Mark Summerfield Second Edition

Programming In

Python 3

A Complete Introduction to the
Python Language

Developer’s Library

Programming in Python 3

A Complete Introduction to the Python Language

Second Edition

Mark Summerfield

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York - Toronto - Montreal - London - Munich - Paris - Madrid
Capetown - Sydney - Tokyo - Singapore - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international @pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

Summerfield, Mark.

Programming in Python 3 : a complete introduction to the Python language / Mark
Summerfield.—2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-321-68056-3 (pbk. : alk. paper)
1. Python (Computer program language) 2. Object-oriented programming (Computer science)

I. Title.

QA76.73.P98S86 2010
005.13'3—dc22
2009035430

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-68056-3

ISBN-10: 0-321-68056-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2009

In memory of
Franco Rabaiotti
1961-2001

Contents at a Glance

Listof Tablesoiiniii e

Introduction

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.

Chapter 9.

Rapid Introduction to Procedural Programming ...
DataTypes ...t
CollectionDataTypesccviinn..
Control Structures and Functions
Modulesccoiiiiiiii i e
Object-Oriented Programming
FileHandling i ...
Advanced Programming Techniques

Debugging, Testing, and Profiling

Chapter 10. Processes and Threading

Chapter 11.
Chapter 12.
Chapter 13.
Chapter 14.

Chapter 15.

Networking i,
Database Programming
Regular Expressions
IntroductiontoParsing

Introduction to GUI Programming

www. qtrac.eu/py3book.html

Contents

Listof Tablesoi i i
Introduction i e

Chapter 1. Rapid Introduction to Procedural Programming ...
Creating and Running Python Programs
Python’s “Beautiful Heart”,

Piece #1: Data Typescovviiiiiiiiiiiiiiiiiiaee e
Piece #2: Object Referencescccoiiiiii ..
Piece #3: Collection Data Typesccoiiiiiiinnn....
Piece #4: Logical Operationsccovviiiieennn...
Piece #5: Control Flow Statements
Piece #6: Arithmetic Operatorscoo....
Piece #7: Input/Output
Piece #8: Creating and Calling Functions
Examples ... e
DIgdigitS. PY v oo
generate_grid. Pyoiiiiiii e
SUMMATY ...ttt e
BXerCiSes o e

Chapter 2. DataTypesoouiiiiiiiiiiiiiiiiiiiiiennn..
Identifiersand Keywordsccoiiiiiiiiiiiiiiinnnn...
Integral Typescooviiiiii e e e

Integerso e
Booleansc.ccoiiiiiiii e
Floating-Point Typescoiiiiiiiiiiiiiiiiiiennn.
Floating-Point Numbers,
Complex Numbersottt
Decimal Numbers
SIS . e e
Comparing Stringscoiiiiiiieeeeeeniiiiiiiiiee..
Slicing and Striding Stringscoiiiiiiiii...
String Operators and Methods

ix

String Formatting with the str.format() Method 78

Character Encodingsttt 91
Examples 94
qUAdratic. Py ..ot e 94
esv2htmlpy ... 97
SUMIMNATY ...ttt ettt 102
EXercises ... 104
Chapter 3. CollectionDataTypescccvnnn.. 107
Sequence Types ... e 107
TUples ..ot e 108
Named Tuplescooviiiiiiiiii e 111
LSt oo e 113

T P I =Y 120
N 13 71 P 121
Frozen Sets ...t e 125
Mapping Types ...t 126
Dictionaries ..o e 126
Default Dictionaries ..., 135
Ordered Dictionaries ..., 136
Iterating and Copying Collections 138
Iterators and Iterable Operations and Functions 138
Copying Collectionsc.ciiiiiiiiiiinnnnnnnnnnnn, 146
Examples 148
generate_USernames.PY . ..oovvvrirt it e 149
StatIStiCS. Py « i e 152
SUMIMATY ...ttt ittt ettt 156
BEXerCiSes oo e 158
Chapter 4. Control Structures and Functions 159
Control Structures........ ..ot e 159
Conditional Branching, 159
L00DINg . oottt 161
Exception Handling, 163
Catching and Raising Exceptions 163
Custom Exceptionscooiiiiiiiiiiiiiiiin e, 168
Custom Functions i 171
Names and Docstrings ..., 176
Argument and Parameter Unpacking 177

Accessing Variables in the Global Scope 180

Lambda Functions i, 182
ASSErtioNS ... 183
Example: make_html_skeleton.py 185
SUMIMATY ...ttt 191
ExXercise ... 192
Chapter 5. Modules i, 195
Modules and Packagescciiiiiiiiiiiii . 195
Packages ... 199
Custom Modules i 202
Overview of Python’s Standard Library 212
String Handling i ... 213
Command-Line Programming 214
Mathematicsand Numbersooiiiiiia.. 216
Timesand Dates i 216
Algorithms and Collection Data Types 217
File Formats, Encodings, and Data Persistence 219
File, Directory, and Process Handling 222
Networking and Internet Programming 225
XML . e 226
Other Modules ..o i 228
SUMIMATY ...ttt ittt ettt 230
EXercise ... 231
Chapter 6. Object-Oriented Programming 233
The Object-Oriented Approachcoiiin.... 234
Object-Oriented Concepts and Terminology 235
Custom Classesvviiiiniii i e 238
Attributesand Methodsl 238
Inheritance and Polymorphism 243
Using Properties to Control Attribute Access 246
Creating Complete Fully Integrated Data Types 248
Custom Collection Classesccoieeiiiiiiiiiiiiiienn... 261
Creating Classes That Aggregate Collections 261
Creating Collection Classes Using Aggregation 269
Creating Collection Classes Using Inheritance 276
SUMMATY ...ttt ettt ettt 283
BXerCiSes oo e 285

xi

Chapter 7. FileHandlingc.... 287

Writing and Reading BinaryData 292
Pickles with Optional Compression.......................... 292
Raw Binary Data with Optional Compression 295

Writing and Parsing Text Files, 305
Writing Text ... e e 305
Parsing Text ... 307
Parsing Text Using Regular Expressions 310

Writing and Parsing XML Filesoooiiiiiiiiiiiian, 312
Element Treescoiiiiiiiiiii e 313
DOM (Document Object Model)o... 316
Manually Writing XML 319
Parsing XML with SAX (Simple API for XML) 321

Random Access Binary Files i, 324
A Generic BinaryRecordFile Class 324
Example: The BikeStock Module’s Classes 332

SUMIMATY ...ttt ittt ettt et 336

BEXerCiSes oo e 337

Chapter 8. Advanced Programming Techniques 339

Further Procedural Programming 340
Branching Using Dictionaries..................coovie... 340
Generator Expressions and Functions 341
Dynamic Code Execution and Dynamic Imports.............. 344
Local and Recursive Functions 351
Function and Method Decorators............................ 356
Function Annotationso i .., 360

Further Object-Oriented Programming 363
Controlling Attribute Accesscoiiiiiinnnnii.. 363
Functors ... e 367
Context Managersoovveeiiiiiiiiiiiiiiiaeeeeeeennnns 369
Descriptors ... 372
Class Decoratorso, 378
Abstract Base Classescccoiiiiiiiiiiiiiiiiiiennnnn. 380
Multiple Inheritance, 388
Metaclasses 390

Functional-Style Programming 395
Partial Function Application 398

xii

COTOULINEGS . .ottt ettt et e e e 399

Example: Valid.pyooiiiii 407
SUMIMATY ...ttt 410
EXerciSes ... 411
Chapter 9. Debugging, Testing, and Profiling 413
Debugging ... 414
Dealing with Syntax Errors............ ... i, 414

Dealing with Runtime Errors 415
Scientific Debugging 420

Unit Testingcooiiiiiii e 425
Profiling 432
SUMIMATY ...ttt ittt ettt 437
Chapter 10. Processes and Threading 439
Using the Multiprocessing Module 440
Using the Threading Module iiiiin.... 444
Example: A Threaded Find Word Program 446
Example: A Threaded Find Duplicate Files Program 449
SUMMATY ...ttt ittt 454
EXErCiSes oo e 455
Chapter 11. Networking i, 457
Creatinga TCPClient 458
Creatinga TCP Serverc.cciiiiiiiiiiiiiiiiiiiiinnn.. 464
SUMMATY ...ttt ettt e 471
EXErCiSes oo e 471
Chapter 12. Database Programming 475
DBM Databasesoouuuiiinii e 476
SQL Databasest 480
SUMMATY ..ottt e e 487
EXercise ... e 488
Chapter 13. Regular Expressionscco.... 489
Python’s Regular Expression Language 490
Characters and Character Classes 490
Quantifiers i 491
Grouping and Capturingcciiiiiiieneeeni.. 494
Assertionsand Flags i 496

The Regular Expression Module 499

SUMIMNATY ...ttt ettt 509

EXerciSes ... 510
Chapter 14. IntroductiontoParsing 513
BNF Syntax and Parsing Terminology 514
Writing Handcrafted Parsers, 519
Simple Key—Value Data Parsing 519

Playlist Data Parsingccoiiiiiiiiiinnnenennnnn, 522

Parsing the Blocks Domain-Specific Language 525
Pythonic Parsing with PyParsing 534

A Quick Introduction to PyParsing 535

Simple Key—Value Data Parsing 539

Playlist Data Parsingccoiiiiiiiiinnnnennnnn, 541

Parsing the Blocks Domain-Specific Language 543

Parsing First-Order Logicccoiiiiiiiiiii... 548
Lex/Yacc-Style Parsing with PLY 553
Simple Key—Value Data Parsing 555

Playlist Data Parsing ..., 557

Parsing the Blocks Domain-Specific Language 559

Parsing First-Order Logicccoiiiiiiiiiii.., 562

UMM ALY ...ttt ittt ettt 566
EXercise ... e 568
Chapter 15. Introduction to GUI Programming 569
Dialog-Style Programsccoiiiiiiiiiiiiiiiiiiaa... 572
Main-Window-Style Programscciiiinn.... 578
Creatinga Main Windowccoiiiiiiiiiiia., 578
Creatinga Custom Dialog, 590

10 0010102 593
BXErCiSeS oo e 593
Epilogue ... 595
Selected Bibliography it 597
Indexo 599

Xiv

List of Tables

2.1
2.2.
2.3.
2.4.
2.5.
2.6.
2.17.
2.8.
2.9.
2.10.
3.1
3.2.
3.3.
3.4.
6.1.
6.2.
6.3.
6.4.
7.1.
7.2.
7.3.
7.4.
7.5.
8.1.
8.2.
8.3.
8.4.
12.1.
12.2.
13.1.

Python’s Keywordscoiiiiiiiiiiiiii i 52
Numeric Operators and Functions 55
Integer Conversion Functions 55
Integer Bitwise Operatorsccovviiiiiiiiiinnn... 57
The Math Module’s Functions and Constants #1 60
The Math Module’s Functions and Constants #2 61
Python’s String Escapesc.cooviiiiiiiiiiiiiiiinn... 66
String Methods #1 ...t 73
String Methods #2 74
String Methods #3 i 75
List Methods ... e 115
Set Methods and Operatorscciiiiiiiinnn... 123
Dictionary Methods i, 129
Common Iterable Operators and Functions 140
Comparison Special Methodso..... 242
Fundamental Special Methods 250
Numeric and Bitwise Special Methods 253
Collection Special Methodsccooiiiiiii.... 265
Bytes and Bytearray Methods #1 299
Bytes and Bytearray Methods #2 300
Bytes and Bytearray Methods#3 301
File Object Attributes and Methods#1 325
File Object Attributes and Methods#2 326
Dynamic Programming and Introspection Functions 349
Attribute Access Special Methods 365
The Numbers Module’s Abstract Base Classes 381
The Collections Module’s Main Abstract Base Classes 383
DB-API 2.0 Connection Object Methods 481
DB-API 2.0 Cursor Object Attributes and Methods 482
Character Class Shorthands 492

XV

13.2.
13.3.
13.4.
13.5.
13.6.
13.7.

Regular Expression Quantifiers 493

Regular Expression Assertionscccovunnnn. 497
The Regular Expression Module’s Functions 502
The Regular Expression Module’s Flags 502
Regular Expression Object Methods 503
Match Object Attributes and Methods 507

xvi

Introduction

Python is probably the easiest-to-learn and nicest-to-use programming lan-
guage in widespread use. Python code is clear to read and write, and it is con-
cise without being cryptic. Python is a very expressive language, which means
that we can usually write far fewer lines of Python code than would be required
for an equivalent application written in, say, C++ or Java.

Python is a cross-platform language: In general, the same Python program can
be run on Windows and Unix-like systems such as Linux, BSD, and Mac OS X,
simply by copying the file or files that make up the program to the target
machine, with no “building” or compiling necessary. It is possible to create
Python programs that use platform-specific functionality, but this is rarely
necessary since almost all of Python’s standard library and most third-party
libraries are fully and transparently cross-platform.

One of Python’s great strengths is that it comes with a very complete standard
library—this allows us to do such things as download a file from the Internet,
unpack a compressed archive file, or create a web server, all with just one or a
few lines of code. And in addition to the standard library, thousands of third-
party libraries are available, some providing more powerful and sophisticat-
ed facilities than the standard library—for example, the Twisted networking
library and the NumPy numeric library—while others provide functionality
that is too specialized to be included in the standard library—for example, the
SimPy simulation package. Most of the third-party libraries are available from
the Python Package Index, pypi.python.org/pypi.

Python can be used to program in procedural, object-oriented, and to a lesser
extent, in functional style, although at heart Python is an object-oriented
language. This book shows how to write both procedural and object-oriented
programs, and also teaches Python’s functional programming features.

The purpose of this book is to show you how to write Python programs in good
idiomatic Python 3 style, and to be a useful reference for the Python 3 language
after the initial reading. Although Python 3is an evolutionary rather than rev-
olutionary advance on Python 2, some older practices are no longer appropriate
or necessary in Python 3, and new practices have been introduced to take ad-
vantage of Python 3 features. Python 3 is a better language than Python 2—it
builds on the many years of experience with Python 2 and adds lots of new
features (and omits Python 2’s misfeatures), to make it even more of a pleasure
to use than Python 2, as well as more convenient, easier, and more consistent.

2 Introduction

The book’s aim is to teach the Python language, and although many of the
standard Python libraries are used, not all of them are. This is not a problem,
because once you have read the book, you will have enough Python knowledge
to be able to make use of any of the standard libraries, or any third-party
Python library, and be able to create library modules of your own.

The book is designed to be useful to several different audiences, including self-
taught and hobbyist programmers, students, scientists, engineers, and others
who need to program as part of their work, and of course, computing profes-
sionals and computer scientists. To be of use to such a wide range of people
without boring the knowledgeable or losing the less-experienced, the book as-
sumes at least some programming experience (in any language). In particu-
lar, it assumes a basic knowledge of data types (such as numbers and strings),
collection data types (such as sets and lists), control structures (such as if and
while statements), and functions. In addition, some examples and exercises
assume a basic knowledge of HTML markup, and some of the more specialized
chapters at the end assume a basic knowledge of their subject area; for exam-
ple, the databases chapter assumes a basic knowledge of SQL.

The book is structured in such a way as to make you as productive as possible
as quickly as possible. By the end of the first chapter you will be able to write
small but useful Python programs. Each successive chapter introduces new
topics, and often both broadens and deepens the coverage of topics introduced
in earlier chapters. This means that if you read the chapters in sequence,
you can stop at any point and you’ll be able to write complete programs with
what you have learned up to that point, and then, of course, resume reading
to learn more advanced and sophisticated techniques when you are ready. For
this reason, some topics are introduced in one chapter, and then are explored
further in one or more later chapters.

Two key problems arise when teaching a new programming language. The
first is that sometimes when it is necessary to teach one particular concept,
that concept depends on another concept, which in turn depends either directly
or indirectly on the first. The second is that, at the beginning, the reader may
know little or nothing of the language, so it is very difficult to present inter-
esting or useful examples and exercises. In this book, we seek to solve both
of these problems, first by assuming some prior programming experience, and
second by presenting Python’s “beautiful heart” in Chapter 1—eight key pieces
of Python that are sufficient on their own to write decent programs. One con-
sequence of this approach is that in the early chapters some of the examples
are a bit artificial in style, since they use only what has been taught up to the
point where they are presented; this effect diminishes chapter by chapter, until
by the end of Chapter 7, all the examples are written in completely natural and
idiomatic Python 3 style.

The book’s approach is wholly practical, and you are encouraged to try out the
examples and exercises for yourself to get hands-on experience. Wherever

Introduction 3

possible, small but complete programs and modules are used as examples to
provide realistic use cases. The examples, exercise solutions, and the book’s
errata are available online at www.qtrac.eu/py3book.html.

Two sets of examples are provided. The standard examples work with any
Python 3.x version—use these if you care about Python 3.0 compatibility. The
“eg31” examples work with Python 3.1 or later—use these if you don’t need to
support Python 3.0 because your programs’ users have Python 3.1 or later. All
of the examples have been tested on Windows, Linux, and Mac OS X.

While it is best to use the most recent version of Python 3, this is not always
possible if your users cannot or will not upgrade. Every example in this book
works with Python 3.0 except where stated, and those examples and features
that are specific to Python 3.1 are clearly indicated as such.

Although it is possible to use this book to develop software that uses only
Python 3.0, for those wanting to produce software that is expected to be in use
for many years and that is expected to be compatible with later Python 3.x re-
leases, it is best to use Python 3.1 as the oldest Python 3 version that you sup-
port. This is partly because Python 3.1 has some very nice new features, but
mostly because the Python developers strongly recommend using Python 3.1
(or later). The developers have decided that Python 3.0.1 will be the last
Python 3.0.y release, and that there will be no more Python 3.0.y releases even
if bugs or security problems are discovered. Instead, they want all Python 3
users to migrate to Python 3.1 (or to a later version), which will have the usu-
al bugfix and security maintenance releases that Python versions normal-
ly have.

The Structure of the Book

Chapter 1 presents eight key pieces of Python that are sufficient for writing
complete programs. It also describes some of the Python programming
environments that are available and presents two tiny example programs, both
built using the eight key pieces of Python covered earlier in the chapter.

Chapters 2 through 5 introduce Python’s procedural programming features,
including its basic data types and collection data types, and many useful built-
in functions and control structures, as well as very simple text file handling.
Chapter 5 shows how to create custom modules and packages and provides an
overview of Python’s standard library so that you will have a good idea of the
functionality that Python provides out of the box and can avoid reinventing
the wheel.

Chapter 6 provides a thorough introduction to object-oriented programming
with Python. All of the material on procedural programming that you learned
in earlier chapters is still applicable, since object-oriented programming is

4 Introduction

built on procedural foundations—for example, making use of the same data
types, collection data types, and control structures.

Chapter 7 covers writing and reading files. For binary files, the coverage in-
cludes compression and random access, and for text files, the coverage includes
parsing manually and with regular expressions. This chapter also shows how
to write and read XML files, including using element trees, DOM (Document
Object Model), and SAX (Simple API for XML).

Chapter 8 revisits material covered in some earlier chapters, exploring many of
Python’s more advanced features in the areas of data types and collection data
types, control structures, functions, and object-oriented programming. This
chapter also introduces many new functions, classes, and advanced techniques,
including functional-style programming and the use of coroutines—the mate-
rial it covers is both challenging and rewarding.

Chapter 9is different from all the other chaptersin that it discusses techniques
and libraries for debugging, testing, and profiling programs, rather than
introducing new Python features.

The remaining chapters cover various advanced topics. Chapter 10 shows tech-
niques for spreading a program’s workload over multiple processes and over
multiple threads. Chapter 11 shows how to write client/server applications
using Python’s standard networking support. Chapter 12 covers database pro-
gramming (both simple key—value “DBM” files and SQL databases).

Chapter 13 explains and illustrates Python’s regular expression mini-language
and covers the regular expressions module. Chapter 14 follows on from the reg-
ular expressions chapter by showing basic parsing techniques using regular ex-
pressions, and also using two third-party modules, PyParsing and PLY. Finally,
Chapter 15 introduces GUI (Graphical User Interface) programming using the
tkinter module that is part of Python’s standard library. In addition, the book
has a very brief epilogue, a selected bibliography, and of course, an index.

Most of the book’s chapters are quite long to keep all the related material
together in one place for ease of reference. However, the chapters are broken
down into sections, subsections, and sometimes subsubsections, so it is easy to
read at a pace that suits you; for example, by reading one section or subsection
at a time.

Obtaining and Installing Python 3

If you have a modern and up-to-date Mac or other Unix-like system you may
already have Python 3 installed. You can check by typing python -V (note the
capital V) in a console (Terminal.app on Mac OS X)—if the version is 3.x you've
already got Python 3 and don’t have to install it yourself. If Python wasn’t
found at all it may be that it has a name which includes a version number. Try

Introduction 5

typing python3 -V, and if that does not work try python3.0 -V, and failing that try
python3.1 -V. If any of these work you now know that you already have Python
installed, what version it is, and what it is called. (In this book we use the name
python3, but use whatever name worked for you, for example, python3.1.) If you
don’t have any version of Python 3 installed, read on.

For Windows and Mac OS X, easy-to-use graphical installer packages are pro-
vided that take you step-by-step through the installation process. These are
available from www.python.org/download. For Windows, download the “Windows
x86 MSI Installer”, unless you know for sure that your machine has a different
processor for which a separate installer is supplied—for example, if you have
an AMDG64, get the “Windows AMD64 MSI Installer”. Once you've got the in-
staller, just run it and follow the on-screen instructions.

For Linux, BSD, and other Unixes (apart from Mac OS X for which a .dmg in-
stallation file is provided), the easiest way to install Python is to use your oper-
ating system’s package management system. In most cases Python is provided
in several separate packages. For example, in Ubuntu (from version 8), there
is python3.0 for Python, idle-python3.0 for IDLE (a simple development envi-
ronment), and python3.0-doc for the documentation—as well as many other
packages that provide add-ons for even more functionality than that provided
by the standard library. (Naturally, the package names will start with python-
3.1 for the Python 3.1 versions, and so on.)

If no Python 3 packages are available for your operating system you will
need to download the source from www.python.org/download and build Python
from scratch. Get either of the source tarballs and unpack it using tar xvfz
Python-3.1.tgz if you got the gzipped tarball or tar xvfj Python-3.1.tar.bz2 if
you got the bzip2 tarball. (The version numbers may be different, for example,
Python-3.1.1.tgz or Python-3.1.2.tar.bz2,in which case simply replace 3.1 with
your actual version number throughout.) The configuration and building are
standard. First, change into the newly created Python-3.1 directory and run
./configure. (You can use the —-prefix option if you want to do a local install.)
Next, run make.

It is possible that you may get some messages at the end saying that not all
modules could be built. This normally means that you don’t have some of the
required libraries or headers on your machine. For example, if the readline
module could not be built, use the package management system to install the
corresponding development library; for example, readline-devel on Fedora-
based systems and readline-dev on Debian-based systems such as Ubuntu.
Another module that may not build straight away is the tkinter module—this
depends on both the Tcl and Tk development libraries, tcl-devel and tk-devel
on Fedora-based systems, and tc18.5-dev and tk8.5-dev on Debian-based sys-
tems (and where the minor version may not be 5). Unfortunately, the relevant
package names are not always so obvious, so you might need to ask for help on

6 Introduction

Python’s mailing list. Once the missing packages are installed, run ./configure
and make again.

After successfully making, you could run make test to see that everything is
okay, although this is not necessary and can take many minutes to complete.

If you used --prefix to do a local installation, just run make install. For
Python 3.1, if you installed into, say, ~/1ocal/python31, then by adding the ~/1o-
cal/python31/bin directory to your PATH, you will be able to run Python using
python3 and IDLE using idle3. Alternatively, if you already have a local directo-
ry for executables that is already in your PATH (such as ~/bin), you might prefer
to add soft links instead of changing the PATH. For example, if you keep exe-
cutablesin ~/bin and you installed Python in ~/1local/python31, you could create
suitable links by executing ln -s ~/local/python31/bin/python3 ~/bin/python3,
and ~/local/python31/bin/idle3 ~/bin/idle3. For this book we did a local install
and added soft links on Linux and Mac OS X exactly as described here—and
on Windows we used the binary installer.

If you did not use —-prefix and have root access, log in as root and do make in-
stall. On sudo-based systems like Ubuntu, do sudo make install. If Python 2 is
on the system, /usr/bin/python won’t be changed, and Python 3 will be avail-
able as python3.0 (or python3.1 depending on the version installed) and from
Python 3.1, in addition, as python3. Python 3.0’s IDLE is installed as idle,
so if access to Python 2’s IDLE is still required the old IDLE will need to be
renamed—for example, to /usr/bin/idle2—before doing the install. Python 3.1
installs IDLE as idle3 and so does not conflict with Python 2’s IDLE.

Acknowledgments

I would first like to acknowledge with thanks the feedback I have received
from readers of the first edition, who gave corrections, or made suggestions,
or both.

My next acknowledgments are of the book’s technical reviewers, starting
with Jasmin Blanchette, a computer scientist, programmer, and writer with
whom I have cowritten two C++/Qt books. Jasmin’s involvement with chapter
planning and his suggestions and criticisms regarding all the examples, as well
as his careful reading, have immensely improved the quality of this book.

Georg Brandl is a leading Python developer and documentor responsible for
creating Python’s new documentation tool chain. Georg spotted many sub-
tle mistakes and very patiently and persistently explained them until they
were understood and corrected. He also made many improvements to the ex-
amples.

Introduction 7

Phil Thompson is a Python expert and the creator of PyQt, probably the best
Python GUI library available. Phil’s sharp-eyed and sometimes challenging
feedback led to many clarifications and corrections.

Trenton Schulz is a senior software engineer at Nokia’s Qt Software (formerly
Trolltech) who has been a valuable reviewer of all my previous books, and has
once again come to my aid. Trenton’s careful reading and the numerous sug-
gestions that he made helped clarify many issues and have led to considerable
improvements to the text.

In addition to the aforementioned reviewers, all of whom read the whole
book, David Boddie, a senior technical writer at Nokia’s Qt Software and an
experienced Python practitioner and open source developer, has read and given
valuable feedback on portions of it.

For this second edition, I would also like to thank Paul McGuire (author of the
PyParsing module), who was kind enough to review the PyParsing examples
that appear in the new chapter on parsing, and who gave me a lot of thoughtful
and useful advice. And for the same chapter, David Beazley (author of the
PLY module) reviewed the PLY examples and provided valuable feedback. In
addition, Jasmin, Trenton, Georg, and Phil read most of this second edition’s
new material, and provided very valuable feedback.

Thanks are also due to Guido van Rossum, creator of Python, as well as to the
wider Python community who have contributed so much to make Python, and
especially its libraries, so useful and enjoyable to use.

As always, thanks to Jeff Kingston, creator of the Lout typesetting language
that I have used for more than a decade.

Special thanks to my editor, Debra Williams Cauley, for her support, and for
once again making the entire process as smooth as possible. Thanks also to
Anna Popick, who managed the production process so well, and to the proof-
reader, Audrey Doyle, who did such fine work once again. And for this second
edition I also want to thank Jennifer Lindner for helping me keep the new ma-
terial understandable, and the first edition’s Japanese translator Takahiro Na-
gao K E =i, for spotting some subtle mistakes which I've been able to correct
in this edition.

Last but not least, I want to thank my wife, Andrea, both for putting up with
the 4 a.m. wake-ups when book ideas and code corrections often arrived and
insisted upon being noted or tested there and then, and for her love, loyalty,
and support.

This page intentionally left blank

® Creating and Running Python
Programs

® Python’s “Beautiful Heart”

Rapid Introduction to
Procedural Programming

This chapter provides enough information to get you started writing Python
programs. We strongly recommend that you install Python if you have not
already done so, so that you can get hands-on experience to reinforce what you
learn here. (The Introduction explains how to obtain and install Python on all
major platforms; 4 <)

This chapter’s first section shows you how to create and execute Python pro-
grams. You can use your favorite plain text editor to write your Python code,
but the IDLE programming environment discussed in this section provides not
only a code editor, but also additional functionality, including facilities for ex-
perimenting with Python code, and for debugging Python programs.

The second section presents eight key pieces of Python that on their own are
sufficient to write useful programs. These pieces are all covered fully in later
chapters, and as the book progresses they are supplemented by all of the rest
of Python so that by the end of the book, you will have covered the whole
language and will be able to use all that it offers in your programs.

The chapter’s final section introduces two short programs which use the subset
of Python features introduced in the second section so that you can get an
immediate taste of Python programming.

Creating and Running Python Programs

Python code can be written using any plain text editor that can load and save
text using either the ASCII or the UTF-8 Unicode character encoding. By de-
fault, Python files are assumed to use the UTF-8 character encoding, a super-
set of ASCII that can represent pretty well every character in every language.
Python files normally have an extension of . py, although on some Unix-like sys-

9

Char-
acter
encod-
ings

>» 91

10 Chapter 1. Rapid Introduction to Procedural Programming

tems (e.g., Linux and Mac OS X) some Python applications have no extension,
and Python GUI (Graphical User Interface) programs usually have an exten-
sion of . pyw, particularly on Windows and Mac OS X. In this book we always use
an extension of . py for Python console programs and Python modules, and . pyw
for GUI programs. All the examples presented in this book run unchanged on
all platforms that have Python 3 available.

Just to make sure that everything is set up correctly, and to show the clas-
sical first example, create a file called hello.py in a plain text editor (Win-
dows Notepad is fine—we’ll use a better editor shortly), with the following
contents:

#!/usr/bin/env python3
print("Hello", "World!")

The firstlineis a comment. In Python,commentsbegin with a # and continue to
the end of the line. (We will explain the rather cryptic comment in a moment.)
The second line is blank—outside quoted strings, Python ignores blank lines,
but they are often useful to humans to break up large blocks of code to make
them easier to read. The third line is Python code. Here, the print() function
is called with two arguments, each of type str (string;i.e., a sequence of char-
acters).

Each statement encountered in a .py file is executed in turn, starting with
the first one and progressing line by line. This is different from some other
languages, for example, C++ and Java, which have a particular function or
method with a special name where they start from. The flow of control can of
course be diverted as we will see when we discuss Python’s control structures
in the next section.

We will assume that Windows users keep their Python code in the C:\py3eg
directory and that Unix (i.e., Unix, Linux, and Mac OS X) users keep their code
in the $HOME/py3eg directory. Save hello.py into the py3eg directory and close
the text editor.

Now that we have a program, we can run it. Python programs are executed
by the Python interpreter, and normally this is done inside a console window.
On Windows the console is called “Console”, or “DOS Prompt”, or “MS-DOS
Prompt”, or something similar, and is usually available from Start—All Pro-
grams—Accessories. On Mac OS X the console is provided by the Terminal.app pro-
gram (located in Applications/Utilities by default), available using Finder, and
on other Unixes, we can use an xterm or the console provided by the windowing
environment, for example, konsole or gnome-terminal.

Start up a console, and on Windows enter the following commands (which
assume that Python is installed in the default location)—the console’s output
is shown in lightface; what you type is shown in bold:

Creating and Running Python Programs 11

C:\>cd c:\py3eg
C:\py3eg\>c:\python31\python.exe hello.py

Since the cd (change directory) command has an absolute path, it doesn’t
matter which directory you start out from.

Unix users enter this instead (assuming that Python 3 is in the PATH):*

$ cd $HOME/py3eg
$ python3 hello.py

In both cases the output should be the same:

Hello World!

Note that unless stated otherwise, Python’s behavior on Mac OS X is the
same as that on any other Unix system. In fact, whenever we refer to “Unix”
it can be taken to mean Linux, BSD, Mac OS X, and most other Unixes and
Unix-like systems.

Although the program has just one executable statement, by running it we can
infer some information about the print() function. For one thing, print() is a
built-in part of the Python language—we didn’t need to “import” or “include”
it from a library to make use of it. Also, it separates each item it prints with
a single space, and prints a newline after the last item is printed. These are
default behaviors that can be changed, as we will see later. Another thing
worth noting about print() is that it can take as many or as few arguments as
we care to give it.

Typing such command lines to invoke our Python programs would quickly
become tedious. Fortunately, on both Windows and Unix we can use more
convenient approaches. Assuming we are in the py3eg directory, on Windows
we can simply type:

C:\py3eg\>hello.py

Windows uses its registry of file associations to automatically call the Python
interpreter when a filename with extension .py is entered in a console.

Unfortunately, this convenience does not always work, since some versions
of Windows have a bug that sometimes affects the execution of interpreted
programs that are invoked as the result of a file association. This isn’t specific
to Python; other interpreters and even some .bat files are affected by the bug
too. If this problem arises, simply invoke Python directly rather than relying
on the file association.

If the output on Windows is:

*The Unix prompt may well be different from the $ shown here; it does not matter what it is.

print()
» 181

12 Chapter 1. Rapid Introduction to Procedural Programming

('Hello', 'World!")

then it means that Python 2 is on the system and is being invoked instead
of Python 3. One solution to this is to change the .py file association from
Python 2 to Python 3. The other (less convenient, but safer) solution is to put
the Python 3 interpreter in the path (assuming it is installed in the default lo-
cation), and execute it explicitly each time. (This also gets around the Windows
file association bug mentioned earlier.) For example:

C:\py3eg\>path=c:\python3l;%path%
C:\py3eg\>python hello.py

It might be more convenient to create a py3.bat file with the single line
path=c:\python31;%path% and to save this file in the C:\Windows directory. Then,
whenever you start a console for running Python 3 programs, begin by exe-
cuting py3.bat. Or alternatively you can have py3.bat executed automatically.
To do this, change the console’s properties (find the console in the Start menu,
then right-click it to pop up its Properties dialog), and in the Shortcut tab’s Target
string, append the text “ /u /k c:\windows\py3.bat” (note the space before,
between, and after the “/u” and “/k” options, and be sure to add this at the end
after “cmd.exe”).

On Unix, we must first make the file executable, and then we can run it:

$ chmod +x hello.py
$./hello.py

We need to run the chmod command only once of course; after that we can
simply enter ./hello.py and the program will run.

On Unix, when a program is invoked in the console, the file’s first two bytes are
read * If these bytes are the ASCII characters#!, the shell assumes that the file
is to be executed by an interpreter and that the file’s first line specifies which
interpreter to use. This line is called the shebang (shell execute) line, and if
present must be the first line in the file.

The shebang line is commonly written in one of two forms, either:
#!/usr/bin/python3
or:

#!/usr/bin/env python3

If written using the first form, the specified interpreter is used. This form
may be necessary for Python programs that are to be run by a web server,

*The interaction between the user and the console is handled by a “shell” program. The distinction
between the console and the shell does not concern us here, so we use the terms interchangeably.

Obtain-
ing and
install-
ing
Python
1<

Creating and Running Python Programs 13

although the specific path may be different from the one shown. If written
using the second form, the first python3 interpreter found in the shell’s current
environment is used. The second form is more versatile because it allows for
the possibility that the Python 3 interpreter is not located in /usr/bin (e.g., it
could be in /usr/local/bin or installed under $HOME). The shebang line is not
needed (but is harmless) under Windows; all the examples in this book have a
shebang line of the second form, although we won’t show it.

Note that for Unix systems we assume that the name of Python 3’s executable
(or a soft link to it) in the PATH is python3. If this is not the case, you will need
to change the shebang line in the examples to use the correct name (or correct
name and path if you use the first form), or create a soft link from the Python 3
executable to the name python3 somewhere in the PATH.

Many powerful plain text editors, such as Vim and Emacs, come with built-in
support for editing Python programs. This support typically involves providing
color syntax highlighting and correctly indenting or unindenting lines. An al-
ternative is to use the IDLE Python programming environment. On Windows
and Mac OS X, IDLE is installed by default. On Unixes IDLE is built along
with the Python interpreter if you build from the tarball, but if you use a pack-
age manager, IDLE is usually provided as a separate package as described in
the Introduction.

As the screenshot in Figure 1.1 shows, IDLE has a rather retro look that harks
back to the days of Motif on Unix and Windows 95. This is because it uses the
Tk-based Tkinter GUI library (covered in Chapter 15) rather than one of the
more powerful modern GUI libraries such as PyGtk, PyQt, or wxPython. The
reasons for the use of Tkinter are a mixture of history, liberal license condi-
tions, and the fact that Tkinter is much smaller than the other GUI libraries.
On the plus side, IDLE comes as standard with Python and is very simple to
learn and use.

IDLE provides three key facilities: the ability to enter Python expressions
and code and to see the results directly in the Python Shell; a code editor that
provides Python-specific color syntax highlighting and indentation support;
and a debugger that can be used to step through code to help identify and kill
bugs. The Python Shell is especially useful for trying out simple algorithms,
snippets of code, and regular expressions, and can also be used as a very
powerful and flexible calculator.

Several other Python development environments are available, but we recom-
mend that you use IDLE, at least at first. An alternative is to create your pro-
grams in the plain text editor of your choice and debug using calls to print().

It is possible to invoke the Python interpreter without specifying a Python
program. If this is done the interpreter starts up in interactive mode. In
this mode it is possible to enter Python statements and see the results exactly
the same as when using IDLE’s Python Shell window, and with the same >>>

14 Chapter 1. Rapid Introduction to Procedural Programming

Python Shell EFEE

File Edit Shell Debug Options ‘Windows Help

= Aimpor
==x [jle si

i oL Lower ()

= lan(file_sizas)

#z print({file_sizes)
TAbslracl.py ' 4591, 'Abs

. higdiy A4

3, 'BikeStock.pyc! 44,

c': 11744, 'BinaryRecordrils

@, 'BinaryRecordFile ans.py': G231, 'BinaryReco +|
Ln: 35/ Cal: 4

Figure 1.1 IDLE’s Python Shell

prompts. But IDLE is much easier to use, so we recommend using IDLE for
experimenting with code snippets. The short interactive examples we show
are all assumed to be entered in an interactive Python interpreter or in IDLE’s
Python Shell.

We now know how to create and run Python programs, but clearly we won’t get
very far knowing only a single function. In the next section we will consider-
ably increase our Python knowledge. This will make us able to create short but
useful Python programs, something we will do in this chapter’s last section.

Python’s “Beautiful Heart”

In this section we will learn about eight key pieces of Python, and in the next
section we will show how these pieces can be used to write a couple of small but
realistic programs. There is much more to say about all of the things covered
in this section, so if as you read it you feel that Python is missing something
or that things are sometimes done in a long-winded way, peek ahead using the
forward references or using the table of contents or index, and you will almost
certainly find that Python has the feature you want and often has more concise
forms of expression than we show here—and a lot more besides.

Piece #1: Data Types

One fundamental thing that any programming language must be able to do
is represent items of data. Python provides several built-in data types, but
we will concern ourselves with only two of them for now. Python represents

Python’s “Beautiful Heart” 15

integers (positive and negative whole numbers) using the int type, and it
represents strings (sequences of Unicode characters) using the str type. Here
are some examples of integer and string literals:

-973
210624583337114373395836055367340864637790190801098222508621955072
0

"Infinitely Demanding"

'Simon Critchley'

'positively afy€+©'

Incidentally, the second number shown is 2°"—the size of Python’s integers
is limited only by machine memory, not by a fixed number of bytes. Strings
can be delimited by double or single quotes, as long as the same kind are used
at both ends, and since Python uses Unicode, strings are not limited to ASCII
characters, as the penultimate string shows. An empty string is simply one
with nothing between the delimiters.

Python uses square brackets ([]) to access an item from a sequence such as
a string. For example, if we are in a Python Shell (either in the interactive
interpreter, or in IDLE) we can enter the following—the Python Shell’s output
is shown in lightface; what you type is shown in bold:

>>> "Hard Times"[5]

1 T 1

>>> "giraffe"[0]

1 g 1
Traditionally, Python Shells use >>> as their prompt, although this can be
changed. The square brackets syntax can be used with data items of any data
type that is a sequence, such as strings and lists. This consistency of syntax
is one of the reasons that Python is so beautiful. Note that all Python index
positions start at 0.

In Python, both str and the basic numeric types such as int are im-
mutable—that is, once set, their value cannot be changed. At first this appears
to be a rather strange limitation, but Python’s syntax means that thisis a non-
issuein practice. The only reason for mentioning it is that although we can use
square brackets to retrieve the character at a given index position in a string,
we cannot use them to set a new character. (Note that in Python a character is
simply a string of length 1.)

To convert a data item from one type to another we can use the syntax
datatype(item). For example:

>>> int("45")
45

16 Chapter 1. Rapid Introduction to Procedural Programming

>>> str(912)
'912'

The int() conversion is tolerant of leading and trailing whitespace, so
int(" 45 ") would have worked just as well. The str() conversion can be
applied to almost any data item. We can easily make our own custom data
types support str() conversion, and also int() or other conversions if they
make sense, as we will see in Chapter 6. If a conversion fails, an exception is
raised—we briefly introduce exception-handling in Piece #5, and fully cover
exceptions in Chapter 4.

Strings and integers are fully covered in Chapter 2, along with other built-in
data types and some data types from Python’s standard library. That chapter
also covers operations that can be applied to immutable sequences, such
as strings.

Piece #2: Object References

Once we have some data types, the next thing we need are variables in which
to store them. Python doesn’t have variables as such, but instead has object
references. When it comes to immutable objects like ints and strs, there is
no discernable difference between a variable and an object reference. As for
mutable objects, there is a difference, but it rarely matters in practice. We will
use the terms variable and object reference interchangeably.

Let’s look at a few tiny examples, and then discuss some of the details.

x = "blue"
y = "green"
Z =X

The syntax is simply objectReference = value. There is no need for predecla-
ration and no need to specify the value’s type. When Python executes the first
statement it creates a str object with the text “blue”, and creates an object ref-
erence called x that refers to the str object. For all practical purposes we can
say that “variable x has been assigned the ‘blue’ string”. The second statement
is similar. The third statement creates a new object reference called z and sets
it to refer to the same object that the x object reference refers to (in this case
the str containing the text “blue”).

The = operator is not the same as the variable assignment operator in some
other languages. The = operator binds an object reference to an object in
memory. If the object reference already exists, it is simply re-bound to refer to
the object on the right of the = operator;if the object reference does not exist it
is created by the = operator.

Shallow
and
deep
copying

>» 146

Python’s “Beautiful Heart” 17

Let’s continue with the x, y, z example, and do some rebinding—as noted earlier,
comments begin with a # and continue until the end of the line:

print(x, y, z) # prints: blue green blue

z=y
print(x, y, z) # prints: blue green green
X =1z

print(x, y, z) # prints: green green green

After the fourth statement (x = z), all three object references are referring to
the same str. Since there are no more object references to the “blue” string,
Python is free to garbage-collect it.

Figure 1.2 shows the relationship between objects and object references
schematically.

~ The circles represent object references.
a=7 a 7 . .
The rectangles represent objects in memory.
7 =7 7
b=a
=a

"Liberty" @ "Liberty"

Figure 1.2 Object references and objects

o
|

The names used for object references (called identifiers) have a few restrictions.
In particular, they may not be the same as any of Python’s keywords, and must
start with a letter or an underscore and be followed by zero or more nonwhite-
space letter, underscore, or digit characters. There is no length limit, and the
letters and digits are those defined by Unicode, that is, they include, but are
not limited to, ASCII’s letters and digits (“a”, “b”, ..., “z”, “A”,“B”, ..., “Z”,“0”,“1”,
..., “9”). Python identifiers are case-sensitive, so for example, LIMIT, Limit, and
limit are three different identifiers. Further details and some slightly exotic
examples are given in Chapter 2.

Python uses dynamic typing, which means that an object reference can be re-
bound to refer to a different object (which may be of a different data type) at
any time. Languages that use strong typing (such as C++ and Java) allow only
those operations that are defined for the data types involved to be performed.
Python also applies this constraint, but it isn’t called strong typing in Python’s
case because the valid operations can change—for example, if an object refer-
ence is re-bound to an object of a different data type. For example:

route = 866
print(route, type(route)) # prints: 866 <class 'int'>

Identi-
fiers
and
key-
words

>» 51

18 Chapter 1. Rapid Introduction to Procedural Programming

route = "North"
print(route, type(route)) # prints: North <class 'str's

Here we create a new object reference called route and set it to refer to a new
int of value 866. At this point we could use / with route since division is a valid
operation for integers. Then we reuse the route object reference to refer to a
new str of value “North”, and the int object is scheduled for garbage collection
since now no object reference refers to it. At this point using / with route would
cause a TypeError to be raised since / is not a valid operation for a string.

The type() function returns the data type (also known as the “class”) of the
data item it is given—this function can be very useful for testing and debug-
ging, but would not normally appear in production code, since there is a better
alternative as we will see in Chapter 6.

If we are experimenting with Python code inside the interactive interpreter or
in a Python Shell such as the one provided by IDLE, simply typing the name
of an object reference is enough to have Python print its value. For example:

>>> x = "blue"
>>> y = "green"
>>> 72 = X

>>> X

"blue’

>>> X, Yy, 2
(‘blue', 'green', 'blue')

This is much more convenient than having to call the print() function all
the time, but works only when using Python interactively—any programs
and modules that we write must use print() or similar functions to produce
output. Notice that Python displayed the last output in parentheses separated
by commas—this signifies a tuple, that is, an ordered immutable sequence of
objects. We will cover tuples in the next piece.

Piece #3: Collection Data Types

It is often convenient to hold entire collections of data items. Python provides
several collection data types that can hold items, including associative arrays
and sets. But here we will introduce just two: tuple and list. Python tuples and
lists can be used to hold any number of data items of any data types. Tuples
are immutable, so once they are created we cannot change them. Lists are
mutable, so we can easily insert items and remove items whenever we want.

Tuples are created using commas (,), as these examples show—and note that
here, and from now on, we don’t use bold to distinguish what you type:

>>> "Denmark", "Finland", "Norway", "Sweden"
('Denmark', 'Finland', 'Norway', 'Sweden')

isin-
stance()
>» 242

Python’s “Beautiful Heart” 19

>>> Ilonell ,
('one',)

When Python outputs a tuple it encloses it in parentheses. Many programmers
emulate this and always enclose the tuple literals they write in parentheses.
If we have a one-item tuple and want to use parentheses, we must still use
the comma—for example, (1,). An empty tuple is created by using empty
parentheses, (). The comma is also used to separate arguments in function
calls, so if we want to pass a tuple literal as an argument we must enclose it in
parentheses to avoid confusion.

Here are some example lists:

[1, 4, 9, 16, 25, 36, 49]

['alpha', 'bravo', 'charlie', 'delta', 'echo'l]
['zebra', 49, -879, 'aardvark',6 200]

[]

One way to create a list is to use square brackets ([]) as we have done here;
later on we will see other ways. The fourth list shown is an empty list.

Under the hood, lists and tuples don’t store data items at all, but rather object
references. When lists and tuples are created (and when items are inserted in
the case of lists), they take copies of the object references they are given. In
the case of literal items such as integers or strings, an object of the appropriate
data type is created in memory and suitably initialized, and then an object
reference referring to the object is created, and it is this object reference that
is put in the list or tuple.

Like everything else in Python, collection data types are objects, so we can nest
collection data types inside other collection data types, for example, to create
lists of lists, without formality. In some situations the fact that lists, tuples,
and most of Python’s other collection data types hold object references rather
than objects makes a difference—this is covered in Chapter 3.

In procedural programming we call functions and often pass in data items as
arguments. For example, we have already seen the print() function. Another
frequently used Python function is len(), which takes a single data item as its
argument and returns the “length” of the item as an int. Here are a few calls
to len():

>>> len(("one",))

1

>>> len([3, 5, 1, 2, "pause", 5])
6

>>> len("automatically")

13

tuple
type
» 108

Creat-
ing and
calling
func-
tions

> 36

list
type
» 113

Shallow
and
deep
copying

>» 146

20 Chapter 1. Rapid Introduction to Procedural Programming

Tuples, lists, and strings are “sized”, that is, they are data types that have
a notion of size, and data items of any such data type can be meaningfully
passed to the len() function. (An exception is raised if a nonsized data item is
passed to len().)

All Python data items are objects (also called instances) of a particular data
type (also called a class). We will use the terms data type and class interchange-
ably. One key difference between an object, and the plain items of data that
some other languages provide (e.g., C++ or Java’s built-in numeric types), is
that an object can have methods. Essentially, a method is simply a function
that is called for a particular object. For example, the list type has an append()
method, so we can append an object to a list like this:

>>> x = ["zebra", 49, -879, "aardvark", 200]
>>> x.append("more")

>>> X

['zebra', 49, -879, 'aardvark', 200, 'more']

The x object knows that it is a list (all Python objects know what their own
data type is), so we don’t need to specify the data type explicitly. In the im-
plementation of the append() method the first argument will be the x object
itself—this is done automatically by Python as part of its syntactic support for
methods.

The append() method mutates, that is, changes, the original list. This is possi-
ble because lists are mutable. It is also potentially more efficient than creating
a new list with the original items and the extra item and then rebinding the
object reference to the new list, particularly for very long lists.

In a procedural language the same thing could be achieved by using the list’s
append() like this (which is perfectly valid Python syntax):

>>> list.append(x, "extra")
>>> X

['zebra', 49, -879, 'aardvark',6 200, 'more', 'extra'l]

Here we specify the data type and the data type’s method, and give as the
first argument the data item of the data type we want to call the method on,
followed by any additional arguments. (In the face of inheritance there is a
subtle semantic difference between the two syntaxes; the first form is the one
that is most commonly used in practice. Inheritance is covered in Chapter 6.)

If you are unfamiliar with object-oriented programming this may seem a bit
strange at first. For now, just accept that Python has conventional functions
called like this: functionName(arguments); and methods which are called like
this: objectName.methodName (arguments). (Object-oriented programming is cov-
ered in Chapter 6.)

Sized
>» 383

Python’s “Beautiful Heart” 21

The dot (“access attribute”) operator is used to access an object’s attributes.
An attribute can be any kind of object, although so far we have shown only
method attributes. Since an attribute can be an object that has attributes,
which in turn can have attributes, and so on, we can use as many dot operators
as necessary to access the particular attribute we want.

The list type has many other methods, including insert() which is used to
insert an item at a given index position, and remove() which removes an item at
a given index position. As noted earlier, Python indexes are always 0-based.

We saw before that we can get characters from strings using the square
brackets operator, and noted at the time that this operator could be used with
any sequence. Lists are sequences, so we can do things like this:

>>> X

['zebra', 49, -879, 'aardvark',6 200, 'more', ‘'extra'l
>>> X[0]

'zebra'

>>> Xx[4]

200

Tuples are also sequences, so if x had been a tuple we could retrieve items us-
ing square brackets in exactly the same way as we have done for the x list. But
since lists are mutable (unlike strings and tuples which are immutable), we can
also use the square brackets operator to set list elements. For example:

>>> x[1] = "forty nine"
>>> X
['zebra', 'forty nine', -879, 'aardvark', 200, 'more', 'extra'l

If we give an index position that is out of range, an exception will be raised—we
briefly introduce exception-handling in Piece #5, and fully cover exceptions in
Chapter 4.

We have used the term sequence a few times now, relying on an informal under-
standing of its meaning, and will continue to do so for the time being. However,
Python defines precisely what features a sequence must support, and similarly
defines what features a sized object must support, and so on for various other
categories that a data type might belong to, as we will see in Chapter 8.

Lists, tuples, and Python’s other built-in collection data types are covered in
Chapter 3.

Piece #4: Logical Operations

One of the fundamental features of any programming language is its logical
operations. Python provides four sets of logical operations, and we will review
the fundamentals of all of them here.

22 Chapter 1. Rapid Introduction to Procedural Programming

The Identity Operator

Since all Python variables are really object references, it sometimes makes
sense to ask whether two or more object references are referring to the same
object. The is operator is a binary operator that returns True if its left-hand ob-
ject reference is referring to the same object as its right-hand object reference.
Here are some examples:

>>> g = ["Retention", 3, Nonel
>>> b ["Retention", 3, None]
>>>a is b

False

>>> b = a

>>> a3 is b

True

Note that it usually does not make sense to use is for comparing ints, strs, and
most other data types since we almost invariably want to compare their values.
In fact, using is to compare data items can lead to unintuitive results, as we
can see in the preceding example, where although a and b are initially set to
the same list values, the lists themselves are held as separate 1ist objects and
so is returns False the first time we use it.

One benefit of identity comparisons is that they are very fast. This is because
the objects referred to do not have to be examined themselves. The is operator
needs to compare only the memory addresses of the objects—the same address
means the same object.

The most common use case for is is to compare a data item with the built-in
null object, None, which is often used as a place-marking value to signify
“unknown” or “nonexistent”:

>>> a = "Something"

>>> b = None

>>> a 1is not None, b is None
(True, True)

To invert the identity test we use is not.

The purpose of the identity operator is to see whether two object references
refer to the same object, or to see whether an object is None. If we want to
compare object values we should use a comparison operator instead.

Comparison Operators

Python provides the standard set of binary comparison operators, with the
expected semantics: < less than, <= less than or equal to, == equal to, != not

Python’s “Beautiful Heart” 23

equal to, >= greater than or equal to, and > greater than. These operators
compare object values, that is, the objects that the object references used in the
comparison refer to. Here are a few examples typed into a Python Shell:

>>> 3 = 2
>>>bh =6
>>> g ==
False
>>>a<b
True

>>a<=b,al=b,a>b,a>b
(True, True, False, False)

Everything is as we would expect with integers. Similarly, strings appear to
compare properly too:

>>> a = "many paths"
>>> b = "many paths"
>>> g is b

False

>>> g ==

True

Although a and b are different objects (have different identities), they have
the same values, so they compare equal. Be aware, though, that because
Python uses Unicode for representing strings, comparing strings that contain
non-ASCII characters can be a lot subtler and more complicated than it might
at first appear—we will fully discuss this issue in Chapter 2.

In some cases, comparing the identity of two strings or numbers—for example,
using a is b—will return True, even if each has been assigned separately as we
did here. Thisis because some implementations of Python will reuse the same
object (since the value is the same and is immutable) for the sake of efficiency.
The moral of this is to use == and != when comparing values, and to use is and
is not only when comparing with None or when we really do want to see if two
object references, rather than their values, are the same.

One particularly nice feature of Python’s comparison operatorsis that they can
be chained. For example:

>>> 3 =9
>>> 0 <= a <= 10
True

This is a nicer way of testing that a given data item is in range than having
to do two separate comparisons joined by logical and, as most other languages
require. It also has the additional virtue of evaluating the data item only once
(since it appears once only in the expression), something that could make a

Com-
paring
strings

> 68

24 Chapter 1. Rapid Introduction to Procedural Programming

difference if computing the data item’s value is expensive, or if accessing the
data item causes side effects.

Thanks to the “strong” aspect of Python’s dynamic typing, comparisons that
don’t make sense will cause an exception to be raised. For example:

>>> "three" < 4
Traceback (most recent call last):

TypeError: unorderable types: str() < int()

When an exception is raised and not handled, Python outputs a traceback
along with the exception’s error message. For clarity, we have omitted the
traceback part of the output, replacing it with an ellipsis.* The same TypeError
exception would occur if we wrote "3" < 4 because Python does not try to guess
our intentions—the right approach is either to explicitly convert, for example,
int("3") < 4, or to use comparable types, that is, both integers or both strings.

Python makes it easy for us to create custom data types that will integrate
nicely so that, for example, we could create our own custom numeric type
which would be able to participate in comparisons with the built-in int type,
and with other built-in or custom numeric types, but not with strings or other
non-numeric types.

The Membership Operator

For data types that are sequences or collections such as strings, lists, and tu-
ples, we can test for membership using the in operator, and for nonmembership
using the not in operator. For example:

>>>p = (4, "frog", 9, -33, 9, 2)

>>> 2 1in p

True

>>> "dog" not in p
True

For lists and tuples, the in operator uses a linear search which can be slow for
very large collections (tens of thousands of items or more). On the other hand,
in is very fast when used on a dictionary or a set; both of these collection data
types are covered in Chapter 3. Here is how in can be used with a string:

>>> phrase = "Wild Swans by Jung Chang"
>>> "J" in phrase
True

*A traceback (sometimes called a backtrace)is a list of all the calls made from the point where the
unhandled exception occurred back to the top of the call stack.

Dealing
with
runtime
errors

» 415

Alter-
native
Fuzzy-
Bool

» 256

Python’s “Beautiful Heart” 25

>>> "han" in phrase
True

Conveniently, in the case of strings, the membership operator can be used to
test for substrings of any length. (As noted earlier, a character is just a string
of length 1.)

Logical Operators

Python provides three logical operators: and, or, and not. Both and and or use
short-circuit logic and return the operand that determined the result—they do
not return a Boolean (unless they actually have Boolean operands). Let’s see
what this means in practice:

>>> five = 5
>>> two = 2
>>> zero = 0
>>> five and two

2

>>> two and five
5

>>> five and zero
0

If the expression occurs in a Boolean context, the result is evaluated as a
Boolean, so the preceding expressions would come out as True, True, and False
in, say, an if statement.

>>> nought = 0
>>> five or two

5

>>> two or five

2

>>> zero or five
5

>>> zero or nought
0

The or operator is similar; here the results in a Boolean context would be True,
True, True, and False.

The not unary operator evaluates its argument in a Boolean context and
always returns a Boolean result, so to continue the earlier example, not
(zero or nought) would produce True, and not two would produce False.

26 Chapter 1. Rapid Introduction to Procedural Programming

Piece #5: Control Flow Statements

We mentioned earlier that each statement encountered in a . py file is executed
in turn, starting with the first one and progressing line by line. The flow of
control can be diverted by a function or method call or by a control structure,
such as a conditional branch or a loop statement. Controlis also diverted when
an exception is raised.

In this subsection we will look at Python’s if statement and its while and for
loops, deferring consideration of functions to Piece #8, and methods to Chap-
ter 6. We will also look at the very basics of exception-handling; we cover the
subject fully in Chapter 4. But first we will clarify a couple of items of termi-
nology.

A Boolean expression is anything that can be evaluated to produce a Boolean
value (True or False). In Python, such an expression evaluates to False if it is
the predefined constant False, the special object None, an empty sequence or
collection (e.g., an empty string, list, or tuple), or a numeric data item of value
0; anything else is considered to be True. When we create our own custom data
types (e.g., in Chapter 6), we can decide for ourselves what they should return
in a Boolean context.

In Python-speak a block of code, that is, a sequence of one or more statements,
is called a suite. Because some of Python’s syntax requires that a suite be
present, Python provides the keyword pass which is a statement that does
nothing and that can be used where a suite is required (or where we want to
indicate that we have considered a particular case) but where no processing
is necessary.

The if Statement

The general syntax for Python’s if statement is this:*

if boolean expressionl:
suitel
elif boolean expression2:

suite2

elif boolean expressionN:

suitelN
else:
else suite

*In this book, ellipses (...) are used to indicate lines that are not shown.

Python’s “Beautiful Heart” 27

There can be zero or more elif clauses, and the final else clause is optional. If
we want to account for a particular case, but want to do nothing if it occurs, we
can use pass as that branch’s suite.

The first thing that stands out to programmers used to C++ or Java is that
there are no parentheses and no braces. The other thing to notice is the
colon: This is part of the syntax and is easy to forget at first. Colons are used
with else, elif, and essentially in any other place where a suite is to follow.

Unlike most other programming languages, Python uses indentation to signify
its block structure. Some programmers don’t like this, especially before they
have tried it, and some get quite emotional about the issue. But it takes just a
few days to get used to, and after a few weeks or months, brace-free code seems
much nicer and less cluttered to read than code that uses braces.

Since suites are indicated using indentation, the question that naturally aris-
es is, “What kind of indentation?” The Python style guidelines recommend
four spaces per level of indentation, and only spaces (no tabs). Most modern
text editors can be set up to handle this automatically (IDLE’s editor does of
course, and so do most other Python-aware editors). Python will work fine with
any number of spaces or with tabs or with a mixture of both, providing that
the indentation used is consistent. In this book, we follow the official Python
guidelines.

Here is a very simple if statement example:

if x:
print("x is nonzero")

In this case, if the condition (x) evaluates to True, the suite (the print () function
call) will be executed.

if lines < 1000:
print("small")

elif lines < 10000:
print("medium")

else:
print("large")

Thisis a slightly more elaborate if statement that prints a word that describes
the value of the lines variable.

The while Statement

The while statement is used to execute a suite zero or more times, the number
of times depending on the state of the while loop’s Boolean expression. Here’s
the syntax:

28 Chapter 1. Rapid Introduction to Procedural Programming

while boolean expression:
suite

Actually, the while loop’s full syntax is more sophisticated than this, since both
break and continue are supported, and also an optional else clause that we will
discuss in Chapter 4. The break statement switches control to the statement
following the innermost loop in which the break statement appears—that is,
it breaks out of the loop. The continue statement switches control to the start
of the loop. Both break and continue are normally used inside if statements to
conditionally change a loop’s behavior.

while True:
item = get next item()
if not item:
break
process item(item)

This while loop has a very typical structure and runs as long as there are items
to process. (Both get next item() and process _item() are assumed to be custom
functions defined elsewhere.) In this example, the while statement’s suite
contains an if statement, which itself has a suite—as it must—in this case
consisting of a single break statement.

The for ... in Statement

Python’s for loop reuses the in keyword (which in other contexts is the mem-
bership operator), and has the following syntax:

for variable in iterable:
suite

Just like the while loop, the for loop supports both break and continue, and also
has an optional else clause. The variable is set to refer to each object in the
iterable in turn. An iterable is any data type that can be iterated over, and
includes strings (where the iteration is character by character), lists, tuples,
and Python’s other collection data types.

for country in ["Denmark", "Finland", "Norway", "Sweden"]:
print(country)

Here we take a very simplistic approach to printing a list of countries. In
practice it is much more common to use a variable:

countries = ["Denmark", "Finland", "Norway", "Sweden"]
for country in countries:
print(country)

Python’s “Beautiful Heart” 29

In fact, an entire list (or tuple) can be printed using the print() function
directly, for example, print(countries), but we often prefer to print collections
using a for loop (or a list comprehension, covered later), to achieve full control
over the formatting.

for letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
if letter in "AEIOU":
print(letter, "is a vowel")
else:
print(letter, "is a consonant")

In this snippet the first use of the in keyword is part of a for statement, with
the variable letter taking on the values "A", "B", and so on up to "Z", changing
at each iteration of the loop. On the snippet’s second line we use in again, but
this time as the membership testing operator. Notice also that this example
shows nested suites. The for loop’s suite is the if ... else statement, and both
the if and the else branches have their own suites.

Basic Exception Handling

Many of Python’s functions and methods indicate errors or other important
events by raising an exception. An exception is an object like any other Python
object, and when converted to a string (e.g., when printed), the exception
produces a message text. A simple form of the syntax for exception handlers
is this:
try:
try suite

except exceptionl as variablel:
exception suitel

except exceptionN as variableN:
exception suiteN

Note that the as variable part is optional; we may care only that a particular
exception was raised and not be interested in its message text.

The full syntax is more sophisticated; for example, each except clause can
handle multiple exceptions, and there is an optional else clause. All of this is
covered in Chapter 4.

The logic works like this. If the statements in the try block’s suite all execute
without raising an exception, the except blocks are skipped. If an exception
is raised inside the try block, control is immediately passed to the suite corre-
sponding to the first matching exception—this means that any statements in
the suite that follow the one that caused the exception will not be executed. If

List
compre-
hen-
sions

>» 118

30 Chapter 1. Rapid Introduction to Procedural Programming

this occurs and if the as variable part is given, then inside the exception-han-
dling suite, variable refers to the exception object.

If an exception occurs in the handling except block, or if an exception is raised
that does not match any of the except blocks in the first place, Python looks for
a matching except block in the next enclosing scope. The search for a suitable
exception handler works outward in scope and up the call stack until either
a match is found and the exception is handled, or no match is found, in which
case the program terminates with an unhandled exception. In the case of
an unhandled exception, Python prints a traceback as well as the exception’s
message text.

Here is an example:

s = input("enter an integer: ")
try:

i=1int(s)

print("valid integer entered:", i)
except ValueError as err:

print(err)

If the user enters “3.5”, the output will be:
invalid literal for int() with base 10: '3.5'
But if they were to enter “13”, the output will be:
valid integer entered: 13

Many books consider exception-handling to be an advanced topic and defer it
aslateaspossible. Butraising and especially handling exceptionsis fundamen-
tal to the way Python works, so we make use of it from the beginning. And as
we shall see, using exception handlers can make code much more readable, by
separating the “exceptional” cases from the processing we are really interest-
ed in.

Piece #6: Arithmetic Operators

Python provides a full set of arithmetic operators, including binary operators
for the four basic mathematical operations: + addition, - subtraction, * multipli-
cation, and / division. In addition, many Python data types can be used with
augmented assignment operators such as += and *=. The +, -, and * operators
all behave as expected when both of their operands are integers:

>> 5+ 6
11

Deal-
ing with
runt