrano to use the Deprec recipes.
This is done by creating a file called .caprc in your application’s root directory that simply
consists of the command require 'deprec/recipes'.

You can easily do this by entering the following command while in the railscoders directory:

$ echo "require 'deprec/recipes'" >> ./.caprc

To check that Capistrano is now using the Deprec recipes, list the predefined Capistrano
tasks by entering the following command:

$ cap show_tasks

A long list of the available recipes is shown. If the install_rails_stack recipe is listed as
follows, Deprec is installed correctly:

Bradburne_8415C14.fm Page 385 Thursday, May 17, 2007 8:08 PM

386 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

...
install_rails_stack setup_rails_host takes a stock standard ubuntu
 'dapper' 6.06.1 server and installs everything
 needed to be a rails machine
...

You now need to create a deployment recipe for your application, specifying where the
application will be deployed and the name of the application. Do this by entering the following
command from the root directory of your application:

$ deprec --apply-to .

 exists config
 create config/deploy.rb

This creates a new configuration file called config/deploy.rb, which is shown in Listing 14-1.

Listing 14-1. The Deployment Configuration File, deploy.rb

require 'deprec/recipes'

===
ROLES
===
You can define any number of roles, each of which contains any number of
machines. Roles might include such things as :web, or :app, or :db, defining
what the purpose of each machine is. You can also specify options that can
be used to single out a specific subset of boxes in a particular role, like
:primary => true.

set :domain, "www.mynewsite.com"
role :web, domain
role :app, domain
role :db, domain, :primary => true

===
REQUIRED VARIABLES
===
You must always specify the application and repository for every recipe. The
repository must be the URL of the repository you want this recipe to
correspond to. The deploy_to path must be the path on each machine that will
form the root of the application path.

set :application, "application"
set :deploy_to, "/var/www/apps/#{application}"

Bradburne_8415C14.fm Page 386 Thursday, May 17, 2007 8:08 PM

http://www.mynewsite.com

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 387

XXX we may not need this - it doesn't work on windows
XXX set :user, ENV['USER']
set :repository, "svn+ssh://#{user}@#{domain}#{deploy_to}/repos/trunk"
set :rails_env, "production"

Automatically symlink these directories from current/public to shared/public.
set :app_symlinks, %w{photo, document, asset}

===
APACHE OPTIONS
===
set :apache_server_name, domain
set :apache_server_aliases, %w{alias1 alias2}
set :apache_default_vhost, true # force use of apache_default_vhost_config
set :apache_default_vhost_conf, "/etc/httpd/conf/default.conf"
set :apache_conf, "/etc/httpd/conf/apps/#{application}.conf"
set :apache_ctl, "/etc/init.d/httpd"
set :apache_proxy_port, 8000
set :apache_proxy_servers, 2
set :apache_proxy_address, "127.0.0.1"
set :apache_ssl_enabled, false
set :apache_ssl_ip, "127.0.0.1"
set :apache_ssl_forward_all, false
set :apache_ssl_chainfile, false

===
MONGREL OPTIONS
===
set :mongrel_servers, apache_proxy_servers
set :mongrel_port, apache_proxy_port
set :mongrel_address, apache_proxy_address
set :mongrel_environment, "production"
set :mongrel_config, "/etc/mongrel_cluster/#{application}.conf"
set :mongrel_user, user
set :mongrel_group, group

===
MYSQL OPTIONS
===

===
SSH OPTIONS
===
ssh_options[:keys] = %w(/path/to/my/key /path/to/another/key)
ssh_options[:port] = 25

Bradburne_8415C14.fm Page 387 Thursday, May 17, 2007 8:08 PM

388 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

Open the deploy.rb file, because you need to modify this file to suit your own configuration.
The first change is to set the location of your production server. This is done by changing

the set :domain statement at line 12. If you have a remote server with a registered host name,
you should enter this. I will be demonstrating with a server on my local network, so I will just
enter the IP address of this server as follows:

...
:primary => true.

set :domain, "192.168.1.6"
role :web, domain
role :app, domain
...

You now need to set the location of your source code repository, as Capistrano will currently
only deploy by checking out code from a source control repository. If you are already using an
SCM, you should enter the location of this repository in the set :repository statement at line
30. Capistrano assumes that you are using Subversion. If you are using different source control
software, you can add a configuration line: set :scm. The currently supported modules are
:subversion, :cvs, and :darcs.

However, if you are not currently using SCM, you can add an extra statement defining the
production server to be the SCM machine. To do this, add the following statement at line 16:

...
role :app, domain
role :db, domain, :primary => true
role :scm, domain
...

You now need to set the name of the application at the set :application statement at line
25. Set this to the same name as the application directory that you used when you originally
created your Rails application. Since my application is called railscoders, the line looks like
this:

...
set :application, "railscoders"
set :deploy_to, "/var/www/apps/#{application}"
...

Next, edit line 29 to set the name of the user on the server that will be used to deploy the
application. We set up a user called deploy earlier, so we will use this. Change the line as follows:

...
XXX we may not need this - it doesn't work on windows
XXX set :user, ENV['USER']
set :user, "deploy"
set :repository, "svn+ssh://#{user}@#{domain}#{deploy_to}/repos/trunk"
...

Bradburne_8415C14.fm Page 388 Thursday, May 17, 2007 8:08 PM

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 389

Now edit the SSH options at line 73, giving the path to your SSH keys on your local devel-
opment machine. Deprec will copy the public key to the remote server, but you need to specify
the filename of the private key, for example:

...
ssh_options[:keys] = %w(/path/to/my/key /path/to/another/key)
ssh_options[:keys] = %w(/Users/alan/.ssh/id_rsa)
ssh_options[:port] = 25

Depending on the setup of your server, you may also need to change the port used to connect
to the machine using SSH. This will normally be the default of port 25.

Next, you can copy your SSH key to the production server by entering the following command
on your development machine:

$ cap setup_ssh_keys

 * executing task setup_ssh_keys
 * executing "sudo test -d ~/.ssh || mkdir ~/.ssh"
 servers: ["192.168.1.6"]
Password:
 [192.168.1.6] executing command
 command finished
 * executing "sudo chmod 0700 ~/.ssh"
 servers: ["192.168.1.6"]
 [192.168.1.6] executing command
 command finished
 servers: ["192.168.1.6"]
 * uploading /home/alan/.ssh/authorized_keys
 ** uploading data to 192.168.1.6:/home/alan/.ssh/authorized_keys
 * done uploading data to 192.168.1.6:/home/alan/.ssh/authorized_keys
 upload finished

You can now use SSH to connect to your server from your development machine without
entering your password every time.

You should also make sure that the production settings in your database configuration file,
config/database.yml, are as you require. Deprec will create and set up a production database
using the values in this file, so you should change the database username and password. As an
example, my settings are shown in Listing 14-2.

Listing 14-2. The Production Settings in the Database Configuration File

...
production:
 adapter: mysql
 database: railscoders_production
 username: railscoders
 password: c0mp73xpa55wd
 host: localhost

Bradburne_8415C14.fm Page 389 Thursday, May 17, 2007 8:08 PM

390 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

It is good practice not to use the MySQL root user and to make sure you set a password for
the user that you use. In this case, I have used a MySQL user called railscoders with a password of
c0mp73xpa55wd. This user should only have permissions to access the railscoders_production
database. We will create this user in the “Preparing the Server for your Application” section,
after MySQL has been installed.

Installing the Rails Software Stack

The installation of all the software required to run Rails on your server is automated by a
Deprec recipe, install_rails_stack. Simply enter the following command on your develop-
ment machine:

$ cap install_rails_stack

* executing task install_rails_stack
 * executing task setup_user_perms
 * executing "sudo grep 'deploy:' /etc/group || sudo /usr/sbin/groupadd deploy"
 servers: ["192.168.1.6"]
 ...
 ** [out :: 192.168.1.6] /etc/rc3.d/S20httpd -> ../init.d/httpd
 ** [out :: 192.168.1.6] /etc/rc4.d/S20httpd -> ../init.d/httpd
 ** [out :: 192.168.1.6] /etc/rc5.d/S20httpd -> ../init.d/httpd
 command finished

This will take a little while, as it has to retrieve all of the software from the Internet and
compile and install it.

There are also Deprec recipes to install other software that may be required by your appli-
cation. In our case, RailsCoders makes use of ImageMagick and RMagick. You can install these
on the production server by entering the following command on your development machine:

$ cap install_rmagick

 * executing task install_rmagick
 * executing task install_image_magic
 ...

The RailsCoders application also uses some extra gems, ar_mailer and RedCloth. We need
to manually install these on the server. Log in to your remote server using SSH, for example:

$ ssh deploy@192.168.1.7

Now install the necessary gems using the following command:

Bradburne_8415C14.fm Page 390 Thursday, May 17, 2007 8:08 PM

mailto:deploy@192.168.1.7

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 391

$ sudo gem install ar_mailer redcloth

Successfully installed ar_mailer-1.1.0
Installing ri documentation for ar_mailer-1.1.0...
Installing RDoc documentation for ar_mailer-1.1.0...
Successfully installed RedCloth-3.0.4

Preparing the Server for Your Application

Next, you need to create the application-specific directories on the server. To do this, from the
project’s root directory on your development machine, enter the following command:

$ cap deprec_setup

During this setup process, you will be asked to enter the MySQL database password. MySQL is
installed with a blank password for the root user, and this is the password that is required, so
just press the Enter key to enter the blank password.

The Deprec script will automatically create the production database user that is specified
in the database.yml file.

You should also take this opportunity to change the MySQL root user password. To do this,
enter the following command, substituting your own choice of password:

$ mysqladmin -u root password Sup3rS3cr3t

Setting Up a Subversion Server

If you are already using an SCM and you have entered the details of your repository into the
deploy.rb file, you should skip this step.

However, if you are not already using an SCM, this step will create a new Subversion repos-
itory in the production server, add your code to the repository, and check out the code to your
development machine.

Capistrano only deploys code from an SCM repository, so even if you do not want to use
an SCM (although I highly recommend that you do), you must create a repository for your code.

Run the Deprec task to set up the SCM for you:

$ cap setup_scm

After adding your code to the newly created repository, Deprec will check out a working
copy of the code into a directory with the suffix _machine. You should now archive the copy of
the application that you have been using and use this version, which is under source control.
In my case, the directory is railscoders_machine.

Change to this directory with the following command:

$ cd ../railscoders_machine

Deploying Your Application

We are now ready to actually deploy the application to the server. In the newly created source-
controlled directory, enter the following command:

Bradburne_8415C14.fm Page 391 Thursday, May 17, 2007 8:08 PM

392 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

$ cap deploy_with_migrations

 * executing task deploy_with_migrations
 * executing task update_code
 * querying latest revision...
 ...
 ** [out :: 192.168.1.6] mongrel::stop reported an error. Use mongrel_rails
mongrel::stop -h to get help.
 ** [out :: 192.168.1.6] mongrel_rails stop -P log/mongrel.8001.pid -c
/var/www/apps/railscoders/current
 ** [out :: 192.168.1.6] Starting 2 Mongrel servers...
 command finished

Finally, you need to restart the Apache web server with the following command:

$ cap restart_apache

 * executing task restart_apache
 * executing "sudo /etc/init.d/httpd restart"
 servers: ["192.168.1.7"]
Enter password for /Users/alan/.ssh/id_rsa:
 [192.168.1.7] executing command
 ** [out :: 192.168.1.7] httpd not running, trying to start
 command finished

That’s it—your site is now deployed and running on your production server. To test this,
simply go to the site with your browser. You will be presented with the default RailsCoders
home page.

Optimizing and Scaling RailsCoders
Previously, we haven’t really worried about optimizing our application, except for adding some
database indexes. However, now that our application is in the wild, we should start to consider
ways to improve the response speed for our users.

Watching the Log Files
Look first in your application’s log files to start understanding any performance problems.
If you take a look at the log file for your application on your local development server, log/
development.log, you will see the actual SQL queries made for each page request. For example,
the show action of the articles controller produces an output like this:

Bradburne_8415C14.fm Page 392 Thursday, May 17, 2007 8:08 PM

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 393

Processing ArticlesController#show (for 127.0.0.1 at 2007-03-27 22:21:40) [GET]
 Session ID: e30c6bb8ae9352a334b352d650b0df43
 Parameters: {"action"=>"show", "id"=>"10", "controller"=>"articles"}
 Article Columns (0.003368) SHOW FIELDS FROM articles
 Article Load (0.000457) SELECT * FROM articles WHERE (articles.`published` = 1
AND articles.`id` = '10') LIMIT 1
Rendering actionshowlayoutfalsecontent_typetext/html within layouts/application
Rendering articles/show
 Category Columns (0.035837) SHOW FIELDS FROM categories
 Category Load (0.002032) SELECT * FROM categories WHERE (categories.`id` = 1)
Rendered layouts/_menu (0.12141)
Completed in 0.19310 (5 reqs/sec) | Rendering: 0.14069 (72%) | DB: 0.04169 (21%) |
200 OK [http://localhost/articles/10]

You can see here that the actual time spent processing the database query is shown, along
with the total time spent processing the request.

If you look at the production.log file on the production server, you will notice that the full
SQL query is not shown, but the time taken rendering the page is still shown. If you are finding
that a particular page is taking a long time to respond, the log files are the first place you should
look to help you understand if its slow response is being caused by the SQL query.

The MySQL EXPLAIN command will detail how the SQL query is processed and may help
you see how to improve the query or where to add extra indexes.

Caching
The easiest way to improve the speed of your application is to use caching. Rails supports a
number of different levels of caching; the level of caching you can use depends on the amount
of user-specific data on a page.

By default, caching is disabled for the development environment and enabled for the
production environment. If you wish to temporarily enable caching for development mode,
edit your config/environments/development.rb file by changing the setting for config.action_
controller.perform_caching to true as follows:

config.action_controller.perform_caching = true

Page Caching

The fastest and simplest method of caching in Rails is page caching. However, you can only
make use of page caching if the entire page is identical for all users and if the page is available
for all users, that is, it’s not a page accessible by only logged-in users.

Currently RailsCoders does not have any pages that are exactly the same for all users. Since
we always render the sidebar, and it changes depending on whether the user is logged in or not,
we cannot use page caching unless we change the behavior of our application.

Bradburne_8415C14.fm Page 393 Thursday, May 17, 2007 8:08 PM

http://localhost/articles/10

394 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

We might want to change the pages controller to use a different layout that does not include
the sidebar menu. Then, it would be possible to cache the index and show methods of the pages
controller. You would do this by adding caches_page statement within the PagesController
class as follows:

caches_page :index, :show

When page caching is used and specified for a specific method in a controller, the first
time that page is requested, the rendered page is saved as a static HTML file within the public
directory of your application. The actual file is stored in a subdirectory of public corresponding
to the controller name. For instance, the page /pages/1-welcome-page would be stored in
public/pages/1-welcome-page.html.

When another user attempts to access this page, the static page is returned by the web
server rather than the request being processed by Rails, resulting in a very fast response.

However, you need to bear in mind what happens if the contents of this page actually
change. Since every request for that cached page will be returned by the web server rather than
Rails and, therefore, the contents are never updated, we need a mechanism for indicating
when the cached page expires. You can either do this on a specific event or at a specific time
interval, using cron.

To make a page expire on an event, you create classes called cache sweepers. These work
in a similar way to callbacks, allowing you to make pages expire on the events after_create,
after_update, and after_destroy.

For a very complete tutorial on using page caching, go to http://www.railsenvy.com/2007/
2/28/rails-caching-tutorial. Page caches can provide very fast responses, since they bypass
running Rails entirely. However, they are also very limited, allowing you to only cache pages
that will be completely identical for every user.

Action Caching

Action caching is similar to page caching, except that the requests are processed by Rails rather
than just by the web server. This means that a before_filter in your controller class will be run
before the cached page is returned. Because of this, you can have items that are only available
to a logged-in user.

Action caching renders the page on the first request and saves this rendered page. By default,
the page is saved in the tmp/cache/ directory of your application. Since this caches the entire
output of an action, action caching is also limited to pages that are the same for all users. In the
case of our application, the sidebar also limits the use of action caching, since the same page
may be rendered differently for different users.

■Note In the same way as page caching, you create cache sweepers to empty the cache on specific actions.

Bradburne_8415C14.fm Page 394 Thursday, May 17, 2007 8:08 PM

http://www.railsenvy.com/2007

C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N 395

Action caching is slower than page caching, since the server has to process the request by
Rails, but since all Rails has to do is output a prerendered file, it does not have to perform any
database queries or perform any other processing.

Fragment Caching

Fragment caching involves caching just a section of a page rather than the entire page. This
makes it very useful for sites, like RailsCoders, where every page is dynamic. With fragment
caching, you can cache snippets of a page, such as a list of objects on a page or any other section
that either requires a complex SQL query or takes a reasonable amount of time to process and
render by Rails.

You add fragment caches within an ERb file by putting the cacheable data within a Ruby
block called cache. The first time the page is rendered, the output of this block is saved to a file
within the tmp/cache/ directory of your project.

The next time the page is rendered, this cached fragment will be automatically loaded and
inserted into the page output. However, the controller method will still be executed, meaning
that any SQL queries will be executed even though the output is cached. To prevent this, you
can add conditional statements in your action methods to check if a fragment already exists for
this action before performing the query.

■Note You can also make fragment caches expire by defining cache sweepers.

For a complete explanation and tutorial of action and fragment caching, see http://
www.railsenvy.com/2007/3/20/ruby-on-rails-caching-tutorial-part-2.

Fragment caching is very powerful, as it allows you to target slow or complex sections
within certain pages.

Benchmarking
To assess the speed of your site and the impact of any optimizing that you do, you should
consider performing benchmarking test of your application. Valid benchmarking tests are
important in helping you get the most from your server and your application, but they can be
somewhat complex to set up.

For a thorough explanation on how to perform benchmarking tests using the httperf tool,
there is an excellent screencast by Geoffrey Grosenbach available at http://peepcode.com/
products/benchmarking-with-httperf.

By benchmarking your application, you can also find the optimum number of Mongrel
processes that you should run on your server. If you try to run too many, your server will run
out of memory and start to use swap, so you need to make sure you run as many as possible
without running out of memory.

Bradburne_8415C14.fm Page 395 Thursday, May 17, 2007 8:08 PM

http://www.railsenvy.com/2007/3/20/ruby-on-rails-caching-tutorial-part-2
http://www.railsenvy.com/2007/3/20/ruby-on-rails-caching-tutorial-part-2
http://peepcode.com

396 C H A P T E R 1 4 ■ D E P L O Y I N G , O P T I M I Z I N G , A N D S C A L I N G T H E A P P L I C A T I O N

Summary
In this chapter, we talked about the different options available for hosting your Rails applica-
tion, along with the merits of different web servers.

I showed you how to change your application to use the database for the session store and
talked about the other session storage options. We then installed Capistrano and Deprec and
used them to install all of the necessary tools onto the production server, along with automat-
ically setting up the database, SSH keys, and source control software. We then deployed the
RailsCoders application onto the server, along with performing the database migrations.

The RailsCoders application is now live, so we talked about ways we can study the perfor-
mance of the application and optimize the performance of the site by adding caching. Best
practices for optimizing Rails applications are constantly evolving. As the popularity of your
site grows, you may need to adapt your application to scale properly. To stay on top of the latest
developments regarding Rails performance, you should read the Rails Express blog and the
Rails blogs and groups discussed in Chapter 1.

Bradburne_8415C14.fm Page 396 Thursday, May 17, 2007 8:08 PM

397

Index

■Symbols & Numerics
% prompt, 223

37signals, Basecamp tool, 4

■A
accessing Ruby RSS parsing library, 324

account controller

for adding users and groups, 49

creating, 57–58

functional test for, 70–72

mobile interface, 373

account login view, mobile interface, 374

accounts, mobile site, 354

action caching, 394

Action Web Service (AWS), 181, 186

ActionMailer module

configuring, 217–218

e-mail template and, 219

multi-part e-mails and, 222

ActionPack package, 6

actions

See also index action; show action

adding, articles controller, 96–97

comments controller create, 226

create, 37–38, 239

delete forum, 130

destroy, 240

edit, 39–40, 204, 239

naming, 220

new, 37–38, 203–204, 238

newsletter feature, 239–240

restricting to moderators, 142–143

sendmails, 39–40, 240

update, 204

ActiveRecord migrations, 30

ActiveRecord package, 6, 279

ActiveRecordStore method, 380–381

acts_as_attachment plug-in, 192

acts_as_taggable gem, 279

acts_as_taggable plug-in, 279

acts_as_taggable_on_steroids plug-in

installing, 282–283

using in photo gallery, 279–282

Add a new friend page, 264

adding users and groups

administration views

creating, 63

user edit, 66–67

user index, 64–65

controllers

account, 49, 57–58

creating, 55

roles, 50

users, 50, 55–57

extending user management system, 81

overview of, 47

Role model

creating, 72–74

join table and, 48–49

roles

adding, 72, 90–91

administering, 76–79

functional testing, 79–80

of user, checking, 74–76, 126

session-handling library, 53–54

sessions and cookies, 50

testing

functional, 68–72, 81

unit, 67–68

Bradburne_8415INDEX.fm Page 397 Thursday, May 31, 2007 7:51 AM

398 ■IN D E X

user account views

creating, 58

login, 61

new user, 58–61

user show, 62–63

User model

creating, 51–53

database fields required for, 48

defining, 47

addressee of e-mail, looking at, 226

Admin user, 74

administering roles, 76–79

administration views, creating

overview of, 63

user edit, 66–67

user index, 64–65

Ajax (Asynchronous JavaScript and XML), 278

Ajax callbacks, 292

Allen, Dean, 83

Amazon Web Service Simple Storage
Service, 192

Apache web server, 383

APIs

See also Blogger API; Flickr API,
integrating; Google Maps API,
integrating

for blogging engine, 155, 188–189

further development using mashups, 326

HTTP authentification for, 103–105

Liquid, 331

MetaWeblog, 156, 181

Movable Type, 156

public, free, 301, 327

XML, 101–102

app/models/page.rb file, editing to add
validations, 32

application manager (Instant Rails), 10

application.js file, 313

application.rb file, 54

applicationwide helper file listing, 236

ar_mailer plug-in

description of, 219

installing, 230–232

Article model

creating, 87

database fields for, 84

article views

articles admin, 100

edit article, 100

new article, 99

overview of, 98–99

show article, 99

article, new, creating, 101

articles admin view, 100

articles controller

actions, adding, 96–97

creating, 92–93

description of, 86

functional tests for, 112–113

mobile interface, 360–361

pagination, 93

returning XML data, 94

RSS and Atom feeds, 94–96

articles index view, mobile interface, 361–362

articles show view, mobile interface, 362

Assign Role link, 79

Asynchronous JavaScript and XML (Ajax), 278

Atom feeds and articles controller, 94–96

attachment_fu plug-in

database fields for, 193

description of, 192

installing, 196

methods, 194

automating deployment with Capistrano
and Deprec

configuring application, 385–389

deploying application, 391–392

installing Capistrano and Deprec, 385

overview of, 383

preparing server, 384–385

preparing server for application, 391

Rails software stack, installing, 390

setting up subversion server, 391

AWS (Action Web Service), 181, 186

Bradburne_8415INDEX.fm Page 398 Thursday, May 31, 2007 7:51 AM

399■I N D E X

Find it faster at http://superindex.apress.com

■B
Bailey, Mike, 384

bandwidth and file size, 191

Bartelme, Wolfgang, 269

Basecamp tool (37signals), 4

benchmarking, 395

blog entry view with new user template, 345

blog entry, displaying, 168

blog name helper method, 161

blog settings migration, 159

blog title, adding to edit user profile page, 162

blog, description of, 153

Blogger API

description of, 156

method calls, defining, 182–183

method code, writing, 184–186

methods, 180–181

blogging engine

See also blogging system

building

blog name helper method, 161

blog title, adding to edit user profile
page, 162

blogging scaffolding code, generating,
156–157

models’ relationships and
variations, 160

resource mapping, 161

controllers and views

blogs controller, 178

blogs index view, 179

comments controller, 173–175

edit entry view, 170–171

entries controller, 164–165

entries index view, 169–170

entries show view, 166–168

new entry view, 165

overview of, 163

removing generated layouts, 163

further development of, 189

migrations for, 158–159

new comment notifier, building

automating mailer tests, 228–230

calling mailer from comments
controller, 226–227

mailer model, creating, 220–223

manually testing, 223–226

testing mailer from within
application, 227

notifying owners of new comments in
blog, 219

overview of, 153

requirements for

APIs, 155

blogs controller, 155

Comment model, 154

comments controller, 155

entries controller, 155

Entry model, 153

User model, 154

testing

automated, of API, 188–189

comments controller, 176–177

desktop blogging client, using, 186–187

entries controller, 171–173

Web services, 186

user profiles, adding latest blog entries to,
177–178

XML-RPC interface, creating

Action Web Service and, 181

Blogger API method calls, defining,
182–183

Blogger API method code, writing,
184–186

overview of, 180–181

Web service code, generating, 181

blogging system

See also blogging engine

adding user-definable templates to

further development of, 348

installing Liquid, 332

Liquid API and, 331

Liquid markup and, 331–332

Liquid plug-in and, 330

Find it faster at http://superindex.apress.com

Bradburne_8415INDEX.fm Page 399 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

400 ■IN D E X

manually testing, 343–346

requirements for, 329–330

testing usertemplates controller,
346–348

building templating feature

creating Liquid drop files, 333–336

creating Liquid filters, 336–337

rendering Liquid templates, 342

Usertemplate model, 337–338

usertemplate views, 340–341

usertemplates controller, 338–340

blogs controller

creating, 178

description of, 155

mobile interface, 370

blogs index view

blogging engine, 179

mobile interface, 371

blogs, mobile site, 354

body field, 26

body of text-only part of e-mail,
displaying, 226

Buck, Jamis, 383

built-in testing, 6

■C
caching

action caching, 394

counter cache, 117, 124, 153

fragment caching, 395

page caching, 393–394

calling mailer from comments controller,
226–227

Capistrano

configuring application for, 385–389

deploying application, 391–392

installing, 385

overview of, 383

preparing server, 384–385

preparing server for application, 391

setting up subversion server, 391

categories controller, 86, 105–107

Category model

creating, 88

database fields for, 85

category views

admin, 109

edit, 108

index, 108

new, 108

category_id, nullifying on deletion, 89

Çelik, Tantek, 249

checking roles of user, 74–76, 126

commands

generate, 92

generate controller, 33–34

rails, 14

rake, 68

script/generate migration, 29

Comment model, 154

comments controller

calling mailer from, 226–227

creating, 173–175

description of, 155

functional tests, 229–230

testing, 176–177

comments table migration, 158–159

config/routes.rb file, 22

configuring

ActionMailer, 217–218

application for Capistrano and Deprec,
385–389

Rails to use database, 18–19

content management system

See also controllers, creating; Page model

default page, setting up, 41

extending, 44

layout, creating, 23–26

sidebar menu, adding link from, 41

controller layer, 5

controllers

See also specific controllers

for adding users and groups, 49–50

for blogging engine, 155

Bradburne_8415INDEX.fm Page 400 Thursday, May 31, 2007 7:51 AM

401■I N D E X

Find it faster at http://superindex.apress.com

creating

account, 57–58

deleting pages, 40

displaying pages, 36

editing pages, 39–40

links and permalinks, creating, 36–37

listing available pages, 34–36

new pages, adding, 37–38

overview of, 33–34, 55

users, 55–57

for discussion forum, 119

for friends list

building, 258–259

testing, 272–273

for mobile application, 355

for News module, 86

for photo gallery, 195

for tagging system in photo gallery

creating, 285

tags, writing, 286

user tags, writing, 288

for viewing tags, 278

mobile interface

account, 373

articles, 360–361

blogs, 370

entries, 368

forums, 362

pages, 360

photos, 371

post, 365

topics, 363

user show view, 368

user_photos, 372

users, 367

usertemplates

creating, 338–340

description of, 330

testing, 346–348

convention over configuration design
principle, 4

cookies, for adding users and groups, 50

counter cache

for blogging service, 153

for discussion forum, 117

posts, adding to users model, 124

create action, 37–38, 239

Create New Newsletter screen, 242

cron tool (Unix), 380

CSS

for forum tables, adding, 127

for photo gallery, 208

cURL utility, 101

■D
database

configuring Rails to use, 18–19

creating, 18

Page model

creating, 28–33

description of, 26–27

pages controller file, 27

testing, 19–20

for testing, creating, 42

using as storage system, 193

database fields

Article model, 84

Category model, 85

Comment model, 154

db_files table, 193

Entry model, 153

forum model, 118

friendships schema, 250

for models using attachment_fu
plug-in, 193

newsletter, 219

Photo model, 195, 302

post model, 119

Role model, 48

Role_Users join table, 49

Tag model, 280

Tagging model, 280

topic model, 118

User model, 48, 154

Usertemplate model, 330

Bradburne_8415INDEX.fm Page 401 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

402 ■IN D E X

database migrations. See migrations

database software and community web
sites, 7

date format, defining, 62

db_files table, 193

dedicated server hosting, 381–382

default mappings, 22

default page, setting up, 41

defining

Blogger API method calls, 182–183

date format, 62

post model, 119

relationships among models, 88

Role model, 48

topic model, 118

User model, 47–48

validations, 89

delete forum action, 130

deleting

See also removing

pages, 40

posts, 141

topics, 136

deploying application

automating with Capistrano and Deprec

configuring application, 385–389

deploying application, 391–392

installing Capistrano and Deprec, 385

overview of, 383

preparing server, 384–385

preparing server for application, 391

Rails software stack, installing, 390

setting up subversion server, 391

deployment mode vs. production
mode, 379

host provider, choosing, 381–382

session storage, 380–381

web server, choosing, 382–383

deployment mode, running application
in, 379

Deprec

configuring application for, 385–389

deploying application, 391–392

installing, 385

overview of, 383

preparing server, 384–385

preparing server for application, 391

Rails software stack, installing, 390

setting up subversion server, 391

desktop blogging client, testing using,
186–187

destroy method, 40

developer community, 17

development mode

ActionMailer and, 218

e-mail delivery and, 224

disabling users, 65

discussion forum

building

checking user role for moderator
rights, 126

forum, topic, and post models, 120–121

layout template and style sheet,
modifying, 126–127

migration scripts, 123–125

model relationships, 121–122

model validations, 122–123

nested resource route mappings,
adding, 126

description of, 117

forum controller and views

delete forum action, 130

forum index action, 127

forum index page, 128

forum new and edit pages, 129–130

manually testing, 131

new forum, creating, 129

show action, 129

further development of, 150–151

link to sidebar menu, adding, 141

Bradburne_8415INDEX.fm Page 402 Thursday, May 31, 2007 7:51 AM

403■I N D E X

Find it faster at http://superindex.apress.com

posts controller and views

deleting post, 141

editing post, 139–141

new post, creating, 138–139

posts index page, 136–137

requirements for

controllers, 119

moderator role, 119

overview of, 117

post model, defining, 119

topic model, defining, 118

restricting actions to moderators, 142–143

testing

fixtures, creating, 143–144

functional, 144–150

overview of, 143

topics and posts, 141

topic controller and views

deleting topics, 136

editing topics, 135

new topic view, 133–135

topic index action, 131–132

topic index page, 132–133

topic show action, 136

displaying

body of text-only part of e-mail, 226

latest Flickr photos, 322–325

location data as map, 308–311

pages, 36

domain-specific language (DSL), 6

don't repeat yourself (DRY) design
principle, 4

■E
Ecto, testing using, 186–187

edit action, 39–40, 239

edit article view, 100

edit category view, 108

edit entry view, 170–171

edit photo view, 204

edit user profile page, adding blog title to, 162

edit user view, adding Flickr username to, 319

edit.rhtml file, 66–67

editing

blog title, 162

pages, 39–40

posts, 139–141

topics, 135

editing photo screen, 297

editor role

adding, 90–91

for News module, 85

e-mail, sending

See also newsletter feature

ActionMailer module, 217–218

further development of system for, 244

new comment notifier, building

automating mailer tests, 228–230

calling mailer from comments
controller, 226–227

mailer model, creating, 220–223

manually testing, 223–226

testing mailer from within
application, 227

requirements for

newsletters, 219–220

notification of new comments in
blog, 219

overview of, 218

empty migration, running, 19

enabling users, 65

entity relationship diagrams for Article and
Category models, 85

entries controller

creating, 164–165

description of, 155

mobile interface, 368

testing, 171–173

entries helper file, 161

entries index view

blogging engine, 169–170, 175

mobile interface, 369–370

entries show view

blogging engine, 166–168, 175

mobile interface, 370

entries table migration, 158

Bradburne_8415INDEX.fm Page 403 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

404 ■IN D E X

Entry model, 153

entry view

blog, 345

edit, 170–171

new, 165

show, 166–167

ERb templating system, 24

error messages for method, 37

extending

blogging engine, 189

content management system, 44

discussion forum, 150–151

e-mail system, 244

friends list, 274

mashups, 326

mobile interface, 377

news blog system, 115

photo gallery, 215

tags, 298

templates, 348

user management system, 81

■F
Fakes, Tom, 287

FCKeditor, 44

feature requirements, specifying for site, 21

file size, 191

file system

session storage and, 380

using for storage of uploaded files, 194

file_column plug-in, 192

flash, success notices stored in, 38

flash messages, 58

Flickr API, integrating

building feature

key, obtaining, 318

latest photos, displaying, 322–325

overview of, 317

user database fields, creating, 318–319

user nsid, retrieving, 320–322

username, adding to edit user view, 319

further development using mashups, 326

overview of, 316

requirements for, 317

form for method, 37

forum controller and views

delete forum action, 130

description of, 119, 127

forum index action, 127

forum index page, 128

forum new and edit pages, 129–130

manually testing, 131

new forum, creating, 129

show action, 129

forum index action, 127

forum index page, 128

forum index view, 363

forum model

building, 120–121

validations, 122–123

forum model file, 121

forum new and edit pages, 129–130

forums, mobile site, 354

forums controller, mobile interface, 362

forums functional tests, 145–146

fragment caching, 395

framework, 4

Fried, Jason, 4

friends index page, 264

friends list

controller

building, 258–259

testing, 272–273

database migrations, creating, 251–253

description of, 247

friends resource

building, 254–257

description of, 249–251

further development of, 274

requirements for, 249

showing users’ latest activities, 251

sidebar menu links, adding, 267–268

styling, 269–271

testing, 274

Bradburne_8415INDEX.fm Page 404 Thursday, May 31, 2007 7:51 AM

405■I N D E X

Find it faster at http://superindex.apress.com

user’s latest activity, updating, 257–258

views

edit, 266–267

index, 260–262

new, 262–266

XFN and, 247–249

functional testing

account controller, 70–72

back-end, of blogging API, 188–189

comments controller, 176–177

discussion forum

forums functional tests, 145–146

overview of, 144

posts controller functional tests,
148–150

topics functional tests, 146–148

entries controller, 171–173

friends controller, 272–273

mailer model, 229–230

news blog system, 112–114

overview of, 68

photo gallery, 212–215

roles, 79–81

user controller, 68–70

■G
Garrett, Jesse James, 278

gems

acts_as_taggable, 279

installing Ruby on Rails as, 7

RedCloth, 84, 86–87

generate command, 92

generate controller command, 33–34

generated layouts, removing, 163

geocoder, 312

geographical fields, adding

to photo edit and new pages, 306–307

to photo schema, 305–306

Google Maps API, integrating

building feature

displaying location data as map,
308–311

geographical fields, adding, 305–307

key, obtaining, 303

selecting location of photo using map,
312–315

YM4R/GM plug-in, installing, 303–304

overview of, 301–302

requirements for, 302

Grosenbach, Geoffrey, 28

■H
Hansson, David Heinemeier, 4, 279

Harman, Steve, 270

has and belongs to many (HABTM)
relationship, 73, 249

has_many_polymorphs ActiveRecord
plug-in, 279

hash, 48

header, e-mail, viewing, 226

helper methods

blog name, 161

paginate, 93

textilize, 84

uploading files, 212

xfn_rel_tag, 261–262

Hibbs, Curt, 9

Hodel, Eric, 219

host provider, choosing, 381–382

HTTP authentication for API

adding, 103–104

testing, 104–105

■I
id field, 26

image file size, 191

ImageMagick, 195–196

index action

articles, 98

forums, 127

newsletters, 236–237

photos, 205

posts, 141

topics, 131–132

user photos, 204

index method, 34–36

Bradburne_8415INDEX.fm Page 405 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

406 ■IN D E X

index view

articles, 361–362

blogs, 179, 371

categories, 108

entries, 169–170, 175, 369–370

forums, 128, 363

friends, 260

newsletters, 237

pages, 35, 40

photos, 205, 371

posts, 137, 366–367

tags, 287–288

topics, 132, 364–365

updated, 35

user photos, 204–205, 372

user tags, 289

users, 64–65

usertemplate, 340, 343

in-memory testing, 28

installing

acts_as_taggable_on_steroids plug-in,
282–283

ar_mailer, 230–232

attachment_fu plug-in, 196

Capistrano and Deprec, 385

ImageMagick and RMagick, 196

on Linux, 12–13

Liquid plug-in, 332

on Mac OS X, 11–12

overview of, 8

Rails software stack, 390

RedCloth gem, 86–87

on Windows, 9–10

YM4R/GM plug-in, 303–304

Instant Rails, 9–10

integrating Flickr API

building feature

key, obtaining, 318

latest photos, displaying, 322–325

overview of, 317

user database fields, creating, 318–319

user nsid, retrieving, 320–322

username, adding to edit user view, 319

overview of, 316

requirements for, 317

integrating Google Maps API

building feature

displaying location data as map,
308–311

geographical fields, adding, 305–307

key, obtaining, 303

selecting location of photo using map,
312–315

YM4R/GM plug-in, installing, 303–304

overview of, 301–302

requirements for, 302

integrating OpenID into user accounts
system, 81

integration testing

description of, 79

example of, 80

mobile site, 376

news blog system, 114–115

■J
join models, 249

join tables, 49, 72–74

■K
Kaes, Stefan, 380

key, obtaining

Flickr API, 318

Google Maps API, 303

■L
layout

creating, 23–26

generated, removing, 163

mobile interface, 356

mobile site, 353

layout template for discussion forum,
modifying, 126–127

libraries

Object/Relationship Mapping, 6

Ruby RSS parsing, accessing, 324

Bradburne_8415INDEX.fm Page 406 Thursday, May 31, 2007 7:51 AM

407■I N D E X

Find it faster at http://superindex.apress.com

session-handling, 53–54

tagging, 278–282

TMail, 225

lighttpd web server, 383

link to method, 35

links

creating, 36–36

from sidebar menu

for discussion forum, 141

for friends list, 267–268

to gallery and new photo pages, 207

for News module, 109

to newsletters, 241

overview of, 41

to tag browser

adding links on user profile page, 296

adding tag links to photo show view, 295

adding tags to sidebar menu, 295

User and Role models, 49

Linux

installing ImageMagick and RMagick
on, 196

installing on, 12–13

Liquid plug-in

adding user-definable templates to
blogging system, 330

API, 331

description of, 329

drop files, creating, 333–336

filters, creating, 336–337

installing, 332

markup, 331–332

templates, rendering, 342

listing available pages, 34–36

listings

account controller file, 57–58

account controller functional test, 71

add_tag method, 290

add_tag RJS file, 293

adding blog title to edit user profile
page, 162

adding tag index link to sidebar menu, 295

admin view of categories, 109

application layout file, 24

application.js file, 313

application.rb file, modifications to, 54

applicationwide helper file, 236

articles admin view, 100

articles integration test, 114

atom.rxml file, 95

backend controller file, 184

back-end functional tests, 188–189

Blogger API definition file, 183

Blogger Web service file, 184–186

blogs controller file, 178

blogs index view file, 179

categories controller file, 106–107

categories index view, 108

category create view, 108

category edit view, 108

comment drop file, 335

comment notification e-mail
template, 221

comments controller create action, 226

comments controller file, 173

comments functional tests, 176–177

CSS style sheet

to display XFN icons, 270–271

for tag cloud, 288

deployment configuration file, deploy.rb,
386–388

edit article view, 100

edit page view, 39

edit post view, 140

edit_tag partial view, 291

edit_tag partial view updated, 294

entries controller file, 164–165

entries controller file updated, 342

entries controller functional tests file,
171–173

entries helper file, 161

entries index view, 169–170

entry drop file, 334

entry edit view file, 170–171

Bradburne_8415INDEX.fm Page 407 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

408 ■IN D E X

entry model, modifications to, 257

entry show view to add delete link, 175

Flickr username, adding to user edit
view, 319

forum edit view, 130

forum index view, 128

forum model file, 121

forum new view, 130

friends controller file, 258–259

friends controller functional test file,
272–273

friends index view file, 260

friends resource mapping in routes.rb
file, 254

friendship edit view, 266–267

friendship model file, 255

friendship model file updated, 255–257

friendship partial view, 260

friendship_with_edit partial view, 261

functional tests

account controller, 71

articles controller, 112–113

back-end, 188–189

comments, 176–177

entries controller, 171–173

friends controller, 272–273

photos controller, 212–215

topics controller, 146–148

user templates, 347

users controller, 69

gmaps_api_key.rb configuration file, 304

HTML new comment notification e-mail
template, 222

index view updated, 35

Liquid text filters file, 336

login stories integration test file, 79

login system module, 53

login view, 61

mappings for entries, comments and
blogs resources, 161

menu partial file updated, 267

menu view file updated, 41

migrations

to add editor role, 90

to add fields to user table, 159

to add geographical coordinates to
Photo model, 305

to add last activity to users table, 253

to add moderator role, 124

to add posts counter cache to users
model, 124

to add tagging support, 283

ar_mailer, 231

to create comments table, 158–159

to create entries table, 158

Flickr user details, adding, 318

friendships table, 252–253

for newsletter, 233

for Page model, 30

for photos table, 198

role_users table, 73

user table, 51

Usertemplates, 337

mobile account controller file, 374

mobile account login view, 374

mobile articles controller, 361

mobile articles index view, 361

mobile articles show view, 362

mobile blogs controller, 370

mobile blogs index view, 371

mobile CSS file, 357

mobile entries controller file, 369

mobile entries index view, 369

mobile entries show view, 370

mobile forum index view, 363

mobile forums controller, 362

mobile layout file, 356

mobile login integration test, 376

mobile pages controller file, 360

mobile pages show action, 360

mobile photos controller, 371–372

mobile photos index view, 371

mobile photos show view, 373

mobile posts index view, 366

Bradburne_8415INDEX.fm Page 408 Thursday, May 31, 2007 7:51 AM

409■I N D E X

Find it faster at http://superindex.apress.com

mobile posts new view, 367

mobile resource mappings in routes.rb
file, 357–359

mobile topics controller, 363

mobile topics index view, 364

mobile topics new view, 365

mobile user show view, 368

mobile user_photos index view, 372

mobile users controller, 367

mobilemenu partial view, 356

new article view, 99

new blog entry view file, 165

new blog post link, creating, 167–168

new friendship view file, 262–266

new newsletter view, 239

new page view, 37

new post view, 139

new topic view, 134

new user view, 58–59

newsletter edit view, 239

newsletter index view, 237

newsletter mailer method, 241

newsletter show view, 238

newsletters controller, 234

notifier mailer model, 220

page index view updated, 40

page show view, 36

page test fixtures file, 43

Photo model, 199

modifications to, 258

modifications to, for tagging, 284

unit tests, 210–212

photos controller, 200

plain text newsletter template, 241

post model, modifications to, 257

post model file, 122

posts controller functional tests, 149–150

posts index view, 137

production settings in database
configuration file, 389

remove_tag action method, 294

remove_tag RJS template, 295

roles controller file, 76

roles index file, 77

roles table migration file, 72

roles_users table migration file, 73

route mappings file, updates to, 285

routes file updated, 55

routes.rb file, 357–359

rss.rxml file, specifying RSS feed of
articles, 94

sample blog_entry user template, 345

sample blog_index user template, 343

show article view, 99

show blog entry view file, 166–167

sidebar menu for user index view, 65

sidebar menu partial file, 26

updated for administering roles, 78

updated for new user view, 59–60

stylesheet for RailsCoders site, 25–26

tag cloud helper, 287

tag controller file, 286

tags index view, 287

topic index view, 132

topic model file, 121

topics controller functional tests, 146–148

unit tests

for comment notification, 228

for Photo model, 210–212

user drop file, 333

user edit view, 66–67

user index view, 64

User model file, 52

modifications to, 254

modifications to for RSS feed, 324

modifications to for tagging, 284

updates to for Flickr integration, 320

user partial view, 64

user photos controller, 201–203

user show view, 62

displaying Flickr photos, 325

updated, 296

user table migration file, 51

user tags controller file, 288

Bradburne_8415INDEX.fm Page 409 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

410 ■IN D E X

user tags index view, 289

user tags show view, 289

user templates functional test file, 347

user unit test file, 67

user view file updated, 268

user_photos

edit page, modifications to, 306, 313

new page, modifications to, 307

show file updated, 309

update to new view, 314

user_photos edit file updated, 291

user_photos_controller

edit method, modifications to, 312

show action updated, 309

update to new method of, 314

user_tags show view updated, 296

users controller file, 55–57

users controller functional test, 69

users controller show method
updated, 324

usertemplate edit view, 341

usertemplate index view, 340

Usertemplate model file, 338

usertemplates controller file, 339

Usertemplates migration file, 337

view file

for edit photo action, 204

for new photo action, 203–204

for photo show action, 206

for photos index action, 205

for user photos index action, 204

view for articles index action, 98

xfn_rel_tag helper method, 261–262

LiteSpeed web server, 383

location data, displaying as map, 308–311

location of photo, selecting using map,
312–315

Locomotive, 11–12

log files, watching, 16, 224, 392–393

logging out of site, 60

login screen with error message, 61

login stories integration test file, 79

login system module, 53

login view, creating, 61

Lütke, Tobias, 330

■M
Mac OS X, installing on, 11–12

MacroMates, TextMate, 7

mailer model

automating testing of, 228–230

calling from comments controller,
226–227

creating, 220–223

description of, 217

manually testing, 223–226

testing from within application, 227

main blog view with new user template, 344

manually testing

forum controller, 131

mobile interface, 375–377

new comment notifier, 223–226

news blog system, 110

photo gallery, 208–209

user-definable templates, 343–346

mapping

See also mapping feature; resource
mapping

newsletter resource, 233

photos resource, 200

resource, 32

REST resources for News module, 91–92

mapping feature

building

displaying location data as map,
308–311

geographical fields, adding, 305–307

Google Maps API key, obtaining, 303

selecting location of photo using map,
312–315

YM4R/GM plug-in, installing, 303–304

requirements for, 302

mapping service. See Google Maps API,
integrating

Bradburne_8415INDEX.fm Page 410 Thursday, May 31, 2007 7:51 AM

411■I N D E X

Find it faster at http://superindex.apress.com

mappings

default, 22

nested resource route, adding to
discussion forum, 126

REST, 22

Markdown markup system, 84

mashups

See also Flickr API, integrating; Google
Maps API, integrating

description of, 301

further development using, 326

Matsumoto, Yukihiro, 3

memcached, 380

Messina, Chris, 269

metaprogramming, 6

MetaWeblog API, 156, 181

methods

See also helper methods

ActiveRecordStore, 380–381

add_tag, 290

attachment_fu plug-in, 194

Blogger API, 180–181

default action, 27

destroy, 40

edit, 312

error messages for, 37

form for, 37

index, 34–36

link to, 35

logout, 72

MetaWeblog API, 156

new, 314

remove_tag, 294

test logout, 72

text area, 38

text field, 38

validates length of, 33

validates presence of, 32

Meyer, Eric, 249

microformats, 247. See also XFN (XHTML
Friends Network)

migrations (migration scripts)

ActiveRecord, 30

to add editor role, 90

to add last activity to users table, 253

to add tagging support, 283

ar_mailer, 231

for blogging engine, 158–159

discussion forum, 123–125

empty, running, 19

Flickr API integration, 318

friendships table, 252–253

for mapping feature, 305

for newsletter, 233

for Page model, 30

performing, 19–20

for photo gallery, 198–199

roles table, 72

roles_users table, 73

users table, 51, 159, 253

uses of, 28

Usertemplates, 337

mobile home page, 375

mobile interface

controllers and views

account login page, 373–374

articles index view, 361–362

articles resource, 360–361

articles show view, 362

blogs resource, 370–371

entries index view, 369–370

entries resource, 368

entries show view, 370

forum index view, 363

forums resource, 362

pages resource, 360

photos resource, 371–373

post resource, 365

posts index view, 366–367

posts new view, 367

topics index view, 364–365

topics new view, 365

Bradburne_8415INDEX.fm Page 411 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

412 ■IN D E X

topics resource, 363

user show view, 368

user_photos resource, 372

users resource, 367

further development of, 377

layout file and style sheet for, 356–357

manually testing, 375–377

need for, 351

requirements for

accounts, 354

blogs, 354

forums, 354

layout of, 353

news articles, 354

overview of, 352

pages, 354

photo gallery, 355

user profiles, 354

resource mappings, 357–359

structure of, 355

XHTML and, 351–352

Mobile Web Best Practices, 352

model layer, 5

model relationships, discussion forum,
121–122

model validations, discussion forum, 122–123

models

See also specific models

defining relationships among, 88

relationships and validations for blogging
engine, 160

model-view-controller (MVC) architecture,
5–6, 21

moderator rights, checking user role for, 126

moderator role

description of, 119

migration to add, 124

restricting actions to, 142–143

Molina, Marcel, Jr., 192

Mongrel, 382–383

monitoring log files, 16, 224, 392–393

Movable Type API, 156

Mullenweg, Matthew, 249

MVC (model-view-controller) architecture,
5–6, 21

MySQL

adding to Locomotive path, 12

database password, 391

■N
naming actions, 220

navigation of mobile site, 352

nested resource route mappings, adding to
discussion forum, 126

new action, 37–38

new article view, 99

new category view, 108

new entry view, 165

new forum, creating, 129

new photo view, 203–204

new post, creating, 138–139

new topic view, 133–135

new user view, creating, 58–61

news articles, mobile site, 354

News module

Article model, creating, 87

article views

articles admin, 100

edit article, 100

new article, 99

overview of, 98–99

show article, 99

articles controller

actions, adding, 96–97

creating, 92–93

pagination, 93

returning XML data, 94

RSS and Atom feeds, 94–96

categories controller, creating, 105–107

Category model, creating, 88

category views

admin, 109

creating, 105

edit, 108

Bradburne_8415INDEX.fm Page 412 Thursday, May 31, 2007 7:51 AM

413■I N D E X

Find it faster at http://superindex.apress.com

index, 108

new, 108

controllers and views, creating, 91

defining

relationships among models, 88

validations, 89

editor role, adding, 90–91

further development of, 115

HTTP authentication for API, adding,
103–104

link to sidebar menu, adding, 109

mapping REST resources, 91–92

new article, creating, 101

nullifying category_id on deletion, 89

overview of, 83

requirements for

Article model, 84

articles controller, 86

categories controller, 86

Category model, 85

editor role, 85

Textile markup system, 83–84

testing

API authentication, 104–105

functional, 112–114

integration, 114–115

manually, 110

overview of, 110–112

XML API, 101–102

updating published_at field, 89

newsletter feature

See also sending e-mail

building

ar_mailer, installing, 230–232

create action, 239

destroy action, 240

edit action, 239

link to newsletters, adding to
sidebar, 241

newsletter index action and view,
236–237

newsletter mailer, creating, 241

newsletter model, 234

newsletter new action and view, 238

newsletter resource, mapping, 233

newsletter show action and view,
237–238

newsletters controller, 234–236

overview of, 230

sendmails action, 240

skeleton resource, creating, 232–233

update action, 240

requirements for, 219–220

testing newsletter mailer, 242–244

newsletter mailer

creating, 241

testing, 242–244

newsletter model, creating, 234

newsletter resource, mapping, 233

newsletters controller, creating, 234–236

Nginx web server, 383

notifier, building

automating mailer tests, 228–230

calling mailer from comments controller,
226–227

mailer model, creating, 220–223

manually testing, 223–226

overview of, 219–220

testing mailer from within
application, 227

nullifying category_id on deletion, 89

■O
Object/Relationship Mapping (ORM)

library, 6

Olson, Rick, 47, 192

one-way hashing algorithm, 48

OpenID, integrating into user accounts
system, 81

optimizing application, 392–395

OS X, installing ImageMagick and RMagick
on, 196

Bradburne_8415INDEX.fm Page 413 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

414 ■IN D E X

■P
page caching, 393–394

Page model

accessing with pages controller file, 27

creating

adding validations, 32–33

mapping resource, 32

migrations and, 28–29

description of, 26–27

testing, 42–44

pages

adding new, 37–38

mobile site, 354

pages controller, mobile interface, 360

pages controller file, 27

pages index view, 35

paginate helper method, 93

partial file, 26

passwords, storing, 47

percent (%) prompt, 223

performing, migration, 19–20

permalinks, creating, 36–37

photo edit page, adding geographical fields
to, 306–307

photo gallery

See also Photo model; tags

attachment_fu plug-in and, 192–194

controllers

photos, 200

user photos, 201–203

further development of, 215

generating scaffolding code, 197

latest photos, adding to user profile,
207–208

links to gallery and new photo pages,
adding, 207

mobile site, 355

overview of, 191

photos resource, mapping, 200

requirements for, 194–195

styling, adding, 208

testing

functional, 212–215

manually, 208–209

photo fixtures, creating, 210

unit, 210–212

User model, adding reciprocal
relationship to, 200

views

edit photo, 204

new photo, 203–204

photos index, 205

user photos index, 204–205

user photos show, 206

working with uploaded files, 191–192

writing migration, 198–199

Photo model

creating, 199

defining, 195

storing location data and, 302

unit tests for, 210–212

updating for tagging, 284–285

photo new page, adding geographical fields
to, 307

photo schema, adding geographical fields to,
305–306

photo show page, with embedded Google
map, 310

photo show view, 206, 295

photo upload page with embedded Google
map, 315

photos

adding tags to

allowing users to add tags, 290–293

allowing users to remove tags, 293–295

latest, displaying, 322–325

mapping feature for, 302

photos controller

creating, 200

functional tests for, 212–215

mobile interface, 371

photos index view, 205, 371

photos resource, mapping, 200

photos show view, mobile interface, 373

photos tag cloud, 297

Bradburne_8415INDEX.fm Page 414 Thursday, May 31, 2007 7:51 AM

415■I N D E X

Find it faster at http://superindex.apress.com

phpBB open source forum
implementation, 117

plug-ins. See specific plug-ins

polymorphic associations, 279

post controller, mobile interface, 365

post model

building, 120–121

defining, 119

validations, 123

post model file, 122

posts, testing, 141

posts controller and views

deleting post, 141

description of, 119

editing post, 139–141

functional tests, 148–150

new post, creating, 138–139

posts index page, 136–137

posts counter cache, adding to users
model, 124

posts index action, 141

posts index page, 136–137

posts index view, mobile interface, 366–367

posts new view, mobile interface, 367

preparing server

for application, 391

for deploying application, 384–385

production mode, running application
in, 379

PStore, 380

published_at field, updating, 89

PunBB open source forum
implementation, 117

■R
Raaum, Ryan, 11

radio_button helper, 257

RadRails text editor, 7

rails command, 14

Rails console, 223

Rails deployment group, 383

Rails Express blog, 380

Rails software stack, installing, 390

RailsCoders Web site

creating skeleton of, 14–16

description of, 1

layout for, creating, 23–24

requirements for, 2, 21

sidebar menu partial file, 26

software required to build, 7

style sheet for, 25–26

rake command, 68

rake tool, 31

RedCloth gem, 84, 86–87

registering for Flickr, 317

relationship, specifying for friends list, 248

relationships among models

for blogging engine, 160

defining, 88

Remote JavaScript (RJS) files, 292

Remote JavaScript (RJS) template files, 293

removing

See also deleting

generated layouts, blogging engine, 163

tags from photo objects, 293–295

rendering Liquid templates, 342

Representational State Transfer (REST)
routes, 22, 301

resource mapping

for blogging engine, 161

mobile interface, 357–359

overview of, 31

for tagging system in photo gallery, 285

REST (Representational State Transfer)
routes, 22, 301

REST resources, mapping for News module,
91–92

restful authentication plug-in, 47

restricting actions to moderators, 142–143

retrieving Flickr user nsid, 320–322

returning XML data, 94

REXML parser, 320

RHTML file, 94

RJS (Remote JavaScript) files, 292

RJS (Remote JavaScript) template files, 293

Bradburne_8415INDEX.fm Page 415 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

416 ■IN D E X

RMagick, 195–196

Role model, 48, 72–74

roles

adding, 72, 90–91

administering, 76–79

editor, 85, 90–91

functional test for, 79–81

moderator, 119, 124, 142–143

of user, checking, 74–76, 126

roles controller, for adding users and
groups, 50

roles controller file, 76

roles index file, 77

roles table migration file, 72

roles_users table migration file, 73

Roos, Chris, 28

routes.rb file

adding mapping to end of, 57

mobile resource mappings in, 357–359

update to, 55

RSS feeds and articles controller, 94–96

RSS parsing library, accessing, 324

Ruby

history of, 3

uses of, 4

Ruby console window (Instant Rails), 10

Ruby on Rails

built-in testing, 6

description of, 2–4

metaprogramming, 6

model-view-controller architecture, 5–6

RubyCocoa framework, 4

RubyGems packaging system, 7

RXML file, 94

■S
scaffold resource generator, 120, 143, 232

scaffolding code for blogging system,
generating, 156–157

scaling application, 392–395

script/generate migration command, 29

script/generate tool, 87

Secure Shell (SSH), 384

security issues with uploaded files, 191

selecting location of photo using map,
312–315

sending e-mail

See also newsletter feature

ActionMailer module, configuring,
217–218

further development of system for, 244

new comment notifier, building

automating mailer tests, 228–230

calling mailer from comments
controller, 226–227

mailer model, creating, 220–223

manually testing, 223–226

testing mailer from within
application, 227

requirements for

newsletters, 219–220

notification of new comments in
blog, 219

overview of, 218

server, preparing

for application, 391

for deploying application, 384–385

session storage, 380–381

session-handling library, 53–54

sessions, for adding users and groups, 50

SHA-256 hashing algorithm, 48

shared hosting, 382

share-nothing architecture, 379

Shattered Ruby (game), 4

Shaw, Zed, 383

show action

controller, 36

discussion forum, 129

mobile page, 360

newsletter, 237–238

photo, 206

topic, 136

show view

article, 99, 362

entry, 166–168, 175, 370

newsletter, 238

Bradburne_8415INDEX.fm Page 416 Thursday, May 31, 2007 7:51 AM

417■I N D E X

Find it faster at http://superindex.apress.com

page, 36

photo, 206, 295, 373

tag, 288

user, 62–63, 296, 325, 368

user tag, 289, 296

showing users' latest activities, 251

sidebar menu, adding tags to, 295

sidebar menu links

for discussion forum, 141

for friends list, 267–268

for News module, 109

to newsletters, 241

overview of, 41

for photo gallery, 207

sidebar menu partial file, 26

Simple Storage Service (Amazon Web
Service), 192

skeleton of Rails application, creating, 14–16

skeleton resource, creating, 232–233

SMTP, configuring ActionMailer to use, 218

software requirements for building
RailsCoders Web site, 7

source control management, 14

specifying feature requirements for site, 21

speed of Net connection for mobile user, 352

SQLite, 28

SqlSessionStore plug-in, 380

SSH (Secure Shell), 384

starting Rails console, 223

status window (Instant Rails), 9

storage system, using database as, 193

storing passwords, 47

structure of mobile application, 355

style sheet

for discussion forum, modifying, 126–127

for mobile interface, 357

for photo gallery, 208

for RailsCoders site, 25–26

styling friends list, 269–271

Subversion client software, 303

subversion server, setting up, 391

■T
tag clouds, 277

tag index view, 287–288

Tag model, database fields, 280

tag show view, 288

Tagging model, database fields, 280

tags

acts_as_taggable_on_steroids plug-in,
279–283

adding to photo

allowing user to add tags, 290–293

allowing user to remove tags, 293–295

adding to photo gallery

controllers, creating, 285

controllers, writing, 286–288

database tables, creating, 283–284

overview of, 282

Photo and User models, updating for,
284–285

resource mapping, adding, 285

tag index view, 287–288

tag show view, 288

user tags index view, 289

user tags show view, 289

further development of, 298

libraries available, 278–279

linking to tag browser, 295–296

manually testing, 296–297

requirements for, 277–278

tags controller, 286

templates

comment notification e-mail, 221

HTML new comment notification
e-mail, 222

plain text newsletter, 241

user-definable, adding to blogging system

creating Liquid drop files, 333–336

creating Liquid filters, 336–337

further development of, 348

installing Liquid, 332

Liquid API and, 331

Liquid markup and, 331–332

Bradburne_8415INDEX.fm Page 417 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

418 ■IN D E X

Liquid plug-in and, 330

manually testing, 343–346

rendering Liquid templates, 342

requirements for, 329–330

testing usertemplates controller,
346–348

Usertemplate model, 337–338

usertemplate views, 340–341

usertemplates controller, 338–340

templating plug-in. See Liquid plug-in

test logout method, 72

test mode and ActionMailer, 218

test-driven development, 7

testing

API authentication for News module,
104–105

automated, of blogging API, 188–189

built-in, 6

comments controller, 176–177

database, 19–20

desktop blogging client, using, 186–187

discussion forum, 143–150

Ecto, using for, 186–187

entries controller, 171–173

forum controller manually, 131

friends controller, 272–273

friends list, 274

functional

account controller, 70–72

back-end, 188–189

comments, 176–177

entries controller, 171–173

friends controller, 272–273

news blog system, 112–114

overview of, 68

photo gallery, 212–215

roles, 79–81

topics controller, 146–148

user controller, 68–70

user templates, 347

in-memory, 28

integration

description of, 79

example of, 80

mobile site, 376

news blog system, 114–115

mailer, 227–230

manually

forum controller, 131

mobile site, 375–377

new comment notifier, 223–226

news blog system, 110

photo gallery, 208–209

user-definable templates, 343–346

new comment notifier, 223–226

news blog system, 110–115

newsletter mailer, 242–244

overview of, 67

photo gallery, 208–215

tags, 296–297

topics and posts, 141

unit

comment notification, 228

mailer model, 228–229

Page model, 42–44

photo gallery, 210–212

user, 67–68

user-definable templates, 343–346

usertemplates controller, 346–348

Web services for blogging engine, 186

XML API for News module, 101–102

text area method, 38

text editor, RadRails, 7

text field, 26

text field method, 38

Textile markup system, 83–84

textilize helper method, 84

TextMate (MacroMates), 7

thumbnails for photos in gallery, 205

TinyMCE, 44

title field, 26

TMail library, 225

Bradburne_8415INDEX.fm Page 418 Thursday, May 31, 2007 7:51 AM

419■I N D E X

Find it faster at http://superindex.apress.com

tools

See also specific plug-ins

Basecamp, 4

cron, 380

rake, 31

script/generate, 87

YM4R, 302

topic controller and views

deleting topics, 136

description of, 119

editing topics, 135

functional tests, 146–148

new topic view, 133–135

topic index action, 131–132

topic index page, 132–133

topic show action, 136

topic index action, 131–132

topic index page, 132–133

topic model

building, 120–121

defining, 118

validations, 122

topic model file, 121–122

topic show action, 136

topics, testing, 141

topics controller, mobile interface, 363

topics count field, 117

topics index view, mobile interface, 364–365

topics new view, mobile interface, 365

traditional routes, 22

■U
Ubunto 6, 12–13

Ubuntu 6.06.1 Desktop or Server Edition, 384

unit testing

comment notification, 228

mailer model, 228–229

Page model, 42–44

photo gallery, 210–212

user, 67–68

update action, 39–40

updating

published_at field, 89

User model, 284–285, 320

user's latest activity, 257–258

upgrading Rails, 8

uploaded files, working with, 191–192

uploading files

helper methods for, 212

new photo with location data, 307

web form for, 194

user account views, creating

login view, 61

new user view, 58–61

user show view, 62–63

user database fields, creating, Flickr API
integration, 318–319

user edit view, 66–67

user index view, 64–65

user management system, extending, 81

User model

adding reciprocal relationship to, 200

for blogging engine, 154

creating, 51–53

database fields required for, 48

defining, 47

linking with Role model, 49

modifications to for RSS feed, 324

updating for Flickr integration, 320

updating for tagging, 284–285

user nsid, retrieving, 320–322

user partial view, 64

user photos controller, creating, 201–203

user photos index view, 204–205

user profile page

See also friends list

adding friends to, 247

adding latest blog entries to, 177–178

adding latest photos to, 207–208

adding links to tag browser on, 296

mobile site, 354

showing latest Flickr photos, 325

Bradburne_8415INDEX.fm Page 419 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

420 ■IN D E X

user role, checking, 74–76, 126

user show page, 63

user show view

displaying Flickr photos, 325

mobile interface, 368

user account views, creating, 62–63

user signup form, 60

user table migration, 159

user tags controller, 288

user tags index view, 289

user tags show view, 289

user-definable templates, adding to
blogging system

creating Liquid drop files, 333–336

creating Liquid filters, 336–337

further development of, 348

installing Liquid, 332

Liquid API and, 331

Liquid markup and, 331–332

Liquid plug-in and, 330

manually testing, 343–346

rendering Liquid templates, 342

requirements for, 329–330

testing usertemplates controller, 346–348

Usertemplate model, 337–338

usertemplate views, 340–341

usertemplates controller, 338–340

user_photos

edit page, modifications to, 306, 313

new page, modifications to, 307

show file, updates to, 309

update to new view, 314

user_photos controller, mobile interface, 372

user_photos index view, mobile
interface, 372

user_photos_controller

edit method, modifications to, 312

show action, updates to, 309

update to new method of, 314

user.rb model file, 52–53

users

allowing to add tags to photos, 290–293

allowing to remove tags from photos,
293–295

checking roles of, 74–76

enabling and disabling, 65

users controller

for adding users and groups, 50

creating, 55–57

functional test for, 68–70

mobile interface, 367

Usertemplate model, 329, 337–338

usertemplate views, 340–341

usertemplates controller

creating, 338–340

description of, 330

testing, 346–348

usertemplates index view, 343

■V
validates length of method, 33

validates presence of method, 32

validates_captcha plug-in, 151

validations

adding, 32–33

for blogging engine, 160

defining, 89

Vellut, Guilhem, 302

view layer, 5

viewing e-mail header, 226

views

See also entry view; index view; show view

friends edit, 266–267

friends index, 260–262

friends new, 262–266

mobile interface

account login, 374

articles index, 361–362

articles show, 362

blogs index, 371

entries index, 369–370

Bradburne_8415INDEX.fm Page 420 Thursday, May 31, 2007 7:51 AM

421■I N D E X

Find it faster at http://superindex.apress.com

entries show view, 370

forum index, 363

overview of, 360

photos index, 371

photos show, 373

posts index, 366–367

posts new, 367

topics index, 364–365

topics new, 365

user_photos index, 372

newsletter feature

index, 236–237

new, 238

show, 237–238

tag index, 287–288

tag show, 288

user tags index, 289

user tags show, 289

usertemplate index, 340–341

Viney, Jonathan, 279

virtual private server (VPS), 381–382

■W
watching log files, 16, 224, 392–393

Weaver, Evan, 279

web server, choosing, 382–383

web service code, generating, 181

web services for blogging engine, testing, 186

web sites

See also RailsCoders web site

API list, 301, 327

cURL utility, 101

developer community, 17

Flickr API documentation, 316

Google Maps API, 302

Liquid plug-in, 330

Markdown, 84

Mongrel, 383

Ruby, 3

Subversion client software, 303

Textile, 84

web servers, 383

World Wide Web Consortium Mobile Web
Initiative, 352

YM4R tools, 302

Web 2.0 and REST architectures, 301

welcome page, 16

Windows

installing ImageMagick and RMagick
on, 196

installing on, 9–10

World Wide Web Consortium Mobile Web
Initiative, 352

writing Blogger API method code, 184–186

WxRuby framework, 4

■X
XFN (XHTML Friends Network)

attribute icons, 269–271

description of, 247–249

xfn_rel_tag helper method, 261–262

XHTML Basic, 351–352

XHTML Mobile Profile (MP), 351–352

XML API for News module, testing, 101–102

XML data, returning, 94

XML-RPC blogging interface, creating

Action Web Service and, 181

Blogger API, 182–186

overview of, 180–181

web service code, generating, 181

■Y
YAML, 18

YM4R/GM plug-in, 302–304

Bradburne_8415INDEX.fm Page 421 Thursday, May 31, 2007 7:51 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

