
Python 101 (part 3): A Twist In The Tail

By Vikram Vaswani

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/

Table of Contents
The Big Picture..1

Here Comes A Hero..2

Making Friends And Influencing People..4

We Don't Need Another Hero..6

Looping The Loop...9

Twist And Turn...13

Within Range()..15

Just Passin' Through..18

Python 101 (part 3): A Twist In The Tail

i

The Big Picture
Last time out, I taught you a little bit about two of Python's basic data types, strings and numbers. I also gave
you a crash course in Python operators and expressions, and demonstrated how they could be used in
conjunction with the "if" family of conditional statements to add control routines to your Python programs.

However, "if" statements are only one piece of the jigsaw; Python also allows you to control program
execution with the "while" and "for" loops, which coincidentally also happen to be the subject of today's
discussion. Along the way, I'll be demonstrating yet another of Python's built−in data structures, visiting the
Superhero Hall Of Fame, hooking up with some old flames, and examining prime numbers and factorials.

Let's get started, shall we?

The Big Picture 1

Here Comes A Hero
Thus far, the variables you've used contain only a single value − for example,

Python 1.5.2 (#1, Aug 25 2000, 09:33:37) [GCC 2.96 20000731
(experimental)] on linux−i386
Copyright 1991−1995 Stichting Mathematisch Centrum, Amsterdam
>>> i=0
>>> alpha=63453473458348383L
>>> name="god"
>>>

For simple Python programs, this is usually more than enough. However, as your Python programs grow in
complexity, you're going to need more advanced data structures to store and manipulate information. And
that's exactly where lists come in.

Unlike string and number objects, which typically hold a single value, a list can best be thought of as a
"container" variable, which can contain one or more values. For example,

>>> superheroes = ["Spiderman", "Superman", "Human Torch",
"Batman"]
>>>

Here, "superheroes" is a list containing the values "Spiderman", "Superman", "Human Torch", and "Batman".

Lists are particularly useful for grouping related values together − names, dates, phone numbers of
ex−girlfriends et al. The various elements of the list are accessed via an index number, with the first element
starting at zero. So, to access the element "Superman", you would use the notation

>>> superheroes[0]
'Spiderman'
>>>

while

Here Comes A Hero 2

>>> superheroes[3]
'Batman'
>>>

− essentially, the list name followed by the index number enclosed within square braces. Geeks refer to this as
"zero−based indexing".

Defining a list is simple − simply assign values (enclosed in square braces) to a variable, as illustrated below:

>>> oldFlames = ["Jennifer", "Susan", "Tina", "Bozo The
Clown"]
>>>

The rules for choosing a list name are the same as those for any other Python variable − it must begin with a
letter, and can optionally be followed by more letters and numbers.

If you've worked with other programming languages, it should now be obvious that lists in Python are the
equivalent of arrays in Perl, PHP and C. However, unlike these languages, Python does not restrict lists to
elements of a specific object type, and can mix strings, numbers and even other lists within a single list
"container".

>>> allMixedUp = ["ding dong", 23, "abracadabra", 26346.3, [4,
"four"]]
>>> allMixedUp
['ding dong', 23, 'abracadabra', 26346.3, [4, 'four']]
>>> allMixedUp[0]
'ding dong'
>>> allMixedUp[4]
[4, 'four']
>>> allMixedUp[4][0]
4
>>> allMixedUp[4][1]
'four'
>>>

Python 101 (part 3): A Twist In The Tail

Here Comes A Hero 3

Making Friends And Influencing People
Lists can be concatenated with the + operator,

>>> oldFlames = ["Jennifer", "Susan", "Tina", "Bozo The
Clown"]
>>> superheroes = ["Spiderman", "Superman", "Human Torch",
"Batman"]
>>> strangeFriends = oldFlames + superheroes
>>> strangeFriends
['Jennifer', 'Susan', 'Tina', 'Bozo The Clown', 'Spiderman',
'Superman',
'Human Torch', 'Batman']
>>>

and repeated with the * operator, in much the same manner as strings and numbers.

>>> oldFlames * 3
['Jennifer', 'Susan', 'Tina', 'Bozo The Clown', 'Jennifer',
'Susan',
'Tina', 'Bozo The Clown', 'Jennifer', 'Susan', 'Tina', 'Bozo
The Clown']
>>>

"Slices" of a list can be extracted using notation similar to that used for extracting substrings − take a look:

>>> oldFlames
['Jennifer', 'Susan', 'Tina', 'Bozo The Clown']
>>> oldFlames[0]
'Jennifer'
>>> oldFlames[0:2]
['Jennifer', 'Susan']
>>> oldFlames[0:5]
['Jennifer', 'Susan', 'Tina', 'Bozo The Clown']
>>> oldFlames[0:]
['Jennifer', 'Susan', 'Tina', 'Bozo The Clown']
>>> oldFlames[:3]

Making Friends And Influe... 4

['Jennifer', 'Susan', 'Tina']
>>> oldFlames[−4]
'Jennifer'
>>> oldFlames[−1]
'Bozo The Clown'
>>>

The built−in len() function can be used to calculate the number of elements in a list,

>>> superheroes
['Spiderman', 'Superman', 'Human Torch', 'Batman']
>>> len(superheroes)
4
>>>

while the "in" and "not in" operators can be used to test for the presence of a particular element in a list. A
match returns 1 (true), while a failure returns 0 (false).

>>> superheroes
['Spiderman', 'Superman', 'Human Torch', 'Batman']
>>> "batman" in superheroes
0
>>> "Batman" in superheroes
1
>>> "Batma" in superheroes
0
>>> "Incredible Hulk" in superheroes
0
>>> "Incredible Hulk" not in superheroes
1
>>>

Python 101 (part 3): A Twist In The Tail

Making Friends And Influe... 5

We Don't Need Another Hero
Unlike strings, lists are "mutable", which means that the elements contained within a list can be changed at
will. For example, any list element can be altered simply by assigning a new value to it via its index.

>>> superheroes
['Spiderman', 'Superman', 'Human Torch', 'Batman']
>>> superheroes[3] = "Captain America"
>>> superheroes
['Spiderman', 'Superman', 'Human Torch', 'Captain America']
>>>

You can alter more than one value at a time by using list slices.

>>> superheroes
['Spiderman', 'Superman', 'Human Torch', 'Captain America']
>>> superheroes[0:2] = ["Incredible Hulk", "Green Lantern"]
>>> superheroes
['Incredible Hulk', 'Green Lantern', 'Human Torch', 'Captain
America']
>>>

The built−in append() method makes it easy to add items to a list,

>>> superheroes
['Incredible Hulk', 'Green Lantern', 'Human Torch', 'Captain
America']
>>> superheroes.append("Spawn")
>>> superheroes
['Incredible Hulk', 'Green Lantern', 'Human Torch', 'Captain
America',
'Spawn']
>>>

while the del() method makes it just as easy to remove them.

We Don't Need Another Her... 6

>>> superheroes
['Incredible Hulk', 'Green Lantern', 'Human Torch', 'Captain
America',
'Spawn']
>>> del superheroes[4]
>>> superheroes
['Incredible Hulk', 'Green Lantern', 'Human Torch', 'Captain
America']
>>> del superheroes[0:2]
>>> superheroes
['Human Torch', 'Captain America']
>>>

Note that there's also a remove() method, which allows you to remove an element by value rather than index.

>>> superheroes
['Incredible Hulk', 'Green Lantern', 'Human Torch', 'Captain
America']
>>> superheroes.remove("Green Lantern")
>>> superheroes.remove("Captain America")
>>> superheroes
['Incredible Hulk', 'Human Torch']
>>>

Finally, the sort() and reverse() methods allow you to rearrange the contents of a list.

>>> oldFlames
['Jennifer', 'Susan', 'Tina', 'Bozo The Clown']
>>> oldFlames.sort()
>>> oldFlames
['Bozo The Clown', 'Jennifer', 'Susan', 'Tina']
>>> oldFlames.reverse()
>>> oldFlames
['Tina', 'Susan', 'Jennifer', 'Bozo The Clown']
>>>

Python 101 (part 3): A Twist In The Tail

We Don't Need Another Her... 7

A number of other list methods are also available − take a look at the Python Library Reference at
http://www.python.org/doc/current/lib/lib.html for more information and examples.

Let's move on to loops.

Python 101 (part 3): A Twist In The Tail

We Don't Need Another Her... 8

http://www.python.org/doc/current/lib/lib.html

Looping The Loop
For those of you unfamiliar with the term, a "loop" is a programming construct that allows you to execute a
set of statements over and over again, until a pre−defined condition is met. It's one of the most basic
constructs available in a programming language, and comes in handy when you need to perform a repetitive
task over and over again.

Unlike its counterparts, which offer a variety of different loop variants, Python keeps things simple with only
two types of loops: the "while" loop and the "for" loop. The former is simpler to read and understand, and it
usually looks like this:

while (condition):
do this!

In English, this would roughly translate to

while (living with Mom and Dad):
curfew is 11 PM

while the Python equivalent would look like this

while (livingWithParents == 1):
curfew = 2300

As with conditional statements, so long as the specified condition remains true, the indented code block will
continue to execute. However, as soon as the condition becomes false − you move out and get your own
place, say − the loop will be broken and the indented statements will stop executing.

You'll notice that Python uses indentation to decide which statements belong to the "while" block − you
probably remember this from last time. As with the "if" statement, if the code block consists of only a single
statement, Python allows you to place it on the same line as the "while" statement. For example,

while (livingWithParents == 0): curfew = "Huh? What curfew?"

Looping The Loop 9

is a perfectly valid "while" loop.

Here's a simple example which demonstrates the "while" loop.

#!/usr/bin/python

initialize a variable
response = ""

while loop
while response != "y":

keep asking the question
response = raw_input("Would you like to receive unsolicited
commercial email from people you don't know, advertising
products you have
no interest in, on a regular basis (once every 15 minutes)?
[y/n] ")

print "Thank you for your cooperation!"

And here's the output.

Would you like to receive unsolicited commercial email from
people you
don't know, advertising products you have no interest in, on a
regular
basis (once every 15 minutes)? [y/n] n
Would you like to receive unsolicted commerial email from
people you don't
know, advertising products you have no interest in, on a
regular basis
(once every 15 minutes)? [y/n] n
Would you like to receive unsolicted commerial email from
people you don't
know, advertising products you have no interest in, on a
regular basis
(once every 15 minutes)? [y/n] n
Would you like to receive unsolicted commerial email from
people you don't

Python 101 (part 3): A Twist In The Tail

Looping The Loop 10

know, advertising products you have no interest in, on a
regular basis
(once every 15 minutes)? [y/n] y
Thank you for your cooperation!

Python allows you to add an "else" clause to your "while" loop as well; this clause is executed if the loop is
executed without encountering a single "break" statement (more on this later.)

Consequently, the example above could be rewritten to read:

#!/usr/bin/python

initialize a variable
response = ""

while loop
while response != "y":

keep asking the question
response = raw_input("Would you like to receive unsolicited
commercial email from people you don't know, advertising
products you have
no interest in, on
a regular basis (once every 15 minutes)? [y/n] ")

else:
print "Thank you for your cooperation!"

How about something a little more constructive?

#!/usr/bin/python

get a number
num = input("Gimme a number: ")

assign the number to a "temp" variable
tmpnum = num
factorial = 1

calculate the factorial
while (num != 1):

Python 101 (part 3): A Twist In The Tail

Looping The Loop 11

factorial = factorial * num
num = num − 1

print "The factorial of", tmpnum, "is", factorial

In case you flunked math class, the factorial of a number X is the product of all the numbers between 1 and X.
And here's what the output looks like:

Gimme a number: 7
The factorial of 7 is 5040

And if you have a calculator handy, you'll see that

7*6*5*4*3*2*1 = 5040

Once the user enters a number, a "while" loop is used to calculate the product of that number and the variable
"factorial" (initialized to 1) − this value is again stored in the variable "factorial". Next, the number is reduced
by 1, and the process is repeated, until the number becomes equal to 1. At this stage, the value of "factorial" is
printed.

Python 101 (part 3): A Twist In The Tail

Looping The Loop 12

Twist And Turn
In most programming languages, a "for" loop is used to execute a set of statements a certain number of times.
Unlike a "while" loop, which continues to run for so long as the specified conditional expression evaluates as
true, a "for" loop comes with a specific limit on the number of times it can iterate.

Python's "for" loop conforms to this basic requirement; however, as with most things in Python, there's a twist
in the tail. A Python "for" loop is designed only to iterate over built−in "sequence objects" like strings and
lists, and is structured like this:

for temp_var in sequence_obj:
do this!

Or, in English, "take each element of the sequence sequence_obj, place it in the variable temp_var, and
execute the indented code block on temp_var".

An example might help to make this clearer:

>>> superheroes = ['Incredible Hulk', 'Green Lantern', 'Human
Torch',
'Captain America']
>>> for myhero in superheroes:
... print myhero, "rocks!"
...
Incredible Hulk rocks!
Green Lantern rocks!
Human Torch rocks!
Captain America rocks!
>>>

In this case, I've first initialized a list containing four elements. Next, I've used a "for" loop to iterate through
the list; on each successive iteration, one element of the list is assigned to the temporary variable "myhero"
and then printed to the console via a print() call. Once all the elements of the list have been processed, the
loop is automatically terminated.

You can use a "for" loop with any "sequence object" − this next example does something similar with a string.

Twist And Turn 13

>>> str = "abracadabra"
>>> for char in str:
... print char, "_",
...
a _ b _ r _ a _ c _ a _ d _ a _ b _ r _ a _
>>>

Python 101 (part 3): A Twist In The Tail

Twist And Turn 14

Within Range()
While on the topic of the "for" loop, it's worth mentioning the range() function, a built−in Python function
whose sole raison d'etre is to return a range of numbers, given a starting and ending point. This range is
always returned as a list − and as you'll see, this can combine quite effectively with the "for" loop in certain
situations.

>>> range(30,40)
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39]
>>>

You can omit the first argument to have Python generate a range from 0 to the specified end point.

>>> range(40)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39]
>>>

You can skip certain numbers in the range by adding an optional "step" argument (by default, this is 1).

>>> range (25,500,25)
[25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325,
350, 375,
400, 425, 450, 475]
>>> range (100,1,−10)
[100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
>>>

What does this have to do with anything? Well, the range() function, in combination with the "for" loop, can
come in handy when you need to perform a series of actions a specified number of times,

Within Range() 15

>>> for x in range(1,12):
... print "It is now", x, "o'clock"
...
It is now 1 o'clock
It is now 2 o'clock
It is now 3 o'clock
It is now 4 o'clock
It is now 5 o'clock
It is now 6 o'clock
It is now 7 o'clock
It is now 8 o'clock
It is now 9 o'clock
It is now 10 o'clock
It is now 11 o'clock
>>>

or to generate indices (corresponding to list elements) in a "for" loop.

>>> flavours = ["Strawberry", "Blueberry", "Blackcurrant",
"Pineapple",
"Mango", "Grape", "Orange", "Banana"]
>>> for temp in range(2,5): print flavours[temp]
...
Blackcurrant
Pineapple
Mango
>>>

Here's a more interesting example.

#!/usr/bin/python

get a number
num = input("Gimme a number: ")

for loop
for count in range(2,num):
if factor exists, num cannot be prime!
if num % count == 0:
print num, "is not a prime number."

Python 101 (part 3): A Twist In The Tail

Within Range() 16

break
else:
if we get this far, num is prime!
print num, "is a prime number."

This is a simple piece of code to test whether or not a number is prime. A "for" loop is used, in conjunction
with the range() function, to divide the user−specified number (num) by all numbers within the range 2 to
(num). If no factors are found, it implies that the number is a prime number.

Here's what it looks like:

Gimme a number: 23
23 is a prime number.
Gimme a number: 45
45 is not a prime number.
Gimme a number: 11
11 is a prime number.
Gimme a number: 111
111 is not a prime number.

As with the "while" loop, Python allows you to add an "else" clause to a "for" loop; it is executed only if the
loop is completed without encountering a "break" statement even once.

Python 101 (part 3): A Twist In The Tail

Within Range() 17

Just Passin' Through
Python's loops also come with a bunch of control statements, which can be used to modify their behaviour.
I've listed the important ones below, together with examples:

break:

The "break" keyword is used to exit a loop when it encounters an unexpected situation. A good example of
this is the dreaded "division by zero" error − when dividing one number by another one (which keeps
decreasing), it is advisable to check the divisor and use the "break" statement to exit the loop as soon as it
becomes equal to zero.

for x in range(10, −1, −1):

check for division by zero and exit
if x == 0:
break

print 100 / x

In this case, the "break" statement ensures that the loop is terminated whenever an attempt is made to divide
by zero. If you'd like to see what happens without the "break" statement, simply comment out the "if" test in
the code above.

continue:

The "continue" keyword is used to skip a particular iteration of the loop and move back to the top of the loop
− it's demonstrated in the following example:

for x in range(10):
if x == 7:
continue
print x

In this case, Python will print a string of numbers from 1 to 10 − however, when it hits 7, the "continue"
statement will cause it to skip that particular iteration and go back to the top of the loop. So your string of
numbers will not include 7 − try it and see for yourself.

pass:

Just Passin' Through 18

The "pass" statement essentially means "do nothing". Since Python uses indentation rather than braces to
distinguish blocks of code, it generates a syntax error if it doesn't find an expected code block within a loop or
conditional statement. The "pass" statement is used as a placeholder in such situations.

if var == "neo":
call_neo_func()
elif var == "trinity":
insert code later
pass
elif var == "agent":
insert code later
pass

In this case, the "pass" statement is used to avoid an error when the program is run (try omitting it and see
what happens.)

And that's about it for the moment. In this article, you found out a little more about adding flow control to
your Python programs with the "for" and "while" loops, and you also learnt about the ancillary "break",
"continue" and "pass" statements. You saw how the range() function can be used to generate number ranges,
which can then be used in combination with a "for" loop. And you now know a little more about Python's data
structures, after that crash course in list objects.

In the next article, we'll be continuing our tour of built−in Python objects with a look at dictionaries and
tuples, powerful and flexible data structures which let you do weird and wonderful things with your code.
We'll also re−visit numbers, strings and lists for a look at some more of the functions built into these objects.
See you then!

Python 101 (part 3): A Twist In The Tail

Just Passin' Through 19

	Table of Contents
	The Big Picture
	Here Comes A Hero
	Making Friends And Influencing People
	We Don't Need Another Hero
	Looping The Loop
	Twist And Turn
	Within Range()
	Just Passin' Through

