'l‘“"'n
\Iﬁﬁ%ﬁllllm ﬁ
Python 101 (part 7): Dinner With A Hungry Giant

By Vikram Vaswani

Melonfire

http://www.melonfire.com/

Python 101 (part 7): Dinner With A Hungry Giant

Table of Contents

= To 0 o USSR
YL o YA ST T 1o PP
BetweenA ROCK ANd...ANOLNEI ROCK........uuuiiiiiiiiii bbb s e eseessssessesssesssesseneeeeeenes 4

0Ly = LY (< TP PPTTSPPPPIY
Enter The HUNGEY GIBNL.......cco oo e e e e e e s e e e e e nsnnnnnnnnnnes €
(0] T VA 10 N0 o 0= 12
DOING TE MALN......coiiiiiiieeeeee s 1
String Theory (And Other Interesting STUFT)..........uuuuiiiiiiiiiieeeeeeeee e 20

BUCKING THE SYSIBM...cciiiiiiiieii e 2

Big Iron

Last time out, | introduced the fundamental unit of software abstraction — the function — and demonstrated it
in the context of a Python program. | illustrated how functions can be used to package code into reusable
modules which, when combined with arguments and return values, add a whole new level of flexibility to
your code. Finally, | talked at some length about variable scope inside and outside functions, and discussed
some of the tools Python offers to assist in optimal usage of functions.

However, packaging your code into functions is just the beginning. Python also allows you to create
collections of shared code fragments, or "modules”, which may be imported and used by any Python progra
Powerful, flexible and very interesting, modules can be one of the most potent weapons in a Python
developer's arsenal...so long as they're used correctly.

Over the course of this article, I'll be exploring Python modules in detail, together with examples of how to
create, import and use modules in your own development activities. As if that wasn't enough, | will also be
looking at some of the built—in modules that ship with Python, and demonstrating how they can speed up co
development. So let's get going, shall we?

Developer Shed .

Big Iron

Mercury Rising
Like Alice in Wonderland, I'll start at the beginning — what's a module anyway?

Modules are a way to group related pieces of code together. They allow developers to create a logical
container for variables and functions, such that these variables and functions can be used by other program
that require them.

The goal? Very simple: by making it possible to share code in this manner, Python immediately makes it
easier to create reusable software, cutting down development and testing time. Take it one step further: by
allowing developers to create modules and providing the underpinnings to import them into other programs,
Python ensures that a single copy of a module is in use across a system. This simplifies code maintenance
restricting updates and upgrades to a single file.

In the content of Python programming, a module is essentially a text file, ending in a .py extension and
containing executable program code. The name of the file is treated as the name of the module; once the
module has been imported into a Python program, this name is used in all subsequent references to the
module.

Let's illustrate how this works by creating a simple module. Pop open your favourite text editor, and create a
new text file containing the following function:

define a function

def tempConv(temperature, scale):

if (scale =="c"):

fahrenheit = (temperature * 1.8) + 32
return fahrenheit

elif (scale =="f"):

celsius = (temperature — 32) / 1.8
return celsius

else:

return "Cannot convert!"

Save this file as "temperature.py"

Notice that the module does not require the name of the interpreter to be specified as the first line of the scr
as do regular Python scripts.

You can now pull this module into any Python program — I'll illustrate how with the command-line
interpreter.

Developer Shed X

Mercury Rising

Python 101 (part 7): Dinner With A Hungry Giant

Python 1.5.2 (#1, Aug 25 2000, 09:33:37) [GCC 2.96 20000731
(experimental)] on linux-i386

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> jmport temperature

>>> temperature.tempConv(98.6, "f")

37.0

>>> temperature.tempConv(37, "c")

98.6

>>> temperature.tempConv(37, "d")

‘Cannot convert!'

>>>

Developer Shed

Mercury Rising

Between A Rock And...Another Rock

The elements within a module — variables, functions, other imports — are referred to as "module attributes".

The "import" keyword is used to search for the named module and load it if found. Once the module has bee
successfully imported, functions and variables contained within it can be accessed by prefixing their names
with the module name. Since each module sets up an independent namespace, this is a handy way to avoic
name clashes.

To see how this works, consider the following example, which uses two modules, each containing a functior
named rock():

def rock(): # module huey.py
print "Between a rock and a hard place”

def rock(): # module dewey.py
print "Rock on!"

Let's see what happens when | try to use these in a program:

>>> import huey

>>> import dewey

>>> huey.rock()

Between a rock and a hard place
>>> dewey.rock()

Rock on!

>>>

Between A Rock And...Anot... Developer Shed 4

Python 101 (part 7): Dinner With A Hungry Giant

Since each module attribute has a unique prefix, it's possible to distinguish between attributes with the same
name in different modules, and thereby avoid hame conflicts.

You'll be interested to know that everything you do in Python takes place within the context of a module.

Even commands typed into the interactive command-line interpreter take place within the bubble of Python'
top—-level module, named " __main__".

Between A Rock And...Anot... Developer Shed 5

Love Bytes

The "import" statement looks for module files in the directories specified in the $PYTHONPATH
environment variable. If the named module isn't found in these directories, it returns an error — as the
following example demonstrates:

>>> import SQLfunctions

Traceback (innermost last):

File ™, line 1,in?

ImportError: No module named SQLfunctions
>>>

Once you add the directory containing the module to the $PYTHONPATH variable and restart the interprete
Python should find and import your module without any errors (you can also modify the search path via the
built=in "sys" module — more on this later.)

In case Python finds more than one module with the specified name, the first one is used.

The first time Python imports a module, it automatically compiles the module as saves it as bytecode; this
bytecode file has the same name as the module file, but ends in a .pyc extension. These .pyc files are
automatically recompiled if the module changes in any way. If you take a look at your working directory after
importing and using one or more modules in a Python program, you'll notice a bunch of these .pyc files
scattered around — Python stores these to speed up the module the next time it's called.

$ls -l

—rw—rw-r—— 77 Jul 23 23:04 dewey.py
—rw—-rw-r—— 181 Jul 23 23:05 dewey.pyc
—rw—rw-r—— 98 Jul 23 23:04 huey.py
—rw—-rw-r—— 202 Jul 23 23:22 huey.pyc
—rw—rw-r—— 244 Jul 23 22:49 temperature.py
—rw—rw-r—— 435 Jul 23 22:50 temperature.pyc
—rwxrwxr—x 222 Jun 8 10:50 module_test.py

If you play with this a little, you'll see that I told a little white lie a few paragraphs back, when | said that

Developer Shed .

Love Bytes

Python 101 (part 7): Dinner With A Hungry Giant

Python could only import a module if it was located in a directory named in $PYTHONPATH. In fact, even if
the module isn't located in the search path, but its corresponding bytecode is present, Python will still import
and use the module.

Consider the following example, where the working directory (which is in the search path) doesn't contain th
module source, but *does* contain the compiled bytecode version — Python goes ahead and uses the bytec
version without blinking:

$ls -l
—rw—rw-r—— 435 Jul 23 22:50 temperature.pyc
—rwxrwxr—x 222 Jun 8 10:50 module_test.py

$ python

>>> jmport temperature

>>> temperature.tempConv(95, "f")
35.0

>>>

Developer Shed .

Love Bytes

Enter The Hungry Giant

The first time a module is imported, the code within it is automatically executed. This comes in handy if you
need to initialize variables, or print a copyright notice:

menu.py

set up dictionaries

breakfast = {'Mon":"Ham and Eggs', 'Tue":'Grilled Sandwiches',
'Wed'":'Spanish Omelettes’, 'Thu':'Bacon and Eggs',
'Fri":'Pancakes’,

'‘Sat":'Scrambled Eggs', 'Sun":'Coffee and Donuts'}

lunch = {Mon"'Russian Salad’, 'Tue":'Fish and Chips’,
‘Wed":'Chicken

Curry', 'Thu'"'Egg Salad', 'Fri":'"Cheeseburgers’,
'Sat":'Steak’,

'Sun':'Stir—fried Chicken'}

dinner = {'Mon"'Pasta’, 'Tue"'Thai Noodles', 'Wed":'Pork
Chops/,

‘Thu':'Prawns in Butter Garlic Sauce', 'Fri":'Fried Fish’,
'Sat":'Mongolian

Chicken’, 'Sun:'Vegetable Stew'}

functions to return menu items based on day
def getBreakfastlitem(day):
print "Breakfast on " + day + " is: " + breakfast[day]

def getLunchltem(day):
print "Lunch on " + day + " is: " + lunch[day]

Developer Shed o

Enter The Hungry Giant

Python 101 (part 7): Dinner With A Hungry Giant

def getDinnerltem(day):
print "Dinner on " + day + " is: " + dinner[day]

def generateMenu(day):

print "Breakfast on " + day + " is: " + breakfast[day]
print "Lunch on " + day + " is: " + lunch[day]

print "Dinner on " + day + " is: " + dinner[day]

print "This module is owned by The Hungry Giant. Cook smart.
Eat healthy.
Die anyway."

>>> jmport menu

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

>>> jmport menu

>>> jmport menu

>>> jmport menu

>>>

Note that the code within the module is only executed the first time; subsequent attempts to import the mod
do not execute the code within it.

In case you need to re—run the module code, Python offers the reload() function, which reloads a module ar
executes the code within it again. When a module is reloaded, all module attributes are refreshed with their
original values.

In order to illustrate this, let's import the "menu.py" module above and access one of its attributes.

>>> jmport menu

Developer Shed o

Enter The Hungry Giant

Python 101 (part 7): Dinner With A Hungry Giant

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

>>> menu.breakfast["Fri"]

'Pancakes'

>>>

Next, let's alter this attribute.

>>> menu.breakfast["Fri"] = "Jam and Toast"
>>> menu.breakfast["Fri"]

‘Jam and Toast'

>>>

Note how re—importing the module has no effect whatsoever on the changed attribute,

>>> jmport menu
>>> menu.breakfast["Fri"]

‘Jam and Toast'
>>>

while reloading it resets all attributes back to their initial values.

>>> reload(menu)
This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

Enter The Hungry Giant Developer Shed

Python 101 (part 7): Dinner With A Hungry Giant

>>> menu.breakfast["Fri"]
'Pancakes'
>>>

The reload() function only works if the module has been successfully imported prior to calling it. An attempt
to reload() a module which has not been previously imported will result in an error.

>>> # module not yet imported

>>> reload(menu)

Traceback (innermost last):

File ™, line 1,in ?

NameError: menu

>>> # import it...

>>> jmport menu

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

>>> # and now try reloading it!

>>> reload(menu)

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

>>>

The reload() function comes in handy if a module changes after it has been imported,; it provides a quick anc
easy way to update the namespace during program execution.

Developer Shed 11

Enter The Hungry Giant

From Python, With Love

Thus far, you've been importing modules as is, and using module attributes by referencing them with the
module name as prefix. Python also offers an alternative method to selectively access and use module
attributes — the "from" statement.

The "from" statement allows you to import specific attributes from a module into the current namespace.
Since these attributes become part of the current namespace, it no longer becomes necessary to prefix ther
with the module name in order to use them.

Consider the following example, which demonstrates how this works.

>>> from menu import lunch

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

>>> |lunch["Tue"]

'Fish and Chips'

>>>

In this case, the module variable "menu.lunch” is imported into the current namespace as the variable "luncl

It's important to exercise caution when using the "from" statement - since "from" imports module attributes
directly into the current namespace, you run the risk of overwriting current names when you use it. To
illustrate this, consider the following simple Python program:

#1/usr/bin/python

def getDinnerltem(day):
print "Sorry, diner closed on " + day

getDinnerltem("Mon")

Developer Shed 12

From Python, With Love

Python 101 (part 7): Dinner With A Hungry Giant

When you run this, the output reads

Sorry, diner closed on Mon

Now, look what happens when you import some names from the "menu.py" module
into this program:

#1/usr/bin/python

def getDinnerltem(day):
print "Sorry, diner closed on " + day

imports
from menu import dinner
from menu import getDinnerltem

getDinnerltem("Mon")

When you run this program. the imported names will overwrite the names already existing in the namespace
resulting in the following output:

From Python, With Love Developer Shed 13

Python 101 (part 7): Dinner With A Hungry Giant

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

Dinner on Mon is: Pasta

Another important gotcha with "from": importing names using "from" implies
that changes to those names (after they have been imported) are not
reflected in the parent module. Consider the following module:

numbers.py

x=1
y=2
Z=X+y

Look what happens when | import these values into a script:

#1/usr/bin/python

import
from numbers import x,y,z

at this stage, z=x+y=>z=3
print z

alter the value of imported x
x=10

From Python, With Love Developer Shed

14

Python 101 (part 7): Dinner With A Hungry Giant

z is still referring to the value of x in the module, so z

still = 3
print z

the only way to get z to recognize the new value of x is to

redefine z in
context
Z=x+y
#nowz=12
print z

From Python, With Love

Developer Shed

15

Doing The Math

With these caveats in mind, the "from" statement provides a convenient way to import specific bits of a
module into another program. Most of the time, it's used in connection with modules containing a large
number of different functions; it's easier — and more optimal — to simply import the functions you need, rathe
than the entire module. Here's an example, using the built-in "math" module:

>>> from math import sqrt, exp
>>> sqrt(256)

16.0

>>> exp(0)

1.0

>>>

If you have good reason to do so, or simply like to experiment, you can use "from" to import everything from
a module into the current namespace — here's how:

>>> from menu import *

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

>>> dinner

{'Fri": 'Fried Fish', "Tue': "Thai Noodles', 'Thu': 'Prawns in
Butter

Garlic Sauce', 'Sun': 'Vegetable Stew', 'Wed'": 'Pork Chops',
‘Mon':

'Pasta’, 'Sat": '"Mongolian Chicken'}

>>> lunch

{'Fri": 'Cheeseburgers’, 'Tue": 'Fish and Chips', 'Thu'": 'Egg
Salad',

'Sun': 'Stir—fried Chicken', 'Wed'": 'Chicken Curry', '‘Mon":
'Russian

Salad', 'Sat": 'Steak'}

>>> preakfast

{Fri": 'Pancakes', 'Tue": 'Grilled Sandwiches', "Thu': 'Bacon
and Eggs',

'Sun': 'Coffee and Donuts', 'Wed': 'Spanish Omelettes’, ‘Mon":

Doing The Math Developer Shed 16

Python 101 (part 7): Dinner With A Hungry Giant

'Ham and

Eggs', 'Sat":'Scrambled Eggs'}
>>> getLunchltem("Wed")
>>>'Chicken Curry'

>>>

If you need to prevent certain module attributes from being imported with a "from module import *"
statement, you can prefix the attribute name within the module with an underscore. This is a primitive
technique, but it does work — as the following example demonstrates:

menu.py

set up dictionaries
snip

_dinner = {'Mon"'Pasta’, 'Tue":"Thai Noodles', 'Wed":'Pork
Chops/,

‘Thu':'Prawns in Butter Garlic Sauce’, 'Fri":'Fried Fish’,
'Sat":'Mongolian

Chicken', 'Sun:'Vegetable Stew'}

functions to return menu items based on day
snip

Now, | will be unable to access the "_dinner" attribute when | use "from" to import everything,

>>> from menu import *
This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

Doing The Math Developer Shed 17

Python 101 (part 7): Dinner With A Hungry Giant

anyway.

>>> |lunch["Tue"]

'Fish and Chips'

>>> dinner["Tue"]
Traceback (innermost last):
File ™, line 1,in ?
NameError: _dinner

>>> dinner["Tue"]
Traceback (innermost last):
File ™, line 1,in ?
NameError: dinner

>>>

although I will still be able to access it when | perform an "import" operation.

>>> jmport menu

This module is owned by The Hungry Giant. Cook smart. Eat
healthy. Die

anyway.

>>> menu._dinner

{'Fri": 'Fried Fish', "Tue': "Thai Noodles', 'Thu': 'Prawns in

Butter

Garlic Sauce', 'Sun': 'Vegetable Stew', 'Wed'": 'Pork Chops',
‘Mon':

'Pasta’, 'Sat": '"Mongolian Chicken'}

>>>

It's also possible for modules to import each other — here's a "circle” module which uses functions imported
from the "math" module.

circle.py

def area(r):

Doing The Math Developer Shed 18

Python 101 (part 7): Dinner With A Hungry Giant

from math import pi

area=pi*r*r
return area

>>> jmport circle
>>> circle.area(b)
78.5398163397
>>>

Doing The Math

Developer Shed

19

String Theory (And Other Interesting Stuff)

Python comes with a whole bunch of built—in modules, which can substantially reduce the time you spend o
development. Here's a list of the most common and useful ones (some of these are only available in Python
2.X):

The "string" module handles common string operations,

>>> jmport string

>>> string.lower("HELLQO")
‘hello’

>>> string.center("HELLQO", 80)
"HELLO

>>> string.split("The red wolf ate the green pumpkin®, ")
[The', 'red’, 'wolf', 'ate’, 'the', 'green’, 'pumpkin’]
>>>

while the "re" module matches regular expression via its match() and search() functions,

>>> import re
>>> re.search("at", "Batman — Dark Knight")

>>> re.findall("00", "boom boom bang")
['00', '00
>>>

and the "difflib" and "filecmp" modules help in comparing strings, files and directories.

The "math" module does for numbers what the "string" module does for strings.

Developer Shed 20

String Theory (And Other ...

Python 101 (part 7): Dinner With A Hungry Giant

>>> import math
>>> math.sin(60)
-0.304810621102
>>> math.sin(30)
-0.988031624093
>>> math.sin(0)
0.0

>>> math.cos(0)
1.0

>>> math.tan(45)
1.61977519054
>>> math.cos(90)
-0.448073616129
>>> math.hypot(3,4)
5.0

>>> math.pow(2, 4)
16.0

>>> math.exp(0)
1.0

>>>

The "cmath" and "random" modules handle complex numbers and random numbers.

>>> jmport cmath

>>> jmport rand

>>> cmath.pi

3.14159265359

>>> cmath.e

2.71828182846

>>> rand.randrange(25,100)

54

>>> rand.rand()

12992

>>> rand.choice(['"Rachel", "Monica", "Chandler”, "Joey",
"Phoebe", "Ross"])

'Rachel’

>>> rand.choice(["Rachel", "Monica", "Chandler”, "Joey",
"Phoebe", "Ross"])

‘Monica'

>>> rand.choice(["Rachel", "Monica", "Chandler”, "Joey",
"Phoebe", "Ross"])

String Theory (And Other ... Developer Shed 21

Python 101 (part 7): Dinner With A Hungry Giant

‘Joey'
>>>

The "calendar" module offers a bunch of functions to handle date—related tasks,

>>> import calendar

>>> calendar.isleap(2001)

0

>>> calendar.isleap(2000)

1

>>> calendar.weekday(2001,01,05)
4

>>> calendar.prcal(2001)

2001

January February March

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
123456712341234
891011121314567891011567891011
1516171819202112131415161718121314151617 18
222324252627 281920212223242519202122232425
2930312627 282627 28293031

April May June

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1123456123

23456787891011121345678910
91011121314151415161718192011121314151617
1617 18192021222122232425262718192021222324
2324 2526272829 282930312526 272829 30

30

July August September

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
11234512

234567867891011123456789

String Theory (And Other ... Developer Shed

22

Python 101 (part 7): Dinner With A Hungry Giant

91011121314151314151617181910111213 141516
1617 18 19 20 21 22 20 21 22 23 24 25 26 17 18 19 20 21 22 23
2324 25 26 27 28 29 27 28 29 30 31 24 25 26 27 28 29 30
3031

October November December

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1234567123412
8910111213145678910113456789

1516 171819202112131415161718101112 13141516
222324252627281920212223242517181920212223
2930312627 28293024252627 282930

31

>>>

while the "time" module handles time-related operations and conversions.

>>>import time

>>> time.time()

996052081.879

>>> time.localtime(time.time())

(2001, 7, 25, 14, 38, 19, 2, 206, 0)

>>>

>>> time.stritime("%A %d %B %Y", time.localtime(time.time()))
'‘Wednesday 25 July 2001'

>>>

The "fileinput" and "xreadlines" modules offer functions to read and process files efficiently, while the "os"
module provides OS—dependent functions.

>>> import 0s
>>> os.getcwd()
'lhome/vikram'

String Theory (And Other ... Developer Shed 23

Python 101 (part 7): Dinner With A Hungry Giant

>>> 0s.getuid()

519

>>> 0s.getgid()

100

>>> ps.uname()

(‘Linux', 'medusa.melonfire.com’, '2.2.14-5.0", '#1 Tue Mar 7

21:07:39 EST
2000/, 'i686")
>>>

The very powerful "os.path" module offers functions to manipulate and test pathnames.

>>> os.path.abspath('../")

'lhome’

>>>

>>> os.path.exists(‘/tmp/unicorn’)

0

>>> os.path.basename('/usr/local/apache’)
‘apache’

>>>

>>> os.path.isabs(/usr/local/apache’)
1

>>> os.path.isabs('../")

0

>>>

The "pwd", "grp" and "crypt" modules offer access to the UNIX password and group files, and come in hand
for user and group manipulation tasks.

>>> import pwd, grp

>>> pwd.getpwnam('vikram’)

(‘'vikram', 'x', 519, 100, ", /home/vikram', ‘/bin/bash")
>>> pwd.getpwuid(519)

(‘'vikram', 'x', 519, 100, ", /home/vikram', ‘/bin/bash")
>>> grp.getgrall()

String Theory (And Other ... Developer Shed 24

Python 101 (part 7): Dinner With A Hungry Giant
[(root', "X, O, []), (bin', X', 1, ['bin’, '"daemon?),
(‘daemon’, 'x',
2, ['bin’, 'daemon’]), ('sys', 'x', 3, ['bin’, '‘adm?),
(‘adm’, 'x', 4,
[adm’, 'daemon’), (‘tty', 'x', 5, []), ('disk’, X', 6, []),
(lp', 'X',
7, ['daemon’, 'Ip']), (mem’, X', 8, []), (kmem', 'x', 9,
M, (wheel,
X', 10, [])]
>>>

The "cgi”, "urllib" and "httplib" modules are used to connect your Python program to the Web; the "smtplib"
and "poplib" modules help in writing mail clients; the "mimetools” module helps to process
MIME-encapsulated email messages; and the "xmllib", "xml.dom" and "xml.sax" modules provide the
architecture necessary to handle XML data. Whew!

In case you need to find out more about a specific module — or any other Python object — consider using the
dir() function, which returns a list of object attributes.

>>> jmport string
>>> dir(string)

[__builtins_',' doc__',' file_ ' ' name_ ' ' idmap',
'_idmapL’,

' lower', ' _re','_safe_env',' _swapcase', '_upper’, ‘atof’,
‘atof_error',

‘atoi', 'atoi_error', 'atol', 'atol_error', 'capitalize’,
‘capwords’,

‘center’, 'count’, 'digits’, 'expandtabs’, find’,
‘hexdigits', 'index’,
'index_error', 'join’, 'joinfields’, 'letters’, 'ljust’,

'lower’,

'lowercase’, 'Istrip’, 'maketrans’, ‘octdigits', ‘'replace’,
rfind’,

‘rindex’, 'rjust’, 'rstrip’, 'split’, 'splitfields', 'strip’,
'swapcase',

‘translate’, 'upper’, 'uppercase’, 'whitespace', 'fill']
>>> jmport math
>>> dir(math)

[__doc_' ' file ',' name__', 'acos', 'asin', 'atan’,
‘atan2’,

‘ceil', 'cos', 'cosh’, 'e', 'exp’, ‘fabs', 'floor', 'fmod’,
'frexp’,

String Theory (And Other ... Developer Shed 25

Python 101 (part 7): Dinner With A Hungry Giant

‘hypot', 'ldexp’, 'log’, 'log10’, 'modf, 'pi', 'pow’, 'sin’,
'sinh’,

'sgrt’, 'tan’, 'tanh’]

>>> import cgi

>>> dir(cgi)

[FieldStorage', 'FormContent’, 'FormContentDict',
'InterpFormContentDict’,

'‘MiniFieldStorage’, 'StringlO', 'SvFormContentDict',

' builtins__",

' _doc_',' file_'' name__',' version__', 'dolog’,
‘escape’,

'initlog’, 'log’, 'logfile’, 'logfp’, ‘'maxlen’, ‘mimetools’,
'nolog’, 'os’,

'‘parse’, 'parse_header', 'parse_multipart', 'parse_gs',
'print_arguments’,

'print_directory', 'print_environ', 'print_environ_usage',
'print_exception’, 'print_form', 'rfc822', 'string’, 'sys’,
‘test’,

‘urllib’

>>>

Every Python module has a name, which is exposed as the module attribute " __name__".

>>> jmport string
>>> string.__nhame__
'string’

>>> jmport math

>>> math.__name___
'math’

>>>

Remember when | told you that the default module for all your Python activities is"__main__"? You can use
" __name__"to keep me honest...

>>> name__

String Theory (And Other ... Developer Shed 26

Python 101 (part 7): Dinner With A Hungry Giant

'__main__'
>>>

String Theory (And Other ... Developer Shed

27

Bucking The System

A special mention should be made here of Python's "sys" module, which allows you to manipulate
system-—specific parameters like the list of currently—loaded modules and the module search path. The
following example demonstrates the important attributes of this module:

>>> jmport sys

>>> # path to python binary

>>> gys.executable

'fusr/bin/python’

>>> # platform

>>> sys.platform

'linux-i386'

>>> # list of loaded modules

>>> gys.modules

{'os.path’: ,

‘os"

, 'readline': 'readline' from
‘fusr/lib/pythonl.5/lib—dynload/readline.so'>,
‘exceptions': ‘fust/lib/pythonl.5/exceptions.pyc'>,
"__main__": (built-in)>, 'posix": , 'sys": (built—in)>,
' builtin__":, 'site":

, 'signal’: 'signal’ (built—in)>, 'UserDict":
'fusr/lib/python1.5/UserDict.pyc'>, 'posixpath':

, 'stat":

}

>>>

The "path" attribute specifies the search path for modules, and can be modified using standard list construct

>>> sys.path

[, 'fusr/lib/pythonl.5/,
‘fusr/lib/pythonl.5/plat-linux-i386',
‘fusr/lib/pythonl.5/lib—tk’, fusr/lib/python1.5/lib—dynload']
>>> gys.path.append("/usr/local/pymod/")

>>> sys.path

[, 'fusr/lib/pythonl.5/,

Bucking The System Developer Shed 28

Python 101 (part 7): Dinner With A Hungry Giant

‘fusr/lib/pythonl.5/plat-linux-i386',
‘fusr/lib/pythonl1.5/lib—tk', fust/lib/python1.5/lib—dynload’,
‘fusr/local/pymod/

>>>

The "argv" attribute contains arguments passed to the program on the command line. Consider the following
program:

#1/usr/bin/python

import sys

print "Arguments:"

for x in sys.argv:
print x

Here's the output:

$ script.py medusa.server.com vikram 110
Arguments:

script.py

medusa.server.com

vikram

110

Bucking The System Developer Shed 29

Python 101 (part 7): Dinner With A Hungry Giant

As you can see, the first element of the "argv" list contains the name of
the called script, with the remaining elements holding the command-line
arguments.

Finally, the "__builtin__" module contains information on the various
functions that are built into the interpreter. Take a look:

>>> import __ builtin__

>>> dir()

[_builtin__"," builtins__',' _doc__',' name_ T

>>> dir(__builtin__)

['ArithmeticError', 'AssertionError', 'AttributeError’, 'EOFError’,
‘Ellipsis’,

'‘EnvironmentError’, 'Exception’, 'FloatingPointError’, 'lOError’,
‘ImportError', 'IndexError', 'KeyError', 'Keyboardinterrupt',
‘LookupError’, 'MemoryError', 'NameError', 'None', 'NotimplementedError’,
'‘OSError', ‘OverflowError', 'RuntimeError’, 'StandardError’, 'SyntaxError’,
'SystemError', 'SystemExit', "TypeError’,

‘ValueError', 'ZeroDivisionError',' ',' _debug__',' doc_ ',

' _import__',' name__', 'abs', ‘apply', 'buffer’, 'callable’, ‘chr’,
‘cmp’, ‘coerce’, ‘compile’, ‘complex’, ‘'delattr’, ‘dir', ‘divmod’, ‘eval’,
‘execfile’, ‘exit', filter’,

'float’, 'getattr’, 'globals’, 'hasattr’, ‘hash’, 'hex’, 'id", 'input’,

'int', 'intern’, 'isinstance’, ‘issubclass', 'len’, 'list', 'locals’,

'long’, 'map’, 'max’, 'min’, ‘oct’, ‘open’, 'ord’, 'pow’, ‘quit’, range’,
‘raw_input', 'reduce’,

'reload', 'repr’, 'round', 'setattr’, 'slice’, 'str’, 'tuple’, 'type’,

'vars', 'xrange']

>>>

The errors you see are built—in exceptions — we'll be discussing them in detail in the next article.

More information on the various modules which ship with Python is available at
http://lwww.python.org/doc/current/lib/lib.html

And that's about it for this discussion of Python modules. In this article, you found out how to logically group

functions together into modules, which are the highest-level abstraction in Python. You examined two
different techniques for importing module functions and variables into your own programs, together with the

Bucking The System Developer Shed 30

Python 101 (part 7): Dinner With A Hungry Giant

implications of each on your program's namespace. Finally, you found out a little bit more about the default
modules that ship with Python, hopefully saving yourself some time the next time you sit down to code a
Python program

In the next — and final — article of this series, | will be examining Python's error—handling routines, and
demonstrating how to use them to trap and resolve program errors. Make sure that you come back for that
one!

Note: All examples in this article have been tested on Linux/i586 with Python 1.5.2. Examples are illustrative
only, and are not meant for a production environment. YMMV!

Developer Shed 31

Bucking The System

	Table of Contents
	Big Iron
	Mercury Rising
	Between A Rock And...Another Rock
	Love Bytes
	Enter The Hungry Giant
	From Python, With Love
	Doing The Math
	String Theory (And Other Interesting Stuff)
	Bucking The System

